PR c++/3478
[official-gcc.git] / gcc / combine.c
blob2c92d247aa8357b41cde165cd5f6df2a185ea3e9
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 #define nonzero_bits(X, M) \
141 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
143 #define num_sign_bit_copies(X, M) \
144 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
146 /* Maximum register number, which is the size of the tables below. */
148 static unsigned int combine_max_regno;
150 /* Record last point of death of (hard or pseudo) register n. */
152 static rtx *reg_last_death;
154 /* Record last point of modification of (hard or pseudo) register n. */
156 static rtx *reg_last_set;
158 /* Record the cuid of the last insn that invalidated memory
159 (anything that writes memory, and subroutine calls, but not pushes). */
161 static int mem_last_set;
163 /* Record the cuid of the last CALL_INSN
164 so we can tell whether a potential combination crosses any calls. */
166 static int last_call_cuid;
168 /* When `subst' is called, this is the insn that is being modified
169 (by combining in a previous insn). The PATTERN of this insn
170 is still the old pattern partially modified and it should not be
171 looked at, but this may be used to examine the successors of the insn
172 to judge whether a simplification is valid. */
174 static rtx subst_insn;
176 /* This is the lowest CUID that `subst' is currently dealing with.
177 get_last_value will not return a value if the register was set at or
178 after this CUID. If not for this mechanism, we could get confused if
179 I2 or I1 in try_combine were an insn that used the old value of a register
180 to obtain a new value. In that case, we might erroneously get the
181 new value of the register when we wanted the old one. */
183 static int subst_low_cuid;
185 /* This contains any hard registers that are used in newpat; reg_dead_at_p
186 must consider all these registers to be always live. */
188 static HARD_REG_SET newpat_used_regs;
190 /* This is an insn to which a LOG_LINKS entry has been added. If this
191 insn is the earlier than I2 or I3, combine should rescan starting at
192 that location. */
194 static rtx added_links_insn;
196 /* Basic block in which we are performing combines. */
197 static basic_block this_basic_block;
199 /* A bitmap indicating which blocks had registers go dead at entry.
200 After combine, we'll need to re-do global life analysis with
201 those blocks as starting points. */
202 static sbitmap refresh_blocks;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if an
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to nonzero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is nonzero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set nonzero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set nonzero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST (rtx *, rtx);
342 static void do_SUBST_INT (int *, int);
343 static void init_reg_last_arrays (void);
344 static void setup_incoming_promotions (void);
345 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
346 static int cant_combine_insn_p (rtx);
347 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
348 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
349 static int contains_muldiv (rtx);
350 static rtx try_combine (rtx, rtx, rtx, int *);
351 static void undo_all (void);
352 static void undo_commit (void);
353 static rtx *find_split_point (rtx *, rtx);
354 static rtx subst (rtx, rtx, rtx, int, int);
355 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
356 static rtx simplify_if_then_else (rtx);
357 static rtx simplify_set (rtx);
358 static rtx simplify_logical (rtx, int);
359 static rtx expand_compound_operation (rtx);
360 static rtx expand_field_assignment (rtx);
361 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
362 rtx, unsigned HOST_WIDE_INT, int, int, int);
363 static rtx extract_left_shift (rtx, int);
364 static rtx make_compound_operation (rtx, enum rtx_code);
365 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
366 unsigned HOST_WIDE_INT *);
367 static rtx force_to_mode (rtx, enum machine_mode,
368 unsigned HOST_WIDE_INT, rtx, int);
369 static rtx if_then_else_cond (rtx, rtx *, rtx *);
370 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
371 static int rtx_equal_for_field_assignment_p (rtx, rtx);
372 static rtx make_field_assignment (rtx);
373 static rtx apply_distributive_law (rtx);
374 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
375 unsigned HOST_WIDE_INT);
376 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
377 rtx, enum machine_mode,
378 unsigned HOST_WIDE_INT);
379 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
380 enum machine_mode,
381 unsigned HOST_WIDE_INT);
382 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
383 enum machine_mode,
384 unsigned int);
385 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
386 enum machine_mode, unsigned int);
387 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
388 HOST_WIDE_INT, enum machine_mode, int *);
389 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
390 int);
391 static int recog_for_combine (rtx *, rtx, rtx *);
392 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
393 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
394 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
395 static void update_table_tick (rtx);
396 static void record_value_for_reg (rtx, rtx, rtx);
397 static void check_promoted_subreg (rtx, rtx);
398 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
399 static void record_dead_and_set_regs (rtx);
400 static int get_last_value_validate (rtx *, rtx, int, int);
401 static rtx get_last_value (rtx);
402 static int use_crosses_set_p (rtx, int);
403 static void reg_dead_at_p_1 (rtx, rtx, void *);
404 static int reg_dead_at_p (rtx, rtx);
405 static void move_deaths (rtx, rtx, int, rtx, rtx *);
406 static int reg_bitfield_target_p (rtx, rtx);
407 static void distribute_notes (rtx, rtx, rtx, rtx);
408 static void distribute_links (rtx);
409 static void mark_used_regs_combine (rtx);
410 static int insn_cuid (rtx);
411 static void record_promoted_value (rtx, rtx);
412 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
413 static enum rtx_code combine_reversed_comparison_code (rtx);
415 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
416 insn. The substitution can be undone by undo_all. If INTO is already
417 set to NEWVAL, do not record this change. Because computing NEWVAL might
418 also call SUBST, we have to compute it before we put anything into
419 the undo table. */
421 static void
422 do_SUBST (rtx *into, rtx newval)
424 struct undo *buf;
425 rtx oldval = *into;
427 if (oldval == newval)
428 return;
430 /* We'd like to catch as many invalid transformations here as
431 possible. Unfortunately, there are way too many mode changes
432 that are perfectly valid, so we'd waste too much effort for
433 little gain doing the checks here. Focus on catching invalid
434 transformations involving integer constants. */
435 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
436 && GET_CODE (newval) == CONST_INT)
438 /* Sanity check that we're replacing oldval with a CONST_INT
439 that is a valid sign-extension for the original mode. */
440 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
441 GET_MODE (oldval)))
442 abort ();
444 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
445 CONST_INT is not valid, because after the replacement, the
446 original mode would be gone. Unfortunately, we can't tell
447 when do_SUBST is called to replace the operand thereof, so we
448 perform this test on oldval instead, checking whether an
449 invalid replacement took place before we got here. */
450 if ((GET_CODE (oldval) == SUBREG
451 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
452 || (GET_CODE (oldval) == ZERO_EXTEND
453 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
454 abort ();
457 if (undobuf.frees)
458 buf = undobuf.frees, undobuf.frees = buf->next;
459 else
460 buf = xmalloc (sizeof (struct undo));
462 buf->is_int = 0;
463 buf->where.r = into;
464 buf->old_contents.r = oldval;
465 *into = newval;
467 buf->next = undobuf.undos, undobuf.undos = buf;
470 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
472 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
473 for the value of a HOST_WIDE_INT value (including CONST_INT) is
474 not safe. */
476 static void
477 do_SUBST_INT (int *into, int newval)
479 struct undo *buf;
480 int oldval = *into;
482 if (oldval == newval)
483 return;
485 if (undobuf.frees)
486 buf = undobuf.frees, undobuf.frees = buf->next;
487 else
488 buf = xmalloc (sizeof (struct undo));
490 buf->is_int = 1;
491 buf->where.i = into;
492 buf->old_contents.i = oldval;
493 *into = newval;
495 buf->next = undobuf.undos, undobuf.undos = buf;
498 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
500 /* Main entry point for combiner. F is the first insn of the function.
501 NREGS is the first unused pseudo-reg number.
503 Return nonzero if the combiner has turned an indirect jump
504 instruction into a direct jump. */
506 combine_instructions (rtx f, unsigned int nregs)
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
525 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
527 reg_last_death = xmalloc (nregs * sizeof (rtx));
528 reg_last_set = xmalloc (nregs * sizeof (rtx));
529 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
530 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
531 reg_last_set_label = xmalloc (nregs * sizeof (int));
532 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
533 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
534 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
535 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
537 init_reg_last_arrays ();
539 init_recog_no_volatile ();
541 /* Compute maximum uid value so uid_cuid can be allocated. */
543 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
544 if (INSN_UID (insn) > i)
545 i = INSN_UID (insn);
547 uid_cuid = xmalloc ((i + 1) * sizeof (int));
548 max_uid_cuid = i;
550 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
552 /* Don't use reg_nonzero_bits when computing it. This can cause problems
553 when, for example, we have j <<= 1 in a loop. */
555 nonzero_sign_valid = 0;
557 /* Compute the mapping from uids to cuids.
558 Cuids are numbers assigned to insns, like uids,
559 except that cuids increase monotonically through the code.
561 Scan all SETs and see if we can deduce anything about what
562 bits are known to be zero for some registers and how many copies
563 of the sign bit are known to exist for those registers.
565 Also set any known values so that we can use it while searching
566 for what bits are known to be set. */
568 label_tick = 1;
570 setup_incoming_promotions ();
572 refresh_blocks = sbitmap_alloc (last_basic_block);
573 sbitmap_zero (refresh_blocks);
575 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
577 uid_cuid[INSN_UID (insn)] = ++i;
578 subst_low_cuid = i;
579 subst_insn = insn;
581 if (INSN_P (insn))
583 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
584 NULL);
585 record_dead_and_set_regs (insn);
587 #ifdef AUTO_INC_DEC
588 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
589 if (REG_NOTE_KIND (links) == REG_INC)
590 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
591 NULL);
592 #endif
595 if (GET_CODE (insn) == CODE_LABEL)
596 label_tick++;
599 nonzero_sign_valid = 1;
601 /* Now scan all the insns in forward order. */
603 label_tick = 1;
604 last_call_cuid = 0;
605 mem_last_set = 0;
606 init_reg_last_arrays ();
607 setup_incoming_promotions ();
609 FOR_EACH_BB (this_basic_block)
611 for (insn = BB_HEAD (this_basic_block);
612 insn != NEXT_INSN (BB_END (this_basic_block));
613 insn = next ? next : NEXT_INSN (insn))
615 next = 0;
617 if (GET_CODE (insn) == CODE_LABEL)
618 label_tick++;
620 else if (INSN_P (insn))
622 /* See if we know about function return values before this
623 insn based upon SUBREG flags. */
624 check_promoted_subreg (insn, PATTERN (insn));
626 /* Try this insn with each insn it links back to. */
628 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
629 if ((next = try_combine (insn, XEXP (links, 0),
630 NULL_RTX, &new_direct_jump_p)) != 0)
631 goto retry;
633 /* Try each sequence of three linked insns ending with this one. */
635 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
637 rtx link = XEXP (links, 0);
639 /* If the linked insn has been replaced by a note, then there
640 is no point in pursuing this chain any further. */
641 if (GET_CODE (link) == NOTE)
642 continue;
644 for (nextlinks = LOG_LINKS (link);
645 nextlinks;
646 nextlinks = XEXP (nextlinks, 1))
647 if ((next = try_combine (insn, link,
648 XEXP (nextlinks, 0),
649 &new_direct_jump_p)) != 0)
650 goto retry;
653 #ifdef HAVE_cc0
654 /* Try to combine a jump insn that uses CC0
655 with a preceding insn that sets CC0, and maybe with its
656 logical predecessor as well.
657 This is how we make decrement-and-branch insns.
658 We need this special code because data flow connections
659 via CC0 do not get entered in LOG_LINKS. */
661 if (GET_CODE (insn) == JUMP_INSN
662 && (prev = prev_nonnote_insn (insn)) != 0
663 && GET_CODE (prev) == INSN
664 && sets_cc0_p (PATTERN (prev)))
666 if ((next = try_combine (insn, prev,
667 NULL_RTX, &new_direct_jump_p)) != 0)
668 goto retry;
670 for (nextlinks = LOG_LINKS (prev); nextlinks;
671 nextlinks = XEXP (nextlinks, 1))
672 if ((next = try_combine (insn, prev,
673 XEXP (nextlinks, 0),
674 &new_direct_jump_p)) != 0)
675 goto retry;
678 /* Do the same for an insn that explicitly references CC0. */
679 if (GET_CODE (insn) == INSN
680 && (prev = prev_nonnote_insn (insn)) != 0
681 && GET_CODE (prev) == INSN
682 && sets_cc0_p (PATTERN (prev))
683 && GET_CODE (PATTERN (insn)) == SET
684 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
686 if ((next = try_combine (insn, prev,
687 NULL_RTX, &new_direct_jump_p)) != 0)
688 goto retry;
690 for (nextlinks = LOG_LINKS (prev); nextlinks;
691 nextlinks = XEXP (nextlinks, 1))
692 if ((next = try_combine (insn, prev,
693 XEXP (nextlinks, 0),
694 &new_direct_jump_p)) != 0)
695 goto retry;
698 /* Finally, see if any of the insns that this insn links to
699 explicitly references CC0. If so, try this insn, that insn,
700 and its predecessor if it sets CC0. */
701 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
702 if (GET_CODE (XEXP (links, 0)) == INSN
703 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
704 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
705 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
706 && GET_CODE (prev) == INSN
707 && sets_cc0_p (PATTERN (prev))
708 && (next = try_combine (insn, XEXP (links, 0),
709 prev, &new_direct_jump_p)) != 0)
710 goto retry;
711 #endif
713 /* Try combining an insn with two different insns whose results it
714 uses. */
715 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
716 for (nextlinks = XEXP (links, 1); nextlinks;
717 nextlinks = XEXP (nextlinks, 1))
718 if ((next = try_combine (insn, XEXP (links, 0),
719 XEXP (nextlinks, 0),
720 &new_direct_jump_p)) != 0)
721 goto retry;
723 if (GET_CODE (insn) != NOTE)
724 record_dead_and_set_regs (insn);
726 retry:
731 clear_bb_flags ();
733 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
734 BASIC_BLOCK (i)->flags |= BB_DIRTY);
735 new_direct_jump_p |= purge_all_dead_edges (0);
736 delete_noop_moves (f);
738 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
739 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
740 | PROP_KILL_DEAD_CODE);
742 /* Clean up. */
743 sbitmap_free (refresh_blocks);
744 free (reg_nonzero_bits);
745 free (reg_sign_bit_copies);
746 free (reg_last_death);
747 free (reg_last_set);
748 free (reg_last_set_value);
749 free (reg_last_set_table_tick);
750 free (reg_last_set_label);
751 free (reg_last_set_invalid);
752 free (reg_last_set_mode);
753 free (reg_last_set_nonzero_bits);
754 free (reg_last_set_sign_bit_copies);
755 free (uid_cuid);
758 struct undo *undo, *next;
759 for (undo = undobuf.frees; undo; undo = next)
761 next = undo->next;
762 free (undo);
764 undobuf.frees = 0;
767 total_attempts += combine_attempts;
768 total_merges += combine_merges;
769 total_extras += combine_extras;
770 total_successes += combine_successes;
772 nonzero_sign_valid = 0;
774 /* Make recognizer allow volatile MEMs again. */
775 init_recog ();
777 return new_direct_jump_p;
780 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
782 static void
783 init_reg_last_arrays (void)
785 unsigned int nregs = combine_max_regno;
787 memset (reg_last_death, 0, nregs * sizeof (rtx));
788 memset (reg_last_set, 0, nregs * sizeof (rtx));
789 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
790 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
791 memset (reg_last_set_label, 0, nregs * sizeof (int));
792 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
793 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
794 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
795 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
798 /* Set up any promoted values for incoming argument registers. */
800 static void
801 setup_incoming_promotions (void)
803 unsigned int regno;
804 rtx reg;
805 enum machine_mode mode;
806 int unsignedp;
807 rtx first = get_insns ();
809 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
811 #ifndef OUTGOING_REGNO
812 #define OUTGOING_REGNO(N) N
813 #endif
814 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
815 /* Check whether this register can hold an incoming pointer
816 argument. FUNCTION_ARG_REGNO_P tests outgoing register
817 numbers, so translate if necessary due to register windows. */
818 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
819 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
821 record_value_for_reg
822 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
823 : SIGN_EXTEND),
824 GET_MODE (reg),
825 gen_rtx_CLOBBER (mode, const0_rtx)));
830 /* Called via note_stores. If X is a pseudo that is narrower than
831 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
833 If we are setting only a portion of X and we can't figure out what
834 portion, assume all bits will be used since we don't know what will
835 be happening.
837 Similarly, set how many bits of X are known to be copies of the sign bit
838 at all locations in the function. This is the smallest number implied
839 by any set of X. */
841 static void
842 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
843 void *data ATTRIBUTE_UNUSED)
845 unsigned int num;
847 if (GET_CODE (x) == REG
848 && REGNO (x) >= FIRST_PSEUDO_REGISTER
849 /* If this register is undefined at the start of the file, we can't
850 say what its contents were. */
851 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
852 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
854 if (set == 0 || GET_CODE (set) == CLOBBER)
856 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
857 reg_sign_bit_copies[REGNO (x)] = 1;
858 return;
861 /* If this is a complex assignment, see if we can convert it into a
862 simple assignment. */
863 set = expand_field_assignment (set);
865 /* If this is a simple assignment, or we have a paradoxical SUBREG,
866 set what we know about X. */
868 if (SET_DEST (set) == x
869 || (GET_CODE (SET_DEST (set)) == SUBREG
870 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
871 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
872 && SUBREG_REG (SET_DEST (set)) == x))
874 rtx src = SET_SRC (set);
876 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
877 /* If X is narrower than a word and SRC is a non-negative
878 constant that would appear negative in the mode of X,
879 sign-extend it for use in reg_nonzero_bits because some
880 machines (maybe most) will actually do the sign-extension
881 and this is the conservative approach.
883 ??? For 2.5, try to tighten up the MD files in this regard
884 instead of this kludge. */
886 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
887 && GET_CODE (src) == CONST_INT
888 && INTVAL (src) > 0
889 && 0 != (INTVAL (src)
890 & ((HOST_WIDE_INT) 1
891 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
892 src = GEN_INT (INTVAL (src)
893 | ((HOST_WIDE_INT) (-1)
894 << GET_MODE_BITSIZE (GET_MODE (x))));
895 #endif
897 /* Don't call nonzero_bits if it cannot change anything. */
898 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
899 reg_nonzero_bits[REGNO (x)]
900 |= nonzero_bits (src, nonzero_bits_mode);
901 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
902 if (reg_sign_bit_copies[REGNO (x)] == 0
903 || reg_sign_bit_copies[REGNO (x)] > num)
904 reg_sign_bit_copies[REGNO (x)] = num;
906 else
908 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
909 reg_sign_bit_copies[REGNO (x)] = 1;
914 /* See if INSN can be combined into I3. PRED and SUCC are optionally
915 insns that were previously combined into I3 or that will be combined
916 into the merger of INSN and I3.
918 Return 0 if the combination is not allowed for any reason.
920 If the combination is allowed, *PDEST will be set to the single
921 destination of INSN and *PSRC to the single source, and this function
922 will return 1. */
924 static int
925 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
926 rtx *pdest, rtx *psrc)
928 int i;
929 rtx set = 0, src, dest;
930 rtx p;
931 #ifdef AUTO_INC_DEC
932 rtx link;
933 #endif
934 int all_adjacent = (succ ? (next_active_insn (insn) == succ
935 && next_active_insn (succ) == i3)
936 : next_active_insn (insn) == i3);
938 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
939 or a PARALLEL consisting of such a SET and CLOBBERs.
941 If INSN has CLOBBER parallel parts, ignore them for our processing.
942 By definition, these happen during the execution of the insn. When it
943 is merged with another insn, all bets are off. If they are, in fact,
944 needed and aren't also supplied in I3, they may be added by
945 recog_for_combine. Otherwise, it won't match.
947 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
948 note.
950 Get the source and destination of INSN. If more than one, can't
951 combine. */
953 if (GET_CODE (PATTERN (insn)) == SET)
954 set = PATTERN (insn);
955 else if (GET_CODE (PATTERN (insn)) == PARALLEL
956 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
958 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
960 rtx elt = XVECEXP (PATTERN (insn), 0, i);
962 switch (GET_CODE (elt))
964 /* This is important to combine floating point insns
965 for the SH4 port. */
966 case USE:
967 /* Combining an isolated USE doesn't make sense.
968 We depend here on combinable_i3pat to reject them. */
969 /* The code below this loop only verifies that the inputs of
970 the SET in INSN do not change. We call reg_set_between_p
971 to verify that the REG in the USE does not change between
972 I3 and INSN.
973 If the USE in INSN was for a pseudo register, the matching
974 insn pattern will likely match any register; combining this
975 with any other USE would only be safe if we knew that the
976 used registers have identical values, or if there was
977 something to tell them apart, e.g. different modes. For
978 now, we forgo such complicated tests and simply disallow
979 combining of USES of pseudo registers with any other USE. */
980 if (GET_CODE (XEXP (elt, 0)) == REG
981 && GET_CODE (PATTERN (i3)) == PARALLEL)
983 rtx i3pat = PATTERN (i3);
984 int i = XVECLEN (i3pat, 0) - 1;
985 unsigned int regno = REGNO (XEXP (elt, 0));
989 rtx i3elt = XVECEXP (i3pat, 0, i);
991 if (GET_CODE (i3elt) == USE
992 && GET_CODE (XEXP (i3elt, 0)) == REG
993 && (REGNO (XEXP (i3elt, 0)) == regno
994 ? reg_set_between_p (XEXP (elt, 0),
995 PREV_INSN (insn), i3)
996 : regno >= FIRST_PSEUDO_REGISTER))
997 return 0;
999 while (--i >= 0);
1001 break;
1003 /* We can ignore CLOBBERs. */
1004 case CLOBBER:
1005 break;
1007 case SET:
1008 /* Ignore SETs whose result isn't used but not those that
1009 have side-effects. */
1010 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1011 && ! side_effects_p (elt))
1012 break;
1014 /* If we have already found a SET, this is a second one and
1015 so we cannot combine with this insn. */
1016 if (set)
1017 return 0;
1019 set = elt;
1020 break;
1022 default:
1023 /* Anything else means we can't combine. */
1024 return 0;
1028 if (set == 0
1029 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1030 so don't do anything with it. */
1031 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1032 return 0;
1034 else
1035 return 0;
1037 if (set == 0)
1038 return 0;
1040 set = expand_field_assignment (set);
1041 src = SET_SRC (set), dest = SET_DEST (set);
1043 /* Don't eliminate a store in the stack pointer. */
1044 if (dest == stack_pointer_rtx
1045 /* Don't combine with an insn that sets a register to itself if it has
1046 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1047 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1048 /* Can't merge an ASM_OPERANDS. */
1049 || GET_CODE (src) == ASM_OPERANDS
1050 /* Can't merge a function call. */
1051 || GET_CODE (src) == CALL
1052 /* Don't eliminate a function call argument. */
1053 || (GET_CODE (i3) == CALL_INSN
1054 && (find_reg_fusage (i3, USE, dest)
1055 || (GET_CODE (dest) == REG
1056 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1057 && global_regs[REGNO (dest)])))
1058 /* Don't substitute into an incremented register. */
1059 || FIND_REG_INC_NOTE (i3, dest)
1060 || (succ && FIND_REG_INC_NOTE (succ, dest))
1061 #if 0
1062 /* Don't combine the end of a libcall into anything. */
1063 /* ??? This gives worse code, and appears to be unnecessary, since no
1064 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1065 use REG_RETVAL notes for noconflict blocks, but other code here
1066 makes sure that those insns don't disappear. */
1067 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1068 #endif
1069 /* Make sure that DEST is not used after SUCC but before I3. */
1070 || (succ && ! all_adjacent
1071 && reg_used_between_p (dest, succ, i3))
1072 /* Make sure that the value that is to be substituted for the register
1073 does not use any registers whose values alter in between. However,
1074 If the insns are adjacent, a use can't cross a set even though we
1075 think it might (this can happen for a sequence of insns each setting
1076 the same destination; reg_last_set of that register might point to
1077 a NOTE). If INSN has a REG_EQUIV note, the register is always
1078 equivalent to the memory so the substitution is valid even if there
1079 are intervening stores. Also, don't move a volatile asm or
1080 UNSPEC_VOLATILE across any other insns. */
1081 || (! all_adjacent
1082 && (((GET_CODE (src) != MEM
1083 || ! find_reg_note (insn, REG_EQUIV, src))
1084 && use_crosses_set_p (src, INSN_CUID (insn)))
1085 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1086 || GET_CODE (src) == UNSPEC_VOLATILE))
1087 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1088 better register allocation by not doing the combine. */
1089 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1090 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1091 /* Don't combine across a CALL_INSN, because that would possibly
1092 change whether the life span of some REGs crosses calls or not,
1093 and it is a pain to update that information.
1094 Exception: if source is a constant, moving it later can't hurt.
1095 Accept that special case, because it helps -fforce-addr a lot. */
1096 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1097 return 0;
1099 /* DEST must either be a REG or CC0. */
1100 if (GET_CODE (dest) == REG)
1102 /* If register alignment is being enforced for multi-word items in all
1103 cases except for parameters, it is possible to have a register copy
1104 insn referencing a hard register that is not allowed to contain the
1105 mode being copied and which would not be valid as an operand of most
1106 insns. Eliminate this problem by not combining with such an insn.
1108 Also, on some machines we don't want to extend the life of a hard
1109 register. */
1111 if (GET_CODE (src) == REG
1112 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1113 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1114 /* Don't extend the life of a hard register unless it is
1115 user variable (if we have few registers) or it can't
1116 fit into the desired register (meaning something special
1117 is going on).
1118 Also avoid substituting a return register into I3, because
1119 reload can't handle a conflict with constraints of other
1120 inputs. */
1121 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1122 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1123 return 0;
1125 else if (GET_CODE (dest) != CC0)
1126 return 0;
1128 /* Don't substitute for a register intended as a clobberable operand.
1129 Similarly, don't substitute an expression containing a register that
1130 will be clobbered in I3. */
1131 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1132 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1133 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1134 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1135 src)
1136 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1137 return 0;
1139 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1140 or not), reject, unless nothing volatile comes between it and I3 */
1142 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1144 /* Make sure succ doesn't contain a volatile reference. */
1145 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1146 return 0;
1148 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1149 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1150 return 0;
1153 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1154 to be an explicit register variable, and was chosen for a reason. */
1156 if (GET_CODE (src) == ASM_OPERANDS
1157 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1158 return 0;
1160 /* If there are any volatile insns between INSN and I3, reject, because
1161 they might affect machine state. */
1163 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1164 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1165 return 0;
1167 /* If INSN or I2 contains an autoincrement or autodecrement,
1168 make sure that register is not used between there and I3,
1169 and not already used in I3 either.
1170 Also insist that I3 not be a jump; if it were one
1171 and the incremented register were spilled, we would lose. */
1173 #ifdef AUTO_INC_DEC
1174 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1175 if (REG_NOTE_KIND (link) == REG_INC
1176 && (GET_CODE (i3) == JUMP_INSN
1177 || reg_used_between_p (XEXP (link, 0), insn, i3)
1178 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1179 return 0;
1180 #endif
1182 #ifdef HAVE_cc0
1183 /* Don't combine an insn that follows a CC0-setting insn.
1184 An insn that uses CC0 must not be separated from the one that sets it.
1185 We do, however, allow I2 to follow a CC0-setting insn if that insn
1186 is passed as I1; in that case it will be deleted also.
1187 We also allow combining in this case if all the insns are adjacent
1188 because that would leave the two CC0 insns adjacent as well.
1189 It would be more logical to test whether CC0 occurs inside I1 or I2,
1190 but that would be much slower, and this ought to be equivalent. */
1192 p = prev_nonnote_insn (insn);
1193 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1194 && ! all_adjacent)
1195 return 0;
1196 #endif
1198 /* If we get here, we have passed all the tests and the combination is
1199 to be allowed. */
1201 *pdest = dest;
1202 *psrc = src;
1204 return 1;
1207 /* LOC is the location within I3 that contains its pattern or the component
1208 of a PARALLEL of the pattern. We validate that it is valid for combining.
1210 One problem is if I3 modifies its output, as opposed to replacing it
1211 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1212 so would produce an insn that is not equivalent to the original insns.
1214 Consider:
1216 (set (reg:DI 101) (reg:DI 100))
1217 (set (subreg:SI (reg:DI 101) 0) <foo>)
1219 This is NOT equivalent to:
1221 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1222 (set (reg:DI 101) (reg:DI 100))])
1224 Not only does this modify 100 (in which case it might still be valid
1225 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1227 We can also run into a problem if I2 sets a register that I1
1228 uses and I1 gets directly substituted into I3 (not via I2). In that
1229 case, we would be getting the wrong value of I2DEST into I3, so we
1230 must reject the combination. This case occurs when I2 and I1 both
1231 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1232 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1233 of a SET must prevent combination from occurring.
1235 Before doing the above check, we first try to expand a field assignment
1236 into a set of logical operations.
1238 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1239 we place a register that is both set and used within I3. If more than one
1240 such register is detected, we fail.
1242 Return 1 if the combination is valid, zero otherwise. */
1244 static int
1245 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1246 int i1_not_in_src, rtx *pi3dest_killed)
1248 rtx x = *loc;
1250 if (GET_CODE (x) == SET)
1252 rtx set = x ;
1253 rtx dest = SET_DEST (set);
1254 rtx src = SET_SRC (set);
1255 rtx inner_dest = dest;
1257 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1258 || GET_CODE (inner_dest) == SUBREG
1259 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1260 inner_dest = XEXP (inner_dest, 0);
1262 /* Check for the case where I3 modifies its output, as discussed
1263 above. We don't want to prevent pseudos from being combined
1264 into the address of a MEM, so only prevent the combination if
1265 i1 or i2 set the same MEM. */
1266 if ((inner_dest != dest &&
1267 (GET_CODE (inner_dest) != MEM
1268 || rtx_equal_p (i2dest, inner_dest)
1269 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1270 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1271 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1273 /* This is the same test done in can_combine_p except we can't test
1274 all_adjacent; we don't have to, since this instruction will stay
1275 in place, thus we are not considering increasing the lifetime of
1276 INNER_DEST.
1278 Also, if this insn sets a function argument, combining it with
1279 something that might need a spill could clobber a previous
1280 function argument; the all_adjacent test in can_combine_p also
1281 checks this; here, we do a more specific test for this case. */
1283 || (GET_CODE (inner_dest) == REG
1284 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1285 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1286 GET_MODE (inner_dest))))
1287 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1288 return 0;
1290 /* If DEST is used in I3, it is being killed in this insn,
1291 so record that for later.
1292 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1293 STACK_POINTER_REGNUM, since these are always considered to be
1294 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1295 if (pi3dest_killed && GET_CODE (dest) == REG
1296 && reg_referenced_p (dest, PATTERN (i3))
1297 && REGNO (dest) != FRAME_POINTER_REGNUM
1298 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1299 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1300 #endif
1301 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1302 && (REGNO (dest) != ARG_POINTER_REGNUM
1303 || ! fixed_regs [REGNO (dest)])
1304 #endif
1305 && REGNO (dest) != STACK_POINTER_REGNUM)
1307 if (*pi3dest_killed)
1308 return 0;
1310 *pi3dest_killed = dest;
1314 else if (GET_CODE (x) == PARALLEL)
1316 int i;
1318 for (i = 0; i < XVECLEN (x, 0); i++)
1319 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1320 i1_not_in_src, pi3dest_killed))
1321 return 0;
1324 return 1;
1327 /* Return 1 if X is an arithmetic expression that contains a multiplication
1328 and division. We don't count multiplications by powers of two here. */
1330 static int
1331 contains_muldiv (rtx x)
1333 switch (GET_CODE (x))
1335 case MOD: case DIV: case UMOD: case UDIV:
1336 return 1;
1338 case MULT:
1339 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1340 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1341 default:
1342 switch (GET_RTX_CLASS (GET_CODE (x)))
1344 case 'c': case '<': case '2':
1345 return contains_muldiv (XEXP (x, 0))
1346 || contains_muldiv (XEXP (x, 1));
1348 case '1':
1349 return contains_muldiv (XEXP (x, 0));
1351 default:
1352 return 0;
1357 /* Determine whether INSN can be used in a combination. Return nonzero if
1358 not. This is used in try_combine to detect early some cases where we
1359 can't perform combinations. */
1361 static int
1362 cant_combine_insn_p (rtx insn)
1364 rtx set;
1365 rtx src, dest;
1367 /* If this isn't really an insn, we can't do anything.
1368 This can occur when flow deletes an insn that it has merged into an
1369 auto-increment address. */
1370 if (! INSN_P (insn))
1371 return 1;
1373 /* Never combine loads and stores involving hard regs that are likely
1374 to be spilled. The register allocator can usually handle such
1375 reg-reg moves by tying. If we allow the combiner to make
1376 substitutions of likely-spilled regs, we may abort in reload.
1377 As an exception, we allow combinations involving fixed regs; these are
1378 not available to the register allocator so there's no risk involved. */
1380 set = single_set (insn);
1381 if (! set)
1382 return 0;
1383 src = SET_SRC (set);
1384 dest = SET_DEST (set);
1385 if (GET_CODE (src) == SUBREG)
1386 src = SUBREG_REG (src);
1387 if (GET_CODE (dest) == SUBREG)
1388 dest = SUBREG_REG (dest);
1389 if (REG_P (src) && REG_P (dest)
1390 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1391 && ! fixed_regs[REGNO (src)]
1392 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1393 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1394 && ! fixed_regs[REGNO (dest)]
1395 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1396 return 1;
1398 return 0;
1401 /* Adjust INSN after we made a change to its destination.
