* internal.h (HAVE_ICONV): Undefine if we do not have HAVE_ICONV_H
[official-gcc.git] / gcc / dwarf2out.c
blob63a46149632b15c86c28d23547adce70ab699043
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
125 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
126 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
127 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
128 int flags;
130 flags = (! flag_pic
131 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
132 && (fde_encoding & 0x70) != DW_EH_PE_aligned
133 && (per_encoding & 0x70) != DW_EH_PE_absptr
134 && (per_encoding & 0x70) != DW_EH_PE_aligned
135 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
136 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
137 ? 0 : SECTION_WRITE;
138 named_section_flags (EH_FRAME_SECTION_NAME, flags);
139 #else
140 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
141 #endif
142 #endif
145 /* Version of targetm.eh_frame_section for systems using collect2. */
146 void
147 collect2_eh_frame_section (void)
149 tree label = get_file_function_name ('F');
151 data_section ();
152 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
153 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
154 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
157 /* Default version of targetm.eh_frame_section. */
158 void
159 default_eh_frame_section (void)
161 #ifdef EH_FRAME_SECTION_NAME
162 named_section_eh_frame_section ();
163 #else
164 collect2_eh_frame_section ();
165 #endif
168 /* Array of RTXes referenced by the debugging information, which therefore
169 must be kept around forever. */
170 static GTY(()) varray_type used_rtx_varray;
172 /* A pointer to the base of a list of incomplete types which might be
173 completed at some later time. incomplete_types_list needs to be a VARRAY
174 because we want to tell the garbage collector about it. */
175 static GTY(()) varray_type incomplete_types;
177 /* A pointer to the base of a table of references to declaration
178 scopes. This table is a display which tracks the nesting
179 of declaration scopes at the current scope and containing
180 scopes. This table is used to find the proper place to
181 define type declaration DIE's. */
182 static GTY(()) varray_type decl_scope_table;
184 /* How to start an assembler comment. */
185 #ifndef ASM_COMMENT_START
186 #define ASM_COMMENT_START ";#"
187 #endif
189 typedef struct dw_cfi_struct *dw_cfi_ref;
190 typedef struct dw_fde_struct *dw_fde_ref;
191 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
193 /* Call frames are described using a sequence of Call Frame
194 Information instructions. The register number, offset
195 and address fields are provided as possible operands;
196 their use is selected by the opcode field. */
198 enum dw_cfi_oprnd_type {
199 dw_cfi_oprnd_unused,
200 dw_cfi_oprnd_reg_num,
201 dw_cfi_oprnd_offset,
202 dw_cfi_oprnd_addr,
203 dw_cfi_oprnd_loc
206 typedef union dw_cfi_oprnd_struct GTY(())
208 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
209 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
210 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
211 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
213 dw_cfi_oprnd;
215 typedef struct dw_cfi_struct GTY(())
217 dw_cfi_ref dw_cfi_next;
218 enum dwarf_call_frame_info dw_cfi_opc;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd1;
221 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
222 dw_cfi_oprnd2;
224 dw_cfi_node;
226 /* This is how we define the location of the CFA. We use to handle it
227 as REG + OFFSET all the time, but now it can be more complex.
228 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
229 Instead of passing around REG and OFFSET, we pass a copy
230 of this structure. */
231 typedef struct cfa_loc GTY(())
233 unsigned long reg;
234 HOST_WIDE_INT offset;
235 HOST_WIDE_INT base_offset;
236 int indirect; /* 1 if CFA is accessed via a dereference. */
237 } dw_cfa_location;
239 /* All call frame descriptions (FDE's) in the GCC generated DWARF
240 refer to a single Common Information Entry (CIE), defined at
241 the beginning of the .debug_frame section. This use of a single
242 CIE obviates the need to keep track of multiple CIE's
243 in the DWARF generation routines below. */
245 typedef struct dw_fde_struct GTY(())
247 tree decl;
248 const char *dw_fde_begin;
249 const char *dw_fde_current_label;
250 const char *dw_fde_end;
251 dw_cfi_ref dw_fde_cfi;
252 unsigned funcdef_number;
253 unsigned all_throwers_are_sibcalls : 1;
254 unsigned nothrow : 1;
255 unsigned uses_eh_lsda : 1;
257 dw_fde_node;
259 /* Maximum size (in bytes) of an artificially generated label. */
260 #define MAX_ARTIFICIAL_LABEL_BYTES 30
262 /* The size of addresses as they appear in the Dwarf 2 data.
263 Some architectures use word addresses to refer to code locations,
264 but Dwarf 2 info always uses byte addresses. On such machines,
265 Dwarf 2 addresses need to be larger than the architecture's
266 pointers. */
267 #ifndef DWARF2_ADDR_SIZE
268 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
269 #endif
271 /* The size in bytes of a DWARF field indicating an offset or length
272 relative to a debug info section, specified to be 4 bytes in the
273 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
274 as PTR_SIZE. */
276 #ifndef DWARF_OFFSET_SIZE
277 #define DWARF_OFFSET_SIZE 4
278 #endif
280 /* According to the (draft) DWARF 3 specification, the initial length
281 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
282 bytes are 0xffffffff, followed by the length stored in the next 8
283 bytes.
285 However, the SGI/MIPS ABI uses an initial length which is equal to
286 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
288 #ifndef DWARF_INITIAL_LENGTH_SIZE
289 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
290 #endif
292 #define DWARF_VERSION 2
294 /* Round SIZE up to the nearest BOUNDARY. */
295 #define DWARF_ROUND(SIZE,BOUNDARY) \
296 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
298 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
299 #ifndef DWARF_CIE_DATA_ALIGNMENT
300 #ifdef STACK_GROWS_DOWNWARD
301 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
302 #else
303 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
304 #endif
305 #endif
307 /* A pointer to the base of a table that contains frame description
308 information for each routine. */
309 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
311 /* Number of elements currently allocated for fde_table. */
312 static GTY(()) unsigned fde_table_allocated;
314 /* Number of elements in fde_table currently in use. */
315 static GTY(()) unsigned fde_table_in_use;
317 /* Size (in elements) of increments by which we may expand the
318 fde_table. */
319 #define FDE_TABLE_INCREMENT 256
321 /* A list of call frame insns for the CIE. */
322 static GTY(()) dw_cfi_ref cie_cfi_head;
324 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
325 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
326 attribute that accelerates the lookup of the FDE associated
327 with the subprogram. This variable holds the table index of the FDE
328 associated with the current function (body) definition. */
329 static unsigned current_funcdef_fde;
330 #endif
332 struct indirect_string_node GTY(())
334 const char *str;
335 unsigned int refcount;
336 unsigned int form;
337 char *label;
340 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
342 static GTY(()) int dw2_string_counter;
343 static GTY(()) unsigned long dwarf2out_cfi_label_num;
345 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
347 /* Forward declarations for functions defined in this file. */
349 static char *stripattributes (const char *);
350 static const char *dwarf_cfi_name (unsigned);
351 static dw_cfi_ref new_cfi (void);
352 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
353 static void add_fde_cfi (const char *, dw_cfi_ref);
354 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
355 static void lookup_cfa (dw_cfa_location *);
356 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
357 static void initial_return_save (rtx);
358 static HOST_WIDE_INT stack_adjust_offset (rtx);
359 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
360 static void output_call_frame_info (int);
361 static void dwarf2out_stack_adjust (rtx);
362 static void flush_queued_reg_saves (void);
363 static bool clobbers_queued_reg_save (rtx);
364 static void dwarf2out_frame_debug_expr (rtx, const char *);
366 /* Support for complex CFA locations. */
367 static void output_cfa_loc (dw_cfi_ref);
368 static void get_cfa_from_loc_descr (dw_cfa_location *,
369 struct dw_loc_descr_struct *);
370 static struct dw_loc_descr_struct *build_cfa_loc
371 (dw_cfa_location *);
372 static void def_cfa_1 (const char *, dw_cfa_location *);
374 /* How to start an assembler comment. */
375 #ifndef ASM_COMMENT_START
376 #define ASM_COMMENT_START ";#"
377 #endif
379 /* Data and reference forms for relocatable data. */
380 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
381 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
383 #ifndef DEBUG_FRAME_SECTION
384 #define DEBUG_FRAME_SECTION ".debug_frame"
385 #endif
387 #ifndef FUNC_BEGIN_LABEL
388 #define FUNC_BEGIN_LABEL "LFB"
389 #endif
391 #ifndef FUNC_END_LABEL
392 #define FUNC_END_LABEL "LFE"
393 #endif
395 #ifndef FRAME_BEGIN_LABEL
396 #define FRAME_BEGIN_LABEL "Lframe"
397 #endif
398 #define CIE_AFTER_SIZE_LABEL "LSCIE"
399 #define CIE_END_LABEL "LECIE"
400 #define FDE_LABEL "LSFDE"
401 #define FDE_AFTER_SIZE_LABEL "LASFDE"
402 #define FDE_END_LABEL "LEFDE"
403 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
404 #define LINE_NUMBER_END_LABEL "LELT"
405 #define LN_PROLOG_AS_LABEL "LASLTP"
406 #define LN_PROLOG_END_LABEL "LELTP"
407 #define DIE_LABEL_PREFIX "DW"
409 /* The DWARF 2 CFA column which tracks the return address. Normally this
410 is the column for PC, or the first column after all of the hard
411 registers. */
412 #ifndef DWARF_FRAME_RETURN_COLUMN
413 #ifdef PC_REGNUM
414 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
415 #else
416 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
417 #endif
418 #endif
420 /* The mapping from gcc register number to DWARF 2 CFA column number. By
421 default, we just provide columns for all registers. */
422 #ifndef DWARF_FRAME_REGNUM
423 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
424 #endif
426 /* The offset from the incoming value of %sp to the top of the stack frame
427 for the current function. */
428 #ifndef INCOMING_FRAME_SP_OFFSET
429 #define INCOMING_FRAME_SP_OFFSET 0
430 #endif
432 /* Hook used by __throw. */
435 expand_builtin_dwarf_sp_column (void)
437 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
440 /* Return a pointer to a copy of the section string name S with all
441 attributes stripped off, and an asterisk prepended (for assemble_name). */
443 static inline char *
444 stripattributes (const char *s)
446 char *stripped = xmalloc (strlen (s) + 2);
447 char *p = stripped;
449 *p++ = '*';
451 while (*s && *s != ',')
452 *p++ = *s++;
454 *p = '\0';
455 return stripped;
458 /* Generate code to initialize the register size table. */
460 void
461 expand_builtin_init_dwarf_reg_sizes (tree address)
463 int i;
464 enum machine_mode mode = TYPE_MODE (char_type_node);
465 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
466 rtx mem = gen_rtx_MEM (BLKmode, addr);
467 bool wrote_return_column = false;
469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
472 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
473 enum machine_mode save_mode = reg_raw_mode[i];
474 HOST_WIDE_INT size;
476 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
477 save_mode = choose_hard_reg_mode (i, 1, true);
478 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
480 if (save_mode == VOIDmode)
481 continue;
482 wrote_return_column = true;
484 size = GET_MODE_SIZE (save_mode);
485 if (offset < 0)
486 continue;
488 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
491 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
492 gcc_assert (wrote_return_column);
493 i = DWARF_ALT_FRAME_RETURN_COLUMN;
494 wrote_return_column = false;
495 #else
496 i = DWARF_FRAME_RETURN_COLUMN;
497 #endif
499 if (! wrote_return_column)
501 enum machine_mode save_mode = Pmode;
502 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
503 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
504 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
508 /* Convert a DWARF call frame info. operation to its string name */
510 static const char *
511 dwarf_cfi_name (unsigned int cfi_opc)
513 switch (cfi_opc)
515 case DW_CFA_advance_loc:
516 return "DW_CFA_advance_loc";
517 case DW_CFA_offset:
518 return "DW_CFA_offset";
519 case DW_CFA_restore:
520 return "DW_CFA_restore";
521 case DW_CFA_nop:
522 return "DW_CFA_nop";
523 case DW_CFA_set_loc:
524 return "DW_CFA_set_loc";
525 case DW_CFA_advance_loc1:
526 return "DW_CFA_advance_loc1";
527 case DW_CFA_advance_loc2:
528 return "DW_CFA_advance_loc2";
529 case DW_CFA_advance_loc4:
530 return "DW_CFA_advance_loc4";
531 case DW_CFA_offset_extended:
532 return "DW_CFA_offset_extended";
533 case DW_CFA_restore_extended:
534 return "DW_CFA_restore_extended";
535 case DW_CFA_undefined:
536 return "DW_CFA_undefined";
537 case DW_CFA_same_value:
538 return "DW_CFA_same_value";
539 case DW_CFA_register:
540 return "DW_CFA_register";
541 case DW_CFA_remember_state:
542 return "DW_CFA_remember_state";
543 case DW_CFA_restore_state:
544 return "DW_CFA_restore_state";
545 case DW_CFA_def_cfa:
546 return "DW_CFA_def_cfa";
547 case DW_CFA_def_cfa_register:
548 return "DW_CFA_def_cfa_register";
549 case DW_CFA_def_cfa_offset:
550 return "DW_CFA_def_cfa_offset";
552 /* DWARF 3 */
553 case DW_CFA_def_cfa_expression:
554 return "DW_CFA_def_cfa_expression";
555 case DW_CFA_expression:
556 return "DW_CFA_expression";
557 case DW_CFA_offset_extended_sf:
558 return "DW_CFA_offset_extended_sf";
559 case DW_CFA_def_cfa_sf:
560 return "DW_CFA_def_cfa_sf";
561 case DW_CFA_def_cfa_offset_sf:
562 return "DW_CFA_def_cfa_offset_sf";
564 /* SGI/MIPS specific */
565 case DW_CFA_MIPS_advance_loc8:
566 return "DW_CFA_MIPS_advance_loc8";
568 /* GNU extensions */
569 case DW_CFA_GNU_window_save:
570 return "DW_CFA_GNU_window_save";
571 case DW_CFA_GNU_args_size:
572 return "DW_CFA_GNU_args_size";
573 case DW_CFA_GNU_negative_offset_extended:
574 return "DW_CFA_GNU_negative_offset_extended";
576 default:
577 return "DW_CFA_<unknown>";
581 /* Return a pointer to a newly allocated Call Frame Instruction. */
583 static inline dw_cfi_ref
584 new_cfi (void)
586 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
588 cfi->dw_cfi_next = NULL;
589 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
590 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
592 return cfi;
595 /* Add a Call Frame Instruction to list of instructions. */
597 static inline void
598 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
600 dw_cfi_ref *p;
602 /* Find the end of the chain. */
603 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
606 *p = cfi;
609 /* Generate a new label for the CFI info to refer to. */
611 char *
612 dwarf2out_cfi_label (void)
614 static char label[20];
616 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
617 ASM_OUTPUT_LABEL (asm_out_file, label);
618 return label;
621 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
622 or to the CIE if LABEL is NULL. */
624 static void
625 add_fde_cfi (const char *label, dw_cfi_ref cfi)
627 if (label)
629 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
631 if (*label == 0)
632 label = dwarf2out_cfi_label ();
634 if (fde->dw_fde_current_label == NULL
635 || strcmp (label, fde->dw_fde_current_label) != 0)
637 dw_cfi_ref xcfi;
639 fde->dw_fde_current_label = label = xstrdup (label);
641 /* Set the location counter to the new label. */
642 xcfi = new_cfi ();
643 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
644 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
645 add_cfi (&fde->dw_fde_cfi, xcfi);
648 add_cfi (&fde->dw_fde_cfi, cfi);
651 else
652 add_cfi (&cie_cfi_head, cfi);
655 /* Subroutine of lookup_cfa. */
657 static inline void
658 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
660 switch (cfi->dw_cfi_opc)
662 case DW_CFA_def_cfa_offset:
663 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
664 break;
665 case DW_CFA_def_cfa_register:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 break;
668 case DW_CFA_def_cfa:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
671 break;
672 case DW_CFA_def_cfa_expression:
673 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
674 break;
675 default:
676 break;
680 /* Find the previous value for the CFA. */
682 static void
683 lookup_cfa (dw_cfa_location *loc)
685 dw_cfi_ref cfi;
687 loc->reg = (unsigned long) -1;
688 loc->offset = 0;
689 loc->indirect = 0;
690 loc->base_offset = 0;
692 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
693 lookup_cfa_1 (cfi, loc);
695 if (fde_table_in_use)
697 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
698 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
699 lookup_cfa_1 (cfi, loc);
703 /* The current rule for calculating the DWARF2 canonical frame address. */
704 static dw_cfa_location cfa;
706 /* The register used for saving registers to the stack, and its offset
707 from the CFA. */
708 static dw_cfa_location cfa_store;
710 /* The running total of the size of arguments pushed onto the stack. */
711 static HOST_WIDE_INT args_size;
713 /* The last args_size we actually output. */
714 static HOST_WIDE_INT old_args_size;
716 /* Entry point to update the canonical frame address (CFA).
717 LABEL is passed to add_fde_cfi. The value of CFA is now to be
718 calculated from REG+OFFSET. */
720 void
721 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
723 dw_cfa_location loc;
724 loc.indirect = 0;
725 loc.base_offset = 0;
726 loc.reg = reg;
727 loc.offset = offset;
728 def_cfa_1 (label, &loc);
731 /* This routine does the actual work. The CFA is now calculated from
732 the dw_cfa_location structure. */
734 static void
735 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
737 dw_cfi_ref cfi;
738 dw_cfa_location old_cfa, loc;
740 cfa = *loc_p;
741 loc = *loc_p;
743 if (cfa_store.reg == loc.reg && loc.indirect == 0)
744 cfa_store.offset = loc.offset;
746 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
747 lookup_cfa (&old_cfa);
749 /* If nothing changed, no need to issue any call frame instructions. */
750 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
751 && loc.indirect == old_cfa.indirect
752 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
753 return;
755 cfi = new_cfi ();
757 if (loc.reg == old_cfa.reg && !loc.indirect)
759 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
760 indicating the CFA register did not change but the offset
761 did. */
762 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
763 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
766 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
767 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
768 && !loc.indirect)
770 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
771 indicating the CFA register has changed to <register> but the
772 offset has not changed. */
773 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
776 #endif
778 else if (loc.indirect == 0)
780 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
781 indicating the CFA register has changed to <register> with
782 the specified offset. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
785 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
787 else
789 /* Construct a DW_CFA_def_cfa_expression instruction to
790 calculate the CFA using a full location expression since no
791 register-offset pair is available. */
792 struct dw_loc_descr_struct *loc_list;
794 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
795 loc_list = build_cfa_loc (&loc);
796 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
799 add_fde_cfi (label, cfi);
802 /* Add the CFI for saving a register. REG is the CFA column number.
803 LABEL is passed to add_fde_cfi.
804 If SREG is -1, the register is saved at OFFSET from the CFA;
805 otherwise it is saved in SREG. */
807 static void
808 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
810 dw_cfi_ref cfi = new_cfi ();
812 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
814 if (sreg == INVALID_REGNUM)
816 if (reg & ~0x3f)
817 /* The register number won't fit in 6 bits, so we have to use
818 the long form. */
819 cfi->dw_cfi_opc = DW_CFA_offset_extended;
820 else
821 cfi->dw_cfi_opc = DW_CFA_offset;
823 #ifdef ENABLE_CHECKING
825 /* If we get an offset that is not a multiple of
826 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
827 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
828 description. */
829 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
831 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
840 else if (sreg == reg)
841 cfi->dw_cfi_opc = DW_CFA_same_value;
842 else
844 cfi->dw_cfi_opc = DW_CFA_register;
845 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
848 add_fde_cfi (label, cfi);
851 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
852 This CFI tells the unwinder that it needs to restore the window registers
853 from the previous frame's window save area.
855 ??? Perhaps we should note in the CIE where windows are saved (instead of
856 assuming 0(cfa)) and what registers are in the window. */
858 void
859 dwarf2out_window_save (const char *label)
861 dw_cfi_ref cfi = new_cfi ();
863 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
864 add_fde_cfi (label, cfi);
867 /* Add a CFI to update the running total of the size of arguments
868 pushed onto the stack. */
870 void
871 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 dw_cfi_ref cfi;
875 if (size == old_args_size)
876 return;
878 old_args_size = size;
880 cfi = new_cfi ();
881 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
882 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
883 add_fde_cfi (label, cfi);
886 /* Entry point for saving a register to the stack. REG is the GCC register
887 number. LABEL and OFFSET are passed to reg_save. */
889 void
890 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
895 /* Entry point for saving the return address in the stack.
896 LABEL and OFFSET are passed to reg_save. */
898 void
899 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
904 /* Entry point for saving the return address in a register.
905 LABEL and SREG are passed to reg_save. */
907 void
908 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
913 /* Record the initial position of the return address. RTL is
914 INCOMING_RETURN_ADDR_RTX. */
916 static void
917 initial_return_save (rtx rtl)
919 unsigned int reg = INVALID_REGNUM;
920 HOST_WIDE_INT offset = 0;
922 switch (GET_CODE (rtl))
924 case REG:
925 /* RA is in a register. */
926 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
927 break;
929 case MEM:
930 /* RA is on the stack. */
931 rtl = XEXP (rtl, 0);
932 switch (GET_CODE (rtl))
934 case REG:
935 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
936 offset = 0;
937 break;
939 case PLUS:
940 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
941 offset = INTVAL (XEXP (rtl, 1));
942 break;
944 case MINUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = -INTVAL (XEXP (rtl, 1));
947 break;
949 default:
950 gcc_unreachable ();
953 break;
955 case PLUS:
956 /* The return address is at some offset from any value we can
957 actually load. For instance, on the SPARC it is in %i7+8. Just
958 ignore the offset for now; it doesn't matter for unwinding frames. */
959 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
960 initial_return_save (XEXP (rtl, 0));
961 return;
963 default:
964 gcc_unreachable ();
967 if (reg != DWARF_FRAME_RETURN_COLUMN)
968 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
971 /* Given a SET, calculate the amount of stack adjustment it
972 contains. */
974 static HOST_WIDE_INT
975 stack_adjust_offset (rtx pattern)
977 rtx src = SET_SRC (pattern);
978 rtx dest = SET_DEST (pattern);
979 HOST_WIDE_INT offset = 0;
980 enum rtx_code code;
982 if (dest == stack_pointer_rtx)
984 /* (set (reg sp) (plus (reg sp) (const_int))) */
985 code = GET_CODE (src);
986 if (! (code == PLUS || code == MINUS)
987 || XEXP (src, 0) != stack_pointer_rtx
988 || GET_CODE (XEXP (src, 1)) != CONST_INT)
989 return 0;
991 offset = INTVAL (XEXP (src, 1));
992 if (code == PLUS)
993 offset = -offset;
995 else if (MEM_P (dest))
997 /* (set (mem (pre_dec (reg sp))) (foo)) */
998 src = XEXP (dest, 0);
999 code = GET_CODE (src);
1001 switch (code)
1003 case PRE_MODIFY:
1004 case POST_MODIFY:
1005 if (XEXP (src, 0) == stack_pointer_rtx)
1007 rtx val = XEXP (XEXP (src, 1), 1);
1008 /* We handle only adjustments by constant amount. */
1009 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1010 && GET_CODE (val) == CONST_INT);
1011 offset = -INTVAL (val);
1012 break;
1014 return 0;
1016 case PRE_DEC:
1017 case POST_DEC:
1018 if (XEXP (src, 0) == stack_pointer_rtx)
1020 offset = GET_MODE_SIZE (GET_MODE (dest));
1021 break;
1023 return 0;
1025 case PRE_INC:
1026 case POST_INC:
1027 if (XEXP (src, 0) == stack_pointer_rtx)
1029 offset = -GET_MODE_SIZE (GET_MODE (dest));
1030 break;
1032 return 0;
1034 default:
1035 return 0;
1038 else
1039 return 0;
1041 return offset;
1044 /* Check INSN to see if it looks like a push or a stack adjustment, and
1045 make a note of it if it does. EH uses this information to find out how
1046 much extra space it needs to pop off the stack. */
1048 static void
1049 dwarf2out_stack_adjust (rtx insn)
1051 HOST_WIDE_INT offset;
1052 const char *label;
1053 int i;
1055 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1056 with this function. Proper support would require all frame-related
1057 insns to be marked, and to be able to handle saving state around
1058 epilogues textually in the middle of the function. */
1059 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1060 return;
1062 if (!flag_asynchronous_unwind_tables && CALL_P (insn))
1064 /* Extract the size of the args from the CALL rtx itself. */
1065 insn = PATTERN (insn);
1066 if (GET_CODE (insn) == PARALLEL)
1067 insn = XVECEXP (insn, 0, 0);
1068 if (GET_CODE (insn) == SET)
1069 insn = SET_SRC (insn);
1070 gcc_assert (GET_CODE (insn) == CALL);
1072 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1073 return;
1076 /* If only calls can throw, and we have a frame pointer,
1077 save up adjustments until we see the CALL_INSN. */
1078 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1079 return;
1081 if (BARRIER_P (insn))
1083 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1084 the compiler will have already emitted a stack adjustment, but
1085 doesn't bother for calls to noreturn functions. */
1086 #ifdef STACK_GROWS_DOWNWARD
1087 offset = -args_size;
1088 #else
1089 offset = args_size;
1090 #endif
1092 else if (GET_CODE (PATTERN (insn)) == SET)
1093 offset = stack_adjust_offset (PATTERN (insn));
1094 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1095 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1097 /* There may be stack adjustments inside compound insns. Search
1098 for them. */
1099 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1100 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1101 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1103 else
1104 return;
1106 if (offset == 0)
1107 return;
1109 if (cfa.reg == STACK_POINTER_REGNUM)
1110 cfa.offset += offset;
1112 #ifndef STACK_GROWS_DOWNWARD
1113 offset = -offset;
1114 #endif
1116 args_size += offset;
1117 if (args_size < 0)
1118 args_size = 0;
1120 label = dwarf2out_cfi_label ();
1121 def_cfa_1 (label, &cfa);
1122 dwarf2out_args_size (label, args_size);
1125 #endif
1127 /* We delay emitting a register save until either (a) we reach the end
1128 of the prologue or (b) the register is clobbered. This clusters
1129 register saves so that there are fewer pc advances. */
1131 struct queued_reg_save GTY(())
1133 struct queued_reg_save *next;
1134 rtx reg;
1135 HOST_WIDE_INT cfa_offset;
1136 rtx saved_reg;
1139 static GTY(()) struct queued_reg_save *queued_reg_saves;
1141 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1142 struct reg_saved_in_data GTY(()) {
1143 rtx orig_reg;
1144 rtx saved_in_reg;
1147 /* A list of registers saved in other registers.
1148 The list intentionally has a small maximum capacity of 4; if your
1149 port needs more than that, you might consider implementing a
1150 more efficient data structure. */
1151 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1152 static GTY(()) size_t num_regs_saved_in_regs;
1154 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1155 static const char *last_reg_save_label;
1157 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1158 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1160 static void
1161 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1163 struct queued_reg_save *q;
1165 /* Duplicates waste space, but it's also necessary to remove them
1166 for correctness, since the queue gets output in reverse
1167 order. */
1168 for (q = queued_reg_saves; q != NULL; q = q->next)
1169 if (REGNO (q->reg) == REGNO (reg))
1170 break;
1172 if (q == NULL)
1174 q = ggc_alloc (sizeof (*q));
1175 q->next = queued_reg_saves;
1176 queued_reg_saves = q;
1179 q->reg = reg;
1180 q->cfa_offset = offset;
1181 q->saved_reg = sreg;
1183 last_reg_save_label = label;
1186 /* Output all the entries in QUEUED_REG_SAVES. */
1188 static void
1189 flush_queued_reg_saves (void)
1191 struct queued_reg_save *q;
1193 for (q = queued_reg_saves; q; q = q->next)
1195 size_t i;
1196 unsigned int reg, sreg;
1198 for (i = 0; i < num_regs_saved_in_regs; i++)
1199 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1200 break;
1201 if (q->saved_reg && i == num_regs_saved_in_regs)
1203 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1204 num_regs_saved_in_regs++;
1206 if (i != num_regs_saved_in_regs)
1208 regs_saved_in_regs[i].orig_reg = q->reg;
1209 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1212 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1213 if (q->saved_reg)
1214 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1215 else
1216 sreg = INVALID_REGNUM;
1217 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1220 queued_reg_saves = NULL;
1221 last_reg_save_label = NULL;
1224 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1225 location for? Or, does it clobber a register which we've previously
1226 said that some other register is saved in, and for which we now
1227 have a new location for? */
1229 static bool
1230 clobbers_queued_reg_save (rtx insn)
1232 struct queued_reg_save *q;
1234 for (q = queued_reg_saves; q; q = q->next)
1236 size_t i;
1237 if (modified_in_p (q->reg, insn))
1238 return true;
1239 for (i = 0; i < num_regs_saved_in_regs; i++)
1240 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1241 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1242 return true;
1245 return false;
1248 /* What register, if any, is currently saved in REG? */
1250 static rtx
1251 reg_saved_in (rtx reg)
1253 unsigned int regn = REGNO (reg);
1254 size_t i;
1255 struct queued_reg_save *q;
1257 for (q = queued_reg_saves; q; q = q->next)
1258 if (q->saved_reg && regn == REGNO (q->saved_reg))
1259 return q->reg;
1261 for (i = 0; i < num_regs_saved_in_regs; i++)
1262 if (regs_saved_in_regs[i].saved_in_reg
1263 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1264 return regs_saved_in_regs[i].orig_reg;
1266 return NULL_RTX;
1270 /* A temporary register holding an integral value used in adjusting SP
1271 or setting up the store_reg. The "offset" field holds the integer
1272 value, not an offset. */
1273 static dw_cfa_location cfa_temp;
1275 /* Record call frame debugging information for an expression EXPR,
1276 which either sets SP or FP (adjusting how we calculate the frame
1277 address) or saves a register to the stack or another register.
1278 LABEL indicates the address of EXPR.
1280 This function encodes a state machine mapping rtxes to actions on
1281 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1282 users need not read the source code.
1284 The High-Level Picture
1286 Changes in the register we use to calculate the CFA: Currently we
1287 assume that if you copy the CFA register into another register, we
1288 should take the other one as the new CFA register; this seems to
1289 work pretty well. If it's wrong for some target, it's simple
1290 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1292 Changes in the register we use for saving registers to the stack:
1293 This is usually SP, but not always. Again, we deduce that if you
1294 copy SP into another register (and SP is not the CFA register),
1295 then the new register is the one we will be using for register
1296 saves. This also seems to work.
1298 Register saves: There's not much guesswork about this one; if
1299 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1300 register save, and the register used to calculate the destination
1301 had better be the one we think we're using for this purpose.
1302 It's also assumed that a copy from a call-saved register to another
1303 register is saving that register if RTX_FRAME_RELATED_P is set on
1304 that instruction. If the copy is from a call-saved register to
1305 the *same* register, that means that the register is now the same
1306 value as in the caller.
1308 Except: If the register being saved is the CFA register, and the
1309 offset is nonzero, we are saving the CFA, so we assume we have to
1310 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1311 the intent is to save the value of SP from the previous frame.
1313 In addition, if a register has previously been saved to a different
1314 register,
1316 Invariants / Summaries of Rules
1318 cfa current rule for calculating the CFA. It usually
1319 consists of a register and an offset.
1320 cfa_store register used by prologue code to save things to the stack
1321 cfa_store.offset is the offset from the value of
1322 cfa_store.reg to the actual CFA
1323 cfa_temp register holding an integral value. cfa_temp.offset
1324 stores the value, which will be used to adjust the
1325 stack pointer. cfa_temp is also used like cfa_store,
1326 to track stores to the stack via fp or a temp reg.
1328 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1329 with cfa.reg as the first operand changes the cfa.reg and its
1330 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1331 cfa_temp.offset.
1333 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1334 expression yielding a constant. This sets cfa_temp.reg
1335 and cfa_temp.offset.
1337 Rule 5: Create a new register cfa_store used to save items to the
1338 stack.
1340 Rules 10-14: Save a register to the stack. Define offset as the
1341 difference of the original location and cfa_store's
1342 location (or cfa_temp's location if cfa_temp is used).
1344 The Rules
1346 "{a,b}" indicates a choice of a xor b.
1347 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1349 Rule 1:
1350 (set <reg1> <reg2>:cfa.reg)
1351 effects: cfa.reg = <reg1>
1352 cfa.offset unchanged
1353 cfa_temp.reg = <reg1>
1354 cfa_temp.offset = cfa.offset
1356 Rule 2:
1357 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1358 {<const_int>,<reg>:cfa_temp.reg}))
1359 effects: cfa.reg = sp if fp used
1360 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1361 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1362 if cfa_store.reg==sp
1364 Rule 3:
1365 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1366 effects: cfa.reg = fp
1367 cfa_offset += +/- <const_int>
1369 Rule 4:
1370 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1371 constraints: <reg1> != fp
1372 <reg1> != sp
1373 effects: cfa.reg = <reg1>
1374 cfa_temp.reg = <reg1>
1375 cfa_temp.offset = cfa.offset
1377 Rule 5:
1378 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1379 constraints: <reg1> != fp
1380 <reg1> != sp
1381 effects: cfa_store.reg = <reg1>
1382 cfa_store.offset = cfa.offset - cfa_temp.offset
1384 Rule 6:
1385 (set <reg> <const_int>)
1386 effects: cfa_temp.reg = <reg>
1387 cfa_temp.offset = <const_int>
1389 Rule 7:
1390 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1391 effects: cfa_temp.reg = <reg1>
1392 cfa_temp.offset |= <const_int>
1394 Rule 8:
1395 (set <reg> (high <exp>))
1396 effects: none
1398 Rule 9:
1399 (set <reg> (lo_sum <exp> <const_int>))
1400 effects: cfa_temp.reg = <reg>
1401 cfa_temp.offset = <const_int>
1403 Rule 10:
1404 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1405 effects: cfa_store.offset -= <const_int>
1406 cfa.offset = cfa_store.offset if cfa.reg == sp
1407 cfa.reg = sp
1408 cfa.base_offset = -cfa_store.offset
1410 Rule 11:
1411 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1412 effects: cfa_store.offset += -/+ mode_size(mem)
1413 cfa.offset = cfa_store.offset if cfa.reg == sp
1414 cfa.reg = sp
1415 cfa.base_offset = -cfa_store.offset
1417 Rule 12:
1418 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1420 <reg2>)
1421 effects: cfa.reg = <reg1>
1422 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1424 Rule 13:
1425 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1426 effects: cfa.reg = <reg1>
1427 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1429 Rule 14:
1430 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1431 effects: cfa.reg = <reg1>
1432 cfa.base_offset = -cfa_temp.offset
1433 cfa_temp.offset -= mode_size(mem) */
1435 static void
1436 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1438 rtx src, dest;
1439 HOST_WIDE_INT offset;
1441 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1442 the PARALLEL independently. The first element is always processed if
1443 it is a SET. This is for backward compatibility. Other elements
1444 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1445 flag is set in them. */
1446 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1448 int par_index;
1449 int limit = XVECLEN (expr, 0);
1451 for (par_index = 0; par_index < limit; par_index++)
1452 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1453 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1454 || par_index == 0))
1455 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1457 return;
1460 gcc_assert (GET_CODE (expr) == SET);
1462 src = SET_SRC (expr);
1463 dest = SET_DEST (expr);
1465 if (GET_CODE (src) == REG)
1467 rtx rsi = reg_saved_in (src);
1468 if (rsi)
1469 src = rsi;
1472 switch (GET_CODE (dest))
1474 case REG:
1475 switch (GET_CODE (src))
1477 /* Setting FP from SP. */
1478 case REG:
1479 if (cfa.reg == (unsigned) REGNO (src))
1481 /* Rule 1 */
1482 /* Update the CFA rule wrt SP or FP. Make sure src is
1483 relative to the current CFA register.
1485 We used to require that dest be either SP or FP, but the
1486 ARM copies SP to a temporary register, and from there to
1487 FP. So we just rely on the backends to only set
1488 RTX_FRAME_RELATED_P on appropriate insns. */
1489 cfa.reg = REGNO (dest);
1490 cfa_temp.reg = cfa.reg;
1491 cfa_temp.offset = cfa.offset;
1493 else
1495 /* Saving a register in a register. */
1496 gcc_assert (call_used_regs [REGNO (dest)]
1497 && !fixed_regs [REGNO (dest)]);
1498 queue_reg_save (label, src, dest, 0);
1500 break;
1502 case PLUS:
1503 case MINUS:
1504 case LO_SUM:
1505 if (dest == stack_pointer_rtx)
1507 /* Rule 2 */
1508 /* Adjusting SP. */
1509 switch (GET_CODE (XEXP (src, 1)))
1511 case CONST_INT:
1512 offset = INTVAL (XEXP (src, 1));
1513 break;
1514 case REG:
1515 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1516 == cfa_temp.reg);
1517 offset = cfa_temp.offset;
1518 break;
1519 default:
1520 gcc_unreachable ();
1523 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1525 /* Restoring SP from FP in the epilogue. */
1526 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1527 cfa.reg = STACK_POINTER_REGNUM;
1529 else if (GET_CODE (src) == LO_SUM)
1530 /* Assume we've set the source reg of the LO_SUM from sp. */
1532 else
1533 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1535 if (GET_CODE (src) != MINUS)
1536 offset = -offset;
1537 if (cfa.reg == STACK_POINTER_REGNUM)
1538 cfa.offset += offset;
1539 if (cfa_store.reg == STACK_POINTER_REGNUM)
1540 cfa_store.offset += offset;
1542 else if (dest == hard_frame_pointer_rtx)
1544 /* Rule 3 */
1545 /* Either setting the FP from an offset of the SP,
1546 or adjusting the FP */
1547 gcc_assert (frame_pointer_needed);
1549 gcc_assert (REG_P (XEXP (src, 0))
1550 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1551 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1552 offset = INTVAL (XEXP (src, 1));
1553 if (GET_CODE (src) != MINUS)
1554 offset = -offset;
1555 cfa.offset += offset;
1556 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1558 else
1560 gcc_assert (GET_CODE (src) != MINUS);
1562 /* Rule 4 */
1563 if (REG_P (XEXP (src, 0))
1564 && REGNO (XEXP (src, 0)) == cfa.reg
1565 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1567 /* Setting a temporary CFA register that will be copied
1568 into the FP later on. */
1569 offset = - INTVAL (XEXP (src, 1));
1570 cfa.offset += offset;
1571 cfa.reg = REGNO (dest);
1572 /* Or used to save regs to the stack. */
1573 cfa_temp.reg = cfa.reg;
1574 cfa_temp.offset = cfa.offset;
1577 /* Rule 5 */
1578 else if (REG_P (XEXP (src, 0))
1579 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1580 && XEXP (src, 1) == stack_pointer_rtx)
1582 /* Setting a scratch register that we will use instead
1583 of SP for saving registers to the stack. */
1584 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1585 cfa_store.reg = REGNO (dest);
1586 cfa_store.offset = cfa.offset - cfa_temp.offset;
1589 /* Rule 9 */
1590 else if (GET_CODE (src) == LO_SUM
1591 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1593 cfa_temp.reg = REGNO (dest);
1594 cfa_temp.offset = INTVAL (XEXP (src, 1));
1596 else
1597 gcc_unreachable ();
1599 break;
1601 /* Rule 6 */
1602 case CONST_INT:
1603 cfa_temp.reg = REGNO (dest);
1604 cfa_temp.offset = INTVAL (src);
1605 break;
1607 /* Rule 7 */
1608 case IOR:
1609 gcc_assert (REG_P (XEXP (src, 0))
1610 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1611 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1613 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1614 cfa_temp.reg = REGNO (dest);
1615 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1616 break;
1618 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1619 which will fill in all of the bits. */
1620 /* Rule 8 */
1621 case HIGH:
1622 break;
1624 default:
1625 gcc_unreachable ();
1628 def_cfa_1 (label, &cfa);
1629 break;
1631 case MEM:
1632 gcc_assert (REG_P (src));
1634 /* Saving a register to the stack. Make sure dest is relative to the
1635 CFA register. */
1636 switch (GET_CODE (XEXP (dest, 0)))
1638 /* Rule 10 */
1639 /* With a push. */
1640 case PRE_MODIFY:
1641 /* We can't handle variable size modifications. */
1642 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1643 == CONST_INT);
1644 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1646 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1647 && cfa_store.reg == STACK_POINTER_REGNUM);
1649 cfa_store.offset += offset;
1650 if (cfa.reg == STACK_POINTER_REGNUM)
1651 cfa.offset = cfa_store.offset;
1653 offset = -cfa_store.offset;
1654 break;
1656 /* Rule 11 */
1657 case PRE_INC:
1658 case PRE_DEC:
1659 offset = GET_MODE_SIZE (GET_MODE (dest));
1660 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1661 offset = -offset;
1663 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1664 && cfa_store.reg == STACK_POINTER_REGNUM);
1666 cfa_store.offset += offset;
1667 if (cfa.reg == STACK_POINTER_REGNUM)
1668 cfa.offset = cfa_store.offset;
1670 offset = -cfa_store.offset;
1671 break;
1673 /* Rule 12 */
1674 /* With an offset. */
1675 case PLUS:
1676 case MINUS:
1677 case LO_SUM:
1679 int regno;
1681 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1682 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1683 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1684 offset = -offset;
1686 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1688 if (cfa_store.reg == (unsigned) regno)
1689 offset -= cfa_store.offset;
1690 else
1692 gcc_assert (cfa_temp.reg == (unsigned) regno);
1693 offset -= cfa_temp.offset;
1696 break;
1698 /* Rule 13 */
1699 /* Without an offset. */
1700 case REG:
1702 int regno = REGNO (XEXP (dest, 0));
1704 if (cfa_store.reg == (unsigned) regno)
1705 offset = -cfa_store.offset;
1706 else
1708 gcc_assert (cfa_temp.reg == (unsigned) regno);
1709 offset = -cfa_temp.offset;
1712 break;
1714 /* Rule 14 */
1715 case POST_INC:
1716 gcc_assert (cfa_temp.reg
1717 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1718 offset = -cfa_temp.offset;
1719 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1720 break;
1722 default:
1723 gcc_unreachable ();
1726 if (REGNO (src) != STACK_POINTER_REGNUM
1727 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1728 && (unsigned) REGNO (src) == cfa.reg)
1730 /* We're storing the current CFA reg into the stack. */
1732 if (cfa.offset == 0)
1734 /* If the source register is exactly the CFA, assume
1735 we're saving SP like any other register; this happens
1736 on the ARM. */
1737 def_cfa_1 (label, &cfa);
1738 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1739 break;
1741 else
1743 /* Otherwise, we'll need to look in the stack to
1744 calculate the CFA. */
1745 rtx x = XEXP (dest, 0);
1747 if (!REG_P (x))
1748 x = XEXP (x, 0);
1749 gcc_assert (REG_P (x));
1751 cfa.reg = REGNO (x);
1752 cfa.base_offset = offset;
1753 cfa.indirect = 1;
1754 def_cfa_1 (label, &cfa);
1755 break;
1759 def_cfa_1 (label, &cfa);
1760 queue_reg_save (label, src, NULL_RTX, offset);
1761 break;
1763 default:
1764 gcc_unreachable ();
1768 /* Record call frame debugging information for INSN, which either
1769 sets SP or FP (adjusting how we calculate the frame address) or saves a
1770 register to the stack. If INSN is NULL_RTX, initialize our state. */
1772 void
1773 dwarf2out_frame_debug (rtx insn)
1775 const char *label;
1776 rtx src;
1778 if (insn == NULL_RTX)
1780 size_t i;
1782 /* Flush any queued register saves. */
1783 flush_queued_reg_saves ();
1785 /* Set up state for generating call frame debug info. */
1786 lookup_cfa (&cfa);
1787 gcc_assert (cfa.reg
1788 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1790 cfa.reg = STACK_POINTER_REGNUM;
1791 cfa_store = cfa;
1792 cfa_temp.reg = -1;
1793 cfa_temp.offset = 0;
1795 for (i = 0; i < num_regs_saved_in_regs; i++)
1797 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1798 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1800 num_regs_saved_in_regs = 0;
1801 return;
1804 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1805 flush_queued_reg_saves ();
1807 if (! RTX_FRAME_RELATED_P (insn))
1809 if (!ACCUMULATE_OUTGOING_ARGS)
1810 dwarf2out_stack_adjust (insn);
1812 return;
1815 label = dwarf2out_cfi_label ();
1816 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1817 if (src)
1818 insn = XEXP (src, 0);
1819 else
1820 insn = PATTERN (insn);
1822 dwarf2out_frame_debug_expr (insn, label);
1825 #endif
1827 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1828 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1829 (enum dwarf_call_frame_info cfi);
1831 static enum dw_cfi_oprnd_type
1832 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1834 switch (cfi)
1836 case DW_CFA_nop:
1837 case DW_CFA_GNU_window_save:
1838 return dw_cfi_oprnd_unused;
1840 case DW_CFA_set_loc:
1841 case DW_CFA_advance_loc1:
1842 case DW_CFA_advance_loc2:
1843 case DW_CFA_advance_loc4:
1844 case DW_CFA_MIPS_advance_loc8:
1845 return dw_cfi_oprnd_addr;
1847 case DW_CFA_offset:
1848 case DW_CFA_offset_extended:
1849 case DW_CFA_def_cfa:
1850 case DW_CFA_offset_extended_sf:
1851 case DW_CFA_def_cfa_sf:
1852 case DW_CFA_restore_extended:
1853 case DW_CFA_undefined:
1854 case DW_CFA_same_value:
1855 case DW_CFA_def_cfa_register:
1856 case DW_CFA_register:
1857 return dw_cfi_oprnd_reg_num;
1859 case DW_CFA_def_cfa_offset:
1860 case DW_CFA_GNU_args_size:
1861 case DW_CFA_def_cfa_offset_sf:
1862 return dw_cfi_oprnd_offset;
1864 case DW_CFA_def_cfa_expression:
1865 case DW_CFA_expression:
1866 return dw_cfi_oprnd_loc;
1868 default:
1869 gcc_unreachable ();
1873 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1874 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1875 (enum dwarf_call_frame_info cfi);
1877 static enum dw_cfi_oprnd_type
1878 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1880 switch (cfi)
1882 case DW_CFA_def_cfa:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_offset:
1885 case DW_CFA_offset_extended_sf:
1886 case DW_CFA_offset_extended:
1887 return dw_cfi_oprnd_offset;
1889 case DW_CFA_register:
1890 return dw_cfi_oprnd_reg_num;
1892 default:
1893 return dw_cfi_oprnd_unused;
1897 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1899 /* Map register numbers held in the call frame info that gcc has
1900 collected using DWARF_FRAME_REGNUM to those that should be output in
1901 .debug_frame and .eh_frame. */
1902 #ifndef DWARF2_FRAME_REG_OUT
1903 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1904 #endif
1906 /* Output a Call Frame Information opcode and its operand(s). */
1908 static void
1909 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1911 unsigned long r;
1912 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1913 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1914 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1915 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1916 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1917 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1919 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1920 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1921 "DW_CFA_offset, column 0x%lx", r);
1922 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1924 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1926 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1927 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1928 "DW_CFA_restore, column 0x%lx", r);
1930 else
1932 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1933 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1935 switch (cfi->dw_cfi_opc)
1937 case DW_CFA_set_loc:
1938 if (for_eh)
1939 dw2_asm_output_encoded_addr_rtx (
1940 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1941 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1942 NULL);
1943 else
1944 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1945 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1946 break;
1948 case DW_CFA_advance_loc1:
1949 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1950 fde->dw_fde_current_label, NULL);
1951 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1952 break;
1954 case DW_CFA_advance_loc2:
1955 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1956 fde->dw_fde_current_label, NULL);
1957 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1958 break;
1960 case DW_CFA_advance_loc4:
1961 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1962 fde->dw_fde_current_label, NULL);
1963 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1964 break;
1966 case DW_CFA_MIPS_advance_loc8:
1967 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1968 fde->dw_fde_current_label, NULL);
1969 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1970 break;
1972 case DW_CFA_offset_extended:
1973 case DW_CFA_def_cfa:
1974 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1975 dw2_asm_output_data_uleb128 (r, NULL);
1976 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1977 break;
1979 case DW_CFA_offset_extended_sf:
1980 case DW_CFA_def_cfa_sf:
1981 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1982 dw2_asm_output_data_uleb128 (r, NULL);
1983 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1984 break;
1986 case DW_CFA_restore_extended:
1987 case DW_CFA_undefined:
1988 case DW_CFA_same_value:
1989 case DW_CFA_def_cfa_register:
1990 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1991 dw2_asm_output_data_uleb128 (r, NULL);
1992 break;
1994 case DW_CFA_register:
1995 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1996 dw2_asm_output_data_uleb128 (r, NULL);
1997 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
1998 dw2_asm_output_data_uleb128 (r, NULL);
1999 break;
2001 case DW_CFA_def_cfa_offset:
2002 case DW_CFA_GNU_args_size:
2003 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2004 break;
2006 case DW_CFA_def_cfa_offset_sf:
2007 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2008 break;
2010 case DW_CFA_GNU_window_save:
2011 break;
2013 case DW_CFA_def_cfa_expression:
2014 case DW_CFA_expression:
2015 output_cfa_loc (cfi);
2016 break;
2018 case DW_CFA_GNU_negative_offset_extended:
2019 /* Obsoleted by DW_CFA_offset_extended_sf. */
2020 gcc_unreachable ();
2022 default:
2023 break;
2028 /* Output the call frame information used to record information
2029 that relates to calculating the frame pointer, and records the
2030 location of saved registers. */
2032 static void
2033 output_call_frame_info (int for_eh)
2035 unsigned int i;
2036 dw_fde_ref fde;
2037 dw_cfi_ref cfi;
2038 char l1[20], l2[20], section_start_label[20];
2039 bool any_lsda_needed = false;
2040 char augmentation[6];
2041 int augmentation_size;
2042 int fde_encoding = DW_EH_PE_absptr;
2043 int per_encoding = DW_EH_PE_absptr;
2044 int lsda_encoding = DW_EH_PE_absptr;
2046 /* Don't emit a CIE if there won't be any FDEs. */
2047 if (fde_table_in_use == 0)
2048 return;
2050 /* If we make FDEs linkonce, we may have to emit an empty label for
2051 an FDE that wouldn't otherwise be emitted. We want to avoid
2052 having an FDE kept around when the function it refers to is
2053 discarded. Example where this matters: a primary function
2054 template in C++ requires EH information, but an explicit
2055 specialization doesn't. */
2056 if (TARGET_USES_WEAK_UNWIND_INFO
2057 && ! flag_asynchronous_unwind_tables
2058 && for_eh)
2059 for (i = 0; i < fde_table_in_use; i++)
2060 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2061 && !fde_table[i].uses_eh_lsda
2062 && ! DECL_WEAK (fde_table[i].decl))
2063 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2064 for_eh, /* empty */ 1);
2066 /* If we don't have any functions we'll want to unwind out of, don't
2067 emit any EH unwind information. Note that if exceptions aren't
2068 enabled, we won't have collected nothrow information, and if we
2069 asked for asynchronous tables, we always want this info. */
2070 if (for_eh)
2072 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2074 for (i = 0; i < fde_table_in_use; i++)
2075 if (fde_table[i].uses_eh_lsda)
2076 any_eh_needed = any_lsda_needed = true;
2077 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2078 any_eh_needed = true;
2079 else if (! fde_table[i].nothrow
2080 && ! fde_table[i].all_throwers_are_sibcalls)
2081 any_eh_needed = true;
2083 if (! any_eh_needed)
2084 return;
2087 /* We're going to be generating comments, so turn on app. */
2088 if (flag_debug_asm)
2089 app_enable ();
2091 if (for_eh)
2092 targetm.asm_out.eh_frame_section ();
2093 else
2094 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2096 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2097 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2099 /* Output the CIE. */
2100 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2101 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2102 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2103 "Length of Common Information Entry");
2104 ASM_OUTPUT_LABEL (asm_out_file, l1);
2106 /* Now that the CIE pointer is PC-relative for EH,
2107 use 0 to identify the CIE. */
2108 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2109 (for_eh ? 0 : DW_CIE_ID),
2110 "CIE Identifier Tag");
2112 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2114 augmentation[0] = 0;
2115 augmentation_size = 0;
2116 if (for_eh)
2118 char *p;
2120 /* Augmentation:
2121 z Indicates that a uleb128 is present to size the
2122 augmentation section.
