2015-05-20 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / exp_util.adb
blob5b86d419a99cda79a385c17d84a801e8f6b77424
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Inline; use Inline;
38 with Itypes; use Itypes;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Ttypes; use Ttypes;
58 with Urealp; use Urealp;
59 with Validsw; use Validsw;
61 package body Exp_Util is
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 function Build_Task_Array_Image
68 (Loc : Source_Ptr;
69 Id_Ref : Node_Id;
70 A_Type : Entity_Id;
71 Dyn : Boolean := False) return Node_Id;
72 -- Build function to generate the image string for a task that is an array
73 -- component, concatenating the images of each index. To avoid storage
74 -- leaks, the string is built with successive slice assignments. The flag
75 -- Dyn indicates whether this is called for the initialization procedure of
76 -- an array of tasks, or for the name of a dynamically created task that is
77 -- assigned to an indexed component.
79 function Build_Task_Image_Function
80 (Loc : Source_Ptr;
81 Decls : List_Id;
82 Stats : List_Id;
83 Res : Entity_Id) return Node_Id;
84 -- Common processing for Task_Array_Image and Task_Record_Image. Build
85 -- function body that computes image.
87 procedure Build_Task_Image_Prefix
88 (Loc : Source_Ptr;
89 Len : out Entity_Id;
90 Res : out Entity_Id;
91 Pos : out Entity_Id;
92 Prefix : Entity_Id;
93 Sum : Node_Id;
94 Decls : List_Id;
95 Stats : List_Id);
96 -- Common processing for Task_Array_Image and Task_Record_Image. Create
97 -- local variables and assign prefix of name to result string.
99 function Build_Task_Record_Image
100 (Loc : Source_Ptr;
101 Id_Ref : Node_Id;
102 Dyn : Boolean := False) return Node_Id;
103 -- Build function to generate the image string for a task that is a record
104 -- component. Concatenate name of variable with that of selector. The flag
105 -- Dyn indicates whether this is called for the initialization procedure of
106 -- record with task components, or for a dynamically created task that is
107 -- assigned to a selected component.
109 procedure Evaluate_Slice_Bounds (Slice : Node_Id);
110 -- Force evaluation of bounds of a slice, which may be given by a range
111 -- or by a subtype indication with or without a constraint.
113 function Make_CW_Equivalent_Type
114 (T : Entity_Id;
115 E : Node_Id) return Entity_Id;
116 -- T is a class-wide type entity, E is the initial expression node that
117 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
118 -- returns the entity of the Equivalent type and inserts on the fly the
119 -- necessary declaration such as:
121 -- type anon is record
122 -- _parent : Root_Type (T); constrained with E discriminants (if any)
123 -- Extension : String (1 .. expr to match size of E);
124 -- end record;
126 -- This record is compatible with any object of the class of T thanks to
127 -- the first field and has the same size as E thanks to the second.
129 function Make_Literal_Range
130 (Loc : Source_Ptr;
131 Literal_Typ : Entity_Id) return Node_Id;
132 -- Produce a Range node whose bounds are:
133 -- Low_Bound (Literal_Type) ..
134 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
135 -- this is used for expanding declarations like X : String := "sdfgdfg";
137 -- If the index type of the target array is not integer, we generate:
138 -- Low_Bound (Literal_Type) ..
139 -- Literal_Type'Val
140 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
141 -- + (Length (Literal_Typ) -1))
143 function Make_Non_Empty_Check
144 (Loc : Source_Ptr;
145 N : Node_Id) return Node_Id;
146 -- Produce a boolean expression checking that the unidimensional array
147 -- node N is not empty.
149 function New_Class_Wide_Subtype
150 (CW_Typ : Entity_Id;
151 N : Node_Id) return Entity_Id;
152 -- Create an implicit subtype of CW_Typ attached to node N
154 function Requires_Cleanup_Actions
155 (L : List_Id;
156 Lib_Level : Boolean;
157 Nested_Constructs : Boolean) return Boolean;
158 -- Given a list L, determine whether it contains one of the following:
160 -- 1) controlled objects
161 -- 2) library-level tagged types
163 -- Lib_Level is True when the list comes from a construct at the library
164 -- level, and False otherwise. Nested_Constructs is True when any nested
165 -- packages declared in L must be processed, and False otherwise.
167 -------------------------------------
168 -- Activate_Atomic_Synchronization --
169 -------------------------------------
171 procedure Activate_Atomic_Synchronization (N : Node_Id) is
172 Msg_Node : Node_Id;
174 begin
175 case Nkind (Parent (N)) is
177 -- Check for cases of appearing in the prefix of a construct where
178 -- we don't need atomic synchronization for this kind of usage.
180 when
181 -- Nothing to do if we are the prefix of an attribute, since we
182 -- do not want an atomic sync operation for things like 'Size.
184 N_Attribute_Reference |
186 -- The N_Reference node is like an attribute
188 N_Reference |
190 -- Nothing to do for a reference to a component (or components)
191 -- of a composite object. Only reads and updates of the object
192 -- as a whole require atomic synchronization (RM C.6 (15)).
194 N_Indexed_Component |
195 N_Selected_Component |
196 N_Slice =>
198 -- For all the above cases, nothing to do if we are the prefix
200 if Prefix (Parent (N)) = N then
201 return;
202 end if;
204 when others => null;
205 end case;
207 -- Go ahead and set the flag
209 Set_Atomic_Sync_Required (N);
211 -- Generate info message if requested
213 if Warn_On_Atomic_Synchronization then
214 case Nkind (N) is
215 when N_Identifier =>
216 Msg_Node := N;
218 when N_Selected_Component | N_Expanded_Name =>
219 Msg_Node := Selector_Name (N);
221 when N_Explicit_Dereference | N_Indexed_Component =>
222 Msg_Node := Empty;
224 when others =>
225 pragma Assert (False);
226 return;
227 end case;
229 if Present (Msg_Node) then
230 Error_Msg_N
231 ("info: atomic synchronization set for &?N?", Msg_Node);
232 else
233 Error_Msg_N
234 ("info: atomic synchronization set?N?", N);
235 end if;
236 end if;
237 end Activate_Atomic_Synchronization;
239 ----------------------
240 -- Adjust_Condition --
241 ----------------------
243 procedure Adjust_Condition (N : Node_Id) is
244 begin
245 if No (N) then
246 return;
247 end if;
249 declare
250 Loc : constant Source_Ptr := Sloc (N);
251 T : constant Entity_Id := Etype (N);
252 Ti : Entity_Id;
254 begin
255 -- Defend against a call where the argument has no type, or has a
256 -- type that is not Boolean. This can occur because of prior errors.
258 if No (T) or else not Is_Boolean_Type (T) then
259 return;
260 end if;
262 -- Apply validity checking if needed
264 if Validity_Checks_On and Validity_Check_Tests then
265 Ensure_Valid (N);
266 end if;
268 -- Immediate return if standard boolean, the most common case,
269 -- where nothing needs to be done.
271 if Base_Type (T) = Standard_Boolean then
272 return;
273 end if;
275 -- Case of zero/non-zero semantics or non-standard enumeration
276 -- representation. In each case, we rewrite the node as:
278 -- ityp!(N) /= False'Enum_Rep
280 -- where ityp is an integer type with large enough size to hold any
281 -- value of type T.
283 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
284 if Esize (T) <= Esize (Standard_Integer) then
285 Ti := Standard_Integer;
286 else
287 Ti := Standard_Long_Long_Integer;
288 end if;
290 Rewrite (N,
291 Make_Op_Ne (Loc,
292 Left_Opnd => Unchecked_Convert_To (Ti, N),
293 Right_Opnd =>
294 Make_Attribute_Reference (Loc,
295 Attribute_Name => Name_Enum_Rep,
296 Prefix =>
297 New_Occurrence_Of (First_Literal (T), Loc))));
298 Analyze_And_Resolve (N, Standard_Boolean);
300 else
301 Rewrite (N, Convert_To (Standard_Boolean, N));
302 Analyze_And_Resolve (N, Standard_Boolean);
303 end if;
304 end;
305 end Adjust_Condition;
307 ------------------------
308 -- Adjust_Result_Type --
309 ------------------------
311 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
312 begin
313 -- Ignore call if current type is not Standard.Boolean
315 if Etype (N) /= Standard_Boolean then
316 return;
317 end if;
319 -- If result is already of correct type, nothing to do. Note that
320 -- this will get the most common case where everything has a type
321 -- of Standard.Boolean.
323 if Base_Type (T) = Standard_Boolean then
324 return;
326 else
327 declare
328 KP : constant Node_Kind := Nkind (Parent (N));
330 begin
331 -- If result is to be used as a Condition in the syntax, no need
332 -- to convert it back, since if it was changed to Standard.Boolean
333 -- using Adjust_Condition, that is just fine for this usage.
335 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
336 return;
338 -- If result is an operand of another logical operation, no need
339 -- to reset its type, since Standard.Boolean is just fine, and
340 -- such operations always do Adjust_Condition on their operands.
342 elsif KP in N_Op_Boolean
343 or else KP in N_Short_Circuit
344 or else KP = N_Op_Not
345 then
346 return;
348 -- Otherwise we perform a conversion from the current type, which
349 -- must be Standard.Boolean, to the desired type.
351 else
352 Set_Analyzed (N);
353 Rewrite (N, Convert_To (T, N));
354 Analyze_And_Resolve (N, T);
355 end if;
356 end;
357 end if;
358 end Adjust_Result_Type;
360 --------------------------
361 -- Append_Freeze_Action --
362 --------------------------
364 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
365 Fnode : Node_Id;
367 begin
368 Ensure_Freeze_Node (T);
369 Fnode := Freeze_Node (T);
371 if No (Actions (Fnode)) then
372 Set_Actions (Fnode, New_List (N));
373 else
374 Append (N, Actions (Fnode));
375 end if;
377 end Append_Freeze_Action;
379 ---------------------------
380 -- Append_Freeze_Actions --
381 ---------------------------
383 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
384 Fnode : Node_Id;
386 begin
387 if No (L) then
388 return;
389 end if;
391 Ensure_Freeze_Node (T);
392 Fnode := Freeze_Node (T);
394 if No (Actions (Fnode)) then
395 Set_Actions (Fnode, L);
396 else
397 Append_List (L, Actions (Fnode));
398 end if;
399 end Append_Freeze_Actions;
401 ------------------------------------
402 -- Build_Allocate_Deallocate_Proc --
403 ------------------------------------
405 procedure Build_Allocate_Deallocate_Proc
406 (N : Node_Id;
407 Is_Allocate : Boolean)
409 Desig_Typ : Entity_Id;
410 Expr : Node_Id;
411 Pool_Id : Entity_Id;
412 Proc_To_Call : Node_Id := Empty;
413 Ptr_Typ : Entity_Id;
415 function Find_Object (E : Node_Id) return Node_Id;
416 -- Given an arbitrary expression of an allocator, try to find an object
417 -- reference in it, otherwise return the original expression.
419 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
420 -- Determine whether subprogram Subp denotes a custom allocate or
421 -- deallocate.
423 -----------------
424 -- Find_Object --
425 -----------------
427 function Find_Object (E : Node_Id) return Node_Id is
428 Expr : Node_Id;
430 begin
431 pragma Assert (Is_Allocate);
433 Expr := E;
434 loop
435 if Nkind (Expr) = N_Explicit_Dereference then
436 Expr := Prefix (Expr);
438 elsif Nkind (Expr) = N_Qualified_Expression then
439 Expr := Expression (Expr);
441 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
443 -- When interface class-wide types are involved in allocation,
444 -- the expander introduces several levels of address arithmetic
445 -- to perform dispatch table displacement. In this scenario the
446 -- object appears as:
448 -- Tag_Ptr (Base_Address (<object>'Address))
450 -- Detect this case and utilize the whole expression as the
451 -- "object" since it now points to the proper dispatch table.
453 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
454 exit;
456 -- Continue to strip the object
458 else
459 Expr := Expression (Expr);
460 end if;
462 else
463 exit;
464 end if;
465 end loop;
467 return Expr;
468 end Find_Object;
470 ---------------------------------
471 -- Is_Allocate_Deallocate_Proc --
472 ---------------------------------
474 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
475 begin
476 -- Look for a subprogram body with only one statement which is a
477 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
479 if Ekind (Subp) = E_Procedure
480 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
481 then
482 declare
483 HSS : constant Node_Id :=
484 Handled_Statement_Sequence (Parent (Parent (Subp)));
485 Proc : Entity_Id;
487 begin
488 if Present (Statements (HSS))
489 and then Nkind (First (Statements (HSS))) =
490 N_Procedure_Call_Statement
491 then
492 Proc := Entity (Name (First (Statements (HSS))));
494 return
495 Is_RTE (Proc, RE_Allocate_Any_Controlled)
496 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
497 end if;
498 end;
499 end if;
501 return False;
502 end Is_Allocate_Deallocate_Proc;
504 -- Start of processing for Build_Allocate_Deallocate_Proc
506 begin
507 -- Obtain the attributes of the allocation / deallocation
509 if Nkind (N) = N_Free_Statement then
510 Expr := Expression (N);
511 Ptr_Typ := Base_Type (Etype (Expr));
512 Proc_To_Call := Procedure_To_Call (N);
514 else
515 if Nkind (N) = N_Object_Declaration then
516 Expr := Expression (N);
517 else
518 Expr := N;
519 end if;
521 -- In certain cases an allocator with a qualified expression may
522 -- be relocated and used as the initialization expression of a
523 -- temporary:
525 -- before:
526 -- Obj : Ptr_Typ := new Desig_Typ'(...);
528 -- after:
529 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
530 -- Obj : Ptr_Typ := Tmp;
532 -- Since the allocator is always marked as analyzed to avoid infinite
533 -- expansion, it will never be processed by this routine given that
534 -- the designated type needs finalization actions. Detect this case
535 -- and complete the expansion of the allocator.
537 if Nkind (Expr) = N_Identifier
538 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
539 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
540 then
541 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
542 return;
543 end if;
545 -- The allocator may have been rewritten into something else in which
546 -- case the expansion performed by this routine does not apply.
548 if Nkind (Expr) /= N_Allocator then
549 return;
550 end if;
552 Ptr_Typ := Base_Type (Etype (Expr));
553 Proc_To_Call := Procedure_To_Call (Expr);
554 end if;
556 Pool_Id := Associated_Storage_Pool (Ptr_Typ);
557 Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
559 -- Handle concurrent types
561 if Is_Concurrent_Type (Desig_Typ)
562 and then Present (Corresponding_Record_Type (Desig_Typ))
563 then
564 Desig_Typ := Corresponding_Record_Type (Desig_Typ);
565 end if;
567 -- Do not process allocations / deallocations without a pool
569 if No (Pool_Id) then
570 return;
572 -- Do not process allocations on / deallocations from the secondary
573 -- stack.
575 elsif Is_RTE (Pool_Id, RE_SS_Pool) then
576 return;
578 -- Do not replicate the machinery if the allocator / free has already
579 -- been expanded and has a custom Allocate / Deallocate.
581 elsif Present (Proc_To_Call)
582 and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
583 then
584 return;
585 end if;
587 if Needs_Finalization (Desig_Typ) then
589 -- Certain run-time configurations and targets do not provide support
590 -- for controlled types.
592 if Restriction_Active (No_Finalization) then
593 return;
595 -- Do nothing if the access type may never allocate / deallocate
596 -- objects.
598 elsif No_Pool_Assigned (Ptr_Typ) then
599 return;
601 -- Access-to-controlled types are not supported on .NET/JVM since
602 -- these targets cannot support pools and address arithmetic.
604 elsif VM_Target /= No_VM then
605 return;
606 end if;
608 -- The allocation / deallocation of a controlled object must be
609 -- chained on / detached from a finalization master.
611 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
613 -- The only other kind of allocation / deallocation supported by this
614 -- routine is on / from a subpool.
616 elsif Nkind (Expr) = N_Allocator
617 and then No (Subpool_Handle_Name (Expr))
618 then
619 return;
620 end if;
622 declare
623 Loc : constant Source_Ptr := Sloc (N);
624 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
625 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
626 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
627 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
629 Actuals : List_Id;
630 Fin_Addr_Id : Entity_Id;
631 Fin_Mas_Act : Node_Id;
632 Fin_Mas_Id : Entity_Id;
633 Proc_To_Call : Entity_Id;
634 Subpool : Node_Id := Empty;
636 begin
637 -- Step 1: Construct all the actuals for the call to library routine
638 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
640 -- a) Storage pool
642 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
644 if Is_Allocate then
646 -- b) Subpool
648 if Nkind (Expr) = N_Allocator then
649 Subpool := Subpool_Handle_Name (Expr);
650 end if;
652 -- If a subpool is present it can be an arbitrary name, so make
653 -- the actual by copying the tree.
655 if Present (Subpool) then
656 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
657 else
658 Append_To (Actuals, Make_Null (Loc));
659 end if;
661 -- c) Finalization master
663 if Needs_Finalization (Desig_Typ) then
664 Fin_Mas_Id := Finalization_Master (Ptr_Typ);
665 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
667 -- Handle the case where the master is actually a pointer to a
668 -- master. This case arises in build-in-place functions.
670 if Is_Access_Type (Etype (Fin_Mas_Id)) then
671 Append_To (Actuals, Fin_Mas_Act);
672 else
673 Append_To (Actuals,
674 Make_Attribute_Reference (Loc,
675 Prefix => Fin_Mas_Act,
676 Attribute_Name => Name_Unrestricted_Access));
677 end if;
678 else
679 Append_To (Actuals, Make_Null (Loc));
680 end if;
682 -- d) Finalize_Address
684 -- Primitive Finalize_Address is never generated in CodePeer mode
685 -- since it contains an Unchecked_Conversion.
687 if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
688 Fin_Addr_Id := Finalize_Address (Desig_Typ);
689 pragma Assert (Present (Fin_Addr_Id));
691 Append_To (Actuals,
692 Make_Attribute_Reference (Loc,
693 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
694 Attribute_Name => Name_Unrestricted_Access));
695 else
696 Append_To (Actuals, Make_Null (Loc));
697 end if;
698 end if;
700 -- e) Address
701 -- f) Storage_Size
702 -- g) Alignment
704 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
705 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
707 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
708 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
710 -- For deallocation of class-wide types we obtain the value of
711 -- alignment from the Type Specific Record of the deallocated object.
712 -- This is needed because the frontend expansion of class-wide types
713 -- into equivalent types confuses the backend.
715 else
716 -- Generate:
717 -- Obj.all'Alignment
719 -- ... because 'Alignment applied to class-wide types is expanded
720 -- into the code that reads the value of alignment from the TSD
721 -- (see Expand_N_Attribute_Reference)
723 Append_To (Actuals,
724 Unchecked_Convert_To (RTE (RE_Storage_Offset),
725 Make_Attribute_Reference (Loc,
726 Prefix =>
727 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
728 Attribute_Name => Name_Alignment)));
729 end if;
731 -- h) Is_Controlled
733 if Needs_Finalization (Desig_Typ) then
734 declare
735 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
736 Flag_Expr : Node_Id;
737 Param : Node_Id;
738 Temp : Node_Id;
740 begin
741 if Is_Allocate then
742 Temp := Find_Object (Expression (Expr));
743 else
744 Temp := Expr;
745 end if;
747 -- Processing for allocations where the expression is a subtype
748 -- indication.
750 if Is_Allocate
751 and then Is_Entity_Name (Temp)
752 and then Is_Type (Entity (Temp))
753 then
754 Flag_Expr :=
755 New_Occurrence_Of
756 (Boolean_Literals
757 (Needs_Finalization (Entity (Temp))), Loc);
759 -- The allocation / deallocation of a class-wide object relies
760 -- on a runtime check to determine whether the object is truly
761 -- controlled or not. Depending on this check, the finalization
762 -- machinery will request or reclaim extra storage reserved for
763 -- a list header.
765 elsif Is_Class_Wide_Type (Desig_Typ) then
767 -- Detect a special case where interface class-wide types
768 -- are involved as the object appears as:
770 -- Tag_Ptr (Base_Address (<object>'Address))
772 -- The expression already yields the proper tag, generate:
774 -- Temp.all
776 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
777 Param :=
778 Make_Explicit_Dereference (Loc,
779 Prefix => Relocate_Node (Temp));
781 -- In the default case, obtain the tag of the object about
782 -- to be allocated / deallocated. Generate:
784 -- Temp'Tag
786 else
787 Param :=
788 Make_Attribute_Reference (Loc,
789 Prefix => Relocate_Node (Temp),
790 Attribute_Name => Name_Tag);
791 end if;
793 -- Generate:
794 -- Needs_Finalization (<Param>)
796 Flag_Expr :=
797 Make_Function_Call (Loc,
798 Name =>
799 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
800 Parameter_Associations => New_List (Param));
802 -- Processing for generic actuals
804 elsif Is_Generic_Actual_Type (Desig_Typ) then
805 Flag_Expr :=
806 New_Occurrence_Of (Boolean_Literals
807 (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
809 -- The object does not require any specialized checks, it is
810 -- known to be controlled.
812 else
813 Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
814 end if;
816 -- Create the temporary which represents the finalization state
817 -- of the expression. Generate:
819 -- F : constant Boolean := <Flag_Expr>;
821 Insert_Action (N,
822 Make_Object_Declaration (Loc,
823 Defining_Identifier => Flag_Id,
824 Constant_Present => True,
825 Object_Definition =>
826 New_Occurrence_Of (Standard_Boolean, Loc),
827 Expression => Flag_Expr));
829 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
830 end;
832 -- The object is not controlled
834 else
835 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
836 end if;
838 -- i) On_Subpool
840 if Is_Allocate then
841 Append_To (Actuals,
842 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
843 end if;
845 -- Step 2: Build a wrapper Allocate / Deallocate which internally
846 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
848 -- Select the proper routine to call
850 if Is_Allocate then
851 Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
852 else
853 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
854 end if;
856 -- Create a custom Allocate / Deallocate routine which has identical
857 -- profile to that of System.Storage_Pools.
859 Insert_Action (N,
860 Make_Subprogram_Body (Loc,
861 Specification =>
863 -- procedure Pnn
865 Make_Procedure_Specification (Loc,
866 Defining_Unit_Name => Proc_Id,
867 Parameter_Specifications => New_List (
869 -- P : Root_Storage_Pool
871 Make_Parameter_Specification (Loc,
872 Defining_Identifier => Make_Temporary (Loc, 'P'),
873 Parameter_Type =>
874 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
876 -- A : [out] Address
878 Make_Parameter_Specification (Loc,
879 Defining_Identifier => Addr_Id,
880 Out_Present => Is_Allocate,
881 Parameter_Type =>
882 New_Occurrence_Of (RTE (RE_Address), Loc)),
884 -- S : Storage_Count
886 Make_Parameter_Specification (Loc,
887 Defining_Identifier => Size_Id,
888 Parameter_Type =>
889 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
891 -- L : Storage_Count
893 Make_Parameter_Specification (Loc,
894 Defining_Identifier => Alig_Id,
895 Parameter_Type =>
896 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
898 Declarations => No_List,
900 Handled_Statement_Sequence =>
901 Make_Handled_Sequence_Of_Statements (Loc,
902 Statements => New_List (
903 Make_Procedure_Call_Statement (Loc,
904 Name => New_Occurrence_Of (Proc_To_Call, Loc),
905 Parameter_Associations => Actuals)))));
907 -- The newly generated Allocate / Deallocate becomes the default
908 -- procedure to call when the back end processes the allocation /
909 -- deallocation.
911 if Is_Allocate then
912 Set_Procedure_To_Call (Expr, Proc_Id);
913 else
914 Set_Procedure_To_Call (N, Proc_Id);
915 end if;
916 end;
917 end Build_Allocate_Deallocate_Proc;
919 ------------------------
920 -- Build_Runtime_Call --
921 ------------------------
923 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
924 begin
925 -- If entity is not available, we can skip making the call (this avoids
926 -- junk duplicated error messages in a number of cases).
928 if not RTE_Available (RE) then
929 return Make_Null_Statement (Loc);
930 else
931 return
932 Make_Procedure_Call_Statement (Loc,
933 Name => New_Occurrence_Of (RTE (RE), Loc));
934 end if;
935 end Build_Runtime_Call;
937 ------------------------
938 -- Build_SS_Mark_Call --
939 ------------------------
941 function Build_SS_Mark_Call
942 (Loc : Source_Ptr;
943 Mark : Entity_Id) return Node_Id
945 begin
946 -- Generate:
947 -- Mark : constant Mark_Id := SS_Mark;
949 return
950 Make_Object_Declaration (Loc,
951 Defining_Identifier => Mark,
952 Constant_Present => True,
953 Object_Definition =>
954 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
955 Expression =>
956 Make_Function_Call (Loc,
957 Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
958 end Build_SS_Mark_Call;
960 ---------------------------
961 -- Build_SS_Release_Call --
962 ---------------------------
964 function Build_SS_Release_Call
965 (Loc : Source_Ptr;
966 Mark : Entity_Id) return Node_Id
968 begin
969 -- Generate:
970 -- SS_Release (Mark);
972 return
973 Make_Procedure_Call_Statement (Loc,
974 Name =>
975 New_Occurrence_Of (RTE (RE_SS_Release), Loc),
976 Parameter_Associations => New_List (
977 New_Occurrence_Of (Mark, Loc)));
978 end Build_SS_Release_Call;
980 ----------------------------
981 -- Build_Task_Array_Image --
982 ----------------------------
984 -- This function generates the body for a function that constructs the
985 -- image string for a task that is an array component. The function is
986 -- local to the init proc for the array type, and is called for each one
987 -- of the components. The constructed image has the form of an indexed
988 -- component, whose prefix is the outer variable of the array type.
989 -- The n-dimensional array type has known indexes Index, Index2...
991 -- Id_Ref is an indexed component form created by the enclosing init proc.
992 -- Its successive indexes are Val1, Val2, ... which are the loop variables
993 -- in the loops that call the individual task init proc on each component.
995 -- The generated function has the following structure:
997 -- function F return String is
998 -- Pref : string renames Task_Name;
999 -- T1 : String := Index1'Image (Val1);
1000 -- ...
1001 -- Tn : String := indexn'image (Valn);
1002 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
1003 -- -- Len includes commas and the end parentheses.
1004 -- Res : String (1..Len);
1005 -- Pos : Integer := Pref'Length;
1007 -- begin
1008 -- Res (1 .. Pos) := Pref;
1009 -- Pos := Pos + 1;
1010 -- Res (Pos) := '(';
1011 -- Pos := Pos + 1;
1012 -- Res (Pos .. Pos + T1'Length - 1) := T1;
1013 -- Pos := Pos + T1'Length;
1014 -- Res (Pos) := '.';
1015 -- Pos := Pos + 1;
1016 -- ...
1017 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
1018 -- Res (Len) := ')';
1020 -- return Res;
1021 -- end F;
1023 -- Needless to say, multidimensional arrays of tasks are rare enough that
1024 -- the bulkiness of this code is not really a concern.
1026 function Build_Task_Array_Image
1027 (Loc : Source_Ptr;
1028 Id_Ref : Node_Id;
1029 A_Type : Entity_Id;
1030 Dyn : Boolean := False) return Node_Id
1032 Dims : constant Nat := Number_Dimensions (A_Type);
1033 -- Number of dimensions for array of tasks
1035 Temps : array (1 .. Dims) of Entity_Id;
1036 -- Array of temporaries to hold string for each index
1038 Indx : Node_Id;
1039 -- Index expression
1041 Len : Entity_Id;
1042 -- Total length of generated name
1044 Pos : Entity_Id;
1045 -- Running index for substring assignments
1047 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1048 -- Name of enclosing variable, prefix of resulting name
1050 Res : Entity_Id;
1051 -- String to hold result
1053 Val : Node_Id;
1054 -- Value of successive indexes
1056 Sum : Node_Id;
1057 -- Expression to compute total size of string
1059 T : Entity_Id;
1060 -- Entity for name at one index position
1062 Decls : constant List_Id := New_List;
1063 Stats : constant List_Id := New_List;
1065 begin
1066 -- For a dynamic task, the name comes from the target variable. For a
1067 -- static one it is a formal of the enclosing init proc.
1069 if Dyn then
1070 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1071 Append_To (Decls,
1072 Make_Object_Declaration (Loc,
1073 Defining_Identifier => Pref,
1074 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1075 Expression =>
1076 Make_String_Literal (Loc,
1077 Strval => String_From_Name_Buffer)));
1079 else
1080 Append_To (Decls,
1081 Make_Object_Renaming_Declaration (Loc,
1082 Defining_Identifier => Pref,
1083 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1084 Name => Make_Identifier (Loc, Name_uTask_Name)));
1085 end if;
1087 Indx := First_Index (A_Type);
1088 Val := First (Expressions (Id_Ref));
1090 for J in 1 .. Dims loop
1091 T := Make_Temporary (Loc, 'T');
1092 Temps (J) := T;
1094 Append_To (Decls,
1095 Make_Object_Declaration (Loc,
1096 Defining_Identifier => T,
1097 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1098 Expression =>
1099 Make_Attribute_Reference (Loc,
1100 Attribute_Name => Name_Image,
1101 Prefix => New_Occurrence_Of (Etype (Indx), Loc),
1102 Expressions => New_List (New_Copy_Tree (Val)))));
1104 Next_Index (Indx);
1105 Next (Val);
1106 end loop;
1108 Sum := Make_Integer_Literal (Loc, Dims + 1);
1110 Sum :=
1111 Make_Op_Add (Loc,
1112 Left_Opnd => Sum,
1113 Right_Opnd =>
1114 Make_Attribute_Reference (Loc,
1115 Attribute_Name => Name_Length,
1116 Prefix => New_Occurrence_Of (Pref, Loc),
1117 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1119 for J in 1 .. Dims loop
1120 Sum :=
1121 Make_Op_Add (Loc,
1122 Left_Opnd => Sum,
1123 Right_Opnd =>
1124 Make_Attribute_Reference (Loc,
1125 Attribute_Name => Name_Length,
1126 Prefix =>
1127 New_Occurrence_Of (Temps (J), Loc),
1128 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1129 end loop;
1131 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1133 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
1135 Append_To (Stats,
1136 Make_Assignment_Statement (Loc,
1137 Name =>
1138 Make_Indexed_Component (Loc,
1139 Prefix => New_Occurrence_Of (Res, Loc),
1140 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1141 Expression =>
1142 Make_Character_Literal (Loc,
1143 Chars => Name_Find,
1144 Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
1146 Append_To (Stats,
1147 Make_Assignment_Statement (Loc,
1148 Name => New_Occurrence_Of (Pos, Loc),
1149 Expression =>
1150 Make_Op_Add (Loc,
1151 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1152 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1154 for J in 1 .. Dims loop
1156 Append_To (Stats,
1157 Make_Assignment_Statement (Loc,
1158 Name =>
1159 Make_Slice (Loc,
1160 Prefix => New_Occurrence_Of (Res, Loc),
1161 Discrete_Range =>
1162 Make_Range (Loc,
1163 Low_Bound => New_Occurrence_Of (Pos, Loc),
1164 High_Bound =>
1165 Make_Op_Subtract (Loc,
1166 Left_Opnd =>
1167 Make_Op_Add (Loc,
1168 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1169 Right_Opnd =>
1170 Make_Attribute_Reference (Loc,
1171 Attribute_Name => Name_Length,
1172 Prefix =>
1173 New_Occurrence_Of (Temps (J), Loc),
1174 Expressions =>
1175 New_List (Make_Integer_Literal (Loc, 1)))),
1176 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
1178 Expression => New_Occurrence_Of (Temps (J), Loc)));
1180 if J < Dims then
1181 Append_To (Stats,
1182 Make_Assignment_Statement (Loc,
1183 Name => New_Occurrence_Of (Pos, Loc),
1184 Expression =>
1185 Make_Op_Add (Loc,
1186 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1187 Right_Opnd =>
1188 Make_Attribute_Reference (Loc,
1189 Attribute_Name => Name_Length,
1190 Prefix => New_Occurrence_Of (Temps (J), Loc),
1191 Expressions =>
1192 New_List (Make_Integer_Literal (Loc, 1))))));
1194 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
1196 Append_To (Stats,
1197 Make_Assignment_Statement (Loc,
1198 Name => Make_Indexed_Component (Loc,
1199 Prefix => New_Occurrence_Of (Res, Loc),
1200 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1201 Expression =>
1202 Make_Character_Literal (Loc,
1203 Chars => Name_Find,
1204 Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
1206 Append_To (Stats,
1207 Make_Assignment_Statement (Loc,
1208 Name => New_Occurrence_Of (Pos, Loc),
1209 Expression =>
1210 Make_Op_Add (Loc,
1211 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1212 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1213 end if;
1214 end loop;
1216 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
1218 Append_To (Stats,
1219 Make_Assignment_Statement (Loc,
1220 Name =>
1221 Make_Indexed_Component (Loc,
1222 Prefix => New_Occurrence_Of (Res, Loc),
1223 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
1224 Expression =>
1225 Make_Character_Literal (Loc,
1226 Chars => Name_Find,
1227 Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
1228 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1229 end Build_Task_Array_Image;
1231 ----------------------------
1232 -- Build_Task_Image_Decls --
1233 ----------------------------
1235 function Build_Task_Image_Decls
1236 (Loc : Source_Ptr;
1237 Id_Ref : Node_Id;
1238 A_Type : Entity_Id;
1239 In_Init_Proc : Boolean := False) return List_Id
1241 Decls : constant List_Id := New_List;
1242 T_Id : Entity_Id := Empty;
1243 Decl : Node_Id;
1244 Expr : Node_Id := Empty;
1245 Fun : Node_Id := Empty;
1246 Is_Dyn : constant Boolean :=
1247 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
1248 and then
1249 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
1251 begin
1252 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
1253 -- generate a dummy declaration only.
1255 if Restriction_Active (No_Implicit_Heap_Allocations)
1256 or else Global_Discard_Names
1257 then
1258 T_Id := Make_Temporary (Loc, 'J');
1259 Name_Len := 0;
1261 return
1262 New_List (
1263 Make_Object_Declaration (Loc,
1264 Defining_Identifier => T_Id,
1265 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1266 Expression =>
1267 Make_String_Literal (Loc,
1268 Strval => String_From_Name_Buffer)));
1270 else
1271 if Nkind (Id_Ref) = N_Identifier
1272 or else Nkind (Id_Ref) = N_Defining_Identifier
1273 then
1274 -- For a simple variable, the image of the task is built from
1275 -- the name of the variable. To avoid possible conflict with the
1276 -- anonymous type created for a single protected object, add a
1277 -- numeric suffix.