1403 Changing the destination can invalidate notes that say something about
1404 the results of the insn and a LOG_LINK pointing to the insn. */
1406 static void
1407 adjust_for_new_dest (rtx insn)
1409 rtx *loc;
1411 /* For notes, be conservative and simply remove them. */
1412 loc = &REG_NOTES (insn);
1413 while (*loc)
1415 enum reg_note kind = REG_NOTE_KIND (*loc);
1416 if (kind == REG_EQUAL || kind == REG_EQUIV)
1417 *loc = XEXP (*loc, 1);
1418 else
1419 loc = &XEXP (*loc, 1);
1422 /* The new insn will have a destination that was previously the destination
1423 of an insn just above it. Call distribute_links to make a LOG_LINK from
1424 the next use of that destination. */
1425 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1428 /* Try to combine the insns I1 and I2 into I3.
1429 Here I1 and I2 appear earlier than I3.
1430 I1 can be zero; then we combine just I2 into I3.
1432 If we are combining three insns and the resulting insn is not recognized,
1433 try splitting it into two insns. If that happens, I2 and I3 are retained
1434 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1435 are pseudo-deleted.
1437 Return 0 if the combination does not work. Then nothing is changed.
1438 If we did the combination, return the insn at which combine should
1439 resume scanning.
1441 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1442 new direct jump instruction. */
1444 static rtx
1445 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1447 /* New patterns for I3 and I2, respectively. */
1448 rtx newpat, newi2pat = 0;
1449 int substed_i2 = 0, substed_i1 = 0;
1450 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1451 int added_sets_1, added_sets_2;
1452 /* Total number of SETs to put into I3. */
1453 int total_sets;
1454 /* Nonzero is I2's body now appears in I3. */
1455 int i2_is_used;
1456 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1457 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1458 /* Contains I3 if the destination of I3 is used in its source, which means
1459 that the old life of I3 is being killed. If that usage is placed into
1460 I2 and not in I3, a REG_DEAD note must be made. */
1461 rtx i3dest_killed = 0;
1462 /* SET_DEST and SET_SRC of I2 and I1. */
1463 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1464 /* PATTERN (I2), or a copy of it in certain cases. */
1465 rtx i2pat;
1466 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1467 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1468 int i1_feeds_i3 = 0;
1469 /* Notes that must be added to REG_NOTES in I3 and I2. */
1470 rtx new_i3_notes, new_i2_notes;
1471 /* Notes that we substituted I3 into I2 instead of the normal case. */
1472 int i3_subst_into_i2 = 0;
1473 /* Notes that I1, I2 or I3 is a MULT operation. */
1474 int have_mult = 0;
1476 int maxreg;
1477 rtx temp;
1478 rtx link;
1479 int i;
1481 /* Exit early if one of the insns involved can't be used for
1482 combinations. */
1483 if (cant_combine_insn_p (i3)
1484 || cant_combine_insn_p (i2)
1485 || (i1 && cant_combine_insn_p (i1))
1486 /* We also can't do anything if I3 has a
1487 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1488 libcall. */
1489 #if 0
1490 /* ??? This gives worse code, and appears to be unnecessary, since no
1491 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1492 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1493 #endif
1495 return 0;
1497 combine_attempts++;
1498 undobuf.other_insn = 0;
1500 /* Reset the hard register usage information. */
1501 CLEAR_HARD_REG_SET (newpat_used_regs);
1503 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1504 code below, set I1 to be the earlier of the two insns. */
1505 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1506 temp = i1, i1 = i2, i2 = temp;
1508 added_links_insn = 0;
1510 /* First check for one important special-case that the code below will
1511 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1512 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1513 we may be able to replace that destination with the destination of I3.
1514 This occurs in the common code where we compute both a quotient and
1515 remainder into a structure, in which case we want to do the computation
1516 directly into the structure to avoid register-register copies.
1518 Note that this case handles both multiple sets in I2 and also
1519 cases where I2 has a number of CLOBBER or PARALLELs.
1521 We make very conservative checks below and only try to handle the
1522 most common cases of this. For example, we only handle the case
1523 where I2 and I3 are adjacent to avoid making difficult register
1524 usage tests. */
1526 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1527 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1528 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1529 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1530 && GET_CODE (PATTERN (i2)) == PARALLEL
1531 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1532 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1533 below would need to check what is inside (and reg_overlap_mentioned_p
1534 doesn't support those codes anyway). Don't allow those destinations;
1535 the resulting insn isn't likely to be recognized anyway. */
1536 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1537 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1538 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1539 SET_DEST (PATTERN (i3)))
1540 && next_real_insn (i2) == i3)
1542 rtx p2 = PATTERN (i2);
1544 /* Make sure that the destination of I3,
1545 which we are going to substitute into one output of I2,
1546 is not used within another output of I2. We must avoid making this:
1547 (parallel [(set (mem (reg 69)) ...)
1548 (set (reg 69) ...)])
1549 which is not well-defined as to order of actions.
1550 (Besides, reload can't handle output reloads for this.)
1552 The problem can also happen if the dest of I3 is a memory ref,
1553 if another dest in I2 is an indirect memory ref. */
1554 for (i = 0; i < XVECLEN (p2, 0); i++)
1555 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1556 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1557 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1558 SET_DEST (XVECEXP (p2, 0, i))))
1559 break;
1561 if (i == XVECLEN (p2, 0))
1562 for (i = 0; i < XVECLEN (p2, 0); i++)
1563 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1564 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1565 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1567 combine_merges++;
1569 subst_insn = i3;
1570 subst_low_cuid = INSN_CUID (i2);
1572 added_sets_2 = added_sets_1 = 0;
1573 i2dest = SET_SRC (PATTERN (i3));
1575 /* Replace the dest in I2 with our dest and make the resulting
1576 insn the new pattern for I3. Then skip to where we
1577 validate the pattern. Everything was set up above. */
1578 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1579 SET_DEST (PATTERN (i3)));
1581 newpat = p2;
1582 i3_subst_into_i2 = 1;
1583 goto validate_replacement;
1587 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1588 one of those words to another constant, merge them by making a new
1589 constant. */
1590 if (i1 == 0
1591 && (temp = single_set (i2)) != 0
1592 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1593 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1594 && GET_CODE (SET_DEST (temp)) == REG
1595 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1596 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1597 && GET_CODE (PATTERN (i3)) == SET
1598 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1599 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1600 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1601 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1602 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1604 HOST_WIDE_INT lo, hi;
1606 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1607 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1608 else
1610 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1611 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1614 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1616 /* We don't handle the case of the target word being wider
1617 than a host wide int. */
1618 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1619 abort ();
1621 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1622 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1623 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1625 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1626 hi = INTVAL (SET_SRC (PATTERN (i3)));
1627 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1629 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1630 >> (HOST_BITS_PER_WIDE_INT - 1));
1632 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1633 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1634 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1635 (INTVAL (SET_SRC (PATTERN (i3)))));
1636 if (hi == sign)
1637 hi = lo < 0 ? -1 : 0;
1639 else
1640 /* We don't handle the case of the higher word not fitting
1641 entirely in either hi or lo. */
1642 abort ();
1644 combine_merges++;
1645 subst_insn = i3;
1646 subst_low_cuid = INSN_CUID (i2);
1647 added_sets_2 = added_sets_1 = 0;
1648 i2dest = SET_DEST (temp);
1650 SUBST (SET_SRC (temp),
1651 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1653 newpat = PATTERN (i2);
1654 goto validate_replacement;
1657 #ifndef HAVE_cc0
1658 /* If we have no I1 and I2 looks like:
1659 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1660 (set Y OP)])
1661 make up a dummy I1 that is
1662 (set Y OP)
1663 and change I2 to be
1664 (set (reg:CC X) (compare:CC Y (const_int 0)))
1666 (We can ignore any trailing CLOBBERs.)
1668 This undoes a previous combination and allows us to match a branch-and-
1669 decrement insn. */
1671 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1672 && XVECLEN (PATTERN (i2), 0) >= 2
1673 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1674 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1675 == MODE_CC)
1676 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1677 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1678 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1679 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1680 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1681 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1683 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1684 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1685 break;
1687 if (i == 1)
1689 /* We make I1 with the same INSN_UID as I2. This gives it
1690 the same INSN_CUID for value tracking. Our fake I1 will
1691 never appear in the insn stream so giving it the same INSN_UID
1692 as I2 will not cause a problem. */
1694 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1695 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1696 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1697 NULL_RTX);
1699 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1700 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1701 SET_DEST (PATTERN (i1)));
1704 #endif
1706 /* Verify that I2 and I1 are valid for combining. */
1707 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1708 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1710 undo_all ();
1711 return 0;
1714 /* Record whether I2DEST is used in I2SRC and similarly for the other
1715 cases. Knowing this will help in register status updating below. */
1716 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1717 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1718 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1720 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1721 in I2SRC. */
1722 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1724 /* Ensure that I3's pattern can be the destination of combines. */
1725 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1726 i1 && i2dest_in_i1src && i1_feeds_i3,
1727 &i3dest_killed))
1729 undo_all ();
1730 return 0;
1733 /* See if any of the insns is a MULT operation. Unless one is, we will
1734 reject a combination that is, since it must be slower. Be conservative
1735 here. */
1736 if (GET_CODE (i2src) == MULT
1737 || (i1 != 0 && GET_CODE (i1src) == MULT)
1738 || (GET_CODE (PATTERN (i3)) == SET
1739 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1740 have_mult = 1;
1742 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1743 We used to do this EXCEPT in one case: I3 has a post-inc in an
1744 output operand. However, that exception can give rise to insns like
1745 mov r3,(r3)+
1746 which is a famous insn on the PDP-11 where the value of r3 used as the
1747 source was model-dependent. Avoid this sort of thing. */
1749 #if 0
1750 if (!(GET_CODE (PATTERN (i3)) == SET
1751 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1752 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1753 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1754 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1755 /* It's not the exception. */
1756 #endif
1757 #ifdef AUTO_INC_DEC
1758 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1759 if (REG_NOTE_KIND (link) == REG_INC
1760 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1761 || (i1 != 0
1762 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1764 undo_all ();
1765 return 0;
1767 #endif
1769 /* See if the SETs in I1 or I2 need to be kept around in the merged
1770 instruction: whenever the value set there is still needed past I3.
1771 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1773 For the SET in I1, we have two cases: If I1 and I2 independently
1774 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1775 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1776 in I1 needs to be kept around unless I1DEST dies or is set in either
1777 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1778 I1DEST. If so, we know I1 feeds into I2. */
1780 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1782 added_sets_1
1783 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1784 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1786 /* If the set in I2 needs to be kept around, we must make a copy of
1787 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1788 PATTERN (I2), we are only substituting for the original I1DEST, not into
1789 an already-substituted copy. This also prevents making self-referential
1790 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1791 I2DEST. */
1793 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1794 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1795 : PATTERN (i2));
1797 if (added_sets_2)
1798 i2pat = copy_rtx (i2pat);
1800 combine_merges++;
1802 /* Substitute in the latest insn for the regs set by the earlier ones. */
1804 maxreg = max_reg_num ();
1806 subst_insn = i3;
1808 /* It is possible that the source of I2 or I1 may be performing an
1809 unneeded operation, such as a ZERO_EXTEND of something that is known
1810 to have the high part zero. Handle that case by letting subst look at
1811 the innermost one of them.
1813 Another way to do this would be to have a function that tries to
1814 simplify a single insn instead of merging two or more insns. We don't
1815 do this because of the potential of infinite loops and because
1816 of the potential extra memory required. However, doing it the way
1817 we are is a bit of a kludge and doesn't catch all cases.
1819 But only do this if -fexpensive-optimizations since it slows things down
1820 and doesn't usually win. */
1822 if (flag_expensive_optimizations)
1824 /* Pass pc_rtx so no substitutions are done, just simplifications.
1825 The cases that we are interested in here do not involve the few
1826 cases were is_replaced is checked. */
1827 if (i1)
1829 subst_low_cuid = INSN_CUID (i1);
1830 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1832 else
1834 subst_low_cuid = INSN_CUID (i2);
1835 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1839 #ifndef HAVE_cc0
1840 /* Many machines that don't use CC0 have insns that can both perform an
1841 arithmetic operation and set the condition code. These operations will
1842 be represented as a PARALLEL with the first element of the vector
1843 being a COMPARE of an arithmetic operation with the constant zero.
1844 The second element of the vector will set some pseudo to the result
1845 of the same arithmetic operation. If we simplify the COMPARE, we won't
1846 match such a pattern and so will generate an extra insn. Here we test
1847 for this case, where both the comparison and the operation result are
1848 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1849 I2SRC. Later we will make the PARALLEL that contains I2. */
1851 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1852 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1853 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1854 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1856 #ifdef SELECT_CC_MODE
1857 rtx *cc_use;
1858 enum machine_mode compare_mode;
1859 #endif
1861 newpat = PATTERN (i3);
1862 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1864 i2_is_used = 1;
1866 #ifdef SELECT_CC_MODE
1867 /* See if a COMPARE with the operand we substituted in should be done
1868 with the mode that is currently being used. If not, do the same
1869 processing we do in `subst' for a SET; namely, if the destination
1870 is used only once, try to replace it with a register of the proper
1871 mode and also replace the COMPARE. */
1872 if (undobuf.other_insn == 0
1873 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1874 &undobuf.other_insn))
1875 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1876 i2src, const0_rtx))
1877 != GET_MODE (SET_DEST (newpat))))
1879 unsigned int regno = REGNO (SET_DEST (newpat));
1880 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1882 if (regno < FIRST_PSEUDO_REGISTER
1883 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1884 && ! REG_USERVAR_P (SET_DEST (newpat))))
1886 if (regno >= FIRST_PSEUDO_REGISTER)
1887 SUBST (regno_reg_rtx[regno], new_dest);
1889 SUBST (SET_DEST (newpat), new_dest);
1890 SUBST (XEXP (*cc_use, 0), new_dest);
1891 SUBST (SET_SRC (newpat),
1892 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1894 else
1895 undobuf.other_insn = 0;
1897 #endif
1899 else
1900 #endif
1902 n_occurrences = 0; /* `subst' counts here */
1904 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1905 need to make a unique copy of I2SRC each time we substitute it
1906 to avoid self-referential rtl. */
1908 subst_low_cuid = INSN_CUID (i2);
1909 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1910 ! i1_feeds_i3 && i1dest_in_i1src);
1911 substed_i2 = 1;
1913 /* Record whether i2's body now appears within i3's body. */
1914 i2_is_used = n_occurrences;
1917 /* If we already got a failure, don't try to do more. Otherwise,
1918 try to substitute in I1 if we have it. */
1920 if (i1 && GET_CODE (newpat) != CLOBBER)
1922 /* Before we can do this substitution, we must redo the test done
1923 above (see detailed comments there) that ensures that I1DEST
1924 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1926 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1927 0, (rtx*) 0))
1929 undo_all ();
1930 return 0;
1933 n_occurrences = 0;
1934 subst_low_cuid = INSN_CUID (i1);
1935 newpat = subst (newpat, i1dest, i1src, 0, 0);
1936 substed_i1 = 1;
1939 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1940 to count all the ways that I2SRC and I1SRC can be used. */
1941 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1942 && i2_is_used + added_sets_2 > 1)
1943 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1944 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1945 > 1))
1946 /* Fail if we tried to make a new register (we used to abort, but there's
1947 really no reason to). */
1948 || max_reg_num () != maxreg
1949 /* Fail if we couldn't do something and have a CLOBBER. */
1950 || GET_CODE (newpat) == CLOBBER
1951 /* Fail if this new pattern is a MULT and we didn't have one before
1952 at the outer level. */
1953 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1954 && ! have_mult))
1956 undo_all ();
1957 return 0;
1960 /* If the actions of the earlier insns must be kept
1961 in addition to substituting them into the latest one,
1962 we must make a new PARALLEL for the latest insn
1963 to hold additional the SETs. */
1965 if (added_sets_1 || added_sets_2)
1967 combine_extras++;
1969 if (GET_CODE (newpat) == PARALLEL)
1971 rtvec old = XVEC (newpat, 0);
1972 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1973 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1974 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1975 sizeof (old->elem[0]) * old->num_elem);
1977 else
1979 rtx old = newpat;
1980 total_sets = 1 + added_sets_1 + added_sets_2;
1981 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1982 XVECEXP (newpat, 0, 0) = old;
1985 if (added_sets_1)
1986 XVECEXP (newpat, 0, --total_sets)
1987 = (GET_CODE (PATTERN (i1)) == PARALLEL
1988 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
1990 if (added_sets_2)
1992 /* If there is no I1, use I2's body as is. We used to also not do
1993 the subst call below if I2 was substituted into I3,
1994 but that could lose a simplification. */
1995 if (i1 == 0)
1996 XVECEXP (newpat, 0, --total_sets) = i2pat;
1997 else
1998 /* See comment where i2pat is assigned. */
1999 XVECEXP (newpat, 0, --total_sets)
2000 = subst (i2pat, i1dest, i1src, 0, 0);
2004 /* We come here when we are replacing a destination in I2 with the
2005 destination of I3. */
2006 validate_replacement:
2008 /* Note which hard regs this insn has as inputs. */
2009 mark_used_regs_combine (newpat);
2011 /* Is the result of combination a valid instruction? */
2012 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2014 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2015 the second SET's destination is a register that is unused. In that case,
2016 we just need the first SET. This can occur when simplifying a divmod
2017 insn. We *must* test for this case here because the code below that
2018 splits two independent SETs doesn't handle this case correctly when it
2019 updates the register status. Also check the case where the first
2020 SET's destination is unused. That would not cause incorrect code, but
2021 does cause an unneeded insn to remain. */
2023 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2024 && XVECLEN (newpat, 0) == 2
2025 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2026 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2027 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2028 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2029 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2030 && asm_noperands (newpat) < 0)
2032 newpat = XVECEXP (newpat, 0, 0);
2033 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2036 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2037 && XVECLEN (newpat, 0) == 2
2038 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2039 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2040 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2041 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2042 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2043 && asm_noperands (newpat) < 0)
2045 newpat = XVECEXP (newpat, 0, 1);
2046 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2048 if (insn_code_number >= 0)
2050 /* If we will be able to accept this, we have made a change to the
2051 destination of I3. This requires us to do a few adjustments. */
2052 PATTERN (i3) = newpat;
2053 adjust_for_new_dest (i3);
2057 /* If we were combining three insns and the result is a simple SET
2058 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2059 insns. There are two ways to do this. It can be split using a
2060 machine-specific method (like when you have an addition of a large
2061 constant) or by combine in the function find_split_point. */
2063 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2064 && asm_noperands (newpat) < 0)
2066 rtx m_split, *split;
2067 rtx ni2dest = i2dest;
2069 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2070 use I2DEST as a scratch register will help. In the latter case,
2071 convert I2DEST to the mode of the source of NEWPAT if we can. */
2073 m_split = split_insns (newpat, i3);
2075 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2076 inputs of NEWPAT. */
2078 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2079 possible to try that as a scratch reg. This would require adding
2080 more code to make it work though. */
2082 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2084 /* If I2DEST is a hard register or the only use of a pseudo,
2085 we can change its mode. */
2086 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2087 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2088 && GET_CODE (i2dest) == REG
2089 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2090 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2091 && ! REG_USERVAR_P (i2dest))))
2092 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2093 REGNO (i2dest));
2095 m_split = split_insns (gen_rtx_PARALLEL
2096 (VOIDmode,
2097 gen_rtvec (2, newpat,
2098 gen_rtx_CLOBBER (VOIDmode,
2099 ni2dest))),
2100 i3);
2101 /* If the split with the mode-changed register didn't work, try
2102 the original register. */
2103 if (! m_split && ni2dest != i2dest)
2105 ni2dest = i2dest;
2106 m_split = split_insns (gen_rtx_PARALLEL
2107 (VOIDmode,
2108 gen_rtvec (2, newpat,
2109 gen_rtx_CLOBBER (VOIDmode,
2110 i2dest))),
2111 i3);
2115 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2117 m_split = PATTERN (m_split);
2118 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2119 if (insn_code_number >= 0)
2120 newpat = m_split;
2122 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2123 && (next_real_insn (i2) == i3
2124 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2126 rtx i2set, i3set;
2127 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2128 newi2pat = PATTERN (m_split);
2130 i3set = single_set (NEXT_INSN (m_split));
2131 i2set = single_set (m_split);
2133 /* In case we changed the mode of I2DEST, replace it in the
2134 pseudo-register table here. We can't do it above in case this
2135 code doesn't get executed and we do a split the other way. */
2137 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2138 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2140 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2142 /* If I2 or I3 has multiple SETs, we won't know how to track
2143 register status, so don't use these insns. If I2's destination
2144 is used between I2 and I3, we also can't use these insns. */
2146 if (i2_code_number >= 0 && i2set && i3set
2147 && (next_real_insn (i2) == i3
2148 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2149 insn_code_number = recog_for_combine (&newi3pat, i3,
2150 &new_i3_notes);
2151 if (insn_code_number >= 0)
2152 newpat = newi3pat;
2154 /* It is possible that both insns now set the destination of I3.
2155 If so, we must show an extra use of it. */
2157 if (insn_code_number >= 0)
2159 rtx new_i3_dest = SET_DEST (i3set);
2160 rtx new_i2_dest = SET_DEST (i2set);
2162 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2163 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2164 || GET_CODE (new_i3_dest) == SUBREG)
2165 new_i3_dest = XEXP (new_i3_dest, 0);
2167 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2168 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2169 || GET_CODE (new_i2_dest) == SUBREG)
2170 new_i2_dest = XEXP (new_i2_dest, 0);
2172 if (GET_CODE (new_i3_dest) == REG
2173 && GET_CODE (new_i2_dest) == REG
2174 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2175 REG_N_SETS (REGNO (new_i2_dest))++;
2179 /* If we can split it and use I2DEST, go ahead and see if that
2180 helps things be recognized. Verify that none of the registers
2181 are set between I2 and I3. */
2182 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2183 #ifdef HAVE_cc0
2184 && GET_CODE (i2dest) == REG
2185 #endif
2186 /* We need I2DEST in the proper mode. If it is a hard register
2187 or the only use of a pseudo, we can change its mode. */
2188 && (GET_MODE (*split) == GET_MODE (i2dest)
2189 || GET_MODE (*split) == VOIDmode
2190 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2191 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2192 && ! REG_USERVAR_P (i2dest)))
2193 && (next_real_insn (i2) == i3
2194 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2195 /* We can't overwrite I2DEST if its value is still used by
2196 NEWPAT. */
2197 && ! reg_referenced_p (i2dest, newpat))
2199 rtx newdest = i2dest;
2200 enum rtx_code split_code = GET_CODE (*split);
2201 enum machine_mode split_mode = GET_MODE (*split);
2203 /* Get NEWDEST as a register in the proper mode. We have already
2204 validated that we can do this. */
2205 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2207 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2209 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2210 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2213 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2214 an ASHIFT. This can occur if it was inside a PLUS and hence
2215 appeared to be a memory address. This is a kludge. */
2216 if (split_code == MULT
2217 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2218 && INTVAL (XEXP (*split, 1)) > 0
2219 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2221 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2222 XEXP (*split, 0), GEN_INT (i)));
2223 /* Update split_code because we may not have a multiply
2224 anymore. */
2225 split_code = GET_CODE (*split);
2228 #ifdef INSN_SCHEDULING
2229 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2230 be written as a ZERO_EXTEND. */
2231 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2233 #ifdef LOAD_EXTEND_OP
2234 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2235 what it really is. */
2236 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2237 == SIGN_EXTEND)
2238 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2239 SUBREG_REG (*split)));
2240 else
2241 #endif
2242 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2243 SUBREG_REG (*split)));
2245 #endif
2247 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2248 SUBST (*split, newdest);
2249 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2251 /* If the split point was a MULT and we didn't have one before,
2252 don't use one now. */
2253 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2254 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2258 /* Check for a case where we loaded from memory in a narrow mode and
2259 then sign extended it, but we need both registers. In that case,
2260 we have a PARALLEL with both loads from the same memory location.
2261 We can split this into a load from memory followed by a register-register
2262 copy. This saves at least one insn, more if register allocation can
2263 eliminate the copy.
2265 We cannot do this if the destination of the first assignment is a
2266 condition code register or cc0. We eliminate this case by making sure
2267 the SET_DEST and SET_SRC have the same mode.
2269 We cannot do this if the destination of the second assignment is
2270 a register that we have already assumed is zero-extended. Similarly
2271 for a SUBREG of such a register. */
2273 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2274 && GET_CODE (newpat) == PARALLEL
2275 && XVECLEN (newpat, 0) == 2
2276 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2277 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2278 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2279 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2280 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2281 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2282 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2283 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2284 INSN_CUID (i2))
2285 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2286 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2287 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2288 (GET_CODE (temp) == REG
2289 && reg_nonzero_bits[REGNO (temp)] != 0
2290 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2291 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2292 && (reg_nonzero_bits[REGNO (temp)]
2293 != GET_MODE_MASK (word_mode))))
2294 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2295 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2296 (GET_CODE (temp) == REG
2297 && reg_nonzero_bits[REGNO (temp)] != 0
2298 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2299 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2300 && (reg_nonzero_bits[REGNO (temp)]
2301 != GET_MODE_MASK (word_mode)))))
2302 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2303 SET_SRC (XVECEXP (newpat, 0, 1)))
2304 && ! find_reg_note (i3, REG_UNUSED,
2305 SET_DEST (XVECEXP (newpat, 0, 0))))
2307 rtx ni2dest;
2309 newi2pat = XVECEXP (newpat, 0, 0);
2310 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2311 newpat = XVECEXP (newpat, 0, 1);
2312 SUBST (SET_SRC (newpat),
2313 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2314 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2316 if (i2_code_number >= 0)
2317 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2319 if (insn_code_number >= 0)
2321 rtx insn;
2322 rtx link;
2324 /* If we will be able to accept this, we have made a change to the
2325 destination of I3. This requires us to do a few adjustments. */
2326 PATTERN (i3) = newpat;
2327 adjust_for_new_dest (i3);
2329 /* I3 now uses what used to be its destination and which is
2330 now I2's destination. That means we need a LOG_LINK from
2331 I3 to I2. But we used to have one, so we still will.
2333 However, some later insn might be using I2's dest and have
2334 a LOG_LINK pointing at I3. We must remove this link.
2335 The simplest way to remove the link is to point it at I1,
2336 which we know will be a NOTE. */
2338 for (insn = NEXT_INSN (i3);
2339 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2340 || insn != BB_HEAD (this_basic_block->next_bb));
2341 insn = NEXT_INSN (insn))
2343 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2345 for (link = LOG_LINKS (insn); link;
2346 link = XEXP (link, 1))
2347 if (XEXP (link, 0) == i3)
2348 XEXP (link, 0) = i1;
2350 break;
2356 /* Similarly, check for a case where we have a PARALLEL of two independent
2357 SETs but we started with three insns. In this case, we can do the sets
2358 as two separate insns. This case occurs when some SET allows two
2359 other insns to combine, but the destination of that SET is still live. */
2361 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2362 && GET_CODE (newpat) == PARALLEL
2363 && XVECLEN (newpat, 0) == 2
2364 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2365 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2366 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2367 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2368 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2369 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2370 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2371 INSN_CUID (i2))
2372 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2373 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2374 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2375 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2376 XVECEXP (newpat, 0, 0))
2377 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2378 XVECEXP (newpat, 0, 1))
2379 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2380 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2382 /* Normally, it doesn't matter which of the two is done first,
2383 but it does if one references cc0. In that case, it has to
2384 be first. */
2385 #ifdef HAVE_cc0
2386 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2388 newi2pat = XVECEXP (newpat, 0, 0);
2389 newpat = XVECEXP (newpat, 0, 1);
2391 else
2392 #endif
2394 newi2pat = XVECEXP (newpat, 0, 1);
2395 newpat = XVECEXP (newpat, 0, 0);
2398 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2400 if (i2_code_number >= 0)
2401 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2404 /* If it still isn't recognized, fail and change things back the way they
2405 were. */
2406 if ((insn_code_number < 0
2407 /* Is the result a reasonable ASM_OPERANDS? */
2408 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2410 undo_all ();
2411 return 0;
2414 /* If we had to change another insn, make sure it is valid also. */
2415 if (undobuf.other_insn)
2417 rtx other_pat = PATTERN (undobuf.other_insn);
2418 rtx new_other_notes;
2419 rtx note, next;
2421 CLEAR_HARD_REG_SET (newpat_used_regs);
2423 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2424 &new_other_notes);
2426 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2428 undo_all ();
2429 return 0;
2432 PATTERN (undobuf.other_insn) = other_pat;
2434 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2435 are still valid. Then add any non-duplicate notes added by
2436 recog_for_combine. */
2437 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2439 next = XEXP (note, 1);
2441 if (REG_NOTE_KIND (note) == REG_UNUSED
2442 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2444 if (GET_CODE (XEXP (note, 0)) == REG)
2445 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2447 remove_note (undobuf.other_insn, note);
2451 for (note = new_other_notes; note; note = XEXP (note, 1))
2452 if (GET_CODE (XEXP (note, 0)) == REG)
2453 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2455 distribute_notes (new_other_notes, undobuf.other_insn,
2456 undobuf.other_insn, NULL_RTX);
2458 #ifdef HAVE_cc0
2459 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2460 they are adjacent to each other or not. */
2462 rtx p = prev_nonnote_insn (i3);
2463 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2464 && sets_cc0_p (newi2pat))
2466 undo_all ();
2467 return 0;
2470 #endif
2472 /* We now know that we can do this combination. Merge the insns and
2473 update the status of registers and LOG_LINKS. */
2476 rtx i3notes, i2notes, i1notes = 0;
2477 rtx i3links, i2links, i1links = 0;
2478 rtx midnotes = 0;
2479 unsigned int regno;
2481 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2482 clear them. */
2483 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2484 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2485 if (i1)
2486 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2488 /* Ensure that we do not have something that should not be shared but
2489 occurs multiple times in the new insns. Check this by first
2490 resetting all the `used' flags and then copying anything is shared. */
2492 reset_used_flags (i3notes);
2493 reset_used_flags (i2notes);
2494 reset_used_flags (i1notes);
2495 reset_used_flags (newpat);
2496 reset_used_flags (newi2pat);
2497 if (undobuf.other_insn)
2498 reset_used_flags (PATTERN (undobuf.other_insn));
2500 i3notes = copy_rtx_if_shared (i3notes);
2501 i2notes = copy_rtx_if_shared (i2notes);
2502 i1notes = copy_rtx_if_shared (i1notes);
2503 newpat = copy_rtx_if_shared (newpat);
2504 newi2pat = copy_rtx_if_shared (newi2pat);
2505 if (undobuf.other_insn)
2506 reset_used_flags (PATTERN (undobuf.other_insn));
2508 INSN_CODE (i3) = insn_code_number;
2509 PATTERN (i3) = newpat;
2511 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2513 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2515 reset_used_flags (call_usage);
2516 call_usage = copy_rtx (call_usage);
2518 if (substed_i2)
2519 replace_rtx (call_usage, i2dest, i2src);
2521 if (substed_i1)
2522 replace_rtx (call_usage, i1dest, i1src);
2524 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2527 if (undobuf.other_insn)
2528 INSN_CODE (undobuf.other_insn) = other_code_number;
2530 /* We had one special case above where I2 had more than one set and
2531 we replaced a destination of one of those sets with the destination
2532 of I3. In that case, we have to update LOG_LINKS of insns later
2533 in this basic block. Note that this (expensive) case is rare.
2535 Also, in this case, we must pretend that all REG_NOTEs for I2
2536 actually came from I3, so that REG_UNUSED notes from I2 will be
2537 properly handled. */
2539 if (i3_subst_into_i2)
2541 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2542 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2543 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2544 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2545 && ! find_reg_note (i2, REG_UNUSED,
2546 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2547 for (temp = NEXT_INSN (i2);
2548 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2549 || BB_HEAD (this_basic_block) != temp);
2550 temp = NEXT_INSN (temp))
2551 if (temp != i3 && INSN_P (temp))
2552 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2553 if (XEXP (link, 0) == i2)
2554 XEXP (link, 0) = i3;
2556 if (i3notes)
2558 rtx link = i3notes;
2559 while (XEXP (link, 1))
2560 link = XEXP (link, 1);
2561 XEXP (link, 1) = i2notes;
2563 else
2564 i3notes = i2notes;
2565 i2notes = 0;
2568 LOG_LINKS (i3) = 0;
2569 REG_NOTES (i3) = 0;
2570 LOG_LINKS (i2) = 0;
2571 REG_NOTES (i2) = 0;
2573 if (newi2pat)
2575 INSN_CODE (i2) = i2_code_number;
2576 PATTERN (i2) = newi2pat;
2578 else
2580 PUT_CODE (i2, NOTE);
2581 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2582 NOTE_SOURCE_FILE (i2) = 0;
2585 if (i1)
2587 LOG_LINKS (i1) = 0;
2588 REG_NOTES (i1) = 0;
2589 PUT_CODE (i1, NOTE);
2590 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2591 NOTE_SOURCE_FILE (i1) = 0;
2594 /* Get death notes for everything that is now used in either I3 or
2595 I2 and used to die in a previous insn. If we built two new
2596 patterns, move from I1 to I2 then I2 to I3 so that we get the
2597 proper movement on registers that I2 modifies. */
2599 if (newi2pat)
2601 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2602 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2604 else
2605 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2606 i3, &midnotes);
2608 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2609 if (i3notes)
2610 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2611 if (i2notes)
2612 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2613 if (i1notes)
2614 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2615 if (midnotes)
2616 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2618 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2619 know these are REG_UNUSED and want them to go to the desired insn,
2620 so we always pass it as i3. We have not counted the notes in
2621 reg_n_deaths yet, so we need to do so now. */
2623 if (newi2pat && new_i2_notes)
2625 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2626 if (GET_CODE (XEXP (temp, 0)) == REG)
2627 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2629 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2632 if (new_i3_notes)
2634 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2635 if (GET_CODE (XEXP (temp, 0)) == REG)
2636 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2638 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2641 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2642 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2643 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2644 in that case, it might delete I2. Similarly for I2 and I1.