2123 L Indicates the encoding (and thus presence) of
2124 an LSDA pointer in the FDE augmentation.
2125 R Indicates a non-default pointer encoding for
2126 FDE code pointers.
2127 P Indicates the presence of an encoding + language
2128 personality routine in the CIE augmentation. */
2130 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2131 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2132 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2134 p = augmentation + 1;
2135 if (eh_personality_libfunc)
2137 *p++ = 'P';
2138 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2140 if (any_lsda_needed)
2142 *p++ = 'L';
2143 augmentation_size += 1;
2145 if (fde_encoding != DW_EH_PE_absptr)
2147 *p++ = 'R';
2148 augmentation_size += 1;
2150 if (p > augmentation + 1)
2152 augmentation[0] = 'z';
2153 *p = '\0';
2156 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2157 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2159 int offset = ( 4 /* Length */
2160 + 4 /* CIE Id */
2161 + 1 /* CIE version */
2162 + strlen (augmentation) + 1 /* Augmentation */
2163 + size_of_uleb128 (1) /* Code alignment */
2164 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2165 + 1 /* RA column */
2166 + 1 /* Augmentation size */
2167 + 1 /* Personality encoding */ );
2168 int pad = -offset & (PTR_SIZE - 1);
2170 augmentation_size += pad;
2172 /* Augmentations should be small, so there's scarce need to
2173 iterate for a solution. Die if we exceed one uleb128 byte. */
2174 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2178 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2179 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2180 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2181 "CIE Data Alignment Factor");
2183 if (DW_CIE_VERSION == 1)
2184 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2185 else
2186 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2188 if (augmentation[0])
2190 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2191 if (eh_personality_libfunc)
2193 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2194 eh_data_format_name (per_encoding));
2195 dw2_asm_output_encoded_addr_rtx (per_encoding,
2196 eh_personality_libfunc, NULL);
2199 if (any_lsda_needed)
2200 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2201 eh_data_format_name (lsda_encoding));
2203 if (fde_encoding != DW_EH_PE_absptr)
2204 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2205 eh_data_format_name (fde_encoding));
2208 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2209 output_cfi (cfi, NULL, for_eh);
2211 /* Pad the CIE out to an address sized boundary. */
2212 ASM_OUTPUT_ALIGN (asm_out_file,
2213 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2214 ASM_OUTPUT_LABEL (asm_out_file, l2);
2216 /* Loop through all of the FDE's. */
2217 for (i = 0; i < fde_table_in_use; i++)
2219 fde = &fde_table[i];
2221 /* Don't emit EH unwind info for leaf functions that don't need it. */
2222 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2223 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2224 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2225 && !fde->uses_eh_lsda)
2226 continue;
2228 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2229 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2230 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2231 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2232 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2233 "FDE Length");
2234 ASM_OUTPUT_LABEL (asm_out_file, l1);
2236 if (for_eh)
2237 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2238 else
2239 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2240 "FDE CIE offset");
2242 if (for_eh)
2244 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2245 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2246 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2247 sym_ref,
2248 "FDE initial location");
2249 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2250 fde->dw_fde_end, fde->dw_fde_begin,
2251 "FDE address range");
2253 else
2255 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2256 "FDE initial location");
2257 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2258 fde->dw_fde_end, fde->dw_fde_begin,
2259 "FDE address range");
2262 if (augmentation[0])
2264 if (any_lsda_needed)
2266 int size = size_of_encoded_value (lsda_encoding);
2268 if (lsda_encoding == DW_EH_PE_aligned)
2270 int offset = ( 4 /* Length */
2271 + 4 /* CIE offset */
2272 + 2 * size_of_encoded_value (fde_encoding)
2273 + 1 /* Augmentation size */ );
2274 int pad = -offset & (PTR_SIZE - 1);
2276 size += pad;
2277 gcc_assert (size_of_uleb128 (size) == 1);
2280 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2282 if (fde->uses_eh_lsda)
2284 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2285 fde->funcdef_number);
2286 dw2_asm_output_encoded_addr_rtx (
2287 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2288 "Language Specific Data Area");
2290 else
2292 if (lsda_encoding == DW_EH_PE_aligned)
2293 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2294 dw2_asm_output_data
2295 (size_of_encoded_value (lsda_encoding), 0,
2296 "Language Specific Data Area (none)");
2299 else
2300 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2303 /* Loop through the Call Frame Instructions associated with
2304 this FDE. */
2305 fde->dw_fde_current_label = fde->dw_fde_begin;
2306 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2307 output_cfi (cfi, fde, for_eh);
2309 /* Pad the FDE out to an address sized boundary. */
2310 ASM_OUTPUT_ALIGN (asm_out_file,
2311 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2312 ASM_OUTPUT_LABEL (asm_out_file, l2);
2315 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2316 dw2_asm_output_data (4, 0, "End of Table");
2317 #ifdef MIPS_DEBUGGING_INFO
2318 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2319 get a value of 0. Putting .align 0 after the label fixes it. */
2320 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2321 #endif
2323 /* Turn off app to make assembly quicker. */
2324 if (flag_debug_asm)
2325 app_disable ();
2328 /* Output a marker (i.e. a label) for the beginning of a function, before
2329 the prologue. */
2331 void
2332 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2333 const char *file ATTRIBUTE_UNUSED)
2335 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2336 char * dup_label;
2337 dw_fde_ref fde;
2339 current_function_func_begin_label = NULL;
2341 #ifdef TARGET_UNWIND_INFO
2342 /* ??? current_function_func_begin_label is also used by except.c
2343 for call-site information. We must emit this label if it might
2344 be used. */
2345 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2346 && ! dwarf2out_do_frame ())
2347 return;
2348 #else
2349 if (! dwarf2out_do_frame ())
2350 return;
2351 #endif
2353 function_section (current_function_decl);
2354 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2355 current_function_funcdef_no);
2356 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2357 current_function_funcdef_no);
2358 dup_label = xstrdup (label);
2359 current_function_func_begin_label = dup_label;
2361 #ifdef TARGET_UNWIND_INFO
2362 /* We can elide the fde allocation if we're not emitting debug info. */
2363 if (! dwarf2out_do_frame ())
2364 return;
2365 #endif
2367 /* Expand the fde table if necessary. */
2368 if (fde_table_in_use == fde_table_allocated)
2370 fde_table_allocated += FDE_TABLE_INCREMENT;
2371 fde_table = ggc_realloc (fde_table,
2372 fde_table_allocated * sizeof (dw_fde_node));
2373 memset (fde_table + fde_table_in_use, 0,
2374 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2377 /* Record the FDE associated with this function. */
2378 current_funcdef_fde = fde_table_in_use;
2380 /* Add the new FDE at the end of the fde_table. */
2381 fde = &fde_table[fde_table_in_use++];
2382 fde->decl = current_function_decl;
2383 fde->dw_fde_begin = dup_label;
2384 fde->dw_fde_current_label = NULL;
2385 fde->dw_fde_end = NULL;
2386 fde->dw_fde_cfi = NULL;
2387 fde->funcdef_number = current_function_funcdef_no;
2388 fde->nothrow = TREE_NOTHROW (current_function_decl);
2389 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2390 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2392 args_size = old_args_size = 0;
2394 /* We only want to output line number information for the genuine dwarf2
2395 prologue case, not the eh frame case. */
2396 #ifdef DWARF2_DEBUGGING_INFO
2397 if (file)
2398 dwarf2out_source_line (line, file);
2399 #endif
2402 /* Output a marker (i.e. a label) for the absolute end of the generated code
2403 for a function definition. This gets called *after* the epilogue code has
2404 been generated. */
2406 void
2407 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2408 const char *file ATTRIBUTE_UNUSED)
2410 dw_fde_ref fde;
2411 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2413 /* Output a label to mark the endpoint of the code generated for this
2414 function. */
2415 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2416 current_function_funcdef_no);
2417 ASM_OUTPUT_LABEL (asm_out_file, label);
2418 fde = &fde_table[fde_table_in_use - 1];
2419 fde->dw_fde_end = xstrdup (label);
2422 void
2423 dwarf2out_frame_init (void)
2425 /* Allocate the initial hunk of the fde_table. */
2426 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2427 fde_table_allocated = FDE_TABLE_INCREMENT;
2428 fde_table_in_use = 0;
2430 /* Generate the CFA instructions common to all FDE's. Do it now for the
2431 sake of lookup_cfa. */
2433 #ifdef DWARF2_UNWIND_INFO
2434 /* On entry, the Canonical Frame Address is at SP. */
2435 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2436 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2437 #endif
2440 void
2441 dwarf2out_frame_finish (void)
2443 /* Output call frame information. */
2444 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2445 output_call_frame_info (0);
2447 #ifndef TARGET_UNWIND_INFO
2448 /* Output another copy for the unwinder. */
2449 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2450 output_call_frame_info (1);
2451 #endif
2453 #endif
2455 /* And now, the subset of the debugging information support code necessary
2456 for emitting location expressions. */
2458 /* We need some way to distinguish DW_OP_addr with a direct symbol
2459 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2460 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2463 typedef struct dw_val_struct *dw_val_ref;
2464 typedef struct die_struct *dw_die_ref;
2465 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2466 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2468 /* Each DIE may have a series of attribute/value pairs. Values
2469 can take on several forms. The forms that are used in this
2470 implementation are listed below. */
2472 enum dw_val_class
2474 dw_val_class_addr,
2475 dw_val_class_offset,
2476 dw_val_class_loc,
2477 dw_val_class_loc_list,
2478 dw_val_class_range_list,
2479 dw_val_class_const,
2480 dw_val_class_unsigned_const,
2481 dw_val_class_long_long,
2482 dw_val_class_vec,
2483 dw_val_class_flag,
2484 dw_val_class_die_ref,
2485 dw_val_class_fde_ref,
2486 dw_val_class_lbl_id,
2487 dw_val_class_lbl_offset,
2488 dw_val_class_str
2491 /* Describe a double word constant value. */
2492 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2494 typedef struct dw_long_long_struct GTY(())
2496 unsigned long hi;
2497 unsigned long low;
2499 dw_long_long_const;
2501 /* Describe a floating point constant value, or a vector constant value. */
2503 typedef struct dw_vec_struct GTY(())
2505 unsigned char * GTY((length ("%h.length"))) array;
2506 unsigned length;
2507 unsigned elt_size;
2509 dw_vec_const;
2511 /* The dw_val_node describes an attribute's value, as it is
2512 represented internally. */
2514 typedef struct dw_val_struct GTY(())
2516 enum dw_val_class val_class;
2517 union dw_val_struct_union
2519 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2520 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2521 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2522 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2523 HOST_WIDE_INT GTY ((default)) val_int;
2524 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2525 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2526 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2527 struct dw_val_die_union
2529 dw_die_ref die;
2530 int external;
2531 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2532 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2533 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2534 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2535 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2537 GTY ((desc ("%1.val_class"))) v;
2539 dw_val_node;
2541 /* Locations in memory are described using a sequence of stack machine
2542 operations. */
2544 typedef struct dw_loc_descr_struct GTY(())
2546 dw_loc_descr_ref dw_loc_next;
2547 enum dwarf_location_atom dw_loc_opc;
2548 dw_val_node dw_loc_oprnd1;
2549 dw_val_node dw_loc_oprnd2;
2550 int dw_loc_addr;
2552 dw_loc_descr_node;
2554 /* Location lists are ranges + location descriptions for that range,
2555 so you can track variables that are in different places over
2556 their entire life. */
2557 typedef struct dw_loc_list_struct GTY(())
2559 dw_loc_list_ref dw_loc_next;
2560 const char *begin; /* Label for begin address of range */
2561 const char *end; /* Label for end address of range */
2562 char *ll_symbol; /* Label for beginning of location list.
2563 Only on head of list */
2564 const char *section; /* Section this loclist is relative to */
2565 dw_loc_descr_ref expr;
2566 } dw_loc_list_node;
2568 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2570 static const char *dwarf_stack_op_name (unsigned);
2571 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2572 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2573 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2574 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2575 static unsigned long size_of_locs (dw_loc_descr_ref);
2576 static void output_loc_operands (dw_loc_descr_ref);
2577 static void output_loc_sequence (dw_loc_descr_ref);
2579 /* Convert a DWARF stack opcode into its string name. */
2581 static const char *
2582 dwarf_stack_op_name (unsigned int op)
2584 switch (op)
2586 case DW_OP_addr:
2587 case INTERNAL_DW_OP_tls_addr:
2588 return "DW_OP_addr";
2589 case DW_OP_deref:
2590 return "DW_OP_deref";
2591 case DW_OP_const1u:
2592 return "DW_OP_const1u";
2593 case DW_OP_const1s:
2594 return "DW_OP_const1s";
2595 case DW_OP_const2u:
2596 return "DW_OP_const2u";
2597 case DW_OP_const2s:
2598 return "DW_OP_const2s";
2599 case DW_OP_const4u:
2600 return "DW_OP_const4u";
2601 case DW_OP_const4s:
2602 return "DW_OP_const4s";
2603 case DW_OP_const8u:
2604 return "DW_OP_const8u";
2605 case DW_OP_const8s:
2606 return "DW_OP_const8s";
2607 case DW_OP_constu:
2608 return "DW_OP_constu";
2609 case DW_OP_consts:
2610 return "DW_OP_consts";
2611 case DW_OP_dup:
2612 return "DW_OP_dup";
2613 case DW_OP_drop:
2614 return "DW_OP_drop";
2615 case DW_OP_over:
2616 return "DW_OP_over";
2617 case DW_OP_pick:
2618 return "DW_OP_pick";
2619 case DW_OP_swap:
2620 return "DW_OP_swap";
2621 case DW_OP_rot:
2622 return "DW_OP_rot";
2623 case DW_OP_xderef:
2624 return "DW_OP_xderef";
2625 case DW_OP_abs:
2626 return "DW_OP_abs";
2627 case DW_OP_and:
2628 return "DW_OP_and";
2629 case DW_OP_div:
2630 return "DW_OP_div";
2631 case DW_OP_minus:
2632 return "DW_OP_minus";
2633 case DW_OP_mod:
2634 return "DW_OP_mod";
2635 case DW_OP_mul:
2636 return "DW_OP_mul";
2637 case DW_OP_neg:
2638 return "DW_OP_neg";
2639 case DW_OP_not:
2640 return "DW_OP_not";
2641 case DW_OP_or:
2642 return "DW_OP_or";
2643 case DW_OP_plus:
2644 return "DW_OP_plus";
2645 case DW_OP_plus_uconst:
2646 return "DW_OP_plus_uconst";
2647 case DW_OP_shl:
2648 return "DW_OP_shl";
2649 case DW_OP_shr:
2650 return "DW_OP_shr";
2651 case DW_OP_shra:
2652 return "DW_OP_shra";
2653 case DW_OP_xor:
2654 return "DW_OP_xor";
2655 case DW_OP_bra:
2656 return "DW_OP_bra";
2657 case DW_OP_eq:
2658 return "DW_OP_eq";
2659 case DW_OP_ge:
2660 return "DW_OP_ge";
2661 case DW_OP_gt:
2662 return "DW_OP_gt";
2663 case DW_OP_le:
2664 return "DW_OP_le";
2665 case DW_OP_lt:
2666 return "DW_OP_lt";
2667 case DW_OP_ne:
2668 return "DW_OP_ne";
2669 case DW_OP_skip:
2670 return "DW_OP_skip";
2671 case DW_OP_lit0:
2672 return "DW_OP_lit0";
2673 case DW_OP_lit1:
2674 return "DW_OP_lit1";
2675 case DW_OP_lit2:
2676 return "DW_OP_lit2";
2677 case DW_OP_lit3:
2678 return "DW_OP_lit3";
2679 case DW_OP_lit4:
2680 return "DW_OP_lit4";
2681 case DW_OP_lit5:
2682 return "DW_OP_lit5";
2683 case DW_OP_lit6:
2684 return "DW_OP_lit6";
2685 case DW_OP_lit7:
2686 return "DW_OP_lit7";
2687 case DW_OP_lit8:
2688 return "DW_OP_lit8";
2689 case DW_OP_lit9:
2690 return "DW_OP_lit9";
2691 case DW_OP_lit10:
2692 return "DW_OP_lit10";
2693 case DW_OP_lit11:
2694 return "DW_OP_lit11";
2695 case DW_OP_lit12:
2696 return "DW_OP_lit12";
2697 case DW_OP_lit13:
2698 return "DW_OP_lit13";
2699 case DW_OP_lit14:
2700 return "DW_OP_lit14";
2701 case DW_OP_lit15:
2702 return "DW_OP_lit15";
2703 case DW_OP_lit16:
2704 return "DW_OP_lit16";
2705 case DW_OP_lit17:
2706 return "DW_OP_lit17";
2707 case DW_OP_lit18:
2708 return "DW_OP_lit18";
2709 case DW_OP_lit19:
2710 return "DW_OP_lit19";
2711 case DW_OP_lit20:
2712 return "DW_OP_lit20";
2713 case DW_OP_lit21:
2714 return "DW_OP_lit21";
2715 case DW_OP_lit22:
2716 return "DW_OP_lit22";
2717 case DW_OP_lit23:
2718 return "DW_OP_lit23";
2719 case DW_OP_lit24:
2720 return "DW_OP_lit24";
2721 case DW_OP_lit25:
2722 return "DW_OP_lit25";
2723 case DW_OP_lit26:
2724 return "DW_OP_lit26";
2725 case DW_OP_lit27:
2726 return "DW_OP_lit27";
2727 case DW_OP_lit28:
2728 return "DW_OP_lit28";
2729 case DW_OP_lit29:
2730 return "DW_OP_lit29";
2731 case DW_OP_lit30:
2732 return "DW_OP_lit30";
2733 case DW_OP_lit31:
2734 return "DW_OP_lit31";
2735 case DW_OP_reg0:
2736 return "DW_OP_reg0";
2737 case DW_OP_reg1:
2738 return "DW_OP_reg1";
2739 case DW_OP_reg2:
2740 return "DW_OP_reg2";
2741 case DW_OP_reg3:
2742 return "DW_OP_reg3";
2743 case DW_OP_reg4:
2744 return "DW_OP_reg4";
2745 case DW_OP_reg5:
2746 return "DW_OP_reg5";
2747 case DW_OP_reg6:
2748 return "DW_OP_reg6";
2749 case DW_OP_reg7:
2750 return "DW_OP_reg7";
2751 case DW_OP_reg8:
2752 return "DW_OP_reg8";
2753 case DW_OP_reg9:
2754 return "DW_OP_reg9";
2755 case DW_OP_reg10:
2756 return "DW_OP_reg10";
2757 case DW_OP_reg11:
2758 return "DW_OP_reg11";
2759 case DW_OP_reg12:
2760 return "DW_OP_reg12";
2761 case DW_OP_reg13:
2762 return "DW_OP_reg13";
2763 case DW_OP_reg14:
2764 return "DW_OP_reg14";
2765 case DW_OP_reg15:
2766 return "DW_OP_reg15";
2767 case DW_OP_reg16:
2768 return "DW_OP_reg16";
2769 case DW_OP_reg17:
2770 return "DW_OP_reg17";
2771 case DW_OP_reg18:
2772 return "DW_OP_reg18";
2773 case DW_OP_reg19:
2774 return "DW_OP_reg19";
2775 case DW_OP_reg20:
2776 return "DW_OP_reg20";
2777 case DW_OP_reg21:
2778 return "DW_OP_reg21";
2779 case DW_OP_reg22:
2780 return "DW_OP_reg22";
2781 case DW_OP_reg23:
2782 return "DW_OP_reg23";
2783 case DW_OP_reg24:
2784 return "DW_OP_reg24";
2785 case DW_OP_reg25:
2786 return "DW_OP_reg25";
2787 case DW_OP_reg26:
2788 return "DW_OP_reg26";
2789 case DW_OP_reg27:
2790 return "DW_OP_reg27";
2791 case DW_OP_reg28:
2792 return "DW_OP_reg28";
2793 case DW_OP_reg29:
2794 return "DW_OP_reg29";
2795 case DW_OP_reg30:
2796 return "DW_OP_reg30";
2797 case DW_OP_reg31:
2798 return "DW_OP_reg31";
2799 case DW_OP_breg0:
2800 return "DW_OP_breg0";
2801 case DW_OP_breg1:
2802 return "DW_OP_breg1";
2803 case DW_OP_breg2:
2804 return "DW_OP_breg2";
2805 case DW_OP_breg3:
2806 return "DW_OP_breg3";
2807 case DW_OP_breg4:
2808 return "DW_OP_breg4";
2809 case DW_OP_breg5:
2810 return "DW_OP_breg5";
2811 case DW_OP_breg6:
2812 return "DW_OP_breg6";
2813 case DW_OP_breg7:
2814 return "DW_OP_breg7";
2815 case DW_OP_breg8:
2816 return "DW_OP_breg8";
2817 case DW_OP_breg9:
2818 return "DW_OP_breg9";
2819 case DW_OP_breg10:
2820 return "DW_OP_breg10";
2821 case DW_OP_breg11:
2822 return "DW_OP_breg11";
2823 case DW_OP_breg12:
2824 return "DW_OP_breg12";
2825 case DW_OP_breg13:
2826 return "DW_OP_breg13";
2827 case DW_OP_breg14:
2828 return "DW_OP_breg14";
2829 case DW_OP_breg15:
2830 return "DW_OP_breg15";
2831 case DW_OP_breg16:
2832 return "DW_OP_breg16";
2833 case DW_OP_breg17:
2834 return "DW_OP_breg17";
2835 case DW_OP_breg18:
2836 return "DW_OP_breg18";
2837 case DW_OP_breg19:
2838 return "DW_OP_breg19";
2839 case DW_OP_breg20:
2840 return "DW_OP_breg20";
2841 case DW_OP_breg21:
2842 return "DW_OP_breg21";
2843 case DW_OP_breg22:
2844 return "DW_OP_breg22";
2845 case DW_OP_breg23:
2846 return "DW_OP_breg23";
2847 case DW_OP_breg24:
2848 return "DW_OP_breg24";
2849 case DW_OP_breg25:
2850 return "DW_OP_breg25";
2851 case DW_OP_breg26:
2852 return "DW_OP_breg26";
2853 case DW_OP_breg27:
2854 return "DW_OP_breg27";
2855 case DW_OP_breg28:
2856 return "DW_OP_breg28";
2857 case DW_OP_breg29:
2858 return "DW_OP_breg29";
2859 case DW_OP_breg30:
2860 return "DW_OP_breg30";
2861 case DW_OP_breg31:
2862 return "DW_OP_breg31";
2863 case DW_OP_regx:
2864 return "DW_OP_regx";
2865 case DW_OP_fbreg:
2866 return "DW_OP_fbreg";
2867 case DW_OP_bregx:
2868 return "DW_OP_bregx";
2869 case DW_OP_piece:
2870 return "DW_OP_piece";
2871 case DW_OP_deref_size:
2872 return "DW_OP_deref_size";
2873 case DW_OP_xderef_size:
2874 return "DW_OP_xderef_size";
2875 case DW_OP_nop:
2876 return "DW_OP_nop";
2877 case DW_OP_push_object_address:
2878 return "DW_OP_push_object_address";
2879 case DW_OP_call2:
2880 return "DW_OP_call2";
2881 case DW_OP_call4:
2882 return "DW_OP_call4";
2883 case DW_OP_call_ref:
2884 return "DW_OP_call_ref";
2885 case DW_OP_GNU_push_tls_address:
2886 return "DW_OP_GNU_push_tls_address";
2887 default:
2888 return "OP_<unknown>";
2892 /* Return a pointer to a newly allocated location description. Location
2893 descriptions are simple expression terms that can be strung
2894 together to form more complicated location (address) descriptions. */
2896 static inline dw_loc_descr_ref
2897 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2898 unsigned HOST_WIDE_INT oprnd2)
2900 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2902 descr->dw_loc_opc = op;
2903 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2904 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2905 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2906 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2908 return descr;
2912 /* Add a location description term to a location description expression. */
2914 static inline void
2915 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2917 dw_loc_descr_ref *d;
2919 /* Find the end of the chain. */
2920 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2923 *d = descr;
2926 /* Return the size of a location descriptor. */
2928 static unsigned long
2929 size_of_loc_descr (dw_loc_descr_ref loc)
2931 unsigned long size = 1;
2933 switch (loc->dw_loc_opc)
2935 case DW_OP_addr:
2936 case INTERNAL_DW_OP_tls_addr:
2937 size += DWARF2_ADDR_SIZE;
2938 break;
2939 case DW_OP_const1u:
2940 case DW_OP_const1s:
2941 size += 1;
2942 break;
2943 case DW_OP_const2u:
2944 case DW_OP_const2s:
2945 size += 2;
2946 break;
2947 case DW_OP_const4u:
2948 case DW_OP_const4s:
2949 size += 4;
2950 break;
2951 case DW_OP_const8u:
2952 case DW_OP_const8s:
2953 size += 8;
2954 break;
2955 case DW_OP_constu:
2956 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2957 break;
2958 case DW_OP_consts:
2959 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2960 break;
2961 case DW_OP_pick:
2962 size += 1;
2963 break;
2964 case DW_OP_plus_uconst:
2965 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2966 break;
2967 case DW_OP_skip:
2968 case DW_OP_bra:
2969 size += 2;
2970 break;
2971 case DW_OP_breg0:
2972 case DW_OP_breg1:
2973 case DW_OP_breg2:
2974 case DW_OP_breg3:
2975 case DW_OP_breg4:
2976 case DW_OP_breg5:
2977 case DW_OP_breg6:
2978 case DW_OP_breg7:
2979 case DW_OP_breg8:
2980 case DW_OP_breg9:
2981 case DW_OP_breg10:
2982 case DW_OP_breg11:
2983 case DW_OP_breg12:
2984 case DW_OP_breg13:
2985 case DW_OP_breg14:
2986 case DW_OP_breg15:
2987 case DW_OP_breg16:
2988 case DW_OP_breg17:
2989 case DW_OP_breg18:
2990 case DW_OP_breg19:
2991 case DW_OP_breg20:
2992 case DW_OP_breg21:
2993 case DW_OP_breg22:
2994 case DW_OP_breg23:
2995 case DW_OP_breg24:
2996 case DW_OP_breg25:
2997 case DW_OP_breg26:
2998 case DW_OP_breg27:
2999 case DW_OP_breg28:
3000 case DW_OP_breg29:
3001 case DW_OP_breg30:
3002 case DW_OP_breg31:
3003 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3004 break;
3005 case DW_OP_regx:
3006 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3007 break;
3008 case DW_OP_fbreg:
3009 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3010 break;
3011 case DW_OP_bregx:
3012 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3013 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3014 break;
3015 case DW_OP_piece:
3016 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3017 break;
3018 case DW_OP_deref_size:
3019 case DW_OP_xderef_size:
3020 size += 1;
3021 break;
3022 case DW_OP_call2:
3023 size += 2;
3024 break;
3025 case DW_OP_call4:
3026 size += 4;
3027 break;
3028 case DW_OP_call_ref:
3029 size += DWARF2_ADDR_SIZE;
3030 break;
3031 default:
3032 break;
3035 return size;
3038 /* Return the size of a series of location descriptors. */
3040 static unsigned long
3041 size_of_locs (dw_loc_descr_ref loc)
3043 unsigned long size;
3045 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3047 loc->dw_loc_addr = size;
3048 size += size_of_loc_descr (loc);
3051 return size;
3054 /* Output location description stack opcode's operands (if any). */
3056 static void
3057 output_loc_operands (dw_loc_descr_ref loc)
3059 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3060 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3062 switch (loc->dw_loc_opc)
3064 #ifdef DWARF2_DEBUGGING_INFO
3065 case DW_OP_addr:
3066 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3067 break;
3068 case DW_OP_const2u:
3069 case DW_OP_const2s:
3070 dw2_asm_output_data (2, val1->v.val_int, NULL);
3071 break;
3072 case DW_OP_const4u:
3073 case DW_OP_const4s:
3074 dw2_asm_output_data (4, val1->v.val_int, NULL);
3075 break;
3076 case DW_OP_const8u:
3077 case DW_OP_const8s:
3078 gcc_assert (HOST_BITS_PER_LONG >= 64);
3079 dw2_asm_output_data (8, val1->v.val_int, NULL);
3080 break;
3081 case DW_OP_skip:
3082 case DW_OP_bra:
3084 int offset;
3086 gcc_assert (val1->val_class == dw_val_class_loc);
3087 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3089 dw2_asm_output_data (2, offset, NULL);
3091 break;
3092 #else
3093 case DW_OP_addr:
3094 case DW_OP_const2u:
3095 case DW_OP_const2s:
3096 case DW_OP_const4u:
3097 case DW_OP_const4s:
3098 case DW_OP_const8u:
3099 case DW_OP_const8s:
3100 case DW_OP_skip:
3101 case DW_OP_bra:
3102 /* We currently don't make any attempt to make sure these are
3103 aligned properly like we do for the main unwind info, so
3104 don't support emitting things larger than a byte if we're
3105 only doing unwinding. */
3106 gcc_unreachable ();
3107 #endif
3108 case DW_OP_const1u:
3109 case DW_OP_const1s:
3110 dw2_asm_output_data (1, val1->v.val_int, NULL);
3111 break;
3112 case DW_OP_constu:
3113 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3114 break;
3115 case DW_OP_consts:
3116 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3117 break;
3118 case DW_OP_pick:
3119 dw2_asm_output_data (1, val1->v.val_int, NULL);
3120 break;
3121 case DW_OP_plus_uconst:
3122 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3123 break;
3124 case DW_OP_breg0:
3125 case DW_OP_breg1:
3126 case DW_OP_breg2:
3127 case DW_OP_breg3:
3128 case DW_OP_breg4:
3129 case DW_OP_breg5:
3130 case DW_OP_breg6:
3131 case DW_OP_breg7:
3132 case DW_OP_breg8:
3133 case DW_OP_breg9:
3134 case DW_OP_breg10:
3135 case DW_OP_breg11:
3136 case DW_OP_breg12:
3137 case DW_OP_breg13:
3138 case DW_OP_breg14:
3139 case DW_OP_breg15:
3140 case DW_OP_breg16:
3141 case DW_OP_breg17:
3142 case DW_OP_breg18:
3143 case DW_OP_breg19:
3144 case DW_OP_breg20:
3145 case DW_OP_breg21:
3146 case DW_OP_breg22:
3147 case DW_OP_breg23:
3148 case DW_OP_breg24:
3149 case DW_OP_breg25:
3150 case DW_OP_breg26:
3151 case DW_OP_breg27:
3152 case DW_OP_breg28:
3153 case DW_OP_breg29:
3154 case DW_OP_breg30:
3155 case DW_OP_breg31:
3156 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3157 break;
3158 case DW_OP_regx:
3159 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3160 break;
3161 case DW_OP_fbreg:
3162 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3163 break;
3164 case DW_OP_bregx:
3165 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3166 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3167 break;
3168 case DW_OP_piece:
3169 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3170 break;
3171 case DW_OP_deref_size:
3172 case DW_OP_xderef_size:
3173 dw2_asm_output_data (1, val1->v.val_int, NULL);
3174 break;
3176 case INTERNAL_DW_OP_tls_addr:
3177 #ifdef ASM_OUTPUT_DWARF_DTPREL
3178 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3179 val1->v.val_addr);
3180 fputc ('\n', asm_out_file);
3181 #else
3182 gcc_unreachable ();
3183 #endif
3184 break;
3186 default:
3187 /* Other codes have no operands. */
3188 break;
3192 /* Output a sequence of location operations. */
3194 static void
3195 output_loc_sequence (dw_loc_descr_ref loc)
3197 for (; loc != NULL; loc = loc->dw_loc_next)
3199 /* Output the opcode. */
3200 dw2_asm_output_data (1, loc->dw_loc_opc,
3201 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3203 /* Output the operand(s) (if any). */
3204 output_loc_operands (loc);
3208 /* This routine will generate the correct assembly data for a location
3209 description based on a cfi entry with a complex address. */
3211 static void
3212 output_cfa_loc (dw_cfi_ref cfi)
3214 dw_loc_descr_ref loc;
3215 unsigned long size;
3217 /* Output the size of the block. */
3218 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3219 size = size_of_locs (loc);
3220 dw2_asm_output_data_uleb128 (size, NULL);
3222 /* Now output the operations themselves. */
3223 output_loc_sequence (loc);
3226 /* This function builds a dwarf location descriptor sequence from
3227 a dw_cfa_location. */
3229 static struct dw_loc_descr_struct *
3230 build_cfa_loc (dw_cfa_location *cfa)
3232 struct dw_loc_descr_struct *head, *tmp;
3234 gcc_assert (cfa->indirect);
3236 if (cfa->base_offset)
3238 if (cfa->reg <= 31)
3239 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3240 else
3241 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3243 else if (cfa->reg <= 31)
3244 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3245 else
3246 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3248 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3249 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3250 add_loc_descr (&head, tmp);
3251 if (cfa->offset != 0)
3253 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3254 add_loc_descr (&head, tmp);
3257 return head;
3260 /* This function fills in aa dw_cfa_location structure from a dwarf location
3261 descriptor sequence. */
3263 static void
3264 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3266 struct dw_loc_descr_struct *ptr;
3267 cfa->offset = 0;
3268 cfa->base_offset = 0;
3269 cfa->indirect = 0;
3270 cfa->reg = -1;
3272 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3274 enum dwarf_location_atom op = ptr->dw_loc_opc;
3276 switch (op)
3278 case DW_OP_reg0:
3279 case DW_OP_reg1:
3280 case DW_OP_reg2:
3281 case DW_OP_reg3:
3282 case DW_OP_reg4:
3283 case DW_OP_reg5:
3284 case DW_OP_reg6:
3285 case DW_OP_reg7:
3286 case DW_OP_reg8:
3287 case DW_OP_reg9:
3288 case DW_OP_reg10:
3289 case DW_OP_reg11:
3290 case DW_OP_reg12:
3291 case DW_OP_reg13:
3292 case DW_OP_reg14:
3293 case DW_OP_reg15:
3294 case DW_OP_reg16:
3295 case DW_OP_reg17:
3296 case DW_OP_reg18:
3297 case DW_OP_reg19:
3298 case DW_OP_reg20:
3299 case DW_OP_reg21:
3300 case DW_OP_reg22:
3301 case DW_OP_reg23:
3302 case DW_OP_reg24:
3303 case DW_OP_reg25:
3304 case DW_OP_reg26:
3305 case DW_OP_reg27:
3306 case DW_OP_reg28:
3307 case DW_OP_reg29:
3308 case DW_OP_reg30:
3309 case DW_OP_reg31:
3310 cfa->reg = op - DW_OP_reg0;
3311 break;
3312 case DW_OP_regx:
3313 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3314 break;
3315 case DW_OP_breg0:
3316 case DW_OP_breg1:
3317 case DW_OP_breg2:
3318 case DW_OP_breg3:
3319 case DW_OP_breg4:
3320 case DW_OP_breg5:
3321 case DW_OP_breg6:
3322 case DW_OP_breg7:
3323 case DW_OP_breg8:
3324 case DW_OP_breg9:
3325 case DW_OP_breg10:
3326 case DW_OP_breg11:
3327 case DW_OP_breg12:
3328 case DW_OP_breg13:
3329 case DW_OP_breg14:
3330 case DW_OP_breg15:
3331 case DW_OP_breg16:
3332 case DW_OP_breg17:
3333 case DW_OP_breg18:
3334 case DW_OP_breg19:
3335 case DW_OP_breg20:
3336 case DW_OP_breg21:
3337 case DW_OP_breg22:
3338 case DW_OP_breg23:
3339 case DW_OP_breg24:
3340 case DW_OP_breg25:
3341 case DW_OP_breg26:
3342 case DW_OP_breg27:
3343 case DW_OP_breg28:
3344 case DW_OP_breg29:
3345 case DW_OP_breg30:
3346 case DW_OP_breg31:
3347 cfa->reg = op - DW_OP_breg0;
3348 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3349 break;
3350 case DW_OP_bregx:
3351 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3352 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3353 break;
3354 case DW_OP_deref:
3355 cfa->indirect = 1;
3356 break;
3357 case DW_OP_plus_uconst:
3358 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3359 break;
3360 default:
3361 internal_error ("DW_LOC_OP %s not implemented\n",
3362 dwarf_stack_op_name (ptr->dw_loc_opc));
3366 #endif /* .debug_frame support */
3368 /* And now, the support for symbolic debugging information. */
3369 #ifdef DWARF2_DEBUGGING_INFO
3371 /* .debug_str support. */
3372 static int output_indirect_string (void **, void *);
3374 static void dwarf2out_init (const char *);
3375 static void dwarf2out_finish (const char *);
3376 static void dwarf2out_define (unsigned int, const char *);
3377 static void dwarf2out_undef (unsigned int, const char *);
3378 static void dwarf2out_start_source_file (unsigned, const char *);
3379 static void dwarf2out_end_source_file (unsigned);
3380 static void dwarf2out_begin_block (unsigned, unsigned);
3381 static void dwarf2out_end_block (unsigned, unsigned);
3382 static bool dwarf2out_ignore_block (tree);
3383 static void dwarf2out_global_decl (tree);
3384 static void dwarf2out_type_decl (tree, int);
3385 static void dwarf2out_imported_module_or_decl (tree, tree);
3386 static void dwarf2out_abstract_function (tree);
3387 static void dwarf2out_var_location (rtx);
3388 static void dwarf2out_begin_function (tree);
3390 /* The debug hooks structure. */
3392 const struct gcc_debug_hooks dwarf2_debug_hooks =
3394 dwarf2out_init,
3395 dwarf2out_finish,
3396 dwarf2out_define,
3397 dwarf2out_undef,
3398 dwarf2out_start_source_file,
3399 dwarf2out_end_source_file,
3400 dwarf2out_begin_block,
3401 dwarf2out_end_block,
3402 dwarf2out_ignore_block,
3403 dwarf2out_source_line,
3404 dwarf2out_begin_prologue,
3405 debug_nothing_int_charstar, /* end_prologue */
3406 dwarf2out_end_epilogue,
3407 dwarf2out_begin_function,
3408 debug_nothing_int, /* end_function */
3409 dwarf2out_decl, /* function_decl */
3410 dwarf2out_global_decl,
3411 dwarf2out_type_decl, /* type_decl */
3412 dwarf2out_imported_module_or_decl,
3413 debug_nothing_tree, /* deferred_inline_function */
3414 /* The DWARF 2 backend tries to reduce debugging bloat by not
3415 emitting the abstract description of inline functions until
3416 something tries to reference them. */
3417 dwarf2out_abstract_function, /* outlining_inline_function */
3418 debug_nothing_rtx, /* label */
3419 debug_nothing_int, /* handle_pch */
3420 dwarf2out_var_location
3422 #endif
3424 /* NOTE: In the comments in this file, many references are made to
3425 "Debugging Information Entries". This term is abbreviated as `DIE'
3426 throughout the remainder of this file. */
3428 /* An internal representation of the DWARF output is built, and then
3429 walked to generate the DWARF debugging info. The walk of the internal
3430 representation is done after the entire program has been compiled.
3431 The types below are used to describe the internal representation. */
3433 /* Various DIE's use offsets relative to the beginning of the
3434 .debug_info section to refer to each other. */
3436 typedef long int dw_offset;
3438 /* Define typedefs here to avoid circular dependencies. */
3440 typedef struct dw_attr_struct *dw_attr_ref;
3441 typedef struct dw_line_info_struct *dw_line_info_ref;
3442 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3443 typedef struct pubname_struct *pubname_ref;
3444 typedef struct dw_ranges_struct *dw_ranges_ref;
3446 /* Each entry in the line_info_table maintains the file and
3447 line number associated with the label generated for that
3448 entry. The label gives the PC value associated with
3449 the line number entry. */
3451 typedef struct dw_line_info_struct GTY(())
3453 unsigned long dw_file_num;
3454 unsigned long dw_line_num;
3456 dw_line_info_entry;
3458 /* Line information for functions in separate sections; each one gets its
3459 own sequence. */
3460 typedef struct dw_separate_line_info_struct GTY(())
3462 unsigned long dw_file_num;
3463 unsigned long dw_line_num;
3464 unsigned long function;
3466 dw_separate_line_info_entry;
3468 /* Each DIE attribute has a field specifying the attribute kind,
3469 a link to the next attribute in the chain, and an attribute value.
3470 Attributes are typically linked below the DIE they modify. */
3472 typedef struct dw_attr_struct GTY(())
3474 enum dwarf_attribute dw_attr;
3475 dw_attr_ref dw_attr_next;
3476 dw_val_node dw_attr_val;
3478 dw_attr_node;
3480 /* The Debugging Information Entry (DIE) structure */
3482 typedef struct die_struct GTY(())
3484 enum dwarf_tag die_tag;
3485 char *die_symbol;
3486 dw_attr_ref die_attr;
3487 dw_die_ref die_parent;
3488 dw_die_ref die_child;
3489 dw_die_ref die_sib;
3490 dw_die_ref die_definition; /* ref from a specification to its definition */
3491 dw_offset die_offset;
3492 unsigned long die_abbrev;
3493 int die_mark;
3494 unsigned int decl_id;
3496 die_node;
3498 /* The pubname structure */
3500 typedef struct pubname_struct GTY(())
3502 dw_die_ref die;
3503 char *name;
3505 pubname_entry;
3507 struct dw_ranges_struct GTY(())
3509 int block_num;
3512 /* The limbo die list structure. */
3513 typedef struct limbo_die_struct GTY(())
3515 dw_die_ref die;
3516 tree created_for;
3517 struct limbo_die_struct *next;
3519 limbo_die_node;
3521 /* How to start an assembler comment. */
3522 #ifndef ASM_COMMENT_START
3523 #define ASM_COMMENT_START ";#"
3524 #endif
3526 /* Define a macro which returns nonzero for a TYPE_DECL which was
3527 implicitly generated for a tagged type.