1279 T_Id :=
1280 Make_Defining_Identifier (Loc,
1281 New_External_Name (Chars (Id_Ref), 'T', 1));
1283 Get_Name_String (Chars (Id_Ref));
1285 Expr :=
1286 Make_String_Literal (Loc,
1287 Strval => String_From_Name_Buffer);
1289 elsif Nkind (Id_Ref) = N_Selected_Component then
1290 T_Id :=
1291 Make_Defining_Identifier (Loc,
1292 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
1293 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
1295 elsif Nkind (Id_Ref) = N_Indexed_Component then
1296 T_Id :=
1297 Make_Defining_Identifier (Loc,
1298 New_External_Name (Chars (A_Type), 'N'));
1300 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
1301 end if;
1302 end if;
1304 if Present (Fun) then
1305 Append (Fun, Decls);
1306 Expr := Make_Function_Call (Loc,
1307 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
1309 if not In_Init_Proc and then VM_Target = No_VM then
1310 Set_Uses_Sec_Stack (Defining_Entity (Fun));
1311 end if;
1312 end if;
1314 Decl := Make_Object_Declaration (Loc,
1315 Defining_Identifier => T_Id,
1316 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1317 Constant_Present => True,
1318 Expression => Expr);
1320 Append (Decl, Decls);
1321 return Decls;
1322 end Build_Task_Image_Decls;
1324 -------------------------------
1325 -- Build_Task_Image_Function --
1326 -------------------------------
1328 function Build_Task_Image_Function
1329 (Loc : Source_Ptr;
1330 Decls : List_Id;
1331 Stats : List_Id;
1332 Res : Entity_Id) return Node_Id
1334 Spec : Node_Id;
1336 begin
1337 Append_To (Stats,
1338 Make_Simple_Return_Statement (Loc,
1339 Expression => New_Occurrence_Of (Res, Loc)));
1341 Spec := Make_Function_Specification (Loc,
1342 Defining_Unit_Name => Make_Temporary (Loc, 'F'),
1343 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
1345 -- Calls to 'Image use the secondary stack, which must be cleaned up
1346 -- after the task name is built.
1348 return Make_Subprogram_Body (Loc,
1349 Specification => Spec,
1350 Declarations => Decls,
1351 Handled_Statement_Sequence =>
1352 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
1353 end Build_Task_Image_Function;
1355 -----------------------------
1356 -- Build_Task_Image_Prefix --
1357 -----------------------------
1359 procedure Build_Task_Image_Prefix
1360 (Loc : Source_Ptr;
1361 Len : out Entity_Id;
1362 Res : out Entity_Id;
1363 Pos : out Entity_Id;
1364 Prefix : Entity_Id;
1365 Sum : Node_Id;
1366 Decls : List_Id;
1367 Stats : List_Id)
1369 begin
1370 Len := Make_Temporary (Loc, 'L', Sum);
1372 Append_To (Decls,
1373 Make_Object_Declaration (Loc,
1374 Defining_Identifier => Len,
1375 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
1376 Expression => Sum));
1378 Res := Make_Temporary (Loc, 'R');
1380 Append_To (Decls,
1381 Make_Object_Declaration (Loc,
1382 Defining_Identifier => Res,
1383 Object_Definition =>
1384 Make_Subtype_Indication (Loc,
1385 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1386 Constraint =>
1387 Make_Index_Or_Discriminant_Constraint (Loc,
1388 Constraints =>
1389 New_List (
1390 Make_Range (Loc,
1391 Low_Bound => Make_Integer_Literal (Loc, 1),
1392 High_Bound => New_Occurrence_Of (Len, Loc)))))));
1394 -- Indicate that the result is an internal temporary, so it does not
1395 -- receive a bogus initialization when declaration is expanded. This
1396 -- is both efficient, and prevents anomalies in the handling of
1397 -- dynamic objects on the secondary stack.
1399 Set_Is_Internal (Res);
1400 Pos := Make_Temporary (Loc, 'P');
1402 Append_To (Decls,
1403 Make_Object_Declaration (Loc,
1404 Defining_Identifier => Pos,
1405 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
1407 -- Pos := Prefix'Length;
1409 Append_To (Stats,
1410 Make_Assignment_Statement (Loc,
1411 Name => New_Occurrence_Of (Pos, Loc),
1412 Expression =>
1413 Make_Attribute_Reference (Loc,
1414 Attribute_Name => Name_Length,
1415 Prefix => New_Occurrence_Of (Prefix, Loc),
1416 Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
1418 -- Res (1 .. Pos) := Prefix;
1420 Append_To (Stats,
1421 Make_Assignment_Statement (Loc,
1422 Name =>
1423 Make_Slice (Loc,
1424 Prefix => New_Occurrence_Of (Res, Loc),
1425 Discrete_Range =>
1426 Make_Range (Loc,
1427 Low_Bound => Make_Integer_Literal (Loc, 1),
1428 High_Bound => New_Occurrence_Of (Pos, Loc))),
1430 Expression => New_Occurrence_Of (Prefix, Loc)));
1432 Append_To (Stats,
1433 Make_Assignment_Statement (Loc,
1434 Name => New_Occurrence_Of (Pos, Loc),
1435 Expression =>
1436 Make_Op_Add (Loc,
1437 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1438 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1439 end Build_Task_Image_Prefix;
1441 -----------------------------
1442 -- Build_Task_Record_Image --
1443 -----------------------------
1445 function Build_Task_Record_Image
1446 (Loc : Source_Ptr;
1447 Id_Ref : Node_Id;
1448 Dyn : Boolean := False) return Node_Id
1450 Len : Entity_Id;
1451 -- Total length of generated name
1453 Pos : Entity_Id;
1454 -- Index into result
1456 Res : Entity_Id;
1457 -- String to hold result
1459 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1460 -- Name of enclosing variable, prefix of resulting name
1462 Sum : Node_Id;
1463 -- Expression to compute total size of string
1465 Sel : Entity_Id;
1466 -- Entity for selector name
1468 Decls : constant List_Id := New_List;
1469 Stats : constant List_Id := New_List;
1471 begin
1472 -- For a dynamic task, the name comes from the target variable. For a
1473 -- static one it is a formal of the enclosing init proc.
1475 if Dyn then
1476 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1477 Append_To (Decls,
1478 Make_Object_Declaration (Loc,
1479 Defining_Identifier => Pref,
1480 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1481 Expression =>
1482 Make_String_Literal (Loc,
1483 Strval => String_From_Name_Buffer)));
1485 else
1486 Append_To (Decls,
1487 Make_Object_Renaming_Declaration (Loc,
1488 Defining_Identifier => Pref,
1489 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1490 Name => Make_Identifier (Loc, Name_uTask_Name)));
1491 end if;
1493 Sel := Make_Temporary (Loc, 'S');
1495 Get_Name_String (Chars (Selector_Name (Id_Ref)));
1497 Append_To (Decls,
1498 Make_Object_Declaration (Loc,
1499 Defining_Identifier => Sel,
1500 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1501 Expression =>
1502 Make_String_Literal (Loc,
1503 Strval => String_From_Name_Buffer)));
1505 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
1507 Sum :=
1508 Make_Op_Add (Loc,
1509 Left_Opnd => Sum,
1510 Right_Opnd =>
1511 Make_Attribute_Reference (Loc,
1512 Attribute_Name => Name_Length,
1513 Prefix =>
1514 New_Occurrence_Of (Pref, Loc),
1515 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1517 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1519 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
1521 -- Res (Pos) := '.';
1523 Append_To (Stats,
1524 Make_Assignment_Statement (Loc,
1525 Name => Make_Indexed_Component (Loc,
1526 Prefix => New_Occurrence_Of (Res, Loc),
1527 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1528 Expression =>
1529 Make_Character_Literal (Loc,
1530 Chars => Name_Find,
1531 Char_Literal_Value =>
1532 UI_From_Int (Character'Pos ('.')))));
1534 Append_To (Stats,
1535 Make_Assignment_Statement (Loc,
1536 Name => New_Occurrence_Of (Pos, Loc),
1537 Expression =>
1538 Make_Op_Add (Loc,
1539 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1540 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1542 -- Res (Pos .. Len) := Selector;
1544 Append_To (Stats,
1545 Make_Assignment_Statement (Loc,
1546 Name => Make_Slice (Loc,
1547 Prefix => New_Occurrence_Of (Res, Loc),
1548 Discrete_Range =>
1549 Make_Range (Loc,
1550 Low_Bound => New_Occurrence_Of (Pos, Loc),
1551 High_Bound => New_Occurrence_Of (Len, Loc))),
1552 Expression => New_Occurrence_Of (Sel, Loc)));
1554 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1555 end Build_Task_Record_Image;
1557 -----------------------------
1558 -- Check_Float_Op_Overflow --
1559 -----------------------------
1561 procedure Check_Float_Op_Overflow (N : Node_Id) is
1562 begin
1563 -- Return if no check needed
1565 if not Is_Floating_Point_Type (Etype (N))
1566 or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
1568 -- In CodePeer_Mode, rely on the overflow check flag being set instead
1569 -- and do not expand the code for float overflow checking.
1571 or else CodePeer_Mode
1572 then
1573 return;
1574 end if;
1576 -- Otherwise we replace the expression by
1578 -- do Tnn : constant ftype := expression;
1579 -- constraint_error when not Tnn'Valid;
1580 -- in Tnn;
1582 declare
1583 Loc : constant Source_Ptr := Sloc (N);
1584 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
1585 Typ : constant Entity_Id := Etype (N);
1587 begin
1588 -- Turn off the Do_Overflow_Check flag, since we are doing that work
1589 -- right here. We also set the node as analyzed to prevent infinite
1590 -- recursion from repeating the operation in the expansion.
1592 Set_Do_Overflow_Check (N, False);
1593 Set_Analyzed (N, True);
1595 -- Do the rewrite to include the check
1597 Rewrite (N,
1598 Make_Expression_With_Actions (Loc,
1599 Actions => New_List (
1600 Make_Object_Declaration (Loc,
1601 Defining_Identifier => Tnn,
1602 Object_Definition => New_Occurrence_Of (Typ, Loc),
1603 Constant_Present => True,
1604 Expression => Relocate_Node (N)),
1605 Make_Raise_Constraint_Error (Loc,
1606 Condition =>
1607 Make_Op_Not (Loc,
1608 Right_Opnd =>
1609 Make_Attribute_Reference (Loc,
1610 Prefix => New_Occurrence_Of (Tnn, Loc),
1611 Attribute_Name => Name_Valid)),
1612 Reason => CE_Overflow_Check_Failed)),
1613 Expression => New_Occurrence_Of (Tnn, Loc)));
1615 Analyze_And_Resolve (N, Typ);
1616 end;
1617 end Check_Float_Op_Overflow;
1619 ----------------------------------
1620 -- Component_May_Be_Bit_Aligned --
1621 ----------------------------------
1623 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
1624 UT : Entity_Id;
1626 begin
1627 -- If no component clause, then everything is fine, since the back end
1628 -- never bit-misaligns by default, even if there is a pragma Packed for
1629 -- the record.
1631 if No (Comp) or else No (Component_Clause (Comp)) then
1632 return False;
1633 end if;
1635 UT := Underlying_Type (Etype (Comp));
1637 -- It is only array and record types that cause trouble
1639 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
1640 return False;
1642 -- If we know that we have a small (64 bits or less) record or small
1643 -- bit-packed array, then everything is fine, since the back end can
1644 -- handle these cases correctly.
1646 elsif Esize (Comp) <= 64
1647 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
1648 then
1649 return False;
1651 -- Otherwise if the component is not byte aligned, we know we have the
1652 -- nasty unaligned case.
1654 elsif Normalized_First_Bit (Comp) /= Uint_0
1655 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
1656 then
1657 return True;
1659 -- If we are large and byte aligned, then OK at this level
1661 else
1662 return False;
1663 end if;
1664 end Component_May_Be_Bit_Aligned;
1666 ----------------------------------------
1667 -- Containing_Package_With_Ext_Axioms --
1668 ----------------------------------------
1670 function Containing_Package_With_Ext_Axioms
1671 (E : Entity_Id) return Entity_Id
1673 Decl : Node_Id;
1675 begin
1676 if Ekind (E) = E_Package then
1677 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
1678 Decl := Parent (Parent (E));
1679 else
1680 Decl := Parent (E);
1681 end if;
1682 end if;
1684 -- E is the package or generic package which is externally axiomatized
1686 if Ekind_In (E, E_Package, E_Generic_Package)
1687 and then Has_Annotate_Pragma_For_External_Axiomatization (E)
1688 then
1689 return E;
1690 end if;
1692 -- If E's scope is axiomatized, E is axiomatized.
1694 declare
1695 First_Ax_Parent_Scope : Entity_Id := Empty;
1697 begin
1698 if Present (Scope (E)) then
1699 First_Ax_Parent_Scope :=
1700 Containing_Package_With_Ext_Axioms (Scope (E));
1701 end if;
1703 if Present (First_Ax_Parent_Scope) then
1704 return First_Ax_Parent_Scope;
1705 end if;
1707 -- otherwise, if E is a package instance, it is axiomatized if the
1708 -- corresponding generic package is axiomatized.
1710 if Ekind (E) = E_Package
1711 and then Present (Generic_Parent (Decl))
1712 then
1713 return
1714 Containing_Package_With_Ext_Axioms (Generic_Parent (Decl));
1715 else
1716 return Empty;
1717 end if;
1718 end;
1719 end Containing_Package_With_Ext_Axioms;
1721 -------------------------------
1722 -- Convert_To_Actual_Subtype --
1723 -------------------------------
1725 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1726 Act_ST : Entity_Id;
1728 begin
1729 Act_ST := Get_Actual_Subtype (Exp);
1731 if Act_ST = Etype (Exp) then
1732 return;
1733 else
1734 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
1735 Analyze_And_Resolve (Exp, Act_ST);
1736 end if;
1737 end Convert_To_Actual_Subtype;
1739 -----------------------------------
1740 -- Corresponding_Runtime_Package --
1741 -----------------------------------
1743 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
1744 Pkg_Id : RTU_Id := RTU_Null;
1746 begin
1747 pragma Assert (Is_Concurrent_Type (Typ));
1749 if Ekind (Typ) in Protected_Kind then
1750 if Has_Entries (Typ)
1752 -- A protected type without entries that covers an interface and
1753 -- overrides the abstract routines with protected procedures is
1754 -- considered equivalent to a protected type with entries in the
1755 -- context of dispatching select statements. It is sufficient to
1756 -- check for the presence of an interface list in the declaration
1757 -- node to recognize this case.
1759 or else Present (Interface_List (Parent (Typ)))
1761 -- Protected types with interrupt handlers (when not using a
1762 -- restricted profile) are also considered equivalent to
1763 -- protected types with entries. The types which are used
1764 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
1765 -- are derived from Protection_Entries.
1767 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
1768 or else Has_Interrupt_Handler (Typ)
1769 then
1770 if Abort_Allowed
1771 or else Restriction_Active (No_Entry_Queue) = False
1772 or else Restriction_Active (No_Select_Statements) = False
1773 or else Number_Entries (Typ) > 1
1774 or else (Has_Attach_Handler (Typ)
1775 and then not Restricted_Profile)
1776 then
1777 Pkg_Id := System_Tasking_Protected_Objects_Entries;
1778 else
1779 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
1780 end if;
1782 else
1783 Pkg_Id := System_Tasking_Protected_Objects;
1784 end if;
1785 end if;
1787 return Pkg_Id;
1788 end Corresponding_Runtime_Package;
1790 -----------------------------------
1791 -- Current_Sem_Unit_Declarations --
1792 -----------------------------------
1794 function Current_Sem_Unit_Declarations return List_Id is
1795 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1796 Decls : List_Id;
1798 begin
1799 -- If the current unit is a package body, locate the visible
1800 -- declarations of the package spec.
1802 if Nkind (U) = N_Package_Body then
1803 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1804 end if;
1806 if Nkind (U) = N_Package_Declaration then
1807 U := Specification (U);
1808 Decls := Visible_Declarations (U);
1810 if No (Decls) then
1811 Decls := New_List;
1812 Set_Visible_Declarations (U, Decls);
1813 end if;
1815 else
1816 Decls := Declarations (U);
1818 if No (Decls) then
1819 Decls := New_List;
1820 Set_Declarations (U, Decls);
1821 end if;
1822 end if;
1824 return Decls;
1825 end Current_Sem_Unit_Declarations;
1827 -----------------------
1828 -- Duplicate_Subexpr --
1829 -----------------------
1831 function Duplicate_Subexpr
1832 (Exp : Node_Id;
1833 Name_Req : Boolean := False;
1834 Renaming_Req : Boolean := False) return Node_Id
1836 begin
1837 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1838 return New_Copy_Tree (Exp);
1839 end Duplicate_Subexpr;
1841 ---------------------------------
1842 -- Duplicate_Subexpr_No_Checks --
1843 ---------------------------------
1845 function Duplicate_Subexpr_No_Checks
1846 (Exp : Node_Id;
1847 Name_Req : Boolean := False;
1848 Renaming_Req : Boolean := False;
1849 Related_Id : Entity_Id := Empty;
1850 Is_Low_Bound : Boolean := False;
1851 Is_High_Bound : Boolean := False) return Node_Id
1853 New_Exp : Node_Id;
1855 begin
1856 Remove_Side_Effects
1857 (Exp => Exp,
1858 Name_Req => Name_Req,
1859 Renaming_Req => Renaming_Req,
1860 Related_Id => Related_Id,
1861 Is_Low_Bound => Is_Low_Bound,
1862 Is_High_Bound => Is_High_Bound);
1864 New_Exp := New_Copy_Tree (Exp);
1865 Remove_Checks (New_Exp);
1866 return New_Exp;
1867 end Duplicate_Subexpr_No_Checks;
1869 -----------------------------------
1870 -- Duplicate_Subexpr_Move_Checks --
1871 -----------------------------------
1873 function Duplicate_Subexpr_Move_Checks
1874 (Exp : Node_Id;
1875 Name_Req : Boolean := False;
1876 Renaming_Req : Boolean := False) return Node_Id
1878 New_Exp : Node_Id;
1880 begin
1881 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1882 New_Exp := New_Copy_Tree (Exp);
1883 Remove_Checks (Exp);
1884 return New_Exp;
1885 end Duplicate_Subexpr_Move_Checks;
1887 --------------------
1888 -- Ensure_Defined --
1889 --------------------
1891 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1892 IR : Node_Id;
1894 begin
1895 -- An itype reference must only be created if this is a local itype, so
1896 -- that gigi can elaborate it on the proper objstack.
1898 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
1899 IR := Make_Itype_Reference (Sloc (N));
1900 Set_Itype (IR, Typ);
1901 Insert_Action (N, IR);
1902 end if;
1903 end Ensure_Defined;
1905 --------------------
1906 -- Entry_Names_OK --
1907 --------------------
1909 function Entry_Names_OK return Boolean is
1910 begin
1911 return
1912 not Restricted_Profile
1913 and then not Global_Discard_Names
1914 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1915 and then not Restriction_Active (No_Local_Allocators);
1916 end Entry_Names_OK;
1918 -------------------
1919 -- Evaluate_Name --
1920 -------------------
1922 procedure Evaluate_Name (Nam : Node_Id) is
1923 K : constant Node_Kind := Nkind (Nam);
1925 begin
1926 -- For an explicit dereference, we simply force the evaluation of the
1927 -- name expression. The dereference provides a value that is the address
1928 -- for the renamed object, and it is precisely this value that we want
1929 -- to preserve.
1931 if K = N_Explicit_Dereference then
1932 Force_Evaluation (Prefix (Nam));
1934 -- For a selected component, we simply evaluate the prefix
1936 elsif K = N_Selected_Component then
1937 Evaluate_Name (Prefix (Nam));
1939 -- For an indexed component, or an attribute reference, we evaluate the
1940 -- prefix, which is itself a name, recursively, and then force the
1941 -- evaluation of all the subscripts (or attribute expressions).
1943 elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
1944 Evaluate_Name (Prefix (Nam));
1946 declare
1947 E : Node_Id;
1949 begin
1950 E := First (Expressions (Nam));
1951 while Present (E) loop
1952 Force_Evaluation (E);
1954 if Original_Node (E) /= E then
1955 Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
1956 end if;
1958 Next (E);
1959 end loop;
1960 end;
1962 -- For a slice, we evaluate the prefix, as for the indexed component
1963 -- case and then, if there is a range present, either directly or as the
1964 -- constraint of a discrete subtype indication, we evaluate the two
1965 -- bounds of this range.
1967 elsif K = N_Slice then
1968 Evaluate_Name (Prefix (Nam));
1969 Evaluate_Slice_Bounds (Nam);
1971 -- For a type conversion, the expression of the conversion must be the
1972 -- name of an object, and we simply need to evaluate this name.
1974 elsif K = N_Type_Conversion then
1975 Evaluate_Name (Expression (Nam));
1977 -- For a function call, we evaluate the call
1979 elsif K = N_Function_Call then
1980 Force_Evaluation (Nam);
1982 -- The remaining cases are direct name, operator symbol and character
1983 -- literal. In all these cases, we do nothing, since we want to
1984 -- reevaluate each time the renamed object is used.
1986 else
1987 return;
1988 end if;
1989 end Evaluate_Name;
1991 ---------------------------
1992 -- Evaluate_Slice_Bounds --
1993 ---------------------------
1995 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
1996 DR : constant Node_Id := Discrete_Range (Slice);
1997 Constr : Node_Id;
1998 Rexpr : Node_Id;
2000 begin
2001 if Nkind (DR) = N_Range then
2002 Force_Evaluation (Low_Bound (DR));
2003 Force_Evaluation (High_Bound (DR));
2005 elsif Nkind (DR) = N_Subtype_Indication then
2006 Constr := Constraint (DR);
2008 if Nkind (Constr) = N_Range_Constraint then
2009 Rexpr := Range_Expression (Constr);
2011 Force_Evaluation (Low_Bound (Rexpr));
2012 Force_Evaluation (High_Bound (Rexpr));
2013 end if;
2014 end if;
2015 end Evaluate_Slice_Bounds;
2017 ---------------------
2018 -- Evolve_And_Then --
2019 ---------------------
2021 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
2022 begin
2023 if No (Cond) then
2024 Cond := Cond1;
2025 else
2026 Cond :=
2027 Make_And_Then (Sloc (Cond1),
2028 Left_Opnd => Cond,
2029 Right_Opnd => Cond1);
2030 end if;
2031 end Evolve_And_Then;
2033 --------------------
2034 -- Evolve_Or_Else --
2035 --------------------
2037 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
2038 begin
2039 if No (Cond) then
2040 Cond := Cond1;
2041 else
2042 Cond :=
2043 Make_Or_Else (Sloc (Cond1),
2044 Left_Opnd => Cond,
2045 Right_Opnd => Cond1);
2046 end if;
2047 end Evolve_Or_Else;
2049 -----------------------------------------
2050 -- Expand_Static_Predicates_In_Choices --
2051 -----------------------------------------
2053 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
2054 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
2056 Choices : constant List_Id := Discrete_Choices (N);
2058 Choice : Node_Id;
2059 Next_C : Node_Id;
2060 P : Node_Id;
2061 C : Node_Id;
2063 begin
2064 Choice := First (Choices);
2065 while Present (Choice) loop
2066 Next_C := Next (Choice);
2068 -- Check for name of subtype with static predicate
2070 if Is_Entity_Name (Choice)
2071 and then Is_Type (Entity (Choice))
2072 and then Has_Predicates (Entity (Choice))
2073 then
2074 -- Loop through entries in predicate list, converting to choices
2075 -- and inserting in the list before the current choice. Note that
2076 -- if the list is empty, corresponding to a False predicate, then
2077 -- no choices are inserted.
2079 P := First (Static_Discrete_Predicate (Entity (Choice)));
2080 while Present (P) loop
2082 -- If low bound and high bounds are equal, copy simple choice
2084 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
2085 C := New_Copy (Low_Bound (P));
2087 -- Otherwise copy a range
2089 else
2090 C := New_Copy (P);
2091 end if;
2093 -- Change Sloc to referencing choice (rather than the Sloc of
2094 -- the predicate declaration element itself).
2096 Set_Sloc (C, Sloc (Choice));
2097 Insert_Before (Choice, C);
2098 Next (P);
2099 end loop;
2101 -- Delete the predicated entry
2103 Remove (Choice);
2104 end if;
2106 -- Move to next choice to check
2108 Choice := Next_C;
2109 end loop;
2110 end Expand_Static_Predicates_In_Choices;
2112 ------------------------------
2113 -- Expand_Subtype_From_Expr --
2114 ------------------------------
2116 -- This function is applicable for both static and dynamic allocation of
2117 -- objects which are constrained by an initial expression. Basically it
2118 -- transforms an unconstrained subtype indication into a constrained one.
2120 -- The expression may also be transformed in certain cases in order to
2121 -- avoid multiple evaluation. In the static allocation case, the general
2122 -- scheme is:
2124 -- Val : T := Expr;
2126 -- is transformed into
2128 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
2130 -- Here are the main cases :
2132 -- <if Expr is a Slice>
2133 -- Val : T ([Index_Subtype (Expr)]) := Expr;
2135 -- <elsif Expr is a String Literal>
2136 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
2138 -- <elsif Expr is Constrained>
2139 -- subtype T is Type_Of_Expr
2140 -- Val : T := Expr;
2142 -- <elsif Expr is an entity_name>
2143 -- Val : T (constraints taken from Expr) := Expr;
2145 -- <else>
2146 -- type Axxx is access all T;
2147 -- Rval : Axxx := Expr'ref;
2148 -- Val : T (constraints taken from Rval) := Rval.all;
2150 -- ??? note: when the Expression is allocated in the secondary stack
2151 -- we could use it directly instead of copying it by declaring
2152 -- Val : T (...) renames Rval.all
2154 procedure Expand_Subtype_From_Expr
2155 (N : Node_Id;
2156 Unc_Type : Entity_Id;
2157 Subtype_Indic : Node_Id;
2158 Exp : Node_Id)
2160 Loc : constant Source_Ptr := Sloc (N);
2161 Exp_Typ : constant Entity_Id := Etype (Exp);
2162 T : Entity_Id;
2164 begin
2165 -- In general we cannot build the subtype if expansion is disabled,
2166 -- because internal entities may not have been defined. However, to
2167 -- avoid some cascaded errors, we try to continue when the expression is
2168 -- an array (or string), because it is safe to compute the bounds. It is
2169 -- in fact required to do so even in a generic context, because there
2170 -- may be constants that depend on the bounds of a string literal, both
2171 -- standard string types and more generally arrays of characters.
2173 -- In GNATprove mode, these extra subtypes are not needed
2175 if GNATprove_Mode then
2176 return;
2177 end if;
2179 if not Expander_Active
2180 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
2181 then
2182 return;
2183 end if;
2185 if Nkind (Exp) = N_Slice then
2186 declare
2187 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
2189 begin
2190 Rewrite (Subtype_Indic,
2191 Make_Subtype_Indication (Loc,
2192 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2193 Constraint =>
2194 Make_Index_Or_Discriminant_Constraint (Loc,
2195 Constraints => New_List
2196 (New_Occurrence_Of (Slice_Type, Loc)))));
2198 -- This subtype indication may be used later for constraint checks
2199 -- we better make sure that if a variable was used as a bound of
2200 -- of the original slice, its value is frozen.
2202 Evaluate_Slice_Bounds (Exp);
2203 end;
2205 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
2206 Rewrite (Subtype_Indic,
2207 Make_Subtype_Indication (Loc,
2208 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2209 Constraint =>
2210 Make_Index_Or_Discriminant_Constraint (Loc,
2211 Constraints => New_List (
2212 Make_Literal_Range (Loc,
2213 Literal_Typ => Exp_Typ)))));
2215 -- If the type of the expression is an internally generated type it
2216 -- may not be necessary to create a new subtype. However there are two
2217 -- exceptions: references to the current instances, and aliased array
2218 -- object declarations for which the backend needs to create a template.
2220 elsif Is_Constrained (Exp_Typ)
2221 and then not Is_Class_Wide_Type (Unc_Type)
2222 and then
2223 (Nkind (N) /= N_Object_Declaration
2224 or else not Is_Entity_Name (Expression (N))
2225 or else not Comes_From_Source (Entity (Expression (N)))
2226 or else not Is_Array_Type (Exp_Typ)
2227 or else not Aliased_Present (N))
2228 then
2229 if Is_Itype (Exp_Typ) then
2231 -- Within an initialization procedure, a selected component
2232 -- denotes a component of the enclosing record, and it appears as
2233 -- an actual in a call to its own initialization procedure. If
2234 -- this component depends on the outer discriminant, we must
2235 -- generate the proper actual subtype for it.
2237 if Nkind (Exp) = N_Selected_Component
2238 and then Within_Init_Proc
2239 then
2240 declare
2241 Decl : constant Node_Id :=
2242 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
2243 begin
2244 if Present (Decl) then
2245 Insert_Action (N, Decl);
2246 T := Defining_Identifier (Decl);
2247 else
2248 T := Exp_Typ;
2249 end if;
2250 end;
2252 -- No need to generate a new subtype
2254 else
2255 T := Exp_Typ;
2256 end if;
2258 else
2259 T := Make_Temporary (Loc, 'T');
2261 Insert_Action (N,
2262 Make_Subtype_Declaration (Loc,
2263 Defining_Identifier => T,
2264 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
2266 -- This type is marked as an itype even though it has an explicit
2267 -- declaration since otherwise Is_Generic_Actual_Type can get
2268 -- set, resulting in the generation of spurious errors. (See
2269 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
2271 Set_Is_Itype (T);
2272 Set_Associated_Node_For_Itype (T, Exp);
2273 end if;
2275 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
2277 -- Nothing needs to be done for private types with unknown discriminants
2278 -- if the underlying type is not an unconstrained composite type or it
2279 -- is an unchecked union.
2281 elsif Is_Private_Type (Unc_Type)
2282 and then Has_Unknown_Discriminants (Unc_Type)
2283 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
2284 or else Is_Constrained (Underlying_Type (Unc_Type))
2285 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
2286 then
2287 null;
2289 -- Case of derived type with unknown discriminants where the parent type
2290 -- also has unknown discriminants.
2292 elsif Is_Record_Type (Unc_Type)
2293 and then not Is_Class_Wide_Type (Unc_Type)
2294 and then Has_Unknown_Discriminants (Unc_Type)
2295 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
2296 then
2297 -- Nothing to be done if no underlying record view available
2299 if No (Underlying_Record_View (Unc_Type)) then
2300 null;
2302 -- Otherwise use the Underlying_Record_View to create the proper
2303 -- constrained subtype for an object of a derived type with unknown
2304 -- discriminants.
2306 else
2307 Remove_Side_Effects (Exp);
2308 Rewrite (Subtype_Indic,
2309 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
2310 end if;
2312 -- Renamings of class-wide interface types require no equivalent
2313 -- constrained type declarations because we only need to reference
2314 -- the tag component associated with the interface. The same is
2315 -- presumably true for class-wide types in general, so this test
2316 -- is broadened to include all class-wide renamings, which also
2317 -- avoids cases of unbounded recursion in Remove_Side_Effects.
2318 -- (Is this really correct, or are there some cases of class-wide
2319 -- renamings that require action in this procedure???)
2321 elsif Present (N)
2322 and then Nkind (N) = N_Object_Renaming_Declaration
2323 and then Is_Class_Wide_Type (Unc_Type)
2324 then
2325 null;
2327 -- In Ada 95 nothing to be done if the type of the expression is limited
2328 -- because in this case the expression cannot be copied, and its use can
2329 -- only be by reference.
2331 -- In Ada 2005 the context can be an object declaration whose expression
2332 -- is a function that returns in place. If the nominal subtype has
2333 -- unknown discriminants, the call still provides constraints on the
2334 -- object, and we have to create an actual subtype from it.
2336 -- If the type is class-wide, the expression is dynamically tagged and
2337 -- we do not create an actual subtype either. Ditto for an interface.
2338 -- For now this applies only if the type is immutably limited, and the
2339 -- function being called is build-in-place. This will have to be revised
2340 -- when build-in-place functions are generalized to other types.
2342 elsif Is_Limited_View (Exp_Typ)
2343 and then
2344 (Is_Class_Wide_Type (Exp_Typ)
2345 or else Is_Interface (Exp_Typ)
2346 or else not Has_Unknown_Discriminants (Exp_Typ)
2347 or else not Is_Composite_Type (Unc_Type))
2348 then
2349 null;
2351 -- For limited objects initialized with build in place function calls,
2352 -- nothing to be done; otherwise we prematurely introduce an N_Reference
2353 -- node in the expression initializing the object, which breaks the
2354 -- circuitry that detects and adds the additional arguments to the
2355 -- called function.
2357 elsif Is_Build_In_Place_Function_Call (Exp) then
2358 null;
2360 else
2361 Remove_Side_Effects (Exp);
2362 Rewrite (Subtype_Indic,
2363 Make_Subtype_From_Expr (Exp, Unc_Type));
2364 end if;
2365 end Expand_Subtype_From_Expr;
2367 ----------------------
2368 -- Finalize_Address --
2369 ----------------------
2371 function Finalize_Address (Typ : Entity_Id) return Entity_Id is
2372 Utyp : Entity_Id := Typ;
2374 begin
2375 -- Handle protected class-wide or task class-wide types
2377 if Is_Class_Wide_Type (Utyp) then
2378 if Is_Concurrent_Type (Root_Type (Utyp)) then
2379 Utyp := Root_Type (Utyp);
2381 elsif Is_Private_Type (Root_Type (Utyp))
2382 and then Present (Full_View (Root_Type (Utyp)))
2383 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
2384 then
2385 Utyp := Full_View (Root_Type (Utyp));
2386 end if;
2387 end if;
2389 -- Handle private types
2391 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
2392 Utyp := Full_View (Utyp);
2393 end if;
2395 -- Handle protected and task types
2397 if Is_Concurrent_Type (Utyp)
2398 and then Present (Corresponding_Record_Type (Utyp))
2399 then
2400 Utyp := Corresponding_Record_Type (Utyp);
2401 end if;
2403 Utyp := Underlying_Type (Base_Type (Utyp));
2405 -- Deal with untagged derivation of private views. If the parent is
2406 -- now known to be protected, the finalization routine is the one
2407 -- defined on the corresponding record of the ancestor (corresponding
2408 -- records do not automatically inherit operations, but maybe they
2409 -- should???)