2645 Show an additional death due to the REG_DEAD note we make here. If
2646 we discard it in distribute_notes, we will decrement it again. */
2648 if (i3dest_killed)
2650 if (GET_CODE (i3dest_killed) == REG)
2651 REG_N_DEATHS (REGNO (i3dest_killed))++;
2653 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2654 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2655 NULL_RTX),
2656 NULL_RTX, i2, NULL_RTX);
2657 else
2658 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2659 NULL_RTX),
2660 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2663 if (i2dest_in_i2src)
2665 if (GET_CODE (i2dest) == REG)
2666 REG_N_DEATHS (REGNO (i2dest))++;
2668 if (newi2pat && reg_set_p (i2dest, newi2pat))
2669 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2670 NULL_RTX, i2, NULL_RTX);
2671 else
2672 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2673 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2676 if (i1dest_in_i1src)
2678 if (GET_CODE (i1dest) == REG)
2679 REG_N_DEATHS (REGNO (i1dest))++;
2681 if (newi2pat && reg_set_p (i1dest, newi2pat))
2682 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2683 NULL_RTX, i2, NULL_RTX);
2684 else
2685 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2686 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2689 distribute_links (i3links);
2690 distribute_links (i2links);
2691 distribute_links (i1links);
2693 if (GET_CODE (i2dest) == REG)
2695 rtx link;
2696 rtx i2_insn = 0, i2_val = 0, set;
2698 /* The insn that used to set this register doesn't exist, and
2699 this life of the register may not exist either. See if one of
2700 I3's links points to an insn that sets I2DEST. If it does,
2701 that is now the last known value for I2DEST. If we don't update
2702 this and I2 set the register to a value that depended on its old
2703 contents, we will get confused. If this insn is used, thing
2704 will be set correctly in combine_instructions. */
2706 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2707 if ((set = single_set (XEXP (link, 0))) != 0
2708 && rtx_equal_p (i2dest, SET_DEST (set)))
2709 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2711 record_value_for_reg (i2dest, i2_insn, i2_val);
2713 /* If the reg formerly set in I2 died only once and that was in I3,
2714 zero its use count so it won't make `reload' do any work. */
2715 if (! added_sets_2
2716 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2717 && ! i2dest_in_i2src)
2719 regno = REGNO (i2dest);
2720 REG_N_SETS (regno)--;
2724 if (i1 && GET_CODE (i1dest) == REG)
2726 rtx link;
2727 rtx i1_insn = 0, i1_val = 0, set;
2729 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2730 if ((set = single_set (XEXP (link, 0))) != 0
2731 && rtx_equal_p (i1dest, SET_DEST (set)))
2732 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2734 record_value_for_reg (i1dest, i1_insn, i1_val);
2736 regno = REGNO (i1dest);
2737 if (! added_sets_1 && ! i1dest_in_i1src)
2738 REG_N_SETS (regno)--;
2741 /* Update reg_nonzero_bits et al for any changes that may have been made
2742 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2743 important. Because newi2pat can affect nonzero_bits of newpat */
2744 if (newi2pat)
2745 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2746 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2748 /* Set new_direct_jump_p if a new return or simple jump instruction
2749 has been created.
2751 If I3 is now an unconditional jump, ensure that it has a
2752 BARRIER following it since it may have initially been a
2753 conditional jump. It may also be the last nonnote insn. */
2755 if (returnjump_p (i3) || any_uncondjump_p (i3))
2757 *new_direct_jump_p = 1;
2758 mark_jump_label (PATTERN (i3), i3, 0);
2760 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2761 || GET_CODE (temp) != BARRIER)
2762 emit_barrier_after (i3);
2765 if (undobuf.other_insn != NULL_RTX
2766 && (returnjump_p (undobuf.other_insn)
2767 || any_uncondjump_p (undobuf.other_insn)))
2769 *new_direct_jump_p = 1;
2771 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2772 || GET_CODE (temp) != BARRIER)
2773 emit_barrier_after (undobuf.other_insn);
2776 /* An NOOP jump does not need barrier, but it does need cleaning up
2777 of CFG. */
2778 if (GET_CODE (newpat) == SET
2779 && SET_SRC (newpat) == pc_rtx
2780 && SET_DEST (newpat) == pc_rtx)
2781 *new_direct_jump_p = 1;
2784 combine_successes++;
2785 undo_commit ();
2787 if (added_links_insn
2788 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2789 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2790 return added_links_insn;
2791 else
2792 return newi2pat ? i2 : i3;
2795 /* Undo all the modifications recorded in undobuf. */
2797 static void
2798 undo_all (void)
2800 struct undo *undo, *next;
2802 for (undo = undobuf.undos; undo; undo = next)
2804 next = undo->next;
2805 if (undo->is_int)
2806 *undo->where.i = undo->old_contents.i;
2807 else
2808 *undo->where.r = undo->old_contents.r;
2810 undo->next = undobuf.frees;
2811 undobuf.frees = undo;
2814 undobuf.undos = 0;
2817 /* We've committed to accepting the changes we made. Move all
2818 of the undos to the free list. */
2820 static void
2821 undo_commit (void)
2823 struct undo *undo, *next;
2825 for (undo = undobuf.undos; undo; undo = next)
2827 next = undo->next;
2828 undo->next = undobuf.frees;
2829 undobuf.frees = undo;
2831 undobuf.undos = 0;
2835 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2836 where we have an arithmetic expression and return that point. LOC will
2837 be inside INSN.
2839 try_combine will call this function to see if an insn can be split into
2840 two insns. */
2842 static rtx *
2843 find_split_point (rtx *loc, rtx insn)
2845 rtx x = *loc;
2846 enum rtx_code code = GET_CODE (x);
2847 rtx *split;
2848 unsigned HOST_WIDE_INT len = 0;
2849 HOST_WIDE_INT pos = 0;
2850 int unsignedp = 0;
2851 rtx inner = NULL_RTX;
2853 /* First special-case some codes. */
2854 switch (code)
2856 case SUBREG:
2857 #ifdef INSN_SCHEDULING
2858 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2859 point. */
2860 if (GET_CODE (SUBREG_REG (x)) == MEM)
2861 return loc;
2862 #endif
2863 return find_split_point (&SUBREG_REG (x), insn);
2865 case MEM:
2866 #ifdef HAVE_lo_sum
2867 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2868 using LO_SUM and HIGH. */
2869 if (GET_CODE (XEXP (x, 0)) == CONST
2870 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2872 SUBST (XEXP (x, 0),
2873 gen_rtx_LO_SUM (Pmode,
2874 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2875 XEXP (x, 0)));
2876 return &XEXP (XEXP (x, 0), 0);
2878 #endif
2880 /* If we have a PLUS whose second operand is a constant and the
2881 address is not valid, perhaps will can split it up using
2882 the machine-specific way to split large constants. We use
2883 the first pseudo-reg (one of the virtual regs) as a placeholder;
2884 it will not remain in the result. */
2885 if (GET_CODE (XEXP (x, 0)) == PLUS
2886 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2887 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2889 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2890 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2891 subst_insn);
2893 /* This should have produced two insns, each of which sets our
2894 placeholder. If the source of the second is a valid address,
2895 we can make put both sources together and make a split point
2896 in the middle. */
2898 if (seq
2899 && NEXT_INSN (seq) != NULL_RTX
2900 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2901 && GET_CODE (seq) == INSN
2902 && GET_CODE (PATTERN (seq)) == SET
2903 && SET_DEST (PATTERN (seq)) == reg
2904 && ! reg_mentioned_p (reg,
2905 SET_SRC (PATTERN (seq)))
2906 && GET_CODE (NEXT_INSN (seq)) == INSN
2907 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2908 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2909 && memory_address_p (GET_MODE (x),
2910 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2912 rtx src1 = SET_SRC (PATTERN (seq));
2913 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2915 /* Replace the placeholder in SRC2 with SRC1. If we can
2916 find where in SRC2 it was placed, that can become our
2917 split point and we can replace this address with SRC2.
2918 Just try two obvious places. */
2920 src2 = replace_rtx (src2, reg, src1);
2921 split = 0;
2922 if (XEXP (src2, 0) == src1)
2923 split = &XEXP (src2, 0);
2924 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2925 && XEXP (XEXP (src2, 0), 0) == src1)
2926 split = &XEXP (XEXP (src2, 0), 0);
2928 if (split)
2930 SUBST (XEXP (x, 0), src2);
2931 return split;
2935 /* If that didn't work, perhaps the first operand is complex and
2936 needs to be computed separately, so make a split point there.
2937 This will occur on machines that just support REG + CONST
2938 and have a constant moved through some previous computation. */
2940 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2941 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2942 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2943 == 'o')))
2944 return &XEXP (XEXP (x, 0), 0);
2946 break;
2948 case SET:
2949 #ifdef HAVE_cc0
2950 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2951 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2952 we need to put the operand into a register. So split at that
2953 point. */
2955 if (SET_DEST (x) == cc0_rtx
2956 && GET_CODE (SET_SRC (x)) != COMPARE
2957 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2958 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2959 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2960 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2961 return &SET_SRC (x);
2962 #endif
2964 /* See if we can split SET_SRC as it stands. */
2965 split = find_split_point (&SET_SRC (x), insn);
2966 if (split && split != &SET_SRC (x))
2967 return split;
2969 /* See if we can split SET_DEST as it stands. */
2970 split = find_split_point (&SET_DEST (x), insn);
2971 if (split && split != &SET_DEST (x))
2972 return split;
2974 /* See if this is a bitfield assignment with everything constant. If
2975 so, this is an IOR of an AND, so split it into that. */
2976 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2977 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2978 <= HOST_BITS_PER_WIDE_INT)
2979 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2980 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2981 && GET_CODE (SET_SRC (x)) == CONST_INT
2982 && ((INTVAL (XEXP (SET_DEST (x), 1))
2983 + INTVAL (XEXP (SET_DEST (x), 2)))
2984 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2985 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2987 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
2988 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
2989 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
2990 rtx dest = XEXP (SET_DEST (x), 0);
2991 enum machine_mode mode = GET_MODE (dest);
2992 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
2994 if (BITS_BIG_ENDIAN)
2995 pos = GET_MODE_BITSIZE (mode) - len - pos;
2997 if (src == mask)
2998 SUBST (SET_SRC (x),
2999 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3000 else
3001 SUBST (SET_SRC (x),
3002 gen_binary (IOR, mode,
3003 gen_binary (AND, mode, dest,
3004 gen_int_mode (~(mask << pos),
3005 mode)),
3006 GEN_INT (src << pos)));
3008 SUBST (SET_DEST (x), dest);
3010 split = find_split_point (&SET_SRC (x), insn);
3011 if (split && split != &SET_SRC (x))
3012 return split;
3015 /* Otherwise, see if this is an operation that we can split into two.
3016 If so, try to split that. */
3017 code = GET_CODE (SET_SRC (x));
3019 switch (code)
3021 case AND:
3022 /* If we are AND'ing with a large constant that is only a single
3023 bit and the result is only being used in a context where we
3024 need to know if it is zero or nonzero, replace it with a bit
3025 extraction. This will avoid the large constant, which might
3026 have taken more than one insn to make. If the constant were
3027 not a valid argument to the AND but took only one insn to make,
3028 this is no worse, but if it took more than one insn, it will
3029 be better. */
3031 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3032 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3033 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3034 && GET_CODE (SET_DEST (x)) == REG
3035 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3036 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3037 && XEXP (*split, 0) == SET_DEST (x)
3038 && XEXP (*split, 1) == const0_rtx)
3040 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3041 XEXP (SET_SRC (x), 0),
3042 pos, NULL_RTX, 1, 1, 0, 0);
3043 if (extraction != 0)
3045 SUBST (SET_SRC (x), extraction);
3046 return find_split_point (loc, insn);
3049 break;
3051 case NE:
3052 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3053 is known to be on, this can be converted into a NEG of a shift. */
3054 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3055 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3056 && 1 <= (pos = exact_log2
3057 (nonzero_bits (XEXP (SET_SRC (x), 0),
3058 GET_MODE (XEXP (SET_SRC (x), 0))))))
3060 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3062 SUBST (SET_SRC (x),
3063 gen_rtx_NEG (mode,
3064 gen_rtx_LSHIFTRT (mode,
3065 XEXP (SET_SRC (x), 0),
3066 GEN_INT (pos))));
3068 split = find_split_point (&SET_SRC (x), insn);
3069 if (split && split != &SET_SRC (x))
3070 return split;
3072 break;
3074 case SIGN_EXTEND:
3075 inner = XEXP (SET_SRC (x), 0);
3077 /* We can't optimize if either mode is a partial integer
3078 mode as we don't know how many bits are significant
3079 in those modes. */
3080 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3081 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3082 break;
3084 pos = 0;
3085 len = GET_MODE_BITSIZE (GET_MODE (inner));
3086 unsignedp = 0;
3087 break;
3089 case SIGN_EXTRACT:
3090 case ZERO_EXTRACT:
3091 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3092 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3094 inner = XEXP (SET_SRC (x), 0);
3095 len = INTVAL (XEXP (SET_SRC (x), 1));
3096 pos = INTVAL (XEXP (SET_SRC (x), 2));
3098 if (BITS_BIG_ENDIAN)
3099 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3100 unsignedp = (code == ZERO_EXTRACT);
3102 break;
3104 default:
3105 break;
3108 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3110 enum machine_mode mode = GET_MODE (SET_SRC (x));
3112 /* For unsigned, we have a choice of a shift followed by an
3113 AND or two shifts. Use two shifts for field sizes where the
3114 constant might be too large. We assume here that we can
3115 always at least get 8-bit constants in an AND insn, which is
3116 true for every current RISC. */
3118 if (unsignedp && len <= 8)
3120 SUBST (SET_SRC (x),
3121 gen_rtx_AND (mode,
3122 gen_rtx_LSHIFTRT
3123 (mode, gen_lowpart_for_combine (mode, inner),
3124 GEN_INT (pos)),
3125 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3127 split = find_split_point (&SET_SRC (x), insn);
3128 if (split && split != &SET_SRC (x))
3129 return split;
3131 else
3133 SUBST (SET_SRC (x),
3134 gen_rtx_fmt_ee
3135 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3136 gen_rtx_ASHIFT (mode,
3137 gen_lowpart_for_combine (mode, inner),
3138 GEN_INT (GET_MODE_BITSIZE (mode)
3139 - len - pos)),
3140 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3142 split = find_split_point (&SET_SRC (x), insn);
3143 if (split && split != &SET_SRC (x))
3144 return split;
3148 /* See if this is a simple operation with a constant as the second
3149 operand. It might be that this constant is out of range and hence
3150 could be used as a split point. */
3151 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3152 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3153 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3154 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3155 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3156 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3157 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3158 == 'o'))))
3159 return &XEXP (SET_SRC (x), 1);
3161 /* Finally, see if this is a simple operation with its first operand
3162 not in a register. The operation might require this operand in a
3163 register, so return it as a split point. We can always do this
3164 because if the first operand were another operation, we would have
3165 already found it as a split point. */
3166 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3167 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3168 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3169 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3170 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3171 return &XEXP (SET_SRC (x), 0);
3173 return 0;
3175 case AND:
3176 case IOR:
3177 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3178 it is better to write this as (not (ior A B)) so we can split it.
3179 Similarly for IOR. */
3180 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3182 SUBST (*loc,
3183 gen_rtx_NOT (GET_MODE (x),
3184 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3185 GET_MODE (x),
3186 XEXP (XEXP (x, 0), 0),
3187 XEXP (XEXP (x, 1), 0))));
3188 return find_split_point (loc, insn);
3191 /* Many RISC machines have a large set of logical insns. If the
3192 second operand is a NOT, put it first so we will try to split the
3193 other operand first. */
3194 if (GET_CODE (XEXP (x, 1)) == NOT)
3196 rtx tem = XEXP (x, 0);
3197 SUBST (XEXP (x, 0), XEXP (x, 1));
3198 SUBST (XEXP (x, 1), tem);
3200 break;
3202 default:
3203 break;
3206 /* Otherwise, select our actions depending on our rtx class. */
3207 switch (GET_RTX_CLASS (code))
3209 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3210 case '3':
3211 split = find_split_point (&XEXP (x, 2), insn);
3212 if (split)
3213 return split;
3214 /* ... fall through ... */
3215 case '2':
3216 case 'c':
3217 case '<':
3218 split = find_split_point (&XEXP (x, 1), insn);
3219 if (split)
3220 return split;
3221 /* ... fall through ... */
3222 case '1':
3223 /* Some machines have (and (shift ...) ...) insns. If X is not
3224 an AND, but XEXP (X, 0) is, use it as our split point. */
3225 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3226 return &XEXP (x, 0);
3228 split = find_split_point (&XEXP (x, 0), insn);
3229 if (split)
3230 return split;
3231 return loc;
3234 /* Otherwise, we don't have a split point. */
3235 return 0;
3238 /* Throughout X, replace FROM with TO, and return the result.
3239 The result is TO if X is FROM;
3240 otherwise the result is X, but its contents may have been modified.
3241 If they were modified, a record was made in undobuf so that
3242 undo_all will (among other things) return X to its original state.
3244 If the number of changes necessary is too much to record to undo,
3245 the excess changes are not made, so the result is invalid.
3246 The changes already made can still be undone.
3247 undobuf.num_undo is incremented for such changes, so by testing that
3248 the caller can tell whether the result is valid.
3250 `n_occurrences' is incremented each time FROM is replaced.
3252 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3254 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3255 by copying if `n_occurrences' is nonzero. */
3257 static rtx
3258 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3260 enum rtx_code code = GET_CODE (x);
3261 enum machine_mode op0_mode = VOIDmode;
3262 const char *fmt;
3263 int len, i;
3264 rtx new;
3266 /* Two expressions are equal if they are identical copies of a shared
3267 RTX or if they are both registers with the same register number
3268 and mode. */
3270 #define COMBINE_RTX_EQUAL_P(X,Y) \
3271 ((X) == (Y) \
3272 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3273 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3275 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3277 n_occurrences++;
3278 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3281 /* If X and FROM are the same register but different modes, they will
3282 not have been seen as equal above. However, flow.c will make a
3283 LOG_LINKS entry for that case. If we do nothing, we will try to
3284 rerecognize our original insn and, when it succeeds, we will
3285 delete the feeding insn, which is incorrect.
3287 So force this insn not to match in this (rare) case. */
3288 if (! in_dest && code == REG && GET_CODE (from) == REG
3289 && REGNO (x) == REGNO (from))
3290 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3292 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3293 of which may contain things that can be combined. */
3294 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3295 return x;
3297 /* It is possible to have a subexpression appear twice in the insn.
3298 Suppose that FROM is a register that appears within TO.
3299 Then, after that subexpression has been scanned once by `subst',
3300 the second time it is scanned, TO may be found. If we were
3301 to scan TO here, we would find FROM within it and create a
3302 self-referent rtl structure which is completely wrong. */
3303 if (COMBINE_RTX_EQUAL_P (x, to))
3304 return to;
3306 /* Parallel asm_operands need special attention because all of the
3307 inputs are shared across the arms. Furthermore, unsharing the
3308 rtl results in recognition failures. Failure to handle this case
3309 specially can result in circular rtl.
3311 Solve this by doing a normal pass across the first entry of the
3312 parallel, and only processing the SET_DESTs of the subsequent
3313 entries. Ug. */
3315 if (code == PARALLEL
3316 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3317 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3319 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3321 /* If this substitution failed, this whole thing fails. */
3322 if (GET_CODE (new) == CLOBBER
3323 && XEXP (new, 0) == const0_rtx)
3324 return new;
3326 SUBST (XVECEXP (x, 0, 0), new);
3328 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3330 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3332 if (GET_CODE (dest) != REG
3333 && GET_CODE (dest) != CC0
3334 && GET_CODE (dest) != PC)
3336 new = subst (dest, from, to, 0, unique_copy);
3338 /* If this substitution failed, this whole thing fails. */
3339 if (GET_CODE (new) == CLOBBER
3340 && XEXP (new, 0) == const0_rtx)
3341 return new;
3343 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3347 else
3349 len = GET_RTX_LENGTH (code);
3350 fmt = GET_RTX_FORMAT (code);
3352 /* We don't need to process a SET_DEST that is a register, CC0,
3353 or PC, so set up to skip this common case. All other cases
3354 where we want to suppress replacing something inside a
3355 SET_SRC are handled via the IN_DEST operand. */
3356 if (code == SET
3357 && (GET_CODE (SET_DEST (x)) == REG
3358 || GET_CODE (SET_DEST (x)) == CC0
3359 || GET_CODE (SET_DEST (x)) == PC))
3360 fmt = "ie";
3362 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3363 constant. */
3364 if (fmt[0] == 'e')
3365 op0_mode = GET_MODE (XEXP (x, 0));
3367 for (i = 0; i < len; i++)
3369 if (fmt[i] == 'E')
3371 int j;
3372 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3374 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3376 new = (unique_copy && n_occurrences
3377 ? copy_rtx (to) : to);
3378 n_occurrences++;
3380 else
3382 new = subst (XVECEXP (x, i, j), from, to, 0,
3383 unique_copy);
3385 /* If this substitution failed, this whole thing
3386 fails. */
3387 if (GET_CODE (new) == CLOBBER
3388 && XEXP (new, 0) == const0_rtx)
3389 return new;
3392 SUBST (XVECEXP (x, i, j), new);
3395 else if (fmt[i] == 'e')
3397 /* If this is a register being set, ignore it. */
3398 new = XEXP (x, i);
3399 if (in_dest
3400 && (code == SUBREG || code == STRICT_LOW_PART
3401 || code == ZERO_EXTRACT)
3402 && i == 0
3403 && GET_CODE (new) == REG)
3406 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3408 /* In general, don't install a subreg involving two
3409 modes not tieable. It can worsen register
3410 allocation, and can even make invalid reload
3411 insns, since the reg inside may need to be copied
3412 from in the outside mode, and that may be invalid
3413 if it is an fp reg copied in integer mode.
3415 We allow two exceptions to this: It is valid if
3416 it is inside another SUBREG and the mode of that
3417 SUBREG and the mode of the inside of TO is
3418 tieable and it is valid if X is a SET that copies
3419 FROM to CC0. */
3421 if (GET_CODE (to) == SUBREG
3422 && ! MODES_TIEABLE_P (GET_MODE (to),
3423 GET_MODE (SUBREG_REG (to)))
3424 && ! (code == SUBREG
3425 && MODES_TIEABLE_P (GET_MODE (x),
3426 GET_MODE (SUBREG_REG (to))))
3427 #ifdef HAVE_cc0
3428 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3429 #endif
3431 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3433 #ifdef CANNOT_CHANGE_MODE_CLASS
3434 if (code == SUBREG
3435 && GET_CODE (to) == REG
3436 && REGNO (to) < FIRST_PSEUDO_REGISTER
3437 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3438 GET_MODE (to),
3439 GET_MODE (x)))
3440 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3441 #endif
3443 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3444 n_occurrences++;
3446 else
3447 /* If we are in a SET_DEST, suppress most cases unless we
3448 have gone inside a MEM, in which case we want to
3449 simplify the address. We assume here that things that
3450 are actually part of the destination have their inner
3451 parts in the first expression. This is true for SUBREG,
3452 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3453 things aside from REG and MEM that should appear in a
3454 SET_DEST. */
3455 new = subst (XEXP (x, i), from, to,
3456 (((in_dest
3457 && (code == SUBREG || code == STRICT_LOW_PART
3458 || code == ZERO_EXTRACT))
3459 || code == SET)
3460 && i == 0), unique_copy);
3462 /* If we found that we will have to reject this combination,
3463 indicate that by returning the CLOBBER ourselves, rather than
3464 an expression containing it. This will speed things up as
3465 well as prevent accidents where two CLOBBERs are considered
3466 to be equal, thus producing an incorrect simplification. */
3468 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3469 return new;
3471 if (GET_CODE (x) == SUBREG
3472 && (GET_CODE (new) == CONST_INT
3473 || GET_CODE (new) == CONST_DOUBLE))
3475 enum machine_mode mode = GET_MODE (x);
3477 x = simplify_subreg (GET_MODE (x), new,
3478 GET_MODE (SUBREG_REG (x)),
3479 SUBREG_BYTE (x));
3480 if (! x)
3481 x = gen_rtx_CLOBBER (mode, const0_rtx);
3483 else if (GET_CODE (new) == CONST_INT
3484 && GET_CODE (x) == ZERO_EXTEND)
3486 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3487 new, GET_MODE (XEXP (x, 0)));
3488 if (! x)
3489 abort ();
3491 else
3492 SUBST (XEXP (x, i), new);
3497 /* Try to simplify X. If the simplification changed the code, it is likely
3498 that further simplification will help, so loop, but limit the number
3499 of repetitions that will be performed. */
3501 for (i = 0; i < 4; i++)
3503 /* If X is sufficiently simple, don't bother trying to do anything
3504 with it. */
3505 if (code != CONST_INT && code != REG && code != CLOBBER)
3506 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3508 if (GET_CODE (x) == code)
3509 break;
3511 code = GET_CODE (x);
3513 /* We no longer know the original mode of operand 0 since we
3514 have changed the form of X) */
3515 op0_mode = VOIDmode;
3518 return x;
3521 /* Simplify X, a piece of RTL. We just operate on the expression at the
3522 outer level; call `subst' to simplify recursively. Return the new
3523 expression.
3525 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3526 will be the iteration even if an expression with a code different from
3527 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3529 static rtx
3530 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3531 int in_dest)
3533 enum rtx_code code = GET_CODE (x);
3534 enum machine_mode mode = GET_MODE (x);
3535 rtx temp;
3536 rtx reversed;
3537 int i;
3539 /* If this is a commutative operation, put a constant last and a complex
3540 expression first. We don't need to do this for comparisons here. */
3541 if (GET_RTX_CLASS (code) == 'c'
3542 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3544 temp = XEXP (x, 0);
3545 SUBST (XEXP (x, 0), XEXP (x, 1));
3546 SUBST (XEXP (x, 1), temp);
3549 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3550 sign extension of a PLUS with a constant, reverse the order of the sign
3551 extension and the addition. Note that this not the same as the original
3552 code, but overflow is undefined for signed values. Also note that the
3553 PLUS will have been partially moved "inside" the sign-extension, so that
3554 the first operand of X will really look like:
3555 (ashiftrt (plus (ashift A C4) C5) C4).
3556 We convert this to
3557 (plus (ashiftrt (ashift A C4) C2) C4)
3558 and replace the first operand of X with that expression. Later parts
3559 of this function may simplify the expression further.
3561 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3562 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3563 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3565 We do this to simplify address expressions. */
3567 if ((code == PLUS || code == MINUS || code == MULT)
3568 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3569 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3570 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3571 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3572 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3573 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3574 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3575 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3576 XEXP (XEXP (XEXP (x, 0), 0), 1),
3577 XEXP (XEXP (x, 0), 1))) != 0)
3579 rtx new
3580 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3581 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3582 INTVAL (XEXP (XEXP (x, 0), 1)));
3584 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3585 INTVAL (XEXP (XEXP (x, 0), 1)));
3587 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3590 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3591 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3592 things. Check for cases where both arms are testing the same
3593 condition.
3595 Don't do anything if all operands are very simple. */
3597 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3598 || GET_RTX_CLASS (code) == '<')
3599 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3600 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3601 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3602 == 'o')))
3603 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3604 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3605 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3606 == 'o')))))
3607 || (GET_RTX_CLASS (code) == '1'
3608 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3609 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3610 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3611 == 'o'))))))
3613 rtx cond, true_rtx, false_rtx;
3615 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3616 if (cond != 0
3617 /* If everything is a comparison, what we have is highly unlikely
3618 to be simpler, so don't use it. */
3619 && ! (GET_RTX_CLASS (code) == '<'
3620 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3621 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3623 rtx cop1 = const0_rtx;
3624 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3626 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3627 return x;
3629 /* Simplify the alternative arms; this may collapse the true and
3630 false arms to store-flag values. Be careful to use copy_rtx
3631 here since true_rtx or false_rtx might share RTL with x as a
3632 result of the if_then_else_cond call above. */
3633 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3634 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3636 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3637 is unlikely to be simpler. */
3638 if (general_operand (true_rtx, VOIDmode)
3639 && general_operand (false_rtx, VOIDmode))
3641 enum rtx_code reversed;
3643 /* Restarting if we generate a store-flag expression will cause
3644 us to loop. Just drop through in this case. */
3646 /* If the result values are STORE_FLAG_VALUE and zero, we can
3647 just make the comparison operation. */
3648 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3649 x = gen_binary (cond_code, mode, cond, cop1);
3650 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3651 && ((reversed = reversed_comparison_code_parts
3652 (cond_code, cond, cop1, NULL))
3653 != UNKNOWN))
3654 x = gen_binary (reversed, mode, cond, cop1);
3656 /* Likewise, we can make the negate of a comparison operation
3657 if the result values are - STORE_FLAG_VALUE and zero. */
3658 else if (GET_CODE (true_rtx) == CONST_INT
3659 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3660 && false_rtx == const0_rtx)
3661 x = simplify_gen_unary (NEG, mode,
3662 gen_binary (cond_code, mode, cond,
3663 cop1),
3664 mode);
3665 else if (GET_CODE (false_rtx) == CONST_INT
3666 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3667 && true_rtx == const0_rtx
3668 && ((reversed = reversed_comparison_code_parts
3669 (cond_code, cond, cop1, NULL))
3670 != UNKNOWN))
3671 x = simplify_gen_unary (NEG, mode,
3672 gen_binary (reversed, mode,
3673 cond, cop1),
3674 mode);
3675 else
3676 return gen_rtx_IF_THEN_ELSE (mode,
3677 gen_binary (cond_code, VOIDmode,
3678 cond, cop1),
3679 true_rtx, false_rtx);
3681 code = GET_CODE (x);
3682 op0_mode = VOIDmode;
3687 /* Try to fold this expression in case we have constants that weren't
3688 present before. */
3689 temp = 0;
3690 switch (GET_RTX_CLASS (code))
3692 case '1':
3693 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3694 break;
3695 case '<':
3697 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3698 if (cmp_mode == VOIDmode)
3700 cmp_mode = GET_MODE (XEXP (x, 1));
3701 if (cmp_mode == VOIDmode)
3702 cmp_mode = op0_mode;
3704 temp = simplify_relational_operation (code, cmp_mode,
3705 XEXP (x, 0), XEXP (x, 1));
3707 #ifdef FLOAT_STORE_FLAG_VALUE
3708 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3710 if (temp == const0_rtx)
3711 temp = CONST0_RTX (mode);
3712 else
3713 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3714 mode);
3716 #endif
3717 break;
3718 case 'c':
3719 case '2':
3720 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3721 break;
3722 case 'b':
3723 case '3':
3724 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3725 XEXP (x, 1), XEXP (x, 2));
3726 break;
3729 if (temp)
3731 x = temp;
3732 code = GET_CODE (temp);
3733 op0_mode = VOIDmode;
3734 mode = GET_MODE (temp);
3737 /* First see if we can apply the inverse distributive law. */
3738 if (code == PLUS || code == MINUS
3739 || code == AND || code == IOR || code == XOR)
3741 x = apply_distributive_law (x);
3742 code = GET_CODE (x);
3743 op0_mode = VOIDmode;
3746 /* If CODE is an associative operation not otherwise handled, see if we
3747 can associate some operands. This can win if they are constants or
3748 if they are logically related (i.e. (a & b) & a). */
3749 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3750 || code == AND || code == IOR || code == XOR
3751 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3752 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3753 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3755 if (GET_CODE (XEXP (x, 0)) == code)
3757 rtx other = XEXP (XEXP (x, 0), 0);
3758 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3759 rtx inner_op1 = XEXP (x, 1);
3760 rtx inner;
3762 /* Make sure we pass the constant operand if any as the second
3763 one if this is a commutative operation. */
3764 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3766 rtx tem = inner_op0;
3767 inner_op0 = inner_op1;
3768 inner_op1 = tem;
3770 inner = simplify_binary_operation (code == MINUS ? PLUS
3771 : code == DIV ? MULT
3772 : code,
3773 mode, inner_op0, inner_op1);
3775 /* For commutative operations, try the other pair if that one
3776 didn't simplify. */
3777 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3779 other = XEXP (XEXP (x, 0), 1);
3780 inner = simplify_binary_operation (code, mode,
3781 XEXP (XEXP (x, 0), 0),
3782 XEXP (x, 1));
3785 if (inner)
3786 return gen_binary (code, mode, other, inner);
3790 /* A little bit of algebraic simplification here. */
3791 switch (code)
3793 case MEM:
3794 /* Ensure that our address has any ASHIFTs converted to MULT in case
3795 address-recognizing predicates are called later. */
3796 temp = make_compound_operation (XEXP (x, 0), MEM);
3797 SUBST (XEXP (x, 0), temp);
3798 break;
3800 case SUBREG:
3801 if (op0_mode == VOIDmode)
3802 op0_mode = GET_MODE (SUBREG_REG (x));
3804 /* simplify_subreg can't use gen_lowpart_for_combine. */
3805 if (CONSTANT_P (SUBREG_REG (x))
3806 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3807 /* Don't call gen_lowpart_for_combine if the inner mode
3808 is VOIDmode and we cannot simplify it, as SUBREG without
3809 inner mode is invalid. */
3810 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3811 || gen_lowpart_common (mode, SUBREG_REG (x))))
3812 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3814 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3815 break;
3817 rtx temp;
3818 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3819 SUBREG_BYTE (x));
3820 if (temp)
3821 return temp;
3824 /* Don't change the mode of the MEM if that would change the meaning
3825 of the address. */
3826 if (GET_CODE (SUBREG_REG (x)) == MEM
3827 && (MEM_VOLATILE_P (SUBREG_REG (x))
3828 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3829 return gen_rtx_CLOBBER (mode, const0_rtx);
3831 /* Note that we cannot do any narrowing for non-constants since
3832 we might have been counting on using the fact that some bits were
3833 zero. We now do this in the SET. */
3835 break;
3837 case NOT:
3838 if (GET_CODE (XEXP (x, 0)) == SUBREG
3839 && subreg_lowpart_p (XEXP (x, 0))
3840 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3841 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3842 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3843 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3845 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3847 x = gen_rtx_ROTATE (inner_mode,
3848 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3849 inner_mode),
3850 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3851 return gen_lowpart_for_combine (mode, x);
3854 /* Apply De Morgan's laws to reduce number of patterns for machines
3855 with negating logical insns (and-not, nand, etc.). If result has
3856 only one NOT, put it first, since that is how the patterns are
3857 coded. */
3859 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3861 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3862 enum machine_mode op_mode;
3864 op_mode = GET_MODE (in1);
3865 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3867 op_mode = GET_MODE (in2);
3868 if (op_mode == VOIDmode)
3869 op_mode = mode;
3870 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3872 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3874 rtx tem = in2;
3875 in2 = in1; in1 = tem;
3878 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3879 mode, in1, in2);
3881 break;
3883 case NEG:
3884 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3885 if (GET_CODE (XEXP (x, 0)) == XOR
3886 && XEXP (XEXP (x, 0), 1) == const1_rtx
3887 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3888 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3890 temp = expand_compound_operation (XEXP (x, 0));
3892 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3893 replaced by (lshiftrt X C). This will convert
3894 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3896 if (GET_CODE (temp) == ASHIFTRT
3897 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3898 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
3899 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
3900 INTVAL (XEXP (temp, 1)));
3902 /* If X has only a single bit that might be nonzero, say, bit I, convert
3903 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3904 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3905 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3906 or a SUBREG of one since we'd be making the expression more
3907 complex if it was just a register. */
3909 if (GET_CODE (temp) != REG
3910 && ! (GET_CODE (temp) == SUBREG
3911 && GET_CODE (SUBREG_REG (temp)) == REG)
3912 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
3914 rtx temp1 = simplify_shift_const
3915 (NULL_RTX, ASHIFTRT, mode,
3916 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
3917 GET_MODE_BITSIZE (mode) - 1 - i),
3918 GET_MODE_BITSIZE (mode) - 1 - i);
3920 /* If all we did was surround TEMP with the two shifts, we
3921 haven't improved anything, so don't use it. Otherwise,
3922 we are better off with TEMP1. */
3923 if (GET_CODE (temp1) != ASHIFTRT
3924 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
3925 || XEXP (XEXP (temp1, 0), 0) != temp)
3926 return temp1;
3928 break;
3930 case TRUNCATE:
3931 /* We can't handle truncation to a partial integer mode here
3932 because we don't know the real bitsize of the partial
3933 integer mode. */
3934 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3935 break;
3937 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3938 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3939 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
3940 SUBST (XEXP (x, 0),
3941 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
3942 GET_MODE_MASK (mode), NULL_RTX, 0));
3944 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3945 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3946 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3947 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
3948 return XEXP (XEXP (x, 0), 0);
3950 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3951 (OP:SI foo:SI) if OP is NEG or ABS. */
3952 if ((GET_CODE (XEXP (x, 0)) == ABS
3953 || GET_CODE (XEXP (x, 0)) == NEG)
3954 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
3955 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
3956 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
3957 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
3958 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
3960 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3961 (truncate:SI x). */
3962 if (GET_CODE (XEXP (x, 0)) == SUBREG
3963 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
3964 && subreg_lowpart_p (XEXP (x, 0)))
3965 return SUBREG_REG (XEXP (x, 0));
3967 /* If we know that the value is already truncated, we can
3968 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
3969 is nonzero for the corresponding modes. But don't do this
3970 for an (LSHIFTRT (MULT ...)) since this will cause problems
3971 with the umulXi3_highpart patterns. */
3972 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
3973 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3974 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3975 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
3976 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
3977 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
3978 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3980 /* A truncate of a comparison can be replaced with a subreg if
3981 STORE_FLAG_VALUE permits. This is like the previous test,
3982 but it works even if the comparison is done in a mode larger
3983 than HOST_BITS_PER_WIDE_INT. */
3984 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3985 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3986 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
3987 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3989 /* Similarly, a truncate of a register whose value is a
3990 comparison can be replaced with a subreg if STORE_FLAG_VALUE
3991 permits. */
3992 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
3993 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
3994 && (temp = get_last_value (XEXP (x, 0)))
3995 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
3996 return gen_lowpart_for_combine (mode, XEXP (x, 0));
3998 break;
4000 case FLOAT_TRUNCATE:
4001 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4002 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4003 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4004 return XEXP (XEXP (x, 0), 0);
4006 /* (float_truncate:SF (float_truncate:DF foo:XF))
4007 = (float_truncate:SF foo:XF).