3529 Note that unlike the gcc front end (which generates a NULL named
3530 TYPE_DECL node for each complete tagged type, each array type, and
3531 each function type node created) the g++ front end generates a
3532 _named_ TYPE_DECL node for each tagged type node created.
3533 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3534 generate a DW_TAG_typedef DIE for them. */
3536 #define TYPE_DECL_IS_STUB(decl) \
3537 (DECL_NAME (decl) == NULL_TREE \
3538 || (DECL_ARTIFICIAL (decl) \
3539 && is_tagged_type (TREE_TYPE (decl)) \
3540 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3541 /* This is necessary for stub decls that \
3542 appear in nested inline functions. */ \
3543 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3544 && (decl_ultimate_origin (decl) \
3545 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3547 /* Information concerning the compilation unit's programming
3548 language, and compiler version. */
3550 /* Fixed size portion of the DWARF compilation unit header. */
3551 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3552 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3554 /* Fixed size portion of public names info. */
3555 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3557 /* Fixed size portion of the address range info. */
3558 #define DWARF_ARANGES_HEADER_SIZE \
3559 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3560 DWARF2_ADDR_SIZE * 2) \
3561 - DWARF_INITIAL_LENGTH_SIZE)
3563 /* Size of padding portion in the address range info. It must be
3564 aligned to twice the pointer size. */
3565 #define DWARF_ARANGES_PAD_SIZE \
3566 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3567 DWARF2_ADDR_SIZE * 2) \
3568 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3570 /* Use assembler line directives if available. */
3571 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3572 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3573 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3574 #else
3575 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3576 #endif
3577 #endif
3579 /* Minimum line offset in a special line info. opcode.
3580 This value was chosen to give a reasonable range of values. */
3581 #define DWARF_LINE_BASE -10
3583 /* First special line opcode - leave room for the standard opcodes. */
3584 #define DWARF_LINE_OPCODE_BASE 10
3586 /* Range of line offsets in a special line info. opcode. */
3587 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3589 /* Flag that indicates the initial value of the is_stmt_start flag.
3590 In the present implementation, we do not mark any lines as
3591 the beginning of a source statement, because that information
3592 is not made available by the GCC front-end. */
3593 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3595 #ifdef DWARF2_DEBUGGING_INFO
3596 /* This location is used by calc_die_sizes() to keep track
3597 the offset of each DIE within the .debug_info section. */
3598 static unsigned long next_die_offset;
3599 #endif
3601 /* Record the root of the DIE's built for the current compilation unit. */
3602 static GTY(()) dw_die_ref comp_unit_die;
3604 /* A list of DIEs with a NULL parent waiting to be relocated. */
3605 static GTY(()) limbo_die_node *limbo_die_list;
3607 /* Filenames referenced by this compilation unit. */
3608 static GTY(()) varray_type file_table;
3609 static GTY(()) varray_type file_table_emitted;
3610 static GTY(()) size_t file_table_last_lookup_index;
3612 /* A hash table of references to DIE's that describe declarations.
3613 The key is a DECL_UID() which is a unique number identifying each decl. */
3614 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3616 /* Node of the variable location list. */
3617 struct var_loc_node GTY ((chain_next ("%h.next")))
3619 rtx GTY (()) var_loc_note;
3620 const char * GTY (()) label;
3621 struct var_loc_node * GTY (()) next;
3624 /* Variable location list. */
3625 struct var_loc_list_def GTY (())
3627 struct var_loc_node * GTY (()) first;
3629 /* Do not mark the last element of the chained list because
3630 it is marked through the chain. */
3631 struct var_loc_node * GTY ((skip ("%h"))) last;
3633 /* DECL_UID of the variable decl. */
3634 unsigned int decl_id;
3636 typedef struct var_loc_list_def var_loc_list;
3639 /* Table of decl location linked lists. */
3640 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3642 /* A pointer to the base of a list of references to DIE's that
3643 are uniquely identified by their tag, presence/absence of
3644 children DIE's, and list of attribute/value pairs. */
3645 static GTY((length ("abbrev_die_table_allocated")))
3646 dw_die_ref *abbrev_die_table;
3648 /* Number of elements currently allocated for abbrev_die_table. */
3649 static GTY(()) unsigned abbrev_die_table_allocated;
3651 /* Number of elements in type_die_table currently in use. */
3652 static GTY(()) unsigned abbrev_die_table_in_use;
3654 /* Size (in elements) of increments by which we may expand the
3655 abbrev_die_table. */
3656 #define ABBREV_DIE_TABLE_INCREMENT 256
3658 /* A pointer to the base of a table that contains line information
3659 for each source code line in .text in the compilation unit. */
3660 static GTY((length ("line_info_table_allocated")))
3661 dw_line_info_ref line_info_table;
3663 /* Number of elements currently allocated for line_info_table. */
3664 static GTY(()) unsigned line_info_table_allocated;
3666 /* Number of elements in line_info_table currently in use. */
3667 static GTY(()) unsigned line_info_table_in_use;
3669 /* A pointer to the base of a table that contains line information
3670 for each source code line outside of .text in the compilation unit. */
3671 static GTY ((length ("separate_line_info_table_allocated")))
3672 dw_separate_line_info_ref separate_line_info_table;
3674 /* Number of elements currently allocated for separate_line_info_table. */
3675 static GTY(()) unsigned separate_line_info_table_allocated;
3677 /* Number of elements in separate_line_info_table currently in use. */
3678 static GTY(()) unsigned separate_line_info_table_in_use;
3680 /* Size (in elements) of increments by which we may expand the
3681 line_info_table. */
3682 #define LINE_INFO_TABLE_INCREMENT 1024
3684 /* A pointer to the base of a table that contains a list of publicly
3685 accessible names. */
3686 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3688 /* Number of elements currently allocated for pubname_table. */
3689 static GTY(()) unsigned pubname_table_allocated;
3691 /* Number of elements in pubname_table currently in use. */
3692 static GTY(()) unsigned pubname_table_in_use;
3694 /* Size (in elements) of increments by which we may expand the
3695 pubname_table. */
3696 #define PUBNAME_TABLE_INCREMENT 64
3698 /* Array of dies for which we should generate .debug_arange info. */
3699 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3701 /* Number of elements currently allocated for arange_table. */
3702 static GTY(()) unsigned arange_table_allocated;
3704 /* Number of elements in arange_table currently in use. */
3705 static GTY(()) unsigned arange_table_in_use;
3707 /* Size (in elements) of increments by which we may expand the
3708 arange_table. */
3709 #define ARANGE_TABLE_INCREMENT 64
3711 /* Array of dies for which we should generate .debug_ranges info. */
3712 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3714 /* Number of elements currently allocated for ranges_table. */
3715 static GTY(()) unsigned ranges_table_allocated;
3717 /* Number of elements in ranges_table currently in use. */
3718 static GTY(()) unsigned ranges_table_in_use;
3720 /* Size (in elements) of increments by which we may expand the
3721 ranges_table. */
3722 #define RANGES_TABLE_INCREMENT 64
3724 /* Whether we have location lists that need outputting */
3725 static GTY(()) unsigned have_location_lists;
3727 /* Unique label counter. */
3728 static GTY(()) unsigned int loclabel_num;
3730 #ifdef DWARF2_DEBUGGING_INFO
3731 /* Record whether the function being analyzed contains inlined functions. */
3732 static int current_function_has_inlines;
3733 #endif
3734 #if 0 && defined (MIPS_DEBUGGING_INFO)
3735 static int comp_unit_has_inlines;
3736 #endif
3738 /* Number of file tables emitted in maybe_emit_file(). */
3739 static GTY(()) int emitcount = 0;
3741 /* Number of internal labels generated by gen_internal_sym(). */
3742 static GTY(()) int label_num;
3744 #ifdef DWARF2_DEBUGGING_INFO
3746 /* Forward declarations for functions defined in this file. */
3748 static int is_pseudo_reg (rtx);
3749 static tree type_main_variant (tree);
3750 static int is_tagged_type (tree);
3751 static const char *dwarf_tag_name (unsigned);
3752 static const char *dwarf_attr_name (unsigned);
3753 static const char *dwarf_form_name (unsigned);
3754 #if 0
3755 static const char *dwarf_type_encoding_name (unsigned);
3756 #endif
3757 static tree decl_ultimate_origin (tree);
3758 static tree block_ultimate_origin (tree);
3759 static tree decl_class_context (tree);
3760 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3761 static inline enum dw_val_class AT_class (dw_attr_ref);
3762 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3763 static inline unsigned AT_flag (dw_attr_ref);
3764 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3765 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3766 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3767 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3768 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3769 unsigned long);
3770 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3771 unsigned int, unsigned char *);
3772 static hashval_t debug_str_do_hash (const void *);
3773 static int debug_str_eq (const void *, const void *);
3774 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3775 static inline const char *AT_string (dw_attr_ref);
3776 static int AT_string_form (dw_attr_ref);
3777 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3778 static void add_AT_specification (dw_die_ref, dw_die_ref);
3779 static inline dw_die_ref AT_ref (dw_attr_ref);
3780 static inline int AT_ref_external (dw_attr_ref);
3781 static inline void set_AT_ref_external (dw_attr_ref, int);
3782 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3783 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3784 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3785 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3786 dw_loc_list_ref);
3787 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3788 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3789 static inline rtx AT_addr (dw_attr_ref);
3790 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3791 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3792 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3793 unsigned HOST_WIDE_INT);
3794 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3795 unsigned long);
3796 static inline const char *AT_lbl (dw_attr_ref);
3797 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3798 static const char *get_AT_low_pc (dw_die_ref);
3799 static const char *get_AT_hi_pc (dw_die_ref);
3800 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3801 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3802 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3803 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3804 static bool is_c_family (void);
3805 static bool is_cxx (void);
3806 static bool is_java (void);
3807 static bool is_fortran (void);
3808 static bool is_ada (void);
3809 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3810 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3811 static inline void free_die (dw_die_ref);
3812 static void remove_children (dw_die_ref);
3813 static void add_child_die (dw_die_ref, dw_die_ref);
3814 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3815 static dw_die_ref lookup_type_die (tree);
3816 static void equate_type_number_to_die (tree, dw_die_ref);
3817 static hashval_t decl_die_table_hash (const void *);
3818 static int decl_die_table_eq (const void *, const void *);
3819 static dw_die_ref lookup_decl_die (tree);
3820 static hashval_t decl_loc_table_hash (const void *);
3821 static int decl_loc_table_eq (const void *, const void *);
3822 static var_loc_list *lookup_decl_loc (tree);
3823 static void equate_decl_number_to_die (tree, dw_die_ref);
3824 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3825 static void print_spaces (FILE *);
3826 static void print_die (dw_die_ref, FILE *);
3827 static void print_dwarf_line_table (FILE *);
3828 static void reverse_die_lists (dw_die_ref);
3829 static void reverse_all_dies (dw_die_ref);
3830 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3831 static dw_die_ref pop_compile_unit (dw_die_ref);
3832 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3833 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3834 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3835 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3836 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3837 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3838 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3839 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3840 static void compute_section_prefix (dw_die_ref);
3841 static int is_type_die (dw_die_ref);
3842 static int is_comdat_die (dw_die_ref);
3843 static int is_symbol_die (dw_die_ref);
3844 static void assign_symbol_names (dw_die_ref);
3845 static void break_out_includes (dw_die_ref);
3846 static hashval_t htab_cu_hash (const void *);
3847 static int htab_cu_eq (const void *, const void *);
3848 static void htab_cu_del (void *);
3849 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3850 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3851 static void add_sibling_attributes (dw_die_ref);
3852 static void build_abbrev_table (dw_die_ref);
3853 static void output_location_lists (dw_die_ref);
3854 static int constant_size (long unsigned);
3855 static unsigned long size_of_die (dw_die_ref);
3856 static void calc_die_sizes (dw_die_ref);
3857 static void mark_dies (dw_die_ref);
3858 static void unmark_dies (dw_die_ref);
3859 static void unmark_all_dies (dw_die_ref);
3860 static unsigned long size_of_pubnames (void);
3861 static unsigned long size_of_aranges (void);
3862 static enum dwarf_form value_format (dw_attr_ref);
3863 static void output_value_format (dw_attr_ref);
3864 static void output_abbrev_section (void);
3865 static void output_die_symbol (dw_die_ref);
3866 static void output_die (dw_die_ref);
3867 static void output_compilation_unit_header (void);
3868 static void output_comp_unit (dw_die_ref, int);
3869 static const char *dwarf2_name (tree, int);
3870 static void add_pubname (tree, dw_die_ref);
3871 static void output_pubnames (void);
3872 static void add_arange (tree, dw_die_ref);
3873 static void output_aranges (void);
3874 static unsigned int add_ranges (tree);
3875 static void output_ranges (void);
3876 static void output_line_info (void);
3877 static void output_file_names (void);
3878 static dw_die_ref base_type_die (tree);
3879 static tree root_type (tree);
3880 static int is_base_type (tree);
3881 static bool is_subrange_type (tree);
3882 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3883 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3884 static int type_is_enum (tree);
3885 static unsigned int dbx_reg_number (rtx);
3886 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3887 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3888 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3889 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3890 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3891 static int is_based_loc (rtx);
3892 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3893 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3894 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3895 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3896 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3897 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3898 static tree field_type (tree);
3899 static unsigned int simple_type_align_in_bits (tree);
3900 static unsigned int simple_decl_align_in_bits (tree);
3901 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3902 static HOST_WIDE_INT field_byte_offset (tree);
3903 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3904 dw_loc_descr_ref);
3905 static void add_data_member_location_attribute (dw_die_ref, tree);
3906 static void add_const_value_attribute (dw_die_ref, rtx);
3907 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3908 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3909 static void insert_float (rtx, unsigned char *);
3910 static rtx rtl_for_decl_location (tree);
3911 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3912 enum dwarf_attribute);
3913 static void tree_add_const_value_attribute (dw_die_ref, tree);
3914 static void add_name_attribute (dw_die_ref, const char *);
3915 static void add_comp_dir_attribute (dw_die_ref);
3916 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3917 static void add_subscript_info (dw_die_ref, tree);
3918 static void add_byte_size_attribute (dw_die_ref, tree);
3919 static void add_bit_offset_attribute (dw_die_ref, tree);
3920 static void add_bit_size_attribute (dw_die_ref, tree);
3921 static void add_prototyped_attribute (dw_die_ref, tree);
3922 static void add_abstract_origin_attribute (dw_die_ref, tree);
3923 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3924 static void add_src_coords_attributes (dw_die_ref, tree);
3925 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3926 static void push_decl_scope (tree);
3927 static void pop_decl_scope (void);
3928 static dw_die_ref scope_die_for (tree, dw_die_ref);
3929 static inline int local_scope_p (dw_die_ref);
3930 static inline int class_or_namespace_scope_p (dw_die_ref);
3931 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3932 static void add_calling_convention_attribute (dw_die_ref, tree);
3933 static const char *type_tag (tree);
3934 static tree member_declared_type (tree);
3935 #if 0
3936 static const char *decl_start_label (tree);
3937 #endif
3938 static void gen_array_type_die (tree, dw_die_ref);
3939 static void gen_set_type_die (tree, dw_die_ref);
3940 #if 0
3941 static void gen_entry_point_die (tree, dw_die_ref);
3942 #endif
3943 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3944 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3945 static void gen_inlined_union_type_die (tree, dw_die_ref);
3946 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3947 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3948 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3949 static void gen_formal_types_die (tree, dw_die_ref);
3950 static void gen_subprogram_die (tree, dw_die_ref);
3951 static void gen_variable_die (tree, dw_die_ref);
3952 static void gen_label_die (tree, dw_die_ref);
3953 static void gen_lexical_block_die (tree, dw_die_ref, int);
3954 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3955 static void gen_field_die (tree, dw_die_ref);
3956 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3957 static dw_die_ref gen_compile_unit_die (const char *);
3958 static void gen_string_type_die (tree, dw_die_ref);
3959 static void gen_inheritance_die (tree, tree, dw_die_ref);
3960 static void gen_member_die (tree, dw_die_ref);
3961 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3962 static void gen_subroutine_type_die (tree, dw_die_ref);
3963 static void gen_typedef_die (tree, dw_die_ref);
3964 static void gen_type_die (tree, dw_die_ref);
3965 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3966 static void gen_block_die (tree, dw_die_ref, int);
3967 static void decls_for_scope (tree, dw_die_ref, int);
3968 static int is_redundant_typedef (tree);
3969 static void gen_namespace_die (tree);
3970 static void gen_decl_die (tree, dw_die_ref);
3971 static dw_die_ref force_decl_die (tree);
3972 static dw_die_ref force_type_die (tree);
3973 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3974 static void declare_in_namespace (tree, dw_die_ref);
3975 static unsigned lookup_filename (const char *);
3976 static void init_file_table (void);
3977 static void retry_incomplete_types (void);
3978 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3979 static void splice_child_die (dw_die_ref, dw_die_ref);
3980 static int file_info_cmp (const void *, const void *);
3981 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3982 const char *, const char *, unsigned);
3983 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3984 const char *, const char *,
3985 const char *);
3986 static void output_loc_list (dw_loc_list_ref);
3987 static char *gen_internal_sym (const char *);
3989 static void prune_unmark_dies (dw_die_ref);
3990 static void prune_unused_types_mark (dw_die_ref, int);
3991 static void prune_unused_types_walk (dw_die_ref);
3992 static void prune_unused_types_walk_attribs (dw_die_ref);
3993 static void prune_unused_types_prune (dw_die_ref);
3994 static void prune_unused_types (void);
3995 static int maybe_emit_file (int);
3997 /* Section names used to hold DWARF debugging information. */
3998 #ifndef DEBUG_INFO_SECTION
3999 #define DEBUG_INFO_SECTION ".debug_info"
4000 #endif
4001 #ifndef DEBUG_ABBREV_SECTION
4002 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4003 #endif
4004 #ifndef DEBUG_ARANGES_SECTION
4005 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4006 #endif
4007 #ifndef DEBUG_MACINFO_SECTION
4008 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4009 #endif
4010 #ifndef DEBUG_LINE_SECTION
4011 #define DEBUG_LINE_SECTION ".debug_line"
4012 #endif
4013 #ifndef DEBUG_LOC_SECTION
4014 #define DEBUG_LOC_SECTION ".debug_loc"
4015 #endif
4016 #ifndef DEBUG_PUBNAMES_SECTION
4017 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4018 #endif
4019 #ifndef DEBUG_STR_SECTION
4020 #define DEBUG_STR_SECTION ".debug_str"
4021 #endif
4022 #ifndef DEBUG_RANGES_SECTION
4023 #define DEBUG_RANGES_SECTION ".debug_ranges"
4024 #endif
4026 /* Standard ELF section names for compiled code and data. */
4027 #ifndef TEXT_SECTION_NAME
4028 #define TEXT_SECTION_NAME ".text"
4029 #endif
4031 /* Section flags for .debug_str section. */
4032 #define DEBUG_STR_SECTION_FLAGS \
4033 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4034 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4035 : SECTION_DEBUG)
4037 /* Labels we insert at beginning sections we can reference instead of
4038 the section names themselves. */
4040 #ifndef TEXT_SECTION_LABEL
4041 #define TEXT_SECTION_LABEL "Ltext"
4042 #endif
4043 #ifndef DEBUG_LINE_SECTION_LABEL
4044 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4045 #endif
4046 #ifndef DEBUG_INFO_SECTION_LABEL
4047 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4048 #endif
4049 #ifndef DEBUG_ABBREV_SECTION_LABEL
4050 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4051 #endif
4052 #ifndef DEBUG_LOC_SECTION_LABEL
4053 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4054 #endif
4055 #ifndef DEBUG_RANGES_SECTION_LABEL
4056 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4057 #endif
4058 #ifndef DEBUG_MACINFO_SECTION_LABEL
4059 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4060 #endif
4062 /* Definitions of defaults for formats and names of various special
4063 (artificial) labels which may be generated within this file (when the -g
4064 options is used and DWARF2_DEBUGGING_INFO is in effect.
4065 If necessary, these may be overridden from within the tm.h file, but
4066 typically, overriding these defaults is unnecessary. */
4068 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4069 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4070 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4071 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4072 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4073 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4074 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4075 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4077 #ifndef TEXT_END_LABEL
4078 #define TEXT_END_LABEL "Letext"
4079 #endif
4080 #ifndef BLOCK_BEGIN_LABEL
4081 #define BLOCK_BEGIN_LABEL "LBB"
4082 #endif
4083 #ifndef BLOCK_END_LABEL
4084 #define BLOCK_END_LABEL "LBE"
4085 #endif
4086 #ifndef LINE_CODE_LABEL
4087 #define LINE_CODE_LABEL "LM"
4088 #endif
4089 #ifndef SEPARATE_LINE_CODE_LABEL
4090 #define SEPARATE_LINE_CODE_LABEL "LSM"
4091 #endif
4093 /* We allow a language front-end to designate a function that is to be
4094 called to "demangle" any name before it it put into a DIE. */
4096 static const char *(*demangle_name_func) (const char *);
4098 void
4099 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4101 demangle_name_func = func;
4104 /* Test if rtl node points to a pseudo register. */
4106 static inline int
4107 is_pseudo_reg (rtx rtl)
4109 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4110 || (GET_CODE (rtl) == SUBREG
4111 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4114 /* Return a reference to a type, with its const and volatile qualifiers
4115 removed. */
4117 static inline tree
4118 type_main_variant (tree type)
4120 type = TYPE_MAIN_VARIANT (type);
4122 /* ??? There really should be only one main variant among any group of
4123 variants of a given type (and all of the MAIN_VARIANT values for all
4124 members of the group should point to that one type) but sometimes the C
4125 front-end messes this up for array types, so we work around that bug
4126 here. */
4127 if (TREE_CODE (type) == ARRAY_TYPE)
4128 while (type != TYPE_MAIN_VARIANT (type))
4129 type = TYPE_MAIN_VARIANT (type);
4131 return type;
4134 /* Return nonzero if the given type node represents a tagged type. */
4136 static inline int
4137 is_tagged_type (tree type)
4139 enum tree_code code = TREE_CODE (type);
4141 return (code == RECORD_TYPE || code == UNION_TYPE
4142 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4145 /* Convert a DIE tag into its string name. */
4147 static const char *
4148 dwarf_tag_name (unsigned int tag)
4150 switch (tag)
4152 case DW_TAG_padding:
4153 return "DW_TAG_padding";
4154 case DW_TAG_array_type:
4155 return "DW_TAG_array_type";
4156 case DW_TAG_class_type:
4157 return "DW_TAG_class_type";
4158 case DW_TAG_entry_point:
4159 return "DW_TAG_entry_point";
4160 case DW_TAG_enumeration_type:
4161 return "DW_TAG_enumeration_type";
4162 case DW_TAG_formal_parameter:
4163 return "DW_TAG_formal_parameter";
4164 case DW_TAG_imported_declaration:
4165 return "DW_TAG_imported_declaration";
4166 case DW_TAG_label:
4167 return "DW_TAG_label";
4168 case DW_TAG_lexical_block:
4169 return "DW_TAG_lexical_block";
4170 case DW_TAG_member:
4171 return "DW_TAG_member";
4172 case DW_TAG_pointer_type:
4173 return "DW_TAG_pointer_type";
4174 case DW_TAG_reference_type:
4175 return "DW_TAG_reference_type";
4176 case DW_TAG_compile_unit:
4177 return "DW_TAG_compile_unit";
4178 case DW_TAG_string_type:
4179 return "DW_TAG_string_type";
4180 case DW_TAG_structure_type:
4181 return "DW_TAG_structure_type";
4182 case DW_TAG_subroutine_type:
4183 return "DW_TAG_subroutine_type";
4184 case DW_TAG_typedef:
4185 return "DW_TAG_typedef";
4186 case DW_TAG_union_type:
4187 return "DW_TAG_union_type";
4188 case DW_TAG_unspecified_parameters:
4189 return "DW_TAG_unspecified_parameters";
4190 case DW_TAG_variant:
4191 return "DW_TAG_variant";
4192 case DW_TAG_common_block:
4193 return "DW_TAG_common_block";
4194 case DW_TAG_common_inclusion:
4195 return "DW_TAG_common_inclusion";
4196 case DW_TAG_inheritance:
4197 return "DW_TAG_inheritance";
4198 case DW_TAG_inlined_subroutine:
4199 return "DW_TAG_inlined_subroutine";
4200 case DW_TAG_module:
4201 return "DW_TAG_module";
4202 case DW_TAG_ptr_to_member_type:
4203 return "DW_TAG_ptr_to_member_type";
4204 case DW_TAG_set_type:
4205 return "DW_TAG_set_type";
4206 case DW_TAG_subrange_type:
4207 return "DW_TAG_subrange_type";
4208 case DW_TAG_with_stmt:
4209 return "DW_TAG_with_stmt";
4210 case DW_TAG_access_declaration:
4211 return "DW_TAG_access_declaration";
4212 case DW_TAG_base_type:
4213 return "DW_TAG_base_type";
4214 case DW_TAG_catch_block:
4215 return "DW_TAG_catch_block";
4216 case DW_TAG_const_type:
4217 return "DW_TAG_const_type";
4218 case DW_TAG_constant:
4219 return "DW_TAG_constant";
4220 case DW_TAG_enumerator:
4221 return "DW_TAG_enumerator";
4222 case DW_TAG_file_type:
4223 return "DW_TAG_file_type";
4224 case DW_TAG_friend:
4225 return "DW_TAG_friend";
4226 case DW_TAG_namelist:
4227 return "DW_TAG_namelist";
4228 case DW_TAG_namelist_item:
4229 return "DW_TAG_namelist_item";
4230 case DW_TAG_namespace:
4231 return "DW_TAG_namespace";
4232 case DW_TAG_packed_type:
4233 return "DW_TAG_packed_type";
4234 case DW_TAG_subprogram:
4235 return "DW_TAG_subprogram";
4236 case DW_TAG_template_type_param:
4237 return "DW_TAG_template_type_param";
4238 case DW_TAG_template_value_param:
4239 return "DW_TAG_template_value_param";
4240 case DW_TAG_thrown_type:
4241 return "DW_TAG_thrown_type";
4242 case DW_TAG_try_block:
4243 return "DW_TAG_try_block";
4244 case DW_TAG_variant_part:
4245 return "DW_TAG_variant_part";
4246 case DW_TAG_variable:
4247 return "DW_TAG_variable";
4248 case DW_TAG_volatile_type:
4249 return "DW_TAG_volatile_type";
4250 case DW_TAG_imported_module:
4251 return "DW_TAG_imported_module";
4252 case DW_TAG_MIPS_loop:
4253 return "DW_TAG_MIPS_loop";
4254 case DW_TAG_format_label:
4255 return "DW_TAG_format_label";
4256 case DW_TAG_function_template:
4257 return "DW_TAG_function_template";
4258 case DW_TAG_class_template:
4259 return "DW_TAG_class_template";
4260 case DW_TAG_GNU_BINCL:
4261 return "DW_TAG_GNU_BINCL";
4262 case DW_TAG_GNU_EINCL:
4263 return "DW_TAG_GNU_EINCL";
4264 default:
4265 return "DW_TAG_<unknown>";
4269 /* Convert a DWARF attribute code into its string name. */
4271 static const char *
4272 dwarf_attr_name (unsigned int attr)
4274 switch (attr)
4276 case DW_AT_sibling:
4277 return "DW_AT_sibling";
4278 case DW_AT_location:
4279 return "DW_AT_location";
4280 case DW_AT_name:
4281 return "DW_AT_name";
4282 case DW_AT_ordering:
4283 return "DW_AT_ordering";
4284 case DW_AT_subscr_data:
4285 return "DW_AT_subscr_data";
4286 case DW_AT_byte_size:
4287 return "DW_AT_byte_size";
4288 case DW_AT_bit_offset:
4289 return "DW_AT_bit_offset";
4290 case DW_AT_bit_size:
4291 return "DW_AT_bit_size";
4292 case DW_AT_element_list:
4293 return "DW_AT_element_list";
4294 case DW_AT_stmt_list:
4295 return "DW_AT_stmt_list";
4296 case DW_AT_low_pc:
4297 return "DW_AT_low_pc";
4298 case DW_AT_high_pc:
4299 return "DW_AT_high_pc";
4300 case DW_AT_language:
4301 return "DW_AT_language";
4302 case DW_AT_member:
4303 return "DW_AT_member";
4304 case DW_AT_discr:
4305 return "DW_AT_discr";
4306 case DW_AT_discr_value:
4307 return "DW_AT_discr_value";
4308 case DW_AT_visibility:
4309 return "DW_AT_visibility";
4310 case DW_AT_import:
4311 return "DW_AT_import";
4312 case DW_AT_string_length:
4313 return "DW_AT_string_length";
4314 case DW_AT_common_reference:
4315 return "DW_AT_common_reference";
4316 case DW_AT_comp_dir:
4317 return "DW_AT_comp_dir";
4318 case DW_AT_const_value:
4319 return "DW_AT_const_value";
4320 case DW_AT_containing_type:
4321 return "DW_AT_containing_type";
4322 case DW_AT_default_value:
4323 return "DW_AT_default_value";
4324 case DW_AT_inline:
4325 return "DW_AT_inline";
4326 case DW_AT_is_optional:
4327 return "DW_AT_is_optional";
4328 case DW_AT_lower_bound:
4329 return "DW_AT_lower_bound";
4330 case DW_AT_producer:
4331 return "DW_AT_producer";
4332 case DW_AT_prototyped:
4333 return "DW_AT_prototyped";
4334 case DW_AT_return_addr:
4335 return "DW_AT_return_addr";
4336 case DW_AT_start_scope:
4337 return "DW_AT_start_scope";
4338 case DW_AT_stride_size:
4339 return "DW_AT_stride_size";
4340 case DW_AT_upper_bound:
4341 return "DW_AT_upper_bound";
4342 case DW_AT_abstract_origin:
4343 return "DW_AT_abstract_origin";
4344 case DW_AT_accessibility:
4345 return "DW_AT_accessibility";
4346 case DW_AT_address_class:
4347 return "DW_AT_address_class";
4348 case DW_AT_artificial:
4349 return "DW_AT_artificial";
4350 case DW_AT_base_types:
4351 return "DW_AT_base_types";
4352 case DW_AT_calling_convention:
4353 return "DW_AT_calling_convention";
4354 case DW_AT_count:
4355 return "DW_AT_count";
4356 case DW_AT_data_member_location:
4357 return "DW_AT_data_member_location";
4358 case DW_AT_decl_column:
4359 return "DW_AT_decl_column";
4360 case DW_AT_decl_file:
4361 return "DW_AT_decl_file";
4362 case DW_AT_decl_line:
4363 return "DW_AT_decl_line";
4364 case DW_AT_declaration:
4365 return "DW_AT_declaration";
4366 case DW_AT_discr_list:
4367 return "DW_AT_discr_list";
4368 case DW_AT_encoding:
4369 return "DW_AT_encoding";
4370 case DW_AT_external:
4371 return "DW_AT_external";
4372 case DW_AT_frame_base:
4373 return "DW_AT_frame_base";
4374 case DW_AT_friend:
4375 return "DW_AT_friend";
4376 case DW_AT_identifier_case:
4377 return "DW_AT_identifier_case";
4378 case DW_AT_macro_info:
4379 return "DW_AT_macro_info";
4380 case DW_AT_namelist_items:
4381 return "DW_AT_namelist_items";
4382 case DW_AT_priority:
4383 return "DW_AT_priority";
4384 case DW_AT_segment:
4385 return "DW_AT_segment";
4386 case DW_AT_specification:
4387 return "DW_AT_specification";
4388 case DW_AT_static_link:
4389 return "DW_AT_static_link";
4390 case DW_AT_type:
4391 return "DW_AT_type";
4392 case DW_AT_use_location:
4393 return "DW_AT_use_location";
4394 case DW_AT_variable_parameter:
4395 return "DW_AT_variable_parameter";
4396 case DW_AT_virtuality:
4397 return "DW_AT_virtuality";
4398 case DW_AT_vtable_elem_location:
4399 return "DW_AT_vtable_elem_location";
4401 case DW_AT_allocated:
4402 return "DW_AT_allocated";
4403 case DW_AT_associated:
4404 return "DW_AT_associated";
4405 case DW_AT_data_location:
4406 return "DW_AT_data_location";
4407 case DW_AT_stride:
4408 return "DW_AT_stride";
4409 case DW_AT_entry_pc:
4410 return "DW_AT_entry_pc";
4411 case DW_AT_use_UTF8:
4412 return "DW_AT_use_UTF8";
4413 case DW_AT_extension:
4414 return "DW_AT_extension";
4415 case DW_AT_ranges:
4416 return "DW_AT_ranges";
4417 case DW_AT_trampoline:
4418 return "DW_AT_trampoline";
4419 case DW_AT_call_column:
4420 return "DW_AT_call_column";
4421 case DW_AT_call_file:
4422 return "DW_AT_call_file";
4423 case DW_AT_call_line:
4424 return "DW_AT_call_line";
4426 case DW_AT_MIPS_fde:
4427 return "DW_AT_MIPS_fde";
4428 case DW_AT_MIPS_loop_begin:
4429 return "DW_AT_MIPS_loop_begin";
4430 case DW_AT_MIPS_tail_loop_begin:
4431 return "DW_AT_MIPS_tail_loop_begin";
4432 case DW_AT_MIPS_epilog_begin:
4433 return "DW_AT_MIPS_epilog_begin";
4434 case DW_AT_MIPS_loop_unroll_factor:
4435 return "DW_AT_MIPS_loop_unroll_factor";
4436 case DW_AT_MIPS_software_pipeline_depth:
4437 return "DW_AT_MIPS_software_pipeline_depth";
4438 case DW_AT_MIPS_linkage_name:
4439 return "DW_AT_MIPS_linkage_name";
4440 case DW_AT_MIPS_stride:
4441 return "DW_AT_MIPS_stride";
4442 case DW_AT_MIPS_abstract_name:
4443 return "DW_AT_MIPS_abstract_name";
4444 case DW_AT_MIPS_clone_origin:
4445 return "DW_AT_MIPS_clone_origin";
4446 case DW_AT_MIPS_has_inlines:
4447 return "DW_AT_MIPS_has_inlines";
4449 case DW_AT_sf_names:
4450 return "DW_AT_sf_names";
4451 case DW_AT_src_info:
4452 return "DW_AT_src_info";
4453 case DW_AT_mac_info:
4454 return "DW_AT_mac_info";
4455 case DW_AT_src_coords:
4456 return "DW_AT_src_coords";
4457 case DW_AT_body_begin:
4458 return "DW_AT_body_begin";
4459 case DW_AT_body_end:
4460 return "DW_AT_body_end";
4461 case DW_AT_GNU_vector:
4462 return "DW_AT_GNU_vector";
4464 case DW_AT_VMS_rtnbeg_pd_address:
4465 return "DW_AT_VMS_rtnbeg_pd_address";
4467 default:
4468 return "DW_AT_<unknown>";
4472 /* Convert a DWARF value form code into its string name. */
4474 static const char *
4475 dwarf_form_name (unsigned int form)
4477 switch (form)
4479 case DW_FORM_addr:
4480 return "DW_FORM_addr";
4481 case DW_FORM_block2:
4482 return "DW_FORM_block2";
4483 case DW_FORM_block4:
4484 return "DW_FORM_block4";
4485 case DW_FORM_data2:
4486 return "DW_FORM_data2";
4487 case DW_FORM_data4:
4488 return "DW_FORM_data4";
4489 case DW_FORM_data8:
4490 return "DW_FORM_data8";
4491 case DW_FORM_string:
4492 return "DW_FORM_string";
4493 case DW_FORM_block:
4494 return "DW_FORM_block";
4495 case DW_FORM_block1:
4496 return "DW_FORM_block1";
4497 case DW_FORM_data1:
4498 return "DW_FORM_data1";
4499 case DW_FORM_flag:
4500 return "DW_FORM_flag";
4501 case DW_FORM_sdata:
4502 return "DW_FORM_sdata";
4503 case DW_FORM_strp:
4504 return "DW_FORM_strp";
4505 case DW_FORM_udata:
4506 return "DW_FORM_udata";
4507 case DW_FORM_ref_addr:
4508 return "DW_FORM_ref_addr";
4509 case DW_FORM_ref1:
4510 return "DW_FORM_ref1";
4511 case DW_FORM_ref2:
4512 return "DW_FORM_ref2";
4513 case DW_FORM_ref4:
4514 return "DW_FORM_ref4";
4515 case DW_FORM_ref8:
4516 return "DW_FORM_ref8";
4517 case DW_FORM_ref_udata:
4518 return "DW_FORM_ref_udata";
4519 case DW_FORM_indirect:
4520 return "DW_FORM_indirect";
4521 default:
4522 return "DW_FORM_<unknown>";
4526 /* Convert a DWARF type code into its string name. */
4528 #if 0
4529 static const char *
4530 dwarf_type_encoding_name (unsigned enc)
4532 switch (enc)
4534 case DW_ATE_address:
4535 return "DW_ATE_address";
4536 case DW_ATE_boolean:
4537 return "DW_ATE_boolean";
4538 case DW_ATE_complex_float:
4539 return "DW_ATE_complex_float";
4540 case DW_ATE_float:
4541 return "DW_ATE_float";
4542 case DW_ATE_signed:
4543 return "DW_ATE_signed";
4544 case DW_ATE_signed_char:
4545 return "DW_ATE_signed_char";
4546 case DW_ATE_unsigned:
4547 return "DW_ATE_unsigned";
4548 case DW_ATE_unsigned_char:
4549 return "DW_ATE_unsigned_char";
4550 default:
4551 return "DW_ATE_<unknown>";
4554 #endif
4556 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4557 instance of an inlined instance of a decl which is local to an inline
4558 function, so we have to trace all of the way back through the origin chain
4559 to find out what sort of node actually served as the original seed for the
4560 given block. */
4562 static tree
4563 decl_ultimate_origin (tree decl)
4565 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4566 nodes in the function to point to themselves; ignore that if
4567 we're trying to output the abstract instance of this function. */
4568 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4569 return NULL_TREE;
4571 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4572 most distant ancestor, this should never happen. */
4573 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4575 return DECL_ABSTRACT_ORIGIN (decl);
4578 /* Determine the "ultimate origin" of a block. The block may be an inlined
4579 instance of an inlined instance of a block which is local to an inline
4580 function, so we have to trace all of the way back through the origin chain
4581 to find out what sort of node actually served as the original seed for the
4582 given block. */
4584 static tree
4585 block_ultimate_origin (tree block)
4587 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4589 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4590 nodes in the function to point to themselves; ignore that if
4591 we're trying to output the abstract instance of this function. */
4592 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4593 return NULL_TREE;
4595 if (immediate_origin == NULL_TREE)
4596 return NULL_TREE;
4597 else
4599 tree ret_val;
4600 tree lookahead = immediate_origin;
4604 ret_val = lookahead;
4605 lookahead = (TREE_CODE (ret_val) == BLOCK
4606 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4608 while (lookahead != NULL && lookahead != ret_val);
4610 return ret_val;
4614 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4615 of a virtual function may refer to a base class, so we check the 'this'
4616 parameter. */
4618 static tree
4619 decl_class_context (tree decl)
4621 tree context = NULL_TREE;
4623 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4624 context = DECL_CONTEXT (decl);
4625 else
4626 context = TYPE_MAIN_VARIANT
4627 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4629 if (context && !TYPE_P (context))
4630 context = NULL_TREE;
4632 return context;
4635 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4636 addition order, and correct that in reverse_all_dies. */
4638 static inline void
4639 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4641 if (die != NULL && attr != NULL)
4643 attr->dw_attr_next = die->die_attr;
4644 die->die_attr = attr;
4648 static inline enum dw_val_class
4649 AT_class (dw_attr_ref a)
4651 return a->dw_attr_val.val_class;
4654 /* Add a flag value attribute to a DIE. */
4656 static inline void
4657 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4659 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4661 attr->dw_attr_next = NULL;
4662 attr->dw_attr = attr_kind;
4663 attr->dw_attr_val.val_class = dw_val_class_flag;
4664 attr->dw_attr_val.v.val_flag = flag;
4665 add_dwarf_attr (die, attr);
4668 static inline unsigned
4669 AT_flag (dw_attr_ref a)
4671 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4672 return a->dw_attr_val.v.val_flag;
4675 /* Add a signed integer attribute value to a DIE. */
4677 static inline void
4678 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4680 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4682 attr->dw_attr_next = NULL;
4683 attr->dw_attr = attr_kind;
4684 attr->dw_attr_val.val_class = dw_val_class_const;
4685 attr->dw_attr_val.v.val_int = int_val;
4686 add_dwarf_attr (die, attr);
4689 static inline HOST_WIDE_INT
4690 AT_int (dw_attr_ref a)
4692 gcc_assert (a && AT_class (a) == dw_val_class_const);
4693 return a->dw_attr_val.v.val_int;
4696 /* Add an unsigned integer attribute value to a DIE. */
4698 static inline void
4699 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4700 unsigned HOST_WIDE_INT unsigned_val)
4702 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4704 attr->dw_attr_next = NULL;
4705 attr->dw_attr = attr_kind;
4706 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4707 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4708 add_dwarf_attr (die, attr);
4711 static inline unsigned HOST_WIDE_INT
4712 AT_unsigned (dw_attr_ref a)
4714 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4715 return a->dw_attr_val.v.val_unsigned;
4718 /* Add an unsigned double integer attribute value to a DIE. */
4720 static inline void
4721 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4722 long unsigned int val_hi, long unsigned int val_low)
4724 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4726 attr->dw_attr_next = NULL;
4727 attr->dw_attr = attr_kind;
4728 attr->dw_attr_val.val_class = dw_val_class_long_long;
4729 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4730 attr->dw_attr_val.v.val_long_long.low = val_low;
4731 add_dwarf_attr (die, attr);
4734 /* Add a floating point attribute value to a DIE and return it. */
4736 static inline void
4737 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4738 unsigned int length, unsigned int elt_size, unsigned char *array)
4740 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4742 attr->dw_attr_next = NULL;
4743 attr->dw_attr = attr_kind;
4744 attr->dw_attr_val.val_class = dw_val_class_vec;
4745 attr->dw_attr_val.v.val_vec.length = length;
4746 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4747 attr->dw_attr_val.v.val_vec.array = array;
4748 add_dwarf_attr (die, attr);
4751 /* Hash and equality functions for debug_str_hash. */
4753 static hashval_t
4754 debug_str_do_hash (const void *x)
4756 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4759 static int
4760 debug_str_eq (const void *x1, const void *x2)
4762 return strcmp ((((const struct indirect_string_node *)x1)->str),
4763 (const char *)x2) == 0;
4766 /* Add a string attribute value to a DIE. */
4768 static inline void
4769 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4771 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4772 struct indirect_string_node *node;
4773 void **slot;
4775 if (! debug_str_hash)
4776 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4777 debug_str_eq, NULL);
4779 slot = htab_find_slot_with_hash (debug_str_hash, str,
4780 htab_hash_string (str), INSERT);
4781 if (*slot == NULL)
4782 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4783 node = (struct indirect_string_node *) *slot;
4784 node->str = ggc_strdup (str);
4785 node->refcount++;
4787 attr->dw_attr_next = NULL;
4788 attr->dw_attr = attr_kind;
4789 attr->dw_attr_val.val_class = dw_val_class_str;
4790 attr->dw_attr_val.v.val_str = node;
4791 add_dwarf_attr (die, attr);
4794 static inline const char *
4795 AT_string (dw_attr_ref a)
4797 gcc_assert (a && AT_class (a) == dw_val_class_str);
4798 return a->dw_attr_val.v.val_str->str;
4801 /* Find out whether a string should be output inline in DIE
4802 or out-of-line in .debug_str section. */
4804 static int
4805 AT_string_form (dw_attr_ref a)
4807 struct indirect_string_node *node;
4808 unsigned int len;
4809 char label[32];
4811 gcc_assert (a && AT_class (a) == dw_val_class_str);
4813 node = a->dw_attr_val.v.val_str;
4814 if (node->form)
4815 return node->form;
4817 len = strlen (node->str) + 1;
4819 /* If the string is shorter or equal to the size of the reference, it is
4820 always better to put it inline. */
4821 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4822 return node->form = DW_FORM_string;
4824 /* If we cannot expect the linker to merge strings in .debug_str
4825 section, only put it into .debug_str if it is worth even in this
4826 single module. */
4827 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4828 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4829 return node->form = DW_FORM_string;
4831 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4832 ++dw2_string_counter;
4833 node->label = xstrdup (label);
4835 return node->form = DW_FORM_strp;
4838 /* Add a DIE reference attribute value to a DIE. */
4840 static inline void
4841 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4843 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4845 attr->dw_attr_next = NULL;
4846 attr->dw_attr = attr_kind;
4847 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4848 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4849 attr->dw_attr_val.v.val_die_ref.external = 0;
4850 add_dwarf_attr (die, attr);
4853 /* Add an AT_specification attribute to a DIE, and also make the back
4854 pointer from the specification to the definition. */
4856 static inline void
4857 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4859 add_AT_die_ref (die, DW_AT_specification, targ_die);
4860 gcc_assert (!targ_die->die_definition);
4861 targ_die->die_definition = die;
4864 static inline dw_die_ref
4865 AT_ref (dw_attr_ref a)
4867 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4868 return a->dw_attr_val.v.val_die_ref.die;
4871 static inline int
4872 AT_ref_external (dw_attr_ref a)
4874 if (a && AT_class (a) == dw_val_class_die_ref)
4875 return a->dw_attr_val.v.val_die_ref.external;
4877 return 0;
4880 static inline void
4881 set_AT_ref_external (dw_attr_ref a, int i)
4883 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4884 a->dw_attr_val.v.val_die_ref.external = i;
4887 /* Add an FDE reference attribute value to a DIE. */
4889 static inline void
4890 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4892 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4894 attr->dw_attr_next = NULL;
4895 attr->dw_attr = attr_kind;
4896 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4897 attr->dw_attr_val.v.val_fde_index = targ_fde;
4898 add_dwarf_attr (die, attr);
4901 /* Add a location description attribute value to a DIE. */
4903 static inline void
4904 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4906 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4908 attr->dw_attr_next = NULL;
4909 attr->dw_attr = attr_kind;
4910 attr->dw_attr_val.val_class = dw_val_class_loc;
4911 attr->dw_attr_val.v.val_loc = loc;
4912 add_dwarf_attr (die, attr);
4915 static inline dw_loc_descr_ref
4916 AT_loc (dw_attr_ref a)
4918 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4919 return a->dw_attr_val.v.val_loc;
4922 static inline void
4923 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4925 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4927 attr->dw_attr_next = NULL;
4928 attr->dw_attr = attr_kind;
4929 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4930 attr->dw_attr_val.v.val_loc_list = loc_list;
4931 add_dwarf_attr (die, attr);
4932 have_location_lists = 1;
4935 static inline dw_loc_list_ref
4936 AT_loc_list (dw_attr_ref a)
4938 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4939 return a->dw_attr_val.v.val_loc_list;
4942 /* Add an address constant attribute value to a DIE. */
4944 static inline void
4945 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4947 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4949 attr->dw_attr_next = NULL;
4950 attr->dw_attr = attr_kind;
4951 attr->dw_attr_val.val_class = dw_val_class_addr;
4952 attr->dw_attr_val.v.val_addr = addr;
4953 add_dwarf_attr (die, attr);
4956 static inline rtx
4957 AT_addr (dw_attr_ref a)
4959 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4960 return a->dw_attr_val.v.val_addr;
4963 /* Add a label identifier attribute value to a DIE. */
4965 static inline void
4966 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4968 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4970 attr->dw_attr_next = NULL;
4971 attr->dw_attr = attr_kind;
4972 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4973 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4974 add_dwarf_attr (die, attr);
4977 /* Add a section offset attribute value to a DIE. */
4979 static inline void
4980 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4982 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4984 attr->dw_attr_next = NULL;
4985 attr->dw_attr = attr_kind;
4986 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4987 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4988 add_dwarf_attr (die, attr);
4991 /* Add an offset attribute value to a DIE. */
4993 static inline void
4994 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4995 unsigned HOST_WIDE_INT offset)
4997 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4999 attr->dw_attr_next = NULL;
5000 attr->dw_attr = attr_kind;
5001 attr->dw_attr_val.val_class = dw_val_class_offset;
5002 attr->dw_attr_val.v.val_offset = offset;
5003 add_dwarf_attr (die, attr);
5006 /* Add an range_list attribute value to a DIE. */
5008 static void
5009 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5010 long unsigned int offset)
5012 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5014 attr->dw_attr_next = NULL;
5015 attr->dw_attr = attr_kind;
5016 attr->dw_attr_val.val_class = dw_val_class_range_list;
5017 attr->dw_attr_val.v.val_offset = offset;
5018 add_dwarf_attr (die, attr);
5021 static inline const char *
5022 AT_lbl (dw_attr_ref a)
5024 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5025 || AT_class (a) == dw_val_class_lbl_offset));
5026 return a->dw_attr_val.v.val_lbl_id;
5029 /* Get the attribute of type attr_kind. */
5031 static dw_attr_ref
5032 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5034 dw_attr_ref a;
5035 dw_die_ref spec = NULL;
5037 if (die != NULL)
5039 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5040 if (a->dw_attr == attr_kind)
5041 return a;
5042 else if (a->dw_attr == DW_AT_specification
5043 || a->dw_attr == DW_AT_abstract_origin)
5044 spec = AT_ref (a);
5046 if (spec)
5047 return get_AT (spec, attr_kind);
5050 return NULL;
5053 /* Return the "low pc" attribute value, typically associated with a subprogram
5054 DIE. Return null if the "low pc" attribute is either not present, or if it
5055 cannot be represented as an assembler label identifier. */
5057 static inline const char *
5058 get_AT_low_pc (dw_die_ref die)
5060 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5062 return a ? AT_lbl (a) : NULL;
5065 /* Return the "high pc" attribute value, typically associated with a subprogram
5066 DIE. Return null if the "high pc" attribute is either not present, or if it
5067 cannot be represented as an assembler label identifier. */
5069 static inline const char *
5070 get_AT_hi_pc (dw_die_ref die)
5072 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5074 return a ? AT_lbl (a) : NULL;
5077 /* Return the value of the string attribute designated by ATTR_KIND, or
5078 NULL if it is not present. */
5080 static inline const char *
5081 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5083 dw_attr_ref a = get_AT (die, attr_kind);
5085 return a ? AT_string (a) : NULL;
5088 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5089 if it is not present. */
5091 static inline int
5092 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5094 dw_attr_ref a = get_AT (die, attr_kind);
5096 return a ? AT_flag (a) : 0;
5099 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5100 if it is not present. */
5102 static inline unsigned
5103 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5105 dw_attr_ref a = get_AT (die, attr_kind);
5107 return a ? AT_unsigned (a) : 0;
5110 static inline dw_die_ref
5111 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5113 dw_attr_ref a = get_AT (die, attr_kind);
5115 return a ? AT_ref (a) : NULL;
5118 /* Return TRUE if the language is C or C++. */
5120 static inline bool
5121 is_c_family (void)
5123 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5125 return (lang == DW_LANG_C || lang == DW_LANG_C89
5126 || lang == DW_LANG_C_plus_plus);
5129 /* Return TRUE if the language is C++. */
5131 static inline bool
5132 is_cxx (void)
5134 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5135 == DW_LANG_C_plus_plus);
5138 /* Return TRUE if the language is Fortran. */
5140 static inline bool
5141 is_fortran (void)
5143 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5145 return (lang == DW_LANG_Fortran77
5146 || lang == DW_LANG_Fortran90
5147 || lang == DW_LANG_Fortran95);
5150 /* Return TRUE if the language is Java. */
5152 static inline bool
5153 is_java (void)
5155 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5157 return lang == DW_LANG_Java;
5160 /* Return TRUE if the language is Ada. */
5162 static inline bool
5163 is_ada (void)
5165 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5167 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5170 /* Free up the memory used by A. */
5172 static inline void free_AT (dw_attr_ref);
5173 static inline void
5174 free_AT (dw_attr_ref a)
5176 if (AT_class (a) == dw_val_class_str)
5177 if (a->dw_attr_val.v.val_str->refcount)
5178 a->dw_attr_val.v.val_str->refcount--;
5181 /* Remove the specified attribute if present. */
5183 static void
5184 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5186 dw_attr_ref *p;
5187 dw_attr_ref removed = NULL;
5189 if (die != NULL)
5191 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5192 if ((*p)->dw_attr == attr_kind)
5194 removed = *p;
5195 *p = (*p)->dw_attr_next;
5196 break;
5199 if (removed != 0)
5200 free_AT (removed);
5204 /* Remove child die whose die_tag is specified tag. */
5206 static void
5207 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5209 dw_die_ref current, prev, next;
5210 current = die->die_child;
5211 prev = NULL;
5212 while (current != NULL)
5214 if (current->die_tag == tag)
5216 next = current->die_sib;
5217 if (prev == NULL)
5218 die->die_child = next;
5219 else
5220 prev->die_sib = next;
5221 free_die (current);
5222 current = next;
5224 else
5226 prev = current;
5227 current = current->die_sib;
5232 /* Free up the memory used by DIE. */
5234 static inline void
5235 free_die (dw_die_ref die)
5237 remove_children (die);
5240 /* Discard the children of this DIE. */
5242 static void
5243 remove_children (dw_die_ref die)
5245 dw_die_ref child_die = die->die_child;
5247 die->die_child = NULL;
5249 while (child_die != NULL)
5251 dw_die_ref tmp_die = child_die;
5252 dw_attr_ref a;
5254 child_die = child_die->die_sib;
5256 for (a = tmp_die->die_attr; a != NULL;)
5258 dw_attr_ref tmp_a = a;
5260 a = a->dw_attr_next;
5261 free_AT (tmp_a);
5264 free_die (tmp_die);
5268 /* Add a child DIE below its parent. We build the lists up in reverse
5269 addition order, and correct that in reverse_all_dies. */
5271 static inline void
5272 add_child_die (dw_die_ref die, dw_die_ref child_die)
5274 if (die != NULL && child_die != NULL)
5276 gcc_assert (die != child_die);
5278 child_die->die_parent = die;
5279 child_die->die_sib = die->die_child;
5280 die->die_child = child_die;
5284 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5285 is the specification, to the front of PARENT's list of children. */
5287 static void
5288 splice_child_die (dw_die_ref parent, dw_die_ref child)
5290 dw_die_ref *p;
5292 /* We want the declaration DIE from inside the class, not the
5293 specification DIE at toplevel. */
5294 if (child->die_parent != parent)
5296 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5298 if (tmp)
5299 child = tmp;
5302 gcc_assert (child->die_parent == parent
5303 || (child->die_parent
5304 == get_AT_ref (parent, DW_AT_specification)));
5306 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5307 if (*p == child)
5309 *p = child->die_sib;
5310 break;
5313 child->die_parent = parent;
5314 child->die_sib = parent->die_child;
5315 parent->die_child = child;
5318 /* Return a pointer to a newly created DIE node. */
5320 static inline dw_die_ref
5321 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5323 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5325 die->die_tag = tag_value;
5327 if (parent_die != NULL)
5328 add_child_die (parent_die, die);
5329 else
5331 limbo_die_node *limbo_node;
5333 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5334 limbo_node->die = die;
5335 limbo_node->created_for = t;
5336 limbo_node->next = limbo_die_list;
5337 limbo_die_list = limbo_node;
5340 return die;
5343 /* Return the DIE associated with the given type specifier. */
5345 static inline dw_die_ref
5346 lookup_type_die (tree type)
5348 return TYPE_SYMTAB_DIE (type);
5351 /* Equate a DIE to a given type specifier. */
5353 static inline void
5354 equate_type_number_to_die (tree type, dw_die_ref type_die)
5356 TYPE_SYMTAB_DIE (type) = type_die;
5359 /* Returns a hash value for X (which really is a die_struct). */
5361 static hashval_t
5362 decl_die_table_hash (const void *x)
5364 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5367 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5369 static int
5370 decl_die_table_eq (const void *x, const void *y)
5372 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5375 /* Return the DIE associated with a given declaration. */
5377 static inline dw_die_ref
5378 lookup_decl_die (tree decl)
5380 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5383 /* Returns a hash value for X (which really is a var_loc_list). */
5385 static hashval_t
5386 decl_loc_table_hash (const void *x)
5388 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5391 /* Return nonzero if decl_id of var_loc_list X is the same as
5392 UID of decl *Y. */
5394 static int
5395 decl_loc_table_eq (const void *x, const void *y)
5397 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5400 /* Return the var_loc list associated with a given declaration. */
5402 static inline var_loc_list *
5403 lookup_decl_loc (tree decl)
5405 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5408 /* Equate a DIE to a particular declaration. */
5410 static void
5411 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5413 unsigned int decl_id = DECL_UID (decl);
5414 void **slot;
5416 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5417 *slot = decl_die;
5418 decl_die->decl_id = decl_id;
5421 /* Add a variable location node to the linked list for DECL. */
5423 static void
5424 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5426 unsigned int decl_id = DECL_UID (decl);
5427 var_loc_list *temp;
5428 void **slot;
5430 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5431 if (*slot == NULL)
5433 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5434 temp->decl_id = decl_id;
5435 *slot = temp;
5437 else
5438 temp = *slot;
5440 if (temp->last)
5442 /* If the current location is the same as the end of the list,
5443 we have nothing to do. */
5444 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5445 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5447 /* Add LOC to the end of list and update LAST. */
5448 temp->last->next = loc;
5449 temp->last = loc;
5452 /* Do not add empty location to the beginning of the list. */
5453 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5455 temp->first = loc;
5456 temp->last = loc;
5460 /* Keep track of the number of spaces used to indent the
5461 output of the debugging routines that print the structure of
5462 the DIE internal representation. */
5463 static int print_indent;
5465 /* Indent the line the number of spaces given by print_indent. */
5467 static inline void
5468 print_spaces (FILE *outfile)
5470 fprintf (outfile, "%*s", print_indent, "");
5473 /* Print the information associated with a given DIE, and its children.