2411 if Is_Untagged_Derivation (Typ) then
2412 if Is_Protected_Type (Typ) then
2413 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
2415 else
2416 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2418 if Is_Protected_Type (Utyp) then
2419 Utyp := Corresponding_Record_Type (Utyp);
2420 end if;
2421 end if;
2422 end if;
2424 -- If the underlying_type is a subtype, we are dealing with the
2425 -- completion of a private type. We need to access the base type and
2426 -- generate a conversion to it.
2428 if Utyp /= Base_Type (Utyp) then
2429 pragma Assert (Is_Private_Type (Typ));
2431 Utyp := Base_Type (Utyp);
2432 end if;
2434 -- When dealing with an internally built full view for a type with
2435 -- unknown discriminants, use the original record type.
2437 if Is_Underlying_Record_View (Utyp) then
2438 Utyp := Etype (Utyp);
2439 end if;
2441 return TSS (Utyp, TSS_Finalize_Address);
2442 end Finalize_Address;
2444 ------------------------
2445 -- Find_Interface_ADT --
2446 ------------------------
2448 function Find_Interface_ADT
2449 (T : Entity_Id;
2450 Iface : Entity_Id) return Elmt_Id
2452 ADT : Elmt_Id;
2453 Typ : Entity_Id := T;
2455 begin
2456 pragma Assert (Is_Interface (Iface));
2458 -- Handle private types
2460 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2461 Typ := Full_View (Typ);
2462 end if;
2464 -- Handle access types
2466 if Is_Access_Type (Typ) then
2467 Typ := Designated_Type (Typ);
2468 end if;
2470 -- Handle task and protected types implementing interfaces
2472 if Is_Concurrent_Type (Typ) then
2473 Typ := Corresponding_Record_Type (Typ);
2474 end if;
2476 pragma Assert
2477 (not Is_Class_Wide_Type (Typ)
2478 and then Ekind (Typ) /= E_Incomplete_Type);
2480 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2481 return First_Elmt (Access_Disp_Table (Typ));
2483 else
2484 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
2485 while Present (ADT)
2486 and then Present (Related_Type (Node (ADT)))
2487 and then Related_Type (Node (ADT)) /= Iface
2488 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
2489 Use_Full_View => True)
2490 loop
2491 Next_Elmt (ADT);
2492 end loop;
2494 pragma Assert (Present (Related_Type (Node (ADT))));
2495 return ADT;
2496 end if;
2497 end Find_Interface_ADT;
2499 ------------------------
2500 -- Find_Interface_Tag --
2501 ------------------------
2503 function Find_Interface_Tag
2504 (T : Entity_Id;
2505 Iface : Entity_Id) return Entity_Id
2507 AI_Tag : Entity_Id;
2508 Found : Boolean := False;
2509 Typ : Entity_Id := T;
2511 procedure Find_Tag (Typ : Entity_Id);
2512 -- Internal subprogram used to recursively climb to the ancestors
2514 --------------
2515 -- Find_Tag --
2516 --------------
2518 procedure Find_Tag (Typ : Entity_Id) is
2519 AI_Elmt : Elmt_Id;
2520 AI : Node_Id;
2522 begin
2523 -- This routine does not handle the case in which the interface is an
2524 -- ancestor of Typ. That case is handled by the enclosing subprogram.
2526 pragma Assert (Typ /= Iface);
2528 -- Climb to the root type handling private types
2530 if Present (Full_View (Etype (Typ))) then
2531 if Full_View (Etype (Typ)) /= Typ then
2532 Find_Tag (Full_View (Etype (Typ)));
2533 end if;
2535 elsif Etype (Typ) /= Typ then
2536 Find_Tag (Etype (Typ));
2537 end if;
2539 -- Traverse the list of interfaces implemented by the type
2541 if not Found
2542 and then Present (Interfaces (Typ))
2543 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
2544 then
2545 -- Skip the tag associated with the primary table
2547 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2548 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
2549 pragma Assert (Present (AI_Tag));
2551 AI_Elmt := First_Elmt (Interfaces (Typ));
2552 while Present (AI_Elmt) loop
2553 AI := Node (AI_Elmt);
2555 if AI = Iface
2556 or else Is_Ancestor (Iface, AI, Use_Full_View => True)
2557 then
2558 Found := True;
2559 return;
2560 end if;
2562 AI_Tag := Next_Tag_Component (AI_Tag);
2563 Next_Elmt (AI_Elmt);
2564 end loop;
2565 end if;
2566 end Find_Tag;
2568 -- Start of processing for Find_Interface_Tag
2570 begin
2571 pragma Assert (Is_Interface (Iface));
2573 -- Handle access types
2575 if Is_Access_Type (Typ) then
2576 Typ := Designated_Type (Typ);
2577 end if;
2579 -- Handle class-wide types
2581 if Is_Class_Wide_Type (Typ) then
2582 Typ := Root_Type (Typ);
2583 end if;
2585 -- Handle private types
2587 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2588 Typ := Full_View (Typ);
2589 end if;
2591 -- Handle entities from the limited view
2593 if Ekind (Typ) = E_Incomplete_Type then
2594 pragma Assert (Present (Non_Limited_View (Typ)));
2595 Typ := Non_Limited_View (Typ);
2596 end if;
2598 -- Handle task and protected types implementing interfaces
2600 if Is_Concurrent_Type (Typ) then
2601 Typ := Corresponding_Record_Type (Typ);
2602 end if;
2604 -- If the interface is an ancestor of the type, then it shared the
2605 -- primary dispatch table.
2607 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2608 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2609 return First_Tag_Component (Typ);
2611 -- Otherwise we need to search for its associated tag component
2613 else
2614 Find_Tag (Typ);
2615 pragma Assert (Found);
2616 return AI_Tag;
2617 end if;
2618 end Find_Interface_Tag;
2620 ------------------
2621 -- Find_Prim_Op --
2622 ------------------
2624 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
2625 Prim : Elmt_Id;
2626 Typ : Entity_Id := T;
2627 Op : Entity_Id;
2629 begin
2630 if Is_Class_Wide_Type (Typ) then
2631 Typ := Root_Type (Typ);
2632 end if;
2634 Typ := Underlying_Type (Typ);
2636 -- Loop through primitive operations
2638 Prim := First_Elmt (Primitive_Operations (Typ));
2639 while Present (Prim) loop
2640 Op := Node (Prim);
2642 -- We can retrieve primitive operations by name if it is an internal
2643 -- name. For equality we must check that both of its operands have
2644 -- the same type, to avoid confusion with user-defined equalities
2645 -- than may have a non-symmetric signature.
2647 exit when Chars (Op) = Name
2648 and then
2649 (Name /= Name_Op_Eq
2650 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
2652 Next_Elmt (Prim);
2654 -- Raise Program_Error if no primitive found
2656 if No (Prim) then
2657 raise Program_Error;
2658 end if;
2659 end loop;
2661 return Node (Prim);
2662 end Find_Prim_Op;
2664 ------------------
2665 -- Find_Prim_Op --
2666 ------------------
2668 function Find_Prim_Op
2669 (T : Entity_Id;
2670 Name : TSS_Name_Type) return Entity_Id
2672 Inher_Op : Entity_Id := Empty;
2673 Own_Op : Entity_Id := Empty;
2674 Prim_Elmt : Elmt_Id;
2675 Prim_Id : Entity_Id;
2676 Typ : Entity_Id := T;
2678 begin
2679 if Is_Class_Wide_Type (Typ) then
2680 Typ := Root_Type (Typ);
2681 end if;
2683 Typ := Underlying_Type (Typ);
2685 -- This search is based on the assertion that the dispatching version
2686 -- of the TSS routine always precedes the real primitive.
2688 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
2689 while Present (Prim_Elmt) loop
2690 Prim_Id := Node (Prim_Elmt);
2692 if Is_TSS (Prim_Id, Name) then
2693 if Present (Alias (Prim_Id)) then
2694 Inher_Op := Prim_Id;
2695 else
2696 Own_Op := Prim_Id;
2697 end if;
2698 end if;
2700 Next_Elmt (Prim_Elmt);
2701 end loop;
2703 if Present (Own_Op) then
2704 return Own_Op;
2705 elsif Present (Inher_Op) then
2706 return Inher_Op;
2707 else
2708 raise Program_Error;
2709 end if;
2710 end Find_Prim_Op;
2712 ----------------------------
2713 -- Find_Protection_Object --
2714 ----------------------------
2716 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
2717 S : Entity_Id;
2719 begin
2720 S := Scop;
2721 while Present (S) loop
2722 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
2723 and then Present (Protection_Object (S))
2724 then
2725 return Protection_Object (S);
2726 end if;
2728 S := Scope (S);
2729 end loop;
2731 -- If we do not find a Protection object in the scope chain, then
2732 -- something has gone wrong, most likely the object was never created.
2734 raise Program_Error;
2735 end Find_Protection_Object;
2737 --------------------------
2738 -- Find_Protection_Type --
2739 --------------------------
2741 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
2742 Comp : Entity_Id;
2743 Typ : Entity_Id := Conc_Typ;
2745 begin
2746 if Is_Concurrent_Type (Typ) then
2747 Typ := Corresponding_Record_Type (Typ);
2748 end if;
2750 -- Since restriction violations are not considered serious errors, the
2751 -- expander remains active, but may leave the corresponding record type
2752 -- malformed. In such cases, component _object is not available so do
2753 -- not look for it.
2755 if not Analyzed (Typ) then
2756 return Empty;
2757 end if;
2759 Comp := First_Component (Typ);
2760 while Present (Comp) loop
2761 if Chars (Comp) = Name_uObject then
2762 return Base_Type (Etype (Comp));
2763 end if;
2765 Next_Component (Comp);
2766 end loop;
2768 -- The corresponding record of a protected type should always have an
2769 -- _object field.
2771 raise Program_Error;
2772 end Find_Protection_Type;
2774 -----------------------
2775 -- Find_Hook_Context --
2776 -----------------------
2778 function Find_Hook_Context (N : Node_Id) return Node_Id is
2779 Par : Node_Id;
2780 Top : Node_Id;
2782 Wrapped_Node : Node_Id;
2783 -- Note: if we are in a transient scope, we want to reuse it as
2784 -- the context for actions insertion, if possible. But if N is itself
2785 -- part of the stored actions for the current transient scope,
2786 -- then we need to insert at the appropriate (inner) location in
2787 -- the not as an action on Node_To_Be_Wrapped.
2789 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
2791 begin
2792 -- When the node is inside a case/if expression, the lifetime of any
2793 -- temporary controlled object is extended. Find a suitable insertion
2794 -- node by locating the topmost case or if expressions.
2796 if In_Cond_Expr then
2797 Par := N;
2798 Top := N;
2799 while Present (Par) loop
2800 if Nkind_In (Original_Node (Par), N_Case_Expression,
2801 N_If_Expression)
2802 then
2803 Top := Par;
2805 -- Prevent the search from going too far
2807 elsif Is_Body_Or_Package_Declaration (Par) then
2808 exit;
2809 end if;
2811 Par := Parent (Par);
2812 end loop;
2814 -- The topmost case or if expression is now recovered, but it may
2815 -- still not be the correct place to add generated code. Climb to
2816 -- find a parent that is part of a declarative or statement list,
2817 -- and is not a list of actuals in a call.
2819 Par := Top;
2820 while Present (Par) loop
2821 if Is_List_Member (Par)
2822 and then not Nkind_In (Par, N_Component_Association,
2823 N_Discriminant_Association,
2824 N_Parameter_Association,
2825 N_Pragma_Argument_Association)
2826 and then not Nkind_In
2827 (Parent (Par), N_Function_Call,
2828 N_Procedure_Call_Statement,
2829 N_Entry_Call_Statement)
2831 then
2832 return Par;
2834 -- Prevent the search from going too far
2836 elsif Is_Body_Or_Package_Declaration (Par) then
2837 exit;
2838 end if;
2840 Par := Parent (Par);
2841 end loop;
2843 return Par;
2845 else
2846 Par := N;
2847 while Present (Par) loop
2849 -- Keep climbing past various operators
2851 if Nkind (Parent (Par)) in N_Op
2852 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
2853 then
2854 Par := Parent (Par);
2855 else
2856 exit;
2857 end if;
2858 end loop;
2860 Top := Par;
2862 -- The node may be located in a pragma in which case return the
2863 -- pragma itself:
2865 -- pragma Precondition (... and then Ctrl_Func_Call ...);
2867 -- Similar case occurs when the node is related to an object
2868 -- declaration or assignment:
2870 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
2872 -- Another case to consider is when the node is part of a return
2873 -- statement:
2875 -- return ... and then Ctrl_Func_Call ...;
2877 -- Another case is when the node acts as a formal in a procedure
2878 -- call statement:
2880 -- Proc (... and then Ctrl_Func_Call ...);
2882 if Scope_Is_Transient then
2883 Wrapped_Node := Node_To_Be_Wrapped;
2884 else
2885 Wrapped_Node := Empty;
2886 end if;
2888 while Present (Par) loop
2889 if Par = Wrapped_Node
2890 or else Nkind_In (Par, N_Assignment_Statement,
2891 N_Object_Declaration,
2892 N_Pragma,
2893 N_Procedure_Call_Statement,
2894 N_Simple_Return_Statement)
2895 then
2896 return Par;
2898 -- Prevent the search from going too far
2900 elsif Is_Body_Or_Package_Declaration (Par) then
2901 exit;
2902 end if;
2904 Par := Parent (Par);
2905 end loop;
2907 -- Return the topmost short circuit operator
2909 return Top;
2910 end if;
2911 end Find_Hook_Context;
2913 ------------------------------
2914 -- Following_Address_Clause --
2915 ------------------------------
2917 function Following_Address_Clause (D : Node_Id) return Node_Id is
2918 Id : constant Entity_Id := Defining_Identifier (D);
2919 Result : Node_Id;
2920 Par : Node_Id;
2922 function Check_Decls (D : Node_Id) return Node_Id;
2923 -- This internal function differs from the main function in that it
2924 -- gets called to deal with a following package private part, and
2925 -- it checks declarations starting with D (the main function checks
2926 -- declarations following D). If D is Empty, then Empty is returned.
2928 -----------------
2929 -- Check_Decls --
2930 -----------------
2932 function Check_Decls (D : Node_Id) return Node_Id is
2933 Decl : Node_Id;
2935 begin
2936 Decl := D;
2937 while Present (Decl) loop
2938 if Nkind (Decl) = N_At_Clause
2939 and then Chars (Identifier (Decl)) = Chars (Id)
2940 then
2941 return Decl;
2943 elsif Nkind (Decl) = N_Attribute_Definition_Clause
2944 and then Chars (Decl) = Name_Address
2945 and then Chars (Name (Decl)) = Chars (Id)
2946 then
2947 return Decl;
2948 end if;
2950 Next (Decl);
2951 end loop;
2953 -- Otherwise not found, return Empty
2955 return Empty;
2956 end Check_Decls;
2958 -- Start of processing for Following_Address_Clause
2960 begin
2961 -- If parser detected no address clause for the identifier in question,
2962 -- then the answer is a quick NO, without the need for a search.
2964 if not Get_Name_Table_Boolean1 (Chars (Id)) then
2965 return Empty;
2966 end if;
2968 -- Otherwise search current declarative unit
2970 Result := Check_Decls (Next (D));
2972 if Present (Result) then
2973 return Result;
2974 end if;
2976 -- Check for possible package private part following
2978 Par := Parent (D);
2980 if Nkind (Par) = N_Package_Specification
2981 and then Visible_Declarations (Par) = List_Containing (D)
2982 and then Present (Private_Declarations (Par))
2983 then
2984 -- Private part present, check declarations there
2986 return Check_Decls (First (Private_Declarations (Par)));
2988 else
2989 -- No private part, clause not found, return Empty
2991 return Empty;
2992 end if;
2993 end Following_Address_Clause;
2995 ----------------------
2996 -- Force_Evaluation --
2997 ----------------------
2999 procedure Force_Evaluation
3000 (Exp : Node_Id;
3001 Name_Req : Boolean := False;
3002 Related_Id : Entity_Id := Empty;
3003 Is_Low_Bound : Boolean := False;
3004 Is_High_Bound : Boolean := False)
3006 begin
3007 Remove_Side_Effects
3008 (Exp => Exp,
3009 Name_Req => Name_Req,
3010 Variable_Ref => True,
3011 Renaming_Req => False,
3012 Related_Id => Related_Id,
3013 Is_Low_Bound => Is_Low_Bound,
3014 Is_High_Bound => Is_High_Bound);
3015 end Force_Evaluation;
3017 ---------------------------------
3018 -- Fully_Qualified_Name_String --
3019 ---------------------------------
3021 function Fully_Qualified_Name_String
3022 (E : Entity_Id;
3023 Append_NUL : Boolean := True) return String_Id
3025 procedure Internal_Full_Qualified_Name (E : Entity_Id);
3026 -- Compute recursively the qualified name without NUL at the end, adding
3027 -- it to the currently started string being generated
3029 ----------------------------------
3030 -- Internal_Full_Qualified_Name --
3031 ----------------------------------
3033 procedure Internal_Full_Qualified_Name (E : Entity_Id) is
3034 Ent : Entity_Id;
3036 begin
3037 -- Deal properly with child units
3039 if Nkind (E) = N_Defining_Program_Unit_Name then
3040 Ent := Defining_Identifier (E);
3041 else
3042 Ent := E;
3043 end if;
3045 -- Compute qualification recursively (only "Standard" has no scope)
3047 if Present (Scope (Scope (Ent))) then
3048 Internal_Full_Qualified_Name (Scope (Ent));
3049 Store_String_Char (Get_Char_Code ('.'));
3050 end if;
3052 -- Every entity should have a name except some expanded blocks
3053 -- don't bother about those.
3055 if Chars (Ent) = No_Name then
3056 return;
3057 end if;
3059 -- Generates the entity name in upper case
3061 Get_Decoded_Name_String (Chars (Ent));
3062 Set_All_Upper_Case;
3063 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3064 return;
3065 end Internal_Full_Qualified_Name;
3067 -- Start of processing for Full_Qualified_Name
3069 begin
3070 Start_String;
3071 Internal_Full_Qualified_Name (E);
3073 if Append_NUL then
3074 Store_String_Char (Get_Char_Code (ASCII.NUL));
3075 end if;
3077 return End_String;
3078 end Fully_Qualified_Name_String;
3080 ------------------------
3081 -- Generate_Poll_Call --
3082 ------------------------
3084 procedure Generate_Poll_Call (N : Node_Id) is
3085 begin
3086 -- No poll call if polling not active
3088 if not Polling_Required then
3089 return;
3091 -- Otherwise generate require poll call
3093 else
3094 Insert_Before_And_Analyze (N,
3095 Make_Procedure_Call_Statement (Sloc (N),
3096 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
3097 end if;
3098 end Generate_Poll_Call;
3100 ---------------------------------
3101 -- Get_Current_Value_Condition --
3102 ---------------------------------
3104 -- Note: the implementation of this procedure is very closely tied to the
3105 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
3106 -- interpret Current_Value fields set by the Set procedure, so the two
3107 -- procedures need to be closely coordinated.
3109 procedure Get_Current_Value_Condition
3110 (Var : Node_Id;
3111 Op : out Node_Kind;
3112 Val : out Node_Id)
3114 Loc : constant Source_Ptr := Sloc (Var);
3115 Ent : constant Entity_Id := Entity (Var);
3117 procedure Process_Current_Value_Condition
3118 (N : Node_Id;
3119 S : Boolean);
3120 -- N is an expression which holds either True (S = True) or False (S =
3121 -- False) in the condition. This procedure digs out the expression and
3122 -- if it refers to Ent, sets Op and Val appropriately.
3124 -------------------------------------
3125 -- Process_Current_Value_Condition --
3126 -------------------------------------
3128 procedure Process_Current_Value_Condition
3129 (N : Node_Id;
3130 S : Boolean)
3132 Cond : Node_Id;
3133 Prev_Cond : Node_Id;
3134 Sens : Boolean;
3136 begin
3137 Cond := N;
3138 Sens := S;
3140 loop
3141 Prev_Cond := Cond;
3143 -- Deal with NOT operators, inverting sense
3145 while Nkind (Cond) = N_Op_Not loop
3146 Cond := Right_Opnd (Cond);
3147 Sens := not Sens;
3148 end loop;
3150 -- Deal with conversions, qualifications, and expressions with
3151 -- actions.
3153 while Nkind_In (Cond,
3154 N_Type_Conversion,
3155 N_Qualified_Expression,
3156 N_Expression_With_Actions)
3157 loop
3158 Cond := Expression (Cond);
3159 end loop;
3161 exit when Cond = Prev_Cond;
3162 end loop;
3164 -- Deal with AND THEN and AND cases
3166 if Nkind_In (Cond, N_And_Then, N_Op_And) then
3168 -- Don't ever try to invert a condition that is of the form of an
3169 -- AND or AND THEN (since we are not doing sufficiently general
3170 -- processing to allow this).
3172 if Sens = False then
3173 Op := N_Empty;
3174 Val := Empty;
3175 return;
3176 end if;
3178 -- Recursively process AND and AND THEN branches
3180 Process_Current_Value_Condition (Left_Opnd (Cond), True);
3182 if Op /= N_Empty then
3183 return;
3184 end if;
3186 Process_Current_Value_Condition (Right_Opnd (Cond), True);
3187 return;
3189 -- Case of relational operator
3191 elsif Nkind (Cond) in N_Op_Compare then
3192 Op := Nkind (Cond);
3194 -- Invert sense of test if inverted test
3196 if Sens = False then
3197 case Op is
3198 when N_Op_Eq => Op := N_Op_Ne;
3199 when N_Op_Ne => Op := N_Op_Eq;
3200 when N_Op_Lt => Op := N_Op_Ge;
3201 when N_Op_Gt => Op := N_Op_Le;
3202 when N_Op_Le => Op := N_Op_Gt;
3203 when N_Op_Ge => Op := N_Op_Lt;
3204 when others => raise Program_Error;
3205 end case;
3206 end if;
3208 -- Case of entity op value
3210 if Is_Entity_Name (Left_Opnd (Cond))
3211 and then Ent = Entity (Left_Opnd (Cond))
3212 and then Compile_Time_Known_Value (Right_Opnd (Cond))
3213 then
3214 Val := Right_Opnd (Cond);
3216 -- Case of value op entity
3218 elsif Is_Entity_Name (Right_Opnd (Cond))
3219 and then Ent = Entity (Right_Opnd (Cond))
3220 and then Compile_Time_Known_Value (Left_Opnd (Cond))
3221 then
3222 Val := Left_Opnd (Cond);
3224 -- We are effectively swapping operands
3226 case Op is
3227 when N_Op_Eq => null;
3228 when N_Op_Ne => null;
3229 when N_Op_Lt => Op := N_Op_Gt;
3230 when N_Op_Gt => Op := N_Op_Lt;
3231 when N_Op_Le => Op := N_Op_Ge;
3232 when N_Op_Ge => Op := N_Op_Le;
3233 when others => raise Program_Error;
3234 end case;
3236 else
3237 Op := N_Empty;
3238 end if;
3240 return;
3242 elsif Nkind_In (Cond,
3243 N_Type_Conversion,
3244 N_Qualified_Expression,
3245 N_Expression_With_Actions)
3246 then
3247 Cond := Expression (Cond);
3249 -- Case of Boolean variable reference, return as though the
3250 -- reference had said var = True.
3252 else
3253 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
3254 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
3256 if Sens = False then
3257 Op := N_Op_Ne;
3258 else
3259 Op := N_Op_Eq;
3260 end if;
3261 end if;
3262 end if;
3263 end Process_Current_Value_Condition;
3265 -- Start of processing for Get_Current_Value_Condition
3267 begin
3268 Op := N_Empty;
3269 Val := Empty;
3271 -- Immediate return, nothing doing, if this is not an object
3273 if Ekind (Ent) not in Object_Kind then
3274 return;
3275 end if;
3277 -- Otherwise examine current value
3279 declare
3280 CV : constant Node_Id := Current_Value (Ent);
3281 Sens : Boolean;
3282 Stm : Node_Id;
3284 begin
3285 -- If statement. Condition is known true in THEN section, known False
3286 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
3288 if Nkind (CV) = N_If_Statement then
3290 -- Before start of IF statement
3292 if Loc < Sloc (CV) then
3293 return;
3295 -- After end of IF statement
3297 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
3298 return;
3299 end if;
3301 -- At this stage we know that we are within the IF statement, but
3302 -- unfortunately, the tree does not record the SLOC of the ELSE so
3303 -- we cannot use a simple SLOC comparison to distinguish between
3304 -- the then/else statements, so we have to climb the tree.
3306 declare
3307 N : Node_Id;
3309 begin
3310 N := Parent (Var);
3311 while Parent (N) /= CV loop
3312 N := Parent (N);
3314 -- If we fall off the top of the tree, then that's odd, but
3315 -- perhaps it could occur in some error situation, and the
3316 -- safest response is simply to assume that the outcome of
3317 -- the condition is unknown. No point in bombing during an
3318 -- attempt to optimize things.
3320 if No (N) then
3321 return;
3322 end if;
3323 end loop;
3325 -- Now we have N pointing to a node whose parent is the IF
3326 -- statement in question, so now we can tell if we are within
3327 -- the THEN statements.
3329 if Is_List_Member (N)
3330 and then List_Containing (N) = Then_Statements (CV)
3331 then
3332 Sens := True;
3334 -- If the variable reference does not come from source, we
3335 -- cannot reliably tell whether it appears in the else part.
3336 -- In particular, if it appears in generated code for a node
3337 -- that requires finalization, it may be attached to a list
3338 -- that has not been yet inserted into the code. For now,
3339 -- treat it as unknown.
3341 elsif not Comes_From_Source (N) then
3342 return;
3344 -- Otherwise we must be in ELSIF or ELSE part
3346 else
3347 Sens := False;
3348 end if;
3349 end;
3351 -- ELSIF part. Condition is known true within the referenced
3352 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
3353 -- and unknown before the ELSE part or after the IF statement.
3355 elsif Nkind (CV) = N_Elsif_Part then
3357 -- if the Elsif_Part had condition_actions, the elsif has been
3358 -- rewritten as a nested if, and the original elsif_part is
3359 -- detached from the tree, so there is no way to obtain useful
3360 -- information on the current value of the variable.
3361 -- Can this be improved ???
3363 if No (Parent (CV)) then
3364 return;
3365 end if;
3367 Stm := Parent (CV);
3369 -- If the tree has been otherwise rewritten there is nothing
3370 -- else to be done either.
3372 if Nkind (Stm) /= N_If_Statement then
3373 return;
3374 end if;
3376 -- Before start of ELSIF part
3378 if Loc < Sloc (CV) then
3379 return;
3381 -- After end of IF statement
3383 elsif Loc >= Sloc (Stm) +
3384 Text_Ptr (UI_To_Int (End_Span (Stm)))
3385 then
3386 return;
3387 end if;
3389 -- Again we lack the SLOC of the ELSE, so we need to climb the
3390 -- tree to see if we are within the ELSIF part in question.
3392 declare
3393 N : Node_Id;
3395 begin
3396 N := Parent (Var);
3397 while Parent (N) /= Stm loop
3398 N := Parent (N);
3400 -- If we fall off the top of the tree, then that's odd, but
3401 -- perhaps it could occur in some error situation, and the
3402 -- safest response is simply to assume that the outcome of
3403 -- the condition is unknown. No point in bombing during an
3404 -- attempt to optimize things.
3406 if No (N) then
3407 return;
3408 end if;
3409 end loop;
3411 -- Now we have N pointing to a node whose parent is the IF
3412 -- statement in question, so see if is the ELSIF part we want.
3413 -- the THEN statements.
3415 if N = CV then
3416 Sens := True;
3418 -- Otherwise we must be in subsequent ELSIF or ELSE part
3420 else
3421 Sens := False;
3422 end if;
3423 end;
3425 -- Iteration scheme of while loop. The condition is known to be
3426 -- true within the body of the loop.
3428 elsif Nkind (CV) = N_Iteration_Scheme then
3429 declare
3430 Loop_Stmt : constant Node_Id := Parent (CV);
3432 begin
3433 -- Before start of body of loop
3435 if Loc < Sloc (Loop_Stmt) then
3436 return;
3438 -- After end of LOOP statement
3440 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
3441 return;
3443 -- We are within the body of the loop
3445 else
3446 Sens := True;
3447 end if;
3448 end;
3450 -- All other cases of Current_Value settings
3452 else
3453 return;
3454 end if;
3456 -- If we fall through here, then we have a reportable condition, Sens
3457 -- is True if the condition is true and False if it needs inverting.
3459 Process_Current_Value_Condition (Condition (CV), Sens);
3460 end;
3461 end Get_Current_Value_Condition;
3463 ---------------------
3464 -- Get_Stream_Size --
3465 ---------------------
3467 function Get_Stream_Size (E : Entity_Id) return Uint is
3468 begin
3469 -- If we have a Stream_Size clause for this type use it
3471 if Has_Stream_Size_Clause (E) then
3472 return Static_Integer (Expression (Stream_Size_Clause (E)));
3474 -- Otherwise the Stream_Size if the size of the type
3476 else
3477 return Esize (E);
3478 end if;
3479 end Get_Stream_Size;
3481 ---------------------------
3482 -- Has_Access_Constraint --
3483 ---------------------------
3485 function Has_Access_Constraint (E : Entity_Id) return Boolean is
3486 Disc : Entity_Id;
3487 T : constant Entity_Id := Etype (E);
3489 begin
3490 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
3491 Disc := First_Discriminant (T);
3492 while Present (Disc) loop
3493 if Is_Access_Type (Etype (Disc)) then
3494 return True;
3495 end if;
3497 Next_Discriminant (Disc);
3498 end loop;
3500 return False;
3501 else
3502 return False;
3503 end if;
3504 end Has_Access_Constraint;
3506 -----------------------------------------------------
3507 -- Has_Annotate_Pragma_For_External_Axiomatization --
3508 -----------------------------------------------------
3510 function Has_Annotate_Pragma_For_External_Axiomatization
3511 (E : Entity_Id) return Boolean
3513 function Is_Annotate_Pragma_For_External_Axiomatization
3514 (N : Node_Id) return Boolean;
3515 -- Returns whether N is
3516 -- pragma Annotate (GNATprove, External_Axiomatization);
3518 ----------------------------------------------------
3519 -- Is_Annotate_Pragma_For_External_Axiomatization --
3520 ----------------------------------------------------
3522 -- The general form of pragma Annotate is
3524 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
3525 -- ARG ::= NAME | EXPRESSION
3527 -- The first two arguments are by convention intended to refer to an
3528 -- external tool and a tool-specific function. These arguments are
3529 -- not analyzed.
3531 -- The following is used to annotate a package specification which
3532 -- GNATprove should treat specially, because the axiomatization of
3533 -- this unit is given by the user instead of being automatically
3534 -- generated.
3536 -- pragma Annotate (GNATprove, External_Axiomatization);
3538 function Is_Annotate_Pragma_For_External_Axiomatization
3539 (N : Node_Id) return Boolean
3541 Name_GNATprove : constant String :=
3542 "gnatprove";
3543 Name_External_Axiomatization : constant String :=
3544 "external_axiomatization";
3545 -- Special names
3547 begin
3548 if Nkind (N) = N_Pragma
3549 and then Get_Pragma_Id (Pragma_Name (N)) = Pragma_Annotate
3550 and then List_Length (Pragma_Argument_Associations (N)) = 2
3551 then
3552 declare
3553 Arg1 : constant Node_Id :=
3554 First (Pragma_Argument_Associations (N));
3555 Arg2 : constant Node_Id := Next (Arg1);
3556 Nam1 : Name_Id;
3557 Nam2 : Name_Id;
3559 begin
3560 -- Fill in Name_Buffer with Name_GNATprove first, and then with
3561 -- Name_External_Axiomatization so that Name_Find returns the
3562 -- corresponding name. This takes care of all possible casings.
3564 Name_Len := 0;
3565 Add_Str_To_Name_Buffer (Name_GNATprove);
3566 Nam1 := Name_Find;
3568 Name_Len := 0;
3569 Add_Str_To_Name_Buffer (Name_External_Axiomatization);
3570 Nam2 := Name_Find;
3572 return Chars (Get_Pragma_Arg (Arg1)) = Nam1
3573 and then
3574 Chars (Get_Pragma_Arg (Arg2)) = Nam2;
3575 end;
3577 else
3578 return False;
3579 end if;
3580 end Is_Annotate_Pragma_For_External_Axiomatization;
3582 -- Local variables
3584 Decl : Node_Id;
3585 Vis_Decls : List_Id;
3586 N : Node_Id;
3588 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
3590 begin
3591 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
3592 Decl := Parent (Parent (E));
3593 else
3594 Decl := Parent (E);
3595 end if;
3597 Vis_Decls := Visible_Declarations (Decl);
3599 N := First (Vis_Decls);
3600 while Present (N) loop
3602 -- Skip declarations generated by the frontend. Skip all pragmas
3603 -- that are not the desired Annotate pragma. Stop the search on
3604 -- the first non-pragma source declaration.
3606 if Comes_From_Source (N) then
3607 if Nkind (N) = N_Pragma then
3608 if Is_Annotate_Pragma_For_External_Axiomatization (N) then
3609 return True;
3610 end if;
3611 else
3612 return False;
3613 end if;
3614 end if;
3616 Next (N);
3617 end loop;
3619 return False;
3620 end Has_Annotate_Pragma_For_External_Axiomatization;
3622 --------------------
3623 -- Homonym_Number --
3624 --------------------
3626 function Homonym_Number (Subp : Entity_Id) return Nat is
3627 Count : Nat;
3628 Hom : Entity_Id;
3630 begin
3631 Count := 1;
3632 Hom := Homonym (Subp);
3633 while Present (Hom) loop
3634 if Scope (Hom) = Scope (Subp) then
3635 Count := Count + 1;
3636 end if;
3638 Hom := Homonym (Hom);
3639 end loop;
3641 return Count;
3642 end Homonym_Number;
3644 -----------------------------------
3645 -- In_Library_Level_Package_Body --
3646 -----------------------------------
3648 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
3649 begin
3650 -- First determine whether the entity appears at the library level, then
3651 -- look at the containing unit.