4008 This may eliminate double rounding, so it is unsafe.
4010 (float_truncate:SF (float_extend:XF foo:DF))
4011 = (float_truncate:SF foo:DF).
4013 (float_truncate:DF (float_extend:XF foo:SF))
4014 = (float_extend:SF foo:DF). */
4015 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4016 && flag_unsafe_math_optimizations)
4017 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4018 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4019 0)))
4020 > GET_MODE_SIZE (mode)
4021 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4022 mode,
4023 XEXP (XEXP (x, 0), 0), mode);
4025 /* (float_truncate (float x)) is (float x) */
4026 if (GET_CODE (XEXP (x, 0)) == FLOAT
4027 && (flag_unsafe_math_optimizations
4028 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4029 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4030 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4031 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4032 return simplify_gen_unary (FLOAT, mode,
4033 XEXP (XEXP (x, 0), 0),
4034 GET_MODE (XEXP (XEXP (x, 0), 0)));
4036 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4037 (OP:SF foo:SF) if OP is NEG or ABS. */
4038 if ((GET_CODE (XEXP (x, 0)) == ABS
4039 || GET_CODE (XEXP (x, 0)) == NEG)
4040 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4041 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4042 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4043 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4045 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4046 is (float_truncate:SF x). */
4047 if (GET_CODE (XEXP (x, 0)) == SUBREG
4048 && subreg_lowpart_p (XEXP (x, 0))
4049 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4050 return SUBREG_REG (XEXP (x, 0));
4051 break;
4052 case FLOAT_EXTEND:
4053 /* (float_extend (float_extend x)) is (float_extend x)
4055 (float_extend (float x)) is (float x) assuming that double
4056 rounding can't happen.
4058 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4059 || (GET_CODE (XEXP (x, 0)) == FLOAT
4060 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4061 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4062 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4063 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4064 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4065 XEXP (XEXP (x, 0), 0),
4066 GET_MODE (XEXP (XEXP (x, 0), 0)));
4068 break;
4069 #ifdef HAVE_cc0
4070 case COMPARE:
4071 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4072 using cc0, in which case we want to leave it as a COMPARE
4073 so we can distinguish it from a register-register-copy. */
4074 if (XEXP (x, 1) == const0_rtx)
4075 return XEXP (x, 0);
4077 /* x - 0 is the same as x unless x's mode has signed zeros and
4078 allows rounding towards -infinity. Under those conditions,
4079 0 - 0 is -0. */
4080 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4081 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4082 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4083 return XEXP (x, 0);
4084 break;
4085 #endif
4087 case CONST:
4088 /* (const (const X)) can become (const X). Do it this way rather than
4089 returning the inner CONST since CONST can be shared with a
4090 REG_EQUAL note. */
4091 if (GET_CODE (XEXP (x, 0)) == CONST)
4092 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4093 break;
4095 #ifdef HAVE_lo_sum
4096 case LO_SUM:
4097 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4098 can add in an offset. find_split_point will split this address up
4099 again if it doesn't match. */
4100 if (GET_CODE (XEXP (x, 0)) == HIGH
4101 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4102 return XEXP (x, 1);
4103 break;
4104 #endif
4106 case PLUS:
4107 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4109 if (GET_CODE (XEXP (x, 0)) == MULT
4110 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4112 rtx in1, in2;
4114 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4115 in2 = XEXP (XEXP (x, 0), 1);
4116 return gen_binary (MINUS, mode, XEXP (x, 1),
4117 gen_binary (MULT, mode, in1, in2));
4120 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4121 outermost. That's because that's the way indexed addresses are
4122 supposed to appear. This code used to check many more cases, but
4123 they are now checked elsewhere. */
4124 if (GET_CODE (XEXP (x, 0)) == PLUS
4125 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4126 return gen_binary (PLUS, mode,
4127 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4128 XEXP (x, 1)),
4129 XEXP (XEXP (x, 0), 1));
4131 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4132 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4133 bit-field and can be replaced by either a sign_extend or a
4134 sign_extract. The `and' may be a zero_extend and the two
4135 <c>, -<c> constants may be reversed. */
4136 if (GET_CODE (XEXP (x, 0)) == XOR
4137 && GET_CODE (XEXP (x, 1)) == CONST_INT
4138 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4139 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4140 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4141 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4142 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4143 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4144 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4145 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4146 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4147 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4148 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4149 == (unsigned int) i + 1))))
4150 return simplify_shift_const
4151 (NULL_RTX, ASHIFTRT, mode,
4152 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4153 XEXP (XEXP (XEXP (x, 0), 0), 0),
4154 GET_MODE_BITSIZE (mode) - (i + 1)),
4155 GET_MODE_BITSIZE (mode) - (i + 1));
4157 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4158 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4159 is 1. This produces better code than the alternative immediately
4160 below. */
4161 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4162 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4163 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4164 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4165 XEXP (XEXP (x, 0), 0),
4166 XEXP (XEXP (x, 0), 1))))
4167 return
4168 simplify_gen_unary (NEG, mode, reversed, mode);
4170 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4171 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4172 the bitsize of the mode - 1. This allows simplification of
4173 "a = (b & 8) == 0;" */
4174 if (XEXP (x, 1) == constm1_rtx
4175 && GET_CODE (XEXP (x, 0)) != REG
4176 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4177 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4178 && nonzero_bits (XEXP (x, 0), mode) == 1)
4179 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4180 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4181 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4182 GET_MODE_BITSIZE (mode) - 1),
4183 GET_MODE_BITSIZE (mode) - 1);
4185 /* If we are adding two things that have no bits in common, convert
4186 the addition into an IOR. This will often be further simplified,
4187 for example in cases like ((a & 1) + (a & 2)), which can
4188 become a & 3. */
4190 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4191 && (nonzero_bits (XEXP (x, 0), mode)
4192 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4194 /* Try to simplify the expression further. */
4195 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4196 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4198 /* If we could, great. If not, do not go ahead with the IOR
4199 replacement, since PLUS appears in many special purpose
4200 address arithmetic instructions. */
4201 if (GET_CODE (temp) != CLOBBER && temp != tor)
4202 return temp;
4204 break;
4206 case MINUS:
4207 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4208 by reversing the comparison code if valid. */
4209 if (STORE_FLAG_VALUE == 1
4210 && XEXP (x, 0) == const1_rtx
4211 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4212 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4213 XEXP (XEXP (x, 1), 0),
4214 XEXP (XEXP (x, 1), 1))))
4215 return reversed;
4217 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4218 (and <foo> (const_int pow2-1)) */
4219 if (GET_CODE (XEXP (x, 1)) == AND
4220 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4221 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4222 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4223 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4224 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4226 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4228 if (GET_CODE (XEXP (x, 1)) == MULT
4229 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4231 rtx in1, in2;
4233 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4234 in2 = XEXP (XEXP (x, 1), 1);
4235 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4236 XEXP (x, 0));
4239 /* Canonicalize (minus (neg A) (mult B C)) to
4240 (minus (mult (neg B) C) A). */
4241 if (GET_CODE (XEXP (x, 1)) == MULT
4242 && GET_CODE (XEXP (x, 0)) == NEG)
4244 rtx in1, in2;
4246 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4247 in2 = XEXP (XEXP (x, 1), 1);
4248 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4249 XEXP (XEXP (x, 0), 0));
4252 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4253 integers. */
4254 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4255 return gen_binary (MINUS, mode,
4256 gen_binary (MINUS, mode, XEXP (x, 0),
4257 XEXP (XEXP (x, 1), 0)),
4258 XEXP (XEXP (x, 1), 1));
4259 break;
4261 case MULT:
4262 /* If we have (mult (plus A B) C), apply the distributive law and then
4263 the inverse distributive law to see if things simplify. This
4264 occurs mostly in addresses, often when unrolling loops. */
4266 if (GET_CODE (XEXP (x, 0)) == PLUS)
4268 x = apply_distributive_law
4269 (gen_binary (PLUS, mode,
4270 gen_binary (MULT, mode,
4271 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4272 gen_binary (MULT, mode,
4273 XEXP (XEXP (x, 0), 1),
4274 copy_rtx (XEXP (x, 1)))));
4276 if (GET_CODE (x) != MULT)
4277 return x;
4279 /* Try simplify a*(b/c) as (a*b)/c. */
4280 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4281 && GET_CODE (XEXP (x, 0)) == DIV)
4283 rtx tem = simplify_binary_operation (MULT, mode,
4284 XEXP (XEXP (x, 0), 0),
4285 XEXP (x, 1));
4286 if (tem)
4287 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4289 break;
4291 case UDIV:
4292 /* If this is a divide by a power of two, treat it as a shift if
4293 its first operand is a shift. */
4294 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4295 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4296 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4297 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4298 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4299 || GET_CODE (XEXP (x, 0)) == ROTATE
4300 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4301 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4302 break;
4304 case EQ: case NE:
4305 case GT: case GTU: case GE: case GEU:
4306 case LT: case LTU: case LE: case LEU:
4307 case UNEQ: case LTGT:
4308 case UNGT: case UNGE:
4309 case UNLT: case UNLE:
4310 case UNORDERED: case ORDERED:
4311 /* If the first operand is a condition code, we can't do anything
4312 with it. */
4313 if (GET_CODE (XEXP (x, 0)) == COMPARE
4314 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4315 && ! CC0_P (XEXP (x, 0))))
4317 rtx op0 = XEXP (x, 0);
4318 rtx op1 = XEXP (x, 1);
4319 enum rtx_code new_code;
4321 if (GET_CODE (op0) == COMPARE)
4322 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4324 /* Simplify our comparison, if possible. */
4325 new_code = simplify_comparison (code, &op0, &op1);
4327 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4328 if only the low-order bit is possibly nonzero in X (such as when
4329 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4330 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4331 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4332 (plus X 1).
4334 Remove any ZERO_EXTRACT we made when thinking this was a
4335 comparison. It may now be simpler to use, e.g., an AND. If a
4336 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4337 the call to make_compound_operation in the SET case. */
4339 if (STORE_FLAG_VALUE == 1
4340 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4341 && op1 == const0_rtx
4342 && mode == GET_MODE (op0)
4343 && nonzero_bits (op0, mode) == 1)
4344 return gen_lowpart_for_combine (mode,
4345 expand_compound_operation (op0));
4347 else if (STORE_FLAG_VALUE == 1
4348 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4349 && op1 == const0_rtx
4350 && mode == GET_MODE (op0)
4351 && (num_sign_bit_copies (op0, mode)
4352 == GET_MODE_BITSIZE (mode)))
4354 op0 = expand_compound_operation (op0);
4355 return simplify_gen_unary (NEG, mode,
4356 gen_lowpart_for_combine (mode, op0),
4357 mode);
4360 else if (STORE_FLAG_VALUE == 1
4361 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4362 && op1 == const0_rtx
4363 && mode == GET_MODE (op0)
4364 && nonzero_bits (op0, mode) == 1)
4366 op0 = expand_compound_operation (op0);
4367 return gen_binary (XOR, mode,
4368 gen_lowpart_for_combine (mode, op0),
4369 const1_rtx);
4372 else if (STORE_FLAG_VALUE == 1
4373 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4374 && op1 == const0_rtx
4375 && mode == GET_MODE (op0)
4376 && (num_sign_bit_copies (op0, mode)
4377 == GET_MODE_BITSIZE (mode)))
4379 op0 = expand_compound_operation (op0);
4380 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4383 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4384 those above. */
4385 if (STORE_FLAG_VALUE == -1
4386 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4387 && op1 == const0_rtx
4388 && (num_sign_bit_copies (op0, mode)
4389 == GET_MODE_BITSIZE (mode)))
4390 return gen_lowpart_for_combine (mode,
4391 expand_compound_operation (op0));
4393 else if (STORE_FLAG_VALUE == -1
4394 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4395 && op1 == const0_rtx
4396 && mode == GET_MODE (op0)
4397 && nonzero_bits (op0, mode) == 1)
4399 op0 = expand_compound_operation (op0);
4400 return simplify_gen_unary (NEG, mode,
4401 gen_lowpart_for_combine (mode, op0),
4402 mode);
4405 else if (STORE_FLAG_VALUE == -1
4406 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4407 && op1 == const0_rtx
4408 && mode == GET_MODE (op0)
4409 && (num_sign_bit_copies (op0, mode)
4410 == GET_MODE_BITSIZE (mode)))
4412 op0 = expand_compound_operation (op0);
4413 return simplify_gen_unary (NOT, mode,
4414 gen_lowpart_for_combine (mode, op0),
4415 mode);
4418 /* If X is 0/1, (eq X 0) is X-1. */
4419 else if (STORE_FLAG_VALUE == -1
4420 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4421 && op1 == const0_rtx
4422 && mode == GET_MODE (op0)
4423 && nonzero_bits (op0, mode) == 1)
4425 op0 = expand_compound_operation (op0);
4426 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4429 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4430 one bit that might be nonzero, we can convert (ne x 0) to
4431 (ashift x c) where C puts the bit in the sign bit. Remove any
4432 AND with STORE_FLAG_VALUE when we are done, since we are only
4433 going to test the sign bit. */
4434 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4435 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4436 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4437 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4438 && op1 == const0_rtx
4439 && mode == GET_MODE (op0)
4440 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4442 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4443 expand_compound_operation (op0),
4444 GET_MODE_BITSIZE (mode) - 1 - i);
4445 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4446 return XEXP (x, 0);
4447 else
4448 return x;
4451 /* If the code changed, return a whole new comparison. */
4452 if (new_code != code)
4453 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4455 /* Otherwise, keep this operation, but maybe change its operands.
4456 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4457 SUBST (XEXP (x, 0), op0);
4458 SUBST (XEXP (x, 1), op1);
4460 break;
4462 case IF_THEN_ELSE:
4463 return simplify_if_then_else (x);
4465 case ZERO_EXTRACT:
4466 case SIGN_EXTRACT:
4467 case ZERO_EXTEND:
4468 case SIGN_EXTEND:
4469 /* If we are processing SET_DEST, we are done. */
4470 if (in_dest)
4471 return x;
4473 return expand_compound_operation (x);
4475 case SET:
4476 return simplify_set (x);
4478 case AND:
4479 case IOR:
4480 case XOR:
4481 return simplify_logical (x, last);
4483 case ABS:
4484 /* (abs (neg <foo>)) -> (abs <foo>) */
4485 if (GET_CODE (XEXP (x, 0)) == NEG)
4486 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4488 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4489 do nothing. */
4490 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4491 break;
4493 /* If operand is something known to be positive, ignore the ABS. */
4494 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4495 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4496 <= HOST_BITS_PER_WIDE_INT)
4497 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4498 & ((HOST_WIDE_INT) 1
4499 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4500 == 0)))
4501 return XEXP (x, 0);
4503 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4504 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4505 return gen_rtx_NEG (mode, XEXP (x, 0));
4507 break;
4509 case FFS:
4510 /* (ffs (*_extend <X>)) = (ffs <X>) */
4511 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4512 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4513 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4514 break;
4516 case POPCOUNT:
4517 case PARITY:
4518 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4519 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4520 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4521 break;
4523 case FLOAT:
4524 /* (float (sign_extend <X>)) = (float <X>). */
4525 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4526 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4527 break;
4529 case ASHIFT:
4530 case LSHIFTRT:
4531 case ASHIFTRT:
4532 case ROTATE:
4533 case ROTATERT:
4534 /* If this is a shift by a constant amount, simplify it. */
4535 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4536 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4537 INTVAL (XEXP (x, 1)));
4539 #ifdef SHIFT_COUNT_TRUNCATED
4540 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4541 SUBST (XEXP (x, 1),
4542 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4543 ((HOST_WIDE_INT) 1
4544 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4545 - 1,
4546 NULL_RTX, 0));
4547 #endif
4549 break;
4551 case VEC_SELECT:
4553 rtx op0 = XEXP (x, 0);
4554 rtx op1 = XEXP (x, 1);
4555 int len;
4557 if (GET_CODE (op1) != PARALLEL)
4558 abort ();
4559 len = XVECLEN (op1, 0);
4560 if (len == 1
4561 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4562 && GET_CODE (op0) == VEC_CONCAT)
4564 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4566 /* Try to find the element in the VEC_CONCAT. */
4567 for (;;)
4569 if (GET_MODE (op0) == GET_MODE (x))
4570 return op0;
4571 if (GET_CODE (op0) == VEC_CONCAT)
4573 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4574 if (op0_size < offset)
4575 op0 = XEXP (op0, 0);
4576 else
4578 offset -= op0_size;
4579 op0 = XEXP (op0, 1);
4582 else
4583 break;
4588 break;
4590 default:
4591 break;
4594 return x;
4597 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4599 static rtx
4600 simplify_if_then_else (rtx x)
4602 enum machine_mode mode = GET_MODE (x);
4603 rtx cond = XEXP (x, 0);
4604 rtx true_rtx = XEXP (x, 1);
4605 rtx false_rtx = XEXP (x, 2);
4606 enum rtx_code true_code = GET_CODE (cond);
4607 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4608 rtx temp;
4609 int i;
4610 enum rtx_code false_code;
4611 rtx reversed;
4613 /* Simplify storing of the truth value. */
4614 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4615 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4617 /* Also when the truth value has to be reversed. */
4618 if (comparison_p
4619 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4620 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4621 XEXP (cond, 1))))
4622 return reversed;
4624 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4625 in it is being compared against certain values. Get the true and false
4626 comparisons and see if that says anything about the value of each arm. */
4628 if (comparison_p
4629 && ((false_code = combine_reversed_comparison_code (cond))
4630 != UNKNOWN)
4631 && GET_CODE (XEXP (cond, 0)) == REG)
4633 HOST_WIDE_INT nzb;
4634 rtx from = XEXP (cond, 0);
4635 rtx true_val = XEXP (cond, 1);
4636 rtx false_val = true_val;
4637 int swapped = 0;
4639 /* If FALSE_CODE is EQ, swap the codes and arms. */
4641 if (false_code == EQ)
4643 swapped = 1, true_code = EQ, false_code = NE;
4644 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4647 /* If we are comparing against zero and the expression being tested has
4648 only a single bit that might be nonzero, that is its value when it is
4649 not equal to zero. Similarly if it is known to be -1 or 0. */
4651 if (true_code == EQ && true_val == const0_rtx
4652 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4653 false_code = EQ, false_val = GEN_INT (nzb);
4654 else if (true_code == EQ && true_val == const0_rtx
4655 && (num_sign_bit_copies (from, GET_MODE (from))
4656 == GET_MODE_BITSIZE (GET_MODE (from))))
4657 false_code = EQ, false_val = constm1_rtx;
4659 /* Now simplify an arm if we know the value of the register in the
4660 branch and it is used in the arm. Be careful due to the potential
4661 of locally-shared RTL. */
4663 if (reg_mentioned_p (from, true_rtx))
4664 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4665 from, true_val),
4666 pc_rtx, pc_rtx, 0, 0);
4667 if (reg_mentioned_p (from, false_rtx))
4668 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4669 from, false_val),
4670 pc_rtx, pc_rtx, 0, 0);
4672 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4673 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4675 true_rtx = XEXP (x, 1);
4676 false_rtx = XEXP (x, 2);
4677 true_code = GET_CODE (cond);
4680 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4681 reversed, do so to avoid needing two sets of patterns for
4682 subtract-and-branch insns. Similarly if we have a constant in the true
4683 arm, the false arm is the same as the first operand of the comparison, or
4684 the false arm is more complicated than the true arm. */
4686 if (comparison_p
4687 && combine_reversed_comparison_code (cond) != UNKNOWN
4688 && (true_rtx == pc_rtx
4689 || (CONSTANT_P (true_rtx)
4690 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4691 || true_rtx == const0_rtx
4692 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4693 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4694 || (GET_CODE (true_rtx) == SUBREG
4695 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4696 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4697 || reg_mentioned_p (true_rtx, false_rtx)
4698 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4700 true_code = reversed_comparison_code (cond, NULL);
4701 SUBST (XEXP (x, 0),
4702 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4703 XEXP (cond, 1)));
4705 SUBST (XEXP (x, 1), false_rtx);
4706 SUBST (XEXP (x, 2), true_rtx);
4708 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4709 cond = XEXP (x, 0);
4711 /* It is possible that the conditional has been simplified out. */
4712 true_code = GET_CODE (cond);
4713 comparison_p = GET_RTX_CLASS (true_code) == '<';
4716 /* If the two arms are identical, we don't need the comparison. */
4718 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4719 return true_rtx;
4721 /* Convert a == b ? b : a to "a". */
4722 if (true_code == EQ && ! side_effects_p (cond)
4723 && !HONOR_NANS (mode)
4724 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4725 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4726 return false_rtx;
4727 else if (true_code == NE && ! side_effects_p (cond)
4728 && !HONOR_NANS (mode)
4729 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4730 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4731 return true_rtx;
4733 /* Look for cases where we have (abs x) or (neg (abs X)). */
4735 if (GET_MODE_CLASS (mode) == MODE_INT
4736 && GET_CODE (false_rtx) == NEG
4737 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4738 && comparison_p
4739 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4740 && ! side_effects_p (true_rtx))
4741 switch (true_code)
4743 case GT:
4744 case GE:
4745 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4746 case LT:
4747 case LE:
4748 return
4749 simplify_gen_unary (NEG, mode,
4750 simplify_gen_unary (ABS, mode, true_rtx, mode),
4751 mode);
4752 default:
4753 break;
4756 /* Look for MIN or MAX. */
4758 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4759 && comparison_p
4760 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4761 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4762 && ! side_effects_p (cond))
4763 switch (true_code)
4765 case GE:
4766 case GT:
4767 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4768 case LE:
4769 case LT:
4770 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4771 case GEU:
4772 case GTU:
4773 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4774 case LEU:
4775 case LTU:
4776 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4777 default:
4778 break;
4781 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4782 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4783 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4784 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4785 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4786 neither 1 or -1, but it isn't worth checking for. */
4788 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4789 && comparison_p
4790 && GET_MODE_CLASS (mode) == MODE_INT
4791 && ! side_effects_p (x))
4793 rtx t = make_compound_operation (true_rtx, SET);
4794 rtx f = make_compound_operation (false_rtx, SET);
4795 rtx cond_op0 = XEXP (cond, 0);
4796 rtx cond_op1 = XEXP (cond, 1);
4797 enum rtx_code op = NIL, extend_op = NIL;
4798 enum machine_mode m = mode;
4799 rtx z = 0, c1 = NULL_RTX;
4801 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4802 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4803 || GET_CODE (t) == ASHIFT
4804 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4805 && rtx_equal_p (XEXP (t, 0), f))
4806 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4808 /* If an identity-zero op is commutative, check whether there
4809 would be a match if we swapped the operands. */
4810 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4811 || GET_CODE (t) == XOR)
4812 && rtx_equal_p (XEXP (t, 1), f))
4813 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4814 else if (GET_CODE (t) == SIGN_EXTEND
4815 && (GET_CODE (XEXP (t, 0)) == PLUS
4816 || GET_CODE (XEXP (t, 0)) == MINUS
4817 || GET_CODE (XEXP (t, 0)) == IOR
4818 || GET_CODE (XEXP (t, 0)) == XOR
4819 || GET_CODE (XEXP (t, 0)) == ASHIFT
4820 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4821 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4822 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4823 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4824 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4825 && (num_sign_bit_copies (f, GET_MODE (f))
4826 > (unsigned int)
4827 (GET_MODE_BITSIZE (mode)
4828 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4830 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4831 extend_op = SIGN_EXTEND;
4832 m = GET_MODE (XEXP (t, 0));
4834 else if (GET_CODE (t) == SIGN_EXTEND
4835 && (GET_CODE (XEXP (t, 0)) == PLUS
4836 || GET_CODE (XEXP (t, 0)) == IOR
4837 || GET_CODE (XEXP (t, 0)) == XOR)
4838 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4839 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4840 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4841 && (num_sign_bit_copies (f, GET_MODE (f))
4842 > (unsigned int)
4843 (GET_MODE_BITSIZE (mode)
4844 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4846 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4847 extend_op = SIGN_EXTEND;
4848 m = GET_MODE (XEXP (t, 0));
4850 else if (GET_CODE (t) == ZERO_EXTEND
4851 && (GET_CODE (XEXP (t, 0)) == PLUS
4852 || GET_CODE (XEXP (t, 0)) == MINUS
4853 || GET_CODE (XEXP (t, 0)) == IOR
4854 || GET_CODE (XEXP (t, 0)) == XOR
4855 || GET_CODE (XEXP (t, 0)) == ASHIFT
4856 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4857 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4858 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4859 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4860 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4861 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4862 && ((nonzero_bits (f, GET_MODE (f))
4863 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4864 == 0))
4866 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4867 extend_op = ZERO_EXTEND;
4868 m = GET_MODE (XEXP (t, 0));
4870 else if (GET_CODE (t) == ZERO_EXTEND
4871 && (GET_CODE (XEXP (t, 0)) == PLUS
4872 || GET_CODE (XEXP (t, 0)) == IOR
4873 || GET_CODE (XEXP (t, 0)) == XOR)
4874 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4875 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4876 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4877 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4878 && ((nonzero_bits (f, GET_MODE (f))
4879 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4880 == 0))
4882 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4883 extend_op = ZERO_EXTEND;
4884 m = GET_MODE (XEXP (t, 0));
4887 if (z)
4889 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4890 pc_rtx, pc_rtx, 0, 0);
4891 temp = gen_binary (MULT, m, temp,
4892 gen_binary (MULT, m, c1, const_true_rtx));
4893 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4894 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4896 if (extend_op != NIL)
4897 temp = simplify_gen_unary (extend_op, mode, temp, m);
4899 return temp;
4903 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4904 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4905 negation of a single bit, we can convert this operation to a shift. We
4906 can actually do this more generally, but it doesn't seem worth it. */
4908 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4909 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4910 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4911 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4912 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4913 == GET_MODE_BITSIZE (mode))
4914 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4915 return
4916 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4917 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4919 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
4920 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4921 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4922 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
4923 == nonzero_bits (XEXP (cond, 0), mode)
4924 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
4925 return XEXP (cond, 0);
4927 return x;
4930 /* Simplify X, a SET expression. Return the new expression. */
4932 static rtx
4933 simplify_set (rtx x)
4935 rtx src = SET_SRC (x);
4936 rtx dest = SET_DEST (x);
4937 enum machine_mode mode
4938 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4939 rtx other_insn;
4940 rtx *cc_use;
4942 /* (set (pc) (return)) gets written as (return). */
4943 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4944 return src;
4946 /* Now that we know for sure which bits of SRC we are using, see if we can
4947 simplify the expression for the object knowing that we only need the
4948 low-order bits. */
4950 if (GET_MODE_CLASS (mode) == MODE_INT
4951 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4953 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4954 SUBST (SET_SRC (x), src);
4957 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4958 the comparison result and try to simplify it unless we already have used
4959 undobuf.other_insn. */
4960 if ((GET_MODE_CLASS (mode) == MODE_CC
4961 || GET_CODE (src) == COMPARE
4962 || CC0_P (dest))
4963 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4964 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
4965 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
4966 && rtx_equal_p (XEXP (*cc_use, 0), dest))
4968 enum rtx_code old_code = GET_CODE (*cc_use);
4969 enum rtx_code new_code;
4970 rtx op0, op1, tmp;
4971 int other_changed = 0;
4972 enum machine_mode compare_mode = GET_MODE (dest);
4973 enum machine_mode tmp_mode;
4975 if (GET_CODE (src) == COMPARE)
4976 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
4977 else
4978 op0 = src, op1 = const0_rtx;
4980 /* Check whether the comparison is known at compile time. */
4981 if (GET_MODE (op0) != VOIDmode)
4982 tmp_mode = GET_MODE (op0);
4983 else if (GET_MODE (op1) != VOIDmode)
4984 tmp_mode = GET_MODE (op1);
4985 else
4986 tmp_mode = compare_mode;
4987 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
4988 if (tmp != NULL_RTX)
4990 rtx pat = PATTERN (other_insn);
4991 undobuf.other_insn = other_insn;
4992 SUBST (*cc_use, tmp);
4994 /* Attempt to simplify CC user. */
4995 if (GET_CODE (pat) == SET)
4997 rtx new = simplify_rtx (SET_SRC (pat));
4998 if (new != NULL_RTX)
4999 SUBST (SET_SRC (pat), new);
5002 /* Convert X into a no-op move. */
5003 SUBST (SET_DEST (x), pc_rtx);
5004 SUBST (SET_SRC (x), pc_rtx);
5005 return x;
5008 /* Simplify our comparison, if possible. */
5009 new_code = simplify_comparison (old_code, &op0, &op1);
5011 #ifdef SELECT_CC_MODE
5012 /* If this machine has CC modes other than CCmode, check to see if we
5013 need to use a different CC mode here. */
5014 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5016 #ifndef HAVE_cc0
5017 /* If the mode changed, we have to change SET_DEST, the mode in the
5018 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5019 a hard register, just build new versions with the proper mode. If it
5020 is a pseudo, we lose unless it is only time we set the pseudo, in
5021 which case we can safely change its mode. */
5022 if (compare_mode != GET_MODE (dest))
5024 unsigned int regno = REGNO (dest);
5025 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5027 if (regno < FIRST_PSEUDO_REGISTER
5028 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5030 if (regno >= FIRST_PSEUDO_REGISTER)
5031 SUBST (regno_reg_rtx[regno], new_dest);
5033 SUBST (SET_DEST (x), new_dest);
5034 SUBST (XEXP (*cc_use, 0), new_dest);
5035 other_changed = 1;
5037 dest = new_dest;
5040 #endif /* cc0 */
5041 #endif /* SELECT_CC_MODE */
5043 /* If the code changed, we have to build a new comparison in
5044 undobuf.other_insn. */
5045 if (new_code != old_code)
5047 int other_changed_previously = other_changed;
5048 unsigned HOST_WIDE_INT mask;
5050 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5051 dest, const0_rtx));
5052 other_changed = 1;
5054 /* If the only change we made was to change an EQ into an NE or
5055 vice versa, OP0 has only one bit that might be nonzero, and OP1
5056 is zero, check if changing the user of the condition code will
5057 produce a valid insn. If it won't, we can keep the original code
5058 in that insn by surrounding our operation with an XOR. */
5060 if (((old_code == NE && new_code == EQ)
5061 || (old_code == EQ && new_code == NE))
5062 && ! other_changed_previously && op1 == const0_rtx
5063 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5064 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5066 rtx pat = PATTERN (other_insn), note = 0;
5068 if ((recog_for_combine (&pat, other_insn, &note) < 0
5069 && ! check_asm_operands (pat)))
5071 PUT_CODE (*cc_use, old_code);
5072 other_changed = 0;
5074 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5079 if (other_changed)
5080 undobuf.other_insn = other_insn;
5082 #ifdef HAVE_cc0
5083 /* If we are now comparing against zero, change our source if
5084 needed. If we do not use cc0, we always have a COMPARE. */
5085 if (op1 == const0_rtx && dest == cc0_rtx)
5087 SUBST (SET_SRC (x), op0);
5088 src = op0;
5090 else
5091 #endif
5093 /* Otherwise, if we didn't previously have a COMPARE in the
5094 correct mode, we need one. */
5095 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5097 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5098 src = SET_SRC (x);
5100 else
5102 /* Otherwise, update the COMPARE if needed. */
5103 SUBST (XEXP (src, 0), op0);
5104 SUBST (XEXP (src, 1), op1);
5107 else
5109 /* Get SET_SRC in a form where we have placed back any
5110 compound expressions. Then do the checks below. */
5111 src = make_compound_operation (src, SET);
5112 SUBST (SET_SRC (x), src);
5115 #ifdef WORD_REGISTER_OPERATIONS
5116 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5117 and X being a REG or (subreg (reg)), we may be able to convert this to
5118 (set (subreg:m2 x) (op)).