5474 This routine is a debugging aid only. */
5476 static void
5477 print_die (dw_die_ref die, FILE *outfile)
5479 dw_attr_ref a;
5480 dw_die_ref c;
5482 print_spaces (outfile);
5483 fprintf (outfile, "DIE %4lu: %s\n",
5484 die->die_offset, dwarf_tag_name (die->die_tag));
5485 print_spaces (outfile);
5486 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5487 fprintf (outfile, " offset: %lu\n", die->die_offset);
5489 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5491 print_spaces (outfile);
5492 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5494 switch (AT_class (a))
5496 case dw_val_class_addr:
5497 fprintf (outfile, "address");
5498 break;
5499 case dw_val_class_offset:
5500 fprintf (outfile, "offset");
5501 break;
5502 case dw_val_class_loc:
5503 fprintf (outfile, "location descriptor");
5504 break;
5505 case dw_val_class_loc_list:
5506 fprintf (outfile, "location list -> label:%s",
5507 AT_loc_list (a)->ll_symbol);
5508 break;
5509 case dw_val_class_range_list:
5510 fprintf (outfile, "range list");
5511 break;
5512 case dw_val_class_const:
5513 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5514 break;
5515 case dw_val_class_unsigned_const:
5516 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5517 break;
5518 case dw_val_class_long_long:
5519 fprintf (outfile, "constant (%lu,%lu)",
5520 a->dw_attr_val.v.val_long_long.hi,
5521 a->dw_attr_val.v.val_long_long.low);
5522 break;
5523 case dw_val_class_vec:
5524 fprintf (outfile, "floating-point or vector constant");
5525 break;
5526 case dw_val_class_flag:
5527 fprintf (outfile, "%u", AT_flag (a));
5528 break;
5529 case dw_val_class_die_ref:
5530 if (AT_ref (a) != NULL)
5532 if (AT_ref (a)->die_symbol)
5533 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5534 else
5535 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5537 else
5538 fprintf (outfile, "die -> <null>");
5539 break;
5540 case dw_val_class_lbl_id:
5541 case dw_val_class_lbl_offset:
5542 fprintf (outfile, "label: %s", AT_lbl (a));
5543 break;
5544 case dw_val_class_str:
5545 if (AT_string (a) != NULL)
5546 fprintf (outfile, "\"%s\"", AT_string (a));
5547 else
5548 fprintf (outfile, "<null>");
5549 break;
5550 default:
5551 break;
5554 fprintf (outfile, "\n");
5557 if (die->die_child != NULL)
5559 print_indent += 4;
5560 for (c = die->die_child; c != NULL; c = c->die_sib)
5561 print_die (c, outfile);
5563 print_indent -= 4;
5565 if (print_indent == 0)
5566 fprintf (outfile, "\n");
5569 /* Print the contents of the source code line number correspondence table.
5570 This routine is a debugging aid only. */
5572 static void
5573 print_dwarf_line_table (FILE *outfile)
5575 unsigned i;
5576 dw_line_info_ref line_info;
5578 fprintf (outfile, "\n\nDWARF source line information\n");
5579 for (i = 1; i < line_info_table_in_use; i++)
5581 line_info = &line_info_table[i];
5582 fprintf (outfile, "%5d: ", i);
5583 fprintf (outfile, "%-20s",
5584 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5585 fprintf (outfile, "%6ld", line_info->dw_line_num);
5586 fprintf (outfile, "\n");
5589 fprintf (outfile, "\n\n");
5592 /* Print the information collected for a given DIE. */
5594 void
5595 debug_dwarf_die (dw_die_ref die)
5597 print_die (die, stderr);
5600 /* Print all DWARF information collected for the compilation unit.
5601 This routine is a debugging aid only. */
5603 void
5604 debug_dwarf (void)
5606 print_indent = 0;
5607 print_die (comp_unit_die, stderr);
5608 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5609 print_dwarf_line_table (stderr);
5612 /* We build up the lists of children and attributes by pushing new ones
5613 onto the beginning of the list. Reverse the lists for DIE so that
5614 they are in order of addition. */
5616 static void
5617 reverse_die_lists (dw_die_ref die)
5619 dw_die_ref c, cp, cn;
5620 dw_attr_ref a, ap, an;
5622 for (a = die->die_attr, ap = 0; a; a = an)
5624 an = a->dw_attr_next;
5625 a->dw_attr_next = ap;
5626 ap = a;
5629 die->die_attr = ap;
5631 for (c = die->die_child, cp = 0; c; c = cn)
5633 cn = c->die_sib;
5634 c->die_sib = cp;
5635 cp = c;
5638 die->die_child = cp;
5641 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5642 reverse all dies in add_sibling_attributes, which runs through all the dies,
5643 it would reverse all the dies. Now, however, since we don't call
5644 reverse_die_lists in add_sibling_attributes, we need a routine to
5645 recursively reverse all the dies. This is that routine. */
5647 static void
5648 reverse_all_dies (dw_die_ref die)
5650 dw_die_ref c;
5652 reverse_die_lists (die);
5654 for (c = die->die_child; c; c = c->die_sib)
5655 reverse_all_dies (c);
5658 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5659 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5660 DIE that marks the start of the DIEs for this include file. */
5662 static dw_die_ref
5663 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5665 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5666 dw_die_ref new_unit = gen_compile_unit_die (filename);
5668 new_unit->die_sib = old_unit;
5669 return new_unit;
5672 /* Close an include-file CU and reopen the enclosing one. */
5674 static dw_die_ref
5675 pop_compile_unit (dw_die_ref old_unit)
5677 dw_die_ref new_unit = old_unit->die_sib;
5679 old_unit->die_sib = NULL;
5680 return new_unit;
5683 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5684 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5686 /* Calculate the checksum of a location expression. */
5688 static inline void
5689 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5691 CHECKSUM (loc->dw_loc_opc);
5692 CHECKSUM (loc->dw_loc_oprnd1);
5693 CHECKSUM (loc->dw_loc_oprnd2);
5696 /* Calculate the checksum of an attribute. */
5698 static void
5699 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5701 dw_loc_descr_ref loc;
5702 rtx r;
5704 CHECKSUM (at->dw_attr);
5706 /* We don't care about differences in file numbering. */
5707 if (at->dw_attr == DW_AT_decl_file
5708 /* Or that this was compiled with a different compiler snapshot; if
5709 the output is the same, that's what matters. */
5710 || at->dw_attr == DW_AT_producer)
5711 return;
5713 switch (AT_class (at))
5715 case dw_val_class_const:
5716 CHECKSUM (at->dw_attr_val.v.val_int);
5717 break;
5718 case dw_val_class_unsigned_const:
5719 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5720 break;
5721 case dw_val_class_long_long:
5722 CHECKSUM (at->dw_attr_val.v.val_long_long);
5723 break;
5724 case dw_val_class_vec:
5725 CHECKSUM (at->dw_attr_val.v.val_vec);
5726 break;
5727 case dw_val_class_flag:
5728 CHECKSUM (at->dw_attr_val.v.val_flag);
5729 break;
5730 case dw_val_class_str:
5731 CHECKSUM_STRING (AT_string (at));
5732 break;
5734 case dw_val_class_addr:
5735 r = AT_addr (at);
5736 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5737 CHECKSUM_STRING (XSTR (r, 0));
5738 break;
5740 case dw_val_class_offset:
5741 CHECKSUM (at->dw_attr_val.v.val_offset);
5742 break;
5744 case dw_val_class_loc:
5745 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5746 loc_checksum (loc, ctx);
5747 break;
5749 case dw_val_class_die_ref:
5750 die_checksum (AT_ref (at), ctx, mark);
5751 break;
5753 case dw_val_class_fde_ref:
5754 case dw_val_class_lbl_id:
5755 case dw_val_class_lbl_offset:
5756 break;
5758 default:
5759 break;
5763 /* Calculate the checksum of a DIE. */
5765 static void
5766 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5768 dw_die_ref c;
5769 dw_attr_ref a;
5771 /* To avoid infinite recursion. */
5772 if (die->die_mark)
5774 CHECKSUM (die->die_mark);
5775 return;
5777 die->die_mark = ++(*mark);
5779 CHECKSUM (die->die_tag);
5781 for (a = die->die_attr; a; a = a->dw_attr_next)
5782 attr_checksum (a, ctx, mark);
5784 for (c = die->die_child; c; c = c->die_sib)
5785 die_checksum (c, ctx, mark);
5788 #undef CHECKSUM
5789 #undef CHECKSUM_STRING
5791 /* Do the location expressions look same? */
5792 static inline int
5793 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5795 return loc1->dw_loc_opc == loc2->dw_loc_opc
5796 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5797 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5800 /* Do the values look the same? */
5801 static int
5802 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5804 dw_loc_descr_ref loc1, loc2;
5805 rtx r1, r2;
5807 if (v1->val_class != v2->val_class)
5808 return 0;
5810 switch (v1->val_class)
5812 case dw_val_class_const:
5813 return v1->v.val_int == v2->v.val_int;
5814 case dw_val_class_unsigned_const:
5815 return v1->v.val_unsigned == v2->v.val_unsigned;
5816 case dw_val_class_long_long:
5817 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5818 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5819 case dw_val_class_vec:
5820 if (v1->v.val_vec.length != v2->v.val_vec.length
5821 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5822 return 0;
5823 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5824 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5825 return 0;
5826 return 1;
5827 case dw_val_class_flag:
5828 return v1->v.val_flag == v2->v.val_flag;
5829 case dw_val_class_str:
5830 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5832 case dw_val_class_addr:
5833 r1 = v1->v.val_addr;
5834 r2 = v2->v.val_addr;
5835 if (GET_CODE (r1) != GET_CODE (r2))
5836 return 0;
5837 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5838 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5840 case dw_val_class_offset:
5841 return v1->v.val_offset == v2->v.val_offset;
5843 case dw_val_class_loc:
5844 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5845 loc1 && loc2;
5846 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5847 if (!same_loc_p (loc1, loc2, mark))
5848 return 0;
5849 return !loc1 && !loc2;
5851 case dw_val_class_die_ref:
5852 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5854 case dw_val_class_fde_ref:
5855 case dw_val_class_lbl_id:
5856 case dw_val_class_lbl_offset:
5857 return 1;
5859 default:
5860 return 1;
5864 /* Do the attributes look the same? */
5866 static int
5867 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5869 if (at1->dw_attr != at2->dw_attr)
5870 return 0;
5872 /* We don't care about differences in file numbering. */
5873 if (at1->dw_attr == DW_AT_decl_file
5874 /* Or that this was compiled with a different compiler snapshot; if
5875 the output is the same, that's what matters. */
5876 || at1->dw_attr == DW_AT_producer)
5877 return 1;
5879 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5882 /* Do the dies look the same? */
5884 static int
5885 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5887 dw_die_ref c1, c2;
5888 dw_attr_ref a1, a2;
5890 /* To avoid infinite recursion. */
5891 if (die1->die_mark)
5892 return die1->die_mark == die2->die_mark;
5893 die1->die_mark = die2->die_mark = ++(*mark);
5895 if (die1->die_tag != die2->die_tag)
5896 return 0;
5898 for (a1 = die1->die_attr, a2 = die2->die_attr;
5899 a1 && a2;
5900 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5901 if (!same_attr_p (a1, a2, mark))
5902 return 0;
5903 if (a1 || a2)
5904 return 0;
5906 for (c1 = die1->die_child, c2 = die2->die_child;
5907 c1 && c2;
5908 c1 = c1->die_sib, c2 = c2->die_sib)
5909 if (!same_die_p (c1, c2, mark))
5910 return 0;
5911 if (c1 || c2)
5912 return 0;
5914 return 1;
5917 /* Do the dies look the same? Wrapper around same_die_p. */
5919 static int
5920 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5922 int mark = 0;
5923 int ret = same_die_p (die1, die2, &mark);
5925 unmark_all_dies (die1);
5926 unmark_all_dies (die2);
5928 return ret;
5931 /* The prefix to attach to symbols on DIEs in the current comdat debug
5932 info section. */
5933 static char *comdat_symbol_id;
5935 /* The index of the current symbol within the current comdat CU. */
5936 static unsigned int comdat_symbol_number;
5938 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5939 children, and set comdat_symbol_id accordingly. */
5941 static void
5942 compute_section_prefix (dw_die_ref unit_die)
5944 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5945 const char *base = die_name ? lbasename (die_name) : "anonymous";
5946 char *name = alloca (strlen (base) + 64);
5947 char *p;
5948 int i, mark;
5949 unsigned char checksum[16];
5950 struct md5_ctx ctx;
5952 /* Compute the checksum of the DIE, then append part of it as hex digits to
5953 the name filename of the unit. */
5955 md5_init_ctx (&ctx);
5956 mark = 0;
5957 die_checksum (unit_die, &ctx, &mark);
5958 unmark_all_dies (unit_die);
5959 md5_finish_ctx (&ctx, checksum);
5961 sprintf (name, "%s.", base);
5962 clean_symbol_name (name);
5964 p = name + strlen (name);
5965 for (i = 0; i < 4; i++)
5967 sprintf (p, "%.2x", checksum[i]);
5968 p += 2;
5971 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5972 comdat_symbol_number = 0;
5975 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5977 static int
5978 is_type_die (dw_die_ref die)
5980 switch (die->die_tag)
5982 case DW_TAG_array_type:
5983 case DW_TAG_class_type:
5984 case DW_TAG_enumeration_type:
5985 case DW_TAG_pointer_type:
5986 case DW_TAG_reference_type:
5987 case DW_TAG_string_type:
5988 case DW_TAG_structure_type:
5989 case DW_TAG_subroutine_type:
5990 case DW_TAG_union_type:
5991 case DW_TAG_ptr_to_member_type:
5992 case DW_TAG_set_type:
5993 case DW_TAG_subrange_type:
5994 case DW_TAG_base_type:
5995 case DW_TAG_const_type:
5996 case DW_TAG_file_type:
5997 case DW_TAG_packed_type:
5998 case DW_TAG_volatile_type:
5999 case DW_TAG_typedef:
6000 return 1;
6001 default:
6002 return 0;
6006 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6007 Basically, we want to choose the bits that are likely to be shared between
6008 compilations (types) and leave out the bits that are specific to individual
6009 compilations (functions). */
6011 static int
6012 is_comdat_die (dw_die_ref c)
6014 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6015 we do for stabs. The advantage is a greater likelihood of sharing between
6016 objects that don't include headers in the same order (and therefore would
6017 put the base types in a different comdat). jason 8/28/00 */
6019 if (c->die_tag == DW_TAG_base_type)
6020 return 0;
6022 if (c->die_tag == DW_TAG_pointer_type
6023 || c->die_tag == DW_TAG_reference_type
6024 || c->die_tag == DW_TAG_const_type
6025 || c->die_tag == DW_TAG_volatile_type)
6027 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6029 return t ? is_comdat_die (t) : 0;
6032 return is_type_die (c);
6035 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6036 compilation unit. */
6038 static int
6039 is_symbol_die (dw_die_ref c)
6041 return (is_type_die (c)
6042 || (get_AT (c, DW_AT_declaration)
6043 && !get_AT (c, DW_AT_specification)));
6046 static char *
6047 gen_internal_sym (const char *prefix)
6049 char buf[256];
6051 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6052 return xstrdup (buf);
6055 /* Assign symbols to all worthy DIEs under DIE. */
6057 static void
6058 assign_symbol_names (dw_die_ref die)
6060 dw_die_ref c;
6062 if (is_symbol_die (die))
6064 if (comdat_symbol_id)
6066 char *p = alloca (strlen (comdat_symbol_id) + 64);
6068 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6069 comdat_symbol_id, comdat_symbol_number++);
6070 die->die_symbol = xstrdup (p);
6072 else
6073 die->die_symbol = gen_internal_sym ("LDIE");
6076 for (c = die->die_child; c != NULL; c = c->die_sib)
6077 assign_symbol_names (c);
6080 struct cu_hash_table_entry
6082 dw_die_ref cu;
6083 unsigned min_comdat_num, max_comdat_num;
6084 struct cu_hash_table_entry *next;
6087 /* Routines to manipulate hash table of CUs. */
6088 static hashval_t
6089 htab_cu_hash (const void *of)
6091 const struct cu_hash_table_entry *entry = of;
6093 return htab_hash_string (entry->cu->die_symbol);
6096 static int
6097 htab_cu_eq (const void *of1, const void *of2)
6099 const struct cu_hash_table_entry *entry1 = of1;
6100 const struct die_struct *entry2 = of2;
6102 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6105 static void
6106 htab_cu_del (void *what)
6108 struct cu_hash_table_entry *next, *entry = what;
6110 while (entry)
6112 next = entry->next;
6113 free (entry);
6114 entry = next;
6118 /* Check whether we have already seen this CU and set up SYM_NUM
6119 accordingly. */
6120 static int
6121 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6123 struct cu_hash_table_entry dummy;
6124 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6126 dummy.max_comdat_num = 0;
6128 slot = (struct cu_hash_table_entry **)
6129 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6130 INSERT);
6131 entry = *slot;
6133 for (; entry; last = entry, entry = entry->next)
6135 if (same_die_p_wrap (cu, entry->cu))
6136 break;
6139 if (entry)
6141 *sym_num = entry->min_comdat_num;
6142 return 1;
6145 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6146 entry->cu = cu;
6147 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6148 entry->next = *slot;
6149 *slot = entry;
6151 return 0;
6154 /* Record SYM_NUM to record of CU in HTABLE. */
6155 static void
6156 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6158 struct cu_hash_table_entry **slot, *entry;
6160 slot = (struct cu_hash_table_entry **)
6161 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6162 NO_INSERT);
6163 entry = *slot;
6165 entry->max_comdat_num = sym_num;
6168 /* Traverse the DIE (which is always comp_unit_die), and set up
6169 additional compilation units for each of the include files we see
6170 bracketed by BINCL/EINCL. */
6172 static void
6173 break_out_includes (dw_die_ref die)
6175 dw_die_ref *ptr;
6176 dw_die_ref unit = NULL;
6177 limbo_die_node *node, **pnode;
6178 htab_t cu_hash_table;
6180 for (ptr = &(die->die_child); *ptr;)
6182 dw_die_ref c = *ptr;
6184 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6185 || (unit && is_comdat_die (c)))
6187 /* This DIE is for a secondary CU; remove it from the main one. */
6188 *ptr = c->die_sib;
6190 if (c->die_tag == DW_TAG_GNU_BINCL)
6192 unit = push_new_compile_unit (unit, c);
6193 free_die (c);
6195 else if (c->die_tag == DW_TAG_GNU_EINCL)
6197 unit = pop_compile_unit (unit);
6198 free_die (c);
6200 else
6201 add_child_die (unit, c);
6203 else
6205 /* Leave this DIE in the main CU. */
6206 ptr = &(c->die_sib);
6207 continue;
6211 #if 0
6212 /* We can only use this in debugging, since the frontend doesn't check
6213 to make sure that we leave every include file we enter. */
6214 gcc_assert (!unit);
6215 #endif
6217 assign_symbol_names (die);
6218 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6219 for (node = limbo_die_list, pnode = &limbo_die_list;
6220 node;
6221 node = node->next)
6223 int is_dupl;
6225 compute_section_prefix (node->die);
6226 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6227 &comdat_symbol_number);
6228 assign_symbol_names (node->die);
6229 if (is_dupl)
6230 *pnode = node->next;
6231 else
6233 pnode = &node->next;
6234 record_comdat_symbol_number (node->die, cu_hash_table,
6235 comdat_symbol_number);
6238 htab_delete (cu_hash_table);
6241 /* Traverse the DIE and add a sibling attribute if it may have the
6242 effect of speeding up access to siblings. To save some space,
6243 avoid generating sibling attributes for DIE's without children. */
6245 static void
6246 add_sibling_attributes (dw_die_ref die)
6248 dw_die_ref c;
6250 if (die->die_tag != DW_TAG_compile_unit
6251 && die->die_sib && die->die_child != NULL)
6252 /* Add the sibling link to the front of the attribute list. */
6253 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6255 for (c = die->die_child; c != NULL; c = c->die_sib)
6256 add_sibling_attributes (c);
6259 /* Output all location lists for the DIE and its children. */
6261 static void
6262 output_location_lists (dw_die_ref die)
6264 dw_die_ref c;
6265 dw_attr_ref d_attr;
6267 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6268 if (AT_class (d_attr) == dw_val_class_loc_list)
6269 output_loc_list (AT_loc_list (d_attr));
6271 for (c = die->die_child; c != NULL; c = c->die_sib)
6272 output_location_lists (c);
6276 /* The format of each DIE (and its attribute value pairs) is encoded in an
6277 abbreviation table. This routine builds the abbreviation table and assigns
6278 a unique abbreviation id for each abbreviation entry. The children of each
6279 die are visited recursively. */
6281 static void
6282 build_abbrev_table (dw_die_ref die)
6284 unsigned long abbrev_id;
6285 unsigned int n_alloc;
6286 dw_die_ref c;
6287 dw_attr_ref d_attr, a_attr;
6289 /* Scan the DIE references, and mark as external any that refer to
6290 DIEs from other CUs (i.e. those which are not marked). */
6291 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6292 if (AT_class (d_attr) == dw_val_class_die_ref
6293 && AT_ref (d_attr)->die_mark == 0)
6295 gcc_assert (AT_ref (d_attr)->die_symbol);
6297 set_AT_ref_external (d_attr, 1);
6300 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6302 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6304 if (abbrev->die_tag == die->die_tag)
6306 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6308 a_attr = abbrev->die_attr;
6309 d_attr = die->die_attr;
6311 while (a_attr != NULL && d_attr != NULL)
6313 if ((a_attr->dw_attr != d_attr->dw_attr)
6314 || (value_format (a_attr) != value_format (d_attr)))
6315 break;
6317 a_attr = a_attr->dw_attr_next;
6318 d_attr = d_attr->dw_attr_next;
6321 if (a_attr == NULL && d_attr == NULL)
6322 break;
6327 if (abbrev_id >= abbrev_die_table_in_use)
6329 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6331 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6332 abbrev_die_table = ggc_realloc (abbrev_die_table,
6333 sizeof (dw_die_ref) * n_alloc);
6335 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6336 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6337 abbrev_die_table_allocated = n_alloc;
6340 ++abbrev_die_table_in_use;
6341 abbrev_die_table[abbrev_id] = die;
6344 die->die_abbrev = abbrev_id;
6345 for (c = die->die_child; c != NULL; c = c->die_sib)
6346 build_abbrev_table (c);
6349 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6351 static int
6352 constant_size (long unsigned int value)
6354 int log;
6356 if (value == 0)
6357 log = 0;
6358 else
6359 log = floor_log2 (value);
6361 log = log / 8;
6362 log = 1 << (floor_log2 (log) + 1);
6364 return log;
6367 /* Return the size of a DIE as it is represented in the
6368 .debug_info section. */
6370 static unsigned long
6371 size_of_die (dw_die_ref die)
6373 unsigned long size = 0;
6374 dw_attr_ref a;
6376 size += size_of_uleb128 (die->die_abbrev);
6377 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6379 switch (AT_class (a))
6381 case dw_val_class_addr:
6382 size += DWARF2_ADDR_SIZE;
6383 break;
6384 case dw_val_class_offset:
6385 size += DWARF_OFFSET_SIZE;
6386 break;
6387 case dw_val_class_loc:
6389 unsigned long lsize = size_of_locs (AT_loc (a));
6391 /* Block length. */
6392 size += constant_size (lsize);
6393 size += lsize;
6395 break;
6396 case dw_val_class_loc_list:
6397 size += DWARF_OFFSET_SIZE;
6398 break;
6399 case dw_val_class_range_list:
6400 size += DWARF_OFFSET_SIZE;
6401 break;
6402 case dw_val_class_const:
6403 size += size_of_sleb128 (AT_int (a));
6404 break;
6405 case dw_val_class_unsigned_const:
6406 size += constant_size (AT_unsigned (a));
6407 break;
6408 case dw_val_class_long_long:
6409 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6410 break;
6411 case dw_val_class_vec:
6412 size += 1 + (a->dw_attr_val.v.val_vec.length
6413 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6414 break;
6415 case dw_val_class_flag:
6416 size += 1;
6417 break;
6418 case dw_val_class_die_ref:
6419 if (AT_ref_external (a))
6420 size += DWARF2_ADDR_SIZE;
6421 else
6422 size += DWARF_OFFSET_SIZE;
6423 break;
6424 case dw_val_class_fde_ref:
6425 size += DWARF_OFFSET_SIZE;
6426 break;
6427 case dw_val_class_lbl_id:
6428 size += DWARF2_ADDR_SIZE;
6429 break;
6430 case dw_val_class_lbl_offset:
6431 size += DWARF_OFFSET_SIZE;
6432 break;
6433 case dw_val_class_str:
6434 if (AT_string_form (a) == DW_FORM_strp)
6435 size += DWARF_OFFSET_SIZE;
6436 else
6437 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6438 break;
6439 default:
6440 gcc_unreachable ();
6444 return size;
6447 /* Size the debugging information associated with a given DIE. Visits the
6448 DIE's children recursively. Updates the global variable next_die_offset, on
6449 each time through. Uses the current value of next_die_offset to update the
6450 die_offset field in each DIE. */
6452 static void
6453 calc_die_sizes (dw_die_ref die)
6455 dw_die_ref c;
6457 die->die_offset = next_die_offset;
6458 next_die_offset += size_of_die (die);
6460 for (c = die->die_child; c != NULL; c = c->die_sib)
6461 calc_die_sizes (c);
6463 if (die->die_child != NULL)
6464 /* Count the null byte used to terminate sibling lists. */
6465 next_die_offset += 1;
6468 /* Set the marks for a die and its children. We do this so
6469 that we know whether or not a reference needs to use FORM_ref_addr; only
6470 DIEs in the same CU will be marked. We used to clear out the offset
6471 and use that as the flag, but ran into ordering problems. */
6473 static void
6474 mark_dies (dw_die_ref die)
6476 dw_die_ref c;
6478 gcc_assert (!die->die_mark);
6480 die->die_mark = 1;
6481 for (c = die->die_child; c; c = c->die_sib)
6482 mark_dies (c);
6485 /* Clear the marks for a die and its children. */
6487 static void
6488 unmark_dies (dw_die_ref die)
6490 dw_die_ref c;
6492 gcc_assert (die->die_mark);
6494 die->die_mark = 0;
6495 for (c = die->die_child; c; c = c->die_sib)
6496 unmark_dies (c);
6499 /* Clear the marks for a die, its children and referred dies. */
6501 static void
6502 unmark_all_dies (dw_die_ref die)
6504 dw_die_ref c;
6505 dw_attr_ref a;
6507 if (!die->die_mark)
6508 return;
6509 die->die_mark = 0;
6511 for (c = die->die_child; c; c = c->die_sib)
6512 unmark_all_dies (c);
6514 for (a = die->die_attr; a; a = a->dw_attr_next)
6515 if (AT_class (a) == dw_val_class_die_ref)
6516 unmark_all_dies (AT_ref (a));
6519 /* Return the size of the .debug_pubnames table generated for the
6520 compilation unit. */
6522 static unsigned long
6523 size_of_pubnames (void)
6525 unsigned long size;
6526 unsigned i;
6528 size = DWARF_PUBNAMES_HEADER_SIZE;
6529 for (i = 0; i < pubname_table_in_use; i++)
6531 pubname_ref p = &pubname_table[i];
6532 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6535 size += DWARF_OFFSET_SIZE;
6536 return size;
6539 /* Return the size of the information in the .debug_aranges section. */
6541 static unsigned long
6542 size_of_aranges (void)
6544 unsigned long size;
6546 size = DWARF_ARANGES_HEADER_SIZE;
6548 /* Count the address/length pair for this compilation unit. */
6549 size += 2 * DWARF2_ADDR_SIZE;
6550 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6552 /* Count the two zero words used to terminated the address range table. */
6553 size += 2 * DWARF2_ADDR_SIZE;
6554 return size;
6557 /* Select the encoding of an attribute value. */
6559 static enum dwarf_form
6560 value_format (dw_attr_ref a)
6562 switch (a->dw_attr_val.val_class)
6564 case dw_val_class_addr:
6565 return DW_FORM_addr;
6566 case dw_val_class_range_list:
6567 case dw_val_class_offset:
6568 switch (DWARF_OFFSET_SIZE)
6570 case 4:
6571 return DW_FORM_data4;
6572 case 8:
6573 return DW_FORM_data8;
6574 default:
6575 gcc_unreachable ();
6577 case dw_val_class_loc_list:
6578 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6579 .debug_loc section */
6580 return DW_FORM_data4;
6581 case dw_val_class_loc:
6582 switch (constant_size (size_of_locs (AT_loc (a))))
6584 case 1:
6585 return DW_FORM_block1;
6586 case 2:
6587 return DW_FORM_block2;
6588 default:
6589 gcc_unreachable ();
6591 case dw_val_class_const:
6592 return DW_FORM_sdata;
6593 case dw_val_class_unsigned_const:
6594 switch (constant_size (AT_unsigned (a)))
6596 case 1:
6597 return DW_FORM_data1;
6598 case 2:
6599 return DW_FORM_data2;
6600 case 4:
6601 return DW_FORM_data4;
6602 case 8:
6603 return DW_FORM_data8;
6604 default:
6605 gcc_unreachable ();
6607 case dw_val_class_long_long:
6608 return DW_FORM_block1;
6609 case dw_val_class_vec:
6610 return DW_FORM_block1;
6611 case dw_val_class_flag:
6612 return DW_FORM_flag;
6613 case dw_val_class_die_ref:
6614 if (AT_ref_external (a))
6615 return DW_FORM_ref_addr;
6616 else
6617 return DW_FORM_ref;
6618 case dw_val_class_fde_ref:
6619 return DW_FORM_data;
6620 case dw_val_class_lbl_id:
6621 return DW_FORM_addr;
6622 case dw_val_class_lbl_offset:
6623 return DW_FORM_data;
6624 case dw_val_class_str:
6625 return AT_string_form (a);
6627 default:
6628 gcc_unreachable ();
6632 /* Output the encoding of an attribute value. */
6634 static void
6635 output_value_format (dw_attr_ref a)
6637 enum dwarf_form form = value_format (a);
6639 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6642 /* Output the .debug_abbrev section which defines the DIE abbreviation
6643 table. */
6645 static void
6646 output_abbrev_section (void)
6648 unsigned long abbrev_id;
6650 dw_attr_ref a_attr;
6652 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6654 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6656 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6657 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6658 dwarf_tag_name (abbrev->die_tag));
6660 if (abbrev->die_child != NULL)
6661 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6662 else
6663 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6665 for (a_attr = abbrev->die_attr; a_attr != NULL;
6666 a_attr = a_attr->dw_attr_next)
6668 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6669 dwarf_attr_name (a_attr->dw_attr));
6670 output_value_format (a_attr);
6673 dw2_asm_output_data (1, 0, NULL);
6674 dw2_asm_output_data (1, 0, NULL);
6677 /* Terminate the table. */
6678 dw2_asm_output_data (1, 0, NULL);
6681 /* Output a symbol we can use to refer to this DIE from another CU. */
6683 static inline void
6684 output_die_symbol (dw_die_ref die)
6686 char *sym = die->die_symbol;
6688 if (sym == 0)
6689 return;
6691 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6692 /* We make these global, not weak; if the target doesn't support
6693 .linkonce, it doesn't support combining the sections, so debugging
6694 will break. */
6695 targetm.asm_out.globalize_label (asm_out_file, sym);
6697 ASM_OUTPUT_LABEL (asm_out_file, sym);
6700 /* Return a new location list, given the begin and end range, and the
6701 expression. gensym tells us whether to generate a new internal symbol for
6702 this location list node, which is done for the head of the list only. */
6704 static inline dw_loc_list_ref
6705 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6706 const char *section, unsigned int gensym)
6708 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6710 retlist->begin = begin;
6711 retlist->end = end;
6712 retlist->expr = expr;
6713 retlist->section = section;
6714 if (gensym)
6715 retlist->ll_symbol = gen_internal_sym ("LLST");
6717 return retlist;
6720 /* Add a location description expression to a location list. */
6722 static inline void
6723 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6724 const char *begin, const char *end,
6725 const char *section)
6727 dw_loc_list_ref *d;
6729 /* Find the end of the chain. */
6730 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6733 /* Add a new location list node to the list. */
6734 *d = new_loc_list (descr, begin, end, section, 0);
6737 /* Output the location list given to us. */
6739 static void
6740 output_loc_list (dw_loc_list_ref list_head)
6742 dw_loc_list_ref curr = list_head;
6744 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6746 /* Walk the location list, and output each range + expression. */
6747 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6749 unsigned long size;
6750 if (separate_line_info_table_in_use == 0)
6752 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6753 "Location list begin address (%s)",
6754 list_head->ll_symbol);
6755 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6756 "Location list end address (%s)",
6757 list_head->ll_symbol);
6759 else
6761 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6762 "Location list begin address (%s)",
6763 list_head->ll_symbol);
6764 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6765 "Location list end address (%s)",
6766 list_head->ll_symbol);
6768 size = size_of_locs (curr->expr);
6770 /* Output the block length for this list of location operations. */
6771 gcc_assert (size <= 0xffff);
6772 dw2_asm_output_data (2, size, "%s", "Location expression size");
6774 output_loc_sequence (curr->expr);
6777 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6778 "Location list terminator begin (%s)",
6779 list_head->ll_symbol);
6780 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6781 "Location list terminator end (%s)",
6782 list_head->ll_symbol);
6785 /* Output the DIE and its attributes. Called recursively to generate
6786 the definitions of each child DIE. */
6788 static void
6789 output_die (dw_die_ref die)
6791 dw_attr_ref a;
6792 dw_die_ref c;
6793 unsigned long size;
6795 /* If someone in another CU might refer to us, set up a symbol for
6796 them to point to. */
6797 if (die->die_symbol)
6798 output_die_symbol (die);
6800 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6801 die->die_offset, dwarf_tag_name (die->die_tag));
6803 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6805 const char *name = dwarf_attr_name (a->dw_attr);
6807 switch (AT_class (a))
6809 case dw_val_class_addr:
6810 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6811 break;
6813 case dw_val_class_offset:
6814 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6815 "%s", name);
6816 break;
6818 case dw_val_class_range_list:
6820 char *p = strchr (ranges_section_label, '\0');
6822 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6823 a->dw_attr_val.v.val_offset);
6824 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6825 "%s", name);
6826 *p = '\0';
6828 break;
6830 case dw_val_class_loc:
6831 size = size_of_locs (AT_loc (a));
6833 /* Output the block length for this list of location operations. */
6834 dw2_asm_output_data (constant_size (size), size, "%s", name);
6836 output_loc_sequence (AT_loc (a));
6837 break;
6839 case dw_val_class_const:
6840 /* ??? It would be slightly more efficient to use a scheme like is
6841 used for unsigned constants below, but gdb 4.x does not sign
6842 extend. Gdb 5.x does sign extend. */
6843 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6844 break;
6846 case dw_val_class_unsigned_const:
6847 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6848 AT_unsigned (a), "%s", name);
6849 break;
6851 case dw_val_class_long_long:
6853 unsigned HOST_WIDE_INT first, second;
6855 dw2_asm_output_data (1,
6856 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6857 "%s", name);
6859 if (WORDS_BIG_ENDIAN)
6861 first = a->dw_attr_val.v.val_long_long.hi;
6862 second = a->dw_attr_val.v.val_long_long.low;
6864 else
6866 first = a->dw_attr_val.v.val_long_long.low;
6867 second = a->dw_attr_val.v.val_long_long.hi;
6870 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6871 first, "long long constant");
6872 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6873 second, NULL);
6875 break;
6877 case dw_val_class_vec:
6879 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6880 unsigned int len = a->dw_attr_val.v.val_vec.length;
6881 unsigned int i;
6882 unsigned char *p;
6884 dw2_asm_output_data (1, len * elt_size, "%s", name);
6885 if (elt_size > sizeof (HOST_WIDE_INT))
6887 elt_size /= 2;
6888 len *= 2;
6890 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6891 i < len;
6892 i++, p += elt_size)
6893 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6894 "fp or vector constant word %u", i);
6895 break;
6898 case dw_val_class_flag:
6899 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6900 break;
6902 case dw_val_class_loc_list:
6904 char *sym = AT_loc_list (a)->ll_symbol;
6906 gcc_assert (sym);
6907 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6909 break;
6911 case dw_val_class_die_ref:
6912 if (AT_ref_external (a))
6914 char *sym = AT_ref (a)->die_symbol;
6916 gcc_assert (sym);
6917 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6919 else
6921 gcc_assert (AT_ref (a)->die_offset);
6922 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6923 "%s", name);
6925 break;
6927 case dw_val_class_fde_ref:
6929 char l1[20];
6931 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6932 a->dw_attr_val.v.val_fde_index * 2);
6933 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6935 break;
6937 case dw_val_class_lbl_id:
6938 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6939 break;
6941 case dw_val_class_lbl_offset:
6942 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6943 break;
6945 case dw_val_class_str:
6946 if (AT_string_form (a) == DW_FORM_strp)
6947 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6948 a->dw_attr_val.v.val_str->label,
6949 "%s: \"%s\"", name, AT_string (a));
6950 else
6951 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6952 break;
6954 default:
6955 gcc_unreachable ();
6959 for (c = die->die_child; c != NULL; c = c->die_sib)
6960 output_die (c);
6962 /* Add null byte to terminate sibling list. */
6963 if (die->die_child != NULL)
6964 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6965 die->die_offset);
6968 /* Output the compilation unit that appears at the beginning of the
6969 .debug_info section, and precedes the DIE descriptions. */
6971 static void
6972 output_compilation_unit_header (void)
6974 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6975 dw2_asm_output_data (4, 0xffffffff,
6976 "Initial length escape value indicating 64-bit DWARF extension");
6977 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6978 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6979 "Length of Compilation Unit Info");
6980 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6981 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6982 "Offset Into Abbrev. Section");
6983 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6986 /* Output the compilation unit DIE and its children. */
6988 static void
6989 output_comp_unit (dw_die_ref die, int output_if_empty)
6991 const char *secname;
6992 char *oldsym, *tmp;
6994 /* Unless we are outputting main CU, we may throw away empty ones. */
6995 if (!output_if_empty && die->die_child == NULL)
6996 return;
6998 /* Even if there are no children of this DIE, we must output the information
6999 about the compilation unit. Otherwise, on an empty translation unit, we
7000 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7001 will then complain when examining the file. First mark all the DIEs in
7002 this CU so we know which get local refs. */
7003 mark_dies (die);
7005 build_abbrev_table (die);
7007 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7008 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7009 calc_die_sizes (die);
7011 oldsym = die->die_symbol;
7012 if (oldsym)
7014 tmp = alloca (strlen (oldsym) + 24);
7016 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7017 secname = tmp;
7018 die->die_symbol = NULL;
7020 else
7021 secname = (const char *) DEBUG_INFO_SECTION;
7023 /* Output debugging information. */
7024 named_section_flags (secname, SECTION_DEBUG);
7025 output_compilation_unit_header ();
7026 output_die (die);
7028 /* Leave the marks on the main CU, so we can check them in
7029 output_pubnames. */
7030 if (oldsym)
7032 unmark_dies (die);
7033 die->die_symbol = oldsym;
7037 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7038 output of lang_hooks.decl_printable_name for C++ looks like
7039 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7041 static const char *
7042 dwarf2_name (tree decl, int scope)
7044 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7047 /* Add a new entry to .debug_pubnames if appropriate. */
7049 static void
7050 add_pubname (tree decl, dw_die_ref die)
7052 pubname_ref p;
7054 if (! TREE_PUBLIC (decl))
7055 return;
7057 if (pubname_table_in_use == pubname_table_allocated)
7059 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7060 pubname_table
7061 = ggc_realloc (pubname_table,
7062 (pubname_table_allocated * sizeof (pubname_entry)));
7063 memset (pubname_table + pubname_table_in_use, 0,
7064 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7067 p = &pubname_table[pubname_table_in_use++];
7068 p->die = die;
7069 p->name = xstrdup (dwarf2_name (decl, 1));
7072 /* Output the public names table used to speed up access to externally
7073 visible names. For now, only generate entries for externally
7074 visible procedures. */
7076 static void
7077 output_pubnames (void)
7079 unsigned i;
7080 unsigned long pubnames_length = size_of_pubnames ();
7082 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7083 dw2_asm_output_data (4, 0xffffffff,
7084 "Initial length escape value indicating 64-bit DWARF extension");
7085 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7086 "Length of Public Names Info");
7087 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7089 "Offset of Compilation Unit Info");
7090 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7091 "Compilation Unit Length");
7093 for (i = 0; i < pubname_table_in_use; i++)
7095 pubname_ref pub = &pubname_table[i];
7097 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7098 gcc_assert (pub->die->die_mark);
7100 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7101 "DIE offset");
7103 dw2_asm_output_nstring (pub->name, -1, "external name");
7106 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7109 /* Add a new entry to .debug_aranges if appropriate. */
7111 static void
7112 add_arange (tree decl, dw_die_ref die)
7114 if (! DECL_SECTION_NAME (decl))
7115 return;
7117 if (arange_table_in_use == arange_table_allocated)
7119 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7120 arange_table = ggc_realloc (arange_table,
7121 (arange_table_allocated
7122 * sizeof (dw_die_ref)));
7123 memset (arange_table + arange_table_in_use, 0,
7124 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7127 arange_table[arange_table_in_use++] = die;
7130 /* Output the information that goes into the .debug_aranges table.