3653 if Is_Library_Level_Entity (Id) then
3654 declare
3655 Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
3657 begin
3658 return Nkind (Unit (Container)) = N_Package_Body;
3659 end;
3660 end if;
3662 return False;
3663 end In_Library_Level_Package_Body;
3665 ------------------------------
3666 -- In_Unconditional_Context --
3667 ------------------------------
3669 function In_Unconditional_Context (Node : Node_Id) return Boolean is
3670 P : Node_Id;
3672 begin
3673 P := Node;
3674 while Present (P) loop
3675 case Nkind (P) is
3676 when N_Subprogram_Body =>
3677 return True;
3679 when N_If_Statement =>
3680 return False;
3682 when N_Loop_Statement =>
3683 return False;
3685 when N_Case_Statement =>
3686 return False;
3688 when others =>
3689 P := Parent (P);
3690 end case;
3691 end loop;
3693 return False;
3694 end In_Unconditional_Context;
3696 -------------------
3697 -- Insert_Action --
3698 -------------------
3700 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
3701 begin
3702 if Present (Ins_Action) then
3703 Insert_Actions (Assoc_Node, New_List (Ins_Action));
3704 end if;
3705 end Insert_Action;
3707 -- Version with check(s) suppressed
3709 procedure Insert_Action
3710 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
3712 begin
3713 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
3714 end Insert_Action;
3716 -------------------------
3717 -- Insert_Action_After --
3718 -------------------------
3720 procedure Insert_Action_After
3721 (Assoc_Node : Node_Id;
3722 Ins_Action : Node_Id)
3724 begin
3725 Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
3726 end Insert_Action_After;
3728 --------------------
3729 -- Insert_Actions --
3730 --------------------
3732 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
3733 N : Node_Id;
3734 P : Node_Id;
3736 Wrapped_Node : Node_Id := Empty;
3738 begin
3739 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
3740 return;
3741 end if;
3743 -- Ignore insert of actions from inside default expression (or other
3744 -- similar "spec expression") in the special spec-expression analyze
3745 -- mode. Any insertions at this point have no relevance, since we are
3746 -- only doing the analyze to freeze the types of any static expressions.
3747 -- See section "Handling of Default Expressions" in the spec of package
3748 -- Sem for further details.
3750 if In_Spec_Expression then
3751 return;
3752 end if;
3754 -- If the action derives from stuff inside a record, then the actions
3755 -- are attached to the current scope, to be inserted and analyzed on
3756 -- exit from the scope. The reason for this is that we may also be
3757 -- generating freeze actions at the same time, and they must eventually
3758 -- be elaborated in the correct order.
3760 if Is_Record_Type (Current_Scope)
3761 and then not Is_Frozen (Current_Scope)
3762 then
3763 if No (Scope_Stack.Table
3764 (Scope_Stack.Last).Pending_Freeze_Actions)
3765 then
3766 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
3767 Ins_Actions;
3768 else
3769 Append_List
3770 (Ins_Actions,
3771 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
3772 end if;
3774 return;
3775 end if;
3777 -- We now intend to climb up the tree to find the right point to
3778 -- insert the actions. We start at Assoc_Node, unless this node is a
3779 -- subexpression in which case we start with its parent. We do this for
3780 -- two reasons. First it speeds things up. Second, if Assoc_Node is
3781 -- itself one of the special nodes like N_And_Then, then we assume that
3782 -- an initial request to insert actions for such a node does not expect
3783 -- the actions to get deposited in the node for later handling when the
3784 -- node is expanded, since clearly the node is being dealt with by the
3785 -- caller. Note that in the subexpression case, N is always the child we
3786 -- came from.
3788 -- N_Raise_xxx_Error is an annoying special case, it is a statement if
3789 -- it has type Standard_Void_Type, and a subexpression otherwise.
3790 -- otherwise. Procedure calls, and similarly procedure attribute
3791 -- references, are also statements.
3793 if Nkind (Assoc_Node) in N_Subexpr
3794 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
3795 or else Etype (Assoc_Node) /= Standard_Void_Type)
3796 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
3797 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
3798 or else not Is_Procedure_Attribute_Name
3799 (Attribute_Name (Assoc_Node)))
3800 then
3801 N := Assoc_Node;
3802 P := Parent (Assoc_Node);
3804 -- Non-subexpression case. Note that N is initially Empty in this case
3805 -- (N is only guaranteed Non-Empty in the subexpr case).
3807 else
3808 N := Empty;
3809 P := Assoc_Node;
3810 end if;
3812 -- Capture root of the transient scope
3814 if Scope_Is_Transient then
3815 Wrapped_Node := Node_To_Be_Wrapped;
3816 end if;
3818 loop
3819 pragma Assert (Present (P));
3821 -- Make sure that inserted actions stay in the transient scope
3823 if Present (Wrapped_Node) and then N = Wrapped_Node then
3824 Store_Before_Actions_In_Scope (Ins_Actions);
3825 return;
3826 end if;
3828 case Nkind (P) is
3830 -- Case of right operand of AND THEN or OR ELSE. Put the actions
3831 -- in the Actions field of the right operand. They will be moved
3832 -- out further when the AND THEN or OR ELSE operator is expanded.
3833 -- Nothing special needs to be done for the left operand since
3834 -- in that case the actions are executed unconditionally.
3836 when N_Short_Circuit =>
3837 if N = Right_Opnd (P) then
3839 -- We are now going to either append the actions to the
3840 -- actions field of the short-circuit operation. We will
3841 -- also analyze the actions now.
3843 -- This analysis is really too early, the proper thing would
3844 -- be to just park them there now, and only analyze them if
3845 -- we find we really need them, and to it at the proper
3846 -- final insertion point. However attempting to this proved
3847 -- tricky, so for now we just kill current values before and
3848 -- after the analyze call to make sure we avoid peculiar
3849 -- optimizations from this out of order insertion.
3851 Kill_Current_Values;
3853 -- If P has already been expanded, we can't park new actions
3854 -- on it, so we need to expand them immediately, introducing
3855 -- an Expression_With_Actions. N can't be an expression
3856 -- with actions, or else then the actions would have been
3857 -- inserted at an inner level.
3859 if Analyzed (P) then
3860 pragma Assert (Nkind (N) /= N_Expression_With_Actions);
3861 Rewrite (N,
3862 Make_Expression_With_Actions (Sloc (N),
3863 Actions => Ins_Actions,
3864 Expression => Relocate_Node (N)));
3865 Analyze_And_Resolve (N);
3867 elsif Present (Actions (P)) then
3868 Insert_List_After_And_Analyze
3869 (Last (Actions (P)), Ins_Actions);
3870 else
3871 Set_Actions (P, Ins_Actions);
3872 Analyze_List (Actions (P));
3873 end if;
3875 Kill_Current_Values;
3877 return;
3878 end if;
3880 -- Then or Else dependent expression of an if expression. Add
3881 -- actions to Then_Actions or Else_Actions field as appropriate.
3882 -- The actions will be moved further out when the if is expanded.
3884 when N_If_Expression =>
3885 declare
3886 ThenX : constant Node_Id := Next (First (Expressions (P)));
3887 ElseX : constant Node_Id := Next (ThenX);
3889 begin
3890 -- If the enclosing expression is already analyzed, as
3891 -- is the case for nested elaboration checks, insert the
3892 -- conditional further out.
3894 if Analyzed (P) then
3895 null;
3897 -- Actions belong to the then expression, temporarily place
3898 -- them as Then_Actions of the if expression. They will be
3899 -- moved to the proper place later when the if expression
3900 -- is expanded.
3902 elsif N = ThenX then
3903 if Present (Then_Actions (P)) then
3904 Insert_List_After_And_Analyze
3905 (Last (Then_Actions (P)), Ins_Actions);
3906 else
3907 Set_Then_Actions (P, Ins_Actions);
3908 Analyze_List (Then_Actions (P));
3909 end if;
3911 return;
3913 -- Actions belong to the else expression, temporarily place
3914 -- them as Else_Actions of the if expression. They will be
3915 -- moved to the proper place later when the if expression
3916 -- is expanded.
3918 elsif N = ElseX then
3919 if Present (Else_Actions (P)) then
3920 Insert_List_After_And_Analyze
3921 (Last (Else_Actions (P)), Ins_Actions);
3922 else
3923 Set_Else_Actions (P, Ins_Actions);
3924 Analyze_List (Else_Actions (P));
3925 end if;
3927 return;
3929 -- Actions belong to the condition. In this case they are
3930 -- unconditionally executed, and so we can continue the
3931 -- search for the proper insert point.
3933 else
3934 null;
3935 end if;
3936 end;
3938 -- Alternative of case expression, we place the action in the
3939 -- Actions field of the case expression alternative, this will
3940 -- be handled when the case expression is expanded.
3942 when N_Case_Expression_Alternative =>
3943 if Present (Actions (P)) then
3944 Insert_List_After_And_Analyze
3945 (Last (Actions (P)), Ins_Actions);
3946 else
3947 Set_Actions (P, Ins_Actions);
3948 Analyze_List (Actions (P));
3949 end if;
3951 return;
3953 -- Case of appearing within an Expressions_With_Actions node. When
3954 -- the new actions come from the expression of the expression with
3955 -- actions, they must be added to the existing actions. The other
3956 -- alternative is when the new actions are related to one of the
3957 -- existing actions of the expression with actions, and should
3958 -- never reach here: if actions are inserted on a statement
3959 -- within the Actions of an expression with actions, or on some
3960 -- sub-expression of such a statement, then the outermost proper
3961 -- insertion point is right before the statement, and we should
3962 -- never climb up as far as the N_Expression_With_Actions itself.
3964 when N_Expression_With_Actions =>
3965 if N = Expression (P) then
3966 if Is_Empty_List (Actions (P)) then
3967 Append_List_To (Actions (P), Ins_Actions);
3968 Analyze_List (Actions (P));
3969 else
3970 Insert_List_After_And_Analyze
3971 (Last (Actions (P)), Ins_Actions);
3972 end if;
3974 return;
3976 else
3977 raise Program_Error;
3978 end if;
3980 -- Case of appearing in the condition of a while expression or
3981 -- elsif. We insert the actions into the Condition_Actions field.
3982 -- They will be moved further out when the while loop or elsif
3983 -- is analyzed.
3985 when N_Iteration_Scheme |
3986 N_Elsif_Part
3988 if N = Condition (P) then
3989 if Present (Condition_Actions (P)) then
3990 Insert_List_After_And_Analyze
3991 (Last (Condition_Actions (P)), Ins_Actions);
3992 else
3993 Set_Condition_Actions (P, Ins_Actions);
3995 -- Set the parent of the insert actions explicitly. This
3996 -- is not a syntactic field, but we need the parent field
3997 -- set, in particular so that freeze can understand that
3998 -- it is dealing with condition actions, and properly
3999 -- insert the freezing actions.
4001 Set_Parent (Ins_Actions, P);
4002 Analyze_List (Condition_Actions (P));
4003 end if;
4005 return;
4006 end if;
4008 -- Statements, declarations, pragmas, representation clauses
4010 when
4011 -- Statements
4013 N_Procedure_Call_Statement |
4014 N_Statement_Other_Than_Procedure_Call |
4016 -- Pragmas
4018 N_Pragma |
4020 -- Representation_Clause
4022 N_At_Clause |
4023 N_Attribute_Definition_Clause |
4024 N_Enumeration_Representation_Clause |
4025 N_Record_Representation_Clause |
4027 -- Declarations
4029 N_Abstract_Subprogram_Declaration |
4030 N_Entry_Body |
4031 N_Exception_Declaration |
4032 N_Exception_Renaming_Declaration |
4033 N_Expression_Function |
4034 N_Formal_Abstract_Subprogram_Declaration |
4035 N_Formal_Concrete_Subprogram_Declaration |
4036 N_Formal_Object_Declaration |
4037 N_Formal_Type_Declaration |
4038 N_Full_Type_Declaration |
4039 N_Function_Instantiation |
4040 N_Generic_Function_Renaming_Declaration |
4041 N_Generic_Package_Declaration |
4042 N_Generic_Package_Renaming_Declaration |
4043 N_Generic_Procedure_Renaming_Declaration |
4044 N_Generic_Subprogram_Declaration |
4045 N_Implicit_Label_Declaration |
4046 N_Incomplete_Type_Declaration |
4047 N_Number_Declaration |
4048 N_Object_Declaration |
4049 N_Object_Renaming_Declaration |
4050 N_Package_Body |
4051 N_Package_Body_Stub |
4052 N_Package_Declaration |
4053 N_Package_Instantiation |
4054 N_Package_Renaming_Declaration |
4055 N_Private_Extension_Declaration |
4056 N_Private_Type_Declaration |
4057 N_Procedure_Instantiation |
4058 N_Protected_Body |
4059 N_Protected_Body_Stub |
4060 N_Protected_Type_Declaration |
4061 N_Single_Task_Declaration |
4062 N_Subprogram_Body |
4063 N_Subprogram_Body_Stub |
4064 N_Subprogram_Declaration |
4065 N_Subprogram_Renaming_Declaration |
4066 N_Subtype_Declaration |
4067 N_Task_Body |
4068 N_Task_Body_Stub |
4069 N_Task_Type_Declaration |
4071 -- Use clauses can appear in lists of declarations
4073 N_Use_Package_Clause |
4074 N_Use_Type_Clause |
4076 -- Freeze entity behaves like a declaration or statement
4078 N_Freeze_Entity |
4079 N_Freeze_Generic_Entity
4081 -- Do not insert here if the item is not a list member (this
4082 -- happens for example with a triggering statement, and the
4083 -- proper approach is to insert before the entire select).
4085 if not Is_List_Member (P) then
4086 null;
4088 -- Do not insert if parent of P is an N_Component_Association
4089 -- node (i.e. we are in the context of an N_Aggregate or
4090 -- N_Extension_Aggregate node. In this case we want to insert
4091 -- before the entire aggregate.
4093 elsif Nkind (Parent (P)) = N_Component_Association then
4094 null;
4096 -- Do not insert if the parent of P is either an N_Variant node
4097 -- or an N_Record_Definition node, meaning in either case that
4098 -- P is a member of a component list, and that therefore the
4099 -- actions should be inserted outside the complete record
4100 -- declaration.
4102 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
4103 null;
4105 -- Do not insert freeze nodes within the loop generated for
4106 -- an aggregate, because they may be elaborated too late for
4107 -- subsequent use in the back end: within a package spec the
4108 -- loop is part of the elaboration procedure and is only
4109 -- elaborated during the second pass.
4111 -- If the loop comes from source, or the entity is local to the
4112 -- loop itself it must remain within.
4114 elsif Nkind (Parent (P)) = N_Loop_Statement
4115 and then not Comes_From_Source (Parent (P))
4116 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
4117 and then
4118 Scope (Entity (First (Ins_Actions))) /= Current_Scope
4119 then
4120 null;
4122 -- Otherwise we can go ahead and do the insertion
4124 elsif P = Wrapped_Node then
4125 Store_Before_Actions_In_Scope (Ins_Actions);
4126 return;
4128 else
4129 Insert_List_Before_And_Analyze (P, Ins_Actions);
4130 return;
4131 end if;
4133 -- A special case, N_Raise_xxx_Error can act either as a statement
4134 -- or a subexpression. We tell the difference by looking at the
4135 -- Etype. It is set to Standard_Void_Type in the statement case.
4137 when
4138 N_Raise_xxx_Error =>
4139 if Etype (P) = Standard_Void_Type then
4140 if P = Wrapped_Node then
4141 Store_Before_Actions_In_Scope (Ins_Actions);
4142 else
4143 Insert_List_Before_And_Analyze (P, Ins_Actions);
4144 end if;
4146 return;
4148 -- In the subexpression case, keep climbing
4150 else
4151 null;
4152 end if;
4154 -- If a component association appears within a loop created for
4155 -- an array aggregate, attach the actions to the association so
4156 -- they can be subsequently inserted within the loop. For other
4157 -- component associations insert outside of the aggregate. For
4158 -- an association that will generate a loop, its Loop_Actions
4159 -- attribute is already initialized (see exp_aggr.adb).
4161 -- The list of loop_actions can in turn generate additional ones,
4162 -- that are inserted before the associated node. If the associated
4163 -- node is outside the aggregate, the new actions are collected
4164 -- at the end of the loop actions, to respect the order in which
4165 -- they are to be elaborated.
4167 when
4168 N_Component_Association =>
4169 if Nkind (Parent (P)) = N_Aggregate
4170 and then Present (Loop_Actions (P))
4171 then
4172 if Is_Empty_List (Loop_Actions (P)) then
4173 Set_Loop_Actions (P, Ins_Actions);
4174 Analyze_List (Ins_Actions);
4176 else
4177 declare
4178 Decl : Node_Id;
4180 begin
4181 -- Check whether these actions were generated by a
4182 -- declaration that is part of the loop_ actions
4183 -- for the component_association.
4185 Decl := Assoc_Node;
4186 while Present (Decl) loop
4187 exit when Parent (Decl) = P
4188 and then Is_List_Member (Decl)
4189 and then
4190 List_Containing (Decl) = Loop_Actions (P);
4191 Decl := Parent (Decl);
4192 end loop;
4194 if Present (Decl) then
4195 Insert_List_Before_And_Analyze
4196 (Decl, Ins_Actions);
4197 else
4198 Insert_List_After_And_Analyze
4199 (Last (Loop_Actions (P)), Ins_Actions);
4200 end if;
4201 end;
4202 end if;
4204 return;
4206 else
4207 null;
4208 end if;
4210 -- Another special case, an attribute denoting a procedure call
4212 when
4213 N_Attribute_Reference =>
4214 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
4215 if P = Wrapped_Node then
4216 Store_Before_Actions_In_Scope (Ins_Actions);
4217 else
4218 Insert_List_Before_And_Analyze (P, Ins_Actions);
4219 end if;
4221 return;
4223 -- In the subexpression case, keep climbing
4225 else
4226 null;
4227 end if;
4229 -- A contract node should not belong to the tree
4231 when N_Contract =>
4232 raise Program_Error;
4234 -- For all other node types, keep climbing tree
4236 when
4237 N_Abortable_Part |
4238 N_Accept_Alternative |
4239 N_Access_Definition |
4240 N_Access_Function_Definition |
4241 N_Access_Procedure_Definition |
4242 N_Access_To_Object_Definition |
4243 N_Aggregate |
4244 N_Allocator |
4245 N_Aspect_Specification |
4246 N_Case_Expression |
4247 N_Case_Statement_Alternative |
4248 N_Character_Literal |
4249 N_Compilation_Unit |
4250 N_Compilation_Unit_Aux |
4251 N_Component_Clause |
4252 N_Component_Declaration |
4253 N_Component_Definition |
4254 N_Component_List |
4255 N_Constrained_Array_Definition |
4256 N_Decimal_Fixed_Point_Definition |
4257 N_Defining_Character_Literal |
4258 N_Defining_Identifier |
4259 N_Defining_Operator_Symbol |
4260 N_Defining_Program_Unit_Name |
4261 N_Delay_Alternative |
4262 N_Delta_Constraint |
4263 N_Derived_Type_Definition |
4264 N_Designator |
4265 N_Digits_Constraint |
4266 N_Discriminant_Association |
4267 N_Discriminant_Specification |
4268 N_Empty |
4269 N_Entry_Body_Formal_Part |
4270 N_Entry_Call_Alternative |
4271 N_Entry_Declaration |
4272 N_Entry_Index_Specification |
4273 N_Enumeration_Type_Definition |
4274 N_Error |
4275 N_Exception_Handler |
4276 N_Expanded_Name |
4277 N_Explicit_Dereference |
4278 N_Extension_Aggregate |
4279 N_Floating_Point_Definition |
4280 N_Formal_Decimal_Fixed_Point_Definition |
4281 N_Formal_Derived_Type_Definition |
4282 N_Formal_Discrete_Type_Definition |
4283 N_Formal_Floating_Point_Definition |
4284 N_Formal_Modular_Type_Definition |
4285 N_Formal_Ordinary_Fixed_Point_Definition |
4286 N_Formal_Package_Declaration |
4287 N_Formal_Private_Type_Definition |
4288 N_Formal_Incomplete_Type_Definition |
4289 N_Formal_Signed_Integer_Type_Definition |
4290 N_Function_Call |
4291 N_Function_Specification |
4292 N_Generic_Association |
4293 N_Handled_Sequence_Of_Statements |
4294 N_Identifier |
4295 N_In |
4296 N_Index_Or_Discriminant_Constraint |
4297 N_Indexed_Component |
4298 N_Integer_Literal |
4299 N_Iterator_Specification |
4300 N_Itype_Reference |
4301 N_Label |
4302 N_Loop_Parameter_Specification |
4303 N_Mod_Clause |
4304 N_Modular_Type_Definition |
4305 N_Not_In |
4306 N_Null |
4307 N_Op_Abs |
4308 N_Op_Add |
4309 N_Op_And |
4310 N_Op_Concat |
4311 N_Op_Divide |
4312 N_Op_Eq |
4313 N_Op_Expon |
4314 N_Op_Ge |
4315 N_Op_Gt |
4316 N_Op_Le |
4317 N_Op_Lt |
4318 N_Op_Minus |
4319 N_Op_Mod |
4320 N_Op_Multiply |
4321 N_Op_Ne |
4322 N_Op_Not |
4323 N_Op_Or |
4324 N_Op_Plus |
4325 N_Op_Rem |
4326 N_Op_Rotate_Left |
4327 N_Op_Rotate_Right |
4328 N_Op_Shift_Left |
4329 N_Op_Shift_Right |
4330 N_Op_Shift_Right_Arithmetic |
4331 N_Op_Subtract |
4332 N_Op_Xor |
4333 N_Operator_Symbol |
4334 N_Ordinary_Fixed_Point_Definition |
4335 N_Others_Choice |
4336 N_Package_Specification |
4337 N_Parameter_Association |
4338 N_Parameter_Specification |
4339 N_Pop_Constraint_Error_Label |
4340 N_Pop_Program_Error_Label |
4341 N_Pop_Storage_Error_Label |
4342 N_Pragma_Argument_Association |
4343 N_Procedure_Specification |
4344 N_Protected_Definition |
4345 N_Push_Constraint_Error_Label |
4346 N_Push_Program_Error_Label |
4347 N_Push_Storage_Error_Label |
4348 N_Qualified_Expression |
4349 N_Quantified_Expression |
4350 N_Raise_Expression |
4351 N_Range |
4352 N_Range_Constraint |
4353 N_Real_Literal |
4354 N_Real_Range_Specification |
4355 N_Record_Definition |
4356 N_Reference |
4357 N_SCIL_Dispatch_Table_Tag_Init |
4358 N_SCIL_Dispatching_Call |
4359 N_SCIL_Membership_Test |
4360 N_Selected_Component |
4361 N_Signed_Integer_Type_Definition |
4362 N_Single_Protected_Declaration |
4363 N_Slice |
4364 N_String_Literal |
4365 N_Subtype_Indication |
4366 N_Subunit |
4367 N_Task_Definition |
4368 N_Terminate_Alternative |
4369 N_Triggering_Alternative |
4370 N_Type_Conversion |
4371 N_Unchecked_Expression |
4372 N_Unchecked_Type_Conversion |
4373 N_Unconstrained_Array_Definition |
4374 N_Unused_At_End |
4375 N_Unused_At_Start |
4376 N_Variant |
4377 N_Variant_Part |
4378 N_Validate_Unchecked_Conversion |
4379 N_With_Clause
4381 null;
4383 end case;
4385 -- If we fall through above tests, keep climbing tree
4387 N := P;
4389 if Nkind (Parent (N)) = N_Subunit then
4391 -- This is the proper body corresponding to a stub. Insertion must
4392 -- be done at the point of the stub, which is in the declarative
4393 -- part of the parent unit.
4395 P := Corresponding_Stub (Parent (N));
4397 else
4398 P := Parent (N);
4399 end if;
4400 end loop;
4401 end Insert_Actions;
4403 -- Version with check(s) suppressed
4405 procedure Insert_Actions
4406 (Assoc_Node : Node_Id;
4407 Ins_Actions : List_Id;
4408 Suppress : Check_Id)
4410 begin
4411 if Suppress = All_Checks then
4412 declare
4413 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
4414 begin
4415 Scope_Suppress.Suppress := (others => True);
4416 Insert_Actions (Assoc_Node, Ins_Actions);
4417 Scope_Suppress.Suppress := Sva;
4418 end;
4420 else
4421 declare
4422 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
4423 begin
4424 Scope_Suppress.Suppress (Suppress) := True;
4425 Insert_Actions (Assoc_Node, Ins_Actions);
4426 Scope_Suppress.Suppress (Suppress) := Svg;
4427 end;
4428 end if;
4429 end Insert_Actions;
4431 --------------------------
4432 -- Insert_Actions_After --
4433 --------------------------
4435 procedure Insert_Actions_After
4436 (Assoc_Node : Node_Id;
4437 Ins_Actions : List_Id)
4439 begin
4440 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
4441 Store_After_Actions_In_Scope (Ins_Actions);
4442 else
4443 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
4444 end if;
4445 end Insert_Actions_After;
4447 ------------------------
4448 -- Insert_Declaration --
4449 ------------------------
4451 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
4452 P : Node_Id;
4454 begin
4455 pragma Assert (Nkind (N) in N_Subexpr);
4457 -- Climb until we find a procedure or a package
4459 P := N;
4460 loop
4461 pragma Assert (Present (Parent (P)));
4462 P := Parent (P);
4464 if Is_List_Member (P) then
4465 exit when Nkind_In (Parent (P), N_Package_Specification,
4466 N_Subprogram_Body);
4468 -- Special handling for handled sequence of statements, we must
4469 -- insert in the statements not the exception handlers!
4471 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
4472 P := First (Statements (Parent (P)));
4473 exit;
4474 end if;
4475 end if;
4476 end loop;
4478 -- Now do the insertion
4480 Insert_Before (P, Decl);
4481 Analyze (Decl);
4482 end Insert_Declaration;
4484 ---------------------------------
4485 -- Insert_Library_Level_Action --
4486 ---------------------------------
4488 procedure Insert_Library_Level_Action (N : Node_Id) is
4489 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4491 begin
4492 Push_Scope (Cunit_Entity (Main_Unit));
4493 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4495 if No (Actions (Aux)) then
4496 Set_Actions (Aux, New_List (N));
4497 else
4498 Append (N, Actions (Aux));
4499 end if;
4501 Analyze (N);
4502 Pop_Scope;
4503 end Insert_Library_Level_Action;
4505 ----------------------------------
4506 -- Insert_Library_Level_Actions --
4507 ----------------------------------
4509 procedure Insert_Library_Level_Actions (L : List_Id) is
4510 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4512 begin
4513 if Is_Non_Empty_List (L) then
4514 Push_Scope (Cunit_Entity (Main_Unit));
4515 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4517 if No (Actions (Aux)) then
4518 Set_Actions (Aux, L);
4519 Analyze_List (L);
4520 else
4521 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
4522 end if;
4524 Pop_Scope;
4525 end if;
4526 end Insert_Library_Level_Actions;
4528 ----------------------
4529 -- Inside_Init_Proc --
4530 ----------------------
4532 function Inside_Init_Proc return Boolean is
4533 S : Entity_Id;
4535 begin
4536 S := Current_Scope;
4537 while Present (S) and then S /= Standard_Standard loop
4538 if Is_Init_Proc (S) then
4539 return True;
4540 else
4541 S := Scope (S);
4542 end if;
4543 end loop;
4545 return False;
4546 end Inside_Init_Proc;
4548 ----------------------------
4549 -- Is_All_Null_Statements --
4550 ----------------------------
4552 function Is_All_Null_Statements (L : List_Id) return Boolean is
4553 Stm : Node_Id;
4555 begin
4556 Stm := First (L);
4557 while Present (Stm) loop
4558 if Nkind (Stm) /= N_Null_Statement then
4559 return False;
4560 end if;
4562 Next (Stm);
4563 end loop;
4565 return True;
4566 end Is_All_Null_Statements;
4568 --------------------------------------------------
4569 -- Is_Displacement_Of_Object_Or_Function_Result --
4570 --------------------------------------------------
4572 function Is_Displacement_Of_Object_Or_Function_Result
4573 (Obj_Id : Entity_Id) return Boolean
4575 function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
4576 -- Determine if particular node denotes a controlled function call. The
4577 -- call may have been heavily expanded.
4579 function Is_Displace_Call (N : Node_Id) return Boolean;
4580 -- Determine whether a particular node is a call to Ada.Tags.Displace.
4581 -- The call might be nested within other actions such as conversions.
4583 function Is_Source_Object (N : Node_Id) return Boolean;
4584 -- Determine whether a particular node denotes a source object
4586 ---------------------------------
4587 -- Is_Controlled_Function_Call --
4588 ---------------------------------
4590 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
4591 Expr : Node_Id := Original_Node (N);
4593 begin
4594 if Nkind (Expr) = N_Function_Call then
4595 Expr := Name (Expr);
4597 -- When a function call appears in Object.Operation format, the
4598 -- original representation has two possible forms depending on the
4599 -- availability of actual parameters:
4601 -- Obj.Func_Call N_Selected_Component
4602 -- Obj.Func_Call (Param) N_Indexed_Component
4604 else
4605 if Nkind (Expr) = N_Indexed_Component then
4606 Expr := Prefix (Expr);
4607 end if;
4609 if Nkind (Expr) = N_Selected_Component then
4610 Expr := Selector_Name (Expr);
4611 end if;
4612 end if;
4614 return
4615 Nkind_In (Expr, N_Expanded_Name, N_Identifier)
4616 and then Ekind (Entity (Expr)) = E_Function
4617 and then Needs_Finalization (Etype (Entity (Expr)));
4618 end Is_Controlled_Function_Call;
4620 ----------------------
4621 -- Is_Displace_Call --
4622 ----------------------
4624 function Is_Displace_Call (N : Node_Id) return Boolean is
4625 Call : Node_Id := N;
4627 begin
4628 -- Strip various actions which may precede a call to Displace
4630 loop
4631 if Nkind (Call) = N_Explicit_Dereference then
4632 Call := Prefix (Call);
4634 elsif Nkind_In (Call, N_Type_Conversion,
4635 N_Unchecked_Type_Conversion)
4636 then
4637 Call := Expression (Call);
4639 else
4640 exit;
4641 end if;
4642 end loop;
4644 return
4645 Present (Call)
4646 and then Nkind (Call) = N_Function_Call
4647 and then Is_RTE (Entity (Name (Call)), RE_Displace);
4648 end Is_Displace_Call;
4650 ----------------------
4651 -- Is_Source_Object --
4652 ----------------------
4654 function Is_Source_Object (N : Node_Id) return Boolean is
4655 begin
4656 return
4657 Present (N)
4658 and then Nkind (N) in N_Has_Entity
4659 and then Is_Object (Entity (N))
4660 and then Comes_From_Source (N);
4661 end Is_Source_Object;
4663 -- Local variables
4665 Decl : constant Node_Id := Parent (Obj_Id);
4666 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4667 Orig_Decl : constant Node_Id := Original_Node (Decl);
4669 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
4671 begin
4672 -- Case 1:
4674 -- Obj : CW_Type := Function_Call (...);
4676 -- rewritten into:
4678 -- Tmp : ... := Function_Call (...)'reference;
4679 -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
4681 -- where the return type of the function and the class-wide type require
4682 -- dispatch table pointer displacement.
4684 -- Case 2:
4686 -- Obj : CW_Type := Src_Obj;
4688 -- rewritten into:
4690 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
4692 -- where the type of the source object and the class-wide type require
4693 -- dispatch table pointer displacement.
4695 return
4696 Nkind (Decl) = N_Object_Renaming_Declaration
4697 and then Nkind (Orig_Decl) = N_Object_Declaration
4698 and then Comes_From_Source (Orig_Decl)
4699 and then Is_Class_Wide_Type (Obj_Typ)
4700 and then Is_Displace_Call (Renamed_Object (Obj_Id))
4701 and then
4702 (Is_Controlled_Function_Call (Expression (Orig_Decl))
4703 or else Is_Source_Object (Expression (Orig_Decl)));
4704 end Is_Displacement_Of_Object_Or_Function_Result;
4706 ------------------------------
4707 -- Is_Finalizable_Transient --
4708 ------------------------------
4710 function Is_Finalizable_Transient
4711 (Decl : Node_Id;
4712 Rel_Node : Node_Id) return Boolean
4714 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4715 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4717 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
4718 -- Determine whether transient object Trans_Id is initialized either
4719 -- by a function call which returns an access type or simply renames
4720 -- another pointer.
4722 function Initialized_By_Aliased_BIP_Func_Call
4723 (Trans_Id : Entity_Id) return Boolean;
4724 -- Determine whether transient object Trans_Id is initialized by a
4725 -- build-in-place function call where the BIPalloc parameter is of
4726 -- value 1 and BIPaccess is not null. This case creates an aliasing
4727 -- between the returned value and the value denoted by BIPaccess.
4729 function Is_Aliased
4730 (Trans_Id : Entity_Id;
4731 First_Stmt : Node_Id) return Boolean;
4732 -- Determine whether transient object Trans_Id has been renamed or
4733 -- aliased through 'reference in the statement list starting from
4734 -- First_Stmt.
4736 function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
4737 -- Determine whether transient object Trans_Id is allocated on the heap
4739 function Is_Iterated_Container
4740 (Trans_Id : Entity_Id;
4741 First_Stmt : Node_Id) return Boolean;
4742 -- Determine whether transient object Trans_Id denotes a container which
4743 -- is in the process of being iterated in the statement list starting
4744 -- from First_Stmt.
4746 ---------------------------
4747 -- Initialized_By_Access --
4748 ---------------------------
4750 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
4751 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4753 begin
4754 return
4755 Present (Expr)
4756 and then Nkind (Expr) /= N_Reference
4757 and then Is_Access_Type (Etype (Expr));
4758 end Initialized_By_Access;
4760 ------------------------------------------
4761 -- Initialized_By_Aliased_BIP_Func_Call --
4762 ------------------------------------------
4764 function Initialized_By_Aliased_BIP_Func_Call
4765 (Trans_Id : Entity_Id) return Boolean
4767 Call : Node_Id := Expression (Parent (Trans_Id));
4769 begin
4770 -- Build-in-place calls usually appear in 'reference format
4772 if Nkind (Call) = N_Reference then
4773 Call := Prefix (Call);
4774 end if;
4776 if Is_Build_In_Place_Function_Call (Call) then
4777 declare
4778 Access_Nam : Name_Id := No_Name;
4779 Access_OK : Boolean := False;
4780 Actual : Node_Id;
4781 Alloc_Nam : Name_Id := No_Name;
4782 Alloc_OK : Boolean := False;
4783 Formal : Node_Id;
4784 Func_Id : Entity_Id;
4785 Param : Node_Id;
4787 begin
4788 -- Examine all parameter associations of the function call
4790 Param := First (Parameter_Associations (Call));
4791 while Present (Param) loop
4792 if Nkind (Param) = N_Parameter_Association
4793 and then Nkind (Selector_Name (Param)) = N_Identifier
4794 then
4795 Actual := Explicit_Actual_Parameter (Param);
4796 Formal := Selector_Name (Param);
4798 -- Construct the names of formals BIPaccess and BIPalloc
4799 -- using the function name retrieved from an arbitrary
4800 -- formal.