5120 On a machine where WORD_REGISTER_OPERATIONS is defined, this
5121 transformation is safe as long as M1 and M2 have the same number
5122 of words.
5124 However, on a machine without WORD_REGISTER_OPERATIONS defined,
5125 we cannot apply this transformation because it would create a
5126 paradoxical subreg in SET_DEST. */
5128 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5129 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5130 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5131 / UNITS_PER_WORD)
5132 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5133 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5134 #ifdef CANNOT_CHANGE_MODE_CLASS
5135 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5136 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5137 GET_MODE (SUBREG_REG (src)),
5138 GET_MODE (src)))
5139 #endif
5140 && (GET_CODE (dest) == REG
5141 || (GET_CODE (dest) == SUBREG
5142 && GET_CODE (SUBREG_REG (dest)) == REG)))
5144 SUBST (SET_DEST (x),
5145 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5146 dest));
5147 SUBST (SET_SRC (x), SUBREG_REG (src));
5149 src = SET_SRC (x), dest = SET_DEST (x);
5151 #endif
5153 #ifdef HAVE_cc0
5154 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5155 in SRC. */
5156 if (dest == cc0_rtx
5157 && GET_CODE (src) == SUBREG
5158 && subreg_lowpart_p (src)
5159 && (GET_MODE_BITSIZE (GET_MODE (src))
5160 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5162 rtx inner = SUBREG_REG (src);
5163 enum machine_mode inner_mode = GET_MODE (inner);
5165 /* Here we make sure that we don't have a sign bit on. */
5166 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5167 && (nonzero_bits (inner, inner_mode)
5168 < ((unsigned HOST_WIDE_INT) 1
5169 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5171 SUBST (SET_SRC (x), inner);
5172 src = SET_SRC (x);
5175 #endif
5177 #ifdef LOAD_EXTEND_OP
5178 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5179 would require a paradoxical subreg. Replace the subreg with a
5180 zero_extend to avoid the reload that would otherwise be required. */
5182 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5183 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5184 && SUBREG_BYTE (src) == 0
5185 && (GET_MODE_SIZE (GET_MODE (src))
5186 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5187 && GET_CODE (SUBREG_REG (src)) == MEM)
5189 SUBST (SET_SRC (x),
5190 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5191 GET_MODE (src), SUBREG_REG (src)));
5193 src = SET_SRC (x);
5195 #endif
5197 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5198 are comparing an item known to be 0 or -1 against 0, use a logical
5199 operation instead. Check for one of the arms being an IOR of the other
5200 arm with some value. We compute three terms to be IOR'ed together. In
5201 practice, at most two will be nonzero. Then we do the IOR's. */
5203 if (GET_CODE (dest) != PC
5204 && GET_CODE (src) == IF_THEN_ELSE
5205 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5206 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5207 && XEXP (XEXP (src, 0), 1) == const0_rtx
5208 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5209 #ifdef HAVE_conditional_move
5210 && ! can_conditionally_move_p (GET_MODE (src))
5211 #endif
5212 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5213 GET_MODE (XEXP (XEXP (src, 0), 0)))
5214 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5215 && ! side_effects_p (src))
5217 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5218 ? XEXP (src, 1) : XEXP (src, 2));
5219 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5220 ? XEXP (src, 2) : XEXP (src, 1));
5221 rtx term1 = const0_rtx, term2, term3;
5223 if (GET_CODE (true_rtx) == IOR
5224 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5225 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5226 else if (GET_CODE (true_rtx) == IOR
5227 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5228 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5229 else if (GET_CODE (false_rtx) == IOR
5230 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5231 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5232 else if (GET_CODE (false_rtx) == IOR
5233 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5234 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5236 term2 = gen_binary (AND, GET_MODE (src),
5237 XEXP (XEXP (src, 0), 0), true_rtx);
5238 term3 = gen_binary (AND, GET_MODE (src),
5239 simplify_gen_unary (NOT, GET_MODE (src),
5240 XEXP (XEXP (src, 0), 0),
5241 GET_MODE (src)),
5242 false_rtx);
5244 SUBST (SET_SRC (x),
5245 gen_binary (IOR, GET_MODE (src),
5246 gen_binary (IOR, GET_MODE (src), term1, term2),
5247 term3));
5249 src = SET_SRC (x);
5252 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5253 whole thing fail. */
5254 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5255 return src;
5256 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5257 return dest;
5258 else
5259 /* Convert this into a field assignment operation, if possible. */
5260 return make_field_assignment (x);
5263 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5264 result. LAST is nonzero if this is the last retry. */
5266 static rtx
5267 simplify_logical (rtx x, int last)
5269 enum machine_mode mode = GET_MODE (x);
5270 rtx op0 = XEXP (x, 0);
5271 rtx op1 = XEXP (x, 1);
5272 rtx reversed;
5274 switch (GET_CODE (x))
5276 case AND:
5277 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5278 insn (and may simplify more). */
5279 if (GET_CODE (op0) == XOR
5280 && rtx_equal_p (XEXP (op0, 0), op1)
5281 && ! side_effects_p (op1))
5282 x = gen_binary (AND, mode,
5283 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5284 op1);
5286 if (GET_CODE (op0) == XOR
5287 && rtx_equal_p (XEXP (op0, 1), op1)
5288 && ! side_effects_p (op1))
5289 x = gen_binary (AND, mode,
5290 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5291 op1);
5293 /* Similarly for (~(A ^ B)) & A. */
5294 if (GET_CODE (op0) == NOT
5295 && GET_CODE (XEXP (op0, 0)) == XOR
5296 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5297 && ! side_effects_p (op1))
5298 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5300 if (GET_CODE (op0) == NOT
5301 && GET_CODE (XEXP (op0, 0)) == XOR
5302 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5303 && ! side_effects_p (op1))
5304 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5306 /* We can call simplify_and_const_int only if we don't lose
5307 any (sign) bits when converting INTVAL (op1) to
5308 "unsigned HOST_WIDE_INT". */
5309 if (GET_CODE (op1) == CONST_INT
5310 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5311 || INTVAL (op1) > 0))
5313 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5315 /* If we have (ior (and (X C1) C2)) and the next restart would be
5316 the last, simplify this by making C1 as small as possible
5317 and then exit. */
5318 if (last
5319 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5320 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5321 && GET_CODE (op1) == CONST_INT)
5322 return gen_binary (IOR, mode,
5323 gen_binary (AND, mode, XEXP (op0, 0),
5324 GEN_INT (INTVAL (XEXP (op0, 1))
5325 & ~INTVAL (op1))), op1);
5327 if (GET_CODE (x) != AND)
5328 return x;
5330 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5331 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5332 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5335 /* Convert (A | B) & A to A. */
5336 if (GET_CODE (op0) == IOR
5337 && (rtx_equal_p (XEXP (op0, 0), op1)
5338 || rtx_equal_p (XEXP (op0, 1), op1))
5339 && ! side_effects_p (XEXP (op0, 0))
5340 && ! side_effects_p (XEXP (op0, 1)))
5341 return op1;
5343 /* In the following group of tests (and those in case IOR below),
5344 we start with some combination of logical operations and apply
5345 the distributive law followed by the inverse distributive law.
5346 Most of the time, this results in no change. However, if some of
5347 the operands are the same or inverses of each other, simplifications
5348 will result.
5350 For example, (and (ior A B) (not B)) can occur as the result of
5351 expanding a bit field assignment. When we apply the distributive
5352 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5353 which then simplifies to (and (A (not B))).
5355 If we have (and (ior A B) C), apply the distributive law and then
5356 the inverse distributive law to see if things simplify. */
5358 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5360 x = apply_distributive_law
5361 (gen_binary (GET_CODE (op0), mode,
5362 gen_binary (AND, mode, XEXP (op0, 0), op1),
5363 gen_binary (AND, mode, XEXP (op0, 1),
5364 copy_rtx (op1))));
5365 if (GET_CODE (x) != AND)
5366 return x;
5369 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5370 return apply_distributive_law
5371 (gen_binary (GET_CODE (op1), mode,
5372 gen_binary (AND, mode, XEXP (op1, 0), op0),
5373 gen_binary (AND, mode, XEXP (op1, 1),
5374 copy_rtx (op0))));
5376 /* Similarly, taking advantage of the fact that
5377 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5379 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5380 return apply_distributive_law
5381 (gen_binary (XOR, mode,
5382 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5383 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5384 XEXP (op1, 1))));
5386 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5387 return apply_distributive_law
5388 (gen_binary (XOR, mode,
5389 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5390 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5391 break;
5393 case IOR:
5394 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5395 if (GET_CODE (op1) == CONST_INT
5396 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5397 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5398 return op1;
5400 /* Convert (A & B) | A to A. */
5401 if (GET_CODE (op0) == AND
5402 && (rtx_equal_p (XEXP (op0, 0), op1)
5403 || rtx_equal_p (XEXP (op0, 1), op1))
5404 && ! side_effects_p (XEXP (op0, 0))
5405 && ! side_effects_p (XEXP (op0, 1)))
5406 return op1;
5408 /* If we have (ior (and A B) C), apply the distributive law and then
5409 the inverse distributive law to see if things simplify. */
5411 if (GET_CODE (op0) == AND)
5413 x = apply_distributive_law
5414 (gen_binary (AND, mode,
5415 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5416 gen_binary (IOR, mode, XEXP (op0, 1),
5417 copy_rtx (op1))));
5419 if (GET_CODE (x) != IOR)
5420 return x;
5423 if (GET_CODE (op1) == AND)
5425 x = apply_distributive_law
5426 (gen_binary (AND, mode,
5427 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5428 gen_binary (IOR, mode, XEXP (op1, 1),
5429 copy_rtx (op0))));
5431 if (GET_CODE (x) != IOR)
5432 return x;
5435 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5436 mode size to (rotate A CX). */
5438 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5439 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5440 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5441 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5442 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5443 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5444 == GET_MODE_BITSIZE (mode)))
5445 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5446 (GET_CODE (op0) == ASHIFT
5447 ? XEXP (op0, 1) : XEXP (op1, 1)));
5449 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5450 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5451 does not affect any of the bits in OP1, it can really be done
5452 as a PLUS and we can associate. We do this by seeing if OP1
5453 can be safely shifted left C bits. */
5454 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5455 && GET_CODE (XEXP (op0, 0)) == PLUS
5456 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5457 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5458 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5460 int count = INTVAL (XEXP (op0, 1));
5461 HOST_WIDE_INT mask = INTVAL (op1) << count;
5463 if (mask >> count == INTVAL (op1)
5464 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5466 SUBST (XEXP (XEXP (op0, 0), 1),
5467 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5468 return op0;
5471 break;
5473 case XOR:
5474 /* If we are XORing two things that have no bits in common,
5475 convert them into an IOR. This helps to detect rotation encoded
5476 using those methods and possibly other simplifications. */
5478 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5479 && (nonzero_bits (op0, mode)
5480 & nonzero_bits (op1, mode)) == 0)
5481 return (gen_binary (IOR, mode, op0, op1));
5483 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5484 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5485 (NOT y). */
5487 int num_negated = 0;
5489 if (GET_CODE (op0) == NOT)
5490 num_negated++, op0 = XEXP (op0, 0);
5491 if (GET_CODE (op1) == NOT)
5492 num_negated++, op1 = XEXP (op1, 0);
5494 if (num_negated == 2)
5496 SUBST (XEXP (x, 0), op0);
5497 SUBST (XEXP (x, 1), op1);
5499 else if (num_negated == 1)
5500 return
5501 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5502 mode);
5505 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5506 correspond to a machine insn or result in further simplifications
5507 if B is a constant. */
5509 if (GET_CODE (op0) == AND
5510 && rtx_equal_p (XEXP (op0, 1), op1)
5511 && ! side_effects_p (op1))
5512 return gen_binary (AND, mode,
5513 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5514 op1);
5516 else if (GET_CODE (op0) == AND
5517 && rtx_equal_p (XEXP (op0, 0), op1)
5518 && ! side_effects_p (op1))
5519 return gen_binary (AND, mode,
5520 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5521 op1);
5523 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5524 comparison if STORE_FLAG_VALUE is 1. */
5525 if (STORE_FLAG_VALUE == 1
5526 && op1 == const1_rtx
5527 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5528 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5529 XEXP (op0, 1))))
5530 return reversed;
5532 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5533 is (lt foo (const_int 0)), so we can perform the above
5534 simplification if STORE_FLAG_VALUE is 1. */
5536 if (STORE_FLAG_VALUE == 1
5537 && op1 == const1_rtx
5538 && GET_CODE (op0) == LSHIFTRT
5539 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5540 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5541 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5543 /* (xor (comparison foo bar) (const_int sign-bit))
5544 when STORE_FLAG_VALUE is the sign bit. */
5545 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5546 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5547 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5548 && op1 == const_true_rtx
5549 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5550 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5551 XEXP (op0, 1))))
5552 return reversed;
5554 break;
5556 default:
5557 abort ();
5560 return x;
5563 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5564 operations" because they can be replaced with two more basic operations.
5565 ZERO_EXTEND is also considered "compound" because it can be replaced with
5566 an AND operation, which is simpler, though only one operation.
5568 The function expand_compound_operation is called with an rtx expression
5569 and will convert it to the appropriate shifts and AND operations,
5570 simplifying at each stage.
5572 The function make_compound_operation is called to convert an expression
5573 consisting of shifts and ANDs into the equivalent compound expression.
5574 It is the inverse of this function, loosely speaking. */
5576 static rtx
5577 expand_compound_operation (rtx x)
5579 unsigned HOST_WIDE_INT pos = 0, len;
5580 int unsignedp = 0;
5581 unsigned int modewidth;
5582 rtx tem;
5584 switch (GET_CODE (x))
5586 case ZERO_EXTEND:
5587 unsignedp = 1;
5588 case SIGN_EXTEND:
5589 /* We can't necessarily use a const_int for a multiword mode;
5590 it depends on implicitly extending the value.
5591 Since we don't know the right way to extend it,
5592 we can't tell whether the implicit way is right.
5594 Even for a mode that is no wider than a const_int,
5595 we can't win, because we need to sign extend one of its bits through
5596 the rest of it, and we don't know which bit. */
5597 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5598 return x;
5600 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5601 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5602 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5603 reloaded. If not for that, MEM's would very rarely be safe.
5605 Reject MODEs bigger than a word, because we might not be able
5606 to reference a two-register group starting with an arbitrary register
5607 (and currently gen_lowpart might crash for a SUBREG). */
5609 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5610 return x;
5612 /* Reject MODEs that aren't scalar integers because turning vector
5613 or complex modes into shifts causes problems. */
5615 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5616 return x;
5618 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5619 /* If the inner object has VOIDmode (the only way this can happen
5620 is if it is an ASM_OPERANDS), we can't do anything since we don't
5621 know how much masking to do. */
5622 if (len == 0)
5623 return x;
5625 break;
5627 case ZERO_EXTRACT:
5628 unsignedp = 1;
5629 case SIGN_EXTRACT:
5630 /* If the operand is a CLOBBER, just return it. */
5631 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5632 return XEXP (x, 0);
5634 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5635 || GET_CODE (XEXP (x, 2)) != CONST_INT
5636 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5637 return x;
5639 /* Reject MODEs that aren't scalar integers because turning vector
5640 or complex modes into shifts causes problems. */
5642 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5643 return x;
5645 len = INTVAL (XEXP (x, 1));
5646 pos = INTVAL (XEXP (x, 2));
5648 /* If this goes outside the object being extracted, replace the object
5649 with a (use (mem ...)) construct that only combine understands
5650 and is used only for this purpose. */
5651 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5652 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5654 if (BITS_BIG_ENDIAN)
5655 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5657 break;
5659 default:
5660 return x;
5662 /* Convert sign extension to zero extension, if we know that the high
5663 bit is not set, as this is easier to optimize. It will be converted
5664 back to cheaper alternative in make_extraction. */
5665 if (GET_CODE (x) == SIGN_EXTEND
5666 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5667 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5668 & ~(((unsigned HOST_WIDE_INT)
5669 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5670 >> 1))
5671 == 0)))
5673 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5674 rtx temp2 = expand_compound_operation (temp);
5676 /* Make sure this is a profitable operation. */
5677 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5678 return temp2;
5679 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5680 return temp;
5681 else
5682 return x;
5685 /* We can optimize some special cases of ZERO_EXTEND. */
5686 if (GET_CODE (x) == ZERO_EXTEND)
5688 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5689 know that the last value didn't have any inappropriate bits
5690 set. */
5691 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5692 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5693 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5694 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5695 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5696 return XEXP (XEXP (x, 0), 0);
5698 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5699 if (GET_CODE (XEXP (x, 0)) == SUBREG
5700 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5701 && subreg_lowpart_p (XEXP (x, 0))
5702 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5703 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5704 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5705 return SUBREG_REG (XEXP (x, 0));
5707 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5708 is a comparison and STORE_FLAG_VALUE permits. This is like
5709 the first case, but it works even when GET_MODE (x) is larger
5710 than HOST_WIDE_INT. */
5711 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5712 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5713 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5714 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5715 <= HOST_BITS_PER_WIDE_INT)
5716 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5717 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5718 return XEXP (XEXP (x, 0), 0);
5720 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5721 if (GET_CODE (XEXP (x, 0)) == SUBREG
5722 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5723 && subreg_lowpart_p (XEXP (x, 0))
5724 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5725 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5726 <= HOST_BITS_PER_WIDE_INT)
5727 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5728 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5729 return SUBREG_REG (XEXP (x, 0));
5733 /* If we reach here, we want to return a pair of shifts. The inner
5734 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5735 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5736 logical depending on the value of UNSIGNEDP.
5738 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5739 converted into an AND of a shift.
5741 We must check for the case where the left shift would have a negative
5742 count. This can happen in a case like (x >> 31) & 255 on machines
5743 that can't shift by a constant. On those machines, we would first
5744 combine the shift with the AND to produce a variable-position
5745 extraction. Then the constant of 31 would be substituted in to produce
5746 a such a position. */
5748 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5749 if (modewidth + len >= pos)
5750 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5751 GET_MODE (x),
5752 simplify_shift_const (NULL_RTX, ASHIFT,
5753 GET_MODE (x),
5754 XEXP (x, 0),
5755 modewidth - pos - len),
5756 modewidth - len);
5758 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5759 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5760 simplify_shift_const (NULL_RTX, LSHIFTRT,
5761 GET_MODE (x),
5762 XEXP (x, 0), pos),
5763 ((HOST_WIDE_INT) 1 << len) - 1);
5764 else
5765 /* Any other cases we can't handle. */
5766 return x;
5768 /* If we couldn't do this for some reason, return the original
5769 expression. */
5770 if (GET_CODE (tem) == CLOBBER)
5771 return x;
5773 return tem;
5776 /* X is a SET which contains an assignment of one object into
5777 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5778 or certain SUBREGS). If possible, convert it into a series of
5779 logical operations.
5781 We half-heartedly support variable positions, but do not at all
5782 support variable lengths. */
5784 static rtx
5785 expand_field_assignment (rtx x)
5787 rtx inner;
5788 rtx pos; /* Always counts from low bit. */
5789 int len;
5790 rtx mask;
5791 enum machine_mode compute_mode;
5793 /* Loop until we find something we can't simplify. */
5794 while (1)
5796 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5797 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5799 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5800 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5801 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5803 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5804 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5806 inner = XEXP (SET_DEST (x), 0);
5807 len = INTVAL (XEXP (SET_DEST (x), 1));
5808 pos = XEXP (SET_DEST (x), 2);
5810 /* If the position is constant and spans the width of INNER,
5811 surround INNER with a USE to indicate this. */
5812 if (GET_CODE (pos) == CONST_INT
5813 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5814 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5816 if (BITS_BIG_ENDIAN)
5818 if (GET_CODE (pos) == CONST_INT)
5819 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5820 - INTVAL (pos));
5821 else if (GET_CODE (pos) == MINUS
5822 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5823 && (INTVAL (XEXP (pos, 1))
5824 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5825 /* If position is ADJUST - X, new position is X. */
5826 pos = XEXP (pos, 0);
5827 else
5828 pos = gen_binary (MINUS, GET_MODE (pos),
5829 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5830 - len),
5831 pos);
5835 /* A SUBREG between two modes that occupy the same numbers of words
5836 can be done by moving the SUBREG to the source. */
5837 else if (GET_CODE (SET_DEST (x)) == SUBREG
5838 /* We need SUBREGs to compute nonzero_bits properly. */
5839 && nonzero_sign_valid
5840 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5841 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5842 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5843 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5845 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5846 gen_lowpart_for_combine
5847 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5848 SET_SRC (x)));
5849 continue;
5851 else
5852 break;
5854 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5855 inner = SUBREG_REG (inner);
5857 compute_mode = GET_MODE (inner);
5859 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5860 if (! SCALAR_INT_MODE_P (compute_mode))
5862 enum machine_mode imode;
5864 /* Don't do anything for vector or complex integral types. */
5865 if (! FLOAT_MODE_P (compute_mode))
5866 break;
5868 /* Try to find an integral mode to pun with. */
5869 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5870 if (imode == BLKmode)
5871 break;
5873 compute_mode = imode;
5874 inner = gen_lowpart_for_combine (imode, inner);
5877 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5878 if (len < HOST_BITS_PER_WIDE_INT)
5879 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5880 else
5881 break;
5883 /* Now compute the equivalent expression. Make a copy of INNER
5884 for the SET_DEST in case it is a MEM into which we will substitute;
5885 we don't want shared RTL in that case. */
5886 x = gen_rtx_SET
5887 (VOIDmode, copy_rtx (inner),
5888 gen_binary (IOR, compute_mode,
5889 gen_binary (AND, compute_mode,
5890 simplify_gen_unary (NOT, compute_mode,
5891 gen_binary (ASHIFT,
5892 compute_mode,
5893 mask, pos),
5894 compute_mode),
5895 inner),
5896 gen_binary (ASHIFT, compute_mode,
5897 gen_binary (AND, compute_mode,
5898 gen_lowpart_for_combine
5899 (compute_mode, SET_SRC (x)),
5900 mask),
5901 pos)));
5904 return x;
5907 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5908 it is an RTX that represents a variable starting position; otherwise,
5909 POS is the (constant) starting bit position (counted from the LSB).
5911 INNER may be a USE. This will occur when we started with a bitfield
5912 that went outside the boundary of the object in memory, which is
5913 allowed on most machines. To isolate this case, we produce a USE
5914 whose mode is wide enough and surround the MEM with it. The only
5915 code that understands the USE is this routine. If it is not removed,
5916 it will cause the resulting insn not to match.
5918 UNSIGNEDP is nonzero for an unsigned reference and zero for a
5919 signed reference.
5921 IN_DEST is nonzero if this is a reference in the destination of a
5922 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
5923 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5924 be used.
5926 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
5927 ZERO_EXTRACT should be built even for bits starting at bit 0.
5929 MODE is the desired mode of the result (if IN_DEST == 0).
5931 The result is an RTX for the extraction or NULL_RTX if the target
5932 can't handle it. */
5934 static rtx
5935 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
5936 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
5937 int in_dest, int in_compare)
5939 /* This mode describes the size of the storage area
5940 to fetch the overall value from. Within that, we
5941 ignore the POS lowest bits, etc. */
5942 enum machine_mode is_mode = GET_MODE (inner);
5943 enum machine_mode inner_mode;
5944 enum machine_mode wanted_inner_mode = byte_mode;
5945 enum machine_mode wanted_inner_reg_mode = word_mode;
5946 enum machine_mode pos_mode = word_mode;
5947 enum machine_mode extraction_mode = word_mode;
5948 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5949 int spans_byte = 0;
5950 rtx new = 0;
5951 rtx orig_pos_rtx = pos_rtx;
5952 HOST_WIDE_INT orig_pos;
5954 /* Get some information about INNER and get the innermost object. */
5955 if (GET_CODE (inner) == USE)
5956 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5957 /* We don't need to adjust the position because we set up the USE
5958 to pretend that it was a full-word object. */
5959 spans_byte = 1, inner = XEXP (inner, 0);
5960 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5962 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5963 consider just the QI as the memory to extract from.
5964 The subreg adds or removes high bits; its mode is
5965 irrelevant to the meaning of this extraction,
5966 since POS and LEN count from the lsb. */
5967 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5968 is_mode = GET_MODE (SUBREG_REG (inner));
5969 inner = SUBREG_REG (inner);
5971 else if (GET_CODE (inner) == ASHIFT
5972 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5973 && pos_rtx == 0 && pos == 0
5974 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
5976 /* We're extracting the least significant bits of an rtx
5977 (ashift X (const_int C)), where LEN > C. Extract the
5978 least significant (LEN - C) bits of X, giving an rtx
5979 whose mode is MODE, then shift it left C times. */
5980 new = make_extraction (mode, XEXP (inner, 0),
5981 0, 0, len - INTVAL (XEXP (inner, 1)),
5982 unsignedp, in_dest, in_compare);
5983 if (new != 0)
5984 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
5987 inner_mode = GET_MODE (inner);
5989 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5990 pos = INTVAL (pos_rtx), pos_rtx = 0;
5992 /* See if this can be done without an extraction. We never can if the
5993 width of the field is not the same as that of some integer mode. For
5994 registers, we can only avoid the extraction if the position is at the
5995 low-order bit and this is either not in the destination or we have the
5996 appropriate STRICT_LOW_PART operation available.
5998 For MEM, we can avoid an extract if the field starts on an appropriate
5999 boundary and we can change the mode of the memory reference. However,
6000 we cannot directly access the MEM if we have a USE and the underlying
6001 MEM is not TMODE. This combination means that MEM was being used in a
6002 context where bits outside its mode were being referenced; that is only
6003 valid in bit-field insns. */
6005 if (tmode != BLKmode
6006 && ! (spans_byte && inner_mode != tmode)
6007 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6008 && GET_CODE (inner) != MEM
6009 && (! in_dest
6010 || (GET_CODE (inner) == REG
6011 && have_insn_for (STRICT_LOW_PART, tmode))))
6012 || (GET_CODE (inner) == MEM && pos_rtx == 0
6013 && (pos
6014 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6015 : BITS_PER_UNIT)) == 0
6016 /* We can't do this if we are widening INNER_MODE (it
6017 may not be aligned, for one thing). */
6018 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6019 && (inner_mode == tmode
6020 || (! mode_dependent_address_p (XEXP (inner, 0))
6021 && ! MEM_VOLATILE_P (inner))))))
6023 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6024 field. If the original and current mode are the same, we need not
6025 adjust the offset. Otherwise, we do if bytes big endian.
6027 If INNER is not a MEM, get a piece consisting of just the field
6028 of interest (in this case POS % BITS_PER_WORD must be 0). */
6030 if (GET_CODE (inner) == MEM)
6032 HOST_WIDE_INT offset;
6034 /* POS counts from lsb, but make OFFSET count in memory order. */
6035 if (BYTES_BIG_ENDIAN)
6036 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6037 else
6038 offset = pos / BITS_PER_UNIT;
6040 new = adjust_address_nv (inner, tmode, offset);
6042 else if (GET_CODE (inner) == REG)
6044 if (tmode != inner_mode)
6046 /* We can't call gen_lowpart_for_combine in a DEST since we
6047 always want a SUBREG (see below) and it would sometimes
6048 return a new hard register. */
6049 if (pos || in_dest)
6051 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6053 if (WORDS_BIG_ENDIAN
6054 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6055 final_word = ((GET_MODE_SIZE (inner_mode)
6056 - GET_MODE_SIZE (tmode))
6057 / UNITS_PER_WORD) - final_word;
6059 final_word *= UNITS_PER_WORD;
6060 if (BYTES_BIG_ENDIAN &&
6061 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6062 final_word += (GET_MODE_SIZE (inner_mode)
6063 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6065 /* Avoid creating invalid subregs, for example when
6066 simplifying (x>>32)&255. */
6067 if (final_word >= GET_MODE_SIZE (inner_mode))
6068 return NULL_RTX;
6070 new = gen_rtx_SUBREG (tmode, inner, final_word);
6072 else
6073 new = gen_lowpart_for_combine (tmode, inner);
6075 else
6076 new = inner;
6078 else
6079 new = force_to_mode (inner, tmode,
6080 len >= HOST_BITS_PER_WIDE_INT
6081 ? ~(unsigned HOST_WIDE_INT) 0
6082 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6083 NULL_RTX, 0);
6085 /* If this extraction is going into the destination of a SET,
6086 make a STRICT_LOW_PART unless we made a MEM. */
6088 if (in_dest)
6089 return (GET_CODE (new) == MEM ? new
6090 : (GET_CODE (new) != SUBREG
6091 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6092 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6094 if (mode == tmode)
6095 return new;
6097 if (GET_CODE (new) == CONST_INT)
6098 return gen_int_mode (INTVAL (new), mode);
6100 /* If we know that no extraneous bits are set, and that the high
6101 bit is not set, convert the extraction to the cheaper of
6102 sign and zero extension, that are equivalent in these cases. */
6103 if (flag_expensive_optimizations
6104 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6105 && ((nonzero_bits (new, tmode)
6106 & ~(((unsigned HOST_WIDE_INT)
6107 GET_MODE_MASK (tmode))
6108 >> 1))
6109 == 0)))
6111 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6112 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6114 /* Prefer ZERO_EXTENSION, since it gives more information to
6115 backends. */
6116 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6117 return temp;
6118 return temp1;
6121 /* Otherwise, sign- or zero-extend unless we already are in the
6122 proper mode. */
6124 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6125 mode, new));
6128 /* Unless this is a COMPARE or we have a funny memory reference,
6129 don't do anything with zero-extending field extracts starting at
6130 the low-order bit since they are simple AND operations. */
6131 if (pos_rtx == 0 && pos == 0 && ! in_dest
6132 && ! in_compare && ! spans_byte && unsignedp)
6133 return 0;
6135 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6136 we would be spanning bytes or if the position is not a constant and the
6137 length is not 1. In all other cases, we would only be going outside
6138 our object in cases when an original shift would have been
6139 undefined. */
6140 if (! spans_byte && GET_CODE (inner) == MEM
6141 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6142 || (pos_rtx != 0 && len != 1)))
6143 return 0;
6145 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6146 and the mode for the result. */
6147 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6149 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6150 pos_mode = mode_for_extraction (EP_insv, 2);
6151 extraction_mode = mode_for_extraction (EP_insv, 3);
6154 if (! in_dest && unsignedp
6155 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6157 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6158 pos_mode = mode_for_extraction (EP_extzv, 3);
6159 extraction_mode = mode_for_extraction (EP_extzv, 0);
6162 if (! in_dest && ! unsignedp
6163 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6165 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6166 pos_mode = mode_for_extraction (EP_extv, 3);
6167 extraction_mode = mode_for_extraction (EP_extv, 0);
6170 /* Never narrow an object, since that might not be safe. */
6172 if (mode != VOIDmode
6173 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6174 extraction_mode = mode;
6176 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6177 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6178 pos_mode = GET_MODE (pos_rtx);
6180 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6181 if we have to change the mode of memory and cannot, the desired mode is
6182 EXTRACTION_MODE. */
6183 if (GET_CODE (inner) != MEM)
6184 wanted_inner_mode = wanted_inner_reg_mode;
6185 else if (inner_mode != wanted_inner_mode
6186 && (mode_dependent_address_p (XEXP (inner, 0))
6187 || MEM_VOLATILE_P (inner)))
6188 wanted_inner_mode = extraction_mode;
6190 orig_pos = pos;
6192 if (BITS_BIG_ENDIAN)
6194 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6195 BITS_BIG_ENDIAN style. If position is constant, compute new
6196 position. Otherwise, build subtraction.