7131 Namely, define the beginning and ending address range of the
7132 text section generated for this compilation unit. */
7134 static void
7135 output_aranges (void)
7137 unsigned i;
7138 unsigned long aranges_length = size_of_aranges ();
7140 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7141 dw2_asm_output_data (4, 0xffffffff,
7142 "Initial length escape value indicating 64-bit DWARF extension");
7143 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7144 "Length of Address Ranges Info");
7145 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7146 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7147 "Offset of Compilation Unit Info");
7148 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7149 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7151 /* We need to align to twice the pointer size here. */
7152 if (DWARF_ARANGES_PAD_SIZE)
7154 /* Pad using a 2 byte words so that padding is correct for any
7155 pointer size. */
7156 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7157 2 * DWARF2_ADDR_SIZE);
7158 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7159 dw2_asm_output_data (2, 0, NULL);
7162 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7163 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7164 text_section_label, "Length");
7166 for (i = 0; i < arange_table_in_use; i++)
7168 dw_die_ref die = arange_table[i];
7170 /* We shouldn't see aranges for DIEs outside of the main CU. */
7171 gcc_assert (die->die_mark);
7173 if (die->die_tag == DW_TAG_subprogram)
7175 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7176 "Address");
7177 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7178 get_AT_low_pc (die), "Length");
7180 else
7182 /* A static variable; extract the symbol from DW_AT_location.
7183 Note that this code isn't currently hit, as we only emit
7184 aranges for functions (jason 9/23/99). */
7185 dw_attr_ref a = get_AT (die, DW_AT_location);
7186 dw_loc_descr_ref loc;
7188 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7190 loc = AT_loc (a);
7191 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7193 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7194 loc->dw_loc_oprnd1.v.val_addr, "Address");
7195 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7196 get_AT_unsigned (die, DW_AT_byte_size),
7197 "Length");
7201 /* Output the terminator words. */
7202 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7203 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7206 /* Add a new entry to .debug_ranges. Return the offset at which it
7207 was placed. */
7209 static unsigned int
7210 add_ranges (tree block)
7212 unsigned int in_use = ranges_table_in_use;
7214 if (in_use == ranges_table_allocated)
7216 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7217 ranges_table
7218 = ggc_realloc (ranges_table, (ranges_table_allocated
7219 * sizeof (struct dw_ranges_struct)));
7220 memset (ranges_table + ranges_table_in_use, 0,
7221 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7224 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7225 ranges_table_in_use = in_use + 1;
7227 return in_use * 2 * DWARF2_ADDR_SIZE;
7230 static void
7231 output_ranges (void)
7233 unsigned i;
7234 static const char *const start_fmt = "Offset 0x%x";
7235 const char *fmt = start_fmt;
7237 for (i = 0; i < ranges_table_in_use; i++)
7239 int block_num = ranges_table[i].block_num;
7241 if (block_num)
7243 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7244 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7246 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7247 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7249 /* If all code is in the text section, then the compilation
7250 unit base address defaults to DW_AT_low_pc, which is the
7251 base of the text section. */
7252 if (separate_line_info_table_in_use == 0)
7254 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7255 text_section_label,
7256 fmt, i * 2 * DWARF2_ADDR_SIZE);
7257 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7258 text_section_label, NULL);
7261 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7262 compilation unit base address to zero, which allows us to
7263 use absolute addresses, and not worry about whether the
7264 target supports cross-section arithmetic. */
7265 else
7267 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7268 fmt, i * 2 * DWARF2_ADDR_SIZE);
7269 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7272 fmt = NULL;
7274 else
7276 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7277 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7278 fmt = start_fmt;
7283 /* Data structure containing information about input files. */
7284 struct file_info
7286 char *path; /* Complete file name. */
7287 char *fname; /* File name part. */
7288 int length; /* Length of entire string. */
7289 int file_idx; /* Index in input file table. */
7290 int dir_idx; /* Index in directory table. */
7293 /* Data structure containing information about directories with source
7294 files. */
7295 struct dir_info
7297 char *path; /* Path including directory name. */
7298 int length; /* Path length. */
7299 int prefix; /* Index of directory entry which is a prefix. */
7300 int count; /* Number of files in this directory. */
7301 int dir_idx; /* Index of directory used as base. */
7302 int used; /* Used in the end? */
7305 /* Callback function for file_info comparison. We sort by looking at
7306 the directories in the path. */
7308 static int
7309 file_info_cmp (const void *p1, const void *p2)
7311 const struct file_info *s1 = p1;
7312 const struct file_info *s2 = p2;
7313 unsigned char *cp1;
7314 unsigned char *cp2;
7316 /* Take care of file names without directories. We need to make sure that
7317 we return consistent values to qsort since some will get confused if
7318 we return the same value when identical operands are passed in opposite
7319 orders. So if neither has a directory, return 0 and otherwise return
7320 1 or -1 depending on which one has the directory. */
7321 if ((s1->path == s1->fname || s2->path == s2->fname))
7322 return (s2->path == s2->fname) - (s1->path == s1->fname);
7324 cp1 = (unsigned char *) s1->path;
7325 cp2 = (unsigned char *) s2->path;
7327 while (1)
7329 ++cp1;
7330 ++cp2;
7331 /* Reached the end of the first path? If so, handle like above. */
7332 if ((cp1 == (unsigned char *) s1->fname)
7333 || (cp2 == (unsigned char *) s2->fname))
7334 return ((cp2 == (unsigned char *) s2->fname)
7335 - (cp1 == (unsigned char *) s1->fname));
7337 /* Character of current path component the same? */
7338 else if (*cp1 != *cp2)
7339 return *cp1 - *cp2;
7343 /* Output the directory table and the file name table. We try to minimize
7344 the total amount of memory needed. A heuristic is used to avoid large
7345 slowdowns with many input files. */
7347 static void
7348 output_file_names (void)
7350 struct file_info *files;
7351 struct dir_info *dirs;
7352 int *saved;
7353 int *savehere;
7354 int *backmap;
7355 size_t ndirs;
7356 int idx_offset;
7357 size_t i;
7358 int idx;
7360 /* Handle the case where file_table is empty. */
7361 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7363 dw2_asm_output_data (1, 0, "End directory table");
7364 dw2_asm_output_data (1, 0, "End file name table");
7365 return;
7368 /* Allocate the various arrays we need. */
7369 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7370 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7372 /* Sort the file names. */
7373 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7375 char *f;
7377 /* Skip all leading "./". */
7378 f = VARRAY_CHAR_PTR (file_table, i);
7379 while (f[0] == '.' && f[1] == '/')
7380 f += 2;
7382 /* Create a new array entry. */
7383 files[i].path = f;
7384 files[i].length = strlen (f);
7385 files[i].file_idx = i;
7387 /* Search for the file name part. */
7388 f = strrchr (f, '/');
7389 files[i].fname = f == NULL ? files[i].path : f + 1;
7392 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7393 sizeof (files[0]), file_info_cmp);
7395 /* Find all the different directories used. */
7396 dirs[0].path = files[1].path;
7397 dirs[0].length = files[1].fname - files[1].path;
7398 dirs[0].prefix = -1;
7399 dirs[0].count = 1;
7400 dirs[0].dir_idx = 0;
7401 dirs[0].used = 0;
7402 files[1].dir_idx = 0;
7403 ndirs = 1;
7405 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7406 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7407 && memcmp (dirs[ndirs - 1].path, files[i].path,
7408 dirs[ndirs - 1].length) == 0)
7410 /* Same directory as last entry. */
7411 files[i].dir_idx = ndirs - 1;
7412 ++dirs[ndirs - 1].count;
7414 else
7416 size_t j;
7418 /* This is a new directory. */
7419 dirs[ndirs].path = files[i].path;
7420 dirs[ndirs].length = files[i].fname - files[i].path;
7421 dirs[ndirs].count = 1;
7422 dirs[ndirs].dir_idx = ndirs;
7423 dirs[ndirs].used = 0;
7424 files[i].dir_idx = ndirs;
7426 /* Search for a prefix. */
7427 dirs[ndirs].prefix = -1;
7428 for (j = 0; j < ndirs; j++)
7429 if (dirs[j].length < dirs[ndirs].length
7430 && dirs[j].length > 1
7431 && (dirs[ndirs].prefix == -1
7432 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7433 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7434 dirs[ndirs].prefix = j;
7436 ++ndirs;
7439 /* Now to the actual work. We have to find a subset of the directories which
7440 allow expressing the file name using references to the directory table
7441 with the least amount of characters. We do not do an exhaustive search
7442 where we would have to check out every combination of every single
7443 possible prefix. Instead we use a heuristic which provides nearly optimal
7444 results in most cases and never is much off. */
7445 saved = alloca (ndirs * sizeof (int));
7446 savehere = alloca (ndirs * sizeof (int));
7448 memset (saved, '\0', ndirs * sizeof (saved[0]));
7449 for (i = 0; i < ndirs; i++)
7451 size_t j;
7452 int total;
7454 /* We can always save some space for the current directory. But this
7455 does not mean it will be enough to justify adding the directory. */
7456 savehere[i] = dirs[i].length;
7457 total = (savehere[i] - saved[i]) * dirs[i].count;
7459 for (j = i + 1; j < ndirs; j++)
7461 savehere[j] = 0;
7462 if (saved[j] < dirs[i].length)
7464 /* Determine whether the dirs[i] path is a prefix of the
7465 dirs[j] path. */
7466 int k;
7468 k = dirs[j].prefix;
7469 while (k != -1 && k != (int) i)
7470 k = dirs[k].prefix;
7472 if (k == (int) i)
7474 /* Yes it is. We can possibly safe some memory but
7475 writing the filenames in dirs[j] relative to
7476 dirs[i]. */
7477 savehere[j] = dirs[i].length;
7478 total += (savehere[j] - saved[j]) * dirs[j].count;
7483 /* Check whether we can safe enough to justify adding the dirs[i]
7484 directory. */
7485 if (total > dirs[i].length + 1)
7487 /* It's worthwhile adding. */
7488 for (j = i; j < ndirs; j++)
7489 if (savehere[j] > 0)
7491 /* Remember how much we saved for this directory so far. */
7492 saved[j] = savehere[j];
7494 /* Remember the prefix directory. */
7495 dirs[j].dir_idx = i;
7500 /* We have to emit them in the order they appear in the file_table array
7501 since the index is used in the debug info generation. To do this
7502 efficiently we generate a back-mapping of the indices first. */
7503 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7504 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7506 backmap[files[i].file_idx] = i;
7508 /* Mark this directory as used. */
7509 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7512 /* That was it. We are ready to emit the information. First emit the
7513 directory name table. We have to make sure the first actually emitted
7514 directory name has index one; zero is reserved for the current working
7515 directory. Make sure we do not confuse these indices with the one for the
7516 constructed table (even though most of the time they are identical). */
7517 idx = 1;
7518 idx_offset = dirs[0].length > 0 ? 1 : 0;
7519 for (i = 1 - idx_offset; i < ndirs; i++)
7520 if (dirs[i].used != 0)
7522 dirs[i].used = idx++;
7523 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7524 "Directory Entry: 0x%x", dirs[i].used);
7527 dw2_asm_output_data (1, 0, "End directory table");
7529 /* Correct the index for the current working directory entry if it
7530 exists. */
7531 if (idx_offset == 0)
7532 dirs[0].used = 0;
7534 /* Now write all the file names. */
7535 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7537 int file_idx = backmap[i];
7538 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7540 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7541 "File Entry: 0x%lx", (unsigned long) i);
7543 /* Include directory index. */
7544 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7546 /* Modification time. */
7547 dw2_asm_output_data_uleb128 (0, NULL);
7549 /* File length in bytes. */
7550 dw2_asm_output_data_uleb128 (0, NULL);
7553 dw2_asm_output_data (1, 0, "End file name table");
7557 /* Output the source line number correspondence information. This
7558 information goes into the .debug_line section. */
7560 static void
7561 output_line_info (void)
7563 char l1[20], l2[20], p1[20], p2[20];
7564 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7565 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7566 unsigned opc;
7567 unsigned n_op_args;
7568 unsigned long lt_index;
7569 unsigned long current_line;
7570 long line_offset;
7571 long line_delta;
7572 unsigned long current_file;
7573 unsigned long function;
7575 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7576 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7577 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7578 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7580 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7581 dw2_asm_output_data (4, 0xffffffff,
7582 "Initial length escape value indicating 64-bit DWARF extension");
7583 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7584 "Length of Source Line Info");
7585 ASM_OUTPUT_LABEL (asm_out_file, l1);
7587 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7588 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7589 ASM_OUTPUT_LABEL (asm_out_file, p1);
7591 /* Define the architecture-dependent minimum instruction length (in
7592 bytes). In this implementation of DWARF, this field is used for
7593 information purposes only. Since GCC generates assembly language,
7594 we have no a priori knowledge of how many instruction bytes are
7595 generated for each source line, and therefore can use only the
7596 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7597 commands. Accordingly, we fix this as `1', which is "correct
7598 enough" for all architectures, and don't let the target override. */
7599 dw2_asm_output_data (1, 1,
7600 "Minimum Instruction Length");
7602 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7603 "Default is_stmt_start flag");
7604 dw2_asm_output_data (1, DWARF_LINE_BASE,
7605 "Line Base Value (Special Opcodes)");
7606 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7607 "Line Range Value (Special Opcodes)");
7608 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7609 "Special Opcode Base");
7611 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7613 switch (opc)
7615 case DW_LNS_advance_pc:
7616 case DW_LNS_advance_line:
7617 case DW_LNS_set_file:
7618 case DW_LNS_set_column:
7619 case DW_LNS_fixed_advance_pc:
7620 n_op_args = 1;
7621 break;
7622 default:
7623 n_op_args = 0;
7624 break;
7627 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7628 opc, n_op_args);
7631 /* Write out the information about the files we use. */
7632 output_file_names ();
7633 ASM_OUTPUT_LABEL (asm_out_file, p2);
7635 /* We used to set the address register to the first location in the text
7636 section here, but that didn't accomplish anything since we already
7637 have a line note for the opening brace of the first function. */
7639 /* Generate the line number to PC correspondence table, encoded as
7640 a series of state machine operations. */
7641 current_file = 1;
7642 current_line = 1;
7643 strcpy (prev_line_label, text_section_label);
7644 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7646 dw_line_info_ref line_info = &line_info_table[lt_index];
7648 #if 0
7649 /* Disable this optimization for now; GDB wants to see two line notes
7650 at the beginning of a function so it can find the end of the
7651 prologue. */
7653 /* Don't emit anything for redundant notes. Just updating the
7654 address doesn't accomplish anything, because we already assume
7655 that anything after the last address is this line. */
7656 if (line_info->dw_line_num == current_line
7657 && line_info->dw_file_num == current_file)
7658 continue;
7659 #endif
7661 /* Emit debug info for the address of the current line.
7663 Unfortunately, we have little choice here currently, and must always
7664 use the most general form. GCC does not know the address delta
7665 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7666 attributes which will give an upper bound on the address range. We
7667 could perhaps use length attributes to determine when it is safe to
7668 use DW_LNS_fixed_advance_pc. */
7670 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7671 if (0)
7673 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7674 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7675 "DW_LNS_fixed_advance_pc");
7676 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7678 else
7680 /* This can handle any delta. This takes
7681 4+DWARF2_ADDR_SIZE bytes. */
7682 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7683 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7684 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7685 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7688 strcpy (prev_line_label, line_label);
7690 /* Emit debug info for the source file of the current line, if
7691 different from the previous line. */
7692 if (line_info->dw_file_num != current_file)
7694 current_file = line_info->dw_file_num;
7695 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7696 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7697 VARRAY_CHAR_PTR (file_table,
7698 current_file));
7701 /* Emit debug info for the current line number, choosing the encoding
7702 that uses the least amount of space. */
7703 if (line_info->dw_line_num != current_line)
7705 line_offset = line_info->dw_line_num - current_line;
7706 line_delta = line_offset - DWARF_LINE_BASE;
7707 current_line = line_info->dw_line_num;
7708 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7709 /* This can handle deltas from -10 to 234, using the current
7710 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7711 takes 1 byte. */
7712 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7713 "line %lu", current_line);
7714 else
7716 /* This can handle any delta. This takes at least 4 bytes,
7717 depending on the value being encoded. */
7718 dw2_asm_output_data (1, DW_LNS_advance_line,
7719 "advance to line %lu", current_line);
7720 dw2_asm_output_data_sleb128 (line_offset, NULL);
7721 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7724 else
7725 /* We still need to start a new row, so output a copy insn. */
7726 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7729 /* Emit debug info for the address of the end of the function. */
7730 if (0)
7732 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7733 "DW_LNS_fixed_advance_pc");
7734 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7736 else
7738 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7739 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7740 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7741 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7744 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7745 dw2_asm_output_data_uleb128 (1, NULL);
7746 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7748 function = 0;
7749 current_file = 1;
7750 current_line = 1;
7751 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7753 dw_separate_line_info_ref line_info
7754 = &separate_line_info_table[lt_index];
7756 #if 0
7757 /* Don't emit anything for redundant notes. */
7758 if (line_info->dw_line_num == current_line
7759 && line_info->dw_file_num == current_file
7760 && line_info->function == function)
7761 goto cont;
7762 #endif
7764 /* Emit debug info for the address of the current line. If this is
7765 a new function, or the first line of a function, then we need
7766 to handle it differently. */
7767 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7768 lt_index);
7769 if (function != line_info->function)
7771 function = line_info->function;
7773 /* Set the address register to the first line in the function. */
7774 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7775 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7776 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7777 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7779 else
7781 /* ??? See the DW_LNS_advance_pc comment above. */
7782 if (0)
7784 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7785 "DW_LNS_fixed_advance_pc");
7786 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7788 else
7790 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7791 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7792 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7793 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7797 strcpy (prev_line_label, line_label);
7799 /* Emit debug info for the source file of the current line, if
7800 different from the previous line. */
7801 if (line_info->dw_file_num != current_file)
7803 current_file = line_info->dw_file_num;
7804 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7805 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7806 VARRAY_CHAR_PTR (file_table,
7807 current_file));
7810 /* Emit debug info for the current line number, choosing the encoding
7811 that uses the least amount of space. */
7812 if (line_info->dw_line_num != current_line)
7814 line_offset = line_info->dw_line_num - current_line;
7815 line_delta = line_offset - DWARF_LINE_BASE;
7816 current_line = line_info->dw_line_num;
7817 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7818 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7819 "line %lu", current_line);
7820 else
7822 dw2_asm_output_data (1, DW_LNS_advance_line,
7823 "advance to line %lu", current_line);
7824 dw2_asm_output_data_sleb128 (line_offset, NULL);
7825 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7828 else
7829 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7831 #if 0
7832 cont:
7833 #endif
7835 lt_index++;
7837 /* If we're done with a function, end its sequence. */
7838 if (lt_index == separate_line_info_table_in_use
7839 || separate_line_info_table[lt_index].function != function)
7841 current_file = 1;
7842 current_line = 1;
7844 /* Emit debug info for the address of the end of the function. */
7845 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7846 if (0)
7848 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7849 "DW_LNS_fixed_advance_pc");
7850 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7852 else
7854 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7855 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7856 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7857 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7860 /* Output the marker for the end of this sequence. */
7861 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7862 dw2_asm_output_data_uleb128 (1, NULL);
7863 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7867 /* Output the marker for the end of the line number info. */
7868 ASM_OUTPUT_LABEL (asm_out_file, l2);
7871 /* Given a pointer to a tree node for some base type, return a pointer to
7872 a DIE that describes the given type.
7874 This routine must only be called for GCC type nodes that correspond to
7875 Dwarf base (fundamental) types. */
7877 static dw_die_ref
7878 base_type_die (tree type)
7880 dw_die_ref base_type_result;
7881 const char *type_name;
7882 enum dwarf_type encoding;
7883 tree name = TYPE_NAME (type);
7885 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7886 return 0;
7888 if (name)
7890 if (TREE_CODE (name) == TYPE_DECL)
7891 name = DECL_NAME (name);
7893 type_name = IDENTIFIER_POINTER (name);
7895 else
7896 type_name = "__unknown__";
7898 switch (TREE_CODE (type))
7900 case INTEGER_TYPE:
7901 /* Carefully distinguish the C character types, without messing
7902 up if the language is not C. Note that we check only for the names
7903 that contain spaces; other names might occur by coincidence in other
7904 languages. */
7905 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7906 && (type == char_type_node
7907 || ! strcmp (type_name, "signed char")
7908 || ! strcmp (type_name, "unsigned char"))))
7910 if (TYPE_UNSIGNED (type))
7911 encoding = DW_ATE_unsigned;
7912 else
7913 encoding = DW_ATE_signed;
7914 break;
7916 /* else fall through. */
7918 case CHAR_TYPE:
7919 /* GNU Pascal/Ada CHAR type. Not used in C. */
7920 if (TYPE_UNSIGNED (type))
7921 encoding = DW_ATE_unsigned_char;
7922 else
7923 encoding = DW_ATE_signed_char;
7924 break;
7926 case REAL_TYPE:
7927 encoding = DW_ATE_float;
7928 break;
7930 /* Dwarf2 doesn't know anything about complex ints, so use
7931 a user defined type for it. */
7932 case COMPLEX_TYPE:
7933 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7934 encoding = DW_ATE_complex_float;
7935 else
7936 encoding = DW_ATE_lo_user;
7937 break;
7939 case BOOLEAN_TYPE:
7940 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7941 encoding = DW_ATE_boolean;
7942 break;
7944 default:
7945 /* No other TREE_CODEs are Dwarf fundamental types. */
7946 gcc_unreachable ();
7949 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7950 if (demangle_name_func)
7951 type_name = (*demangle_name_func) (type_name);
7953 add_AT_string (base_type_result, DW_AT_name, type_name);
7954 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7955 int_size_in_bytes (type));
7956 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7958 return base_type_result;
7961 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7962 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7963 a given type is generally the same as the given type, except that if the
7964 given type is a pointer or reference type, then the root type of the given
7965 type is the root type of the "basis" type for the pointer or reference
7966 type. (This definition of the "root" type is recursive.) Also, the root
7967 type of a `const' qualified type or a `volatile' qualified type is the
7968 root type of the given type without the qualifiers. */
7970 static tree
7971 root_type (tree type)
7973 if (TREE_CODE (type) == ERROR_MARK)
7974 return error_mark_node;
7976 switch (TREE_CODE (type))
7978 case ERROR_MARK:
7979 return error_mark_node;
7981 case POINTER_TYPE:
7982 case REFERENCE_TYPE:
7983 return type_main_variant (root_type (TREE_TYPE (type)));
7985 default:
7986 return type_main_variant (type);
7990 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7991 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7993 static inline int
7994 is_base_type (tree type)
7996 switch (TREE_CODE (type))
7998 case ERROR_MARK:
7999 case VOID_TYPE:
8000 case INTEGER_TYPE:
8001 case REAL_TYPE:
8002 case COMPLEX_TYPE:
8003 case BOOLEAN_TYPE:
8004 case CHAR_TYPE:
8005 return 1;
8007 case SET_TYPE:
8008 case ARRAY_TYPE:
8009 case RECORD_TYPE:
8010 case UNION_TYPE:
8011 case QUAL_UNION_TYPE:
8012 case ENUMERAL_TYPE:
8013 case FUNCTION_TYPE:
8014 case METHOD_TYPE:
8015 case POINTER_TYPE:
8016 case REFERENCE_TYPE:
8017 case FILE_TYPE:
8018 case OFFSET_TYPE:
8019 case LANG_TYPE:
8020 case VECTOR_TYPE:
8021 return 0;
8023 default:
8024 gcc_unreachable ();
8027 return 0;
8030 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8031 node, return the size in bits for the type if it is a constant, or else
8032 return the alignment for the type if the type's size is not constant, or
8033 else return BITS_PER_WORD if the type actually turns out to be an
8034 ERROR_MARK node. */
8036 static inline unsigned HOST_WIDE_INT
8037 simple_type_size_in_bits (tree type)
8039 if (TREE_CODE (type) == ERROR_MARK)
8040 return BITS_PER_WORD;
8041 else if (TYPE_SIZE (type) == NULL_TREE)
8042 return 0;
8043 else if (host_integerp (TYPE_SIZE (type), 1))
8044 return tree_low_cst (TYPE_SIZE (type), 1);
8045 else
8046 return TYPE_ALIGN (type);
8049 /* Return true if the debug information for the given type should be
8050 emitted as a subrange type. */
8052 static inline bool
8053 is_subrange_type (tree type)
8055 tree subtype = TREE_TYPE (type);
8057 /* Subrange types are identified by the fact that they are integer
8058 types, and that they have a subtype which is either an integer type
8059 or an enumeral type. */
8061 if (TREE_CODE (type) != INTEGER_TYPE
8062 || subtype == NULL_TREE)
8063 return false;
8065 if (TREE_CODE (subtype) != INTEGER_TYPE
8066 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8067 return false;
8069 if (TREE_CODE (type) == TREE_CODE (subtype)
8070 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8071 && TYPE_MIN_VALUE (type) != NULL
8072 && TYPE_MIN_VALUE (subtype) != NULL
8073 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8074 && TYPE_MAX_VALUE (type) != NULL
8075 && TYPE_MAX_VALUE (subtype) != NULL
8076 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8078 /* The type and its subtype have the same representation. If in
8079 addition the two types also have the same name, then the given
8080 type is not a subrange type, but rather a plain base type. */
8081 /* FIXME: brobecker/2004-03-22:
8082 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8083 therefore be sufficient to check the TYPE_SIZE node pointers
8084 rather than checking the actual size. Unfortunately, we have
8085 found some cases, such as in the Ada "integer" type, where
8086 this is not the case. Until this problem is solved, we need to
8087 keep checking the actual size. */
8088 tree type_name = TYPE_NAME (type);
8089 tree subtype_name = TYPE_NAME (subtype);
8091 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8092 type_name = DECL_NAME (type_name);
8094 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8095 subtype_name = DECL_NAME (subtype_name);
8097 if (type_name == subtype_name)
8098 return false;
8101 return true;
8104 /* Given a pointer to a tree node for a subrange type, return a pointer
8105 to a DIE that describes the given type. */
8107 static dw_die_ref
8108 subrange_type_die (tree type, dw_die_ref context_die)
8110 dw_die_ref subtype_die;
8111 dw_die_ref subrange_die;
8112 tree name = TYPE_NAME (type);
8113 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8114 tree subtype = TREE_TYPE (type);
8116 if (context_die == NULL)
8117 context_die = comp_unit_die;
8119 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8120 subtype_die = gen_enumeration_type_die (subtype, context_die);
8121 else
8122 subtype_die = base_type_die (subtype);
8124 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8126 if (name != NULL)
8128 if (TREE_CODE (name) == TYPE_DECL)
8129 name = DECL_NAME (name);
8130 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8133 if (int_size_in_bytes (subtype) != size_in_bytes)
8135 /* The size of the subrange type and its base type do not match,
8136 so we need to generate a size attribute for the subrange type. */
8137 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8140 if (TYPE_MIN_VALUE (type) != NULL)
8141 add_bound_info (subrange_die, DW_AT_lower_bound,
8142 TYPE_MIN_VALUE (type));
8143 if (TYPE_MAX_VALUE (type) != NULL)
8144 add_bound_info (subrange_die, DW_AT_upper_bound,
8145 TYPE_MAX_VALUE (type));
8146 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8148 return subrange_die;
8151 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8152 entry that chains various modifiers in front of the given type. */
8154 static dw_die_ref
8155 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8156 dw_die_ref context_die)
8158 enum tree_code code = TREE_CODE (type);
8159 dw_die_ref mod_type_die = NULL;
8160 dw_die_ref sub_die = NULL;
8161 tree item_type = NULL;
8163 if (code != ERROR_MARK)
8165 tree qualified_type;
8167 /* See if we already have the appropriately qualified variant of
8168 this type. */
8169 qualified_type
8170 = get_qualified_type (type,
8171 ((is_const_type ? TYPE_QUAL_CONST : 0)
8172 | (is_volatile_type
8173 ? TYPE_QUAL_VOLATILE : 0)));
8175 /* If we do, then we can just use its DIE, if it exists. */
8176 if (qualified_type)
8178 mod_type_die = lookup_type_die (qualified_type);
8179 if (mod_type_die)
8180 return mod_type_die;
8183 /* Handle C typedef types. */
8184 if (qualified_type && TYPE_NAME (qualified_type)
8185 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8186 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8188 tree type_name = TYPE_NAME (qualified_type);
8189 tree dtype = TREE_TYPE (type_name);
8191 if (qualified_type == dtype)
8193 /* For a named type, use the typedef. */
8194 gen_type_die (qualified_type, context_die);
8195 mod_type_die = lookup_type_die (qualified_type);
8197 else if (is_const_type < TYPE_READONLY (dtype)
8198 || is_volatile_type < TYPE_VOLATILE (dtype))
8199 /* cv-unqualified version of named type. Just use the unnamed
8200 type to which it refers. */
8201 mod_type_die
8202 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8203 is_const_type, is_volatile_type,
8204 context_die);
8206 /* Else cv-qualified version of named type; fall through. */
8209 if (mod_type_die)
8210 /* OK. */
8212 else if (is_const_type)
8214 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8215 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8217 else if (is_volatile_type)
8219 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8220 sub_die = modified_type_die (type, 0, 0, context_die);
8222 else if (code == POINTER_TYPE)
8224 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8225 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8226 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8227 #if 0
8228 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8229 #endif
8230 item_type = TREE_TYPE (type);
8232 else if (code == REFERENCE_TYPE)
8234 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8235 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8236 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8237 #if 0
8238 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8239 #endif
8240 item_type = TREE_TYPE (type);
8242 else if (is_subrange_type (type))
8243 mod_type_die = subrange_type_die (type, context_die);
8244 else if (is_base_type (type))
8245 mod_type_die = base_type_die (type);
8246 else
8248 gen_type_die (type, context_die);
8250 /* We have to get the type_main_variant here (and pass that to the
8251 `lookup_type_die' routine) because the ..._TYPE node we have
8252 might simply be a *copy* of some original type node (where the
8253 copy was created to help us keep track of typedef names) and
8254 that copy might have a different TYPE_UID from the original
8255 ..._TYPE node. */
8256 if (TREE_CODE (type) != VECTOR_TYPE)
8257 mod_type_die = lookup_type_die (type_main_variant (type));
8258 else
8259 /* Vectors have the debugging information in the type,
8260 not the main variant. */
8261 mod_type_die = lookup_type_die (type);
8262 gcc_assert (mod_type_die);
8265 /* We want to equate the qualified type to the die below. */
8266 type = qualified_type;
8269 if (type)
8270 equate_type_number_to_die (type, mod_type_die);
8271 if (item_type)
8272 /* We must do this after the equate_type_number_to_die call, in case
8273 this is a recursive type. This ensures that the modified_type_die
8274 recursion will terminate even if the type is recursive. Recursive
8275 types are possible in Ada. */
8276 sub_die = modified_type_die (item_type,
8277 TYPE_READONLY (item_type),
8278 TYPE_VOLATILE (item_type),
8279 context_die);
8281 if (sub_die != NULL)
8282 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8284 return mod_type_die;
8287 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8288 an enumerated type. */
8290 static inline int
8291 type_is_enum (tree type)
8293 return TREE_CODE (type) == ENUMERAL_TYPE;
8296 /* Return the DBX register number described by a given RTL node. */
8298 static unsigned int
8299 dbx_reg_number (rtx rtl)
8301 unsigned regno = REGNO (rtl);
8303 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8305 return DBX_REGISTER_NUMBER (regno);
8308 /* Return a location descriptor that designates a machine register or
8309 zero if there is none. */
8311 static dw_loc_descr_ref
8312 reg_loc_descriptor (rtx rtl)
8314 unsigned reg;
8315 rtx regs;
8317 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8318 return 0;
8320 reg = dbx_reg_number (rtl);
8321 regs = targetm.dwarf_register_span (rtl);
8323 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8324 || regs)
8325 return multiple_reg_loc_descriptor (rtl, regs);
8326 else
8327 return one_reg_loc_descriptor (reg);
8330 /* Return a location descriptor that designates a machine register for
8331 a given hard register number. */
8333 static dw_loc_descr_ref
8334 one_reg_loc_descriptor (unsigned int regno)
8336 if (regno <= 31)
8337 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8338 else
8339 return new_loc_descr (DW_OP_regx, regno, 0);
8342 /* Given an RTL of a register, return a location descriptor that
8343 designates a value that spans more than one register. */
8345 static dw_loc_descr_ref
8346 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8348 int nregs, size, i;
8349 unsigned reg;
8350 dw_loc_descr_ref loc_result = NULL;
8352 reg = dbx_reg_number (rtl);
8353 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8355 /* Simple, contiguous registers. */
8356 if (regs == NULL_RTX)
8358 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8360 loc_result = NULL;
8361 while (nregs--)
8363 dw_loc_descr_ref t;
8365 t = one_reg_loc_descriptor (reg);
8366 add_loc_descr (&loc_result, t);
8367 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8368 ++reg;
8370 return loc_result;
8373 /* Now onto stupid register sets in non contiguous locations. */
8375 gcc_assert (GET_CODE (regs) == PARALLEL);
8377 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8378 loc_result = NULL;
8380 for (i = 0; i < XVECLEN (regs, 0); ++i)
8382 dw_loc_descr_ref t;
8384 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8385 add_loc_descr (&loc_result, t);
8386 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8387 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8389 return loc_result;
8392 /* Return a location descriptor that designates a constant. */
8394 static dw_loc_descr_ref
8395 int_loc_descriptor (HOST_WIDE_INT i)
8397 enum dwarf_location_atom op;
8399 /* Pick the smallest representation of a constant, rather than just
8400 defaulting to the LEB encoding. */
8401 if (i >= 0)
8403 if (i <= 31)
8404 op = DW_OP_lit0 + i;
8405 else if (i <= 0xff)
8406 op = DW_OP_const1u;
8407 else if (i <= 0xffff)
8408 op = DW_OP_const2u;
8409 else if (HOST_BITS_PER_WIDE_INT == 32
8410 || i <= 0xffffffff)
8411 op = DW_OP_const4u;
8412 else
8413 op = DW_OP_constu;
8415 else
8417 if (i >= -0x80)
8418 op = DW_OP_const1s;
8419 else if (i >= -0x8000)
8420 op = DW_OP_const2s;
8421 else if (HOST_BITS_PER_WIDE_INT == 32
8422 || i >= -0x80000000)
8423 op = DW_OP_const4s;
8424 else
8425 op = DW_OP_consts;
8428 return new_loc_descr (op, i, 0);
8431 /* Return a location descriptor that designates a base+offset location. */
8433 static dw_loc_descr_ref
8434 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8436 dw_loc_descr_ref loc_result;
8437 /* For the "frame base", we use the frame pointer or stack pointer
8438 registers, since the RTL for local variables is relative to one of
8439 them. */
8440 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8441 ? HARD_FRAME_POINTER_REGNUM
8442 : STACK_POINTER_REGNUM);
8444 if (reg == fp_reg && can_use_fbreg)
8445 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8446 else if (reg <= 31)
8447 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8448 else
8449 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8451 return loc_result;
8454 /* Return true if this RTL expression describes a base+offset calculation. */
8456 static inline int
8457 is_based_loc (rtx rtl)
8459 return (GET_CODE (rtl) == PLUS
8460 && ((REG_P (XEXP (rtl, 0))
8461 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8462 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8465 /* The following routine converts the RTL for a variable or parameter
8466 (resident in memory) into an equivalent Dwarf representation of a
8467 mechanism for getting the address of that same variable onto the top of a
8468 hypothetical "address evaluation" stack.
8470 When creating memory location descriptors, we are effectively transforming
8471 the RTL for a memory-resident object into its Dwarf postfix expression
8472 equivalent. This routine recursively descends an RTL tree, turning
8473 it into Dwarf postfix code as it goes.
8475 MODE is the mode of the memory reference, needed to handle some
8476 autoincrement addressing modes.
8478 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8479 list for RTL. We can't use it when we are emitting location list for
8480 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8481 which describes how frame base changes when !frame_pointer_needed.
8483 Return 0 if we can't represent the location. */
8485 static dw_loc_descr_ref
8486 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8488 dw_loc_descr_ref mem_loc_result = NULL;
8489 enum dwarf_location_atom op;
8491 /* Note that for a dynamically sized array, the location we will generate a
8492 description of here will be the lowest numbered location which is
8493 actually within the array. That's *not* necessarily the same as the
8494 zeroth element of the array. */
8496 rtl = targetm.delegitimize_address (rtl);
8498 switch (GET_CODE (rtl))
8500 case POST_INC:
8501 case POST_DEC:
8502 case POST_MODIFY:
8503 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8504 just fall into the SUBREG code. */
8506 /* ... fall through ... */
8508 case SUBREG:
8509 /* The case of a subreg may arise when we have a local (register)
8510 variable or a formal (register) parameter which doesn't quite fill
8511 up an entire register. For now, just assume that it is
8512 legitimate to make the Dwarf info refer to the whole register which
8513 contains the given subreg. */
8514 rtl = SUBREG_REG (rtl);
8516 /* ... fall through ... */
8518 case REG:
8519 /* Whenever a register number forms a part of the description of the
8520 method for calculating the (dynamic) address of a memory resident
8521 object, DWARF rules require the register number be referred to as
8522 a "base register". This distinction is not based in any way upon
8523 what category of register the hardware believes the given register
8524 belongs to. This is strictly DWARF terminology we're dealing with
8525 here. Note that in cases where the location of a memory-resident
8526 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8527 OP_CONST (0)) the actual DWARF location descriptor that we generate
8528 may just be OP_BASEREG (basereg). This may look deceptively like
8529 the object in question was allocated to a register (rather than in
8530 memory) so DWARF consumers need to be aware of the subtle
8531 distinction between OP_REG and OP_BASEREG. */
8532 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8533 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8534 can_use_fbreg);
8535 break;
8537 case MEM:
8538 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8539 can_use_fbreg);
8540 if (mem_loc_result != 0)
8541 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8542 break;
8544 case LO_SUM:
8545 rtl = XEXP (rtl, 1);
8547 /* ... fall through ... */
8549 case LABEL_REF:
8550 /* Some ports can transform a symbol ref into a label ref, because
8551 the symbol ref is too far away and has to be dumped into a constant
8552 pool. */
8553 case CONST:
8554 case SYMBOL_REF:
8555 /* Alternatively, the symbol in the constant pool might be referenced
8556 by a different symbol. */
8557 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8559 bool marked;
8560 rtx tmp = get_pool_constant_mark (rtl, &marked);
8562 if (GET_CODE (tmp) == SYMBOL_REF)
8564 rtl = tmp;
8565 if (CONSTANT_POOL_ADDRESS_P (tmp))
8566 get_pool_constant_mark (tmp, &marked);
8567 else
8568 marked = true;
8571 /* If all references to this pool constant were optimized away,
8572 it was not output and thus we can't represent it.
8573 FIXME: might try to use DW_OP_const_value here, though
8574 DW_OP_piece complicates it. */
8575 if (!marked)
8576 return 0;
8579 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8580 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8581 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8582 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8583 break;
8585 case PRE_MODIFY:
8586 /* Extract the PLUS expression nested inside and fall into
8587 PLUS code below. */
8588 rtl = XEXP (rtl, 1);
8589 goto plus;
8591 case PRE_INC:
8592 case PRE_DEC:
8593 /* Turn these into a PLUS expression and fall into the PLUS code
8594 below. */
8595 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8596 GEN_INT (GET_CODE (rtl) == PRE_INC
8597 ? GET_MODE_UNIT_SIZE (mode)
8598 : -GET_MODE_UNIT_SIZE (mode)));
8600 /* ... fall through ... */
8602 case PLUS:
8603 plus:
8604 if (is_based_loc (rtl))
8605 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8606 INTVAL (XEXP (rtl, 1)),
8607 can_use_fbreg);
8608 else
8610 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8611 can_use_fbreg);
8612 if (mem_loc_result == 0)
8613 break;
8615 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8616 && INTVAL (XEXP (rtl, 1)) >= 0)
8617 add_loc_descr (&mem_loc_result,
8618 new_loc_descr (DW_OP_plus_uconst,
8619 INTVAL (XEXP (rtl, 1)), 0));
8620 else
8622 add_loc_descr (&mem_loc_result,
8623 mem_loc_descriptor (XEXP (rtl, 1), mode,
8624 can_use_fbreg));
8625 add_loc_descr (&mem_loc_result,
8626 new_loc_descr (DW_OP_plus, 0, 0));
8629 break;
8631 /* If a pseudo-reg is optimized away, it is possible for it to
8632 be replaced with a MEM containing a multiply or shift. */
8633 case MULT:
8634 op = DW_OP_mul;
8635 goto do_binop;
8637 case ASHIFT:
8638 op = DW_OP_shl;
8639 goto do_binop;
8641 case ASHIFTRT:
8642 op = DW_OP_shra;
8643 goto do_binop;
8645 case LSHIFTRT:
8646 op = DW_OP_shr;
8647 goto do_binop;
8649 do_binop:
8651 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8652 can_use_fbreg);
8653 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8654 can_use_fbreg);
8656 if (op0 == 0 || op1 == 0)
8657 break;
8659 mem_loc_result = op0;
8660 add_loc_descr (&mem_loc_result, op1);
8661 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8662 break;
8665 case CONST_INT:
8666 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8667 break;
8669 default:
8670 gcc_unreachable ();
8673 return mem_loc_result;
8676 /* Return a descriptor that describes the concatenation of two locations.