4802 if Access_Nam = No_Name
4803 and then Alloc_Nam = No_Name
4804 and then Present (Entity (Formal))
4805 then
4806 Func_Id := Scope (Entity (Formal));
4808 Access_Nam :=
4809 New_External_Name (Chars (Func_Id),
4810 BIP_Formal_Suffix (BIP_Object_Access));
4812 Alloc_Nam :=
4813 New_External_Name (Chars (Func_Id),
4814 BIP_Formal_Suffix (BIP_Alloc_Form));
4815 end if;
4817 -- A match for BIPaccess => Temp has been found
4819 if Chars (Formal) = Access_Nam
4820 and then Nkind (Actual) /= N_Null
4821 then
4822 Access_OK := True;
4823 end if;
4825 -- A match for BIPalloc => 1 has been found
4827 if Chars (Formal) = Alloc_Nam
4828 and then Nkind (Actual) = N_Integer_Literal
4829 and then Intval (Actual) = Uint_1
4830 then
4831 Alloc_OK := True;
4832 end if;
4833 end if;
4835 Next (Param);
4836 end loop;
4838 return Access_OK and Alloc_OK;
4839 end;
4840 end if;
4842 return False;
4843 end Initialized_By_Aliased_BIP_Func_Call;
4845 ----------------
4846 -- Is_Aliased --
4847 ----------------
4849 function Is_Aliased
4850 (Trans_Id : Entity_Id;
4851 First_Stmt : Node_Id) return Boolean
4853 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
4854 -- Given an object renaming declaration, retrieve the entity of the
4855 -- renamed name. Return Empty if the renamed name is anything other
4856 -- than a variable or a constant.
4858 -------------------------
4859 -- Find_Renamed_Object --
4860 -------------------------
4862 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
4863 Ren_Obj : Node_Id := Empty;
4865 function Find_Object (N : Node_Id) return Traverse_Result;
4866 -- Try to detect an object which is either a constant or a
4867 -- variable.
4869 -----------------
4870 -- Find_Object --
4871 -----------------
4873 function Find_Object (N : Node_Id) return Traverse_Result is
4874 begin
4875 -- Stop the search once a constant or a variable has been
4876 -- detected.
4878 if Nkind (N) = N_Identifier
4879 and then Present (Entity (N))
4880 and then Ekind_In (Entity (N), E_Constant, E_Variable)
4881 then
4882 Ren_Obj := Entity (N);
4883 return Abandon;
4884 end if;
4886 return OK;
4887 end Find_Object;
4889 procedure Search is new Traverse_Proc (Find_Object);
4891 -- Local variables
4893 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
4895 -- Start of processing for Find_Renamed_Object
4897 begin
4898 -- Actions related to dispatching calls may appear as renamings of
4899 -- tags. Do not process this type of renaming because it does not
4900 -- use the actual value of the object.
4902 if not Is_RTE (Typ, RE_Tag_Ptr) then
4903 Search (Name (Ren_Decl));
4904 end if;
4906 return Ren_Obj;
4907 end Find_Renamed_Object;
4909 -- Local variables
4911 Expr : Node_Id;
4912 Ren_Obj : Entity_Id;
4913 Stmt : Node_Id;
4915 -- Start of processing for Is_Aliased
4917 begin
4918 -- A controlled transient object is not considered aliased when it
4919 -- appears inside an expression_with_actions node even when there are
4920 -- explicit aliases of it:
4922 -- do
4923 -- Trans_Id : Ctrl_Typ ...; -- controlled transient object
4924 -- Alias : ... := Trans_Id; -- object is aliased
4925 -- Val : constant Boolean :=
4926 -- ... Alias ...; -- aliasing ends
4927 -- <finalize Trans_Id> -- object safe to finalize
4928 -- in Val end;
4930 -- Expansion ensures that all aliases are encapsulated in the actions
4931 -- list and do not leak to the expression by forcing the evaluation
4932 -- of the expression.
4934 if Nkind (Rel_Node) = N_Expression_With_Actions then
4935 return False;
4937 -- Otherwise examine the statements after the controlled transient
4938 -- object and look for various forms of aliasing.
4940 else
4941 Stmt := First_Stmt;
4942 while Present (Stmt) loop
4943 if Nkind (Stmt) = N_Object_Declaration then
4944 Expr := Expression (Stmt);
4946 -- Aliasing of the form:
4947 -- Obj : ... := Trans_Id'reference;
4949 if Present (Expr)
4950 and then Nkind (Expr) = N_Reference
4951 and then Nkind (Prefix (Expr)) = N_Identifier
4952 and then Entity (Prefix (Expr)) = Trans_Id
4953 then
4954 return True;
4955 end if;
4957 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
4958 Ren_Obj := Find_Renamed_Object (Stmt);
4960 -- Aliasing of the form:
4961 -- Obj : ... renames ... Trans_Id ...;
4963 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
4964 return True;
4965 end if;
4966 end if;
4968 Next (Stmt);
4969 end loop;
4971 return False;
4972 end if;
4973 end Is_Aliased;
4975 ------------------
4976 -- Is_Allocated --
4977 ------------------
4979 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
4980 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4981 begin
4982 return
4983 Is_Access_Type (Etype (Trans_Id))
4984 and then Present (Expr)
4985 and then Nkind (Expr) = N_Allocator;
4986 end Is_Allocated;
4988 ---------------------------
4989 -- Is_Iterated_Container --
4990 ---------------------------
4992 function Is_Iterated_Container
4993 (Trans_Id : Entity_Id;
4994 First_Stmt : Node_Id) return Boolean
4996 Aspect : Node_Id;
4997 Call : Node_Id;
4998 Iter : Entity_Id;
4999 Param : Node_Id;
5000 Stmt : Node_Id;
5001 Typ : Entity_Id;
5003 begin
5004 -- It is not possible to iterate over containers in non-Ada 2012 code
5006 if Ada_Version < Ada_2012 then
5007 return False;
5008 end if;
5010 Typ := Etype (Trans_Id);
5012 -- Handle access type created for secondary stack use
5014 if Is_Access_Type (Typ) then
5015 Typ := Designated_Type (Typ);
5016 end if;
5018 -- Look for aspect Default_Iterator. It may be part of a type
5019 -- declaration for a container, or inherited from a base type
5020 -- or parent type.
5022 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
5024 if Present (Aspect) then
5025 Iter := Entity (Aspect);
5027 -- Examine the statements following the container object and
5028 -- look for a call to the default iterate routine where the
5029 -- first parameter is the transient. Such a call appears as:
5031 -- It : Access_To_CW_Iterator :=
5032 -- Iterate (Tran_Id.all, ...)'reference;
5034 Stmt := First_Stmt;
5035 while Present (Stmt) loop
5037 -- Detect an object declaration which is initialized by a
5038 -- secondary stack function call.
5040 if Nkind (Stmt) = N_Object_Declaration
5041 and then Present (Expression (Stmt))
5042 and then Nkind (Expression (Stmt)) = N_Reference
5043 and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
5044 then
5045 Call := Prefix (Expression (Stmt));
5047 -- The call must invoke the default iterate routine of
5048 -- the container and the transient object must appear as
5049 -- the first actual parameter. Skip any calls whose names
5050 -- are not entities.
5052 if Is_Entity_Name (Name (Call))
5053 and then Entity (Name (Call)) = Iter
5054 and then Present (Parameter_Associations (Call))
5055 then
5056 Param := First (Parameter_Associations (Call));
5058 if Nkind (Param) = N_Explicit_Dereference
5059 and then Entity (Prefix (Param)) = Trans_Id
5060 then
5061 return True;
5062 end if;
5063 end if;
5064 end if;
5066 Next (Stmt);
5067 end loop;
5068 end if;
5070 return False;
5071 end Is_Iterated_Container;
5073 -- Local variables
5075 Desig : Entity_Id := Obj_Typ;
5077 -- Start of processing for Is_Finalizable_Transient
5079 begin
5080 -- Handle access types
5082 if Is_Access_Type (Desig) then
5083 Desig := Available_View (Designated_Type (Desig));
5084 end if;
5086 return
5087 Ekind_In (Obj_Id, E_Constant, E_Variable)
5088 and then Needs_Finalization (Desig)
5089 and then Requires_Transient_Scope (Desig)
5090 and then Nkind (Rel_Node) /= N_Simple_Return_Statement
5092 -- Do not consider renamed or 'reference-d transient objects because
5093 -- the act of renaming extends the object's lifetime.
5095 and then not Is_Aliased (Obj_Id, Decl)
5097 -- Do not consider transient objects allocated on the heap since
5098 -- they are attached to a finalization master.
5100 and then not Is_Allocated (Obj_Id)
5102 -- If the transient object is a pointer, check that it is not
5103 -- initialized by a function that returns a pointer or acts as a
5104 -- renaming of another pointer.
5106 and then
5107 (not Is_Access_Type (Obj_Typ)
5108 or else not Initialized_By_Access (Obj_Id))
5110 -- Do not consider transient objects which act as indirect aliases
5111 -- of build-in-place function results.
5113 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
5115 -- Do not consider conversions of tags to class-wide types
5117 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
5119 -- Do not consider iterators because those are treated as normal
5120 -- controlled objects and are processed by the usual finalization
5121 -- machinery. This avoids the double finalization of an iterator.
5123 and then not Is_Iterator (Desig)
5125 -- Do not consider containers in the context of iterator loops. Such
5126 -- transient objects must exist for as long as the loop is around,
5127 -- otherwise any operation carried out by the iterator will fail.
5129 and then not Is_Iterated_Container (Obj_Id, Decl);
5130 end Is_Finalizable_Transient;
5132 ---------------------------------
5133 -- Is_Fully_Repped_Tagged_Type --
5134 ---------------------------------
5136 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
5137 U : constant Entity_Id := Underlying_Type (T);
5138 Comp : Entity_Id;
5140 begin
5141 if No (U) or else not Is_Tagged_Type (U) then
5142 return False;
5143 elsif Has_Discriminants (U) then
5144 return False;
5145 elsif not Has_Specified_Layout (U) then
5146 return False;
5147 end if;
5149 -- Here we have a tagged type, see if it has any unlayed out fields
5150 -- other than a possible tag and parent fields. If so, we return False.
5152 Comp := First_Component (U);
5153 while Present (Comp) loop
5154 if not Is_Tag (Comp)
5155 and then Chars (Comp) /= Name_uParent
5156 and then No (Component_Clause (Comp))
5157 then
5158 return False;
5159 else
5160 Next_Component (Comp);
5161 end if;
5162 end loop;
5164 -- All components are layed out
5166 return True;
5167 end Is_Fully_Repped_Tagged_Type;
5169 ----------------------------------
5170 -- Is_Library_Level_Tagged_Type --
5171 ----------------------------------
5173 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
5174 begin
5175 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
5176 end Is_Library_Level_Tagged_Type;
5178 --------------------------
5179 -- Is_Non_BIP_Func_Call --
5180 --------------------------
5182 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
5183 begin
5184 -- The expected call is of the format
5186 -- Func_Call'reference
5188 return
5189 Nkind (Expr) = N_Reference
5190 and then Nkind (Prefix (Expr)) = N_Function_Call
5191 and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
5192 end Is_Non_BIP_Func_Call;
5194 ------------------------------------
5195 -- Is_Object_Access_BIP_Func_Call --
5196 ------------------------------------
5198 function Is_Object_Access_BIP_Func_Call
5199 (Expr : Node_Id;
5200 Obj_Id : Entity_Id) return Boolean
5202 Access_Nam : Name_Id := No_Name;
5203 Actual : Node_Id;
5204 Call : Node_Id;
5205 Formal : Node_Id;
5206 Param : Node_Id;
5208 begin
5209 -- Build-in-place calls usually appear in 'reference format. Note that
5210 -- the accessibility check machinery may add an extra 'reference due to
5211 -- side effect removal.
5213 Call := Expr;
5214 while Nkind (Call) = N_Reference loop
5215 Call := Prefix (Call);
5216 end loop;
5218 if Nkind_In (Call, N_Qualified_Expression,
5219 N_Unchecked_Type_Conversion)
5220 then
5221 Call := Expression (Call);
5222 end if;
5224 if Is_Build_In_Place_Function_Call (Call) then
5226 -- Examine all parameter associations of the function call
5228 Param := First (Parameter_Associations (Call));
5229 while Present (Param) loop
5230 if Nkind (Param) = N_Parameter_Association
5231 and then Nkind (Selector_Name (Param)) = N_Identifier
5232 then
5233 Formal := Selector_Name (Param);
5234 Actual := Explicit_Actual_Parameter (Param);
5236 -- Construct the name of formal BIPaccess. It is much easier to
5237 -- extract the name of the function using an arbitrary formal's
5238 -- scope rather than the Name field of Call.
5240 if Access_Nam = No_Name and then Present (Entity (Formal)) then
5241 Access_Nam :=
5242 New_External_Name
5243 (Chars (Scope (Entity (Formal))),
5244 BIP_Formal_Suffix (BIP_Object_Access));
5245 end if;
5247 -- A match for BIPaccess => Obj_Id'Unrestricted_Access has been
5248 -- found.
5250 if Chars (Formal) = Access_Nam
5251 and then Nkind (Actual) = N_Attribute_Reference
5252 and then Attribute_Name (Actual) = Name_Unrestricted_Access
5253 and then Nkind (Prefix (Actual)) = N_Identifier
5254 and then Entity (Prefix (Actual)) = Obj_Id
5255 then
5256 return True;
5257 end if;
5258 end if;
5260 Next (Param);
5261 end loop;
5262 end if;
5264 return False;
5265 end Is_Object_Access_BIP_Func_Call;
5267 ----------------------------------
5268 -- Is_Possibly_Unaligned_Object --
5269 ----------------------------------
5271 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
5272 T : constant Entity_Id := Etype (N);
5274 begin
5275 -- Objects are never unaligned on VMs
5277 if VM_Target /= No_VM then
5278 return False;
5279 end if;
5281 -- If renamed object, apply test to underlying object
5283 if Is_Entity_Name (N)
5284 and then Is_Object (Entity (N))
5285 and then Present (Renamed_Object (Entity (N)))
5286 then
5287 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
5288 end if;
5290 -- Tagged and controlled types and aliased types are always aligned, as
5291 -- are concurrent types.
5293 if Is_Aliased (T)
5294 or else Has_Controlled_Component (T)
5295 or else Is_Concurrent_Type (T)
5296 or else Is_Tagged_Type (T)
5297 or else Is_Controlled (T)
5298 then
5299 return False;
5300 end if;
5302 -- If this is an element of a packed array, may be unaligned
5304 if Is_Ref_To_Bit_Packed_Array (N) then
5305 return True;
5306 end if;
5308 -- Case of indexed component reference: test whether prefix is unaligned
5310 if Nkind (N) = N_Indexed_Component then
5311 return Is_Possibly_Unaligned_Object (Prefix (N));
5313 -- Case of selected component reference
5315 elsif Nkind (N) = N_Selected_Component then
5316 declare
5317 P : constant Node_Id := Prefix (N);
5318 C : constant Entity_Id := Entity (Selector_Name (N));
5319 M : Nat;
5320 S : Nat;
5322 begin
5323 -- If component reference is for an array with non-static bounds,
5324 -- then it is always aligned: we can only process unaligned arrays
5325 -- with static bounds (more precisely compile time known bounds).
5327 if Is_Array_Type (T)
5328 and then not Compile_Time_Known_Bounds (T)
5329 then
5330 return False;
5331 end if;
5333 -- If component is aliased, it is definitely properly aligned
5335 if Is_Aliased (C) then
5336 return False;
5337 end if;
5339 -- If component is for a type implemented as a scalar, and the
5340 -- record is packed, and the component is other than the first
5341 -- component of the record, then the component may be unaligned.
5343 if Is_Packed (Etype (P))
5344 and then Represented_As_Scalar (Etype (C))
5345 and then First_Entity (Scope (C)) /= C
5346 then
5347 return True;
5348 end if;
5350 -- Compute maximum possible alignment for T
5352 -- If alignment is known, then that settles things
5354 if Known_Alignment (T) then
5355 M := UI_To_Int (Alignment (T));
5357 -- If alignment is not known, tentatively set max alignment
5359 else
5360 M := Ttypes.Maximum_Alignment;
5362 -- We can reduce this if the Esize is known since the default
5363 -- alignment will never be more than the smallest power of 2
5364 -- that does not exceed this Esize value.
5366 if Known_Esize (T) then
5367 S := UI_To_Int (Esize (T));
5369 while (M / 2) >= S loop
5370 M := M / 2;
5371 end loop;
5372 end if;
5373 end if;
5375 -- The following code is historical, it used to be present but it
5376 -- is too cautious, because the front-end does not know the proper
5377 -- default alignments for the target. Also, if the alignment is
5378 -- not known, the front end can't know in any case. If a copy is
5379 -- needed, the back-end will take care of it. This whole section
5380 -- including this comment can be removed later ???
5382 -- If the component reference is for a record that has a specified
5383 -- alignment, and we either know it is too small, or cannot tell,
5384 -- then the component may be unaligned.
5386 -- What is the following commented out code ???
5388 -- if Known_Alignment (Etype (P))
5389 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
5390 -- and then M > Alignment (Etype (P))
5391 -- then
5392 -- return True;
5393 -- end if;
5395 -- Case of component clause present which may specify an
5396 -- unaligned position.
5398 if Present (Component_Clause (C)) then
5400 -- Otherwise we can do a test to make sure that the actual
5401 -- start position in the record, and the length, are both
5402 -- consistent with the required alignment. If not, we know
5403 -- that we are unaligned.
5405 declare
5406 Align_In_Bits : constant Nat := M * System_Storage_Unit;
5407 begin
5408 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
5409 or else Esize (C) mod Align_In_Bits /= 0
5410 then
5411 return True;
5412 end if;
5413 end;
5414 end if;
5416 -- Otherwise, for a component reference, test prefix
5418 return Is_Possibly_Unaligned_Object (P);
5419 end;
5421 -- If not a component reference, must be aligned
5423 else
5424 return False;
5425 end if;
5426 end Is_Possibly_Unaligned_Object;
5428 ---------------------------------
5429 -- Is_Possibly_Unaligned_Slice --
5430 ---------------------------------
5432 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
5433 begin
5434 -- Go to renamed object
5436 if Is_Entity_Name (N)
5437 and then Is_Object (Entity (N))
5438 and then Present (Renamed_Object (Entity (N)))
5439 then
5440 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
5441 end if;
5443 -- The reference must be a slice
5445 if Nkind (N) /= N_Slice then
5446 return False;
5447 end if;
5449 -- We only need to worry if the target has strict alignment
5451 if not Target_Strict_Alignment then
5452 return False;
5453 end if;
5455 -- If it is a slice, then look at the array type being sliced
5457 declare
5458 Sarr : constant Node_Id := Prefix (N);
5459 -- Prefix of the slice, i.e. the array being sliced
5461 Styp : constant Entity_Id := Etype (Prefix (N));
5462 -- Type of the array being sliced
5464 Pref : Node_Id;
5465 Ptyp : Entity_Id;
5467 begin
5468 -- The problems arise if the array object that is being sliced
5469 -- is a component of a record or array, and we cannot guarantee
5470 -- the alignment of the array within its containing object.
5472 -- To investigate this, we look at successive prefixes to see
5473 -- if we have a worrisome indexed or selected component.
5475 Pref := Sarr;
5476 loop
5477 -- Case of array is part of an indexed component reference
5479 if Nkind (Pref) = N_Indexed_Component then
5480 Ptyp := Etype (Prefix (Pref));
5482 -- The only problematic case is when the array is packed, in
5483 -- which case we really know nothing about the alignment of
5484 -- individual components.
5486 if Is_Bit_Packed_Array (Ptyp) then
5487 return True;
5488 end if;
5490 -- Case of array is part of a selected component reference
5492 elsif Nkind (Pref) = N_Selected_Component then
5493 Ptyp := Etype (Prefix (Pref));
5495 -- We are definitely in trouble if the record in question
5496 -- has an alignment, and either we know this alignment is
5497 -- inconsistent with the alignment of the slice, or we don't
5498 -- know what the alignment of the slice should be.
5500 if Known_Alignment (Ptyp)
5501 and then (Unknown_Alignment (Styp)
5502 or else Alignment (Styp) > Alignment (Ptyp))
5503 then
5504 return True;
5505 end if;
5507 -- We are in potential trouble if the record type is packed.
5508 -- We could special case when we know that the array is the
5509 -- first component, but that's not such a simple case ???
5511 if Is_Packed (Ptyp) then
5512 return True;
5513 end if;
5515 -- We are in trouble if there is a component clause, and
5516 -- either we do not know the alignment of the slice, or
5517 -- the alignment of the slice is inconsistent with the
5518 -- bit position specified by the component clause.
5520 declare
5521 Field : constant Entity_Id := Entity (Selector_Name (Pref));
5522 begin
5523 if Present (Component_Clause (Field))
5524 and then
5525 (Unknown_Alignment (Styp)
5526 or else
5527 (Component_Bit_Offset (Field) mod
5528 (System_Storage_Unit * Alignment (Styp))) /= 0)
5529 then
5530 return True;
5531 end if;
5532 end;
5534 -- For cases other than selected or indexed components we know we
5535 -- are OK, since no issues arise over alignment.
5537 else
5538 return False;
5539 end if;
5541 -- We processed an indexed component or selected component
5542 -- reference that looked safe, so keep checking prefixes.
5544 Pref := Prefix (Pref);
5545 end loop;
5546 end;
5547 end Is_Possibly_Unaligned_Slice;
5549 -------------------------------
5550 -- Is_Related_To_Func_Return --
5551 -------------------------------
5553 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
5554 Expr : constant Node_Id := Related_Expression (Id);
5555 begin
5556 return
5557 Present (Expr)
5558 and then Nkind (Expr) = N_Explicit_Dereference
5559 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
5560 end Is_Related_To_Func_Return;
5562 --------------------------------
5563 -- Is_Ref_To_Bit_Packed_Array --
5564 --------------------------------
5566 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
5567 Result : Boolean;
5568 Expr : Node_Id;
5570 begin
5571 if Is_Entity_Name (N)
5572 and then Is_Object (Entity (N))
5573 and then Present (Renamed_Object (Entity (N)))
5574 then
5575 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
5576 end if;
5578 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5579 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
5580 Result := True;
5581 else
5582 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
5583 end if;
5585 if Result and then Nkind (N) = N_Indexed_Component then
5586 Expr := First (Expressions (N));
5587 while Present (Expr) loop
5588 Force_Evaluation (Expr);
5589 Next (Expr);
5590 end loop;
5591 end if;
5593 return Result;
5595 else
5596 return False;
5597 end if;
5598 end Is_Ref_To_Bit_Packed_Array;
5600 --------------------------------
5601 -- Is_Ref_To_Bit_Packed_Slice --
5602 --------------------------------
5604 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
5605 begin
5606 if Nkind (N) = N_Type_Conversion then
5607 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
5609 elsif Is_Entity_Name (N)
5610 and then Is_Object (Entity (N))
5611 and then Present (Renamed_Object (Entity (N)))
5612 then
5613 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
5615 elsif Nkind (N) = N_Slice
5616 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
5617 then
5618 return True;
5620 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5621 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
5623 else
5624 return False;
5625 end if;
5626 end Is_Ref_To_Bit_Packed_Slice;
5628 -----------------------
5629 -- Is_Renamed_Object --
5630 -----------------------
5632 function Is_Renamed_Object (N : Node_Id) return Boolean is
5633 Pnod : constant Node_Id := Parent (N);
5634 Kind : constant Node_Kind := Nkind (Pnod);
5635 begin
5636 if Kind = N_Object_Renaming_Declaration then
5637 return True;
5638 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
5639 return Is_Renamed_Object (Pnod);
5640 else
5641 return False;
5642 end if;
5643 end Is_Renamed_Object;
5645 --------------------------------------
5646 -- Is_Secondary_Stack_BIP_Func_Call --
5647 --------------------------------------
5649 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
5650 Alloc_Nam : Name_Id := No_Name;
5651 Actual : Node_Id;
5652 Call : Node_Id := Expr;
5653 Formal : Node_Id;
5654 Param : Node_Id;
5656 begin
5657 -- Build-in-place calls usually appear in 'reference format. Note that
5658 -- the accessibility check machinery may add an extra 'reference due to
5659 -- side effect removal.
5661 while Nkind (Call) = N_Reference loop
5662 Call := Prefix (Call);
5663 end loop;
5665 if Nkind_In (Call, N_Qualified_Expression,
5666 N_Unchecked_Type_Conversion)
5667 then
5668 Call := Expression (Call);
5669 end if;
5671 if Is_Build_In_Place_Function_Call (Call) then
5673 -- Examine all parameter associations of the function call
5675 Param := First (Parameter_Associations (Call));
5676 while Present (Param) loop
5677 if Nkind (Param) = N_Parameter_Association
5678 and then Nkind (Selector_Name (Param)) = N_Identifier
5679 then
5680 Formal := Selector_Name (Param);
5681 Actual := Explicit_Actual_Parameter (Param);
5683 -- Construct the name of formal BIPalloc. It is much easier to
5684 -- extract the name of the function using an arbitrary formal's
5685 -- scope rather than the Name field of Call.
5687 if Alloc_Nam = No_Name and then Present (Entity (Formal)) then
5688 Alloc_Nam :=
5689 New_External_Name
5690 (Chars (Scope (Entity (Formal))),
5691 BIP_Formal_Suffix (BIP_Alloc_Form));
5692 end if;
5694 -- A match for BIPalloc => 2 has been found
5696 if Chars (Formal) = Alloc_Nam
5697 and then Nkind (Actual) = N_Integer_Literal
5698 and then Intval (Actual) = Uint_2
5699 then
5700 return True;
5701 end if;
5702 end if;
5704 Next (Param);
5705 end loop;
5706 end if;
5708 return False;
5709 end Is_Secondary_Stack_BIP_Func_Call;
5711 -------------------------------------
5712 -- Is_Tag_To_Class_Wide_Conversion --
5713 -------------------------------------
5715 function Is_Tag_To_Class_Wide_Conversion
5716 (Obj_Id : Entity_Id) return Boolean
5718 Expr : constant Node_Id := Expression (Parent (Obj_Id));
5720 begin
5721 return
5722 Is_Class_Wide_Type (Etype (Obj_Id))
5723 and then Present (Expr)
5724 and then Nkind (Expr) = N_Unchecked_Type_Conversion
5725 and then Etype (Expression (Expr)) = RTE (RE_Tag);
5726 end Is_Tag_To_Class_Wide_Conversion;
5728 ----------------------------
5729 -- Is_Untagged_Derivation --
5730 ----------------------------
5732 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
5733 begin
5734 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
5735 or else
5736 (Is_Private_Type (T) and then Present (Full_View (T))
5737 and then not Is_Tagged_Type (Full_View (T))
5738 and then Is_Derived_Type (Full_View (T))
5739 and then Etype (Full_View (T)) /= T);
5740 end Is_Untagged_Derivation;
5742 ---------------------------
5743 -- Is_Volatile_Reference --
5744 ---------------------------
5746 function Is_Volatile_Reference (N : Node_Id) return Boolean is
5747 begin
5748 -- Only source references are to be treated as volatile, internally
5749 -- generated stuff cannot have volatile external effects.
5751 if not Comes_From_Source (N) then
5752 return False;
5754 -- Never true for reference to a type
5756 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
5757 return False;
5759 -- Never true for a compile time known constant
5761 elsif Compile_Time_Known_Value (N) then
5762 return False;
5764 -- True if object reference with volatile type
5766 elsif Is_Volatile_Object (N) then
5767 return True;
5769 -- True if reference to volatile entity
5771 elsif Is_Entity_Name (N) then
5772 return Treat_As_Volatile (Entity (N));
5774 -- True for slice of volatile array
5776 elsif Nkind (N) = N_Slice then
5777 return Is_Volatile_Reference (Prefix (N));
5779 -- True if volatile component
5781 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5782 if (Is_Entity_Name (Prefix (N))
5783 and then Has_Volatile_Components (Entity (Prefix (N))))
5784 or else (Present (Etype (Prefix (N)))
5785 and then Has_Volatile_Components (Etype (Prefix (N))))
5786 then
5787 return True;
5788 else
5789 return Is_Volatile_Reference (Prefix (N));
5790 end if;
5792 -- Otherwise false
5794 else
5795 return False;
5796 end if;
5797 end Is_Volatile_Reference;
5799 --------------------------
5800 -- Is_VM_By_Copy_Actual --
5801 --------------------------
5803 function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
5804 begin
5805 return VM_Target /= No_VM
5806 and then (Nkind (N) = N_Slice
5807 or else
5808 (Nkind (N) = N_Identifier
5809 and then Present (Renamed_Object (Entity (N)))
5810 and then Nkind (Renamed_Object (Entity (N))) =
5811 N_Slice));
5812 end Is_VM_By_Copy_Actual;
5814 --------------------
5815 -- Kill_Dead_Code --
5816 --------------------
5818 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
5819 W : Boolean := Warn;
5820 -- Set False if warnings suppressed
5822 begin
5823 if Present (N) then
5824 Remove_Warning_Messages (N);
5826 -- Generate warning if appropriate
5828 if W then
5830 -- We suppress the warning if this code is under control of an
5831 -- if statement, whose condition is a simple identifier, and
5832 -- either we are in an instance, or warnings off is set for this
5833 -- identifier. The reason for killing it in the instance case is
5834 -- that it is common and reasonable for code to be deleted in
5835 -- instances for various reasons.
5837 -- Could we use Is_Statically_Unevaluated here???
5839 if Nkind (Parent (N)) = N_If_Statement then
5840 declare
5841 C : constant Node_Id := Condition (Parent (N));
5842 begin
5843 if Nkind (C) = N_Identifier
5844 and then
5845 (In_Instance
5846 or else (Present (Entity (C))
5847 and then Has_Warnings_Off (Entity (C))))
5848 then
5849 W := False;
5850 end if;
5851 end;
5852 end if;
5854 -- Generate warning if not suppressed
5856 if W then
5857 Error_Msg_F
5858 ("?t?this code can never be executed and has been deleted!",
5860 end if;
5861 end if;
5863 -- Recurse into block statements and bodies to process declarations
5864 -- and statements.
5866 if Nkind (N) = N_Block_Statement
5867 or else Nkind (N) = N_Subprogram_Body
5868 or else Nkind (N) = N_Package_Body
5869 then
5870 Kill_Dead_Code (Declarations (N), False);
5871 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
5873 if Nkind (N) = N_Subprogram_Body then
5874 Set_Is_Eliminated (Defining_Entity (N));
5875 end if;
5877 elsif Nkind (N) = N_Package_Declaration then
5878 Kill_Dead_Code (Visible_Declarations (Specification (N)));
5879 Kill_Dead_Code (Private_Declarations (Specification (N)));
5881 -- ??? After this point, Delete_Tree has been called on all
5882 -- declarations in Specification (N), so references to entities
5883 -- therein look suspicious.
5885 declare
5886 E : Entity_Id := First_Entity (Defining_Entity (N));
5888 begin
5889 while Present (E) loop
5890 if Ekind (E) = E_Operator then
5891 Set_Is_Eliminated (E);
5892 end if;
5894 Next_Entity (E);
5895 end loop;
5896 end;
5898 -- Recurse into composite statement to kill individual statements in
5899 -- particular instantiations.
5901 elsif Nkind (N) = N_If_Statement then
5902 Kill_Dead_Code (Then_Statements (N));
5903 Kill_Dead_Code (Elsif_Parts (N));
5904 Kill_Dead_Code (Else_Statements (N));
5906 elsif Nkind (N) = N_Loop_Statement then
5907 Kill_Dead_Code (Statements (N));
5909 elsif Nkind (N) = N_Case_Statement then
5910 declare
5911 Alt : Node_Id;
5912 begin
5913 Alt := First (Alternatives (N));
5914 while Present (Alt) loop
5915 Kill_Dead_Code (Statements (Alt));
5916 Next (Alt);
5917 end loop;
5918 end;
5920 elsif Nkind (N) = N_Case_Statement_Alternative then
5921 Kill_Dead_Code (Statements (N));
5923 -- Deal with dead instances caused by deleting instantiations
5925 elsif Nkind (N) in N_Generic_Instantiation then
5926 Remove_Dead_Instance (N);
5927 end if;
5928 end if;
5929 end Kill_Dead_Code;
5931 -- Case where argument is a list of nodes to be killed
5933 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
5934 N : Node_Id;
5935 W : Boolean;
5937 begin
5938 W := Warn;
5940 if Is_Non_Empty_List (L) then
5941 N := First (L);
5942 while Present (N) loop
5943 Kill_Dead_Code (N, W);
5944 W := False;
5945 Next (N);
5946 end loop;
5947 end if;
5948 end Kill_Dead_Code;
5950 ------------------------
5951 -- Known_Non_Negative --
5952 ------------------------
5954 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
5955 begin
5956 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
5957 return True;
5959 else
5960 declare
5961 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
5962 begin
5963 return
5964 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
5965 end;
5966 end if;
5967 end Known_Non_Negative;
5969 --------------------
5970 -- Known_Non_Null --
5971 --------------------
5973 function Known_Non_Null (N : Node_Id) return Boolean is
5974 begin
5975 -- Checks for case where N is an entity reference
5977 if Is_Entity_Name (N) and then Present (Entity (N)) then
5978 declare
5979 E : constant Entity_Id := Entity (N);
5980 Op : Node_Kind;
5981 Val : Node_Id;
5983 begin
5984 -- First check if we are in decisive conditional
5986 Get_Current_Value_Condition (N, Op, Val);
5988 if Known_Null (Val) then
5989 if Op = N_Op_Eq then
5990 return False;
5991 elsif Op = N_Op_Ne then
5992 return True;
5993 end if;
5994 end if;
5996 -- If OK to do replacement, test Is_Known_Non_Null flag
5998 if OK_To_Do_Constant_Replacement (E) then
5999 return Is_Known_Non_Null (E);
6001 -- Otherwise if not safe to do replacement, then say so
6003 else
6004 return False;
6005 end if;
6006 end;
6008 -- True if access attribute
6010 elsif Nkind (N) = N_Attribute_Reference
6011 and then Nam_In (Attribute_Name (N), Name_Access,
6012 Name_Unchecked_Access,
6013 Name_Unrestricted_Access)
6014 then
6015 return True;
6017 -- True if allocator
6019 elsif Nkind (N) = N_Allocator then
6020 return True;
6022 -- For a conversion, true if expression is known non-null
6024 elsif Nkind (N) = N_Type_Conversion then
6025 return Known_Non_Null (Expression (N));
6027 -- Above are all cases where the value could be determined to be
6028 -- non-null. In all other cases, we don't know, so return False.