6197 Note that POS is relative to the mode of the original argument.
6198 If it's a MEM we need to recompute POS relative to that.
6199 However, if we're extracting from (or inserting into) a register,
6200 we want to recompute POS relative to wanted_inner_mode. */
6201 int width = (GET_CODE (inner) == MEM
6202 ? GET_MODE_BITSIZE (is_mode)
6203 : GET_MODE_BITSIZE (wanted_inner_mode));
6205 if (pos_rtx == 0)
6206 pos = width - len - pos;
6207 else
6208 pos_rtx
6209 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6210 /* POS may be less than 0 now, but we check for that below.
6211 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6214 /* If INNER has a wider mode, make it smaller. If this is a constant
6215 extract, try to adjust the byte to point to the byte containing
6216 the value. */
6217 if (wanted_inner_mode != VOIDmode
6218 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6219 && ((GET_CODE (inner) == MEM
6220 && (inner_mode == wanted_inner_mode
6221 || (! mode_dependent_address_p (XEXP (inner, 0))
6222 && ! MEM_VOLATILE_P (inner))))))
6224 int offset = 0;
6226 /* The computations below will be correct if the machine is big
6227 endian in both bits and bytes or little endian in bits and bytes.
6228 If it is mixed, we must adjust. */
6230 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6231 adjust OFFSET to compensate. */
6232 if (BYTES_BIG_ENDIAN
6233 && ! spans_byte
6234 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6235 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6237 /* If this is a constant position, we can move to the desired byte. */
6238 if (pos_rtx == 0)
6240 offset += pos / BITS_PER_UNIT;
6241 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6244 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6245 && ! spans_byte
6246 && is_mode != wanted_inner_mode)
6247 offset = (GET_MODE_SIZE (is_mode)
6248 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6250 if (offset != 0 || inner_mode != wanted_inner_mode)
6251 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6254 /* If INNER is not memory, we can always get it into the proper mode. If we
6255 are changing its mode, POS must be a constant and smaller than the size
6256 of the new mode. */
6257 else if (GET_CODE (inner) != MEM)
6259 if (GET_MODE (inner) != wanted_inner_mode
6260 && (pos_rtx != 0
6261 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6262 return 0;
6264 inner = force_to_mode (inner, wanted_inner_mode,
6265 pos_rtx
6266 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6267 ? ~(unsigned HOST_WIDE_INT) 0
6268 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6269 << orig_pos),
6270 NULL_RTX, 0);
6273 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6274 have to zero extend. Otherwise, we can just use a SUBREG. */
6275 if (pos_rtx != 0
6276 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6278 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6280 /* If we know that no extraneous bits are set, and that the high
6281 bit is not set, convert extraction to cheaper one - either
6282 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6283 cases. */
6284 if (flag_expensive_optimizations
6285 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6286 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6287 & ~(((unsigned HOST_WIDE_INT)
6288 GET_MODE_MASK (GET_MODE (pos_rtx)))
6289 >> 1))
6290 == 0)))
6292 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6294 /* Prefer ZERO_EXTENSION, since it gives more information to
6295 backends. */
6296 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6297 temp = temp1;
6299 pos_rtx = temp;
6301 else if (pos_rtx != 0
6302 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6303 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6305 /* Make POS_RTX unless we already have it and it is correct. If we don't
6306 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6307 be a CONST_INT. */
6308 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6309 pos_rtx = orig_pos_rtx;
6311 else if (pos_rtx == 0)
6312 pos_rtx = GEN_INT (pos);
6314 /* Make the required operation. See if we can use existing rtx. */
6315 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6316 extraction_mode, inner, GEN_INT (len), pos_rtx);
6317 if (! in_dest)
6318 new = gen_lowpart_for_combine (mode, new);
6320 return new;
6323 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6324 with any other operations in X. Return X without that shift if so. */
6326 static rtx
6327 extract_left_shift (rtx x, int count)
6329 enum rtx_code code = GET_CODE (x);
6330 enum machine_mode mode = GET_MODE (x);
6331 rtx tem;
6333 switch (code)
6335 case ASHIFT:
6336 /* This is the shift itself. If it is wide enough, we will return
6337 either the value being shifted if the shift count is equal to
6338 COUNT or a shift for the difference. */
6339 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6340 && INTVAL (XEXP (x, 1)) >= count)
6341 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6342 INTVAL (XEXP (x, 1)) - count);
6343 break;
6345 case NEG: case NOT:
6346 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6347 return simplify_gen_unary (code, mode, tem, mode);
6349 break;
6351 case PLUS: case IOR: case XOR: case AND:
6352 /* If we can safely shift this constant and we find the inner shift,
6353 make a new operation. */
6354 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6355 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6356 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6357 return gen_binary (code, mode, tem,
6358 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6360 break;
6362 default:
6363 break;
6366 return 0;
6369 /* Look at the expression rooted at X. Look for expressions
6370 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6371 Form these expressions.
6373 Return the new rtx, usually just X.
6375 Also, for machines like the VAX that don't have logical shift insns,
6376 try to convert logical to arithmetic shift operations in cases where
6377 they are equivalent. This undoes the canonicalizations to logical
6378 shifts done elsewhere.
6380 We try, as much as possible, to re-use rtl expressions to save memory.
6382 IN_CODE says what kind of expression we are processing. Normally, it is
6383 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6384 being kludges), it is MEM. When processing the arguments of a comparison
6385 or a COMPARE against zero, it is COMPARE. */
6387 static rtx
6388 make_compound_operation (rtx x, enum rtx_code in_code)
6390 enum rtx_code code = GET_CODE (x);
6391 enum machine_mode mode = GET_MODE (x);
6392 int mode_width = GET_MODE_BITSIZE (mode);
6393 rtx rhs, lhs;
6394 enum rtx_code next_code;
6395 int i;
6396 rtx new = 0;
6397 rtx tem;
6398 const char *fmt;
6400 /* Select the code to be used in recursive calls. Once we are inside an
6401 address, we stay there. If we have a comparison, set to COMPARE,
6402 but once inside, go back to our default of SET. */
6404 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6405 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6406 && XEXP (x, 1) == const0_rtx) ? COMPARE
6407 : in_code == COMPARE ? SET : in_code);
6409 /* Process depending on the code of this operation. If NEW is set
6410 nonzero, it will be returned. */
6412 switch (code)
6414 case ASHIFT:
6415 /* Convert shifts by constants into multiplications if inside
6416 an address. */
6417 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6418 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6419 && INTVAL (XEXP (x, 1)) >= 0)
6421 new = make_compound_operation (XEXP (x, 0), next_code);
6422 new = gen_rtx_MULT (mode, new,
6423 GEN_INT ((HOST_WIDE_INT) 1
6424 << INTVAL (XEXP (x, 1))));
6426 break;
6428 case AND:
6429 /* If the second operand is not a constant, we can't do anything
6430 with it. */
6431 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6432 break;
6434 /* If the constant is a power of two minus one and the first operand
6435 is a logical right shift, make an extraction. */
6436 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6437 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6439 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6440 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6441 0, in_code == COMPARE);
6444 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6445 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6446 && subreg_lowpart_p (XEXP (x, 0))
6447 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6448 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6450 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6451 next_code);
6452 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6453 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6454 0, in_code == COMPARE);
6456 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6457 else if ((GET_CODE (XEXP (x, 0)) == XOR
6458 || GET_CODE (XEXP (x, 0)) == IOR)
6459 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6460 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6461 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6463 /* Apply the distributive law, and then try to make extractions. */
6464 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6465 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6466 XEXP (x, 1)),
6467 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6468 XEXP (x, 1)));
6469 new = make_compound_operation (new, in_code);
6472 /* If we are have (and (rotate X C) M) and C is larger than the number
6473 of bits in M, this is an extraction. */
6475 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6476 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6477 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6478 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6480 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6481 new = make_extraction (mode, new,
6482 (GET_MODE_BITSIZE (mode)
6483 - INTVAL (XEXP (XEXP (x, 0), 1))),
6484 NULL_RTX, i, 1, 0, in_code == COMPARE);
6487 /* On machines without logical shifts, if the operand of the AND is
6488 a logical shift and our mask turns off all the propagated sign
6489 bits, we can replace the logical shift with an arithmetic shift. */
6490 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6491 && !have_insn_for (LSHIFTRT, mode)
6492 && have_insn_for (ASHIFTRT, mode)
6493 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6494 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6495 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6496 && mode_width <= HOST_BITS_PER_WIDE_INT)
6498 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6500 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6501 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6502 SUBST (XEXP (x, 0),
6503 gen_rtx_ASHIFTRT (mode,
6504 make_compound_operation
6505 (XEXP (XEXP (x, 0), 0), next_code),
6506 XEXP (XEXP (x, 0), 1)));
6509 /* If the constant is one less than a power of two, this might be
6510 representable by an extraction even if no shift is present.
6511 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6512 we are in a COMPARE. */
6513 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6514 new = make_extraction (mode,
6515 make_compound_operation (XEXP (x, 0),
6516 next_code),
6517 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6519 /* If we are in a comparison and this is an AND with a power of two,
6520 convert this into the appropriate bit extract. */
6521 else if (in_code == COMPARE
6522 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6523 new = make_extraction (mode,
6524 make_compound_operation (XEXP (x, 0),
6525 next_code),
6526 i, NULL_RTX, 1, 1, 0, 1);
6528 break;
6530 case LSHIFTRT:
6531 /* If the sign bit is known to be zero, replace this with an
6532 arithmetic shift. */
6533 if (have_insn_for (ASHIFTRT, mode)
6534 && ! have_insn_for (LSHIFTRT, mode)
6535 && mode_width <= HOST_BITS_PER_WIDE_INT
6536 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6538 new = gen_rtx_ASHIFTRT (mode,
6539 make_compound_operation (XEXP (x, 0),
6540 next_code),
6541 XEXP (x, 1));
6542 break;
6545 /* ... fall through ... */
6547 case ASHIFTRT:
6548 lhs = XEXP (x, 0);
6549 rhs = XEXP (x, 1);
6551 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6552 this is a SIGN_EXTRACT. */
6553 if (GET_CODE (rhs) == CONST_INT
6554 && GET_CODE (lhs) == ASHIFT
6555 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6556 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6558 new = make_compound_operation (XEXP (lhs, 0), next_code);
6559 new = make_extraction (mode, new,
6560 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6561 NULL_RTX, mode_width - INTVAL (rhs),
6562 code == LSHIFTRT, 0, in_code == COMPARE);
6563 break;
6566 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6567 If so, try to merge the shifts into a SIGN_EXTEND. We could
6568 also do this for some cases of SIGN_EXTRACT, but it doesn't
6569 seem worth the effort; the case checked for occurs on Alpha. */
6571 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6572 && ! (GET_CODE (lhs) == SUBREG
6573 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6574 && GET_CODE (rhs) == CONST_INT
6575 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6576 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6577 new = make_extraction (mode, make_compound_operation (new, next_code),
6578 0, NULL_RTX, mode_width - INTVAL (rhs),
6579 code == LSHIFTRT, 0, in_code == COMPARE);
6581 break;
6583 case SUBREG:
6584 /* Call ourselves recursively on the inner expression. If we are
6585 narrowing the object and it has a different RTL code from
6586 what it originally did, do this SUBREG as a force_to_mode. */
6588 tem = make_compound_operation (SUBREG_REG (x), in_code);
6589 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6590 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6591 && subreg_lowpart_p (x))
6593 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6594 NULL_RTX, 0);
6596 /* If we have something other than a SUBREG, we might have
6597 done an expansion, so rerun ourselves. */
6598 if (GET_CODE (newer) != SUBREG)
6599 newer = make_compound_operation (newer, in_code);
6601 return newer;
6604 /* If this is a paradoxical subreg, and the new code is a sign or
6605 zero extension, omit the subreg and widen the extension. If it
6606 is a regular subreg, we can still get rid of the subreg by not
6607 widening so much, or in fact removing the extension entirely. */
6608 if ((GET_CODE (tem) == SIGN_EXTEND
6609 || GET_CODE (tem) == ZERO_EXTEND)
6610 && subreg_lowpart_p (x))
6612 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6613 || (GET_MODE_SIZE (mode) >
6614 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6616 if (! SCALAR_INT_MODE_P (mode))
6617 break;
6618 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6620 else
6621 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6622 return tem;
6624 break;
6626 default:
6627 break;
6630 if (new)
6632 x = gen_lowpart_for_combine (mode, new);
6633 code = GET_CODE (x);
6636 /* Now recursively process each operand of this operation. */
6637 fmt = GET_RTX_FORMAT (code);
6638 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6639 if (fmt[i] == 'e')
6641 new = make_compound_operation (XEXP (x, i), next_code);
6642 SUBST (XEXP (x, i), new);
6645 return x;
6648 /* Given M see if it is a value that would select a field of bits
6649 within an item, but not the entire word. Return -1 if not.
6650 Otherwise, return the starting position of the field, where 0 is the
6651 low-order bit.
6653 *PLEN is set to the length of the field. */
6655 static int
6656 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6658 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6659 int pos = exact_log2 (m & -m);
6660 int len;
6662 if (pos < 0)
6663 return -1;
6665 /* Now shift off the low-order zero bits and see if we have a power of
6666 two minus 1. */
6667 len = exact_log2 ((m >> pos) + 1);
6669 if (len <= 0)
6670 return -1;
6672 *plen = len;
6673 return pos;
6676 /* See if X can be simplified knowing that we will only refer to it in
6677 MODE and will only refer to those bits that are nonzero in MASK.
6678 If other bits are being computed or if masking operations are done
6679 that select a superset of the bits in MASK, they can sometimes be
6680 ignored.
6682 Return a possibly simplified expression, but always convert X to
6683 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6685 Also, if REG is nonzero and X is a register equal in value to REG,
6686 replace X with REG.
6688 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6689 are all off in X. This is used when X will be complemented, by either
6690 NOT, NEG, or XOR. */
6692 static rtx
6693 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6694 rtx reg, int just_select)
6696 enum rtx_code code = GET_CODE (x);
6697 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6698 enum machine_mode op_mode;
6699 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6700 rtx op0, op1, temp;
6702 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6703 code below will do the wrong thing since the mode of such an
6704 expression is VOIDmode.
6706 Also do nothing if X is a CLOBBER; this can happen if X was
6707 the return value from a call to gen_lowpart_for_combine. */
6708 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6709 return x;
6711 /* We want to perform the operation is its present mode unless we know
6712 that the operation is valid in MODE, in which case we do the operation
6713 in MODE. */
6714 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6715 && have_insn_for (code, mode))
6716 ? mode : GET_MODE (x));
6718 /* It is not valid to do a right-shift in a narrower mode
6719 than the one it came in with. */
6720 if ((code == LSHIFTRT || code == ASHIFTRT)
6721 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6722 op_mode = GET_MODE (x);
6724 /* Truncate MASK to fit OP_MODE. */
6725 if (op_mode)
6726 mask &= GET_MODE_MASK (op_mode);
6728 /* When we have an arithmetic operation, or a shift whose count we
6729 do not know, we need to assume that all bits up to the highest-order
6730 bit in MASK will be needed. This is how we form such a mask. */
6731 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6732 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6733 else
6734 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6735 - 1);
6737 /* Determine what bits of X are guaranteed to be (non)zero. */
6738 nonzero = nonzero_bits (x, mode);
6740 /* If none of the bits in X are needed, return a zero. */
6741 if (! just_select && (nonzero & mask) == 0)
6742 x = const0_rtx;
6744 /* If X is a CONST_INT, return a new one. Do this here since the
6745 test below will fail. */
6746 if (GET_CODE (x) == CONST_INT)
6748 if (SCALAR_INT_MODE_P (mode))
6749 return gen_int_mode (INTVAL (x) & mask, mode);
6750 else
6752 x = GEN_INT (INTVAL (x) & mask);
6753 return gen_lowpart_common (mode, x);
6757 /* If X is narrower than MODE and we want all the bits in X's mode, just
6758 get X in the proper mode. */
6759 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6760 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6761 return gen_lowpart_for_combine (mode, x);
6763 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6764 MASK are already known to be zero in X, we need not do anything. */
6765 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6766 return x;
6768 switch (code)
6770 case CLOBBER:
6771 /* If X is a (clobber (const_int)), return it since we know we are
6772 generating something that won't match. */
6773 return x;
6775 case USE:
6776 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6777 spanned the boundary of the MEM. If we are now masking so it is
6778 within that boundary, we don't need the USE any more. */
6779 if (! BITS_BIG_ENDIAN
6780 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6781 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6782 break;
6784 case SIGN_EXTEND:
6785 case ZERO_EXTEND:
6786 case ZERO_EXTRACT:
6787 case SIGN_EXTRACT:
6788 x = expand_compound_operation (x);
6789 if (GET_CODE (x) != code)
6790 return force_to_mode (x, mode, mask, reg, next_select);
6791 break;
6793 case REG:
6794 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6795 || rtx_equal_p (reg, get_last_value (x))))
6796 x = reg;
6797 break;
6799 case SUBREG:
6800 if (subreg_lowpart_p (x)
6801 /* We can ignore the effect of this SUBREG if it narrows the mode or
6802 if the constant masks to zero all the bits the mode doesn't
6803 have. */
6804 && ((GET_MODE_SIZE (GET_MODE (x))
6805 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6806 || (0 == (mask
6807 & GET_MODE_MASK (GET_MODE (x))
6808 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6809 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6810 break;
6812 case AND:
6813 /* If this is an AND with a constant, convert it into an AND
6814 whose constant is the AND of that constant with MASK. If it
6815 remains an AND of MASK, delete it since it is redundant. */
6817 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6819 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6820 mask & INTVAL (XEXP (x, 1)));
6822 /* If X is still an AND, see if it is an AND with a mask that
6823 is just some low-order bits. If so, and it is MASK, we don't
6824 need it. */
6826 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6827 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6828 == mask))
6829 x = XEXP (x, 0);
6831 /* If it remains an AND, try making another AND with the bits
6832 in the mode mask that aren't in MASK turned on. If the
6833 constant in the AND is wide enough, this might make a
6834 cheaper constant. */
6836 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6837 && GET_MODE_MASK (GET_MODE (x)) != mask
6838 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6840 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6841 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6842 int width = GET_MODE_BITSIZE (GET_MODE (x));
6843 rtx y;
6845 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6846 number, sign extend it. */
6847 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6848 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6849 cval |= (HOST_WIDE_INT) -1 << width;
6851 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6852 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6853 x = y;
6856 break;
6859 goto binop;
6861 case PLUS:
6862 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6863 low-order bits (as in an alignment operation) and FOO is already
6864 aligned to that boundary, mask C1 to that boundary as well.
6865 This may eliminate that PLUS and, later, the AND. */
6868 unsigned int width = GET_MODE_BITSIZE (mode);
6869 unsigned HOST_WIDE_INT smask = mask;
6871 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6872 number, sign extend it. */
6874 if (width < HOST_BITS_PER_WIDE_INT
6875 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6876 smask |= (HOST_WIDE_INT) -1 << width;
6878 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6879 && exact_log2 (- smask) >= 0
6880 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6881 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6882 return force_to_mode (plus_constant (XEXP (x, 0),
6883 (INTVAL (XEXP (x, 1)) & smask)),
6884 mode, smask, reg, next_select);
6887 /* ... fall through ... */
6889 case MULT:
6890 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6891 most significant bit in MASK since carries from those bits will
6892 affect the bits we are interested in. */
6893 mask = fuller_mask;
6894 goto binop;
6896 case MINUS:
6897 /* If X is (minus C Y) where C's least set bit is larger than any bit
6898 in the mask, then we may replace with (neg Y). */
6899 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6900 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6901 & -INTVAL (XEXP (x, 0))))
6902 > mask))
6904 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6905 GET_MODE (x));
6906 return force_to_mode (x, mode, mask, reg, next_select);
6909 /* Similarly, if C contains every bit in the fuller_mask, then we may
6910 replace with (not Y). */
6911 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6912 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
6913 == INTVAL (XEXP (x, 0))))
6915 x = simplify_gen_unary (NOT, GET_MODE (x),
6916 XEXP (x, 1), GET_MODE (x));
6917 return force_to_mode (x, mode, mask, reg, next_select);
6920 mask = fuller_mask;
6921 goto binop;
6923 case IOR:
6924 case XOR:
6925 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6926 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6927 operation which may be a bitfield extraction. Ensure that the
6928 constant we form is not wider than the mode of X. */
6930 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6931 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6932 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6933 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6934 && GET_CODE (XEXP (x, 1)) == CONST_INT
6935 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6936 + floor_log2 (INTVAL (XEXP (x, 1))))
6937 < GET_MODE_BITSIZE (GET_MODE (x)))
6938 && (INTVAL (XEXP (x, 1))
6939 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6941 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6942 << INTVAL (XEXP (XEXP (x, 0), 1)));
6943 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6944 XEXP (XEXP (x, 0), 0), temp);
6945 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6946 XEXP (XEXP (x, 0), 1));
6947 return force_to_mode (x, mode, mask, reg, next_select);
6950 binop:
6951 /* For most binary operations, just propagate into the operation and
6952 change the mode if we have an operation of that mode. */
6954 op0 = gen_lowpart_for_combine (op_mode,
6955 force_to_mode (XEXP (x, 0), mode, mask,
6956 reg, next_select));
6957 op1 = gen_lowpart_for_combine (op_mode,
6958 force_to_mode (XEXP (x, 1), mode, mask,
6959 reg, next_select));
6961 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6962 x = gen_binary (code, op_mode, op0, op1);
6963 break;
6965 case ASHIFT:
6966 /* For left shifts, do the same, but just for the first operand.
6967 However, we cannot do anything with shifts where we cannot
6968 guarantee that the counts are smaller than the size of the mode
6969 because such a count will have a different meaning in a
6970 wider mode. */
6972 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6973 && INTVAL (XEXP (x, 1)) >= 0
6974 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6975 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6976 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6977 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6978 break;
6980 /* If the shift count is a constant and we can do arithmetic in
6981 the mode of the shift, refine which bits we need. Otherwise, use the
6982 conservative form of the mask. */
6983 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6984 && INTVAL (XEXP (x, 1)) >= 0
6985 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6986 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6987 mask >>= INTVAL (XEXP (x, 1));
6988 else
6989 mask = fuller_mask;
6991 op0 = gen_lowpart_for_combine (op_mode,
6992 force_to_mode (XEXP (x, 0), op_mode,
6993 mask, reg, next_select));
6995 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6996 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6997 break;
6999 case LSHIFTRT:
7000 /* Here we can only do something if the shift count is a constant,
7001 this shift constant is valid for the host, and we can do arithmetic
7002 in OP_MODE. */
7004 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7005 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7006 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7008 rtx inner = XEXP (x, 0);
7009 unsigned HOST_WIDE_INT inner_mask;
7011 /* Select the mask of the bits we need for the shift operand. */
7012 inner_mask = mask << INTVAL (XEXP (x, 1));
7014 /* We can only change the mode of the shift if we can do arithmetic
7015 in the mode of the shift and INNER_MASK is no wider than the
7016 width of OP_MODE. */
7017 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7018 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7019 op_mode = GET_MODE (x);
7021 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7023 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7024 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7027 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7028 shift and AND produces only copies of the sign bit (C2 is one less
7029 than a power of two), we can do this with just a shift. */
7031 if (GET_CODE (x) == LSHIFTRT
7032 && GET_CODE (XEXP (x, 1)) == CONST_INT
7033 /* The shift puts one of the sign bit copies in the least significant
7034 bit. */
7035 && ((INTVAL (XEXP (x, 1))
7036 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7037 >= GET_MODE_BITSIZE (GET_MODE (x)))
7038 && exact_log2 (mask + 1) >= 0
7039 /* Number of bits left after the shift must be more than the mask
7040 needs. */
7041 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7042 <= GET_MODE_BITSIZE (GET_MODE (x)))
7043 /* Must be more sign bit copies than the mask needs. */
7044 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7045 >= exact_log2 (mask + 1)))
7046 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7047 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7048 - exact_log2 (mask + 1)));
7050 goto shiftrt;
7052 case ASHIFTRT:
7053 /* If we are just looking for the sign bit, we don't need this shift at
7054 all, even if it has a variable count. */
7055 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7056 && (mask == ((unsigned HOST_WIDE_INT) 1
7057 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7058 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7060 /* If this is a shift by a constant, get a mask that contains those bits
7061 that are not copies of the sign bit. We then have two cases: If
7062 MASK only includes those bits, this can be a logical shift, which may
7063 allow simplifications. If MASK is a single-bit field not within
7064 those bits, we are requesting a copy of the sign bit and hence can
7065 shift the sign bit to the appropriate location. */
7067 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7068 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7070 int i = -1;
7072 /* If the considered data is wider than HOST_WIDE_INT, we can't
7073 represent a mask for all its bits in a single scalar.
7074 But we only care about the lower bits, so calculate these. */
7076 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7078 nonzero = ~(HOST_WIDE_INT) 0;
7080 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7081 is the number of bits a full-width mask would have set.
7082 We need only shift if these are fewer than nonzero can
7083 hold. If not, we must keep all bits set in nonzero. */
7085 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7086 < HOST_BITS_PER_WIDE_INT)
7087 nonzero >>= INTVAL (XEXP (x, 1))
7088 + HOST_BITS_PER_WIDE_INT
7089 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7091 else
7093 nonzero = GET_MODE_MASK (GET_MODE (x));
7094 nonzero >>= INTVAL (XEXP (x, 1));
7097 if ((mask & ~nonzero) == 0
7098 || (i = exact_log2 (mask)) >= 0)
7100 x = simplify_shift_const
7101 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7102 i < 0 ? INTVAL (XEXP (x, 1))
7103 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7105 if (GET_CODE (x) != ASHIFTRT)
7106 return force_to_mode (x, mode, mask, reg, next_select);
7110 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7111 even if the shift count isn't a constant. */
7112 if (mask == 1)
7113 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7115 shiftrt:
7117 /* If this is a zero- or sign-extension operation that just affects bits
7118 we don't care about, remove it. Be sure the call above returned
7119 something that is still a shift. */
7121 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7122 && GET_CODE (XEXP (x, 1)) == CONST_INT
7123 && INTVAL (XEXP (x, 1)) >= 0
7124 && (INTVAL (XEXP (x, 1))
7125 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7126 && GET_CODE (XEXP (x, 0)) == ASHIFT
7127 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7128 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7129 reg, next_select);
7131 break;
7133 case ROTATE:
7134 case ROTATERT:
7135 /* If the shift count is constant and we can do computations
7136 in the mode of X, compute where the bits we care about are.
7137 Otherwise, we can't do anything. Don't change the mode of
7138 the shift or propagate MODE into the shift, though. */
7139 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7140 && INTVAL (XEXP (x, 1)) >= 0)
7142 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7143 GET_MODE (x), GEN_INT (mask),
7144 XEXP (x, 1));
7145 if (temp && GET_CODE (temp) == CONST_INT)
7146 SUBST (XEXP (x, 0),
7147 force_to_mode (XEXP (x, 0), GET_MODE (x),
7148 INTVAL (temp), reg, next_select));
7150 break;
7152 case NEG:
7153 /* If we just want the low-order bit, the NEG isn't needed since it
7154 won't change the low-order bit. */
7155 if (mask == 1)
7156 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7158 /* We need any bits less significant than the most significant bit in
7159 MASK since carries from those bits will affect the bits we are
7160 interested in. */
7161 mask = fuller_mask;
7162 goto unop;
7164 case NOT:
7165 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7166 same as the XOR case above. Ensure that the constant we form is not
7167 wider than the mode of X. */
7169 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7170 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7171 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7172 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7173 < GET_MODE_BITSIZE (GET_MODE (x)))
7174 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7176 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7177 GET_MODE (x));
7178 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7179 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7181 return force_to_mode (x, mode, mask, reg, next_select);
7184 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7185 use the full mask inside the NOT. */
7186 mask = fuller_mask;
7188 unop:
7189 op0 = gen_lowpart_for_combine (op_mode,
7190 force_to_mode (XEXP (x, 0), mode, mask,
7191 reg, next_select));
7192 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7193 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7194 break;
7196 case NE:
7197 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7198 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7199 which is equal to STORE_FLAG_VALUE. */
7200 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7201 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7202 && (nonzero_bits (XEXP (x, 0), mode)
7203 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7204 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7206 break;
7208 case IF_THEN_ELSE:
7209 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7210 written in a narrower mode. We play it safe and do not do so. */
7212 SUBST (XEXP (x, 1),
7213 gen_lowpart_for_combine (GET_MODE (x),
7214 force_to_mode (XEXP (x, 1), mode,
7215 mask, reg, next_select)));
7216 SUBST (XEXP (x, 2),
7217 gen_lowpart_for_combine (GET_MODE (x),
7218 force_to_mode (XEXP (x, 2), mode,
7219 mask, reg, next_select)));
7220 break;
7222 default:
7223 break;
7226 /* Ensure we return a value of the proper mode. */
7227 return gen_lowpart_for_combine (mode, x);
7230 /* Return nonzero if X is an expression that has one of two values depending on
7231 whether some other value is zero or nonzero. In that case, we return the
7232 value that is being tested, *PTRUE is set to the value if the rtx being
7233 returned has a nonzero value, and *PFALSE is set to the other alternative.
7235 If we return zero, we set *PTRUE and *PFALSE to X. */
7237 static rtx
7238 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7240 enum machine_mode mode = GET_MODE (x);
7241 enum rtx_code code = GET_CODE (x);
7242 rtx cond0, cond1, true0, true1, false0, false1;
7243 unsigned HOST_WIDE_INT nz;
7245 /* If we are comparing a value against zero, we are done. */
7246 if ((code == NE || code == EQ)
7247 && XEXP (x, 1) == const0_rtx)
7249 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7250 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7251 return XEXP (x, 0);
7254 /* If this is a unary operation whose operand has one of two values, apply
7255 our opcode to compute those values. */
7256 else if (GET_RTX_CLASS (code) == '1'
7257 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7259 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7260 *pfalse = simplify_gen_unary (code, mode, false0,
7261 GET_MODE (XEXP (x, 0)));
7262 return cond0;
7265 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7266 make can't possibly match and would suppress other optimizations. */
7267 else if (code == COMPARE)
7270 /* If this is a binary operation, see if either side has only one of two
7271 values. If either one does or if both do and they are conditional on
7272 the same value, compute the new true and false values. */
7273 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7274 || GET_RTX_CLASS (code) == '<')
7276 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7277 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7279 if ((cond0 != 0 || cond1 != 0)
7280 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7282 /* If if_then_else_cond returned zero, then true/false are the
7283 same rtl. We must copy one of them to prevent invalid rtl
7284 sharing. */
7285 if (cond0 == 0)
7286 true0 = copy_rtx (true0);
7287 else if (cond1 == 0)
7288 true1 = copy_rtx (true1);
7290 *ptrue = gen_binary (code, mode, true0, true1);
7291 *pfalse = gen_binary (code, mode, false0, false1);
7292 return cond0 ? cond0 : cond1;
7295 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7296 operands is zero when the other is nonzero, and vice-versa,
7297 and STORE_FLAG_VALUE is 1 or -1. */
7299 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7300 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7301 || code == UMAX)
7302 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7304 rtx op0 = XEXP (XEXP (x, 0), 1);
7305 rtx op1 = XEXP (XEXP (x, 1), 1);
7307 cond0 = XEXP (XEXP (x, 0), 0);
7308 cond1 = XEXP (XEXP (x, 1), 0);
7310 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7311 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7312 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7313 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7314 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7315 || ((swap_condition (GET_CODE (cond0))
7316 == combine_reversed_comparison_code (cond1))
7317 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7318 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7319 && ! side_effects_p (x))
7321 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7322 *pfalse = gen_binary (MULT, mode,
7323 (code == MINUS
7324 ? simplify_gen_unary (NEG, mode, op1,
7325 mode)
7326 : op1),
7327 const_true_rtx);
7328 return cond0;
7332 /* Similarly for MULT, AND and UMIN, except that for these the result
7333 is always zero. */
7334 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7335 && (code == MULT || code == AND || code == UMIN)
7336 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7338 cond0 = XEXP (XEXP (x, 0), 0);
7339 cond1 = XEXP (XEXP (x, 1), 0);
7341 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7342 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7343 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7344 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7345 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7346 || ((swap_condition (GET_CODE (cond0))
7347 == combine_reversed_comparison_code (cond1))
7348 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7349 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7350 && ! side_effects_p (x))
7352 *ptrue = *pfalse = const0_rtx;
7353 return cond0;
7358 else if (code == IF_THEN_ELSE)
7360 /* If we have IF_THEN_ELSE already, extract the condition and
7361 canonicalize it if it is NE or EQ. */
7362 cond0 = XEXP (x, 0);
7363 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7364 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7365 return XEXP (cond0, 0);
7366 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7368 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7369 return XEXP (cond0, 0);
7371 else
7372 return cond0;
7375 /* If X is a SUBREG, we can narrow both the true and false values
7376 if the inner expression, if there is a condition. */
7377 else if (code == SUBREG
7378 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7379 &true0, &false0)))
7381 *ptrue = simplify_gen_subreg (mode, true0,
7382 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7383 *pfalse = simplify_gen_subreg (mode, false0,
7384 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7386 return cond0;
7389 /* If X is a constant, this isn't special and will cause confusions
7390 if we treat it as such. Likewise if it is equivalent to a constant. */
7391 else if (CONSTANT_P (x)
7392 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7395 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7396 will be least confusing to the rest of the compiler. */
7397 else if (mode == BImode)
7399 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7400 return x;
7403 /* If X is known to be either 0 or -1, those are the true and
7404 false values when testing X. */
7405 else if (x == constm1_rtx || x == const0_rtx
7406 || (mode != VOIDmode
7407 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7409 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7410 return x;
7413 /* Likewise for 0 or a single bit. */
7414 else if (SCALAR_INT_MODE_P (mode)
7415 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7416 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7418 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7419 return x;
7422 /* Otherwise fail; show no condition with true and false values the same. */
7423 *ptrue = *pfalse = x;
7424 return 0;
7427 /* Return the value of expression X given the fact that condition COND
7428 is known to be true when applied to REG as its first operand and VAL
7429 as its second. X is known to not be shared and so can be modified in
7430 place.