8677 This is typically a complex variable. */
8679 static dw_loc_descr_ref
8680 concat_loc_descriptor (rtx x0, rtx x1)
8682 dw_loc_descr_ref cc_loc_result = NULL;
8683 dw_loc_descr_ref x0_ref = loc_descriptor (x0, true);
8684 dw_loc_descr_ref x1_ref = loc_descriptor (x1, true);
8686 if (x0_ref == 0 || x1_ref == 0)
8687 return 0;
8689 cc_loc_result = x0_ref;
8690 add_loc_descr (&cc_loc_result,
8691 new_loc_descr (DW_OP_piece,
8692 GET_MODE_SIZE (GET_MODE (x0)), 0));
8694 add_loc_descr (&cc_loc_result, x1_ref);
8695 add_loc_descr (&cc_loc_result,
8696 new_loc_descr (DW_OP_piece,
8697 GET_MODE_SIZE (GET_MODE (x1)), 0));
8699 return cc_loc_result;
8702 /* Output a proper Dwarf location descriptor for a variable or parameter
8703 which is either allocated in a register or in a memory location. For a
8704 register, we just generate an OP_REG and the register number. For a
8705 memory location we provide a Dwarf postfix expression describing how to
8706 generate the (dynamic) address of the object onto the address stack.
8708 If we don't know how to describe it, return 0. */
8710 static dw_loc_descr_ref
8711 loc_descriptor (rtx rtl, bool can_use_fbreg)
8713 dw_loc_descr_ref loc_result = NULL;
8715 switch (GET_CODE (rtl))
8717 case SUBREG:
8718 /* The case of a subreg may arise when we have a local (register)
8719 variable or a formal (register) parameter which doesn't quite fill
8720 up an entire register. For now, just assume that it is
8721 legitimate to make the Dwarf info refer to the whole register which
8722 contains the given subreg. */
8723 rtl = SUBREG_REG (rtl);
8725 /* ... fall through ... */
8727 case REG:
8728 loc_result = reg_loc_descriptor (rtl);
8729 break;
8731 case MEM:
8732 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8733 can_use_fbreg);
8734 break;
8736 case CONCAT:
8737 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8738 break;
8740 case VAR_LOCATION:
8741 /* Single part. */
8742 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8744 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8745 break;
8748 rtl = XEXP (rtl, 1);
8749 /* FALLTHRU */
8751 case PARALLEL:
8753 rtvec par_elems = XVEC (rtl, 0);
8754 int num_elem = GET_NUM_ELEM (par_elems);
8755 enum machine_mode mode;
8756 int i;
8758 /* Create the first one, so we have something to add to. */
8759 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8760 can_use_fbreg);
8761 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8762 add_loc_descr (&loc_result,
8763 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8764 for (i = 1; i < num_elem; i++)
8766 dw_loc_descr_ref temp;
8768 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8769 can_use_fbreg);
8770 add_loc_descr (&loc_result, temp);
8771 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8772 add_loc_descr (&loc_result,
8773 new_loc_descr (DW_OP_piece,
8774 GET_MODE_SIZE (mode), 0));
8777 break;
8779 default:
8780 gcc_unreachable ();
8783 return loc_result;
8786 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8787 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8788 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8789 top-level invocation, and we require the address of LOC; is 0 if we require
8790 the value of LOC. */
8792 static dw_loc_descr_ref
8793 loc_descriptor_from_tree_1 (tree loc, int want_address)
8795 dw_loc_descr_ref ret, ret1;
8796 int have_address = 0;
8797 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8798 enum dwarf_location_atom op;
8800 /* ??? Most of the time we do not take proper care for sign/zero
8801 extending the values properly. Hopefully this won't be a real
8802 problem... */
8804 switch (TREE_CODE (loc))
8806 case ERROR_MARK:
8807 return 0;
8809 case PLACEHOLDER_EXPR:
8810 /* This case involves extracting fields from an object to determine the
8811 position of other fields. We don't try to encode this here. The
8812 only user of this is Ada, which encodes the needed information using
8813 the names of types. */
8814 return 0;
8816 case CALL_EXPR:
8817 return 0;
8819 case PREINCREMENT_EXPR:
8820 case PREDECREMENT_EXPR:
8821 case POSTINCREMENT_EXPR:
8822 case POSTDECREMENT_EXPR:
8823 /* There are no opcodes for these operations. */
8824 return 0;
8826 case ADDR_EXPR:
8827 /* If we already want an address, there's nothing we can do. */
8828 if (want_address)
8829 return 0;
8831 /* Otherwise, process the argument and look for the address. */
8832 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8834 case VAR_DECL:
8835 if (DECL_THREAD_LOCAL (loc))
8837 rtx rtl;
8839 #ifndef ASM_OUTPUT_DWARF_DTPREL
8840 /* If this is not defined, we have no way to emit the data. */
8841 return 0;
8842 #endif
8844 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8845 look up addresses of objects in the current module. */
8846 if (DECL_EXTERNAL (loc))
8847 return 0;
8849 rtl = rtl_for_decl_location (loc);
8850 if (rtl == NULL_RTX)
8851 return 0;
8853 if (!MEM_P (rtl))
8854 return 0;
8855 rtl = XEXP (rtl, 0);
8856 if (! CONSTANT_P (rtl))
8857 return 0;
8859 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8860 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8861 ret->dw_loc_oprnd1.v.val_addr = rtl;
8863 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8864 add_loc_descr (&ret, ret1);
8866 have_address = 1;
8867 break;
8869 /* FALLTHRU */
8871 case PARM_DECL:
8872 if (DECL_VALUE_EXPR (loc))
8873 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8874 /* FALLTHRU */
8876 case RESULT_DECL:
8878 rtx rtl = rtl_for_decl_location (loc);
8880 if (rtl == NULL_RTX)
8881 return 0;
8882 else if (GET_CODE (rtl) == CONST_INT)
8884 HOST_WIDE_INT val = INTVAL (rtl);
8885 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8886 val &= GET_MODE_MASK (DECL_MODE (loc));
8887 ret = int_loc_descriptor (val);
8889 else if (GET_CODE (rtl) == CONST_STRING)
8890 return 0;
8891 else if (CONSTANT_P (rtl))
8893 ret = new_loc_descr (DW_OP_addr, 0, 0);
8894 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8895 ret->dw_loc_oprnd1.v.val_addr = rtl;
8897 else
8899 enum machine_mode mode;
8901 /* Certain constructs can only be represented at top-level. */
8902 if (want_address == 2)
8903 return loc_descriptor (rtl, true);
8905 mode = GET_MODE (rtl);
8906 if (MEM_P (rtl))
8908 rtl = XEXP (rtl, 0);
8909 have_address = 1;
8911 ret = mem_loc_descriptor (rtl, mode, true);
8914 break;
8916 case INDIRECT_REF:
8917 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
8918 have_address = 1;
8919 break;
8921 case COMPOUND_EXPR:
8922 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
8924 case NOP_EXPR:
8925 case CONVERT_EXPR:
8926 case NON_LVALUE_EXPR:
8927 case VIEW_CONVERT_EXPR:
8928 case SAVE_EXPR:
8929 case MODIFY_EXPR:
8930 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
8932 case COMPONENT_REF:
8933 case BIT_FIELD_REF:
8934 case ARRAY_REF:
8935 case ARRAY_RANGE_REF:
8937 tree obj, offset;
8938 HOST_WIDE_INT bitsize, bitpos, bytepos;
8939 enum machine_mode mode;
8940 int volatilep;
8942 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8943 &unsignedp, &volatilep);
8945 if (obj == loc)
8946 return 0;
8948 ret = loc_descriptor_from_tree_1 (obj, 1);
8949 if (ret == 0
8950 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8951 return 0;
8953 if (offset != NULL_TREE)
8955 /* Variable offset. */
8956 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
8957 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8960 bytepos = bitpos / BITS_PER_UNIT;
8961 if (bytepos > 0)
8962 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8963 else if (bytepos < 0)
8965 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8966 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8969 have_address = 1;
8970 break;
8973 case INTEGER_CST:
8974 if (host_integerp (loc, 0))
8975 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8976 else
8977 return 0;
8978 break;
8980 case CONSTRUCTOR:
8982 /* Get an RTL for this, if something has been emitted. */
8983 rtx rtl = lookup_constant_def (loc);
8984 enum machine_mode mode;
8986 if (!rtl || !MEM_P (rtl))
8987 return 0;
8988 mode = GET_MODE (rtl);
8989 rtl = XEXP (rtl, 0);
8990 ret = mem_loc_descriptor (rtl, mode, true);
8991 have_address = 1;
8992 break;
8995 case TRUTH_AND_EXPR:
8996 case TRUTH_ANDIF_EXPR:
8997 case BIT_AND_EXPR:
8998 op = DW_OP_and;
8999 goto do_binop;
9001 case TRUTH_XOR_EXPR:
9002 case BIT_XOR_EXPR:
9003 op = DW_OP_xor;
9004 goto do_binop;
9006 case TRUTH_OR_EXPR:
9007 case TRUTH_ORIF_EXPR:
9008 case BIT_IOR_EXPR:
9009 op = DW_OP_or;
9010 goto do_binop;
9012 case FLOOR_DIV_EXPR:
9013 case CEIL_DIV_EXPR:
9014 case ROUND_DIV_EXPR:
9015 case TRUNC_DIV_EXPR:
9016 op = DW_OP_div;
9017 goto do_binop;
9019 case MINUS_EXPR:
9020 op = DW_OP_minus;
9021 goto do_binop;
9023 case FLOOR_MOD_EXPR:
9024 case CEIL_MOD_EXPR:
9025 case ROUND_MOD_EXPR:
9026 case TRUNC_MOD_EXPR:
9027 op = DW_OP_mod;
9028 goto do_binop;
9030 case MULT_EXPR:
9031 op = DW_OP_mul;
9032 goto do_binop;
9034 case LSHIFT_EXPR:
9035 op = DW_OP_shl;
9036 goto do_binop;
9038 case RSHIFT_EXPR:
9039 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9040 goto do_binop;
9042 case PLUS_EXPR:
9043 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9044 && host_integerp (TREE_OPERAND (loc, 1), 0))
9046 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9047 if (ret == 0)
9048 return 0;
9050 add_loc_descr (&ret,
9051 new_loc_descr (DW_OP_plus_uconst,
9052 tree_low_cst (TREE_OPERAND (loc, 1),
9054 0));
9055 break;
9058 op = DW_OP_plus;
9059 goto do_binop;
9061 case LE_EXPR:
9062 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9063 return 0;
9065 op = DW_OP_le;
9066 goto do_binop;
9068 case GE_EXPR:
9069 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9070 return 0;
9072 op = DW_OP_ge;
9073 goto do_binop;
9075 case LT_EXPR:
9076 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9077 return 0;
9079 op = DW_OP_lt;
9080 goto do_binop;
9082 case GT_EXPR:
9083 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9084 return 0;
9086 op = DW_OP_gt;
9087 goto do_binop;
9089 case EQ_EXPR:
9090 op = DW_OP_eq;
9091 goto do_binop;
9093 case NE_EXPR:
9094 op = DW_OP_ne;
9095 goto do_binop;
9097 do_binop:
9098 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9099 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9100 if (ret == 0 || ret1 == 0)
9101 return 0;
9103 add_loc_descr (&ret, ret1);
9104 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9105 break;
9107 case TRUTH_NOT_EXPR:
9108 case BIT_NOT_EXPR:
9109 op = DW_OP_not;
9110 goto do_unop;
9112 case ABS_EXPR:
9113 op = DW_OP_abs;
9114 goto do_unop;
9116 case NEGATE_EXPR:
9117 op = DW_OP_neg;
9118 goto do_unop;
9120 do_unop:
9121 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9122 if (ret == 0)
9123 return 0;
9125 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9126 break;
9128 case MIN_EXPR:
9129 case MAX_EXPR:
9131 const enum tree_code code =
9132 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9134 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9135 build2 (code, integer_type_node,
9136 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9137 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9140 /* ... fall through ... */
9142 case COND_EXPR:
9144 dw_loc_descr_ref lhs
9145 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9146 dw_loc_descr_ref rhs
9147 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9148 dw_loc_descr_ref bra_node, jump_node, tmp;
9150 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9151 if (ret == 0 || lhs == 0 || rhs == 0)
9152 return 0;
9154 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9155 add_loc_descr (&ret, bra_node);
9157 add_loc_descr (&ret, rhs);
9158 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9159 add_loc_descr (&ret, jump_node);
9161 add_loc_descr (&ret, lhs);
9162 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9163 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9165 /* ??? Need a node to point the skip at. Use a nop. */
9166 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9167 add_loc_descr (&ret, tmp);
9168 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9169 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9171 break;
9173 case FIX_TRUNC_EXPR:
9174 case FIX_CEIL_EXPR:
9175 case FIX_FLOOR_EXPR:
9176 case FIX_ROUND_EXPR:
9177 return 0;
9179 default:
9180 /* Leave front-end specific codes as simply unknown. This comes
9181 up, for instance, with the C STMT_EXPR. */
9182 if ((unsigned int) TREE_CODE (loc)
9183 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9184 return 0;
9186 #ifdef ENABLE_CHECKING
9187 /* Otherwise this is a generic code; we should just lists all of
9188 these explicitly. Aborting means we forgot one. */
9189 gcc_unreachable ();
9190 #else
9191 /* In a release build, we want to degrade gracefully: better to
9192 generate incomplete debugging information than to crash. */
9193 return NULL;
9194 #endif
9197 /* Show if we can't fill the request for an address. */
9198 if (want_address && !have_address)
9199 return 0;
9201 /* If we've got an address and don't want one, dereference. */
9202 if (!want_address && have_address)
9204 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9206 if (size > DWARF2_ADDR_SIZE || size == -1)
9207 return 0;
9208 else if (size == DWARF2_ADDR_SIZE)
9209 op = DW_OP_deref;
9210 else
9211 op = DW_OP_deref_size;
9213 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9216 return ret;
9219 static inline dw_loc_descr_ref
9220 loc_descriptor_from_tree (tree loc)
9222 return loc_descriptor_from_tree_1 (loc, 2);
9225 /* Given a value, round it up to the lowest multiple of `boundary'
9226 which is not less than the value itself. */
9228 static inline HOST_WIDE_INT
9229 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9231 return (((value + boundary - 1) / boundary) * boundary);
9234 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9235 pointer to the declared type for the relevant field variable, or return
9236 `integer_type_node' if the given node turns out to be an
9237 ERROR_MARK node. */
9239 static inline tree
9240 field_type (tree decl)
9242 tree type;
9244 if (TREE_CODE (decl) == ERROR_MARK)
9245 return integer_type_node;
9247 type = DECL_BIT_FIELD_TYPE (decl);
9248 if (type == NULL_TREE)
9249 type = TREE_TYPE (decl);
9251 return type;
9254 /* Given a pointer to a tree node, return the alignment in bits for
9255 it, or else return BITS_PER_WORD if the node actually turns out to
9256 be an ERROR_MARK node. */
9258 static inline unsigned
9259 simple_type_align_in_bits (tree type)
9261 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9264 static inline unsigned
9265 simple_decl_align_in_bits (tree decl)
9267 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9270 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9271 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9272 or return 0 if we are unable to determine what that offset is, either
9273 because the argument turns out to be a pointer to an ERROR_MARK node, or
9274 because the offset is actually variable. (We can't handle the latter case
9275 just yet). */
9277 static HOST_WIDE_INT
9278 field_byte_offset (tree decl)
9280 unsigned int type_align_in_bits;
9281 unsigned int decl_align_in_bits;
9282 unsigned HOST_WIDE_INT type_size_in_bits;
9283 HOST_WIDE_INT object_offset_in_bits;
9284 tree type;
9285 tree field_size_tree;
9286 HOST_WIDE_INT bitpos_int;
9287 HOST_WIDE_INT deepest_bitpos;
9288 unsigned HOST_WIDE_INT field_size_in_bits;
9290 if (TREE_CODE (decl) == ERROR_MARK)
9291 return 0;
9293 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9295 type = field_type (decl);
9296 field_size_tree = DECL_SIZE (decl);
9298 /* The size could be unspecified if there was an error, or for
9299 a flexible array member. */
9300 if (! field_size_tree)
9301 field_size_tree = bitsize_zero_node;
9303 /* We cannot yet cope with fields whose positions are variable, so
9304 for now, when we see such things, we simply return 0. Someday, we may
9305 be able to handle such cases, but it will be damn difficult. */
9306 if (! host_integerp (bit_position (decl), 0))
9307 return 0;
9309 bitpos_int = int_bit_position (decl);
9311 /* If we don't know the size of the field, pretend it's a full word. */
9312 if (host_integerp (field_size_tree, 1))
9313 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9314 else
9315 field_size_in_bits = BITS_PER_WORD;
9317 type_size_in_bits = simple_type_size_in_bits (type);
9318 type_align_in_bits = simple_type_align_in_bits (type);
9319 decl_align_in_bits = simple_decl_align_in_bits (decl);
9321 /* The GCC front-end doesn't make any attempt to keep track of the starting
9322 bit offset (relative to the start of the containing structure type) of the
9323 hypothetical "containing object" for a bit-field. Thus, when computing
9324 the byte offset value for the start of the "containing object" of a
9325 bit-field, we must deduce this information on our own. This can be rather
9326 tricky to do in some cases. For example, handling the following structure
9327 type definition when compiling for an i386/i486 target (which only aligns
9328 long long's to 32-bit boundaries) can be very tricky:
9330 struct S { int field1; long long field2:31; };
9332 Fortunately, there is a simple rule-of-thumb which can be used in such
9333 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9334 structure shown above. It decides to do this based upon one simple rule
9335 for bit-field allocation. GCC allocates each "containing object" for each
9336 bit-field at the first (i.e. lowest addressed) legitimate alignment
9337 boundary (based upon the required minimum alignment for the declared type
9338 of the field) which it can possibly use, subject to the condition that
9339 there is still enough available space remaining in the containing object
9340 (when allocated at the selected point) to fully accommodate all of the
9341 bits of the bit-field itself.
9343 This simple rule makes it obvious why GCC allocates 8 bytes for each
9344 object of the structure type shown above. When looking for a place to
9345 allocate the "containing object" for `field2', the compiler simply tries
9346 to allocate a 64-bit "containing object" at each successive 32-bit
9347 boundary (starting at zero) until it finds a place to allocate that 64-
9348 bit field such that at least 31 contiguous (and previously unallocated)
9349 bits remain within that selected 64 bit field. (As it turns out, for the
9350 example above, the compiler finds it is OK to allocate the "containing
9351 object" 64-bit field at bit-offset zero within the structure type.)
9353 Here we attempt to work backwards from the limited set of facts we're
9354 given, and we try to deduce from those facts, where GCC must have believed
9355 that the containing object started (within the structure type). The value
9356 we deduce is then used (by the callers of this routine) to generate
9357 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9358 and, in the case of DW_AT_location, regular fields as well). */
9360 /* Figure out the bit-distance from the start of the structure to the
9361 "deepest" bit of the bit-field. */
9362 deepest_bitpos = bitpos_int + field_size_in_bits;
9364 /* This is the tricky part. Use some fancy footwork to deduce where the
9365 lowest addressed bit of the containing object must be. */
9366 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9368 /* Round up to type_align by default. This works best for bitfields. */
9369 object_offset_in_bits += type_align_in_bits - 1;
9370 object_offset_in_bits /= type_align_in_bits;
9371 object_offset_in_bits *= type_align_in_bits;
9373 if (object_offset_in_bits > bitpos_int)
9375 /* Sigh, the decl must be packed. */
9376 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9378 /* Round up to decl_align instead. */
9379 object_offset_in_bits += decl_align_in_bits - 1;
9380 object_offset_in_bits /= decl_align_in_bits;
9381 object_offset_in_bits *= decl_align_in_bits;
9384 return object_offset_in_bits / BITS_PER_UNIT;
9387 /* The following routines define various Dwarf attributes and any data
9388 associated with them. */
9390 /* Add a location description attribute value to a DIE.
9392 This emits location attributes suitable for whole variables and
9393 whole parameters. Note that the location attributes for struct fields are
9394 generated by the routine `data_member_location_attribute' below. */
9396 static inline void
9397 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9398 dw_loc_descr_ref descr)
9400 if (descr != 0)
9401 add_AT_loc (die, attr_kind, descr);
9404 /* Attach the specialized form of location attribute used for data members of
9405 struct and union types. In the special case of a FIELD_DECL node which
9406 represents a bit-field, the "offset" part of this special location
9407 descriptor must indicate the distance in bytes from the lowest-addressed
9408 byte of the containing struct or union type to the lowest-addressed byte of
9409 the "containing object" for the bit-field. (See the `field_byte_offset'
9410 function above).
9412 For any given bit-field, the "containing object" is a hypothetical object
9413 (of some integral or enum type) within which the given bit-field lives. The
9414 type of this hypothetical "containing object" is always the same as the
9415 declared type of the individual bit-field itself (for GCC anyway... the
9416 DWARF spec doesn't actually mandate this). Note that it is the size (in
9417 bytes) of the hypothetical "containing object" which will be given in the
9418 DW_AT_byte_size attribute for this bit-field. (See the
9419 `byte_size_attribute' function below.) It is also used when calculating the
9420 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9421 function below.) */
9423 static void
9424 add_data_member_location_attribute (dw_die_ref die, tree decl)
9426 HOST_WIDE_INT offset;
9427 dw_loc_descr_ref loc_descr = 0;
9429 if (TREE_CODE (decl) == TREE_BINFO)
9431 /* We're working on the TAG_inheritance for a base class. */
9432 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9434 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9435 aren't at a fixed offset from all (sub)objects of the same
9436 type. We need to extract the appropriate offset from our
9437 vtable. The following dwarf expression means
9439 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9441 This is specific to the V3 ABI, of course. */
9443 dw_loc_descr_ref tmp;
9445 /* Make a copy of the object address. */
9446 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9447 add_loc_descr (&loc_descr, tmp);
9449 /* Extract the vtable address. */
9450 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9451 add_loc_descr (&loc_descr, tmp);
9453 /* Calculate the address of the offset. */
9454 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9455 gcc_assert (offset < 0);
9457 tmp = int_loc_descriptor (-offset);
9458 add_loc_descr (&loc_descr, tmp);
9459 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9460 add_loc_descr (&loc_descr, tmp);
9462 /* Extract the offset. */
9463 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9464 add_loc_descr (&loc_descr, tmp);
9466 /* Add it to the object address. */
9467 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9468 add_loc_descr (&loc_descr, tmp);
9470 else
9471 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9473 else
9474 offset = field_byte_offset (decl);
9476 if (! loc_descr)
9478 enum dwarf_location_atom op;
9480 /* The DWARF2 standard says that we should assume that the structure
9481 address is already on the stack, so we can specify a structure field
9482 address by using DW_OP_plus_uconst. */
9484 #ifdef MIPS_DEBUGGING_INFO
9485 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9486 operator correctly. It works only if we leave the offset on the
9487 stack. */
9488 op = DW_OP_constu;
9489 #else
9490 op = DW_OP_plus_uconst;
9491 #endif
9493 loc_descr = new_loc_descr (op, offset, 0);
9496 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9499 /* Writes integer values to dw_vec_const array. */
9501 static void
9502 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9504 while (size != 0)
9506 *dest++ = val & 0xff;
9507 val >>= 8;
9508 --size;
9512 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9514 static HOST_WIDE_INT
9515 extract_int (const unsigned char *src, unsigned int size)
9517 HOST_WIDE_INT val = 0;
9519 src += size;
9520 while (size != 0)
9522 val <<= 8;
9523 val |= *--src & 0xff;
9524 --size;
9526 return val;
9529 /* Writes floating point values to dw_vec_const array. */
9531 static void
9532 insert_float (rtx rtl, unsigned char *array)
9534 REAL_VALUE_TYPE rv;
9535 long val[4];
9536 int i;
9538 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9539 real_to_target (val, &rv, GET_MODE (rtl));
9541 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9542 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9544 insert_int (val[i], 4, array);
9545 array += 4;
9549 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9550 does not have a "location" either in memory or in a register. These
9551 things can arise in GNU C when a constant is passed as an actual parameter
9552 to an inlined function. They can also arise in C++ where declared
9553 constants do not necessarily get memory "homes". */
9555 static void
9556 add_const_value_attribute (dw_die_ref die, rtx rtl)
9558 switch (GET_CODE (rtl))
9560 case CONST_INT:
9562 HOST_WIDE_INT val = INTVAL (rtl);
9564 if (val < 0)
9565 add_AT_int (die, DW_AT_const_value, val);
9566 else
9567 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9569 break;
9571 case CONST_DOUBLE:
9572 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9573 floating-point constant. A CONST_DOUBLE is used whenever the
9574 constant requires more than one word in order to be adequately
9575 represented. We output CONST_DOUBLEs as blocks. */
9577 enum machine_mode mode = GET_MODE (rtl);
9579 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9581 unsigned int length = GET_MODE_SIZE (mode);
9582 unsigned char *array = ggc_alloc (length);
9584 insert_float (rtl, array);
9585 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9587 else
9589 /* ??? We really should be using HOST_WIDE_INT throughout. */
9590 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9592 add_AT_long_long (die, DW_AT_const_value,
9593 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9596 break;
9598 case CONST_VECTOR:
9600 enum machine_mode mode = GET_MODE (rtl);
9601 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9602 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9603 unsigned char *array = ggc_alloc (length * elt_size);
9604 unsigned int i;
9605 unsigned char *p;
9607 switch (GET_MODE_CLASS (mode))
9609 case MODE_VECTOR_INT:
9610 for (i = 0, p = array; i < length; i++, p += elt_size)
9612 rtx elt = CONST_VECTOR_ELT (rtl, i);
9613 HOST_WIDE_INT lo, hi;
9615 switch (GET_CODE (elt))
9617 case CONST_INT:
9618 lo = INTVAL (elt);
9619 hi = -(lo < 0);
9620 break;
9622 case CONST_DOUBLE:
9623 lo = CONST_DOUBLE_LOW (elt);
9624 hi = CONST_DOUBLE_HIGH (elt);
9625 break;
9627 default:
9628 gcc_unreachable ();
9631 if (elt_size <= sizeof (HOST_WIDE_INT))
9632 insert_int (lo, elt_size, p);
9633 else
9635 unsigned char *p0 = p;
9636 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9638 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9639 if (WORDS_BIG_ENDIAN)
9641 p0 = p1;
9642 p1 = p;
9644 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9645 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9648 break;
9650 case MODE_VECTOR_FLOAT:
9651 for (i = 0, p = array; i < length; i++, p += elt_size)
9653 rtx elt = CONST_VECTOR_ELT (rtl, i);
9654 insert_float (elt, p);
9656 break;
9658 default:
9659 gcc_unreachable ();
9662 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9664 break;
9666 case CONST_STRING:
9667 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9668 break;
9670 case SYMBOL_REF:
9671 case LABEL_REF:
9672 case CONST:
9673 add_AT_addr (die, DW_AT_const_value, rtl);
9674 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9675 break;
9677 case PLUS:
9678 /* In cases where an inlined instance of an inline function is passed
9679 the address of an `auto' variable (which is local to the caller) we
9680 can get a situation where the DECL_RTL of the artificial local
9681 variable (for the inlining) which acts as a stand-in for the
9682 corresponding formal parameter (of the inline function) will look
9683 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9684 exactly a compile-time constant expression, but it isn't the address
9685 of the (artificial) local variable either. Rather, it represents the
9686 *value* which the artificial local variable always has during its
9687 lifetime. We currently have no way to represent such quasi-constant
9688 values in Dwarf, so for now we just punt and generate nothing. */
9689 break;
9691 default:
9692 /* No other kinds of rtx should be possible here. */
9693 gcc_unreachable ();
9698 static rtx
9699 rtl_for_decl_location (tree decl)
9701 rtx rtl;
9703 /* Here we have to decide where we are going to say the parameter "lives"
9704 (as far as the debugger is concerned). We only have a couple of
9705 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9707 DECL_RTL normally indicates where the parameter lives during most of the
9708 activation of the function. If optimization is enabled however, this
9709 could be either NULL or else a pseudo-reg. Both of those cases indicate
9710 that the parameter doesn't really live anywhere (as far as the code
9711 generation parts of GCC are concerned) during most of the function's
9712 activation. That will happen (for example) if the parameter is never
9713 referenced within the function.
9715 We could just generate a location descriptor here for all non-NULL
9716 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9717 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9718 where DECL_RTL is NULL or is a pseudo-reg.
9720 Note however that we can only get away with using DECL_INCOMING_RTL as
9721 a backup substitute for DECL_RTL in certain limited cases. In cases
9722 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9723 we can be sure that the parameter was passed using the same type as it is
9724 declared to have within the function, and that its DECL_INCOMING_RTL
9725 points us to a place where a value of that type is passed.
9727 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9728 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9729 because in these cases DECL_INCOMING_RTL points us to a value of some
9730 type which is *different* from the type of the parameter itself. Thus,
9731 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9732 such cases, the debugger would end up (for example) trying to fetch a
9733 `float' from a place which actually contains the first part of a
9734 `double'. That would lead to really incorrect and confusing
9735 output at debug-time.
9737 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9738 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9739 are a couple of exceptions however. On little-endian machines we can
9740 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9741 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9742 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9743 when (on a little-endian machine) a non-prototyped function has a
9744 parameter declared to be of type `short' or `char'. In such cases,
9745 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9746 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9747 passed `int' value. If the debugger then uses that address to fetch
9748 a `short' or a `char' (on a little-endian machine) the result will be
9749 the correct data, so we allow for such exceptional cases below.
9751 Note that our goal here is to describe the place where the given formal
9752 parameter lives during most of the function's activation (i.e. between the
9753 end of the prologue and the start of the epilogue). We'll do that as best
9754 as we can. Note however that if the given formal parameter is modified
9755 sometime during the execution of the function, then a stack backtrace (at
9756 debug-time) will show the function as having been called with the *new*
9757 value rather than the value which was originally passed in. This happens
9758 rarely enough that it is not a major problem, but it *is* a problem, and
9759 I'd like to fix it.
9761 A future version of dwarf2out.c may generate two additional attributes for
9762 any given DW_TAG_formal_parameter DIE which will describe the "passed
9763 type" and the "passed location" for the given formal parameter in addition
9764 to the attributes we now generate to indicate the "declared type" and the
9765 "active location" for each parameter. This additional set of attributes
9766 could be used by debuggers for stack backtraces. Separately, note that
9767 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9768 This happens (for example) for inlined-instances of inline function formal
9769 parameters which are never referenced. This really shouldn't be
9770 happening. All PARM_DECL nodes should get valid non-NULL
9771 DECL_INCOMING_RTL values. FIXME. */
9773 /* Use DECL_RTL as the "location" unless we find something better. */
9774 rtl = DECL_RTL_IF_SET (decl);
9776 /* When generating abstract instances, ignore everything except
9777 constants, symbols living in memory, and symbols living in
9778 fixed registers. */
9779 if (! reload_completed)
9781 if (rtl
9782 && (CONSTANT_P (rtl)
9783 || (MEM_P (rtl)
9784 && CONSTANT_P (XEXP (rtl, 0)))
9785 || (REG_P (rtl)
9786 && TREE_CODE (decl) == VAR_DECL
9787 && TREE_STATIC (decl))))
9789 rtl = targetm.delegitimize_address (rtl);
9790 return rtl;
9792 rtl = NULL_RTX;
9794 else if (TREE_CODE (decl) == PARM_DECL)
9796 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9798 tree declared_type = TREE_TYPE (decl);
9799 tree passed_type = DECL_ARG_TYPE (decl);
9800 enum machine_mode dmode = TYPE_MODE (declared_type);
9801 enum machine_mode pmode = TYPE_MODE (passed_type);
9803 /* This decl represents a formal parameter which was optimized out.
9804 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9805 all cases where (rtl == NULL_RTX) just below. */
9806 if (dmode == pmode)
9807 rtl = DECL_INCOMING_RTL (decl);
9808 else if (SCALAR_INT_MODE_P (dmode)
9809 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9810 && DECL_INCOMING_RTL (decl))
9812 rtx inc = DECL_INCOMING_RTL (decl);
9813 if (REG_P (inc))
9814 rtl = inc;
9815 else if (MEM_P (inc))
9817 if (BYTES_BIG_ENDIAN)
9818 rtl = adjust_address_nv (inc, dmode,
9819 GET_MODE_SIZE (pmode)
9820 - GET_MODE_SIZE (dmode));
9821 else
9822 rtl = inc;
9827 /* If the parm was passed in registers, but lives on the stack, then
9828 make a big endian correction if the mode of the type of the
9829 parameter is not the same as the mode of the rtl. */
9830 /* ??? This is the same series of checks that are made in dbxout.c before
9831 we reach the big endian correction code there. It isn't clear if all
9832 of these checks are necessary here, but keeping them all is the safe
9833 thing to do. */
9834 else if (MEM_P (rtl)
9835 && XEXP (rtl, 0) != const0_rtx
9836 && ! CONSTANT_P (XEXP (rtl, 0))
9837 /* Not passed in memory. */
9838 && !MEM_P (DECL_INCOMING_RTL (decl))
9839 /* Not passed by invisible reference. */
9840 && (!REG_P (XEXP (rtl, 0))
9841 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9842 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9843 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9844 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9845 #endif
9847 /* Big endian correction check. */
9848 && BYTES_BIG_ENDIAN
9849 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9850 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9851 < UNITS_PER_WORD))
9853 int offset = (UNITS_PER_WORD
9854 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9856 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9857 plus_constant (XEXP (rtl, 0), offset));
9860 else if (TREE_CODE (decl) == VAR_DECL
9861 && rtl
9862 && MEM_P (rtl)
9863 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
9864 && BYTES_BIG_ENDIAN)
9866 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
9867 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
9869 /* If a variable is declared "register" yet is smaller than
9870 a register, then if we store the variable to memory, it
9871 looks like we're storing a register-sized value, when in
9872 fact we are not. We need to adjust the offset of the
9873 storage location to reflect the actual value's bytes,
9874 else gdb will not be able to display it. */
9875 if (rsize > dsize)
9876 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9877 plus_constant (XEXP (rtl, 0), rsize-dsize));
9880 if (rtl != NULL_RTX)
9882 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9883 #ifdef LEAF_REG_REMAP
9884 if (current_function_uses_only_leaf_regs)
9885 leaf_renumber_regs_insn (rtl);
9886 #endif
9889 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9890 and will have been substituted directly into all expressions that use it.
9891 C does not have such a concept, but C++ and other languages do. */
9892 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9894 /* If a variable is initialized with a string constant without embedded
9895 zeros, build CONST_STRING. */
9896 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9897 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9899 tree arrtype = TREE_TYPE (decl);
9900 tree enttype = TREE_TYPE (arrtype);
9901 tree domain = TYPE_DOMAIN (arrtype);
9902 tree init = DECL_INITIAL (decl);
9903 enum machine_mode mode = TYPE_MODE (enttype);
9905 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9906 && domain
9907 && integer_zerop (TYPE_MIN_VALUE (domain))
9908 && compare_tree_int (TYPE_MAX_VALUE (domain),
9909 TREE_STRING_LENGTH (init) - 1) == 0
9910 && ((size_t) TREE_STRING_LENGTH (init)
9911 == strlen (TREE_STRING_POINTER (init)) + 1))
9912 rtl = gen_rtx_CONST_STRING (VOIDmode,
9913 ggc_strdup (TREE_STRING_POINTER (init)));
9915 /* If the initializer is something that we know will expand into an
9916 immediate RTL constant, expand it now. Expanding anything else
9917 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9918 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9919 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9921 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9922 EXPAND_INITIALIZER);
9923 /* If expand_expr returns a MEM, it wasn't immediate. */
9924 gcc_assert (!rtl || !MEM_P (rtl));
9928 if (rtl)
9929 rtl = targetm.delegitimize_address (rtl);
9931 /* If we don't look past the constant pool, we risk emitting a
9932 reference to a constant pool entry that isn't referenced from
9933 code, and thus is not emitted. */
9934 if (rtl)
9935 rtl = avoid_constant_pool_reference (rtl);
9937 return rtl;
9940 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9941 data attribute for a variable or a parameter. We generate the
9942 DW_AT_const_value attribute only in those cases where the given variable
9943 or parameter does not have a true "location" either in memory or in a
9944 register. This can happen (for example) when a constant is passed as an
9945 actual argument in a call to an inline function. (It's possible that
9946 these things can crop up in other ways also.) Note that one type of
9947 constant value which can be passed into an inlined function is a constant
9948 pointer. This can happen for example if an actual argument in an inlined
9949 function call evaluates to a compile-time constant address. */
9951 static void
9952 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
9953 enum dwarf_attribute attr)
9955 rtx rtl;
9956 dw_loc_descr_ref descr;
9957 var_loc_list *loc_list;
9959 if (TREE_CODE (decl) == ERROR_MARK)
9960 return;
9962 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
9963 || TREE_CODE (decl) == RESULT_DECL);
9965 /* See if we possibly have multiple locations for this variable. */
9966 loc_list = lookup_decl_loc (decl);
9968 /* If it truly has multiple locations, the first and last node will
9969 differ. */
9970 if (loc_list && loc_list->first != loc_list->last)
9972 const char *secname;
9973 const char *endname;
9974 dw_loc_list_ref list;
9975 rtx varloc;
9976 struct var_loc_node *node;
9978 /* We need to figure out what section we should use as the base
9979 for the address ranges where a given location is valid.
9980 1. If this particular DECL has a section associated with it,
9981 use that.
9982 2. If this function has a section associated with it, use
9983 that.
9984 3. Otherwise, use the text section.
9985 XXX: If you split a variable across multiple sections, this
9986 won't notice. */
9988 if (DECL_SECTION_NAME (decl))
9990 tree sectree = DECL_SECTION_NAME (decl);
9991 secname = TREE_STRING_POINTER (sectree);
9993 else if (current_function_decl
9994 && DECL_SECTION_NAME (current_function_decl))
9996 tree sectree = DECL_SECTION_NAME (current_function_decl);
9997 secname = TREE_STRING_POINTER (sectree);
9999 else
10000 secname = text_section_label;
10002 /* Now that we know what section we are using for a base,
10003 actually construct the list of locations.
10004 The first location information is what is passed to the
10005 function that creates the location list, and the remaining
10006 locations just get added on to that list.
10007 Note that we only know the start address for a location
10008 (IE location changes), so to build the range, we use
10009 the range [current location start, next location start].
10010 This means we have to special case the last node, and generate
10011 a range of [last location start, end of function label]. */
10013 node = loc_list->first;
10014 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10015 list = new_loc_list (loc_descriptor (varloc, attr != DW_AT_frame_base),
10016 node->label, node->next->label, secname, 1);
10017 node = node->next;
10019 for (; node->next; node = node->next)
10020 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10022 /* The variable has a location between NODE->LABEL and
10023 NODE->NEXT->LABEL. */
10024 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10025 add_loc_descr_to_loc_list (&list,
10026 loc_descriptor (varloc,
10027 attr != DW_AT_frame_base),
10028 node->label, node->next->label, secname);
10031 /* If the variable has a location at the last label
10032 it keeps its location until the end of function. */
10033 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10035 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10037 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10038 if (!current_function_decl)
10039 endname = text_end_label;
10040 else
10042 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10043 current_function_funcdef_no);
10044 endname = ggc_strdup (label_id);
10046 add_loc_descr_to_loc_list (&list,
10047 loc_descriptor (varloc,
10048 attr != DW_AT_frame_base),
10049 node->label, endname, secname);
10052 /* Finally, add the location list to the DIE, and we are done. */
10053 add_AT_loc_list (die, attr, list);
10054 return;
10057 rtl = rtl_for_decl_location (decl);
10058 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10060 add_const_value_attribute (die, rtl);
10061 return;
10064 descr = loc_descriptor_from_tree (decl);
10065 if (descr)
10066 add_AT_location_description (die, attr, descr);
10069 /* If we don't have a copy of this variable in memory for some reason (such
10070 as a C++ member constant that doesn't have an out-of-line definition),
10071 we should tell the debugger about the constant value. */
10073 static void
10074 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10076 tree init = DECL_INITIAL (decl);
10077 tree type = TREE_TYPE (decl);
10079 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
10080 && initializer_constant_valid_p (init, type) == null_pointer_node)
10081 /* OK */;
10082 else
10083 return;
10085 switch (TREE_CODE (type))
10087 case INTEGER_TYPE:
10088 if (host_integerp (init, 0))
10089 add_AT_unsigned (var_die, DW_AT_const_value,
10090 tree_low_cst (init, 0));
10091 else
10092 add_AT_long_long (var_die, DW_AT_const_value,
10093 TREE_INT_CST_HIGH (init),
10094 TREE_INT_CST_LOW (init));
10095 break;
10097 default:;
10101 /* Generate a DW_AT_name attribute given some string value to be included as
10102 the value of the attribute. */
10104 static void
10105 add_name_attribute (dw_die_ref die, const char *name_string)
10107 if (name_string != NULL && *name_string != 0)
10109 if (demangle_name_func)
10110 name_string = (*demangle_name_func) (name_string);
10112 add_AT_string (die, DW_AT_name, name_string);
10116 /* Generate a DW_AT_comp_dir attribute for DIE. */
10118 static void
10119 add_comp_dir_attribute (dw_die_ref die)
10121 const char *wd = get_src_pwd ();
10122 if (wd != NULL)
10123 add_AT_string (die, DW_AT_comp_dir, wd);
10126 /* Given a tree node describing an array bound (either lower or upper) output
10127 a representation for that bound. */
10129 static void
10130 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10132 switch (TREE_CODE (bound))
10134 case ERROR_MARK:
10135 return;
10137 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10138 case INTEGER_CST:
10139 if (! host_integerp (bound, 0)
10140 || (bound_attr == DW_AT_lower_bound
10141 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10142 || (is_fortran () && integer_onep (bound)))))
10143 /* Use the default. */
10145 else
10146 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10147 break;
10149 case CONVERT_EXPR:
10150 case NOP_EXPR:
10151 case NON_LVALUE_EXPR:
10152 case VIEW_CONVERT_EXPR:
10153 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10154 break;
10156 case SAVE_EXPR:
10157 break;
10159 case VAR_DECL:
10160 case PARM_DECL:
10161 case RESULT_DECL:
10163 dw_die_ref decl_die = lookup_decl_die (bound);
10165 /* ??? Can this happen, or should the variable have been bound
10166 first? Probably it can, since I imagine that we try to create
10167 the types of parameters in the order in which they exist in
10168 the list, and won't have created a forward reference to a
10169 later parameter. */
10170 if (decl_die != NULL)
10171 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10172 break;
10175 default:
10177 /* Otherwise try to create a stack operation procedure to
10178 evaluate the value of the array bound. */
10180 dw_die_ref ctx, decl_die;
10181 dw_loc_descr_ref loc;
10183 loc = loc_descriptor_from_tree (bound);
10184 if (loc == NULL)
10185 break;
10187 if (current_function_decl == 0)
10188 ctx = comp_unit_die;
10189 else
10190 ctx = lookup_decl_die (current_function_decl);
10192 decl_die = new_die (DW_TAG_variable, ctx, bound);
10193 add_AT_flag (decl_die, DW_AT_artificial, 1);
10194 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10195 add_AT_loc (decl_die, DW_AT_location, loc);
10197 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10198 break;
10203 /* Note that the block of subscript information for an array type also
10204 includes information about the element type of type given array type. */
10206 static void
10207 add_subscript_info (dw_die_ref type_die, tree type)
10209 #ifndef MIPS_DEBUGGING_INFO
10210 unsigned dimension_number;
10211 #endif
10212 tree lower, upper;
10213 dw_die_ref subrange_die;
10215 /* The GNU compilers represent multidimensional array types as sequences of
10216 one dimensional array types whose element types are themselves array
10217 types. Here we squish that down, so that each multidimensional array
10218 type gets only one array_type DIE in the Dwarf debugging info. The draft
10219 Dwarf specification say that we are allowed to do this kind of
10220 compression in C (because there is no difference between an array or
10221 arrays and a multidimensional array in C) but for other source languages
10222 (e.g. Ada) we probably shouldn't do this. */
10224 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10225 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10226 We work around this by disabling this feature. See also
10227 gen_array_type_die. */
10228 #ifndef MIPS_DEBUGGING_INFO
10229 for (dimension_number = 0;
10230 TREE_CODE (type) == ARRAY_TYPE;
10231 type = TREE_TYPE (type), dimension_number++)
10232 #endif
10234 tree domain = TYPE_DOMAIN (type);
10236 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10237 and (in GNU C only) variable bounds. Handle all three forms
10238 here. */
10239 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10240 if (domain)
10242 /* We have an array type with specified bounds. */
10243 lower = TYPE_MIN_VALUE (domain);
10244 upper = TYPE_MAX_VALUE (domain);
10246 /* Define the index type. */
10247 if (TREE_TYPE (domain))
10249 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10250 TREE_TYPE field. We can't emit debug info for this
10251 because it is an unnamed integral type. */
10252 if (TREE_CODE (domain) == INTEGER_TYPE
10253 && TYPE_NAME (domain) == NULL_TREE
10254 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10255 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10257 else
10258 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10259 type_die);
10262 /* ??? If upper is NULL, the array has unspecified length,
10263 but it does have a lower bound. This happens with Fortran
10264 dimension arr(N:*)
10265 Since the debugger is definitely going to need to know N
10266 to produce useful results, go ahead and output the lower
10267 bound solo, and hope the debugger can cope. */
10269 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10270 if (upper)
10271 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10274 /* Otherwise we have an array type with an unspecified length. The
10275 DWARF-2 spec does not say how to handle this; let's just leave out the
10276 bounds. */
10280 static void
10281 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10283 unsigned size;
10285 switch (TREE_CODE (tree_node))
10287 case ERROR_MARK:
10288 size = 0;
10289 break;
10290 case ENUMERAL_TYPE:
10291 case RECORD_TYPE:
10292 case UNION_TYPE:
10293 case QUAL_UNION_TYPE:
10294 size = int_size_in_bytes (tree_node);
10295 break;
10296 case FIELD_DECL:
10297 /* For a data member of a struct or union, the DW_AT_byte_size is
10298 generally given as the number of bytes normally allocated for an
10299 object of the *declared* type of the member itself. This is true
10300 even for bit-fields. */
10301 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10302 break;
10303 default:
10304 gcc_unreachable ();
10307 /* Note that `size' might be -1 when we get to this point. If it is, that
10308 indicates that the byte size of the entity in question is variable. We
10309 have no good way of expressing this fact in Dwarf at the present time,
10310 so just let the -1 pass on through. */
10311 add_AT_unsigned (die, DW_AT_byte_size, size);
10314 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10315 which specifies the distance in bits from the highest order bit of the
10316 "containing object" for the bit-field to the highest order bit of the
10317 bit-field itself.
10319 For any given bit-field, the "containing object" is a hypothetical object
10320 (of some integral or enum type) within which the given bit-field lives. The
10321 type of this hypothetical "containing object" is always the same as the
10322 declared type of the individual bit-field itself. The determination of the
10323 exact location of the "containing object" for a bit-field is rather
10324 complicated. It's handled by the `field_byte_offset' function (above).
10326 Note that it is the size (in bytes) of the hypothetical "containing object"
10327 which will be given in the DW_AT_byte_size attribute for this bit-field.