6030 else
6031 return False;
6032 end if;
6033 end Known_Non_Null;
6035 ----------------
6036 -- Known_Null --
6037 ----------------
6039 function Known_Null (N : Node_Id) return Boolean is
6040 begin
6041 -- Checks for case where N is an entity reference
6043 if Is_Entity_Name (N) and then Present (Entity (N)) then
6044 declare
6045 E : constant Entity_Id := Entity (N);
6046 Op : Node_Kind;
6047 Val : Node_Id;
6049 begin
6050 -- Constant null value is for sure null
6052 if Ekind (E) = E_Constant
6053 and then Known_Null (Constant_Value (E))
6054 then
6055 return True;
6056 end if;
6058 -- First check if we are in decisive conditional
6060 Get_Current_Value_Condition (N, Op, Val);
6062 if Known_Null (Val) then
6063 if Op = N_Op_Eq then
6064 return True;
6065 elsif Op = N_Op_Ne then
6066 return False;
6067 end if;
6068 end if;
6070 -- If OK to do replacement, test Is_Known_Null flag
6072 if OK_To_Do_Constant_Replacement (E) then
6073 return Is_Known_Null (E);
6075 -- Otherwise if not safe to do replacement, then say so
6077 else
6078 return False;
6079 end if;
6080 end;
6082 -- True if explicit reference to null
6084 elsif Nkind (N) = N_Null then
6085 return True;
6087 -- For a conversion, true if expression is known null
6089 elsif Nkind (N) = N_Type_Conversion then
6090 return Known_Null (Expression (N));
6092 -- Above are all cases where the value could be determined to be null.
6093 -- In all other cases, we don't know, so return False.
6095 else
6096 return False;
6097 end if;
6098 end Known_Null;
6100 -----------------------------
6101 -- Make_CW_Equivalent_Type --
6102 -----------------------------
6104 -- Create a record type used as an equivalent of any member of the class
6105 -- which takes its size from exp.
6107 -- Generate the following code:
6109 -- type Equiv_T is record
6110 -- _parent : T (List of discriminant constraints taken from Exp);
6111 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
6112 -- end Equiv_T;
6114 -- ??? Note that this type does not guarantee same alignment as all
6115 -- derived types
6117 function Make_CW_Equivalent_Type
6118 (T : Entity_Id;
6119 E : Node_Id) return Entity_Id
6121 Loc : constant Source_Ptr := Sloc (E);
6122 Root_Typ : constant Entity_Id := Root_Type (T);
6123 List_Def : constant List_Id := Empty_List;
6124 Comp_List : constant List_Id := New_List;
6125 Equiv_Type : Entity_Id;
6126 Range_Type : Entity_Id;
6127 Str_Type : Entity_Id;
6128 Constr_Root : Entity_Id;
6129 Sizexpr : Node_Id;
6131 begin
6132 -- If the root type is already constrained, there are no discriminants
6133 -- in the expression.
6135 if not Has_Discriminants (Root_Typ)
6136 or else Is_Constrained (Root_Typ)
6137 then
6138 Constr_Root := Root_Typ;
6140 -- At this point in the expansion, non-limited view of the type
6141 -- must be available, otherwise the error will be reported later.
6143 if From_Limited_With (Constr_Root)
6144 and then Present (Non_Limited_View (Constr_Root))
6145 then
6146 Constr_Root := Non_Limited_View (Constr_Root);
6147 end if;
6149 else
6150 Constr_Root := Make_Temporary (Loc, 'R');
6152 -- subtype cstr__n is T (List of discr constraints taken from Exp)
6154 Append_To (List_Def,
6155 Make_Subtype_Declaration (Loc,
6156 Defining_Identifier => Constr_Root,
6157 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
6158 end if;
6160 -- Generate the range subtype declaration
6162 Range_Type := Make_Temporary (Loc, 'G');
6164 if not Is_Interface (Root_Typ) then
6166 -- subtype rg__xx is
6167 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
6169 Sizexpr :=
6170 Make_Op_Subtract (Loc,
6171 Left_Opnd =>
6172 Make_Attribute_Reference (Loc,
6173 Prefix =>
6174 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6175 Attribute_Name => Name_Size),
6176 Right_Opnd =>
6177 Make_Attribute_Reference (Loc,
6178 Prefix => New_Occurrence_Of (Constr_Root, Loc),
6179 Attribute_Name => Name_Object_Size));
6180 else
6181 -- subtype rg__xx is
6182 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
6184 Sizexpr :=
6185 Make_Attribute_Reference (Loc,
6186 Prefix =>
6187 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6188 Attribute_Name => Name_Size);
6189 end if;
6191 Set_Paren_Count (Sizexpr, 1);
6193 Append_To (List_Def,
6194 Make_Subtype_Declaration (Loc,
6195 Defining_Identifier => Range_Type,
6196 Subtype_Indication =>
6197 Make_Subtype_Indication (Loc,
6198 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
6199 Constraint => Make_Range_Constraint (Loc,
6200 Range_Expression =>
6201 Make_Range (Loc,
6202 Low_Bound => Make_Integer_Literal (Loc, 1),
6203 High_Bound =>
6204 Make_Op_Divide (Loc,
6205 Left_Opnd => Sizexpr,
6206 Right_Opnd => Make_Integer_Literal (Loc,
6207 Intval => System_Storage_Unit)))))));
6209 -- subtype str__nn is Storage_Array (rg__x);
6211 Str_Type := Make_Temporary (Loc, 'S');
6212 Append_To (List_Def,
6213 Make_Subtype_Declaration (Loc,
6214 Defining_Identifier => Str_Type,
6215 Subtype_Indication =>
6216 Make_Subtype_Indication (Loc,
6217 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
6218 Constraint =>
6219 Make_Index_Or_Discriminant_Constraint (Loc,
6220 Constraints =>
6221 New_List (New_Occurrence_Of (Range_Type, Loc))))));
6223 -- type Equiv_T is record
6224 -- [ _parent : Tnn; ]
6225 -- E : Str_Type;
6226 -- end Equiv_T;
6228 Equiv_Type := Make_Temporary (Loc, 'T');
6229 Set_Ekind (Equiv_Type, E_Record_Type);
6230 Set_Parent_Subtype (Equiv_Type, Constr_Root);
6232 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
6233 -- treatment for this type. In particular, even though _parent's type
6234 -- is a controlled type or contains controlled components, we do not
6235 -- want to set Has_Controlled_Component on it to avoid making it gain
6236 -- an unwanted _controller component.
6238 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
6240 -- A class-wide equivalent type does not require initialization
6242 Set_Suppress_Initialization (Equiv_Type);
6244 if not Is_Interface (Root_Typ) then
6245 Append_To (Comp_List,
6246 Make_Component_Declaration (Loc,
6247 Defining_Identifier =>
6248 Make_Defining_Identifier (Loc, Name_uParent),
6249 Component_Definition =>
6250 Make_Component_Definition (Loc,
6251 Aliased_Present => False,
6252 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
6253 end if;
6255 Append_To (Comp_List,
6256 Make_Component_Declaration (Loc,
6257 Defining_Identifier => Make_Temporary (Loc, 'C'),
6258 Component_Definition =>
6259 Make_Component_Definition (Loc,
6260 Aliased_Present => False,
6261 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
6263 Append_To (List_Def,
6264 Make_Full_Type_Declaration (Loc,
6265 Defining_Identifier => Equiv_Type,
6266 Type_Definition =>
6267 Make_Record_Definition (Loc,
6268 Component_List =>
6269 Make_Component_List (Loc,
6270 Component_Items => Comp_List,
6271 Variant_Part => Empty))));
6273 -- Suppress all checks during the analysis of the expanded code to avoid
6274 -- the generation of spurious warnings under ZFP run-time.
6276 Insert_Actions (E, List_Def, Suppress => All_Checks);
6277 return Equiv_Type;
6278 end Make_CW_Equivalent_Type;
6280 -------------------------
6281 -- Make_Invariant_Call --
6282 -------------------------
6284 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
6285 Loc : constant Source_Ptr := Sloc (Expr);
6286 Typ : Entity_Id;
6288 begin
6289 Typ := Etype (Expr);
6291 -- Subtypes may be subject to invariants coming from their respective
6292 -- base types. The subtype may be fully or partially private.
6294 if Ekind_In (Typ, E_Array_Subtype,
6295 E_Private_Subtype,
6296 E_Record_Subtype,
6297 E_Record_Subtype_With_Private)
6298 then
6299 Typ := Base_Type (Typ);
6300 end if;
6302 pragma Assert
6303 (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
6305 return
6306 Make_Procedure_Call_Statement (Loc,
6307 Name =>
6308 New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
6309 Parameter_Associations => New_List (Relocate_Node (Expr)));
6310 end Make_Invariant_Call;
6312 ------------------------
6313 -- Make_Literal_Range --
6314 ------------------------
6316 function Make_Literal_Range
6317 (Loc : Source_Ptr;
6318 Literal_Typ : Entity_Id) return Node_Id
6320 Lo : constant Node_Id :=
6321 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
6322 Index : constant Entity_Id := Etype (Lo);
6324 Hi : Node_Id;
6325 Length_Expr : constant Node_Id :=
6326 Make_Op_Subtract (Loc,
6327 Left_Opnd =>
6328 Make_Integer_Literal (Loc,
6329 Intval => String_Literal_Length (Literal_Typ)),
6330 Right_Opnd =>
6331 Make_Integer_Literal (Loc, 1));
6333 begin
6334 Set_Analyzed (Lo, False);
6336 if Is_Integer_Type (Index) then
6337 Hi :=
6338 Make_Op_Add (Loc,
6339 Left_Opnd => New_Copy_Tree (Lo),
6340 Right_Opnd => Length_Expr);
6341 else
6342 Hi :=
6343 Make_Attribute_Reference (Loc,
6344 Attribute_Name => Name_Val,
6345 Prefix => New_Occurrence_Of (Index, Loc),
6346 Expressions => New_List (
6347 Make_Op_Add (Loc,
6348 Left_Opnd =>
6349 Make_Attribute_Reference (Loc,
6350 Attribute_Name => Name_Pos,
6351 Prefix => New_Occurrence_Of (Index, Loc),
6352 Expressions => New_List (New_Copy_Tree (Lo))),
6353 Right_Opnd => Length_Expr)));
6354 end if;
6356 return
6357 Make_Range (Loc,
6358 Low_Bound => Lo,
6359 High_Bound => Hi);
6360 end Make_Literal_Range;
6362 --------------------------
6363 -- Make_Non_Empty_Check --
6364 --------------------------
6366 function Make_Non_Empty_Check
6367 (Loc : Source_Ptr;
6368 N : Node_Id) return Node_Id
6370 begin
6371 return
6372 Make_Op_Ne (Loc,
6373 Left_Opnd =>
6374 Make_Attribute_Reference (Loc,
6375 Attribute_Name => Name_Length,
6376 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
6377 Right_Opnd =>
6378 Make_Integer_Literal (Loc, 0));
6379 end Make_Non_Empty_Check;
6381 -------------------------
6382 -- Make_Predicate_Call --
6383 -------------------------
6385 function Make_Predicate_Call
6386 (Typ : Entity_Id;
6387 Expr : Node_Id;
6388 Mem : Boolean := False) return Node_Id
6390 Loc : constant Source_Ptr := Sloc (Expr);
6392 begin
6393 pragma Assert (Present (Predicate_Function (Typ)));
6395 -- Call special membership version if requested and available
6397 if Mem then
6398 declare
6399 PFM : constant Entity_Id := Predicate_Function_M (Typ);
6400 begin
6401 if Present (PFM) then
6402 return
6403 Make_Function_Call (Loc,
6404 Name => New_Occurrence_Of (PFM, Loc),
6405 Parameter_Associations => New_List (Relocate_Node (Expr)));
6406 end if;
6407 end;
6408 end if;
6410 -- Case of calling normal predicate function
6412 return
6413 Make_Function_Call (Loc,
6414 Name =>
6415 New_Occurrence_Of (Predicate_Function (Typ), Loc),
6416 Parameter_Associations => New_List (Relocate_Node (Expr)));
6417 end Make_Predicate_Call;
6419 --------------------------
6420 -- Make_Predicate_Check --
6421 --------------------------
6423 function Make_Predicate_Check
6424 (Typ : Entity_Id;
6425 Expr : Node_Id) return Node_Id
6427 Loc : constant Source_Ptr := Sloc (Expr);
6428 Nam : Name_Id;
6430 begin
6431 -- If predicate checks are suppressed, then return a null statement.
6432 -- For this call, we check only the scope setting. If the caller wants
6433 -- to check a specific entity's setting, they must do it manually.
6435 if Predicate_Checks_Suppressed (Empty) then
6436 return Make_Null_Statement (Loc);
6437 end if;
6439 -- Do not generate a check within an internal subprogram (stream
6440 -- functions and the like, including including predicate functions).
6442 if Within_Internal_Subprogram then
6443 return Make_Null_Statement (Loc);
6444 end if;
6446 -- Compute proper name to use, we need to get this right so that the
6447 -- right set of check policies apply to the Check pragma we are making.
6449 if Has_Dynamic_Predicate_Aspect (Typ) then
6450 Nam := Name_Dynamic_Predicate;
6451 elsif Has_Static_Predicate_Aspect (Typ) then
6452 Nam := Name_Static_Predicate;
6453 else
6454 Nam := Name_Predicate;
6455 end if;
6457 return
6458 Make_Pragma (Loc,
6459 Pragma_Identifier => Make_Identifier (Loc, Name_Check),
6460 Pragma_Argument_Associations => New_List (
6461 Make_Pragma_Argument_Association (Loc,
6462 Expression => Make_Identifier (Loc, Nam)),
6463 Make_Pragma_Argument_Association (Loc,
6464 Expression => Make_Predicate_Call (Typ, Expr))));
6465 end Make_Predicate_Check;
6467 ----------------------------
6468 -- Make_Subtype_From_Expr --
6469 ----------------------------
6471 -- 1. If Expr is an unconstrained array expression, creates
6472 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
6474 -- 2. If Expr is a unconstrained discriminated type expression, creates
6475 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
6477 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
6479 function Make_Subtype_From_Expr
6480 (E : Node_Id;
6481 Unc_Typ : Entity_Id) return Node_Id
6483 List_Constr : constant List_Id := New_List;
6484 Loc : constant Source_Ptr := Sloc (E);
6485 D : Entity_Id;
6486 Full_Exp : Node_Id;
6487 Full_Subtyp : Entity_Id;
6488 High_Bound : Entity_Id;
6489 Index_Typ : Entity_Id;
6490 Low_Bound : Entity_Id;
6491 Priv_Subtyp : Entity_Id;
6492 Utyp : Entity_Id;
6494 begin
6495 if Is_Private_Type (Unc_Typ)
6496 and then Has_Unknown_Discriminants (Unc_Typ)
6497 then
6498 -- Prepare the subtype completion. Use the base type to find the
6499 -- underlying type because the type may be a generic actual or an
6500 -- explicit subtype.
6502 Utyp := Underlying_Type (Base_Type (Unc_Typ));
6503 Full_Subtyp := Make_Temporary (Loc, 'C');
6504 Full_Exp :=
6505 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
6506 Set_Parent (Full_Exp, Parent (E));
6508 Priv_Subtyp := Make_Temporary (Loc, 'P');
6510 Insert_Action (E,
6511 Make_Subtype_Declaration (Loc,
6512 Defining_Identifier => Full_Subtyp,
6513 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
6515 -- Define the dummy private subtype
6517 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
6518 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
6519 Set_Scope (Priv_Subtyp, Full_Subtyp);
6520 Set_Is_Constrained (Priv_Subtyp);
6521 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
6522 Set_Is_Itype (Priv_Subtyp);
6523 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
6525 if Is_Tagged_Type (Priv_Subtyp) then
6526 Set_Class_Wide_Type
6527 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
6528 Set_Direct_Primitive_Operations (Priv_Subtyp,
6529 Direct_Primitive_Operations (Unc_Typ));
6530 end if;
6532 Set_Full_View (Priv_Subtyp, Full_Subtyp);
6534 return New_Occurrence_Of (Priv_Subtyp, Loc);
6536 elsif Is_Array_Type (Unc_Typ) then
6537 Index_Typ := First_Index (Unc_Typ);
6538 for J in 1 .. Number_Dimensions (Unc_Typ) loop
6540 -- Capture the bounds of each index constraint in case the context
6541 -- is an object declaration of an unconstrained type initialized
6542 -- by a function call:
6544 -- Obj : Unconstr_Typ := Func_Call;
6546 -- This scenario requires secondary scope management and the index
6547 -- constraint cannot depend on the temporary used to capture the
6548 -- result of the function call.
6550 -- SS_Mark;
6551 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
6552 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
6553 -- Obj : S := Temp.all;
6554 -- SS_Release; -- Temp is gone at this point, bounds of S are
6555 -- -- non existent.
6557 -- Generate:
6558 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
6560 Low_Bound := Make_Temporary (Loc, 'B');
6561 Insert_Action (E,
6562 Make_Object_Declaration (Loc,
6563 Defining_Identifier => Low_Bound,
6564 Object_Definition =>
6565 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6566 Constant_Present => True,
6567 Expression =>
6568 Make_Attribute_Reference (Loc,
6569 Prefix => Duplicate_Subexpr_No_Checks (E),
6570 Attribute_Name => Name_First,
6571 Expressions => New_List (
6572 Make_Integer_Literal (Loc, J)))));
6574 -- Generate:
6575 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
6577 High_Bound := Make_Temporary (Loc, 'B');
6578 Insert_Action (E,
6579 Make_Object_Declaration (Loc,
6580 Defining_Identifier => High_Bound,
6581 Object_Definition =>
6582 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6583 Constant_Present => True,
6584 Expression =>
6585 Make_Attribute_Reference (Loc,
6586 Prefix => Duplicate_Subexpr_No_Checks (E),
6587 Attribute_Name => Name_Last,
6588 Expressions => New_List (
6589 Make_Integer_Literal (Loc, J)))));
6591 Append_To (List_Constr,
6592 Make_Range (Loc,
6593 Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
6594 High_Bound => New_Occurrence_Of (High_Bound, Loc)));
6596 Index_Typ := Next_Index (Index_Typ);
6597 end loop;
6599 elsif Is_Class_Wide_Type (Unc_Typ) then
6600 declare
6601 CW_Subtype : Entity_Id;
6602 EQ_Typ : Entity_Id := Empty;
6604 begin
6605 -- A class-wide equivalent type is not needed when VM_Target
6606 -- because the VM back-ends handle the class-wide object
6607 -- initialization itself (and doesn't need or want the
6608 -- additional intermediate type to handle the assignment).
6610 if Expander_Active and then Tagged_Type_Expansion then
6612 -- If this is the class-wide type of a completion that is a
6613 -- record subtype, set the type of the class-wide type to be
6614 -- the full base type, for use in the expanded code for the
6615 -- equivalent type. Should this be done earlier when the
6616 -- completion is analyzed ???
6618 if Is_Private_Type (Etype (Unc_Typ))
6619 and then
6620 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
6621 then
6622 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
6623 end if;
6625 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
6626 end if;
6628 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
6629 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
6630 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
6632 return New_Occurrence_Of (CW_Subtype, Loc);
6633 end;
6635 -- Indefinite record type with discriminants
6637 else
6638 D := First_Discriminant (Unc_Typ);
6639 while Present (D) loop
6640 Append_To (List_Constr,
6641 Make_Selected_Component (Loc,
6642 Prefix => Duplicate_Subexpr_No_Checks (E),
6643 Selector_Name => New_Occurrence_Of (D, Loc)));
6645 Next_Discriminant (D);
6646 end loop;
6647 end if;
6649 return
6650 Make_Subtype_Indication (Loc,
6651 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
6652 Constraint =>
6653 Make_Index_Or_Discriminant_Constraint (Loc,
6654 Constraints => List_Constr));
6655 end Make_Subtype_From_Expr;
6657 ----------------------------
6658 -- Matching_Standard_Type --
6659 ----------------------------
6661 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
6662 pragma Assert (Is_Scalar_Type (Typ));
6663 Siz : constant Uint := Esize (Typ);
6665 begin
6666 -- Floating-point cases
6668 if Is_Floating_Point_Type (Typ) then
6669 if Siz <= Esize (Standard_Short_Float) then
6670 return Standard_Short_Float;
6671 elsif Siz <= Esize (Standard_Float) then
6672 return Standard_Float;
6673 elsif Siz <= Esize (Standard_Long_Float) then
6674 return Standard_Long_Float;
6675 elsif Siz <= Esize (Standard_Long_Long_Float) then
6676 return Standard_Long_Long_Float;
6677 else
6678 raise Program_Error;
6679 end if;
6681 -- Integer cases (includes fixed-point types)
6683 -- Unsigned integer cases (includes normal enumeration types)
6685 elsif Is_Unsigned_Type (Typ) then
6686 if Siz <= Esize (Standard_Short_Short_Unsigned) then
6687 return Standard_Short_Short_Unsigned;
6688 elsif Siz <= Esize (Standard_Short_Unsigned) then
6689 return Standard_Short_Unsigned;
6690 elsif Siz <= Esize (Standard_Unsigned) then
6691 return Standard_Unsigned;
6692 elsif Siz <= Esize (Standard_Long_Unsigned) then
6693 return Standard_Long_Unsigned;
6694 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
6695 return Standard_Long_Long_Unsigned;
6696 else
6697 raise Program_Error;
6698 end if;
6700 -- Signed integer cases
6702 else
6703 if Siz <= Esize (Standard_Short_Short_Integer) then
6704 return Standard_Short_Short_Integer;
6705 elsif Siz <= Esize (Standard_Short_Integer) then
6706 return Standard_Short_Integer;
6707 elsif Siz <= Esize (Standard_Integer) then
6708 return Standard_Integer;
6709 elsif Siz <= Esize (Standard_Long_Integer) then
6710 return Standard_Long_Integer;
6711 elsif Siz <= Esize (Standard_Long_Long_Integer) then
6712 return Standard_Long_Long_Integer;
6713 else
6714 raise Program_Error;
6715 end if;
6716 end if;
6717 end Matching_Standard_Type;
6719 -----------------------------
6720 -- May_Generate_Large_Temp --
6721 -----------------------------
6723 -- At the current time, the only types that we return False for (i.e. where
6724 -- we decide we know they cannot generate large temps) are ones where we
6725 -- know the size is 256 bits or less at compile time, and we are still not
6726 -- doing a thorough job on arrays and records ???
6728 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
6729 begin
6730 if not Size_Known_At_Compile_Time (Typ) then
6731 return False;
6733 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
6734 return False;
6736 elsif Is_Array_Type (Typ)
6737 and then Present (Packed_Array_Impl_Type (Typ))
6738 then
6739 return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
6741 -- We could do more here to find other small types ???
6743 else
6744 return True;
6745 end if;
6746 end May_Generate_Large_Temp;
6748 ------------------------
6749 -- Needs_Finalization --
6750 ------------------------
6752 function Needs_Finalization (T : Entity_Id) return Boolean is
6753 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
6754 -- If type is not frozen yet, check explicitly among its components,
6755 -- because the Has_Controlled_Component flag is not necessarily set.
6757 -----------------------------------
6758 -- Has_Some_Controlled_Component --
6759 -----------------------------------
6761 function Has_Some_Controlled_Component
6762 (Rec : Entity_Id) return Boolean
6764 Comp : Entity_Id;
6766 begin
6767 if Has_Controlled_Component (Rec) then
6768 return True;
6770 elsif not Is_Frozen (Rec) then
6771 if Is_Record_Type (Rec) then
6772 Comp := First_Entity (Rec);
6774 while Present (Comp) loop
6775 if not Is_Type (Comp)
6776 and then Needs_Finalization (Etype (Comp))
6777 then
6778 return True;
6779 end if;
6781 Next_Entity (Comp);
6782 end loop;
6784 return False;
6786 elsif Is_Array_Type (Rec) then
6787 return Needs_Finalization (Component_Type (Rec));
6789 else
6790 return Has_Controlled_Component (Rec);
6791 end if;
6792 else
6793 return False;
6794 end if;
6795 end Has_Some_Controlled_Component;
6797 -- Start of processing for Needs_Finalization
6799 begin
6800 -- Certain run-time configurations and targets do not provide support
6801 -- for controlled types.
6803 if Restriction_Active (No_Finalization) then
6804 return False;
6806 -- C++, CIL and Java types are not considered controlled. It is assumed
6807 -- that the non-Ada side will handle their clean up.
6809 elsif Convention (T) = Convention_CIL
6810 or else Convention (T) = Convention_CPP
6811 or else Convention (T) = Convention_Java
6812 then
6813 return False;
6815 else
6816 -- Class-wide types are treated as controlled because derivations
6817 -- from the root type can introduce controlled components.
6819 return
6820 Is_Class_Wide_Type (T)
6821 or else Is_Controlled (T)
6822 or else Has_Controlled_Component (T)
6823 or else Has_Some_Controlled_Component (T)
6824 or else
6825 (Is_Concurrent_Type (T)
6826 and then Present (Corresponding_Record_Type (T))
6827 and then Needs_Finalization (Corresponding_Record_Type (T)));
6828 end if;
6829 end Needs_Finalization;
6831 ----------------------------
6832 -- Needs_Constant_Address --
6833 ----------------------------
6835 function Needs_Constant_Address
6836 (Decl : Node_Id;
6837 Typ : Entity_Id) return Boolean
6839 begin
6841 -- If we have no initialization of any kind, then we don't need to place
6842 -- any restrictions on the address clause, because the object will be
6843 -- elaborated after the address clause is evaluated. This happens if the
6844 -- declaration has no initial expression, or the type has no implicit
6845 -- initialization, or the object is imported.
6847 -- The same holds for all initialized scalar types and all access types.
6848 -- Packed bit arrays of size up to 64 are represented using a modular
6849 -- type with an initialization (to zero) and can be processed like other
6850 -- initialized scalar types.
6852 -- If the type is controlled, code to attach the object to a
6853 -- finalization chain is generated at the point of declaration, and
6854 -- therefore the elaboration of the object cannot be delayed: the
6855 -- address expression must be a constant.
6857 if No (Expression (Decl))
6858 and then not Needs_Finalization (Typ)
6859 and then
6860 (not Has_Non_Null_Base_Init_Proc (Typ)
6861 or else Is_Imported (Defining_Identifier (Decl)))
6862 then
6863 return False;
6865 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
6866 or else Is_Access_Type (Typ)
6867 or else
6868 (Is_Bit_Packed_Array (Typ)
6869 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
6870 then
6871 return False;
6873 else
6875 -- Otherwise, we require the address clause to be constant because
6876 -- the call to the initialization procedure (or the attach code) has
6877 -- to happen at the point of the declaration.
6879 -- Actually the IP call has been moved to the freeze actions anyway,
6880 -- so maybe we can relax this restriction???
6882 return True;
6883 end if;
6884 end Needs_Constant_Address;
6886 ----------------------------
6887 -- New_Class_Wide_Subtype --
6888 ----------------------------
6890 function New_Class_Wide_Subtype
6891 (CW_Typ : Entity_Id;
6892 N : Node_Id) return Entity_Id
6894 Res : constant Entity_Id := Create_Itype (E_Void, N);
6895 Res_Name : constant Name_Id := Chars (Res);
6896 Res_Scope : constant Entity_Id := Scope (Res);
6898 begin
6899 Copy_Node (CW_Typ, Res);
6900 Set_Comes_From_Source (Res, False);
6901 Set_Sloc (Res, Sloc (N));
6902 Set_Is_Itype (Res);
6903 Set_Associated_Node_For_Itype (Res, N);
6904 Set_Is_Public (Res, False); -- By default, may be changed below.
6905 Set_Public_Status (Res);
6906 Set_Chars (Res, Res_Name);
6907 Set_Scope (Res, Res_Scope);
6908 Set_Ekind (Res, E_Class_Wide_Subtype);
6909 Set_Next_Entity (Res, Empty);
6910 Set_Etype (Res, Base_Type (CW_Typ));
6911 Set_Is_Frozen (Res, False);
6912 Set_Freeze_Node (Res, Empty);
6913 return (Res);
6914 end New_Class_Wide_Subtype;
6916 --------------------------------
6917 -- Non_Limited_Designated_Type --
6918 ---------------------------------
6920 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
6921 Desig : constant Entity_Id := Designated_Type (T);
6922 begin
6923 if Has_Non_Limited_View (Desig) then
6924 return Non_Limited_View (Desig);
6925 else
6926 return Desig;
6927 end if;
6928 end Non_Limited_Designated_Type;
6930 -----------------------------------
6931 -- OK_To_Do_Constant_Replacement --
6932 -----------------------------------
6934 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
6935 ES : constant Entity_Id := Scope (E);
6936 CS : Entity_Id;
6938 begin
6939 -- Do not replace statically allocated objects, because they may be
6940 -- modified outside the current scope.
6942 if Is_Statically_Allocated (E) then
6943 return False;
6945 -- Do not replace aliased or volatile objects, since we don't know what
6946 -- else might change the value.
6948 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
6949 return False;
6951 -- Debug flag -gnatdM disconnects this optimization
6953 elsif Debug_Flag_MM then
6954 return False;
6956 -- Otherwise check scopes
6958 else
6959 CS := Current_Scope;
6961 loop
6962 -- If we are in right scope, replacement is safe
6964 if CS = ES then
6965 return True;
6967 -- Packages do not affect the determination of safety
6969 elsif Ekind (CS) = E_Package then
6970 exit when CS = Standard_Standard;
6971 CS := Scope (CS);
6973 -- Blocks do not affect the determination of safety
6975 elsif Ekind (CS) = E_Block then
6976 CS := Scope (CS);
6978 -- Loops do not affect the determination of safety. Note that we
6979 -- kill all current values on entry to a loop, so we are just
6980 -- talking about processing within a loop here.
6982 elsif Ekind (CS) = E_Loop then
6983 CS := Scope (CS);
6985 -- Otherwise, the reference is dubious, and we cannot be sure that
6986 -- it is safe to do the replacement.
6988 else
6989 exit;
6990 end if;
6991 end loop;
6993 return False;
6994 end if;
6995 end OK_To_Do_Constant_Replacement;
6997 ------------------------------------
6998 -- Possible_Bit_Aligned_Component --
6999 ------------------------------------
7001 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
7002 begin
7003 -- Do not process an unanalyzed node because it is not yet decorated and
7004 -- most checks performed below will fail.
7006 if not Analyzed (N) then
7007 return False;
7008 end if;
7010 case Nkind (N) is
7012 -- Case of indexed component
7014 when N_Indexed_Component =>
7015 declare
7016 P : constant Node_Id := Prefix (N);
7017 Ptyp : constant Entity_Id := Etype (P);
7019 begin
7020 -- If we know the component size and it is less than 64, then
7021 -- we are definitely OK. The back end always does assignment of
7022 -- misaligned small objects correctly.
7024 if Known_Static_Component_Size (Ptyp)
7025 and then Component_Size (Ptyp) <= 64
7026 then
7027 return False;
7029 -- Otherwise, we need to test the prefix, to see if we are
7030 -- indexing from a possibly unaligned component.
7032 else
7033 return Possible_Bit_Aligned_Component (P);
7034 end if;
7035 end;
7037 -- Case of selected component
7039 when N_Selected_Component =>
7040 declare
7041 P : constant Node_Id := Prefix (N);
7042 Comp : constant Entity_Id := Entity (Selector_Name (N));
7044 begin
7045 -- If there is no component clause, then we are in the clear
7046 -- since the back end will never misalign a large component
7047 -- unless it is forced to do so. In the clear means we need
7048 -- only the recursive test on the prefix.
7050 if Component_May_Be_Bit_Aligned (Comp) then
7051 return True;
7052 else
7053 return Possible_Bit_Aligned_Component (P);
7054 end if;
7055 end;
7057 -- For a slice, test the prefix, if that is possibly misaligned,
7058 -- then for sure the slice is.
7060 when N_Slice =>
7061 return Possible_Bit_Aligned_Component (Prefix (N));
7063 -- For an unchecked conversion, check whether the expression may
7064 -- be bit-aligned.
7066 when N_Unchecked_Type_Conversion =>
7067 return Possible_Bit_Aligned_Component (Expression (N));
7069 -- If we have none of the above, it means that we have fallen off the
7070 -- top testing prefixes recursively, and we now have a stand alone
7071 -- object, where we don't have a problem, unless this is a renaming,
7072 -- in which case we need to look into the renamed object.
7074 when others =>
7075 if Is_Entity_Name (N)
7076 and then Present (Renamed_Object (Entity (N)))
7077 then
7078 return
7079 Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
7080 else
7081 return False;
7082 end if;
7084 end case;
7085 end Possible_Bit_Aligned_Component;
7087 -----------------------------------------------
7088 -- Process_Statements_For_Controlled_Objects --
7089 -----------------------------------------------
7091 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
7092 Loc : constant Source_Ptr := Sloc (N);
7094 function Are_Wrapped (L : List_Id) return Boolean;
7095 -- Determine whether list L contains only one statement which is a block
7097 function Wrap_Statements_In_Block
7098 (L : List_Id;
7099 Scop : Entity_Id := Current_Scope) return Node_Id;
7100 -- Given a list of statements L, wrap it in a block statement and return
7101 -- the generated node. Scop is either the current scope or the scope of
7102 -- the context (if applicable).