7432 We only handle the simplest cases, and specifically those cases that
7433 arise with IF_THEN_ELSE expressions. */
7435 static rtx
7436 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7438 enum rtx_code code = GET_CODE (x);
7439 rtx temp;
7440 const char *fmt;
7441 int i, j;
7443 if (side_effects_p (x))
7444 return x;
7446 /* If either operand of the condition is a floating point value,
7447 then we have to avoid collapsing an EQ comparison. */
7448 if (cond == EQ
7449 && rtx_equal_p (x, reg)
7450 && ! FLOAT_MODE_P (GET_MODE (x))
7451 && ! FLOAT_MODE_P (GET_MODE (val)))
7452 return val;
7454 if (cond == UNEQ && rtx_equal_p (x, reg))
7455 return val;
7457 /* If X is (abs REG) and we know something about REG's relationship
7458 with zero, we may be able to simplify this. */
7460 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7461 switch (cond)
7463 case GE: case GT: case EQ:
7464 return XEXP (x, 0);
7465 case LT: case LE:
7466 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7467 XEXP (x, 0),
7468 GET_MODE (XEXP (x, 0)));
7469 default:
7470 break;
7473 /* The only other cases we handle are MIN, MAX, and comparisons if the
7474 operands are the same as REG and VAL. */
7476 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7478 if (rtx_equal_p (XEXP (x, 0), val))
7479 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7481 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7483 if (GET_RTX_CLASS (code) == '<')
7485 if (comparison_dominates_p (cond, code))
7486 return const_true_rtx;
7488 code = combine_reversed_comparison_code (x);
7489 if (code != UNKNOWN
7490 && comparison_dominates_p (cond, code))
7491 return const0_rtx;
7492 else
7493 return x;
7495 else if (code == SMAX || code == SMIN
7496 || code == UMIN || code == UMAX)
7498 int unsignedp = (code == UMIN || code == UMAX);
7500 /* Do not reverse the condition when it is NE or EQ.
7501 This is because we cannot conclude anything about
7502 the value of 'SMAX (x, y)' when x is not equal to y,
7503 but we can when x equals y. */
7504 if ((code == SMAX || code == UMAX)
7505 && ! (cond == EQ || cond == NE))
7506 cond = reverse_condition (cond);
7508 switch (cond)
7510 case GE: case GT:
7511 return unsignedp ? x : XEXP (x, 1);
7512 case LE: case LT:
7513 return unsignedp ? x : XEXP (x, 0);
7514 case GEU: case GTU:
7515 return unsignedp ? XEXP (x, 1) : x;
7516 case LEU: case LTU:
7517 return unsignedp ? XEXP (x, 0) : x;
7518 default:
7519 break;
7524 else if (code == SUBREG)
7526 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7527 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7529 if (SUBREG_REG (x) != r)
7531 /* We must simplify subreg here, before we lose track of the
7532 original inner_mode. */
7533 new = simplify_subreg (GET_MODE (x), r,
7534 inner_mode, SUBREG_BYTE (x));
7535 if (new)
7536 return new;
7537 else
7538 SUBST (SUBREG_REG (x), r);
7541 return x;
7543 /* We don't have to handle SIGN_EXTEND here, because even in the
7544 case of replacing something with a modeless CONST_INT, a
7545 CONST_INT is already (supposed to be) a valid sign extension for
7546 its narrower mode, which implies it's already properly
7547 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7548 story is different. */
7549 else if (code == ZERO_EXTEND)
7551 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7552 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7554 if (XEXP (x, 0) != r)
7556 /* We must simplify the zero_extend here, before we lose
7557 track of the original inner_mode. */
7558 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7559 r, inner_mode);
7560 if (new)
7561 return new;
7562 else
7563 SUBST (XEXP (x, 0), r);
7566 return x;
7569 fmt = GET_RTX_FORMAT (code);
7570 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7572 if (fmt[i] == 'e')
7573 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7574 else if (fmt[i] == 'E')
7575 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7576 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7577 cond, reg, val));
7580 return x;
7583 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7584 assignment as a field assignment. */
7586 static int
7587 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7589 if (x == y || rtx_equal_p (x, y))
7590 return 1;
7592 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7593 return 0;
7595 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7596 Note that all SUBREGs of MEM are paradoxical; otherwise they
7597 would have been rewritten. */
7598 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7599 && GET_CODE (SUBREG_REG (y)) == MEM
7600 && rtx_equal_p (SUBREG_REG (y),
7601 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7602 return 1;
7604 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7605 && GET_CODE (SUBREG_REG (x)) == MEM
7606 && rtx_equal_p (SUBREG_REG (x),
7607 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7608 return 1;
7610 /* We used to see if get_last_value of X and Y were the same but that's
7611 not correct. In one direction, we'll cause the assignment to have
7612 the wrong destination and in the case, we'll import a register into this
7613 insn that might have already have been dead. So fail if none of the
7614 above cases are true. */
7615 return 0;
7618 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7619 Return that assignment if so.
7621 We only handle the most common cases. */
7623 static rtx
7624 make_field_assignment (rtx x)
7626 rtx dest = SET_DEST (x);
7627 rtx src = SET_SRC (x);
7628 rtx assign;
7629 rtx rhs, lhs;
7630 HOST_WIDE_INT c1;
7631 HOST_WIDE_INT pos;
7632 unsigned HOST_WIDE_INT len;
7633 rtx other;
7634 enum machine_mode mode;
7636 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7637 a clear of a one-bit field. We will have changed it to
7638 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7639 for a SUBREG. */
7641 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7642 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7643 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7644 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7646 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7647 1, 1, 1, 0);
7648 if (assign != 0)
7649 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7650 return x;
7653 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7654 && subreg_lowpart_p (XEXP (src, 0))
7655 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7656 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7657 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7658 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7659 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7660 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7662 assign = make_extraction (VOIDmode, dest, 0,
7663 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7664 1, 1, 1, 0);
7665 if (assign != 0)
7666 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7667 return x;
7670 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7671 one-bit field. */
7672 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7673 && XEXP (XEXP (src, 0), 0) == const1_rtx
7674 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7676 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7677 1, 1, 1, 0);
7678 if (assign != 0)
7679 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7680 return x;
7683 /* The other case we handle is assignments into a constant-position
7684 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7685 a mask that has all one bits except for a group of zero bits and
7686 OTHER is known to have zeros where C1 has ones, this is such an
7687 assignment. Compute the position and length from C1. Shift OTHER
7688 to the appropriate position, force it to the required mode, and
7689 make the extraction. Check for the AND in both operands. */
7691 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7692 return x;
7694 rhs = expand_compound_operation (XEXP (src, 0));
7695 lhs = expand_compound_operation (XEXP (src, 1));
7697 if (GET_CODE (rhs) == AND
7698 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7699 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7700 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7701 else if (GET_CODE (lhs) == AND
7702 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7703 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7704 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7705 else
7706 return x;
7708 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7709 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7710 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7711 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7712 return x;
7714 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7715 if (assign == 0)
7716 return x;
7718 /* The mode to use for the source is the mode of the assignment, or of
7719 what is inside a possible STRICT_LOW_PART. */
7720 mode = (GET_CODE (assign) == STRICT_LOW_PART
7721 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7723 /* Shift OTHER right POS places and make it the source, restricting it
7724 to the proper length and mode. */
7726 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7727 GET_MODE (src), other, pos),
7728 mode,
7729 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7730 ? ~(unsigned HOST_WIDE_INT) 0
7731 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7732 dest, 0);
7734 /* If SRC is masked by an AND that does not make a difference in
7735 the value being stored, strip it. */
7736 if (GET_CODE (assign) == ZERO_EXTRACT
7737 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7738 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7739 && GET_CODE (src) == AND
7740 && GET_CODE (XEXP (src, 1)) == CONST_INT
7741 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7742 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7743 src = XEXP (src, 0);
7745 return gen_rtx_SET (VOIDmode, assign, src);
7748 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7749 if so. */
7751 static rtx
7752 apply_distributive_law (rtx x)
7754 enum rtx_code code = GET_CODE (x);
7755 enum rtx_code inner_code;
7756 rtx lhs, rhs, other;
7757 rtx tem;
7759 /* Distributivity is not true for floating point as it can change the
7760 value. So we don't do it unless -funsafe-math-optimizations. */
7761 if (FLOAT_MODE_P (GET_MODE (x))
7762 && ! flag_unsafe_math_optimizations)
7763 return x;
7765 /* The outer operation can only be one of the following: */
7766 if (code != IOR && code != AND && code != XOR
7767 && code != PLUS && code != MINUS)
7768 return x;
7770 lhs = XEXP (x, 0);
7771 rhs = XEXP (x, 1);
7773 /* If either operand is a primitive we can't do anything, so get out
7774 fast. */
7775 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7776 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7777 return x;
7779 lhs = expand_compound_operation (lhs);
7780 rhs = expand_compound_operation (rhs);
7781 inner_code = GET_CODE (lhs);
7782 if (inner_code != GET_CODE (rhs))
7783 return x;
7785 /* See if the inner and outer operations distribute. */
7786 switch (inner_code)
7788 case LSHIFTRT:
7789 case ASHIFTRT:
7790 case AND:
7791 case IOR:
7792 /* These all distribute except over PLUS. */
7793 if (code == PLUS || code == MINUS)
7794 return x;
7795 break;
7797 case MULT:
7798 if (code != PLUS && code != MINUS)
7799 return x;
7800 break;
7802 case ASHIFT:
7803 /* This is also a multiply, so it distributes over everything. */
7804 break;
7806 case SUBREG:
7807 /* Non-paradoxical SUBREGs distributes over all operations, provided
7808 the inner modes and byte offsets are the same, this is an extraction
7809 of a low-order part, we don't convert an fp operation to int or
7810 vice versa, and we would not be converting a single-word
7811 operation into a multi-word operation. The latter test is not
7812 required, but it prevents generating unneeded multi-word operations.
7813 Some of the previous tests are redundant given the latter test, but
7814 are retained because they are required for correctness.
7816 We produce the result slightly differently in this case. */
7818 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7819 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7820 || ! subreg_lowpart_p (lhs)
7821 || (GET_MODE_CLASS (GET_MODE (lhs))
7822 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7823 || (GET_MODE_SIZE (GET_MODE (lhs))
7824 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7825 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7826 return x;
7828 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7829 SUBREG_REG (lhs), SUBREG_REG (rhs));
7830 return gen_lowpart_for_combine (GET_MODE (x), tem);
7832 default:
7833 return x;
7836 /* Set LHS and RHS to the inner operands (A and B in the example
7837 above) and set OTHER to the common operand (C in the example).
7838 These is only one way to do this unless the inner operation is
7839 commutative. */
7840 if (GET_RTX_CLASS (inner_code) == 'c'
7841 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7842 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7843 else if (GET_RTX_CLASS (inner_code) == 'c'
7844 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7845 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7846 else if (GET_RTX_CLASS (inner_code) == 'c'
7847 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7848 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7849 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7850 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7851 else
7852 return x;
7854 /* Form the new inner operation, seeing if it simplifies first. */
7855 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7857 /* There is one exception to the general way of distributing:
7858 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7859 if (code == XOR && inner_code == IOR)
7861 inner_code = AND;
7862 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7865 /* We may be able to continuing distributing the result, so call
7866 ourselves recursively on the inner operation before forming the
7867 outer operation, which we return. */
7868 return gen_binary (inner_code, GET_MODE (x),
7869 apply_distributive_law (tem), other);
7872 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7873 in MODE.
7875 Return an equivalent form, if different from X. Otherwise, return X. If
7876 X is zero, we are to always construct the equivalent form. */
7878 static rtx
7879 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7880 unsigned HOST_WIDE_INT constop)
7882 unsigned HOST_WIDE_INT nonzero;
7883 int i;
7885 /* Simplify VAROP knowing that we will be only looking at some of the
7886 bits in it.
7888 Note by passing in CONSTOP, we guarantee that the bits not set in
7889 CONSTOP are not significant and will never be examined. We must
7890 ensure that is the case by explicitly masking out those bits
7891 before returning. */
7892 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7894 /* If VAROP is a CLOBBER, we will fail so return it. */
7895 if (GET_CODE (varop) == CLOBBER)
7896 return varop;
7898 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7899 to VAROP and return the new constant. */
7900 if (GET_CODE (varop) == CONST_INT)
7901 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7903 /* See what bits may be nonzero in VAROP. Unlike the general case of
7904 a call to nonzero_bits, here we don't care about bits outside
7905 MODE. */
7907 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7909 /* Turn off all bits in the constant that are known to already be zero.
7910 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7911 which is tested below. */
7913 constop &= nonzero;
7915 /* If we don't have any bits left, return zero. */
7916 if (constop == 0)
7917 return const0_rtx;
7919 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7920 a power of two, we can replace this with an ASHIFT. */
7921 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7922 && (i = exact_log2 (constop)) >= 0)
7923 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7925 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7926 or XOR, then try to apply the distributive law. This may eliminate
7927 operations if either branch can be simplified because of the AND.
7928 It may also make some cases more complex, but those cases probably
7929 won't match a pattern either with or without this. */
7931 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7932 return
7933 gen_lowpart_for_combine
7934 (mode,
7935 apply_distributive_law
7936 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7937 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7938 XEXP (varop, 0), constop),
7939 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7940 XEXP (varop, 1), constop))));
7942 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7943 the AND and see if one of the operands simplifies to zero. If so, we
7944 may eliminate it. */
7946 if (GET_CODE (varop) == PLUS
7947 && exact_log2 (constop + 1) >= 0)
7949 rtx o0, o1;
7951 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7952 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7953 if (o0 == const0_rtx)
7954 return o1;
7955 if (o1 == const0_rtx)
7956 return o0;
7959 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7960 if we already had one (just check for the simplest cases). */
7961 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7962 && GET_MODE (XEXP (x, 0)) == mode
7963 && SUBREG_REG (XEXP (x, 0)) == varop)
7964 varop = XEXP (x, 0);
7965 else
7966 varop = gen_lowpart_for_combine (mode, varop);
7968 /* If we can't make the SUBREG, try to return what we were given. */
7969 if (GET_CODE (varop) == CLOBBER)
7970 return x ? x : varop;
7972 /* If we are only masking insignificant bits, return VAROP. */
7973 if (constop == nonzero)
7974 x = varop;
7975 else
7977 /* Otherwise, return an AND. */
7978 constop = trunc_int_for_mode (constop, mode);
7979 /* See how much, if any, of X we can use. */
7980 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7981 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7983 else
7985 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7986 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7987 SUBST (XEXP (x, 1), GEN_INT (constop));
7989 SUBST (XEXP (x, 0), varop);
7993 return x;
7996 #define nonzero_bits_with_known(X, MODE) \
7997 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
7999 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8000 It avoids exponential behavior in nonzero_bits1 when X has
8001 identical subexpressions on the first or the second level. */
8003 static unsigned HOST_WIDE_INT
8004 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8005 enum machine_mode known_mode,
8006 unsigned HOST_WIDE_INT known_ret)
8008 if (x == known_x && mode == known_mode)
8009 return known_ret;
8011 /* Try to find identical subexpressions. If found call
8012 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8013 precomputed value for the subexpression as KNOWN_RET. */
8015 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8016 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8018 rtx x0 = XEXP (x, 0);
8019 rtx x1 = XEXP (x, 1);
8021 /* Check the first level. */
8022 if (x0 == x1)
8023 return nonzero_bits1 (x, mode, x0, mode,
8024 nonzero_bits_with_known (x0, mode));
8026 /* Check the second level. */
8027 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8028 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8029 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8030 return nonzero_bits1 (x, mode, x1, mode,
8031 nonzero_bits_with_known (x1, mode));
8033 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8034 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8035 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8036 return nonzero_bits1 (x, mode, x0, mode,
8037 nonzero_bits_with_known (x0, mode));
8040 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8043 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8044 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8045 is less useful. We can't allow both, because that results in exponential
8046 run time recursion. There is a nullstone testcase that triggered
8047 this. This macro avoids accidental uses of num_sign_bit_copies. */
8048 #define cached_num_sign_bit_copies()
8050 /* Given an expression, X, compute which bits in X can be nonzero.
8051 We don't care about bits outside of those defined in MODE.
8053 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8054 a shift, AND, or zero_extract, we can do better. */
8056 static unsigned HOST_WIDE_INT
8057 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8058 enum machine_mode known_mode,
8059 unsigned HOST_WIDE_INT known_ret)
8061 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8062 unsigned HOST_WIDE_INT inner_nz;
8063 enum rtx_code code;
8064 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8065 rtx tem;
8067 /* For floating-point values, assume all bits are needed. */
8068 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8069 return nonzero;
8071 /* If X is wider than MODE, use its mode instead. */
8072 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8074 mode = GET_MODE (x);
8075 nonzero = GET_MODE_MASK (mode);
8076 mode_width = GET_MODE_BITSIZE (mode);
8079 if (mode_width > HOST_BITS_PER_WIDE_INT)
8080 /* Our only callers in this case look for single bit values. So
8081 just return the mode mask. Those tests will then be false. */
8082 return nonzero;
8084 #ifndef WORD_REGISTER_OPERATIONS
8085 /* If MODE is wider than X, but both are a single word for both the host
8086 and target machines, we can compute this from which bits of the
8087 object might be nonzero in its own mode, taking into account the fact
8088 that on many CISC machines, accessing an object in a wider mode
8089 causes the high-order bits to become undefined. So they are
8090 not known to be zero. */
8092 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8093 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8094 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8095 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8097 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8098 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8099 return nonzero;
8101 #endif
8103 code = GET_CODE (x);
8104 switch (code)
8106 case REG:
8107 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8108 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8109 all the bits above ptr_mode are known to be zero. */
8110 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8111 && REG_POINTER (x))
8112 nonzero &= GET_MODE_MASK (ptr_mode);
8113 #endif
8115 /* Include declared information about alignment of pointers. */
8116 /* ??? We don't properly preserve REG_POINTER changes across
8117 pointer-to-integer casts, so we can't trust it except for
8118 things that we know must be pointers. See execute/960116-1.c. */
8119 if ((x == stack_pointer_rtx
8120 || x == frame_pointer_rtx
8121 || x == arg_pointer_rtx)
8122 && REGNO_POINTER_ALIGN (REGNO (x)))
8124 unsigned HOST_WIDE_INT alignment
8125 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8127 #ifdef PUSH_ROUNDING
8128 /* If PUSH_ROUNDING is defined, it is possible for the
8129 stack to be momentarily aligned only to that amount,
8130 so we pick the least alignment. */
8131 if (x == stack_pointer_rtx && PUSH_ARGS)
8132 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8133 alignment);
8134 #endif
8136 nonzero &= ~(alignment - 1);
8139 /* If X is a register whose nonzero bits value is current, use it.
8140 Otherwise, if X is a register whose value we can find, use that
8141 value. Otherwise, use the previously-computed global nonzero bits
8142 for this register. */
8144 if (reg_last_set_value[REGNO (x)] != 0
8145 && (reg_last_set_mode[REGNO (x)] == mode
8146 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8147 && GET_MODE_CLASS (mode) == MODE_INT))
8148 && (reg_last_set_label[REGNO (x)] == label_tick
8149 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8150 && REG_N_SETS (REGNO (x)) == 1
8151 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8152 REGNO (x))))
8153 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8154 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8156 tem = get_last_value (x);
8158 if (tem)
8160 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8161 /* If X is narrower than MODE and TEM is a non-negative
8162 constant that would appear negative in the mode of X,
8163 sign-extend it for use in reg_nonzero_bits because some
8164 machines (maybe most) will actually do the sign-extension
8165 and this is the conservative approach.
8167 ??? For 2.5, try to tighten up the MD files in this regard
8168 instead of this kludge. */
8170 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8171 && GET_CODE (tem) == CONST_INT
8172 && INTVAL (tem) > 0
8173 && 0 != (INTVAL (tem)
8174 & ((HOST_WIDE_INT) 1
8175 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8176 tem = GEN_INT (INTVAL (tem)
8177 | ((HOST_WIDE_INT) (-1)
8178 << GET_MODE_BITSIZE (GET_MODE (x))));
8179 #endif
8180 return nonzero_bits_with_known (tem, mode) & nonzero;
8182 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8184 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8186 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8187 /* We don't know anything about the upper bits. */
8188 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8189 return nonzero & mask;
8191 else
8192 return nonzero;
8194 case CONST_INT:
8195 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8196 /* If X is negative in MODE, sign-extend the value. */
8197 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8198 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8199 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8200 #endif
8202 return INTVAL (x);
8204 case MEM:
8205 #ifdef LOAD_EXTEND_OP
8206 /* In many, if not most, RISC machines, reading a byte from memory
8207 zeros the rest of the register. Noticing that fact saves a lot
8208 of extra zero-extends. */
8209 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8210 nonzero &= GET_MODE_MASK (GET_MODE (x));
8211 #endif
8212 break;
8214 case EQ: case NE:
8215 case UNEQ: case LTGT:
8216 case GT: case GTU: case UNGT:
8217 case LT: case LTU: case UNLT:
8218 case GE: case GEU: case UNGE:
8219 case LE: case LEU: case UNLE:
8220 case UNORDERED: case ORDERED:
8222 /* If this produces an integer result, we know which bits are set.
8223 Code here used to clear bits outside the mode of X, but that is
8224 now done above. */
8226 if (GET_MODE_CLASS (mode) == MODE_INT
8227 && mode_width <= HOST_BITS_PER_WIDE_INT)
8228 nonzero = STORE_FLAG_VALUE;
8229 break;
8231 case NEG:
8232 #if 0
8233 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8234 and num_sign_bit_copies. */
8235 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8236 == GET_MODE_BITSIZE (GET_MODE (x)))
8237 nonzero = 1;
8238 #endif
8240 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8241 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8242 break;
8244 case ABS:
8245 #if 0
8246 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8247 and num_sign_bit_copies. */
8248 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8249 == GET_MODE_BITSIZE (GET_MODE (x)))
8250 nonzero = 1;
8251 #endif
8252 break;
8254 case TRUNCATE:
8255 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8256 & GET_MODE_MASK (mode));
8257 break;
8259 case ZERO_EXTEND:
8260 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8261 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8262 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8263 break;
8265 case SIGN_EXTEND:
8266 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8267 Otherwise, show all the bits in the outer mode but not the inner
8268 may be nonzero. */
8269 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8270 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8272 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8273 if (inner_nz
8274 & (((HOST_WIDE_INT) 1
8275 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8276 inner_nz |= (GET_MODE_MASK (mode)
8277 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8280 nonzero &= inner_nz;
8281 break;
8283 case AND:
8284 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8285 & nonzero_bits_with_known (XEXP (x, 1), mode));
8286 break;
8288 case XOR: case IOR:
8289 case UMIN: case UMAX: case SMIN: case SMAX:
8291 unsigned HOST_WIDE_INT nonzero0 =
8292 nonzero_bits_with_known (XEXP (x, 0), mode);
8294 /* Don't call nonzero_bits for the second time if it cannot change
8295 anything. */
8296 if ((nonzero & nonzero0) != nonzero)
8297 nonzero &= (nonzero0
8298 | nonzero_bits_with_known (XEXP (x, 1), mode));
8300 break;
8302 case PLUS: case MINUS:
8303 case MULT:
8304 case DIV: case UDIV:
8305 case MOD: case UMOD:
8306 /* We can apply the rules of arithmetic to compute the number of
8307 high- and low-order zero bits of these operations. We start by
8308 computing the width (position of the highest-order nonzero bit)
8309 and the number of low-order zero bits for each value. */
8311 unsigned HOST_WIDE_INT nz0 =
8312 nonzero_bits_with_known (XEXP (x, 0), mode);
8313 unsigned HOST_WIDE_INT nz1 =
8314 nonzero_bits_with_known (XEXP (x, 1), mode);
8315 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8316 int width0 = floor_log2 (nz0) + 1;
8317 int width1 = floor_log2 (nz1) + 1;
8318 int low0 = floor_log2 (nz0 & -nz0);
8319 int low1 = floor_log2 (nz1 & -nz1);
8320 HOST_WIDE_INT op0_maybe_minusp
8321 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8322 HOST_WIDE_INT op1_maybe_minusp
8323 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8324 unsigned int result_width = mode_width;
8325 int result_low = 0;
8327 switch (code)
8329 case PLUS:
8330 result_width = MAX (width0, width1) + 1;
8331 result_low = MIN (low0, low1);
8332 break;
8333 case MINUS:
8334 result_low = MIN (low0, low1);
8335 break;
8336 case MULT:
8337 result_width = width0 + width1;
8338 result_low = low0 + low1;
8339 break;
8340 case DIV:
8341 if (width1 == 0)
8342 break;
8343 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8344 result_width = width0;
8345 break;
8346 case UDIV:
8347 if (width1 == 0)
8348 break;
8349 result_width = width0;
8350 break;
8351 case MOD:
8352 if (width1 == 0)
8353 break;
8354 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8355 result_width = MIN (width0, width1);
8356 result_low = MIN (low0, low1);
8357 break;
8358 case UMOD:
8359 if (width1 == 0)
8360 break;
8361 result_width = MIN (width0, width1);
8362 result_low = MIN (low0, low1);
8363 break;
8364 default:
8365 abort ();
8368 if (result_width < mode_width)
8369 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8371 if (result_low > 0)
8372 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8374 #ifdef POINTERS_EXTEND_UNSIGNED
8375 /* If pointers extend unsigned and this is an addition or subtraction
8376 to a pointer in Pmode, all the bits above ptr_mode are known to be
8377 zero. */
8378 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8379 && (code == PLUS || code == MINUS)
8380 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8381 nonzero &= GET_MODE_MASK (ptr_mode);
8382 #endif
8384 break;
8386 case ZERO_EXTRACT:
8387 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8388 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8389 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8390 break;
8392 case SUBREG:
8393 /* If this is a SUBREG formed for a promoted variable that has
8394 been zero-extended, we know that at least the high-order bits
8395 are zero, though others might be too. */
8397 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8398 nonzero = (GET_MODE_MASK (GET_MODE (x))
8399 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8401 /* If the inner mode is a single word for both the host and target
8402 machines, we can compute this from which bits of the inner
8403 object might be nonzero. */
8404 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8405 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8406 <= HOST_BITS_PER_WIDE_INT))
8408 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8410 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8411 /* If this is a typical RISC machine, we only have to worry
8412 about the way loads are extended. */
8413 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8414 ? (((nonzero
8415 & (((unsigned HOST_WIDE_INT) 1
8416 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8417 != 0))
8418 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8419 || GET_CODE (SUBREG_REG (x)) != MEM)
8420 #endif
8422 /* On many CISC machines, accessing an object in a wider mode
8423 causes the high-order bits to become undefined. So they are
8424 not known to be zero. */
8425 if (GET_MODE_SIZE (GET_MODE (x))
8426 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8427 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8428 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8431 break;
8433 case ASHIFTRT:
8434 case LSHIFTRT:
8435 case ASHIFT:
8436 case ROTATE:
8437 /* The nonzero bits are in two classes: any bits within MODE
8438 that aren't in GET_MODE (x) are always significant. The rest of the
8439 nonzero bits are those that are significant in the operand of
8440 the shift when shifted the appropriate number of bits. This
8441 shows that high-order bits are cleared by the right shift and
8442 low-order bits by left shifts. */
8443 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8444 && INTVAL (XEXP (x, 1)) >= 0
8445 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8447 enum machine_mode inner_mode = GET_MODE (x);
8448 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8449 int count = INTVAL (XEXP (x, 1));
8450 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8451 unsigned HOST_WIDE_INT op_nonzero =
8452 nonzero_bits_with_known (XEXP (x, 0), mode);
8453 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8454 unsigned HOST_WIDE_INT outer = 0;
8456 if (mode_width > width)
8457 outer = (op_nonzero & nonzero & ~mode_mask);
8459 if (code == LSHIFTRT)
8460 inner >>= count;
8461 else if (code == ASHIFTRT)
8463 inner >>= count;
8465 /* If the sign bit may have been nonzero before the shift, we
8466 need to mark all the places it could have been copied to
8467 by the shift as possibly nonzero. */
8468 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8469 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8471 else if (code == ASHIFT)
8472 inner <<= count;
8473 else
8474 inner = ((inner << (count % width)
8475 | (inner >> (width - (count % width)))) & mode_mask);
8477 nonzero &= (outer | inner);
8479 break;
8481 case FFS:
8482 case POPCOUNT:
8483 /* This is at most the number of bits in the mode. */
8484 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8485 break;
8487 case CLZ:
8488 /* If CLZ has a known value at zero, then the nonzero bits are
8489 that value, plus the number of bits in the mode minus one. */
8490 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8491 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8492 else
8493 nonzero = -1;
8494 break;
8496 case CTZ:
8497 /* If CTZ has a known value at zero, then the nonzero bits are
8498 that value, plus the number of bits in the mode minus one. */
8499 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8500 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8501 else
8502 nonzero = -1;
8503 break;
8505 case PARITY:
8506 nonzero = 1;
8507 break;
8509 case IF_THEN_ELSE:
8510 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8511 | nonzero_bits_with_known (XEXP (x, 2), mode));
8512 break;
8514 default:
8515 break;
8518 return nonzero;
8521 /* See the macro definition above. */
8522 #undef cached_num_sign_bit_copies
8524 #define num_sign_bit_copies_with_known(X, M) \
8525 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8527 /* The function cached_num_sign_bit_copies is a wrapper around
8528 num_sign_bit_copies1. It avoids exponential behavior in
8529 num_sign_bit_copies1 when X has identical subexpressions on the
8530 first or the second level. */
8532 static unsigned int
8533 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8534 enum machine_mode known_mode,
8535 unsigned int known_ret)
8537 if (x == known_x && mode == known_mode)
8538 return known_ret;
8540 /* Try to find identical subexpressions. If found call
8541 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8542 the precomputed value for the subexpression as KNOWN_RET. */
8544 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8545 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8547 rtx x0 = XEXP (x, 0);
8548 rtx x1 = XEXP (x, 1);
8550 /* Check the first level. */
8551 if (x0 == x1)
8552 return
8553 num_sign_bit_copies1 (x, mode, x0, mode,
8554 num_sign_bit_copies_with_known (x0, mode));
8556 /* Check the second level. */
8557 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8558 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8559 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8560 return
8561 num_sign_bit_copies1 (x, mode, x1, mode,
8562 num_sign_bit_copies_with_known (x1, mode));
8564 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8565 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8566 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8567 return
8568 num_sign_bit_copies1 (x, mode, x0, mode,
8569 num_sign_bit_copies_with_known (x0, mode));
8572 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8575 /* Return the number of bits at the high-order end of X that are known to
8576 be equal to the sign bit. X will be used in mode MODE; if MODE is
8577 VOIDmode, X will be used in its own mode. The returned value will always
8578 be between 1 and the number of bits in MODE. */
8580 static unsigned int
8581 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8582 enum machine_mode known_mode,
8583 unsigned int known_ret)
8585 enum rtx_code code = GET_CODE (x);
8586 unsigned int bitwidth;
8587 int num0, num1, result;
8588 unsigned HOST_WIDE_INT nonzero;
8589 rtx tem;
8591 /* If we weren't given a mode, use the mode of X. If the mode is still
8592 VOIDmode, we don't know anything. Likewise if one of the modes is
8593 floating-point. */
8595 if (mode == VOIDmode)
8596 mode = GET_MODE (x);
8598 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8599 return 1;
8601 bitwidth = GET_MODE_BITSIZE (mode);
8603 /* For a smaller object, just ignore the high bits. */
8604 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8606 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8607 return MAX (1,
8608 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8611 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8613 #ifndef WORD_REGISTER_OPERATIONS
8614 /* If this machine does not do all register operations on the entire
8615 register and MODE is wider than the mode of X, we can say nothing
8616 at all about the high-order bits. */
8617 return 1;
8618 #else
8619 /* Likewise on machines that do, if the mode of the object is smaller
8620 than a word and loads of that size don't sign extend, we can say
8621 nothing about the high order bits. */
8622 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8623 #ifdef LOAD_EXTEND_OP
8624 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8625 #endif
8627 return 1;
8628 #endif
8631 switch (code)
8633 case REG:
8635 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8636 /* If pointers extend signed and this is a pointer in Pmode, say that
8637 all the bits above ptr_mode are known to be sign bit copies. */
8638 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8639 && REG_POINTER (x))
8640 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8641 #endif
8643 if (reg_last_set_value[REGNO (x)] != 0
8644 && reg_last_set_mode[REGNO (x)] == mode
8645 && (reg_last_set_label[REGNO (x)] == label_tick
8646 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8647 && REG_N_SETS (REGNO (x)) == 1
8648 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8649 REGNO (x))))
8650 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8651 return reg_last_set_sign_bit_copies[REGNO (x)];
8653 tem = get_last_value (x);
8654 if (tem != 0)
8655 return num_sign_bit_copies_with_known (tem, mode);
8657 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8658 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8659 return reg_sign_bit_copies[REGNO (x)];
8660 break;
8662 case MEM:
8663 #ifdef LOAD_EXTEND_OP
8664 /* Some RISC machines sign-extend all loads of smaller than a word. */
8665 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8666 return MAX (1, ((int) bitwidth
8667 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8668 #endif
8669 break;
8671 case CONST_INT:
8672 /* If the constant is negative, take its 1's complement and remask.