10328 (See `byte_size_attribute' above). */
10330 static inline void
10331 add_bit_offset_attribute (dw_die_ref die, tree decl)
10333 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10334 tree type = DECL_BIT_FIELD_TYPE (decl);
10335 HOST_WIDE_INT bitpos_int;
10336 HOST_WIDE_INT highest_order_object_bit_offset;
10337 HOST_WIDE_INT highest_order_field_bit_offset;
10338 HOST_WIDE_INT unsigned bit_offset;
10340 /* Must be a field and a bit field. */
10341 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10343 /* We can't yet handle bit-fields whose offsets are variable, so if we
10344 encounter such things, just return without generating any attribute
10345 whatsoever. Likewise for variable or too large size. */
10346 if (! host_integerp (bit_position (decl), 0)
10347 || ! host_integerp (DECL_SIZE (decl), 1))
10348 return;
10350 bitpos_int = int_bit_position (decl);
10352 /* Note that the bit offset is always the distance (in bits) from the
10353 highest-order bit of the "containing object" to the highest-order bit of
10354 the bit-field itself. Since the "high-order end" of any object or field
10355 is different on big-endian and little-endian machines, the computation
10356 below must take account of these differences. */
10357 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10358 highest_order_field_bit_offset = bitpos_int;
10360 if (! BYTES_BIG_ENDIAN)
10362 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10363 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10366 bit_offset
10367 = (! BYTES_BIG_ENDIAN
10368 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10369 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10371 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10374 /* For a FIELD_DECL node which represents a bit field, output an attribute
10375 which specifies the length in bits of the given field. */
10377 static inline void
10378 add_bit_size_attribute (dw_die_ref die, tree decl)
10380 /* Must be a field and a bit field. */
10381 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10382 && DECL_BIT_FIELD_TYPE (decl));
10384 if (host_integerp (DECL_SIZE (decl), 1))
10385 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10388 /* If the compiled language is ANSI C, then add a 'prototyped'
10389 attribute, if arg types are given for the parameters of a function. */
10391 static inline void
10392 add_prototyped_attribute (dw_die_ref die, tree func_type)
10394 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10395 && TYPE_ARG_TYPES (func_type) != NULL)
10396 add_AT_flag (die, DW_AT_prototyped, 1);
10399 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10400 by looking in either the type declaration or object declaration
10401 equate table. */
10403 static inline void
10404 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10406 dw_die_ref origin_die = NULL;
10408 if (TREE_CODE (origin) != FUNCTION_DECL)
10410 /* We may have gotten separated from the block for the inlined
10411 function, if we're in an exception handler or some such; make
10412 sure that the abstract function has been written out.
10414 Doing this for nested functions is wrong, however; functions are
10415 distinct units, and our context might not even be inline. */
10416 tree fn = origin;
10418 if (TYPE_P (fn))
10419 fn = TYPE_STUB_DECL (fn);
10421 fn = decl_function_context (fn);
10422 if (fn)
10423 dwarf2out_abstract_function (fn);
10426 if (DECL_P (origin))
10427 origin_die = lookup_decl_die (origin);
10428 else if (TYPE_P (origin))
10429 origin_die = lookup_type_die (origin);
10431 gcc_assert (origin_die);
10433 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10436 /* We do not currently support the pure_virtual attribute. */
10438 static inline void
10439 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10441 if (DECL_VINDEX (func_decl))
10443 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10445 if (host_integerp (DECL_VINDEX (func_decl), 0))
10446 add_AT_loc (die, DW_AT_vtable_elem_location,
10447 new_loc_descr (DW_OP_constu,
10448 tree_low_cst (DECL_VINDEX (func_decl), 0),
10449 0));
10451 /* GNU extension: Record what type this method came from originally. */
10452 if (debug_info_level > DINFO_LEVEL_TERSE)
10453 add_AT_die_ref (die, DW_AT_containing_type,
10454 lookup_type_die (DECL_CONTEXT (func_decl)));
10458 /* Add source coordinate attributes for the given decl. */
10460 static void
10461 add_src_coords_attributes (dw_die_ref die, tree decl)
10463 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10464 unsigned file_index = lookup_filename (s.file);
10466 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10467 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10470 /* Add a DW_AT_name attribute and source coordinate attribute for the
10471 given decl, but only if it actually has a name. */
10473 static void
10474 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10476 tree decl_name;
10478 decl_name = DECL_NAME (decl);
10479 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10481 add_name_attribute (die, dwarf2_name (decl, 0));
10482 if (! DECL_ARTIFICIAL (decl))
10483 add_src_coords_attributes (die, decl);
10485 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10486 && TREE_PUBLIC (decl)
10487 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10488 && !DECL_ABSTRACT (decl))
10489 add_AT_string (die, DW_AT_MIPS_linkage_name,
10490 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10493 #ifdef VMS_DEBUGGING_INFO
10494 /* Get the function's name, as described by its RTL. This may be different
10495 from the DECL_NAME name used in the source file. */
10496 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10498 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10499 XEXP (DECL_RTL (decl), 0));
10500 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10502 #endif
10505 /* Push a new declaration scope. */
10507 static void
10508 push_decl_scope (tree scope)
10510 VARRAY_PUSH_TREE (decl_scope_table, scope);
10513 /* Pop a declaration scope. */
10515 static inline void
10516 pop_decl_scope (void)
10518 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10520 VARRAY_POP (decl_scope_table);
10523 /* Return the DIE for the scope that immediately contains this type.
10524 Non-named types get global scope. Named types nested in other
10525 types get their containing scope if it's open, or global scope
10526 otherwise. All other types (i.e. function-local named types) get
10527 the current active scope. */
10529 static dw_die_ref
10530 scope_die_for (tree t, dw_die_ref context_die)
10532 dw_die_ref scope_die = NULL;
10533 tree containing_scope;
10534 int i;
10536 /* Non-types always go in the current scope. */
10537 gcc_assert (TYPE_P (t));
10539 containing_scope = TYPE_CONTEXT (t);
10541 /* Use the containing namespace if it was passed in (for a declaration). */
10542 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10544 if (context_die == lookup_decl_die (containing_scope))
10545 /* OK */;
10546 else
10547 containing_scope = NULL_TREE;
10550 /* Ignore function type "scopes" from the C frontend. They mean that
10551 a tagged type is local to a parmlist of a function declarator, but
10552 that isn't useful to DWARF. */
10553 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10554 containing_scope = NULL_TREE;
10556 if (containing_scope == NULL_TREE)
10557 scope_die = comp_unit_die;
10558 else if (TYPE_P (containing_scope))
10560 /* For types, we can just look up the appropriate DIE. But
10561 first we check to see if we're in the middle of emitting it
10562 so we know where the new DIE should go. */
10563 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10564 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10565 break;
10567 if (i < 0)
10569 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10570 || TREE_ASM_WRITTEN (containing_scope));
10572 /* If none of the current dies are suitable, we get file scope. */
10573 scope_die = comp_unit_die;
10575 else
10576 scope_die = lookup_type_die (containing_scope);
10578 else
10579 scope_die = context_die;
10581 return scope_die;
10584 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10586 static inline int
10587 local_scope_p (dw_die_ref context_die)
10589 for (; context_die; context_die = context_die->die_parent)
10590 if (context_die->die_tag == DW_TAG_inlined_subroutine
10591 || context_die->die_tag == DW_TAG_subprogram)
10592 return 1;
10594 return 0;
10597 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10598 whether or not to treat a DIE in this context as a declaration. */
10600 static inline int
10601 class_or_namespace_scope_p (dw_die_ref context_die)
10603 return (context_die
10604 && (context_die->die_tag == DW_TAG_structure_type
10605 || context_die->die_tag == DW_TAG_union_type
10606 || context_die->die_tag == DW_TAG_namespace));
10609 /* Many forms of DIEs require a "type description" attribute. This
10610 routine locates the proper "type descriptor" die for the type given
10611 by 'type', and adds a DW_AT_type attribute below the given die. */
10613 static void
10614 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10615 int decl_volatile, dw_die_ref context_die)
10617 enum tree_code code = TREE_CODE (type);
10618 dw_die_ref type_die = NULL;
10620 /* ??? If this type is an unnamed subrange type of an integral or
10621 floating-point type, use the inner type. This is because we have no
10622 support for unnamed types in base_type_die. This can happen if this is
10623 an Ada subrange type. Correct solution is emit a subrange type die. */
10624 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10625 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10626 type = TREE_TYPE (type), code = TREE_CODE (type);
10628 if (code == ERROR_MARK
10629 /* Handle a special case. For functions whose return type is void, we
10630 generate *no* type attribute. (Note that no object may have type
10631 `void', so this only applies to function return types). */
10632 || code == VOID_TYPE)
10633 return;
10635 type_die = modified_type_die (type,
10636 decl_const || TYPE_READONLY (type),
10637 decl_volatile || TYPE_VOLATILE (type),
10638 context_die);
10640 if (type_die != NULL)
10641 add_AT_die_ref (object_die, DW_AT_type, type_die);
10644 /* Given an object die, add the calling convention attribute for the
10645 function call type. */
10646 static void
10647 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10649 enum dwarf_calling_convention value = DW_CC_normal;
10651 value = targetm.dwarf_calling_convention (type);
10653 /* Only add the attribute if the backend requests it, and
10654 is not DW_CC_normal. */
10655 if (value && (value != DW_CC_normal))
10656 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10659 /* Given a tree pointer to a struct, class, union, or enum type node, return
10660 a pointer to the (string) tag name for the given type, or zero if the type
10661 was declared without a tag. */
10663 static const char *
10664 type_tag (tree type)
10666 const char *name = 0;
10668 if (TYPE_NAME (type) != 0)
10670 tree t = 0;
10672 /* Find the IDENTIFIER_NODE for the type name. */
10673 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10674 t = TYPE_NAME (type);
10676 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10677 a TYPE_DECL node, regardless of whether or not a `typedef' was
10678 involved. */
10679 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10680 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10681 t = DECL_NAME (TYPE_NAME (type));
10683 /* Now get the name as a string, or invent one. */
10684 if (t != 0)
10685 name = IDENTIFIER_POINTER (t);
10688 return (name == 0 || *name == '\0') ? 0 : name;
10691 /* Return the type associated with a data member, make a special check
10692 for bit field types. */
10694 static inline tree
10695 member_declared_type (tree member)
10697 return (DECL_BIT_FIELD_TYPE (member)
10698 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10701 /* Get the decl's label, as described by its RTL. This may be different
10702 from the DECL_NAME name used in the source file. */
10704 #if 0
10705 static const char *
10706 decl_start_label (tree decl)
10708 rtx x;
10709 const char *fnname;
10711 x = DECL_RTL (decl);
10712 gcc_assert (MEM_P (x));
10714 x = XEXP (x, 0);
10715 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10717 fnname = XSTR (x, 0);
10718 return fnname;
10720 #endif
10722 /* These routines generate the internal representation of the DIE's for
10723 the compilation unit. Debugging information is collected by walking
10724 the declaration trees passed in from dwarf2out_decl(). */
10726 static void
10727 gen_array_type_die (tree type, dw_die_ref context_die)
10729 dw_die_ref scope_die = scope_die_for (type, context_die);
10730 dw_die_ref array_die;
10731 tree element_type;
10733 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10734 the inner array type comes before the outer array type. Thus we must
10735 call gen_type_die before we call new_die. See below also. */
10736 #ifdef MIPS_DEBUGGING_INFO
10737 gen_type_die (TREE_TYPE (type), context_die);
10738 #endif
10740 array_die = new_die (DW_TAG_array_type, scope_die, type);
10741 add_name_attribute (array_die, type_tag (type));
10742 equate_type_number_to_die (type, array_die);
10744 if (TREE_CODE (type) == VECTOR_TYPE)
10746 /* The frontend feeds us a representation for the vector as a struct
10747 containing an array. Pull out the array type. */
10748 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10749 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10752 #if 0
10753 /* We default the array ordering. SDB will probably do
10754 the right things even if DW_AT_ordering is not present. It's not even
10755 an issue until we start to get into multidimensional arrays anyway. If
10756 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10757 then we'll have to put the DW_AT_ordering attribute back in. (But if
10758 and when we find out that we need to put these in, we will only do so
10759 for multidimensional arrays. */
10760 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10761 #endif
10763 #ifdef MIPS_DEBUGGING_INFO
10764 /* The SGI compilers handle arrays of unknown bound by setting
10765 AT_declaration and not emitting any subrange DIEs. */
10766 if (! TYPE_DOMAIN (type))
10767 add_AT_flag (array_die, DW_AT_declaration, 1);
10768 else
10769 #endif
10770 add_subscript_info (array_die, type);
10772 /* Add representation of the type of the elements of this array type. */
10773 element_type = TREE_TYPE (type);
10775 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10776 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10777 We work around this by disabling this feature. See also
10778 add_subscript_info. */
10779 #ifndef MIPS_DEBUGGING_INFO
10780 while (TREE_CODE (element_type) == ARRAY_TYPE)
10781 element_type = TREE_TYPE (element_type);
10783 gen_type_die (element_type, context_die);
10784 #endif
10786 add_type_attribute (array_die, element_type, 0, 0, context_die);
10789 static void
10790 gen_set_type_die (tree type, dw_die_ref context_die)
10792 dw_die_ref type_die
10793 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10795 equate_type_number_to_die (type, type_die);
10796 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10799 #if 0
10800 static void
10801 gen_entry_point_die (tree decl, dw_die_ref context_die)
10803 tree origin = decl_ultimate_origin (decl);
10804 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10806 if (origin != NULL)
10807 add_abstract_origin_attribute (decl_die, origin);
10808 else
10810 add_name_and_src_coords_attributes (decl_die, decl);
10811 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10812 0, 0, context_die);
10815 if (DECL_ABSTRACT (decl))
10816 equate_decl_number_to_die (decl, decl_die);
10817 else
10818 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10820 #endif
10822 /* Walk through the list of incomplete types again, trying once more to
10823 emit full debugging info for them. */
10825 static void
10826 retry_incomplete_types (void)
10828 int i;
10830 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10831 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10834 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10836 static void
10837 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10839 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10841 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10842 be incomplete and such types are not marked. */
10843 add_abstract_origin_attribute (type_die, type);
10846 /* Generate a DIE to represent an inlined instance of a structure type. */
10848 static void
10849 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10851 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10853 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10854 be incomplete and such types are not marked. */
10855 add_abstract_origin_attribute (type_die, type);
10858 /* Generate a DIE to represent an inlined instance of a union type. */
10860 static void
10861 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10863 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10865 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10866 be incomplete and such types are not marked. */
10867 add_abstract_origin_attribute (type_die, type);
10870 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10871 include all of the information about the enumeration values also. Each
10872 enumerated type name/value is listed as a child of the enumerated type
10873 DIE. */
10875 static dw_die_ref
10876 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10878 dw_die_ref type_die = lookup_type_die (type);
10880 if (type_die == NULL)
10882 type_die = new_die (DW_TAG_enumeration_type,
10883 scope_die_for (type, context_die), type);
10884 equate_type_number_to_die (type, type_die);
10885 add_name_attribute (type_die, type_tag (type));
10887 else if (! TYPE_SIZE (type))
10888 return type_die;
10889 else
10890 remove_AT (type_die, DW_AT_declaration);
10892 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10893 given enum type is incomplete, do not generate the DW_AT_byte_size
10894 attribute or the DW_AT_element_list attribute. */
10895 if (TYPE_SIZE (type))
10897 tree link;
10899 TREE_ASM_WRITTEN (type) = 1;
10900 add_byte_size_attribute (type_die, type);
10901 if (TYPE_STUB_DECL (type) != NULL_TREE)
10902 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10904 /* If the first reference to this type was as the return type of an
10905 inline function, then it may not have a parent. Fix this now. */
10906 if (type_die->die_parent == NULL)
10907 add_child_die (scope_die_for (type, context_die), type_die);
10909 for (link = TYPE_VALUES (type);
10910 link != NULL; link = TREE_CHAIN (link))
10912 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10913 tree value = TREE_VALUE (link);
10915 add_name_attribute (enum_die,
10916 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10918 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
10919 /* DWARF2 does not provide a way of indicating whether or
10920 not enumeration constants are signed or unsigned. GDB
10921 always assumes the values are signed, so we output all
10922 values as if they were signed. That means that
10923 enumeration constants with very large unsigned values
10924 will appear to have negative values in the debugger. */
10925 add_AT_int (enum_die, DW_AT_const_value,
10926 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
10929 else
10930 add_AT_flag (type_die, DW_AT_declaration, 1);
10932 return type_die;
10935 /* Generate a DIE to represent either a real live formal parameter decl or to
10936 represent just the type of some formal parameter position in some function
10937 type.
10939 Note that this routine is a bit unusual because its argument may be a
10940 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10941 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10942 node. If it's the former then this function is being called to output a
10943 DIE to represent a formal parameter object (or some inlining thereof). If
10944 it's the latter, then this function is only being called to output a
10945 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10946 argument type of some subprogram type. */
10948 static dw_die_ref
10949 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10951 dw_die_ref parm_die
10952 = new_die (DW_TAG_formal_parameter, context_die, node);
10953 tree origin;
10955 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10957 case tcc_declaration:
10958 origin = decl_ultimate_origin (node);
10959 if (origin != NULL)
10960 add_abstract_origin_attribute (parm_die, origin);
10961 else
10963 add_name_and_src_coords_attributes (parm_die, node);
10964 add_type_attribute (parm_die, TREE_TYPE (node),
10965 TREE_READONLY (node),
10966 TREE_THIS_VOLATILE (node),
10967 context_die);
10968 if (DECL_ARTIFICIAL (node))
10969 add_AT_flag (parm_die, DW_AT_artificial, 1);
10972 equate_decl_number_to_die (node, parm_die);
10973 if (! DECL_ABSTRACT (node))
10974 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
10976 break;
10978 case tcc_type:
10979 /* We were called with some kind of a ..._TYPE node. */
10980 add_type_attribute (parm_die, node, 0, 0, context_die);
10981 break;
10983 default:
10984 gcc_unreachable ();
10987 return parm_die;
10990 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10991 at the end of an (ANSI prototyped) formal parameters list. */
10993 static void
10994 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10996 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10999 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11000 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11001 parameters as specified in some function type specification (except for
11002 those which appear as part of a function *definition*). */
11004 static void
11005 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11007 tree link;
11008 tree formal_type = NULL;
11009 tree first_parm_type;
11010 tree arg;
11012 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11014 arg = DECL_ARGUMENTS (function_or_method_type);
11015 function_or_method_type = TREE_TYPE (function_or_method_type);
11017 else
11018 arg = NULL_TREE;
11020 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11022 /* Make our first pass over the list of formal parameter types and output a
11023 DW_TAG_formal_parameter DIE for each one. */
11024 for (link = first_parm_type; link; )
11026 dw_die_ref parm_die;
11028 formal_type = TREE_VALUE (link);
11029 if (formal_type == void_type_node)
11030 break;
11032 /* Output a (nameless) DIE to represent the formal parameter itself. */
11033 parm_die = gen_formal_parameter_die (formal_type, context_die);
11034 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11035 && link == first_parm_type)
11036 || (arg && DECL_ARTIFICIAL (arg)))
11037 add_AT_flag (parm_die, DW_AT_artificial, 1);
11039 link = TREE_CHAIN (link);
11040 if (arg)
11041 arg = TREE_CHAIN (arg);
11044 /* If this function type has an ellipsis, add a
11045 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11046 if (formal_type != void_type_node)
11047 gen_unspecified_parameters_die (function_or_method_type, context_die);
11049 /* Make our second (and final) pass over the list of formal parameter types
11050 and output DIEs to represent those types (as necessary). */
11051 for (link = TYPE_ARG_TYPES (function_or_method_type);
11052 link && TREE_VALUE (link);
11053 link = TREE_CHAIN (link))
11054 gen_type_die (TREE_VALUE (link), context_die);
11057 /* We want to generate the DIE for TYPE so that we can generate the
11058 die for MEMBER, which has been defined; we will need to refer back
11059 to the member declaration nested within TYPE. If we're trying to
11060 generate minimal debug info for TYPE, processing TYPE won't do the
11061 trick; we need to attach the member declaration by hand. */
11063 static void
11064 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11066 gen_type_die (type, context_die);
11068 /* If we're trying to avoid duplicate debug info, we may not have
11069 emitted the member decl for this function. Emit it now. */
11070 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11071 && ! lookup_decl_die (member))
11073 gcc_assert (!decl_ultimate_origin (member));
11075 push_decl_scope (type);
11076 if (TREE_CODE (member) == FUNCTION_DECL)
11077 gen_subprogram_die (member, lookup_type_die (type));
11078 else
11079 gen_variable_die (member, lookup_type_die (type));
11081 pop_decl_scope ();
11085 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11086 may later generate inlined and/or out-of-line instances of. */
11088 static void
11089 dwarf2out_abstract_function (tree decl)
11091 dw_die_ref old_die;
11092 tree save_fn;
11093 tree context;
11094 int was_abstract = DECL_ABSTRACT (decl);
11096 /* Make sure we have the actual abstract inline, not a clone. */
11097 decl = DECL_ORIGIN (decl);
11099 old_die = lookup_decl_die (decl);
11100 if (old_die && get_AT (old_die, DW_AT_inline))
11101 /* We've already generated the abstract instance. */
11102 return;
11104 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11105 we don't get confused by DECL_ABSTRACT. */
11106 if (debug_info_level > DINFO_LEVEL_TERSE)
11108 context = decl_class_context (decl);
11109 if (context)
11110 gen_type_die_for_member
11111 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11114 /* Pretend we've just finished compiling this function. */
11115 save_fn = current_function_decl;
11116 current_function_decl = decl;
11118 set_decl_abstract_flags (decl, 1);
11119 dwarf2out_decl (decl);
11120 if (! was_abstract)
11121 set_decl_abstract_flags (decl, 0);
11123 current_function_decl = save_fn;
11126 /* Generate a DIE to represent a declared function (either file-scope or
11127 block-local). */
11129 static void
11130 gen_subprogram_die (tree decl, dw_die_ref context_die)
11132 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11133 tree origin = decl_ultimate_origin (decl);
11134 dw_die_ref subr_die;
11135 rtx fp_reg;
11136 tree fn_arg_types;
11137 tree outer_scope;
11138 dw_die_ref old_die = lookup_decl_die (decl);
11139 int declaration = (current_function_decl != decl
11140 || class_or_namespace_scope_p (context_die));
11142 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11143 started to generate the abstract instance of an inline, decided to output
11144 its containing class, and proceeded to emit the declaration of the inline
11145 from the member list for the class. If so, DECLARATION takes priority;
11146 we'll get back to the abstract instance when done with the class. */
11148 /* The class-scope declaration DIE must be the primary DIE. */
11149 if (origin && declaration && class_or_namespace_scope_p (context_die))
11151 origin = NULL;
11152 gcc_assert (!old_die);
11155 if (origin != NULL)
11157 gcc_assert (!declaration || local_scope_p (context_die));
11159 /* Fixup die_parent for the abstract instance of a nested
11160 inline function. */
11161 if (old_die && old_die->die_parent == NULL)
11162 add_child_die (context_die, old_die);
11164 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11165 add_abstract_origin_attribute (subr_die, origin);
11167 else if (old_die)
11169 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11170 unsigned file_index = lookup_filename (s.file);
11172 if (!get_AT_flag (old_die, DW_AT_declaration)
11173 /* We can have a normal definition following an inline one in the
11174 case of redefinition of GNU C extern inlines.
11175 It seems reasonable to use AT_specification in this case. */
11176 && !get_AT (old_die, DW_AT_inline))
11178 /* ??? This can happen if there is a bug in the program, for
11179 instance, if it has duplicate function definitions. Ideally,
11180 we should detect this case and ignore it. For now, if we have
11181 already reported an error, any error at all, then assume that
11182 we got here because of an input error, not a dwarf2 bug. */
11183 gcc_assert (errorcount);
11184 return;
11187 /* If the definition comes from the same place as the declaration,
11188 maybe use the old DIE. We always want the DIE for this function
11189 that has the *_pc attributes to be under comp_unit_die so the
11190 debugger can find it. We also need to do this for abstract
11191 instances of inlines, since the spec requires the out-of-line copy
11192 to have the same parent. For local class methods, this doesn't
11193 apply; we just use the old DIE. */
11194 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11195 && (DECL_ARTIFICIAL (decl)
11196 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11197 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11198 == (unsigned) s.line))))
11200 subr_die = old_die;
11202 /* Clear out the declaration attribute and the formal parameters.
11203 Do not remove all children, because it is possible that this
11204 declaration die was forced using force_decl_die(). In such
11205 cases die that forced declaration die (e.g. TAG_imported_module)
11206 is one of the children that we do not want to remove. */
11207 remove_AT (subr_die, DW_AT_declaration);
11208 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11210 else
11212 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11213 add_AT_specification (subr_die, old_die);
11214 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11215 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11216 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11217 != (unsigned) s.line)
11218 add_AT_unsigned
11219 (subr_die, DW_AT_decl_line, s.line);
11222 else
11224 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11226 if (TREE_PUBLIC (decl))
11227 add_AT_flag (subr_die, DW_AT_external, 1);
11229 add_name_and_src_coords_attributes (subr_die, decl);
11230 if (debug_info_level > DINFO_LEVEL_TERSE)
11232 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11233 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11234 0, 0, context_die);
11237 add_pure_or_virtual_attribute (subr_die, decl);
11238 if (DECL_ARTIFICIAL (decl))
11239 add_AT_flag (subr_die, DW_AT_artificial, 1);
11241 if (TREE_PROTECTED (decl))
11242 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11243 else if (TREE_PRIVATE (decl))
11244 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11247 if (declaration)
11249 if (!old_die || !get_AT (old_die, DW_AT_inline))
11251 add_AT_flag (subr_die, DW_AT_declaration, 1);
11253 /* The first time we see a member function, it is in the context of
11254 the class to which it belongs. We make sure of this by emitting
11255 the class first. The next time is the definition, which is
11256 handled above. The two may come from the same source text.
11258 Note that force_decl_die() forces function declaration die. It is
11259 later reused to represent definition. */
11260 equate_decl_number_to_die (decl, subr_die);
11263 else if (DECL_ABSTRACT (decl))
11265 if (DECL_DECLARED_INLINE_P (decl))
11267 if (cgraph_function_possibly_inlined_p (decl))
11268 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11269 else
11270 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11272 else
11274 if (cgraph_function_possibly_inlined_p (decl))
11275 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11276 else
11277 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11280 equate_decl_number_to_die (decl, subr_die);
11282 else if (!DECL_EXTERNAL (decl))
11284 if (!old_die || !get_AT (old_die, DW_AT_inline))
11285 equate_decl_number_to_die (decl, subr_die);
11287 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11288 current_function_funcdef_no);
11289 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11290 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11291 current_function_funcdef_no);
11292 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11294 add_pubname (decl, subr_die);
11295 add_arange (decl, subr_die);
11297 #ifdef MIPS_DEBUGGING_INFO
11298 /* Add a reference to the FDE for this routine. */
11299 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11300 #endif
11302 /* Define the "frame base" location for this routine. We use the
11303 frame pointer or stack pointer registers, since the RTL for local
11304 variables is relative to one of them. */
11305 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11307 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11308 DW_AT_frame_base);
11310 else
11312 fp_reg
11313 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11314 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11317 if (cfun->static_chain_decl)
11318 add_AT_location_description (subr_die, DW_AT_static_link,
11319 loc_descriptor_from_tree (cfun->static_chain_decl));
11322 /* Now output descriptions of the arguments for this function. This gets
11323 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11324 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11325 `...' at the end of the formal parameter list. In order to find out if
11326 there was a trailing ellipsis or not, we must instead look at the type
11327 associated with the FUNCTION_DECL. This will be a node of type
11328 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11329 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11330 an ellipsis at the end. */
11332 /* In the case where we are describing a mere function declaration, all we
11333 need to do here (and all we *can* do here) is to describe the *types* of
11334 its formal parameters. */
11335 if (debug_info_level <= DINFO_LEVEL_TERSE)
11337 else if (declaration)
11338 gen_formal_types_die (decl, subr_die);
11339 else
11341 /* Generate DIEs to represent all known formal parameters. */
11342 tree arg_decls = DECL_ARGUMENTS (decl);
11343 tree parm;
11345 /* When generating DIEs, generate the unspecified_parameters DIE
11346 instead if we come across the arg "__builtin_va_alist" */
11347 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11348 if (TREE_CODE (parm) == PARM_DECL)
11350 if (DECL_NAME (parm)
11351 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11352 "__builtin_va_alist"))
11353 gen_unspecified_parameters_die (parm, subr_die);
11354 else
11355 gen_decl_die (parm, subr_die);
11358 /* Decide whether we need an unspecified_parameters DIE at the end.
11359 There are 2 more cases to do this for: 1) the ansi ... declaration -
11360 this is detectable when the end of the arg list is not a
11361 void_type_node 2) an unprototyped function declaration (not a
11362 definition). This just means that we have no info about the
11363 parameters at all. */
11364 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11365 if (fn_arg_types != NULL)
11367 /* This is the prototyped case, check for.... */
11368 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11369 gen_unspecified_parameters_die (decl, subr_die);
11371 else if (DECL_INITIAL (decl) == NULL_TREE)
11372 gen_unspecified_parameters_die (decl, subr_die);
11375 /* Output Dwarf info for all of the stuff within the body of the function
11376 (if it has one - it may be just a declaration). */
11377 outer_scope = DECL_INITIAL (decl);
11379 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11380 a function. This BLOCK actually represents the outermost binding contour
11381 for the function, i.e. the contour in which the function's formal
11382 parameters and labels get declared. Curiously, it appears that the front
11383 end doesn't actually put the PARM_DECL nodes for the current function onto
11384 the BLOCK_VARS list for this outer scope, but are strung off of the
11385 DECL_ARGUMENTS list for the function instead.
11387 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11388 the LABEL_DECL nodes for the function however, and we output DWARF info
11389 for those in decls_for_scope. Just within the `outer_scope' there will be
11390 a BLOCK node representing the function's outermost pair of curly braces,
11391 and any blocks used for the base and member initializers of a C++
11392 constructor function. */
11393 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11395 /* Emit a DW_TAG_variable DIE for a named return value. */
11396 if (DECL_NAME (DECL_RESULT (decl)))
11397 gen_decl_die (DECL_RESULT (decl), subr_die);
11399 current_function_has_inlines = 0;
11400 decls_for_scope (outer_scope, subr_die, 0);
11402 #if 0 && defined (MIPS_DEBUGGING_INFO)
11403 if (current_function_has_inlines)
11405 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11406 if (! comp_unit_has_inlines)
11408 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11409 comp_unit_has_inlines = 1;
11412 #endif
11414 /* Add the calling convention attribute if requested. */
11415 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11419 /* Generate a DIE to represent a declared data object. */
11421 static void
11422 gen_variable_die (tree decl, dw_die_ref context_die)
11424 tree origin = decl_ultimate_origin (decl);
11425 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11427 dw_die_ref old_die = lookup_decl_die (decl);
11428 int declaration = (DECL_EXTERNAL (decl)
11429 || class_or_namespace_scope_p (context_die));
11431 if (origin != NULL)
11432 add_abstract_origin_attribute (var_die, origin);
11434 /* Loop unrolling can create multiple blocks that refer to the same
11435 static variable, so we must test for the DW_AT_declaration flag.
11437 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11438 copy decls and set the DECL_ABSTRACT flag on them instead of
11439 sharing them.
11441 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11442 else if (old_die && TREE_STATIC (decl)
11443 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11445 /* This is a definition of a C++ class level static. */
11446 add_AT_specification (var_die, old_die);
11447 if (DECL_NAME (decl))
11449 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11450 unsigned file_index = lookup_filename (s.file);
11452 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11453 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11455 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11456 != (unsigned) s.line)
11458 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11461 else
11463 add_name_and_src_coords_attributes (var_die, decl);
11464 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11465 TREE_THIS_VOLATILE (decl), context_die);
11467 if (TREE_PUBLIC (decl))
11468 add_AT_flag (var_die, DW_AT_external, 1);
11470 if (DECL_ARTIFICIAL (decl))
11471 add_AT_flag (var_die, DW_AT_artificial, 1);
11473 if (TREE_PROTECTED (decl))
11474 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11475 else if (TREE_PRIVATE (decl))
11476 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11479 if (declaration)
11480 add_AT_flag (var_die, DW_AT_declaration, 1);
11482 if (DECL_ABSTRACT (decl) || declaration)
11483 equate_decl_number_to_die (decl, var_die);
11485 if (! declaration && ! DECL_ABSTRACT (decl))
11487 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11488 add_pubname (decl, var_die);
11490 else
11491 tree_add_const_value_attribute (var_die, decl);
11494 /* Generate a DIE to represent a label identifier. */
11496 static void
11497 gen_label_die (tree decl, dw_die_ref context_die)
11499 tree origin = decl_ultimate_origin (decl);
11500 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11501 rtx insn;
11502 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11504 if (origin != NULL)
11505 add_abstract_origin_attribute (lbl_die, origin);
11506 else
11507 add_name_and_src_coords_attributes (lbl_die, decl);
11509 if (DECL_ABSTRACT (decl))
11510 equate_decl_number_to_die (decl, lbl_die);
11511 else
11513 insn = DECL_RTL_IF_SET (decl);
11515 /* Deleted labels are programmer specified labels which have been
11516 eliminated because of various optimizations. We still emit them
11517 here so that it is possible to put breakpoints on them. */
11518 if (insn
11519 && (LABEL_P (insn)
11520 || ((NOTE_P (insn)
11521 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11523 /* When optimization is enabled (via -O) some parts of the compiler
11524 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11525 represent source-level labels which were explicitly declared by
11526 the user. This really shouldn't be happening though, so catch
11527 it if it ever does happen. */
11528 gcc_assert (!INSN_DELETED_P (insn));
11530 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11531 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11536 /* Generate a DIE for a lexical block. */
11538 static void
11539 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11541 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11542 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11544 if (! BLOCK_ABSTRACT (stmt))
11546 if (BLOCK_FRAGMENT_CHAIN (stmt))
11548 tree chain;
11550 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11552 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11555 add_ranges (chain);
11556 chain = BLOCK_FRAGMENT_CHAIN (chain);
11558 while (chain);
11559 add_ranges (NULL);
11561 else
11563 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11564 BLOCK_NUMBER (stmt));
11565 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11566 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11567 BLOCK_NUMBER (stmt));
11568 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11572 decls_for_scope (stmt, stmt_die, depth);
11575 /* Generate a DIE for an inlined subprogram. */
11577 static void
11578 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11580 tree decl = block_ultimate_origin (stmt);
11582 /* Emit info for the abstract instance first, if we haven't yet. We
11583 must emit this even if the block is abstract, otherwise when we
11584 emit the block below (or elsewhere), we may end up trying to emit
11585 a die whose origin die hasn't been emitted, and crashing. */
11586 dwarf2out_abstract_function (decl);
11588 if (! BLOCK_ABSTRACT (stmt))
11590 dw_die_ref subr_die
11591 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11592 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11594 add_abstract_origin_attribute (subr_die, decl);
11595 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11596 BLOCK_NUMBER (stmt));
11597 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11598 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11599 BLOCK_NUMBER (stmt));
11600 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11601 decls_for_scope (stmt, subr_die, depth);
11602 current_function_has_inlines = 1;
11604 else
11605 /* We may get here if we're the outer block of function A that was
11606 inlined into function B that was inlined into function C. When
11607 generating debugging info for C, dwarf2out_abstract_function(B)
11608 would mark all inlined blocks as abstract, including this one.
11609 So, we wouldn't (and shouldn't) expect labels to be generated
11610 for this one. Instead, just emit debugging info for
11611 declarations within the block. This is particularly important
11612 in the case of initializers of arguments passed from B to us:
11613 if they're statement expressions containing declarations, we
11614 wouldn't generate dies for their abstract variables, and then,
11615 when generating dies for the real variables, we'd die (pun
11616 intended :-) */
11617 gen_lexical_block_die (stmt, context_die, depth);
11620 /* Generate a DIE for a field in a record, or structure. */
11622 static void
11623 gen_field_die (tree decl, dw_die_ref context_die)
11625 dw_die_ref decl_die;
11627 if (TREE_TYPE (decl) == error_mark_node)
11628 return;
11630 decl_die = new_die (DW_TAG_member, context_die, decl);
11631 add_name_and_src_coords_attributes (decl_die, decl);
11632 add_type_attribute (decl_die, member_declared_type (decl),
11633 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11634 context_die);
11636 if (DECL_BIT_FIELD_TYPE (decl))
11638 add_byte_size_attribute (decl_die, decl);
11639 add_bit_size_attribute (decl_die, decl);
11640 add_bit_offset_attribute (decl_die, decl);
11643 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11644 add_data_member_location_attribute (decl_die, decl);
11646 if (DECL_ARTIFICIAL (decl))
11647 add_AT_flag (decl_die, DW_AT_artificial, 1);
11649 if (TREE_PROTECTED (decl))
11650 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11651 else if (TREE_PRIVATE (decl))
11652 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11654 /* Equate decl number to die, so that we can look up this decl later on. */
11655 equate_decl_number_to_die (decl, decl_die);
11658 #if 0
11659 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11660 Use modified_type_die instead.
11661 We keep this code here just in case these types of DIEs may be needed to
11662 represent certain things in other languages (e.g. Pascal) someday. */
11664 static void
11665 gen_pointer_type_die (tree type, dw_die_ref context_die)
11667 dw_die_ref ptr_die
11668 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11670 equate_type_number_to_die (type, ptr_die);
11671 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11672 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11675 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11676 Use modified_type_die instead.
11677 We keep this code here just in case these types of DIEs may be needed to
11678 represent certain things in other languages (e.g. Pascal) someday. */
11680 static void
11681 gen_reference_type_die (tree type, dw_die_ref context_die)
11683 dw_die_ref ref_die
11684 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11686 equate_type_number_to_die (type, ref_die);
11687 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11688 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11690 #endif
11692 /* Generate a DIE for a pointer to a member type. */
11694 static void
11695 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11697 dw_die_ref ptr_die
11698 = new_die (DW_TAG_ptr_to_member_type,
11699 scope_die_for (type, context_die), type);
11701 equate_type_number_to_die (type, ptr_die);
11702 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11703 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11704 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11707 /* Generate the DIE for the compilation unit. */
11709 static dw_die_ref
11710 gen_compile_unit_die (const char *filename)
11712 dw_die_ref die;
11713 char producer[250];
11714 const char *language_string = lang_hooks.name;
11715 int language;
11717 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11719 if (filename)
11721 add_name_attribute (die, filename);
11722 /* Don't add cwd for <built-in>. */
11723 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11724 add_comp_dir_attribute (die);
11727 sprintf (producer, "%s %s", language_string, version_string);
11729 #ifdef MIPS_DEBUGGING_INFO
11730 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11731 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11732 not appear in the producer string, the debugger reaches the conclusion
11733 that the object file is stripped and has no debugging information.
11734 To get the MIPS/SGI debugger to believe that there is debugging
11735 information in the object file, we add a -g to the producer string. */
11736 if (debug_info_level > DINFO_LEVEL_TERSE)
11737 strcat (producer, " -g");
11738 #endif
11740 add_AT_string (die, DW_AT_producer, producer);
11742 if (strcmp (language_string, "GNU C++") == 0)
11743 language = DW_LANG_C_plus_plus;
11744 else if (strcmp (language_string, "GNU Ada") == 0)
11745 language = DW_LANG_Ada95;
11746 else if (strcmp (language_string, "GNU F77") == 0)
11747 language = DW_LANG_Fortran77;
11748 else if (strcmp (language_string, "GNU F95") == 0)
11749 language = DW_LANG_Fortran95;
11750 else if (strcmp (language_string, "GNU Pascal") == 0)
11751 language = DW_LANG_Pascal83;
11752 else if (strcmp (language_string, "GNU Java") == 0)
11753 language = DW_LANG_Java;
11754 else
11755 language = DW_LANG_C89;
11757 add_AT_unsigned (die, DW_AT_language, language);
11758 return die;
11761 /* Generate a DIE for a string type. */
11763 static void
11764 gen_string_type_die (tree type, dw_die_ref context_die)
11766 dw_die_ref type_die
11767 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11769 equate_type_number_to_die (type, type_die);
11771 /* ??? Fudge the string length attribute for now.
11772 TODO: add string length info. */
11773 #if 0
11774 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11775 bound_representation (upper_bound, 0, 'u');
11776 #endif
11779 /* Generate the DIE for a base class. */
11781 static void
11782 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11784 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11786 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11787 add_data_member_location_attribute (die, binfo);
11789 if (BINFO_VIRTUAL_P (binfo))
11790 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11792 if (access == access_public_node)
11793 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11794 else if (access == access_protected_node)
11795 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11798 /* Generate a DIE for a class member. */
11800 static void
11801 gen_member_die (tree type, dw_die_ref context_die)
11803 tree member;
11804 tree binfo = TYPE_BINFO (type);
11805 dw_die_ref child;
11807 /* If this is not an incomplete type, output descriptions of each of its
11808 members. Note that as we output the DIEs necessary to represent the
11809 members of this record or union type, we will also be trying to output
11810 DIEs to represent the *types* of those members. However the `type'
11811 function (above) will specifically avoid generating type DIEs for member
11812 types *within* the list of member DIEs for this (containing) type except
11813 for those types (of members) which are explicitly marked as also being
11814 members of this (containing) type themselves. The g++ front- end can
11815 force any given type to be treated as a member of some other (containing)
11816 type by setting the TYPE_CONTEXT of the given (member) type to point to
11817 the TREE node representing the appropriate (containing) type. */
11819 /* First output info about the base classes. */
11820 if (binfo)
11822 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
11823 int i;
11824 tree base;
11826 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
11827 gen_inheritance_die (base,
11828 (accesses ? VEC_index (tree, accesses, i)
11829 : access_public_node), context_die);
11832 /* Now output info about the data members and type members. */
11833 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11835 /* If we thought we were generating minimal debug info for TYPE
11836 and then changed our minds, some of the member declarations
11837 may have already been defined. Don't define them again, but
11838 do put them in the right order. */
11840 child = lookup_decl_die (member);
11841 if (child)
11842 splice_child_die (context_die, child);
11843 else
11844 gen_decl_die (member, context_die);
11847 /* Now output info about the function members (if any). */
11848 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11850 /* Don't include clones in the member list. */
11851 if (DECL_ABSTRACT_ORIGIN (member))
11852 continue;
11854 child = lookup_decl_die (member);
11855 if (child)
11856 splice_child_die (context_die, child);
11857 else
11858 gen_decl_die (member, context_die);
11862 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11863 is set, we pretend that the type was never defined, so we only get the
11864 member DIEs needed by later specification DIEs. */
11866 static void
11867 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11869 dw_die_ref type_die = lookup_type_die (type);
11870 dw_die_ref scope_die = 0;
11871 int nested = 0;
11872 int complete = (TYPE_SIZE (type)
11873 && (! TYPE_STUB_DECL (type)
11874 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11875 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
11877 if (type_die && ! complete)
11878 return;
11880 if (TYPE_CONTEXT (type) != NULL_TREE
11881 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11882 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
11883 nested = 1;
11885 scope_die = scope_die_for (type, context_die);
11887 if (! type_die || (nested && scope_die == comp_unit_die))
11888 /* First occurrence of type or toplevel definition of nested class. */
11890 dw_die_ref old_die = type_die;
11892 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11893 ? DW_TAG_structure_type : DW_TAG_union_type,
11894 scope_die, type);
11895 equate_type_number_to_die (type, type_die);
11896 if (old_die)
11897 add_AT_specification (type_die, old_die);
11898 else
11899 add_name_attribute (type_die, type_tag (type));
11901 else
11902 remove_AT (type_die, DW_AT_declaration);
11904 /* If this type has been completed, then give it a byte_size attribute and
11905 then give a list of members. */
11906 if (complete && !ns_decl)
11908 /* Prevent infinite recursion in cases where the type of some member of
11909 this type is expressed in terms of this type itself. */
11910 TREE_ASM_WRITTEN (type) = 1;
11911 add_byte_size_attribute (type_die, type);
11912 if (TYPE_STUB_DECL (type) != NULL_TREE)
11913 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11915 /* If the first reference to this type was as the return type of an
11916 inline function, then it may not have a parent. Fix this now. */
11917 if (type_die->die_parent == NULL)
11918 add_child_die (scope_die, type_die);
11920 push_decl_scope (type);
11921 gen_member_die (type, type_die);
11922 pop_decl_scope ();
11924 /* GNU extension: Record what type our vtable lives in. */
11925 if (TYPE_VFIELD (type))
11927 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11929 gen_type_die (vtype, context_die);
11930 add_AT_die_ref (type_die, DW_AT_containing_type,
11931 lookup_type_die (vtype));
11934 else
11936 add_AT_flag (type_die, DW_AT_declaration, 1);
11938 /* We don't need to do this for function-local types. */
11939 if (TYPE_STUB_DECL (type)
11940 && ! decl_function_context (TYPE_STUB_DECL (type)))
11941 VARRAY_PUSH_TREE (incomplete_types, type);
11945 /* Generate a DIE for a subroutine _type_. */
11947 static void
11948 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11950 tree return_type = TREE_TYPE (type);
11951 dw_die_ref subr_die
11952 = new_die (DW_TAG_subroutine_type,
11953 scope_die_for (type, context_die), type);
11955 equate_type_number_to_die (type, subr_die);
11956 add_prototyped_attribute (subr_die, type);
11957 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11958 gen_formal_types_die (type, subr_die);
11961 /* Generate a DIE for a type definition. */
11963 static void
11964 gen_typedef_die (tree decl, dw_die_ref context_die)
11966 dw_die_ref type_die;
11967 tree origin;
11969 if (TREE_ASM_WRITTEN (decl))
11970 return;
11972 TREE_ASM_WRITTEN (decl) = 1;
11973 type_die = new_die (DW_TAG_typedef, context_die, decl);
11974 origin = decl_ultimate_origin (decl);
11975 if (origin != NULL)
11976 add_abstract_origin_attribute (type_die, origin);
11977 else
11979 tree type;
11981 add_name_and_src_coords_attributes (type_die, decl);
11982 if (DECL_ORIGINAL_TYPE (decl))
11984 type = DECL_ORIGINAL_TYPE (decl);
11986 gcc_assert (type != TREE_TYPE (decl));
11987 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11989 else
11990 type = TREE_TYPE (decl);
11992 add_type_attribute (type_die, type, TREE_READONLY (decl),
11993 TREE_THIS_VOLATILE (decl), context_die);
11996 if (DECL_ABSTRACT (decl))
11997 equate_decl_number_to_die (decl, type_die);
12000 /* Generate a type description DIE. */
12002 static void
12003 gen_type_die (tree type, dw_die_ref context_die)
12005 int need_pop;
12007 if (type == NULL_TREE || type == error_mark_node)
12008 return;
12010 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12011 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12013 if (TREE_ASM_WRITTEN (type))
12014 return;
12016 /* Prevent broken recursion; we can't hand off to the same type. */
12017 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12019 TREE_ASM_WRITTEN (type) = 1;
12020 gen_decl_die (TYPE_NAME (type), context_die);
12021 return;
12024 /* We are going to output a DIE to represent the unqualified version
12025 of this type (i.e. without any const or volatile qualifiers) so
12026 get the main variant (i.e. the unqualified version) of this type
12027 now. (Vectors are special because the debugging info is in the
12028 cloned type itself). */
12029 if (TREE_CODE (type) != VECTOR_TYPE)
12030 type = type_main_variant (type);
12032 if (TREE_ASM_WRITTEN (type))
12033 return;
12035 switch (TREE_CODE (type))
12037 case ERROR_MARK:
12038 break;
12040 case POINTER_TYPE:
12041 case REFERENCE_TYPE:
12042 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12043 ensures that the gen_type_die recursion will terminate even if the
12044 type is recursive. Recursive types are possible in Ada. */
12045 /* ??? We could perhaps do this for all types before the switch
12046 statement. */
12047 TREE_ASM_WRITTEN (type) = 1;
12049 /* For these types, all that is required is that we output a DIE (or a
12050 set of DIEs) to represent the "basis" type. */
12051 gen_type_die (TREE_TYPE (type), context_die);
12052 break;
12054 case OFFSET_TYPE:
12055 /* This code is used for C++ pointer-to-data-member types.