7104 -----------------
7105 -- Are_Wrapped --
7106 -----------------
7108 function Are_Wrapped (L : List_Id) return Boolean is
7109 Stmt : constant Node_Id := First (L);
7110 begin
7111 return
7112 Present (Stmt)
7113 and then No (Next (Stmt))
7114 and then Nkind (Stmt) = N_Block_Statement;
7115 end Are_Wrapped;
7117 ------------------------------
7118 -- Wrap_Statements_In_Block --
7119 ------------------------------
7121 function Wrap_Statements_In_Block
7122 (L : List_Id;
7123 Scop : Entity_Id := Current_Scope) return Node_Id
7125 Block_Id : Entity_Id;
7126 Block_Nod : Node_Id;
7127 Iter_Loop : Entity_Id;
7129 begin
7130 Block_Nod :=
7131 Make_Block_Statement (Loc,
7132 Declarations => No_List,
7133 Handled_Statement_Sequence =>
7134 Make_Handled_Sequence_Of_Statements (Loc,
7135 Statements => L));
7137 -- Create a label for the block in case the block needs to manage the
7138 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
7140 Add_Block_Identifier (Block_Nod, Block_Id);
7142 -- When wrapping the statements of an iterator loop, check whether
7143 -- the loop requires secondary stack management and if so, propagate
7144 -- the appropriate flags to the block. This ensures that the cursor
7145 -- is properly cleaned up at each iteration of the loop.
7147 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
7149 if Present (Iter_Loop) then
7150 Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
7152 -- Secondary stack reclamation is suppressed when the associated
7153 -- iterator loop contains a return statement which uses the stack.
7155 Set_Sec_Stack_Needed_For_Return
7156 (Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
7157 end if;
7159 return Block_Nod;
7160 end Wrap_Statements_In_Block;
7162 -- Local variables
7164 Block : Node_Id;
7166 -- Start of processing for Process_Statements_For_Controlled_Objects
7168 begin
7169 -- Whenever a non-handled statement list is wrapped in a block, the
7170 -- block must be explicitly analyzed to redecorate all entities in the
7171 -- list and ensure that a finalizer is properly built.
7173 case Nkind (N) is
7174 when N_Elsif_Part |
7175 N_If_Statement |
7176 N_Conditional_Entry_Call |
7177 N_Selective_Accept =>
7179 -- Check the "then statements" for elsif parts and if statements
7181 if Nkind_In (N, N_Elsif_Part, N_If_Statement)
7182 and then not Is_Empty_List (Then_Statements (N))
7183 and then not Are_Wrapped (Then_Statements (N))
7184 and then Requires_Cleanup_Actions
7185 (Then_Statements (N), False, False)
7186 then
7187 Block := Wrap_Statements_In_Block (Then_Statements (N));
7188 Set_Then_Statements (N, New_List (Block));
7190 Analyze (Block);
7191 end if;
7193 -- Check the "else statements" for conditional entry calls, if
7194 -- statements and selective accepts.
7196 if Nkind_In (N, N_Conditional_Entry_Call,
7197 N_If_Statement,
7198 N_Selective_Accept)
7199 and then not Is_Empty_List (Else_Statements (N))
7200 and then not Are_Wrapped (Else_Statements (N))
7201 and then Requires_Cleanup_Actions
7202 (Else_Statements (N), False, False)
7203 then
7204 Block := Wrap_Statements_In_Block (Else_Statements (N));
7205 Set_Else_Statements (N, New_List (Block));
7207 Analyze (Block);
7208 end if;
7210 when N_Abortable_Part |
7211 N_Accept_Alternative |
7212 N_Case_Statement_Alternative |
7213 N_Delay_Alternative |
7214 N_Entry_Call_Alternative |
7215 N_Exception_Handler |
7216 N_Loop_Statement |
7217 N_Triggering_Alternative =>
7219 if not Is_Empty_List (Statements (N))
7220 and then not Are_Wrapped (Statements (N))
7221 and then Requires_Cleanup_Actions (Statements (N), False, False)
7222 then
7223 if Nkind (N) = N_Loop_Statement
7224 and then Present (Identifier (N))
7225 then
7226 Block :=
7227 Wrap_Statements_In_Block
7228 (L => Statements (N),
7229 Scop => Entity (Identifier (N)));
7230 else
7231 Block := Wrap_Statements_In_Block (Statements (N));
7232 end if;
7234 Set_Statements (N, New_List (Block));
7235 Analyze (Block);
7236 end if;
7238 when others =>
7239 null;
7240 end case;
7241 end Process_Statements_For_Controlled_Objects;
7243 ------------------
7244 -- Power_Of_Two --
7245 ------------------
7247 function Power_Of_Two (N : Node_Id) return Nat is
7248 Typ : constant Entity_Id := Etype (N);
7249 pragma Assert (Is_Integer_Type (Typ));
7251 Siz : constant Nat := UI_To_Int (Esize (Typ));
7252 Val : Uint;
7254 begin
7255 if not Compile_Time_Known_Value (N) then
7256 return 0;
7258 else
7259 Val := Expr_Value (N);
7260 for J in 1 .. Siz - 1 loop
7261 if Val = Uint_2 ** J then
7262 return J;
7263 end if;
7264 end loop;
7266 return 0;
7267 end if;
7268 end Power_Of_Two;
7270 ----------------------
7271 -- Remove_Init_Call --
7272 ----------------------
7274 function Remove_Init_Call
7275 (Var : Entity_Id;
7276 Rep_Clause : Node_Id) return Node_Id
7278 Par : constant Node_Id := Parent (Var);
7279 Typ : constant Entity_Id := Etype (Var);
7281 Init_Proc : Entity_Id;
7282 -- Initialization procedure for Typ
7284 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
7285 -- Look for init call for Var starting at From and scanning the
7286 -- enclosing list until Rep_Clause or the end of the list is reached.
7288 ----------------------------
7289 -- Find_Init_Call_In_List --
7290 ----------------------------
7292 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
7293 Init_Call : Node_Id;
7295 begin
7296 Init_Call := From;
7297 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
7298 if Nkind (Init_Call) = N_Procedure_Call_Statement
7299 and then Is_Entity_Name (Name (Init_Call))
7300 and then Entity (Name (Init_Call)) = Init_Proc
7301 then
7302 return Init_Call;
7303 end if;
7305 Next (Init_Call);
7306 end loop;
7308 return Empty;
7309 end Find_Init_Call_In_List;
7311 Init_Call : Node_Id;
7313 -- Start of processing for Find_Init_Call
7315 begin
7316 if Present (Initialization_Statements (Var)) then
7317 Init_Call := Initialization_Statements (Var);
7318 Set_Initialization_Statements (Var, Empty);
7320 elsif not Has_Non_Null_Base_Init_Proc (Typ) then
7322 -- No init proc for the type, so obviously no call to be found
7324 return Empty;
7326 else
7327 -- We might be able to handle other cases below by just properly
7328 -- setting Initialization_Statements at the point where the init proc
7329 -- call is generated???
7331 Init_Proc := Base_Init_Proc (Typ);
7333 -- First scan the list containing the declaration of Var
7335 Init_Call := Find_Init_Call_In_List (From => Next (Par));
7337 -- If not found, also look on Var's freeze actions list, if any,
7338 -- since the init call may have been moved there (case of an address
7339 -- clause applying to Var).
7341 if No (Init_Call) and then Present (Freeze_Node (Var)) then
7342 Init_Call :=
7343 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
7344 end if;
7346 -- If the initialization call has actuals that use the secondary
7347 -- stack, the call may have been wrapped into a temporary block, in
7348 -- which case the block itself has to be removed.
7350 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
7351 declare
7352 Blk : constant Node_Id := Next (Par);
7353 begin
7354 if Present
7355 (Find_Init_Call_In_List
7356 (First (Statements (Handled_Statement_Sequence (Blk)))))
7357 then
7358 Init_Call := Blk;
7359 end if;
7360 end;
7361 end if;
7362 end if;
7364 if Present (Init_Call) then
7365 Remove (Init_Call);
7366 end if;
7367 return Init_Call;
7368 end Remove_Init_Call;
7370 -------------------------
7371 -- Remove_Side_Effects --
7372 -------------------------
7374 procedure Remove_Side_Effects
7375 (Exp : Node_Id;
7376 Name_Req : Boolean := False;
7377 Renaming_Req : Boolean := False;
7378 Variable_Ref : Boolean := False;
7379 Related_Id : Entity_Id := Empty;
7380 Is_Low_Bound : Boolean := False;
7381 Is_High_Bound : Boolean := False)
7383 function Build_Temporary
7384 (Loc : Source_Ptr;
7385 Id : Character;
7386 Related_Nod : Node_Id := Empty) return Entity_Id;
7387 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
7388 -- is present (xxx is taken from the Chars field of Related_Nod),
7389 -- otherwise it generates an internal temporary.
7391 ---------------------
7392 -- Build_Temporary --
7393 ---------------------
7395 function Build_Temporary
7396 (Loc : Source_Ptr;
7397 Id : Character;
7398 Related_Nod : Node_Id := Empty) return Entity_Id
7400 Temp_Nam : Name_Id;
7402 begin
7403 -- The context requires an external symbol
7405 if Present (Related_Id) then
7406 if Is_Low_Bound then
7407 Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
7408 else pragma Assert (Is_High_Bound);
7409 Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
7410 end if;
7412 return Make_Defining_Identifier (Loc, Temp_Nam);
7414 -- Otherwise generate an internal temporary
7416 else
7417 return Make_Temporary (Loc, Id, Related_Nod);
7418 end if;
7419 end Build_Temporary;
7421 -- Local variables
7423 Loc : constant Source_Ptr := Sloc (Exp);
7424 Exp_Type : constant Entity_Id := Etype (Exp);
7425 Svg_Suppress : constant Suppress_Record := Scope_Suppress;
7426 Def_Id : Entity_Id;
7427 E : Node_Id;
7428 New_Exp : Node_Id;
7429 Ptr_Typ_Decl : Node_Id;
7430 Ref_Type : Entity_Id;
7431 Res : Node_Id;
7433 -- Start of processing for Remove_Side_Effects
7435 begin
7436 -- Handle cases in which there is nothing to do. In GNATprove mode,
7437 -- removal of side effects is useful for the light expansion of
7438 -- renamings. This removal should only occur when not inside a
7439 -- generic and not doing a pre-analysis.
7441 if not Expander_Active
7442 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
7443 then
7444 return;
7445 end if;
7447 -- Cannot generate temporaries if the invocation to remove side effects
7448 -- was issued too early and the type of the expression is not resolved
7449 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
7450 -- Remove_Side_Effects).
7452 if No (Exp_Type) or else Ekind (Exp_Type) = E_Access_Attribute_Type then
7453 return;
7455 -- No action needed for side-effect free expressions
7457 elsif Side_Effect_Free (Exp, Name_Req, Variable_Ref) then
7458 return;
7459 end if;
7461 -- The remaining procesaing is done with all checks suppressed
7463 -- Note: from now on, don't use return statements, instead do a goto
7464 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
7466 Scope_Suppress.Suppress := (others => True);
7468 -- If it is a scalar type and we need to capture the value, just make
7469 -- a copy. Likewise for a function call, an attribute reference, a
7470 -- conditional expression, an allocator, or an operator. And if we have
7471 -- a volatile reference and Name_Req is not set (see comments for
7472 -- Side_Effect_Free).
7474 if Is_Elementary_Type (Exp_Type)
7476 -- Note: this test is rather mysterious??? Why can't we just test ONLY
7477 -- Is_Elementary_Type and be done with it. If we try that approach, we
7478 -- get some failures (infinite recursions) from the Duplicate_Subexpr
7479 -- call at the end of Checks.Apply_Predicate_Check. To be
7480 -- investigated ???
7482 and then (Variable_Ref
7483 or else Nkind_In (Exp, N_Attribute_Reference,
7484 N_Allocator,
7485 N_Case_Expression,
7486 N_If_Expression,
7487 N_Function_Call)
7488 or else Nkind (Exp) in N_Op
7489 or else (not Name_Req
7490 and then Is_Volatile_Reference (Exp)))
7491 then
7492 Def_Id := Build_Temporary (Loc, 'R', Exp);
7493 Set_Etype (Def_Id, Exp_Type);
7494 Res := New_Occurrence_Of (Def_Id, Loc);
7496 -- If the expression is a packed reference, it must be reanalyzed and
7497 -- expanded, depending on context. This is the case for actuals where
7498 -- a constraint check may capture the actual before expansion of the
7499 -- call is complete.
7501 if Nkind (Exp) = N_Indexed_Component
7502 and then Is_Packed (Etype (Prefix (Exp)))
7503 then
7504 Set_Analyzed (Exp, False);
7505 Set_Analyzed (Prefix (Exp), False);
7506 end if;
7508 -- Generate:
7509 -- Rnn : Exp_Type renames Expr;
7511 if Renaming_Req then
7512 E :=
7513 Make_Object_Renaming_Declaration (Loc,
7514 Defining_Identifier => Def_Id,
7515 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7516 Name => Relocate_Node (Exp));
7518 -- Generate:
7519 -- Rnn : constant Exp_Type := Expr;
7521 else
7522 E :=
7523 Make_Object_Declaration (Loc,
7524 Defining_Identifier => Def_Id,
7525 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7526 Constant_Present => True,
7527 Expression => Relocate_Node (Exp));
7529 Set_Assignment_OK (E);
7530 end if;
7532 Insert_Action (Exp, E);
7534 -- If the expression has the form v.all then we can just capture the
7535 -- pointer, and then do an explicit dereference on the result, but
7536 -- this is not right if this is a volatile reference.
7538 elsif Nkind (Exp) = N_Explicit_Dereference
7539 and then not Is_Volatile_Reference (Exp)
7540 then
7541 Def_Id := Build_Temporary (Loc, 'R', Exp);
7542 Res :=
7543 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
7545 Insert_Action (Exp,
7546 Make_Object_Declaration (Loc,
7547 Defining_Identifier => Def_Id,
7548 Object_Definition =>
7549 New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
7550 Constant_Present => True,
7551 Expression => Relocate_Node (Prefix (Exp))));
7553 -- Similar processing for an unchecked conversion of an expression of
7554 -- the form v.all, where we want the same kind of treatment.
7556 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7557 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
7558 then
7559 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7560 goto Leave;
7562 -- If this is a type conversion, leave the type conversion and remove
7563 -- the side effects in the expression. This is important in several
7564 -- circumstances: for change of representations, and also when this is a
7565 -- view conversion to a smaller object, where gigi can end up creating
7566 -- its own temporary of the wrong size.
7568 elsif Nkind (Exp) = N_Type_Conversion then
7569 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7570 goto Leave;
7572 -- If this is an unchecked conversion that Gigi can't handle, make
7573 -- a copy or a use a renaming to capture the value.
7575 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7576 and then not Safe_Unchecked_Type_Conversion (Exp)
7577 then
7578 if CW_Or_Has_Controlled_Part (Exp_Type) then
7580 -- Use a renaming to capture the expression, rather than create
7581 -- a controlled temporary.
7583 Def_Id := Build_Temporary (Loc, 'R', Exp);
7584 Res := New_Occurrence_Of (Def_Id, Loc);
7586 Insert_Action (Exp,
7587 Make_Object_Renaming_Declaration (Loc,
7588 Defining_Identifier => Def_Id,
7589 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7590 Name => Relocate_Node (Exp)));
7592 else
7593 Def_Id := Build_Temporary (Loc, 'R', Exp);
7594 Set_Etype (Def_Id, Exp_Type);
7595 Res := New_Occurrence_Of (Def_Id, Loc);
7597 E :=
7598 Make_Object_Declaration (Loc,
7599 Defining_Identifier => Def_Id,
7600 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7601 Constant_Present => not Is_Variable (Exp),
7602 Expression => Relocate_Node (Exp));
7604 Set_Assignment_OK (E);
7605 Insert_Action (Exp, E);
7606 end if;
7608 -- For expressions that denote objects, we can use a renaming scheme.
7609 -- This is needed for correctness in the case of a volatile object of
7610 -- a non-volatile type because the Make_Reference call of the "default"
7611 -- approach would generate an illegal access value (an access value
7612 -- cannot designate such an object - see Analyze_Reference).
7614 elsif Is_Object_Reference (Exp)
7615 and then Nkind (Exp) /= N_Function_Call
7617 -- In Ada 2012 a qualified expression is an object, but for purposes
7618 -- of removing side effects it still need to be transformed into a
7619 -- separate declaration, particularly in the case of an aggregate.
7621 and then Nkind (Exp) /= N_Qualified_Expression
7623 -- We skip using this scheme if we have an object of a volatile
7624 -- type and we do not have Name_Req set true (see comments for
7625 -- Side_Effect_Free).
7627 and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
7628 then
7629 Def_Id := Build_Temporary (Loc, 'R', Exp);
7631 if Nkind (Exp) = N_Selected_Component
7632 and then Nkind (Prefix (Exp)) = N_Function_Call
7633 and then Is_Array_Type (Exp_Type)
7634 then
7635 -- Avoid generating a variable-sized temporary, by generating
7636 -- the renaming declaration just for the function call. The
7637 -- transformation could be refined to apply only when the array
7638 -- component is constrained by a discriminant???
7640 Res :=
7641 Make_Selected_Component (Loc,
7642 Prefix => New_Occurrence_Of (Def_Id, Loc),
7643 Selector_Name => Selector_Name (Exp));
7645 Insert_Action (Exp,
7646 Make_Object_Renaming_Declaration (Loc,
7647 Defining_Identifier => Def_Id,
7648 Subtype_Mark =>
7649 New_Occurrence_Of (Base_Type (Etype (Prefix (Exp))), Loc),
7650 Name => Relocate_Node (Prefix (Exp))));
7652 else
7653 Res := New_Occurrence_Of (Def_Id, Loc);
7655 Insert_Action (Exp,
7656 Make_Object_Renaming_Declaration (Loc,
7657 Defining_Identifier => Def_Id,
7658 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7659 Name => Relocate_Node (Exp)));
7660 end if;
7662 -- If this is a packed reference, or a selected component with
7663 -- a non-standard representation, a reference to the temporary
7664 -- will be replaced by a copy of the original expression (see
7665 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
7666 -- elaborated by gigi, and is of course not to be replaced in-line
7667 -- by the expression it renames, which would defeat the purpose of
7668 -- removing the side-effect.
7670 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
7671 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
7672 then
7673 null;
7674 else
7675 Set_Is_Renaming_Of_Object (Def_Id, False);
7676 end if;
7678 -- Otherwise we generate a reference to the value
7680 else
7681 -- An expression which is in SPARK mode is considered side effect
7682 -- free if the resulting value is captured by a variable or a
7683 -- constant.
7685 if GNATprove_Mode
7686 and then Nkind (Parent (Exp)) = N_Object_Declaration
7687 then
7688 goto Leave;
7689 end if;
7691 -- Special processing for function calls that return a limited type.
7692 -- We need to build a declaration that will enable build-in-place
7693 -- expansion of the call. This is not done if the context is already
7694 -- an object declaration, to prevent infinite recursion.
7696 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
7697 -- to accommodate functions returning limited objects by reference.
7699 if Ada_Version >= Ada_2005
7700 and then Nkind (Exp) = N_Function_Call
7701 and then Is_Limited_View (Etype (Exp))
7702 and then Nkind (Parent (Exp)) /= N_Object_Declaration
7703 then
7704 declare
7705 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
7706 Decl : Node_Id;
7708 begin
7709 Decl :=
7710 Make_Object_Declaration (Loc,
7711 Defining_Identifier => Obj,
7712 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7713 Expression => Relocate_Node (Exp));
7715 Insert_Action (Exp, Decl);
7716 Set_Etype (Obj, Exp_Type);
7717 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
7718 goto Leave;
7719 end;
7720 end if;
7722 Def_Id := Build_Temporary (Loc, 'R', Exp);
7724 -- The regular expansion of functions with side effects involves the
7725 -- generation of an access type to capture the return value found on
7726 -- the secondary stack. Since SPARK (and why) cannot process access
7727 -- types, use a different approach which ignores the secondary stack
7728 -- and "copies" the returned object.
7730 if GNATprove_Mode then
7731 Res := New_Occurrence_Of (Def_Id, Loc);
7732 Ref_Type := Exp_Type;
7734 -- Regular expansion utilizing an access type and 'reference
7736 else
7737 Res :=
7738 Make_Explicit_Dereference (Loc,
7739 Prefix => New_Occurrence_Of (Def_Id, Loc));
7741 -- Generate:
7742 -- type Ann is access all <Exp_Type>;
7744 Ref_Type := Make_Temporary (Loc, 'A');
7746 Ptr_Typ_Decl :=
7747 Make_Full_Type_Declaration (Loc,
7748 Defining_Identifier => Ref_Type,
7749 Type_Definition =>
7750 Make_Access_To_Object_Definition (Loc,
7751 All_Present => True,
7752 Subtype_Indication =>
7753 New_Occurrence_Of (Exp_Type, Loc)));
7755 Insert_Action (Exp, Ptr_Typ_Decl);
7756 end if;
7758 E := Exp;
7759 if Nkind (E) = N_Explicit_Dereference then
7760 New_Exp := Relocate_Node (Prefix (E));
7762 else
7763 E := Relocate_Node (E);
7765 -- Do not generate a 'reference in SPARK mode since the access
7766 -- type is not created in the first place.
7768 if GNATprove_Mode then
7769 New_Exp := E;
7771 -- Otherwise generate reference, marking the value as non-null
7772 -- since we know it cannot be null and we don't want a check.
7774 else
7775 New_Exp := Make_Reference (Loc, E);
7776 Set_Is_Known_Non_Null (Def_Id);
7777 end if;
7778 end if;
7780 if Is_Delayed_Aggregate (E) then
7782 -- The expansion of nested aggregates is delayed until the
7783 -- enclosing aggregate is expanded. As aggregates are often
7784 -- qualified, the predicate applies to qualified expressions as
7785 -- well, indicating that the enclosing aggregate has not been
7786 -- expanded yet. At this point the aggregate is part of a
7787 -- stand-alone declaration, and must be fully expanded.
7789 if Nkind (E) = N_Qualified_Expression then
7790 Set_Expansion_Delayed (Expression (E), False);
7791 Set_Analyzed (Expression (E), False);
7792 else
7793 Set_Expansion_Delayed (E, False);
7794 end if;
7796 Set_Analyzed (E, False);
7797 end if;
7799 Insert_Action (Exp,
7800 Make_Object_Declaration (Loc,
7801 Defining_Identifier => Def_Id,
7802 Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
7803 Constant_Present => True,
7804 Expression => New_Exp));
7805 end if;
7807 -- Preserve the Assignment_OK flag in all copies, since at least one
7808 -- copy may be used in a context where this flag must be set (otherwise
7809 -- why would the flag be set in the first place).
7811 Set_Assignment_OK (Res, Assignment_OK (Exp));
7813 -- Finally rewrite the original expression and we are done
7815 Rewrite (Exp, Res);
7816 Analyze_And_Resolve (Exp, Exp_Type);
7818 <<Leave>>
7819 Scope_Suppress := Svg_Suppress;
7820 end Remove_Side_Effects;
7822 ---------------------------
7823 -- Represented_As_Scalar --
7824 ---------------------------
7826 function Represented_As_Scalar (T : Entity_Id) return Boolean is
7827 UT : constant Entity_Id := Underlying_Type (T);
7828 begin
7829 return Is_Scalar_Type (UT)
7830 or else (Is_Bit_Packed_Array (UT)
7831 and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
7832 end Represented_As_Scalar;
7834 ------------------------------
7835 -- Requires_Cleanup_Actions --
7836 ------------------------------
7838 function Requires_Cleanup_Actions
7839 (N : Node_Id;
7840 Lib_Level : Boolean) return Boolean
7842 At_Lib_Level : constant Boolean :=
7843 Lib_Level
7844 and then Nkind_In (N, N_Package_Body,
7845 N_Package_Specification);
7846 -- N is at the library level if the top-most context is a package and
7847 -- the path taken to reach N does not inlcude non-package constructs.
7849 begin
7850 case Nkind (N) is
7851 when N_Accept_Statement |
7852 N_Block_Statement |
7853 N_Entry_Body |
7854 N_Package_Body |
7855 N_Protected_Body |
7856 N_Subprogram_Body |
7857 N_Task_Body =>
7858 return
7859 Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
7860 or else
7861 (Present (Handled_Statement_Sequence (N))
7862 and then
7863 Requires_Cleanup_Actions
7864 (Statements (Handled_Statement_Sequence (N)),
7865 At_Lib_Level, True));
7867 when N_Package_Specification =>
7868 return
7869 Requires_Cleanup_Actions
7870 (Visible_Declarations (N), At_Lib_Level, True)
7871 or else
7872 Requires_Cleanup_Actions
7873 (Private_Declarations (N), At_Lib_Level, True);
7875 when others =>
7876 return False;
7877 end case;
7878 end Requires_Cleanup_Actions;
7880 ------------------------------
7881 -- Requires_Cleanup_Actions --
7882 ------------------------------
7884 function Requires_Cleanup_Actions
7885 (L : List_Id;
7886 Lib_Level : Boolean;
7887 Nested_Constructs : Boolean) return Boolean
7889 Decl : Node_Id;
7890 Expr : Node_Id;
7891 Obj_Id : Entity_Id;
7892 Obj_Typ : Entity_Id;
7893 Pack_Id : Entity_Id;
7894 Typ : Entity_Id;
7896 begin
7897 if No (L)
7898 or else Is_Empty_List (L)
7899 then
7900 return False;
7901 end if;
7903 Decl := First (L);
7904 while Present (Decl) loop
7906 -- Library-level tagged types
7908 if Nkind (Decl) = N_Full_Type_Declaration then
7909 Typ := Defining_Identifier (Decl);
7911 -- Ignored Ghost types do not need any cleanup actions because
7912 -- they will not appear in the final tree.
7914 if Is_Ignored_Ghost_Entity (Typ) then
7915 null;
7917 elsif Is_Tagged_Type (Typ)
7918 and then Is_Library_Level_Entity (Typ)
7919 and then Convention (Typ) = Convention_Ada
7920 and then Present (Access_Disp_Table (Typ))
7921 and then RTE_Available (RE_Unregister_Tag)
7922 and then not Is_Abstract_Type (Typ)
7923 and then not No_Run_Time_Mode
7924 then
7925 return True;
7926 end if;
7928 -- Regular object declarations
7930 elsif Nkind (Decl) = N_Object_Declaration then
7931 Obj_Id := Defining_Identifier (Decl);
7932 Obj_Typ := Base_Type (Etype (Obj_Id));
7933 Expr := Expression (Decl);
7935 -- Bypass any form of processing for objects which have their
7936 -- finalization disabled. This applies only to objects at the
7937 -- library level.
7939 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7940 null;
7942 -- Transient variables are treated separately in order to minimize
7943 -- the size of the generated code. See Exp_Ch7.Process_Transient_
7944 -- Objects.
7946 elsif Is_Processed_Transient (Obj_Id) then
7947 null;
7949 -- Ignored Ghost objects do not need any cleanup actions because
7950 -- they will not appear in the final tree.
7952 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
7953 null;
7955 -- The object is of the form:
7956 -- Obj : Typ [:= Expr];
7958 -- Do not process the incomplete view of a deferred constant. Do
7959 -- not consider tag-to-class-wide conversions.
7961 elsif not Is_Imported (Obj_Id)
7962 and then Needs_Finalization (Obj_Typ)
7963 and then not (Ekind (Obj_Id) = E_Constant
7964 and then not Has_Completion (Obj_Id))
7965 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
7966 then
7967 return True;
7969 -- The object is of the form:
7970 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
7972 -- Obj : Access_Typ :=
7973 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
7975 elsif Is_Access_Type (Obj_Typ)
7976 and then Needs_Finalization
7977 (Available_View (Designated_Type (Obj_Typ)))
7978 and then Present (Expr)
7979 and then
7980 (Is_Secondary_Stack_BIP_Func_Call (Expr)
7981 or else
7982 (Is_Non_BIP_Func_Call (Expr)
7983 and then not Is_Related_To_Func_Return (Obj_Id)))
7984 then
7985 return True;
7987 -- Processing for "hook" objects generated for controlled
7988 -- transients declared inside an Expression_With_Actions.
7990 elsif Is_Access_Type (Obj_Typ)
7991 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7992 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7993 N_Object_Declaration
7994 then
7995 return True;
7997 -- Processing for intermediate results of if expressions where
7998 -- one of the alternatives uses a controlled function call.
8000 elsif Is_Access_Type (Obj_Typ)
8001 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
8002 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
8003 N_Defining_Identifier
8004 and then Present (Expr)
8005 and then Nkind (Expr) = N_Null
8006 then
8007 return True;
8009 -- Simple protected objects which use type System.Tasking.
8010 -- Protected_Objects.Protection to manage their locks should be
8011 -- treated as controlled since they require manual cleanup.
8013 elsif Ekind (Obj_Id) = E_Variable
8014 and then (Is_Simple_Protected_Type (Obj_Typ)
8015 or else Has_Simple_Protected_Object (Obj_Typ))
8016 then
8017 return True;
8018 end if;
8020 -- Specific cases of object renamings
8022 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
8023 Obj_Id := Defining_Identifier (Decl);
8024 Obj_Typ := Base_Type (Etype (Obj_Id));
8026 -- Bypass any form of processing for objects which have their
8027 -- finalization disabled. This applies only to objects at the
8028 -- library level.
8030 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
8031 null;
8033 -- Ignored Ghost object renamings do not need any cleanup actions
8034 -- because they will not appear in the final tree.
8036 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
8037 null;
8039 -- Return object of a build-in-place function. This case is
8040 -- recognized and marked by the expansion of an extended return
8041 -- statement (see Expand_N_Extended_Return_Statement).
8043 elsif Needs_Finalization (Obj_Typ)
8044 and then Is_Return_Object (Obj_Id)
8045 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
8046 then
8047 return True;
8049 -- Detect a case where a source object has been initialized by
8050 -- a controlled function call or another object which was later
8051 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
8053 -- Obj1 : CW_Type := Src_Obj;
8054 -- Obj2 : CW_Type := Function_Call (...);
8056 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
8057 -- Tmp : ... := Function_Call (...)'reference;
8058 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
8060 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
8061 return True;
8062 end if;
8064 -- Inspect the freeze node of an access-to-controlled type and look
8065 -- for a delayed finalization master. This case arises when the
8066 -- freeze actions are inserted at a later time than the expansion of
8067 -- the context. Since Build_Finalizer is never called on a single
8068 -- construct twice, the master will be ultimately left out and never
8069 -- finalized. This is also needed for freeze actions of designated
8070 -- types themselves, since in some cases the finalization master is
8071 -- associated with a designated type's freeze node rather than that
8072 -- of the access type (see handling for freeze actions in
8073 -- Build_Finalization_Master).
8075 elsif Nkind (Decl) = N_Freeze_Entity
8076 and then Present (Actions (Decl))
8077 then
8078 Typ := Entity (Decl);
8080 -- Freeze nodes for ignored Ghost types do not need cleanup
8081 -- actions because they will never appear in the final tree.
8083 if Is_Ignored_Ghost_Entity (Typ) then
8084 null;
8086 elsif ((Is_Access_Type (Typ)
8087 and then not Is_Access_Subprogram_Type (Typ)
8088 and then Needs_Finalization
8089 (Available_View (Designated_Type (Typ))))
8090 or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
8091 and then Requires_Cleanup_Actions
8092 (Actions (Decl), Lib_Level, Nested_Constructs)
8093 then
8094 return True;
8095 end if;
8097 -- Nested package declarations
8099 elsif Nested_Constructs
8100 and then Nkind (Decl) = N_Package_Declaration
8101 then
8102 Pack_Id := Defining_Entity (Decl);
8104 -- Do not inspect an ignored Ghost package because all code found
8105 -- within will not appear in the final tree.
8107 if Is_Ignored_Ghost_Entity (Pack_Id) then
8108 null;
8110 elsif Ekind (Pack_Id) /= E_Generic_Package
8111 and then Requires_Cleanup_Actions
8112 (Specification (Decl), Lib_Level)
8113 then
8114 return True;
8115 end if;
8117 -- Nested package bodies
8119 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
8121 -- Do not inspect an ignored Ghost package body because all code
8122 -- found within will not appear in the final tree.
8124 if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
8125 null;
8127 elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
8128 and then Requires_Cleanup_Actions (Decl, Lib_Level)
8129 then
8130 return True;
8131 end if;
8133 elsif Nkind (Decl) = N_Block_Statement
8134 and then
8136 -- Handle a rare case caused by a controlled transient variable
8137 -- created as part of a record init proc. The variable is wrapped
8138 -- in a block, but the block is not associated with a transient
8139 -- scope.
8141 (Inside_Init_Proc
8143 -- Handle the case where the original context has been wrapped in
8144 -- a block to avoid interference between exception handlers and
8145 -- At_End handlers. Treat the block as transparent and process its
8146 -- contents.
8148 or else Is_Finalization_Wrapper (Decl))
8149 then
8150 if Requires_Cleanup_Actions (Decl, Lib_Level) then
8151 return True;
8152 end if;
8153 end if;
8155 Next (Decl);
8156 end loop;
8158 return False;
8159 end Requires_Cleanup_Actions;
8161 ------------------------------------
8162 -- Safe_Unchecked_Type_Conversion --
8163 ------------------------------------
8165 -- Note: this function knows quite a bit about the exact requirements of
8166 -- Gigi with respect to unchecked type conversions, and its code must be
8167 -- coordinated with any changes in Gigi in this area.
8169 -- The above requirements should be documented in Sinfo ???
8171 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
8172 Otyp : Entity_Id;
8173 Ityp : Entity_Id;
8174 Oalign : Uint;
8175 Ialign : Uint;
8176 Pexp : constant Node_Id := Parent (Exp);
8178 begin
8179 -- If the expression is the RHS of an assignment or object declaration
8180 -- we are always OK because there will always be a target.
8182 -- Object renaming declarations, (generated for view conversions of
8183 -- actuals in inlined calls), like object declarations, provide an
8184 -- explicit type, and are safe as well.
8186 if (Nkind (Pexp) = N_Assignment_Statement
8187 and then Expression (Pexp) = Exp)
8188 or else Nkind_In (Pexp, N_Object_Declaration,
8189 N_Object_Renaming_Declaration)
8190 then
8191 return True;
8193 -- If the expression is the prefix of an N_Selected_Component we should
8194 -- also be OK because GCC knows to look inside the conversion except if
8195 -- the type is discriminated. We assume that we are OK anyway if the
8196 -- type is not set yet or if it is controlled since we can't afford to
8197 -- introduce a temporary in this case.
8199 elsif Nkind (Pexp) = N_Selected_Component
8200 and then Prefix (Pexp) = Exp
8201 then
8202 if No (Etype (Pexp)) then
8203 return True;
8204 else
8205 return
8206 not Has_Discriminants (Etype (Pexp))
8207 or else Is_Constrained (Etype (Pexp));
8208 end if;
8209 end if;
8211 -- Set the output type, this comes from Etype if it is set, otherwise we
8212 -- take it from the subtype mark, which we assume was already fully
8213 -- analyzed.