12056 Output a description of the relevant class type. */
12057 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12059 /* Output a description of the type of the object pointed to. */
12060 gen_type_die (TREE_TYPE (type), context_die);
12062 /* Now output a DIE to represent this pointer-to-data-member type
12063 itself. */
12064 gen_ptr_to_mbr_type_die (type, context_die);
12065 break;
12067 case SET_TYPE:
12068 gen_type_die (TYPE_DOMAIN (type), context_die);
12069 gen_set_type_die (type, context_die);
12070 break;
12072 case FILE_TYPE:
12073 gen_type_die (TREE_TYPE (type), context_die);
12074 /* No way to represent these in Dwarf yet! */
12075 gcc_unreachable ();
12076 break;
12078 case FUNCTION_TYPE:
12079 /* Force out return type (in case it wasn't forced out already). */
12080 gen_type_die (TREE_TYPE (type), context_die);
12081 gen_subroutine_type_die (type, context_die);
12082 break;
12084 case METHOD_TYPE:
12085 /* Force out return type (in case it wasn't forced out already). */
12086 gen_type_die (TREE_TYPE (type), context_die);
12087 gen_subroutine_type_die (type, context_die);
12088 break;
12090 case ARRAY_TYPE:
12091 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12093 gen_type_die (TREE_TYPE (type), context_die);
12094 gen_string_type_die (type, context_die);
12096 else
12097 gen_array_type_die (type, context_die);
12098 break;
12100 case VECTOR_TYPE:
12101 gen_array_type_die (type, context_die);
12102 break;
12104 case ENUMERAL_TYPE:
12105 case RECORD_TYPE:
12106 case UNION_TYPE:
12107 case QUAL_UNION_TYPE:
12108 /* If this is a nested type whose containing class hasn't been written
12109 out yet, writing it out will cover this one, too. This does not apply
12110 to instantiations of member class templates; they need to be added to
12111 the containing class as they are generated. FIXME: This hurts the
12112 idea of combining type decls from multiple TUs, since we can't predict
12113 what set of template instantiations we'll get. */
12114 if (TYPE_CONTEXT (type)
12115 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12116 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12118 gen_type_die (TYPE_CONTEXT (type), context_die);
12120 if (TREE_ASM_WRITTEN (type))
12121 return;
12123 /* If that failed, attach ourselves to the stub. */
12124 push_decl_scope (TYPE_CONTEXT (type));
12125 context_die = lookup_type_die (TYPE_CONTEXT (type));
12126 need_pop = 1;
12128 else
12130 declare_in_namespace (type, context_die);
12131 need_pop = 0;
12134 if (TREE_CODE (type) == ENUMERAL_TYPE)
12135 gen_enumeration_type_die (type, context_die);
12136 else
12137 gen_struct_or_union_type_die (type, context_die);
12139 if (need_pop)
12140 pop_decl_scope ();
12142 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12143 it up if it is ever completed. gen_*_type_die will set it for us
12144 when appropriate. */
12145 return;
12147 case VOID_TYPE:
12148 case INTEGER_TYPE:
12149 case REAL_TYPE:
12150 case COMPLEX_TYPE:
12151 case BOOLEAN_TYPE:
12152 case CHAR_TYPE:
12153 /* No DIEs needed for fundamental types. */
12154 break;
12156 case LANG_TYPE:
12157 /* No Dwarf representation currently defined. */
12158 break;
12160 default:
12161 gcc_unreachable ();
12164 TREE_ASM_WRITTEN (type) = 1;
12167 /* Generate a DIE for a tagged type instantiation. */
12169 static void
12170 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12172 if (type == NULL_TREE || type == error_mark_node)
12173 return;
12175 /* We are going to output a DIE to represent the unqualified version of
12176 this type (i.e. without any const or volatile qualifiers) so make sure
12177 that we have the main variant (i.e. the unqualified version) of this
12178 type now. */
12179 gcc_assert (type == type_main_variant (type));
12181 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12182 an instance of an unresolved type. */
12184 switch (TREE_CODE (type))
12186 case ERROR_MARK:
12187 break;
12189 case ENUMERAL_TYPE:
12190 gen_inlined_enumeration_type_die (type, context_die);
12191 break;
12193 case RECORD_TYPE:
12194 gen_inlined_structure_type_die (type, context_die);
12195 break;
12197 case UNION_TYPE:
12198 case QUAL_UNION_TYPE:
12199 gen_inlined_union_type_die (type, context_die);
12200 break;
12202 default:
12203 gcc_unreachable ();
12207 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12208 things which are local to the given block. */
12210 static void
12211 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12213 int must_output_die = 0;
12214 tree origin;
12215 tree decl;
12216 enum tree_code origin_code;
12218 /* Ignore blocks never really used to make RTL. */
12219 if (stmt == NULL_TREE || !TREE_USED (stmt)
12220 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
12221 return;
12223 /* If the block is one fragment of a non-contiguous block, do not
12224 process the variables, since they will have been done by the
12225 origin block. Do process subblocks. */
12226 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12228 tree sub;
12230 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12231 gen_block_die (sub, context_die, depth + 1);
12233 return;
12236 /* Determine the "ultimate origin" of this block. This block may be an
12237 inlined instance of an inlined instance of inline function, so we have
12238 to trace all of the way back through the origin chain to find out what
12239 sort of node actually served as the original seed for the creation of
12240 the current block. */
12241 origin = block_ultimate_origin (stmt);
12242 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12244 /* Determine if we need to output any Dwarf DIEs at all to represent this
12245 block. */
12246 if (origin_code == FUNCTION_DECL)
12247 /* The outer scopes for inlinings *must* always be represented. We
12248 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12249 must_output_die = 1;
12250 else
12252 /* In the case where the current block represents an inlining of the
12253 "body block" of an inline function, we must *NOT* output any DIE for
12254 this block because we have already output a DIE to represent the whole
12255 inlined function scope and the "body block" of any function doesn't
12256 really represent a different scope according to ANSI C rules. So we
12257 check here to make sure that this block does not represent a "body
12258 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12259 if (! is_body_block (origin ? origin : stmt))
12261 /* Determine if this block directly contains any "significant"
12262 local declarations which we will need to output DIEs for. */
12263 if (debug_info_level > DINFO_LEVEL_TERSE)
12264 /* We are not in terse mode so *any* local declaration counts
12265 as being a "significant" one. */
12266 must_output_die = (BLOCK_VARS (stmt) != NULL);
12267 else
12268 /* We are in terse mode, so only local (nested) function
12269 definitions count as "significant" local declarations. */
12270 for (decl = BLOCK_VARS (stmt);
12271 decl != NULL; decl = TREE_CHAIN (decl))
12272 if (TREE_CODE (decl) == FUNCTION_DECL
12273 && DECL_INITIAL (decl))
12275 must_output_die = 1;
12276 break;
12281 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12282 DIE for any block which contains no significant local declarations at
12283 all. Rather, in such cases we just call `decls_for_scope' so that any
12284 needed Dwarf info for any sub-blocks will get properly generated. Note
12285 that in terse mode, our definition of what constitutes a "significant"
12286 local declaration gets restricted to include only inlined function
12287 instances and local (nested) function definitions. */
12288 if (must_output_die)
12290 if (origin_code == FUNCTION_DECL)
12291 gen_inlined_subroutine_die (stmt, context_die, depth);
12292 else
12293 gen_lexical_block_die (stmt, context_die, depth);
12295 else
12296 decls_for_scope (stmt, context_die, depth);
12299 /* Generate all of the decls declared within a given scope and (recursively)
12300 all of its sub-blocks. */
12302 static void
12303 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12305 tree decl;
12306 tree subblocks;
12308 /* Ignore blocks never really used to make RTL. */
12309 if (stmt == NULL_TREE || ! TREE_USED (stmt))
12310 return;
12312 /* Output the DIEs to represent all of the data objects and typedefs
12313 declared directly within this block but not within any nested
12314 sub-blocks. Also, nested function and tag DIEs have been
12315 generated with a parent of NULL; fix that up now. */
12316 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12318 dw_die_ref die;
12320 if (TREE_CODE (decl) == FUNCTION_DECL)
12321 die = lookup_decl_die (decl);
12322 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12323 die = lookup_type_die (TREE_TYPE (decl));
12324 else
12325 die = NULL;
12327 if (die != NULL && die->die_parent == NULL)
12328 add_child_die (context_die, die);
12329 else
12330 gen_decl_die (decl, context_die);
12333 /* If we're at -g1, we're not interested in subblocks. */
12334 if (debug_info_level <= DINFO_LEVEL_TERSE)
12335 return;
12337 /* Output the DIEs to represent all sub-blocks (and the items declared
12338 therein) of this block. */
12339 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12340 subblocks != NULL;
12341 subblocks = BLOCK_CHAIN (subblocks))
12342 gen_block_die (subblocks, context_die, depth + 1);
12345 /* Is this a typedef we can avoid emitting? */
12347 static inline int
12348 is_redundant_typedef (tree decl)
12350 if (TYPE_DECL_IS_STUB (decl))
12351 return 1;
12353 if (DECL_ARTIFICIAL (decl)
12354 && DECL_CONTEXT (decl)
12355 && is_tagged_type (DECL_CONTEXT (decl))
12356 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12357 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12358 /* Also ignore the artificial member typedef for the class name. */
12359 return 1;
12361 return 0;
12364 /* Returns the DIE for decl or aborts. */
12366 static dw_die_ref
12367 force_decl_die (tree decl)
12369 dw_die_ref decl_die;
12370 unsigned saved_external_flag;
12371 tree save_fn = NULL_TREE;
12372 decl_die = lookup_decl_die (decl);
12373 if (!decl_die)
12375 dw_die_ref context_die;
12376 tree decl_context = DECL_CONTEXT (decl);
12377 if (decl_context)
12379 /* Find die that represents this context. */
12380 if (TYPE_P (decl_context))
12381 context_die = force_type_die (decl_context);
12382 else
12383 context_die = force_decl_die (decl_context);
12385 else
12386 context_die = comp_unit_die;
12388 switch (TREE_CODE (decl))
12390 case FUNCTION_DECL:
12391 /* Clear current_function_decl, so that gen_subprogram_die thinks
12392 that this is a declaration. At this point, we just want to force
12393 declaration die. */
12394 save_fn = current_function_decl;
12395 current_function_decl = NULL_TREE;
12396 gen_subprogram_die (decl, context_die);
12397 current_function_decl = save_fn;
12398 break;
12400 case VAR_DECL:
12401 /* Set external flag to force declaration die. Restore it after
12402 gen_decl_die() call. */
12403 saved_external_flag = DECL_EXTERNAL (decl);
12404 DECL_EXTERNAL (decl) = 1;
12405 gen_decl_die (decl, context_die);
12406 DECL_EXTERNAL (decl) = saved_external_flag;
12407 break;
12409 case NAMESPACE_DECL:
12410 dwarf2out_decl (decl);
12411 break;
12413 default:
12414 gcc_unreachable ();
12417 /* See if we can find the die for this deci now.
12418 If not then abort. */
12419 if (!decl_die)
12420 decl_die = lookup_decl_die (decl);
12421 gcc_assert (decl_die);
12424 return decl_die;
12427 /* Returns the DIE for decl or aborts. */
12429 static dw_die_ref
12430 force_type_die (tree type)
12432 dw_die_ref type_die;
12434 type_die = lookup_type_die (type);
12435 if (!type_die)
12437 dw_die_ref context_die;
12438 if (TYPE_CONTEXT (type))
12439 if (TYPE_P (TYPE_CONTEXT (type)))
12440 context_die = force_type_die (TYPE_CONTEXT (type));
12441 else
12442 context_die = force_decl_die (TYPE_CONTEXT (type));
12443 else
12444 context_die = comp_unit_die;
12446 gen_type_die (type, context_die);
12447 type_die = lookup_type_die (type);
12448 gcc_assert (type_die);
12450 return type_die;
12453 /* Force out any required namespaces to be able to output DECL,
12454 and return the new context_die for it, if it's changed. */
12456 static dw_die_ref
12457 setup_namespace_context (tree thing, dw_die_ref context_die)
12459 tree context = (DECL_P (thing)
12460 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12461 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12462 /* Force out the namespace. */
12463 context_die = force_decl_die (context);
12465 return context_die;
12468 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12469 type) within its namespace, if appropriate.
12471 For compatibility with older debuggers, namespace DIEs only contain
12472 declarations; all definitions are emitted at CU scope. */
12474 static void
12475 declare_in_namespace (tree thing, dw_die_ref context_die)
12477 dw_die_ref ns_context;
12479 if (debug_info_level <= DINFO_LEVEL_TERSE)
12480 return;
12482 ns_context = setup_namespace_context (thing, context_die);
12484 if (ns_context != context_die)
12486 if (DECL_P (thing))
12487 gen_decl_die (thing, ns_context);
12488 else
12489 gen_type_die (thing, ns_context);
12493 /* Generate a DIE for a namespace or namespace alias. */
12495 static void
12496 gen_namespace_die (tree decl)
12498 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12500 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12501 they are an alias of. */
12502 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12504 /* Output a real namespace. */
12505 dw_die_ref namespace_die
12506 = new_die (DW_TAG_namespace, context_die, decl);
12507 add_name_and_src_coords_attributes (namespace_die, decl);
12508 equate_decl_number_to_die (decl, namespace_die);
12510 else
12512 /* Output a namespace alias. */
12514 /* Force out the namespace we are an alias of, if necessary. */
12515 dw_die_ref origin_die
12516 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12518 /* Now create the namespace alias DIE. */
12519 dw_die_ref namespace_die
12520 = new_die (DW_TAG_imported_declaration, context_die, decl);
12521 add_name_and_src_coords_attributes (namespace_die, decl);
12522 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12523 equate_decl_number_to_die (decl, namespace_die);
12527 /* Generate Dwarf debug information for a decl described by DECL. */
12529 static void
12530 gen_decl_die (tree decl, dw_die_ref context_die)
12532 tree origin;
12534 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12535 return;
12537 switch (TREE_CODE (decl))
12539 case ERROR_MARK:
12540 break;
12542 case CONST_DECL:
12543 /* The individual enumerators of an enum type get output when we output
12544 the Dwarf representation of the relevant enum type itself. */
12545 break;
12547 case FUNCTION_DECL:
12548 /* Don't output any DIEs to represent mere function declarations,
12549 unless they are class members or explicit block externs. */
12550 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12551 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12552 break;
12554 #if 0
12555 /* FIXME */
12556 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12557 on local redeclarations of global functions. That seems broken. */
12558 if (current_function_decl != decl)
12559 /* This is only a declaration. */;
12560 #endif
12562 /* If we're emitting a clone, emit info for the abstract instance. */
12563 if (DECL_ORIGIN (decl) != decl)
12564 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12566 /* If we're emitting an out-of-line copy of an inline function,
12567 emit info for the abstract instance and set up to refer to it. */
12568 else if (cgraph_function_possibly_inlined_p (decl)
12569 && ! DECL_ABSTRACT (decl)
12570 && ! class_or_namespace_scope_p (context_die)
12571 /* dwarf2out_abstract_function won't emit a die if this is just
12572 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12573 that case, because that works only if we have a die. */
12574 && DECL_INITIAL (decl) != NULL_TREE)
12576 dwarf2out_abstract_function (decl);
12577 set_decl_origin_self (decl);
12580 /* Otherwise we're emitting the primary DIE for this decl. */
12581 else if (debug_info_level > DINFO_LEVEL_TERSE)
12583 /* Before we describe the FUNCTION_DECL itself, make sure that we
12584 have described its return type. */
12585 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12587 /* And its virtual context. */
12588 if (DECL_VINDEX (decl) != NULL_TREE)
12589 gen_type_die (DECL_CONTEXT (decl), context_die);
12591 /* And its containing type. */
12592 origin = decl_class_context (decl);
12593 if (origin != NULL_TREE)
12594 gen_type_die_for_member (origin, decl, context_die);
12596 /* And its containing namespace. */
12597 declare_in_namespace (decl, context_die);
12600 /* Now output a DIE to represent the function itself. */
12601 gen_subprogram_die (decl, context_die);
12602 break;
12604 case TYPE_DECL:
12605 /* If we are in terse mode, don't generate any DIEs to represent any
12606 actual typedefs. */
12607 if (debug_info_level <= DINFO_LEVEL_TERSE)
12608 break;
12610 /* In the special case of a TYPE_DECL node representing the declaration
12611 of some type tag, if the given TYPE_DECL is marked as having been
12612 instantiated from some other (original) TYPE_DECL node (e.g. one which
12613 was generated within the original definition of an inline function) we
12614 have to generate a special (abbreviated) DW_TAG_structure_type,
12615 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12616 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12618 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12619 break;
12622 if (is_redundant_typedef (decl))
12623 gen_type_die (TREE_TYPE (decl), context_die);
12624 else
12625 /* Output a DIE to represent the typedef itself. */
12626 gen_typedef_die (decl, context_die);
12627 break;
12629 case LABEL_DECL:
12630 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12631 gen_label_die (decl, context_die);
12632 break;
12634 case VAR_DECL:
12635 case RESULT_DECL:
12636 /* If we are in terse mode, don't generate any DIEs to represent any
12637 variable declarations or definitions. */
12638 if (debug_info_level <= DINFO_LEVEL_TERSE)
12639 break;
12641 /* Output any DIEs that are needed to specify the type of this data
12642 object. */
12643 gen_type_die (TREE_TYPE (decl), context_die);
12645 /* And its containing type. */
12646 origin = decl_class_context (decl);
12647 if (origin != NULL_TREE)
12648 gen_type_die_for_member (origin, decl, context_die);
12650 /* And its containing namespace. */
12651 declare_in_namespace (decl, context_die);
12653 /* Now output the DIE to represent the data object itself. This gets
12654 complicated because of the possibility that the VAR_DECL really
12655 represents an inlined instance of a formal parameter for an inline
12656 function. */
12657 origin = decl_ultimate_origin (decl);
12658 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12659 gen_formal_parameter_die (decl, context_die);
12660 else
12661 gen_variable_die (decl, context_die);
12662 break;
12664 case FIELD_DECL:
12665 /* Ignore the nameless fields that are used to skip bits but handle C++
12666 anonymous unions and structs. */
12667 if (DECL_NAME (decl) != NULL_TREE
12668 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12669 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12671 gen_type_die (member_declared_type (decl), context_die);
12672 gen_field_die (decl, context_die);
12674 break;
12676 case PARM_DECL:
12677 gen_type_die (TREE_TYPE (decl), context_die);
12678 gen_formal_parameter_die (decl, context_die);
12679 break;
12681 case NAMESPACE_DECL:
12682 gen_namespace_die (decl);
12683 break;
12685 default:
12686 /* Probably some frontend-internal decl. Assume we don't care. */
12687 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12688 break;
12692 /* Add Ada "use" clause information for SGI Workshop debugger. */
12694 void
12695 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12697 unsigned int file_index;
12699 if (filename != NULL)
12701 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12702 tree context_list_decl
12703 = build_decl (LABEL_DECL, get_identifier (context_list),
12704 void_type_node);
12706 TREE_PUBLIC (context_list_decl) = TRUE;
12707 add_name_attribute (unit_die, context_list);
12708 file_index = lookup_filename (filename);
12709 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12710 add_pubname (context_list_decl, unit_die);
12714 /* Output debug information for global decl DECL. Called from toplev.c after
12715 compilation proper has finished. */
12717 static void
12718 dwarf2out_global_decl (tree decl)
12720 /* Output DWARF2 information for file-scope tentative data object
12721 declarations, file-scope (extern) function declarations (which had no
12722 corresponding body) and file-scope tagged type declarations and
12723 definitions which have not yet been forced out. */
12724 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12725 dwarf2out_decl (decl);
12728 /* Output debug information for type decl DECL. Called from toplev.c
12729 and from language front ends (to record built-in types). */
12730 static void
12731 dwarf2out_type_decl (tree decl, int local)
12733 if (!local)
12734 dwarf2out_decl (decl);
12737 /* Output debug information for imported module or decl. */
12739 static void
12740 dwarf2out_imported_module_or_decl (tree decl, tree context)
12742 dw_die_ref imported_die, at_import_die;
12743 dw_die_ref scope_die;
12744 unsigned file_index;
12745 expanded_location xloc;
12747 if (debug_info_level <= DINFO_LEVEL_TERSE)
12748 return;
12750 gcc_assert (decl);
12752 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12753 We need decl DIE for reference and scope die. First, get DIE for the decl
12754 itself. */
12756 /* Get the scope die for decl context. Use comp_unit_die for global module
12757 or decl. If die is not found for non globals, force new die. */
12758 if (!context)
12759 scope_die = comp_unit_die;
12760 else if (TYPE_P (context))
12761 scope_die = force_type_die (context);
12762 else
12763 scope_die = force_decl_die (context);
12765 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12766 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12767 at_import_die = force_type_die (TREE_TYPE (decl));
12768 else
12769 at_import_die = force_decl_die (decl);
12771 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12772 if (TREE_CODE (decl) == NAMESPACE_DECL)
12773 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12774 else
12775 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12777 xloc = expand_location (input_location);
12778 file_index = lookup_filename (xloc.file);
12779 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12780 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12781 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12784 /* Write the debugging output for DECL. */
12786 void
12787 dwarf2out_decl (tree decl)
12789 dw_die_ref context_die = comp_unit_die;
12791 switch (TREE_CODE (decl))
12793 case ERROR_MARK:
12794 return;
12796 case FUNCTION_DECL:
12797 /* What we would really like to do here is to filter out all mere
12798 file-scope declarations of file-scope functions which are never
12799 referenced later within this translation unit (and keep all of ones
12800 that *are* referenced later on) but we aren't clairvoyant, so we have
12801 no idea which functions will be referenced in the future (i.e. later
12802 on within the current translation unit). So here we just ignore all
12803 file-scope function declarations which are not also definitions. If
12804 and when the debugger needs to know something about these functions,
12805 it will have to hunt around and find the DWARF information associated
12806 with the definition of the function.
12808 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12809 nodes represent definitions and which ones represent mere
12810 declarations. We have to check DECL_INITIAL instead. That's because
12811 the C front-end supports some weird semantics for "extern inline"
12812 function definitions. These can get inlined within the current
12813 translation unit (an thus, we need to generate Dwarf info for their
12814 abstract instances so that the Dwarf info for the concrete inlined
12815 instances can have something to refer to) but the compiler never
12816 generates any out-of-lines instances of such things (despite the fact
12817 that they *are* definitions).
12819 The important point is that the C front-end marks these "extern
12820 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12821 them anyway. Note that the C++ front-end also plays some similar games
12822 for inline function definitions appearing within include files which
12823 also contain `#pragma interface' pragmas. */
12824 if (DECL_INITIAL (decl) == NULL_TREE)
12825 return;
12827 /* If we're a nested function, initially use a parent of NULL; if we're
12828 a plain function, this will be fixed up in decls_for_scope. If
12829 we're a method, it will be ignored, since we already have a DIE. */
12830 if (decl_function_context (decl)
12831 /* But if we're in terse mode, we don't care about scope. */
12832 && debug_info_level > DINFO_LEVEL_TERSE)
12833 context_die = NULL;
12834 break;
12836 case VAR_DECL:
12837 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12838 declaration and if the declaration was never even referenced from
12839 within this entire compilation unit. We suppress these DIEs in
12840 order to save space in the .debug section (by eliminating entries
12841 which are probably useless). Note that we must not suppress
12842 block-local extern declarations (whether used or not) because that
12843 would screw-up the debugger's name lookup mechanism and cause it to
12844 miss things which really ought to be in scope at a given point. */
12845 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12846 return;
12848 /* If we are in terse mode, don't generate any DIEs to represent any
12849 variable declarations or definitions. */
12850 if (debug_info_level <= DINFO_LEVEL_TERSE)
12851 return;
12852 break;
12854 case NAMESPACE_DECL:
12855 if (debug_info_level <= DINFO_LEVEL_TERSE)
12856 return;
12857 if (lookup_decl_die (decl) != NULL)
12858 return;
12859 break;
12861 case TYPE_DECL:
12862 /* Don't emit stubs for types unless they are needed by other DIEs. */
12863 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12864 return;
12866 /* Don't bother trying to generate any DIEs to represent any of the
12867 normal built-in types for the language we are compiling. */
12868 if (DECL_IS_BUILTIN (decl))
12870 /* OK, we need to generate one for `bool' so GDB knows what type
12871 comparisons have. */
12872 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12873 == DW_LANG_C_plus_plus)
12874 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12875 && ! DECL_IGNORED_P (decl))
12876 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12878 return;
12881 /* If we are in terse mode, don't generate any DIEs for types. */
12882 if (debug_info_level <= DINFO_LEVEL_TERSE)
12883 return;
12885 /* If we're a function-scope tag, initially use a parent of NULL;
12886 this will be fixed up in decls_for_scope. */
12887 if (decl_function_context (decl))
12888 context_die = NULL;
12890 break;
12892 default:
12893 return;
12896 gen_decl_die (decl, context_die);
12899 /* Output a marker (i.e. a label) for the beginning of the generated code for
12900 a lexical block. */
12902 static void
12903 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12904 unsigned int blocknum)
12906 function_section (current_function_decl);
12907 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12910 /* Output a marker (i.e. a label) for the end of the generated code for a
12911 lexical block. */
12913 static void
12914 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12916 function_section (current_function_decl);
12917 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12920 /* Returns nonzero if it is appropriate not to emit any debugging
12921 information for BLOCK, because it doesn't contain any instructions.
12923 Don't allow this for blocks with nested functions or local classes
12924 as we would end up with orphans, and in the presence of scheduling
12925 we may end up calling them anyway. */
12927 static bool
12928 dwarf2out_ignore_block (tree block)
12930 tree decl;
12932 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12933 if (TREE_CODE (decl) == FUNCTION_DECL
12934 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12935 return 0;
12937 return 1;
12940 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12941 dwarf2out.c) and return its "index". The index of each (known) filename is
12942 just a unique number which is associated with only that one filename. We
12943 need such numbers for the sake of generating labels (in the .debug_sfnames
12944 section) and references to those files numbers (in the .debug_srcinfo
12945 and.debug_macinfo sections). If the filename given as an argument is not
12946 found in our current list, add it to the list and assign it the next
12947 available unique index number. In order to speed up searches, we remember
12948 the index of the filename was looked up last. This handles the majority of
12949 all searches. */
12951 static unsigned
12952 lookup_filename (const char *file_name)
12954 size_t i, n;
12955 char *save_file_name;
12957 /* Check to see if the file name that was searched on the previous
12958 call matches this file name. If so, return the index. */
12959 if (file_table_last_lookup_index != 0)
12961 const char *last
12962 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12963 if (strcmp (file_name, last) == 0)
12964 return file_table_last_lookup_index;
12967 /* Didn't match the previous lookup, search the table. */
12968 n = VARRAY_ACTIVE_SIZE (file_table);
12969 for (i = 1; i < n; i++)
12970 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12972 file_table_last_lookup_index = i;
12973 return i;
12976 /* Add the new entry to the end of the filename table. */
12977 file_table_last_lookup_index = n;
12978 save_file_name = (char *) ggc_strdup (file_name);
12979 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12980 VARRAY_PUSH_UINT (file_table_emitted, 0);
12982 return i;
12985 static int
12986 maybe_emit_file (int fileno)
12988 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12990 if (!VARRAY_UINT (file_table_emitted, fileno))
12992 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12993 fprintf (asm_out_file, "\t.file %u ",
12994 VARRAY_UINT (file_table_emitted, fileno));
12995 output_quoted_string (asm_out_file,
12996 VARRAY_CHAR_PTR (file_table, fileno));
12997 fputc ('\n', asm_out_file);
12999 return VARRAY_UINT (file_table_emitted, fileno);
13001 else
13002 return fileno;
13005 static void
13006 init_file_table (void)
13008 /* Allocate the initial hunk of the file_table. */
13009 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13010 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13012 /* Skip the first entry - file numbers begin at 1. */
13013 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13014 VARRAY_PUSH_UINT (file_table_emitted, 0);
13015 file_table_last_lookup_index = 0;
13018 /* Called by the final INSN scan whenever we see a var location. We
13019 use it to drop labels in the right places, and throw the location in
13020 our lookup table. */
13022 static void
13023 dwarf2out_var_location (rtx loc_note)
13025 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13026 struct var_loc_node *newloc;
13027 rtx prev_insn;
13028 static rtx last_insn;
13029 static const char *last_label;
13031 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13032 return;
13033 prev_insn = PREV_INSN (loc_note);
13035 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13036 /* If the insn we processed last time is the previous insn
13037 and it is also a var location note, use the label we emitted
13038 last time. */
13039 if (last_insn != NULL_RTX
13040 && last_insn == prev_insn
13041 && NOTE_P (prev_insn)
13042 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13044 newloc->label = last_label;
13046 else
13048 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13049 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13050 loclabel_num++;
13051 newloc->label = ggc_strdup (loclabel);
13053 newloc->var_loc_note = loc_note;
13054 newloc->next = NULL;
13056 last_insn = loc_note;
13057 last_label = newloc->label;
13059 add_var_loc_to_decl (NOTE_VAR_LOCATION_DECL (loc_note), newloc);
13062 /* We need to reset the locations at the beginning of each
13063 function. We can't do this in the end_function hook, because the
13064 declarations that use the locations won't have been outputted when
13065 that hook is called. */
13067 static void
13068 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13070 htab_empty (decl_loc_table);
13073 /* Output a label to mark the beginning of a source code line entry
13074 and record information relating to this source line, in
13075 'line_info_table' for later output of the .debug_line section. */
13077 static void
13078 dwarf2out_source_line (unsigned int line, const char *filename)
13080 if (debug_info_level >= DINFO_LEVEL_NORMAL
13081 && line != 0)
13083 function_section (current_function_decl);
13085 /* If requested, emit something human-readable. */
13086 if (flag_debug_asm)
13087 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13088 filename, line);
13090 if (DWARF2_ASM_LINE_DEBUG_INFO)
13092 unsigned file_num = lookup_filename (filename);
13094 file_num = maybe_emit_file (file_num);
13096 /* Emit the .loc directive understood by GNU as. */
13097 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13099 /* Indicate that line number info exists. */
13100 line_info_table_in_use++;
13102 /* Indicate that multiple line number tables exist. */
13103 if (DECL_SECTION_NAME (current_function_decl))
13104 separate_line_info_table_in_use++;
13106 else if (DECL_SECTION_NAME (current_function_decl))
13108 dw_separate_line_info_ref line_info;
13109 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13110 separate_line_info_table_in_use);
13112 /* Expand the line info table if necessary. */
13113 if (separate_line_info_table_in_use
13114 == separate_line_info_table_allocated)
13116 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13117 separate_line_info_table
13118 = ggc_realloc (separate_line_info_table,
13119 separate_line_info_table_allocated
13120 * sizeof (dw_separate_line_info_entry));
13121 memset (separate_line_info_table
13122 + separate_line_info_table_in_use,
13124 (LINE_INFO_TABLE_INCREMENT
13125 * sizeof (dw_separate_line_info_entry)));
13128 /* Add the new entry at the end of the line_info_table. */
13129 line_info
13130 = &separate_line_info_table[separate_line_info_table_in_use++];
13131 line_info->dw_file_num = lookup_filename (filename);
13132 line_info->dw_line_num = line;
13133 line_info->function = current_function_funcdef_no;
13135 else
13137 dw_line_info_ref line_info;
13139 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13140 line_info_table_in_use);
13142 /* Expand the line info table if necessary. */
13143 if (line_info_table_in_use == line_info_table_allocated)
13145 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13146 line_info_table
13147 = ggc_realloc (line_info_table,
13148 (line_info_table_allocated
13149 * sizeof (dw_line_info_entry)));
13150 memset (line_info_table + line_info_table_in_use, 0,
13151 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13154 /* Add the new entry at the end of the line_info_table. */
13155 line_info = &line_info_table[line_info_table_in_use++];
13156 line_info->dw_file_num = lookup_filename (filename);
13157 line_info->dw_line_num = line;
13162 /* Record the beginning of a new source file. */
13164 static void
13165 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13167 if (flag_eliminate_dwarf2_dups)
13169 /* Record the beginning of the file for break_out_includes. */
13170 dw_die_ref bincl_die;
13172 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13173 add_AT_string (bincl_die, DW_AT_name, filename);
13176 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13178 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13179 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13180 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13181 lineno);
13182 maybe_emit_file (lookup_filename (filename));
13183 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13184 "Filename we just started");
13188 /* Record the end of a source file. */
13190 static void
13191 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13193 if (flag_eliminate_dwarf2_dups)
13194 /* Record the end of the file for break_out_includes. */
13195 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13197 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13199 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13200 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13204 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13205 the tail part of the directive line, i.e. the part which is past the
13206 initial whitespace, #, whitespace, directive-name, whitespace part. */
13208 static void
13209 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13210 const char *buffer ATTRIBUTE_UNUSED)
13212 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13214 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13215 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13216 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13217 dw2_asm_output_nstring (buffer, -1, "The macro");
13221 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13222 the tail part of the directive line, i.e. the part which is past the
13223 initial whitespace, #, whitespace, directive-name, whitespace part. */
13225 static void
13226 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13227 const char *buffer ATTRIBUTE_UNUSED)
13229 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13231 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13232 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13233 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13234 dw2_asm_output_nstring (buffer, -1, "The macro");
13238 /* Set up for Dwarf output at the start of compilation. */
13240 static void
13241 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13243 init_file_table ();
13245 /* Allocate the decl_die_table. */
13246 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13247 decl_die_table_eq, NULL);
13249 /* Allocate the decl_loc_table. */
13250 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13251 decl_loc_table_eq, NULL);
13253 /* Allocate the initial hunk of the decl_scope_table. */
13254 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13256 /* Allocate the initial hunk of the abbrev_die_table. */
13257 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13258 * sizeof (dw_die_ref));
13259 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13260 /* Zero-th entry is allocated, but unused. */
13261 abbrev_die_table_in_use = 1;
13263 /* Allocate the initial hunk of the line_info_table. */
13264 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13265 * sizeof (dw_line_info_entry));
13266 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13268 /* Zero-th entry is allocated, but unused. */
13269 line_info_table_in_use = 1;
13271 /* Generate the initial DIE for the .debug section. Note that the (string)
13272 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13273 will (typically) be a relative pathname and that this pathname should be
13274 taken as being relative to the directory from which the compiler was
13275 invoked when the given (base) source file was compiled. We will fill
13276 in this value in dwarf2out_finish. */
13277 comp_unit_die = gen_compile_unit_die (NULL);
13279 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13281 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13283 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13284 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13285 DEBUG_ABBREV_SECTION_LABEL, 0);
13286 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13288 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13289 DEBUG_INFO_SECTION_LABEL, 0);
13290 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13291 DEBUG_LINE_SECTION_LABEL, 0);
13292 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13293 DEBUG_RANGES_SECTION_LABEL, 0);
13294 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13295 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13296 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13297 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13298 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13299 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13301 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13303 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13304 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13305 DEBUG_MACINFO_SECTION_LABEL, 0);
13306 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13309 text_section ();
13310 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13313 /* A helper function for dwarf2out_finish called through
13314 ht_forall. Emit one queued .debug_str string. */
13316 static int
13317 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13319 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13321 if (node->form == DW_FORM_strp)
13323 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13324 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13325 assemble_string (node->str, strlen (node->str) + 1);
13328 return 1;
13333 /* Clear the marks for a die and its children.
13334 Be cool if the mark isn't set. */
13336 static void
13337 prune_unmark_dies (dw_die_ref die)
13339 dw_die_ref c;
13340 die->die_mark = 0;
13341 for (c = die->die_child; c; c = c->die_sib)
13342 prune_unmark_dies (c);
13346 /* Given DIE that we're marking as used, find any other dies
13347 it references as attributes and mark them as used. */
13349 static void
13350 prune_unused_types_walk_attribs (dw_die_ref die)
13352 dw_attr_ref a;
13354 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13356 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13358 /* A reference to another DIE.
13359 Make sure that it will get emitted. */
13360 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13362 else if (a->dw_attr == DW_AT_decl_file)
13364 /* A reference to a file. Make sure the file name is emitted. */
13365 a->dw_attr_val.v.val_unsigned =
13366 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13372 /* Mark DIE as being used. If DOKIDS is true, then walk down
13373 to DIE's children. */
13375 static void
13376 prune_unused_types_mark (dw_die_ref die, int dokids)
13378 dw_die_ref c;
13380 if (die->die_mark == 0)
13382 /* We haven't done this node yet. Mark it as used. */
13383 die->die_mark = 1;
13385 /* We also have to mark its parents as used.
13386 (But we don't want to mark our parents' kids due to this.) */
13387 if (die->die_parent)
13388 prune_unused_types_mark (die->die_parent, 0);
13390 /* Mark any referenced nodes. */
13391 prune_unused_types_walk_attribs (die);
13393 /* If this node is a specification,
13394 also mark the definition, if it exists. */
13395 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13396 prune_unused_types_mark (die->die_definition, 1);
13399 if (dokids && die->die_mark != 2)
13401 /* We need to walk the children, but haven't done so yet.
13402 Remember that we've walked the kids. */
13403 die->die_mark = 2;
13405 /* Walk them. */
13406 for (c = die->die_child; c; c = c->die_sib)
13408 /* If this is an array type, we need to make sure our
13409 kids get marked, even if they're types. */
13410 if (die->die_tag == DW_TAG_array_type)
13411 prune_unused_types_mark (c, 1);
13412 else
13413 prune_unused_types_walk (c);
13419 /* Walk the tree DIE and mark types that we actually use. */
13421 static void
13422 prune_unused_types_walk (dw_die_ref die)
13424 dw_die_ref c;
13426 /* Don't do anything if this node is already marked. */
13427 if (die->die_mark)
13428 return;
13430 switch (die->die_tag) {
13431 case DW_TAG_const_type:
13432 case DW_TAG_packed_type:
13433 case DW_TAG_pointer_type:
13434 case DW_TAG_reference_type:
13435 case DW_TAG_volatile_type:
13436 case DW_TAG_typedef:
13437 case DW_TAG_array_type:
13438 case DW_TAG_structure_type:
13439 case DW_TAG_union_type:
13440 case DW_TAG_class_type:
13441 case DW_TAG_friend:
13442 case DW_TAG_variant_part:
13443 case DW_TAG_enumeration_type:
13444 case DW_TAG_subroutine_type:
13445 case DW_TAG_string_type:
13446 case DW_TAG_set_type:
13447 case DW_TAG_subrange_type:
13448 case DW_TAG_ptr_to_member_type:
13449 case DW_TAG_file_type:
13450 /* It's a type node --- don't mark it. */
13451 return;
13453 default:
13454 /* Mark everything else. */
13455 break;
13458 die->die_mark = 1;
13460 /* Now, mark any dies referenced from here. */
13461 prune_unused_types_walk_attribs (die);
13463 /* Mark children. */
13464 for (c = die->die_child; c; c = c->die_sib)
13465 prune_unused_types_walk (c);
13469 /* Remove from the tree DIE any dies that aren't marked. */
13471 static void
13472 prune_unused_types_prune (dw_die_ref die)
13474 dw_die_ref c, p, n;
13476 gcc_assert (die->die_mark);
13478 p = NULL;
13479 for (c = die->die_child; c; c = n)
13481 n = c->die_sib;
13482 if (c->die_mark)
13484 prune_unused_types_prune (c);
13485 p = c;
13487 else
13489 if (p)
13490 p->die_sib = n;
13491 else
13492 die->die_child = n;
13493 free_die (c);
13499 /* Remove dies representing declarations that we never use. */
13501 static void
13502 prune_unused_types (void)
13504 unsigned int i;
13505 limbo_die_node *node;
13507 /* Clear all the marks. */
13508 prune_unmark_dies (comp_unit_die);
13509 for (node = limbo_die_list; node; node = node->next)
13510 prune_unmark_dies (node->die);
13512 /* Set the mark on nodes that are actually used. */
13513 prune_unused_types_walk (comp_unit_die);
13514 for (node = limbo_die_list; node; node = node->next)
13515 prune_unused_types_walk (node->die);
13517 /* Also set the mark on nodes referenced from the
13518 pubname_table or arange_table. */
13519 for (i = 0; i < pubname_table_in_use; i++)
13520 prune_unused_types_mark (pubname_table[i].die, 1);
13521 for (i = 0; i < arange_table_in_use; i++)
13522 prune_unused_types_mark (arange_table[i], 1);
13524 /* Get rid of nodes that aren't marked. */
13525 prune_unused_types_prune (comp_unit_die);
13526 for (node = limbo_die_list; node; node = node->next)
13527 prune_unused_types_prune (node->die);
13529 /* Leave the marks clear. */
13530 prune_unmark_dies (comp_unit_die);
13531 for (node = limbo_die_list; node; node = node->next)
13532 prune_unmark_dies (node->die);
13535 /* Output stuff that dwarf requires at the end of every file,
13536 and generate the DWARF-2 debugging info. */
13538 static void
13539 dwarf2out_finish (const char *filename)
13541 limbo_die_node *node, *next_node;
13542 dw_die_ref die = 0;
13544 /* Add the name for the main input file now. We delayed this from
13545 dwarf2out_init to avoid complications with PCH. */
13546 add_name_attribute (comp_unit_die, filename);
13547 if (filename[0] != DIR_SEPARATOR)
13548 add_comp_dir_attribute (comp_unit_die);
13549 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13551 size_t i;
13552 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13553 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13554 /* Don't add cwd for <built-in>. */
13555 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13557 add_comp_dir_attribute (comp_unit_die);
13558 break;
13562 /* Traverse the limbo die list, and add parent/child links. The only
13563 dies without parents that should be here are concrete instances of
13564 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13565 For concrete instances, we can get the parent die from the abstract
13566 instance. */
13567 for (node = limbo_die_list; node; node = next_node)
13569 next_node = node->next;
13570 die = node->die;
13572 if (die->die_parent == NULL)
13574 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13576 if (origin)
13577 add_child_die (origin->die_parent, die);
13578 else if (die == comp_unit_die)
13580 else if (errorcount > 0 || sorrycount > 0)
13581 /* It's OK to be confused by errors in the input. */
13582 add_child_die (comp_unit_die, die);
13583 else
13585 /* In certain situations, the lexical block containing a
13586 nested function can be optimized away, which results
13587 in the nested function die being orphaned. Likewise
13588 with the return type of that nested function. Force
13589 this to be a child of the containing function.
13591 It may happen that even the containing function got fully
13592 inlined and optimized out. In that case we are lost and
13593 assign the empty child. This should not be big issue as
13594 the function is likely unreachable too. */
13595 tree context = NULL_TREE;
13597 gcc_assert (node->created_for);
13599 if (DECL_P (node->created_for))
13600 context = DECL_CONTEXT (node->created_for);
13601 else if (TYPE_P (node->created_for))
13602 context = TYPE_CONTEXT (node->created_for);
13604 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13606 origin = lookup_decl_die (context);
13607 if (origin)
13608 add_child_die (origin, die);
13609 else
13610 add_child_die (comp_unit_die, die);
13615 limbo_die_list = NULL;
13617 /* Walk through the list of incomplete types again, trying once more to
13618 emit full debugging info for them. */
13619 retry_incomplete_types ();
13621 /* We need to reverse all the dies before break_out_includes, or
13622 we'll see the end of an include file before the beginning. */
13623 reverse_all_dies (comp_unit_die);
13625 if (flag_eliminate_unused_debug_types)
13626 prune_unused_types ();
13628 /* Generate separate CUs for each of the include files we've seen.
13629 They will go into limbo_die_list. */
13630 if (flag_eliminate_dwarf2_dups)
13631 break_out_includes (comp_unit_die);
13633 /* Traverse the DIE's and add add sibling attributes to those DIE's
13634 that have children. */
13635 add_sibling_attributes (comp_unit_die);
13636 for (node = limbo_die_list; node; node = node->next)
13637 add_sibling_attributes (node->die);
13639 /* Output a terminator label for the .text section. */
13640 text_section ();
13641 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13643 /* Output the source line correspondence table. We must do this
13644 even if there is no line information. Otherwise, on an empty
13645 translation unit, we will generate a present, but empty,
13646 .debug_info section. IRIX 6.5 `nm' will then complain when
13647 examining the file. */
13648 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13650 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13651 output_line_info ();
13654 /* Output location list section if necessary. */
13655 if (have_location_lists)
13657 /* Output the location lists info. */
13658 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13659 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13660 DEBUG_LOC_SECTION_LABEL, 0);
13661 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13662 output_location_lists (die);
13663 have_location_lists = 0;
13666 /* We can only use the low/high_pc attributes if all of the code was
13667 in .text. */
13668 if (separate_line_info_table_in_use == 0)
13670 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13671 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13674 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13675 "base address". Use zero so that these addresses become absolute. */
13676 else if (have_location_lists || ranges_table_in_use)
13677 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13679 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13680 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13681 debug_line_section_label);
13683 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13684 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13686 /* Output all of the compilation units. We put the main one last so that
13687 the offsets are available to output_pubnames. */
13688 for (node = limbo_die_list; node; node = node->next)
13689 output_comp_unit (node->die, 0);
13691 output_comp_unit (comp_unit_die, 0);
13693 /* Output the abbreviation table. */
13694 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13695 output_abbrev_section ();
13697 /* Output public names table if necessary. */
13698 if (pubname_table_in_use)
13700 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13701 output_pubnames ();
13704 /* Output the address range information. We only put functions in the arange
13705 table, so don't write it out if we don't have any. */
13706 if (fde_table_in_use)
13708 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13709 output_aranges ();
13712 /* Output ranges section if necessary. */
13713 if (ranges_table_in_use)
13715 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13716 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13717 output_ranges ();
13720 /* Have to end the primary source file. */
13721 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13723 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13724 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13725 dw2_asm_output_data (1, 0, "End compilation unit");
13728 /* If we emitted any DW_FORM_strp form attribute, output the string
13729 table too. */
13730 if (debug_str_hash)
13731 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13733 #else
13735 /* This should never be used, but its address is needed for comparisons. */
13736 const struct gcc_debug_hooks dwarf2_debug_hooks;
13738 #endif /* DWARF2_DEBUGGING_INFO */
13740 #include "gt-dwarf2out.h"