8215 if Present (Etype (Exp)) then
8216 Otyp := Etype (Exp);
8217 else
8218 Otyp := Entity (Subtype_Mark (Exp));
8219 end if;
8221 -- The input type always comes from the expression, and we assume this
8222 -- is indeed always analyzed, so we can simply get the Etype.
8224 Ityp := Etype (Expression (Exp));
8226 -- Initialize alignments to unknown so far
8228 Oalign := No_Uint;
8229 Ialign := No_Uint;
8231 -- Replace a concurrent type by its corresponding record type and each
8232 -- type by its underlying type and do the tests on those. The original
8233 -- type may be a private type whose completion is a concurrent type, so
8234 -- find the underlying type first.
8236 if Present (Underlying_Type (Otyp)) then
8237 Otyp := Underlying_Type (Otyp);
8238 end if;
8240 if Present (Underlying_Type (Ityp)) then
8241 Ityp := Underlying_Type (Ityp);
8242 end if;
8244 if Is_Concurrent_Type (Otyp) then
8245 Otyp := Corresponding_Record_Type (Otyp);
8246 end if;
8248 if Is_Concurrent_Type (Ityp) then
8249 Ityp := Corresponding_Record_Type (Ityp);
8250 end if;
8252 -- If the base types are the same, we know there is no problem since
8253 -- this conversion will be a noop.
8255 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
8256 return True;
8258 -- Same if this is an upwards conversion of an untagged type, and there
8259 -- are no constraints involved (could be more general???)
8261 elsif Etype (Ityp) = Otyp
8262 and then not Is_Tagged_Type (Ityp)
8263 and then not Has_Discriminants (Ityp)
8264 and then No (First_Rep_Item (Base_Type (Ityp)))
8265 then
8266 return True;
8268 -- If the expression has an access type (object or subprogram) we assume
8269 -- that the conversion is safe, because the size of the target is safe,
8270 -- even if it is a record (which might be treated as having unknown size
8271 -- at this point).
8273 elsif Is_Access_Type (Ityp) then
8274 return True;
8276 -- If the size of output type is known at compile time, there is never
8277 -- a problem. Note that unconstrained records are considered to be of
8278 -- known size, but we can't consider them that way here, because we are
8279 -- talking about the actual size of the object.
8281 -- We also make sure that in addition to the size being known, we do not
8282 -- have a case which might generate an embarrassingly large temp in
8283 -- stack checking mode.
8285 elsif Size_Known_At_Compile_Time (Otyp)
8286 and then
8287 (not Stack_Checking_Enabled
8288 or else not May_Generate_Large_Temp (Otyp))
8289 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
8290 then
8291 return True;
8293 -- If either type is tagged, then we know the alignment is OK so Gigi
8294 -- will be able to use pointer punning.
8296 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
8297 return True;
8299 -- If either type is a limited record type, we cannot do a copy, so say
8300 -- safe since there's nothing else we can do.
8302 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
8303 return True;
8305 -- Conversions to and from packed array types are always ignored and
8306 -- hence are safe.
8308 elsif Is_Packed_Array_Impl_Type (Otyp)
8309 or else Is_Packed_Array_Impl_Type (Ityp)
8310 then
8311 return True;
8312 end if;
8314 -- The only other cases known to be safe is if the input type's
8315 -- alignment is known to be at least the maximum alignment for the
8316 -- target or if both alignments are known and the output type's
8317 -- alignment is no stricter than the input's. We can use the component
8318 -- type alignement for an array if a type is an unpacked array type.
8320 if Present (Alignment_Clause (Otyp)) then
8321 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
8323 elsif Is_Array_Type (Otyp)
8324 and then Present (Alignment_Clause (Component_Type (Otyp)))
8325 then
8326 Oalign := Expr_Value (Expression (Alignment_Clause
8327 (Component_Type (Otyp))));
8328 end if;
8330 if Present (Alignment_Clause (Ityp)) then
8331 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
8333 elsif Is_Array_Type (Ityp)
8334 and then Present (Alignment_Clause (Component_Type (Ityp)))
8335 then
8336 Ialign := Expr_Value (Expression (Alignment_Clause
8337 (Component_Type (Ityp))));
8338 end if;
8340 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
8341 return True;
8343 elsif Ialign /= No_Uint
8344 and then Oalign /= No_Uint
8345 and then Ialign <= Oalign
8346 then
8347 return True;
8349 -- Otherwise, Gigi cannot handle this and we must make a temporary
8351 else
8352 return False;
8353 end if;
8354 end Safe_Unchecked_Type_Conversion;
8356 ---------------------------------
8357 -- Set_Current_Value_Condition --
8358 ---------------------------------
8360 -- Note: the implementation of this procedure is very closely tied to the
8361 -- implementation of Get_Current_Value_Condition. Here we set required
8362 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
8363 -- them, so they must have a consistent view.
8365 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
8367 procedure Set_Entity_Current_Value (N : Node_Id);
8368 -- If N is an entity reference, where the entity is of an appropriate
8369 -- kind, then set the current value of this entity to Cnode, unless
8370 -- there is already a definite value set there.
8372 procedure Set_Expression_Current_Value (N : Node_Id);
8373 -- If N is of an appropriate form, sets an appropriate entry in current
8374 -- value fields of relevant entities. Multiple entities can be affected
8375 -- in the case of an AND or AND THEN.
8377 ------------------------------
8378 -- Set_Entity_Current_Value --
8379 ------------------------------
8381 procedure Set_Entity_Current_Value (N : Node_Id) is
8382 begin
8383 if Is_Entity_Name (N) then
8384 declare
8385 Ent : constant Entity_Id := Entity (N);
8387 begin
8388 -- Don't capture if not safe to do so
8390 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
8391 return;
8392 end if;
8394 -- Here we have a case where the Current_Value field may need
8395 -- to be set. We set it if it is not already set to a compile
8396 -- time expression value.
8398 -- Note that this represents a decision that one condition
8399 -- blots out another previous one. That's certainly right if
8400 -- they occur at the same level. If the second one is nested,
8401 -- then the decision is neither right nor wrong (it would be
8402 -- equally OK to leave the outer one in place, or take the new
8403 -- inner one. Really we should record both, but our data
8404 -- structures are not that elaborate.
8406 if Nkind (Current_Value (Ent)) not in N_Subexpr then
8407 Set_Current_Value (Ent, Cnode);
8408 end if;
8409 end;
8410 end if;
8411 end Set_Entity_Current_Value;
8413 ----------------------------------
8414 -- Set_Expression_Current_Value --
8415 ----------------------------------
8417 procedure Set_Expression_Current_Value (N : Node_Id) is
8418 Cond : Node_Id;
8420 begin
8421 Cond := N;
8423 -- Loop to deal with (ignore for now) any NOT operators present. The
8424 -- presence of NOT operators will be handled properly when we call
8425 -- Get_Current_Value_Condition.
8427 while Nkind (Cond) = N_Op_Not loop
8428 Cond := Right_Opnd (Cond);
8429 end loop;
8431 -- For an AND or AND THEN, recursively process operands
8433 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
8434 Set_Expression_Current_Value (Left_Opnd (Cond));
8435 Set_Expression_Current_Value (Right_Opnd (Cond));
8436 return;
8437 end if;
8439 -- Check possible relational operator
8441 if Nkind (Cond) in N_Op_Compare then
8442 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
8443 Set_Entity_Current_Value (Left_Opnd (Cond));
8444 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
8445 Set_Entity_Current_Value (Right_Opnd (Cond));
8446 end if;
8448 elsif Nkind_In (Cond,
8449 N_Type_Conversion,
8450 N_Qualified_Expression,
8451 N_Expression_With_Actions)
8452 then
8453 Set_Expression_Current_Value (Expression (Cond));
8455 -- Check possible boolean variable reference
8457 else
8458 Set_Entity_Current_Value (Cond);
8459 end if;
8460 end Set_Expression_Current_Value;
8462 -- Start of processing for Set_Current_Value_Condition
8464 begin
8465 Set_Expression_Current_Value (Condition (Cnode));
8466 end Set_Current_Value_Condition;
8468 --------------------------
8469 -- Set_Elaboration_Flag --
8470 --------------------------
8472 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
8473 Loc : constant Source_Ptr := Sloc (N);
8474 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
8475 Asn : Node_Id;
8477 begin
8478 if Present (Ent) then
8480 -- Nothing to do if at the compilation unit level, because in this
8481 -- case the flag is set by the binder generated elaboration routine.
8483 if Nkind (Parent (N)) = N_Compilation_Unit then
8484 null;
8486 -- Here we do need to generate an assignment statement
8488 else
8489 Check_Restriction (No_Elaboration_Code, N);
8490 Asn :=
8491 Make_Assignment_Statement (Loc,
8492 Name => New_Occurrence_Of (Ent, Loc),
8493 Expression => Make_Integer_Literal (Loc, Uint_1));
8495 if Nkind (Parent (N)) = N_Subunit then
8496 Insert_After (Corresponding_Stub (Parent (N)), Asn);
8497 else
8498 Insert_After (N, Asn);
8499 end if;
8501 Analyze (Asn);
8503 -- Kill current value indication. This is necessary because the
8504 -- tests of this flag are inserted out of sequence and must not
8505 -- pick up bogus indications of the wrong constant value.
8507 Set_Current_Value (Ent, Empty);
8509 -- If the subprogram is in the current declarative part and
8510 -- 'access has been applied to it, generate an elaboration
8511 -- check at the beginning of the declarations of the body.
8513 if Nkind (N) = N_Subprogram_Body
8514 and then Address_Taken (Spec_Id)
8515 and then
8516 Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function)
8517 then
8518 declare
8519 Loc : constant Source_Ptr := Sloc (N);
8520 Decls : constant List_Id := Declarations (N);
8521 Chk : Node_Id;
8523 begin
8524 -- No need to generate this check if first entry in the
8525 -- declaration list is a raise of Program_Error now.
8527 if Present (Decls)
8528 and then Nkind (First (Decls)) = N_Raise_Program_Error
8529 then
8530 return;
8531 end if;
8533 -- Otherwise generate the check
8535 Chk :=
8536 Make_Raise_Program_Error (Loc,
8537 Condition =>
8538 Make_Op_Eq (Loc,
8539 Left_Opnd => New_Occurrence_Of (Ent, Loc),
8540 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
8541 Reason => PE_Access_Before_Elaboration);
8543 if No (Decls) then
8544 Set_Declarations (N, New_List (Chk));
8545 else
8546 Prepend (Chk, Decls);
8547 end if;
8549 Analyze (Chk);
8550 end;
8551 end if;
8552 end if;
8553 end if;
8554 end Set_Elaboration_Flag;
8556 ----------------------------
8557 -- Set_Renamed_Subprogram --
8558 ----------------------------
8560 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
8561 begin
8562 -- If input node is an identifier, we can just reset it
8564 if Nkind (N) = N_Identifier then
8565 Set_Chars (N, Chars (E));
8566 Set_Entity (N, E);
8568 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
8570 else
8571 declare
8572 CS : constant Boolean := Comes_From_Source (N);
8573 begin
8574 Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
8575 Set_Entity (N, E);
8576 Set_Comes_From_Source (N, CS);
8577 Set_Analyzed (N, True);
8578 end;
8579 end if;
8580 end Set_Renamed_Subprogram;
8582 ----------------------
8583 -- Side_Effect_Free --
8584 ----------------------
8586 function Side_Effect_Free
8587 (N : Node_Id;
8588 Name_Req : Boolean := False;
8589 Variable_Ref : Boolean := False) return Boolean
8591 Typ : constant Entity_Id := Etype (N);
8592 -- Result type of the expression
8594 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
8595 -- The argument N is a construct where the Prefix is dereferenced if it
8596 -- is an access type and the result is a variable. The call returns True
8597 -- if the construct is side effect free (not considering side effects in
8598 -- other than the prefix which are to be tested by the caller).
8600 function Within_In_Parameter (N : Node_Id) return Boolean;
8601 -- Determines if N is a subcomponent of a composite in-parameter. If so,
8602 -- N is not side-effect free when the actual is global and modifiable
8603 -- indirectly from within a subprogram, because it may be passed by
8604 -- reference. The front-end must be conservative here and assume that
8605 -- this may happen with any array or record type. On the other hand, we
8606 -- cannot create temporaries for all expressions for which this
8607 -- condition is true, for various reasons that might require clearing up
8608 -- ??? For example, discriminant references that appear out of place, or
8609 -- spurious type errors with class-wide expressions. As a result, we
8610 -- limit the transformation to loop bounds, which is so far the only
8611 -- case that requires it.
8613 -----------------------------
8614 -- Safe_Prefixed_Reference --
8615 -----------------------------
8617 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
8618 begin
8619 -- If prefix is not side effect free, definitely not safe
8621 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
8622 return False;
8624 -- If the prefix is of an access type that is not access-to-constant,
8625 -- then this construct is a variable reference, which means it is to
8626 -- be considered to have side effects if Variable_Ref is set True.
8628 elsif Is_Access_Type (Etype (Prefix (N)))
8629 and then not Is_Access_Constant (Etype (Prefix (N)))
8630 and then Variable_Ref
8631 then
8632 -- Exception is a prefix that is the result of a previous removal
8633 -- of side-effects.
8635 return Is_Entity_Name (Prefix (N))
8636 and then not Comes_From_Source (Prefix (N))
8637 and then Ekind (Entity (Prefix (N))) = E_Constant
8638 and then Is_Internal_Name (Chars (Entity (Prefix (N))));
8640 -- If the prefix is an explicit dereference then this construct is a
8641 -- variable reference, which means it is to be considered to have
8642 -- side effects if Variable_Ref is True.
8644 -- We do NOT exclude dereferences of access-to-constant types because
8645 -- we handle them as constant view of variables.
8647 elsif Nkind (Prefix (N)) = N_Explicit_Dereference
8648 and then Variable_Ref
8649 then
8650 return False;
8652 -- Note: The following test is the simplest way of solving a complex
8653 -- problem uncovered by the following test (Side effect on loop bound
8654 -- that is a subcomponent of a global variable:
8656 -- with Text_Io; use Text_Io;
8657 -- procedure Tloop is
8658 -- type X is
8659 -- record
8660 -- V : Natural := 4;
8661 -- S : String (1..5) := (others => 'a');
8662 -- end record;
8663 -- X1 : X;
8665 -- procedure Modi;
8667 -- generic
8668 -- with procedure Action;
8669 -- procedure Loop_G (Arg : X; Msg : String)
8671 -- procedure Loop_G (Arg : X; Msg : String) is
8672 -- begin
8673 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
8674 -- & Natural'Image (Arg.V));
8675 -- for Index in 1 .. Arg.V loop
8676 -- Text_Io.Put_Line
8677 -- (Natural'Image (Index) & " " & Arg.S (Index));
8678 -- if Index > 2 then
8679 -- Modi;
8680 -- end if;
8681 -- end loop;
8682 -- Put_Line ("end loop_g " & Msg);
8683 -- end;
8685 -- procedure Loop1 is new Loop_G (Modi);
8686 -- procedure Modi is
8687 -- begin
8688 -- X1.V := 1;
8689 -- Loop1 (X1, "from modi");
8690 -- end;
8692 -- begin
8693 -- Loop1 (X1, "initial");
8694 -- end;
8696 -- The output of the above program should be:
8698 -- begin loop_g initial will loop till: 4
8699 -- 1 a
8700 -- 2 a
8701 -- 3 a
8702 -- begin loop_g from modi will loop till: 1
8703 -- 1 a
8704 -- end loop_g from modi
8705 -- 4 a
8706 -- begin loop_g from modi will loop till: 1
8707 -- 1 a
8708 -- end loop_g from modi
8709 -- end loop_g initial
8711 -- If a loop bound is a subcomponent of a global variable, a
8712 -- modification of that variable within the loop may incorrectly
8713 -- affect the execution of the loop.
8715 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
8716 and then Within_In_Parameter (Prefix (N))
8717 and then Variable_Ref
8718 then
8719 return False;
8721 -- All other cases are side effect free
8723 else
8724 return True;
8725 end if;
8726 end Safe_Prefixed_Reference;
8728 -------------------------
8729 -- Within_In_Parameter --
8730 -------------------------
8732 function Within_In_Parameter (N : Node_Id) return Boolean is
8733 begin
8734 if not Comes_From_Source (N) then
8735 return False;
8737 elsif Is_Entity_Name (N) then
8738 return Ekind (Entity (N)) = E_In_Parameter;
8740 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8741 return Within_In_Parameter (Prefix (N));
8743 else
8744 return False;
8745 end if;
8746 end Within_In_Parameter;
8748 -- Start of processing for Side_Effect_Free
8750 begin
8751 -- If volatile reference, always consider it to have side effects
8753 if Is_Volatile_Reference (N) then
8754 return False;
8755 end if;
8757 -- Note on checks that could raise Constraint_Error. Strictly, if we
8758 -- take advantage of 11.6, these checks do not count as side effects.
8759 -- However, we would prefer to consider that they are side effects,
8760 -- since the backend CSE does not work very well on expressions which
8761 -- can raise Constraint_Error. On the other hand if we don't consider
8762 -- them to be side effect free, then we get some awkward expansions
8763 -- in -gnato mode, resulting in code insertions at a point where we
8764 -- do not have a clear model for performing the insertions.
8766 -- Special handling for entity names
8768 if Is_Entity_Name (N) then
8770 -- A type reference is always side effect free
8772 if Is_Type (Entity (N)) then
8773 return True;
8775 -- Variables are considered to be a side effect if Variable_Ref
8776 -- is set or if we have a volatile reference and Name_Req is off.
8777 -- If Name_Req is True then we can't help returning a name which
8778 -- effectively allows multiple references in any case.
8780 elsif Is_Variable (N, Use_Original_Node => False) then
8781 return not Variable_Ref
8782 and then (not Is_Volatile_Reference (N) or else Name_Req);
8784 -- Any other entity (e.g. a subtype name) is definitely side
8785 -- effect free.
8787 else
8788 return True;
8789 end if;
8791 -- A value known at compile time is always side effect free
8793 elsif Compile_Time_Known_Value (N) then
8794 return True;
8796 -- A variable renaming is not side-effect free, because the renaming
8797 -- will function like a macro in the front-end in some cases, and an
8798 -- assignment can modify the component designated by N, so we need to
8799 -- create a temporary for it.
8801 -- The guard testing for Entity being present is needed at least in
8802 -- the case of rewritten predicate expressions, and may well also be
8803 -- appropriate elsewhere. Obviously we can't go testing the entity
8804 -- field if it does not exist, so it's reasonable to say that this is
8805 -- not the renaming case if it does not exist.
8807 elsif Is_Entity_Name (Original_Node (N))
8808 and then Present (Entity (Original_Node (N)))
8809 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
8810 and then Ekind (Entity (Original_Node (N))) /= E_Constant
8811 then
8812 declare
8813 RO : constant Node_Id :=
8814 Renamed_Object (Entity (Original_Node (N)));
8816 begin
8817 -- If the renamed object is an indexed component, or an
8818 -- explicit dereference, then the designated object could
8819 -- be modified by an assignment.
8821 if Nkind_In (RO, N_Indexed_Component,
8822 N_Explicit_Dereference)
8823 then
8824 return False;
8826 -- A selected component must have a safe prefix
8828 elsif Nkind (RO) = N_Selected_Component then
8829 return Safe_Prefixed_Reference (RO);
8831 -- In all other cases, designated object cannot be changed so
8832 -- we are side effect free.
8834 else
8835 return True;
8836 end if;
8837 end;
8839 -- Remove_Side_Effects generates an object renaming declaration to
8840 -- capture the expression of a class-wide expression. In VM targets
8841 -- the frontend performs no expansion for dispatching calls to
8842 -- class- wide types since they are handled by the VM. Hence, we must
8843 -- locate here if this node corresponds to a previous invocation of
8844 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
8846 elsif VM_Target /= No_VM
8847 and then not Comes_From_Source (N)
8848 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
8849 and then Is_Class_Wide_Type (Typ)
8850 then
8851 return True;
8852 end if;
8854 -- For other than entity names and compile time known values,
8855 -- check the node kind for special processing.
8857 case Nkind (N) is
8859 -- An attribute reference is side effect free if its expressions
8860 -- are side effect free and its prefix is side effect free or
8861 -- is an entity reference.
8863 -- Is this right? what about x'first where x is a variable???
8865 when N_Attribute_Reference =>
8866 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8867 and then Attribute_Name (N) /= Name_Input
8868 and then (Is_Entity_Name (Prefix (N))
8869 or else Side_Effect_Free
8870 (Prefix (N), Name_Req, Variable_Ref));
8872 -- A binary operator is side effect free if and both operands are
8873 -- side effect free. For this purpose binary operators include
8874 -- membership tests and short circuit forms.
8876 when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
8877 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
8878 and then
8879 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8881 -- An explicit dereference is side effect free only if it is
8882 -- a side effect free prefixed reference.
8884 when N_Explicit_Dereference =>
8885 return Safe_Prefixed_Reference (N);
8887 -- An expression with action is side effect free if its expression
8888 -- is side effect free and it has no actions.
8890 when N_Expression_With_Actions =>
8891 return Is_Empty_List (Actions (N))
8892 and then
8893 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8895 -- A call to _rep_to_pos is side effect free, since we generate
8896 -- this pure function call ourselves. Moreover it is critically
8897 -- important to make this exception, since otherwise we can have
8898 -- discriminants in array components which don't look side effect
8899 -- free in the case of an array whose index type is an enumeration
8900 -- type with an enumeration rep clause.
8902 -- All other function calls are not side effect free
8904 when N_Function_Call =>
8905 return Nkind (Name (N)) = N_Identifier
8906 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
8907 and then
8908 Side_Effect_Free
8909 (First (Parameter_Associations (N)), Name_Req, Variable_Ref);
8911 -- An IF expression is side effect free if it's of a scalar type, and
8912 -- all its components are all side effect free (conditions and then
8913 -- actions and else actions). We restrict to scalar types, since it
8914 -- is annoying to deal with things like (if A then B else C)'First
8915 -- where the type involved is a string type.
8917 when N_If_Expression =>
8918 return Is_Scalar_Type (Typ)
8919 and then
8920 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref);
8922 -- An indexed component is side effect free if it is a side
8923 -- effect free prefixed reference and all the indexing
8924 -- expressions are side effect free.
8926 when N_Indexed_Component =>
8927 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8928 and then Safe_Prefixed_Reference (N);
8930 -- A type qualification is side effect free if the expression
8931 -- is side effect free.
8933 when N_Qualified_Expression =>
8934 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8936 -- A selected component is side effect free only if it is a side
8937 -- effect free prefixed reference. If it designates a component
8938 -- with a rep. clause it must be treated has having a potential
8939 -- side effect, because it may be modified through a renaming, and
8940 -- a subsequent use of the renaming as a macro will yield the
8941 -- wrong value. This complex interaction between renaming and
8942 -- removing side effects is a reminder that the latter has become
8943 -- a headache to maintain, and that it should be removed in favor
8944 -- of the gcc mechanism to capture values ???
8946 when N_Selected_Component =>
8947 if Nkind (Parent (N)) = N_Explicit_Dereference
8948 and then Has_Non_Standard_Rep (Designated_Type (Typ))
8949 then
8950 return False;
8951 else
8952 return Safe_Prefixed_Reference (N);
8953 end if;
8955 -- A range is side effect free if the bounds are side effect free
8957 when N_Range =>
8958 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
8959 and then
8960 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
8962 -- A slice is side effect free if it is a side effect free
8963 -- prefixed reference and the bounds are side effect free.
8965 when N_Slice =>
8966 return Side_Effect_Free
8967 (Discrete_Range (N), Name_Req, Variable_Ref)
8968 and then Safe_Prefixed_Reference (N);
8970 -- A type conversion is side effect free if the expression to be
8971 -- converted is side effect free.
8973 when N_Type_Conversion =>
8974 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8976 -- A unary operator is side effect free if the operand
8977 -- is side effect free.
8979 when N_Unary_Op =>
8980 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8982 -- An unchecked type conversion is side effect free only if it
8983 -- is safe and its argument is side effect free.
8985 when N_Unchecked_Type_Conversion =>
8986 return Safe_Unchecked_Type_Conversion (N)
8987 and then
8988 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8990 -- An unchecked expression is side effect free if its expression
8991 -- is side effect free.
8993 when N_Unchecked_Expression =>
8994 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8996 -- A literal is side effect free
8998 when N_Character_Literal |
8999 N_Integer_Literal |
9000 N_Real_Literal |
9001 N_String_Literal =>
9002 return True;
9004 -- We consider that anything else has side effects. This is a bit
9005 -- crude, but we are pretty close for most common cases, and we
9006 -- are certainly correct (i.e. we never return True when the
9007 -- answer should be False).
9009 when others =>
9010 return False;
9011 end case;
9012 end Side_Effect_Free;
9014 -- A list is side effect free if all elements of the list are side
9015 -- effect free.
9017 function Side_Effect_Free
9018 (L : List_Id;
9019 Name_Req : Boolean := False;
9020 Variable_Ref : Boolean := False) return Boolean
9022 N : Node_Id;
9024 begin
9025 if L = No_List or else L = Error_List then
9026 return True;
9028 else
9029 N := First (L);
9030 while Present (N) loop
9031 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
9032 return False;
9033 else
9034 Next (N);
9035 end if;
9036 end loop;
9038 return True;
9039 end if;
9040 end Side_Effect_Free;
9042 ----------------------------------
9043 -- Silly_Boolean_Array_Not_Test --
9044 ----------------------------------
9046 -- This procedure implements an odd and silly test. We explicitly check
9047 -- for the case where the 'First of the component type is equal to the
9048 -- 'Last of this component type, and if this is the case, we make sure
9049 -- that constraint error is raised. The reason is that the NOT is bound
9050 -- to cause CE in this case, and we will not otherwise catch it.
9052 -- No such check is required for AND and OR, since for both these cases
9053 -- False op False = False, and True op True = True. For the XOR case,
9054 -- see Silly_Boolean_Array_Xor_Test.
9056 -- Believe it or not, this was reported as a bug. Note that nearly always,
9057 -- the test will evaluate statically to False, so the code will be
9058 -- statically removed, and no extra overhead caused.
9060 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
9061 Loc : constant Source_Ptr := Sloc (N);
9062 CT : constant Entity_Id := Component_Type (T);
9064 begin
9065 -- The check we install is
9067 -- constraint_error when
9068 -- component_type'first = component_type'last
9069 -- and then array_type'Length /= 0)
9071 -- We need the last guard because we don't want to raise CE for empty
9072 -- arrays since no out of range values result. (Empty arrays with a
9073 -- component type of True .. True -- very useful -- even the ACATS
9074 -- does not test that marginal case).
9076 Insert_Action (N,
9077 Make_Raise_Constraint_Error (Loc,
9078 Condition =>
9079 Make_And_Then (Loc,
9080 Left_Opnd =>
9081 Make_Op_Eq (Loc,
9082 Left_Opnd =>
9083 Make_Attribute_Reference (Loc,
9084 Prefix => New_Occurrence_Of (CT, Loc),
9085 Attribute_Name => Name_First),
9087 Right_Opnd =>
9088 Make_Attribute_Reference (Loc,
9089 Prefix => New_Occurrence_Of (CT, Loc),
9090 Attribute_Name => Name_Last)),
9092 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9093 Reason => CE_Range_Check_Failed));
9094 end Silly_Boolean_Array_Not_Test;
9096 ----------------------------------
9097 -- Silly_Boolean_Array_Xor_Test --
9098 ----------------------------------
9100 -- This procedure implements an odd and silly test. We explicitly check
9101 -- for the XOR case where the component type is True .. True, since this
9102 -- will raise constraint error. A special check is required since CE
9103 -- will not be generated otherwise (cf Expand_Packed_Not).
9105 -- No such check is required for AND and OR, since for both these cases
9106 -- False op False = False, and True op True = True, and no check is
9107 -- required for the case of False .. False, since False xor False = False.
9108 -- See also Silly_Boolean_Array_Not_Test
9110 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
9111 Loc : constant Source_Ptr := Sloc (N);
9112 CT : constant Entity_Id := Component_Type (T);
9114 begin
9115 -- The check we install is
9117 -- constraint_error when
9118 -- Boolean (component_type'First)
9119 -- and then Boolean (component_type'Last)
9120 -- and then array_type'Length /= 0)
9122 -- We need the last guard because we don't want to raise CE for empty
9123 -- arrays since no out of range values result (Empty arrays with a
9124 -- component type of True .. True -- very useful -- even the ACATS
9125 -- does not test that marginal case).
9127 Insert_Action (N,
9128 Make_Raise_Constraint_Error (Loc,
9129 Condition =>
9130 Make_And_Then (Loc,
9131 Left_Opnd =>
9132 Make_And_Then (Loc,
9133 Left_Opnd =>
9134 Convert_To (Standard_Boolean,
9135 Make_Attribute_Reference (Loc,
9136 Prefix => New_Occurrence_Of (CT, Loc),
9137 Attribute_Name => Name_First)),
9139 Right_Opnd =>
9140 Convert_To (Standard_Boolean,
9141 Make_Attribute_Reference (Loc,
9142 Prefix => New_Occurrence_Of (CT, Loc),
9143 Attribute_Name => Name_Last))),
9145 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9146 Reason => CE_Range_Check_Failed));
9147 end Silly_Boolean_Array_Xor_Test;
9149 --------------------------
9150 -- Target_Has_Fixed_Ops --
9151 --------------------------
9153 Integer_Sized_Small : Ureal;
9154 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
9155 -- called (we don't want to compute it more than once).
9157 Long_Integer_Sized_Small : Ureal;
9158 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
9159 -- is called (we don't want to compute it more than once)
9161 First_Time_For_THFO : Boolean := True;
9162 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
9164 function Target_Has_Fixed_Ops
9165 (Left_Typ : Entity_Id;
9166 Right_Typ : Entity_Id;
9167 Result_Typ : Entity_Id) return Boolean
9169 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
9170 -- Return True if the given type is a fixed-point type with a small
9171 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
9172 -- an absolute value less than 1.0. This is currently limited to
9173 -- fixed-point types that map to Integer or Long_Integer.
9175 ------------------------
9176 -- Is_Fractional_Type --
9177 ------------------------
9179 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
9180 begin
9181 if Esize (Typ) = Standard_Integer_Size then
9182 return Small_Value (Typ) = Integer_Sized_Small;
9184 elsif Esize (Typ) = Standard_Long_Integer_Size then
9185 return Small_Value (Typ) = Long_Integer_Sized_Small;
9187 else
9188 return False;
9189 end if;
9190 end Is_Fractional_Type;
9192 -- Start of processing for Target_Has_Fixed_Ops
9194 begin
9195 -- Return False if Fractional_Fixed_Ops_On_Target is false
9197 if not Fractional_Fixed_Ops_On_Target then
9198 return False;
9199 end if;
9201 -- Here the target has Fractional_Fixed_Ops, if first time, compute
9202 -- standard constants used by Is_Fractional_Type.
9204 if First_Time_For_THFO then
9205 First_Time_For_THFO := False;
9207 Integer_Sized_Small :=
9208 UR_From_Components
9209 (Num => Uint_1,
9210 Den => UI_From_Int (Standard_Integer_Size - 1),
9211 Rbase => 2);
9213 Long_Integer_Sized_Small :=
9214 UR_From_Components
9215 (Num => Uint_1,
9216 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
9217 Rbase => 2);
9218 end if;
9220 -- Return True if target supports fixed-by-fixed multiply/divide for
9221 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
9222 -- and result types are equivalent fractional types.
9224 return Is_Fractional_Type (Base_Type (Left_Typ))
9225 and then Is_Fractional_Type (Base_Type (Right_Typ))
9226 and then Is_Fractional_Type (Base_Type (Result_Typ))
9227 and then Esize (Left_Typ) = Esize (Right_Typ)
9228 and then Esize (Left_Typ) = Esize (Result_Typ);
9229 end Target_Has_Fixed_Ops;
9231 ------------------------------------------
9232 -- Type_May_Have_Bit_Aligned_Components --
9233 ------------------------------------------
9235 function Type_May_Have_Bit_Aligned_Components
9236 (Typ : Entity_Id) return Boolean
9238 begin
9239 -- Array type, check component type
9241 if Is_Array_Type (Typ) then
9242 return
9243 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
9245 -- Record type, check components
9247 elsif Is_Record_Type (Typ) then
9248 declare
9249 E : Entity_Id;
9251 begin
9252 E := First_Component_Or_Discriminant (Typ);
9253 while Present (E) loop
9254 if Component_May_Be_Bit_Aligned (E)
9255 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
9256 then
9257 return True;
9258 end if;
9260 Next_Component_Or_Discriminant (E);
9261 end loop;
9263 return False;
9264 end;
9266 -- Type other than array or record is always OK
9268 else
9269 return False;
9270 end if;
9271 end Type_May_Have_Bit_Aligned_Components;
9273 ----------------------------------
9274 -- Within_Case_Or_If_Expression --
9275 ----------------------------------
9277 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
9278 Par : Node_Id;
9280 begin
9281 -- Locate an enclosing case or if expression. Note that these constructs
9282 -- can be expanded into Expression_With_Actions, hence the test of the
9283 -- original node.
9285 Par := Parent (N);
9286 while Present (Par) loop
9287 if Nkind_In (Original_Node (Par), N_Case_Expression,
9288 N_If_Expression)
9289 then
9290 return True;
9292 -- Prevent the search from going too far
9294 elsif Is_Body_Or_Package_Declaration (Par) then
9295 return False;
9296 end if;
9298 Par := Parent (Par);
9299 end loop;
9301 return False;
9302 end Within_Case_Or_If_Expression;
9304 --------------------------------
9305 -- Within_Internal_Subprogram --
9306 --------------------------------
9308 function Within_Internal_Subprogram return Boolean is
9309 S : Entity_Id;
9311 begin
9312 S := Current_Scope;
9313 while Present (S) and then not Is_Subprogram (S) loop
9314 S := Scope (S);
9315 end loop;
9317 return Present (S)
9318 and then Get_TSS_Name (S) /= TSS_Null
9319 and then not Is_Predicate_Function (S);
9320 end Within_Internal_Subprogram;
9322 ----------------------------
9323 -- Wrap_Cleanup_Procedure --
9324 ----------------------------
9326 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
9327 Loc : constant Source_Ptr := Sloc (N);
9328 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
9329 Stmts : constant List_Id := Statements (Stseq);
9330 begin
9331 if Abort_Allowed then
9332 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
9333 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
9334 end if;
9335 end Wrap_Cleanup_Procedure;
9337 end Exp_Util;