8673 Then see how many zero bits we have. */
8674 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8675 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8676 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8677 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8679 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8681 case SUBREG:
8682 /* If this is a SUBREG for a promoted object that is sign-extended
8683 and we are looking at it in a wider mode, we know that at least the
8684 high-order bits are known to be sign bit copies. */
8686 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8688 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8689 return MAX ((int) bitwidth
8690 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8691 num0);
8694 /* For a smaller object, just ignore the high bits. */
8695 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8697 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8698 return MAX (1, (num0
8699 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8700 - bitwidth)));
8703 #ifdef WORD_REGISTER_OPERATIONS
8704 #ifdef LOAD_EXTEND_OP
8705 /* For paradoxical SUBREGs on machines where all register operations
8706 affect the entire register, just look inside. Note that we are
8707 passing MODE to the recursive call, so the number of sign bit copies
8708 will remain relative to that mode, not the inner mode. */
8710 /* This works only if loads sign extend. Otherwise, if we get a
8711 reload for the inner part, it may be loaded from the stack, and
8712 then we lose all sign bit copies that existed before the store
8713 to the stack. */
8715 if ((GET_MODE_SIZE (GET_MODE (x))
8716 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8717 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8718 && GET_CODE (SUBREG_REG (x)) == MEM)
8719 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8720 #endif
8721 #endif
8722 break;
8724 case SIGN_EXTRACT:
8725 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8726 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8727 break;
8729 case SIGN_EXTEND:
8730 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8731 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8733 case TRUNCATE:
8734 /* For a smaller object, just ignore the high bits. */
8735 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8736 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8737 - bitwidth)));
8739 case NOT:
8740 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8742 case ROTATE: case ROTATERT:
8743 /* If we are rotating left by a number of bits less than the number
8744 of sign bit copies, we can just subtract that amount from the
8745 number. */
8746 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8747 && INTVAL (XEXP (x, 1)) >= 0
8748 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8750 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8751 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8752 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8754 break;
8756 case NEG:
8757 /* In general, this subtracts one sign bit copy. But if the value
8758 is known to be positive, the number of sign bit copies is the
8759 same as that of the input. Finally, if the input has just one bit
8760 that might be nonzero, all the bits are copies of the sign bit. */
8761 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8762 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8763 return num0 > 1 ? num0 - 1 : 1;
8765 nonzero = nonzero_bits (XEXP (x, 0), mode);
8766 if (nonzero == 1)
8767 return bitwidth;
8769 if (num0 > 1
8770 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8771 num0--;
8773 return num0;
8775 case IOR: case AND: case XOR:
8776 case SMIN: case SMAX: case UMIN: case UMAX:
8777 /* Logical operations will preserve the number of sign-bit copies.
8778 MIN and MAX operations always return one of the operands. */
8779 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8780 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8781 return MIN (num0, num1);
8783 case PLUS: case MINUS:
8784 /* For addition and subtraction, we can have a 1-bit carry. However,
8785 if we are subtracting 1 from a positive number, there will not
8786 be such a carry. Furthermore, if the positive number is known to
8787 be 0 or 1, we know the result is either -1 or 0. */
8789 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8790 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8792 nonzero = nonzero_bits (XEXP (x, 0), mode);
8793 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8794 return (nonzero == 1 || nonzero == 0 ? bitwidth
8795 : bitwidth - floor_log2 (nonzero) - 1);
8798 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8799 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8800 result = MAX (1, MIN (num0, num1) - 1);
8802 #ifdef POINTERS_EXTEND_UNSIGNED
8803 /* If pointers extend signed and this is an addition or subtraction
8804 to a pointer in Pmode, all the bits above ptr_mode are known to be
8805 sign bit copies. */
8806 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8807 && (code == PLUS || code == MINUS)
8808 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8809 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8810 - GET_MODE_BITSIZE (ptr_mode) + 1),
8811 result);
8812 #endif
8813 return result;
8815 case MULT:
8816 /* The number of bits of the product is the sum of the number of
8817 bits of both terms. However, unless one of the terms if known
8818 to be positive, we must allow for an additional bit since negating
8819 a negative number can remove one sign bit copy. */
8821 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8822 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8824 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8825 if (result > 0
8826 && (bitwidth > HOST_BITS_PER_WIDE_INT
8827 || (((nonzero_bits (XEXP (x, 0), mode)
8828 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8829 && ((nonzero_bits (XEXP (x, 1), mode)
8830 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8831 result--;
8833 return MAX (1, result);
8835 case UDIV:
8836 /* The result must be <= the first operand. If the first operand
8837 has the high bit set, we know nothing about the number of sign
8838 bit copies. */
8839 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8840 return 1;
8841 else if ((nonzero_bits (XEXP (x, 0), mode)
8842 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8843 return 1;
8844 else
8845 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8847 case UMOD:
8848 /* The result must be <= the second operand. */
8849 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8851 case DIV:
8852 /* Similar to unsigned division, except that we have to worry about
8853 the case where the divisor is negative, in which case we have
8854 to add 1. */
8855 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8856 if (result > 1
8857 && (bitwidth > HOST_BITS_PER_WIDE_INT
8858 || (nonzero_bits (XEXP (x, 1), mode)
8859 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8860 result--;
8862 return result;
8864 case MOD:
8865 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8866 if (result > 1
8867 && (bitwidth > HOST_BITS_PER_WIDE_INT
8868 || (nonzero_bits (XEXP (x, 1), mode)
8869 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8870 result--;
8872 return result;
8874 case ASHIFTRT:
8875 /* Shifts by a constant add to the number of bits equal to the
8876 sign bit. */
8877 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8878 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8879 && INTVAL (XEXP (x, 1)) > 0)
8880 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8882 return num0;
8884 case ASHIFT:
8885 /* Left shifts destroy copies. */
8886 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8887 || INTVAL (XEXP (x, 1)) < 0
8888 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8889 return 1;
8891 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8892 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8894 case IF_THEN_ELSE:
8895 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8896 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
8897 return MIN (num0, num1);
8899 case EQ: case NE: case GE: case GT: case LE: case LT:
8900 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8901 case GEU: case GTU: case LEU: case LTU:
8902 case UNORDERED: case ORDERED:
8903 /* If the constant is negative, take its 1's complement and remask.
8904 Then see how many zero bits we have. */
8905 nonzero = STORE_FLAG_VALUE;
8906 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8907 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8908 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8910 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8911 break;
8913 default:
8914 break;
8917 /* If we haven't been able to figure it out by one of the above rules,
8918 see if some of the high-order bits are known to be zero. If so,
8919 count those bits and return one less than that amount. If we can't
8920 safely compute the mask for this mode, always return BITWIDTH. */
8922 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8923 return 1;
8925 nonzero = nonzero_bits (x, mode);
8926 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8927 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8930 /* Return the number of "extended" bits there are in X, when interpreted
8931 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8932 unsigned quantities, this is the number of high-order zero bits.
8933 For signed quantities, this is the number of copies of the sign bit
8934 minus 1. In both case, this function returns the number of "spare"
8935 bits. For example, if two quantities for which this function returns
8936 at least 1 are added, the addition is known not to overflow.
8938 This function will always return 0 unless called during combine, which
8939 implies that it must be called from a define_split. */
8941 unsigned int
8942 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8944 if (nonzero_sign_valid == 0)
8945 return 0;
8947 return (unsignedp
8948 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8949 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8950 - floor_log2 (nonzero_bits (x, mode)))
8951 : 0)
8952 : num_sign_bit_copies (x, mode) - 1);
8955 /* This function is called from `simplify_shift_const' to merge two
8956 outer operations. Specifically, we have already found that we need
8957 to perform operation *POP0 with constant *PCONST0 at the outermost
8958 position. We would now like to also perform OP1 with constant CONST1
8959 (with *POP0 being done last).
8961 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8962 the resulting operation. *PCOMP_P is set to 1 if we would need to
8963 complement the innermost operand, otherwise it is unchanged.
8965 MODE is the mode in which the operation will be done. No bits outside
8966 the width of this mode matter. It is assumed that the width of this mode
8967 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8969 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8970 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8971 result is simply *PCONST0.
8973 If the resulting operation cannot be expressed as one operation, we
8974 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8976 static int
8977 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8979 enum rtx_code op0 = *pop0;
8980 HOST_WIDE_INT const0 = *pconst0;
8982 const0 &= GET_MODE_MASK (mode);
8983 const1 &= GET_MODE_MASK (mode);
8985 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8986 if (op0 == AND)
8987 const1 &= const0;
8989 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8990 if OP0 is SET. */
8992 if (op1 == NIL || op0 == SET)
8993 return 1;
8995 else if (op0 == NIL)
8996 op0 = op1, const0 = const1;
8998 else if (op0 == op1)
9000 switch (op0)
9002 case AND:
9003 const0 &= const1;
9004 break;
9005 case IOR:
9006 const0 |= const1;
9007 break;
9008 case XOR:
9009 const0 ^= const1;
9010 break;
9011 case PLUS:
9012 const0 += const1;
9013 break;
9014 case NEG:
9015 op0 = NIL;
9016 break;
9017 default:
9018 break;
9022 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9023 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9024 return 0;
9026 /* If the two constants aren't the same, we can't do anything. The
9027 remaining six cases can all be done. */
9028 else if (const0 != const1)
9029 return 0;
9031 else
9032 switch (op0)
9034 case IOR:
9035 if (op1 == AND)
9036 /* (a & b) | b == b */
9037 op0 = SET;
9038 else /* op1 == XOR */
9039 /* (a ^ b) | b == a | b */
9041 break;
9043 case XOR:
9044 if (op1 == AND)
9045 /* (a & b) ^ b == (~a) & b */
9046 op0 = AND, *pcomp_p = 1;
9047 else /* op1 == IOR */
9048 /* (a | b) ^ b == a & ~b */
9049 op0 = AND, const0 = ~const0;
9050 break;
9052 case AND:
9053 if (op1 == IOR)
9054 /* (a | b) & b == b */
9055 op0 = SET;
9056 else /* op1 == XOR */
9057 /* (a ^ b) & b) == (~a) & b */
9058 *pcomp_p = 1;
9059 break;
9060 default:
9061 break;
9064 /* Check for NO-OP cases. */
9065 const0 &= GET_MODE_MASK (mode);
9066 if (const0 == 0
9067 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9068 op0 = NIL;
9069 else if (const0 == 0 && op0 == AND)
9070 op0 = SET;
9071 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9072 && op0 == AND)
9073 op0 = NIL;
9075 /* ??? Slightly redundant with the above mask, but not entirely.
9076 Moving this above means we'd have to sign-extend the mode mask
9077 for the final test. */
9078 const0 = trunc_int_for_mode (const0, mode);
9080 *pop0 = op0;
9081 *pconst0 = const0;
9083 return 1;
9086 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9087 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9088 that we started with.
9090 The shift is normally computed in the widest mode we find in VAROP, as
9091 long as it isn't a different number of words than RESULT_MODE. Exceptions
9092 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9094 static rtx
9095 simplify_shift_const (rtx x, enum rtx_code code,
9096 enum machine_mode result_mode, rtx varop,
9097 int orig_count)
9099 enum rtx_code orig_code = code;
9100 unsigned int count;
9101 int signed_count;
9102 enum machine_mode mode = result_mode;
9103 enum machine_mode shift_mode, tmode;
9104 unsigned int mode_words
9105 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9106 /* We form (outer_op (code varop count) (outer_const)). */
9107 enum rtx_code outer_op = NIL;
9108 HOST_WIDE_INT outer_const = 0;
9109 rtx const_rtx;
9110 int complement_p = 0;
9111 rtx new;
9113 /* Make sure and truncate the "natural" shift on the way in. We don't
9114 want to do this inside the loop as it makes it more difficult to
9115 combine shifts. */
9116 #ifdef SHIFT_COUNT_TRUNCATED
9117 if (SHIFT_COUNT_TRUNCATED)
9118 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9119 #endif
9121 /* If we were given an invalid count, don't do anything except exactly
9122 what was requested. */
9124 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9126 if (x)
9127 return x;
9129 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9132 count = orig_count;
9134 /* Unless one of the branches of the `if' in this loop does a `continue',
9135 we will `break' the loop after the `if'. */
9137 while (count != 0)
9139 /* If we have an operand of (clobber (const_int 0)), just return that
9140 value. */
9141 if (GET_CODE (varop) == CLOBBER)
9142 return varop;
9144 /* If we discovered we had to complement VAROP, leave. Making a NOT
9145 here would cause an infinite loop. */
9146 if (complement_p)
9147 break;
9149 /* Convert ROTATERT to ROTATE. */
9150 if (code == ROTATERT)
9152 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9153 code = ROTATE;
9154 if (VECTOR_MODE_P (result_mode))
9155 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9156 else
9157 count = bitsize - count;
9160 /* We need to determine what mode we will do the shift in. If the
9161 shift is a right shift or a ROTATE, we must always do it in the mode
9162 it was originally done in. Otherwise, we can do it in MODE, the
9163 widest mode encountered. */
9164 shift_mode
9165 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9166 ? result_mode : mode);
9168 /* Handle cases where the count is greater than the size of the mode
9169 minus 1. For ASHIFT, use the size minus one as the count (this can
9170 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9171 take the count modulo the size. For other shifts, the result is
9172 zero.
9174 Since these shifts are being produced by the compiler by combining
9175 multiple operations, each of which are defined, we know what the
9176 result is supposed to be. */
9178 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9180 if (code == ASHIFTRT)
9181 count = GET_MODE_BITSIZE (shift_mode) - 1;
9182 else if (code == ROTATE || code == ROTATERT)
9183 count %= GET_MODE_BITSIZE (shift_mode);
9184 else
9186 /* We can't simply return zero because there may be an
9187 outer op. */
9188 varop = const0_rtx;
9189 count = 0;
9190 break;
9194 /* An arithmetic right shift of a quantity known to be -1 or 0
9195 is a no-op. */
9196 if (code == ASHIFTRT
9197 && (num_sign_bit_copies (varop, shift_mode)
9198 == GET_MODE_BITSIZE (shift_mode)))
9200 count = 0;
9201 break;
9204 /* If we are doing an arithmetic right shift and discarding all but
9205 the sign bit copies, this is equivalent to doing a shift by the
9206 bitsize minus one. Convert it into that shift because it will often
9207 allow other simplifications. */
9209 if (code == ASHIFTRT
9210 && (count + num_sign_bit_copies (varop, shift_mode)
9211 >= GET_MODE_BITSIZE (shift_mode)))
9212 count = GET_MODE_BITSIZE (shift_mode) - 1;
9214 /* We simplify the tests below and elsewhere by converting
9215 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9216 `make_compound_operation' will convert it to an ASHIFTRT for
9217 those machines (such as VAX) that don't have an LSHIFTRT. */
9218 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9219 && code == ASHIFTRT
9220 && ((nonzero_bits (varop, shift_mode)
9221 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9222 == 0))
9223 code = LSHIFTRT;
9225 if (code == LSHIFTRT
9226 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9227 && !(nonzero_bits (varop, shift_mode) >> count))
9228 varop = const0_rtx;
9229 if (code == ASHIFT
9230 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9231 && !((nonzero_bits (varop, shift_mode) << count)
9232 & GET_MODE_MASK (shift_mode)))
9233 varop = const0_rtx;
9235 switch (GET_CODE (varop))
9237 case SIGN_EXTEND:
9238 case ZERO_EXTEND:
9239 case SIGN_EXTRACT:
9240 case ZERO_EXTRACT:
9241 new = expand_compound_operation (varop);
9242 if (new != varop)
9244 varop = new;
9245 continue;
9247 break;
9249 case MEM:
9250 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9251 minus the width of a smaller mode, we can do this with a
9252 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9253 if ((code == ASHIFTRT || code == LSHIFTRT)
9254 && ! mode_dependent_address_p (XEXP (varop, 0))
9255 && ! MEM_VOLATILE_P (varop)
9256 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9257 MODE_INT, 1)) != BLKmode)
9259 new = adjust_address_nv (varop, tmode,
9260 BYTES_BIG_ENDIAN ? 0
9261 : count / BITS_PER_UNIT);
9263 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9264 : ZERO_EXTEND, mode, new);
9265 count = 0;
9266 continue;
9268 break;
9270 case USE:
9271 /* Similar to the case above, except that we can only do this if
9272 the resulting mode is the same as that of the underlying
9273 MEM and adjust the address depending on the *bits* endianness
9274 because of the way that bit-field extract insns are defined. */
9275 if ((code == ASHIFTRT || code == LSHIFTRT)
9276 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9277 MODE_INT, 1)) != BLKmode
9278 && tmode == GET_MODE (XEXP (varop, 0)))
9280 if (BITS_BIG_ENDIAN)
9281 new = XEXP (varop, 0);
9282 else
9284 new = copy_rtx (XEXP (varop, 0));
9285 SUBST (XEXP (new, 0),
9286 plus_constant (XEXP (new, 0),
9287 count / BITS_PER_UNIT));
9290 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9291 : ZERO_EXTEND, mode, new);
9292 count = 0;
9293 continue;
9295 break;
9297 case SUBREG:
9298 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9299 the same number of words as what we've seen so far. Then store
9300 the widest mode in MODE. */
9301 if (subreg_lowpart_p (varop)
9302 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9303 > GET_MODE_SIZE (GET_MODE (varop)))
9304 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9305 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9306 == mode_words)
9308 varop = SUBREG_REG (varop);
9309 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9310 mode = GET_MODE (varop);
9311 continue;
9313 break;
9315 case MULT:
9316 /* Some machines use MULT instead of ASHIFT because MULT
9317 is cheaper. But it is still better on those machines to
9318 merge two shifts into one. */
9319 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9320 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9322 varop
9323 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9324 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9325 continue;
9327 break;
9329 case UDIV:
9330 /* Similar, for when divides are cheaper. */
9331 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9332 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9334 varop
9335 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9336 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9337 continue;
9339 break;
9341 case ASHIFTRT:
9342 /* If we are extracting just the sign bit of an arithmetic
9343 right shift, that shift is not needed. However, the sign
9344 bit of a wider mode may be different from what would be
9345 interpreted as the sign bit in a narrower mode, so, if
9346 the result is narrower, don't discard the shift. */
9347 if (code == LSHIFTRT
9348 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9349 && (GET_MODE_BITSIZE (result_mode)
9350 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9352 varop = XEXP (varop, 0);
9353 continue;
9356 /* ... fall through ... */
9358 case LSHIFTRT:
9359 case ASHIFT:
9360 case ROTATE:
9361 /* Here we have two nested shifts. The result is usually the
9362 AND of a new shift with a mask. We compute the result below. */
9363 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9364 && INTVAL (XEXP (varop, 1)) >= 0
9365 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9366 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9367 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9369 enum rtx_code first_code = GET_CODE (varop);
9370 unsigned int first_count = INTVAL (XEXP (varop, 1));
9371 unsigned HOST_WIDE_INT mask;
9372 rtx mask_rtx;
9374 /* We have one common special case. We can't do any merging if
9375 the inner code is an ASHIFTRT of a smaller mode. However, if
9376 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9377 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9378 we can convert it to
9379 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9380 This simplifies certain SIGN_EXTEND operations. */
9381 if (code == ASHIFT && first_code == ASHIFTRT
9382 && count == (unsigned int)
9383 (GET_MODE_BITSIZE (result_mode)
9384 - GET_MODE_BITSIZE (GET_MODE (varop))))
9386 /* C3 has the low-order C1 bits zero. */
9388 mask = (GET_MODE_MASK (mode)
9389 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9391 varop = simplify_and_const_int (NULL_RTX, result_mode,
9392 XEXP (varop, 0), mask);
9393 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9394 varop, count);
9395 count = first_count;
9396 code = ASHIFTRT;
9397 continue;
9400 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9401 than C1 high-order bits equal to the sign bit, we can convert
9402 this to either an ASHIFT or an ASHIFTRT depending on the
9403 two counts.
9405 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9407 if (code == ASHIFTRT && first_code == ASHIFT
9408 && GET_MODE (varop) == shift_mode
9409 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9410 > first_count))
9412 varop = XEXP (varop, 0);
9414 signed_count = count - first_count;
9415 if (signed_count < 0)
9416 count = -signed_count, code = ASHIFT;
9417 else
9418 count = signed_count;
9420 continue;
9423 /* There are some cases we can't do. If CODE is ASHIFTRT,
9424 we can only do this if FIRST_CODE is also ASHIFTRT.
9426 We can't do the case when CODE is ROTATE and FIRST_CODE is
9427 ASHIFTRT.
9429 If the mode of this shift is not the mode of the outer shift,
9430 we can't do this if either shift is a right shift or ROTATE.
9432 Finally, we can't do any of these if the mode is too wide
9433 unless the codes are the same.
9435 Handle the case where the shift codes are the same
9436 first. */
9438 if (code == first_code)
9440 if (GET_MODE (varop) != result_mode
9441 && (code == ASHIFTRT || code == LSHIFTRT
9442 || code == ROTATE))
9443 break;
9445 count += first_count;
9446 varop = XEXP (varop, 0);
9447 continue;
9450 if (code == ASHIFTRT
9451 || (code == ROTATE && first_code == ASHIFTRT)
9452 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9453 || (GET_MODE (varop) != result_mode
9454 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9455 || first_code == ROTATE
9456 || code == ROTATE)))
9457 break;
9459 /* To compute the mask to apply after the shift, shift the
9460 nonzero bits of the inner shift the same way the
9461 outer shift will. */
9463 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9465 mask_rtx
9466 = simplify_binary_operation (code, result_mode, mask_rtx,
9467 GEN_INT (count));
9469 /* Give up if we can't compute an outer operation to use. */
9470 if (mask_rtx == 0
9471 || GET_CODE (mask_rtx) != CONST_INT
9472 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9473 INTVAL (mask_rtx),
9474 result_mode, &complement_p))
9475 break;
9477 /* If the shifts are in the same direction, we add the
9478 counts. Otherwise, we subtract them. */
9479 signed_count = count;
9480 if ((code == ASHIFTRT || code == LSHIFTRT)
9481 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9482 signed_count += first_count;
9483 else
9484 signed_count -= first_count;
9486 /* If COUNT is positive, the new shift is usually CODE,
9487 except for the two exceptions below, in which case it is
9488 FIRST_CODE. If the count is negative, FIRST_CODE should
9489 always be used */
9490 if (signed_count > 0
9491 && ((first_code == ROTATE && code == ASHIFT)
9492 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9493 code = first_code, count = signed_count;
9494 else if (signed_count < 0)
9495 code = first_code, count = -signed_count;
9496 else
9497 count = signed_count;
9499 varop = XEXP (varop, 0);
9500 continue;
9503 /* If we have (A << B << C) for any shift, we can convert this to
9504 (A << C << B). This wins if A is a constant. Only try this if
9505 B is not a constant. */
9507 else if (GET_CODE (varop) == code
9508 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9509 && 0 != (new
9510 = simplify_binary_operation (code, mode,
9511 XEXP (varop, 0),
9512 GEN_INT (count))))
9514 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9515 count = 0;
9516 continue;
9518 break;
9520 case NOT:
9521 /* Make this fit the case below. */
9522 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9523 GEN_INT (GET_MODE_MASK (mode)));
9524 continue;
9526 case IOR:
9527 case AND:
9528 case XOR:
9529 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9530 with C the size of VAROP - 1 and the shift is logical if
9531 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9532 we have an (le X 0) operation. If we have an arithmetic shift
9533 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9534 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9536 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9537 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9538 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9539 && (code == LSHIFTRT || code == ASHIFTRT)
9540 && count == (unsigned int)
9541 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9542 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9544 count = 0;
9545 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9546 const0_rtx);
9548 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9549 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9551 continue;
9554 /* If we have (shift (logical)), move the logical to the outside
9555 to allow it to possibly combine with another logical and the
9556 shift to combine with another shift. This also canonicalizes to
9557 what a ZERO_EXTRACT looks like. Also, some machines have
9558 (and (shift)) insns. */
9560 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9561 && (new = simplify_binary_operation (code, result_mode,
9562 XEXP (varop, 1),
9563 GEN_INT (count))) != 0
9564 && GET_CODE (new) == CONST_INT
9565 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9566 INTVAL (new), result_mode, &complement_p))
9568 varop = XEXP (varop, 0);
9569 continue;
9572 /* If we can't do that, try to simplify the shift in each arm of the
9573 logical expression, make a new logical expression, and apply
9574 the inverse distributive law. */
9576 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9577 XEXP (varop, 0), count);
9578 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9579 XEXP (varop, 1), count);
9581 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9582 varop = apply_distributive_law (varop);
9584 count = 0;
9586 break;
9588 case EQ:
9589 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9590 says that the sign bit can be tested, FOO has mode MODE, C is
9591 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9592 that may be nonzero. */
9593 if (code == LSHIFTRT
9594 && XEXP (varop, 1) == const0_rtx
9595 && GET_MODE (XEXP (varop, 0)) == result_mode
9596 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9597 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9598 && ((STORE_FLAG_VALUE
9599 & ((HOST_WIDE_INT) 1
9600 < (GET_MODE_BITSIZE (result_mode) - 1))))
9601 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9602 && merge_outer_ops (&outer_op, &outer_const, XOR,
9603 (HOST_WIDE_INT) 1, result_mode,
9604 &complement_p))
9606 varop = XEXP (varop, 0);
9607 count = 0;
9608 continue;
9610 break;
9612 case NEG:
9613 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9614 than the number of bits in the mode is equivalent to A. */
9615 if (code == LSHIFTRT
9616 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9617 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9619 varop = XEXP (varop, 0);
9620 count = 0;
9621 continue;
9624 /* NEG commutes with ASHIFT since it is multiplication. Move the
9625 NEG outside to allow shifts to combine. */
9626 if (code == ASHIFT
9627 && merge_outer_ops (&outer_op, &outer_const, NEG,
9628 (HOST_WIDE_INT) 0, result_mode,
9629 &complement_p))
9631 varop = XEXP (varop, 0);
9632 continue;
9634 break;
9636 case PLUS:
9637 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9638 is one less than the number of bits in the mode is
9639 equivalent to (xor A 1). */
9640 if (code == LSHIFTRT
9641 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9642 && XEXP (varop, 1) == constm1_rtx
9643 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9644 && merge_outer_ops (&outer_op, &outer_const, XOR,
9645 (HOST_WIDE_INT) 1, result_mode,
9646 &complement_p))
9648 count = 0;
9649 varop = XEXP (varop, 0);
9650 continue;
9653 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9654 that might be nonzero in BAR are those being shifted out and those
9655 bits are known zero in FOO, we can replace the PLUS with FOO.
9656 Similarly in the other operand order. This code occurs when
9657 we are computing the size of a variable-size array. */
9659 if ((code == ASHIFTRT || code == LSHIFTRT)
9660 && count < HOST_BITS_PER_WIDE_INT
9661 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9662 && (nonzero_bits (XEXP (varop, 1), result_mode)
9663 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9665 varop = XEXP (varop, 0);
9666 continue;
9668 else if ((code == ASHIFTRT || code == LSHIFTRT)
9669 && count < HOST_BITS_PER_WIDE_INT
9670 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9671 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9672 >> count)
9673 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9674 & nonzero_bits (XEXP (varop, 1),
9675 result_mode)))
9677 varop = XEXP (varop, 1);
9678 continue;
9681 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9682 if (code == ASHIFT
9683 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9684 && (new = simplify_binary_operation (ASHIFT, result_mode,
9685 XEXP (varop, 1),
9686 GEN_INT (count))) != 0
9687 && GET_CODE (new) == CONST_INT
9688 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9689 INTVAL (new), result_mode, &complement_p))
9691 varop = XEXP (varop, 0);
9692 continue;
9694 break;
9696 case MINUS:
9697 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9698 with C the size of VAROP - 1 and the shift is logical if
9699 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9700 we have a (gt X 0) operation. If the shift is arithmetic with
9701 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9702 we have a (neg (gt X 0)) operation. */
9704 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9705 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9706 && count == (unsigned int)
9707 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9708 && (code == LSHIFTRT || code == ASHIFTRT)
9709 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9710 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9711 == count
9712 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9714 count = 0;
9715 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9716 const0_rtx);
9718 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9719 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9721 continue;
9723 break;
9725 case TRUNCATE:
9726 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9727 if the truncate does not affect the value. */
9728 if (code == LSHIFTRT
9729 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9730 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9731 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9732 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9733 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9735 rtx varop_inner = XEXP (varop, 0);
9737 varop_inner
9738 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9739 XEXP (varop_inner, 0),
9740 GEN_INT
9741 (count + INTVAL (XEXP (varop_inner, 1))));
9742 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9743 count = 0;
9744 continue;
9746 break;
9748 default:
9749 break;
9752 break;
9755 /* We need to determine what mode to do the shift in. If the shift is
9756 a right shift or ROTATE, we must always do it in the mode it was
9757 originally done in. Otherwise, we can do it in MODE, the widest mode
9758 encountered. The code we care about is that of the shift that will
9759 actually be done, not the shift that was originally requested. */
9760 shift_mode
9761 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9762 ? result_mode : mode);
9764 /* We have now finished analyzing the shift. The result should be
9765 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9766 OUTER_OP is non-NIL, it is an operation that needs to be applied
9767 to the result of the shift. OUTER_CONST is the relevant constant,
9768 but we must turn off all bits turned off in the shift.
9770 If we were passed a value for X, see if we can use any pieces of
9771 it. If not, make new rtx. */
9773 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9774 && GET_CODE (XEXP (x, 1)) == CONST_INT
9775 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9776 const_rtx = XEXP (x, 1);
9777 else
9778 const_rtx = GEN_INT (count);
9780 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9781 && GET_MODE (XEXP (x, 0)) == shift_mode
9782 && SUBREG_REG (XEXP (x, 0)) == varop)
9783 varop = XEXP (x, 0);
9784 else if (GET_MODE (varop) != shift_mode)
9785 varop = gen_lowpart_for_combine (shift_mode, varop);
9787 /* If we can't make the SUBREG, try to return what we were given. */
9788 if (GET_CODE (varop) == CLOBBER)
9789 return x ? x : varop;
9791 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9792 if (new != 0)
9793 x = new;
9794 else
9795 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9797 /* If we have an outer operation and we just made a shift, it is
9798 possible that we could have simplified the shift were it not
9799 for the outer operation. So try to do the simplification
9800 recursively. */
9802 if (outer_op != NIL && GET_CODE (x) == code
9803 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9804 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9805 INTVAL (XEXP (x, 1)));
9807 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9808 turn off all the bits that the shift would have turned off. */
9809 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9810 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9811 GET_MODE_MASK (result_mode) >> orig_count);
9813 /* Do the remainder of the processing in RESULT_MODE. */
9814 x = gen_lowpart_for_combine (result_mode, x);
9816 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9817 operation. */
9818 if (complement_p)
9819 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9821 if (outer_op != NIL)
9823 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9824 outer_const = trunc_int_for_mode (outer_const, result_mode);
9826 if (outer_op == AND)
9827 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9828 else if (outer_op == SET)
9829 /* This means that we have determined that the result is
9830 equivalent to a constant. This should be rare. */
9831 x = GEN_INT (outer_const);
9832 else if (GET_RTX_CLASS (outer_op) == '1')
9833 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9834 else
9835 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9838 return x;
9841 /* Like recog, but we receive the address of a pointer to a new pattern.
9842 We try to match the rtx that the pointer points to.
9843 If that fails, we may try to modify or replace the pattern,
9844 storing the replacement into the same pointer object.
9846 Modifications include deletion or addition of CLOBBERs.
9848 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9849 the CLOBBERs are placed.
9851 The value is the final insn code from the pattern ultimately matched,
9852 or -1. */
9854 static int
9855 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9857 rtx pat = *pnewpat;
9858 int insn_code_number;
9859 int num_clobbers_to_add = 0;
9860 int i;
9861 rtx notes = 0;
9862 rtx dummy_insn;
9864 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9865 we use to indicate that something didn't match. If we find such a
9866 thing, force rejection. */
9867 if (GET_CODE (pat) == PARALLEL)
9868 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9869 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9870 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9871 return -1;
9873 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9874 instruction for pattern recognition. */
9875 dummy_insn = shallow_copy_rtx (insn);
9876 PATTERN (dummy_insn) = pat;
9877 REG_NOTES (dummy_insn) = 0;
9879 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9881 /* If it isn't, there is the possibility that we previously had an insn
9882 that clobbered some register as a side effect, but the combined
9883 insn doesn't need to do that. So try once more without the clobbers
9884 unless this represents an ASM insn. */
9886 if (insn_code_number < 0 && ! check_asm_operands (pat)
9887 && GET_CODE (pat) == PARALLEL)
9889 int pos;
9891 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9892 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9894 if (i != pos)
9895 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9896 pos++;
9899 SUBST_INT (XVECLEN (pat, 0), pos);
9901 if (pos == 1)
9902 pat = XVECEXP (pat, 0, 0);
9904 PATTERN (dummy_insn) = pat;
9905 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9908 /* Recognize all noop sets, these will be killed by followup pass. */
9909 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9910 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9912 /* If we had any clobbers to add, make a new pattern than contains
9913 them. Then check to make sure that all of them are dead. */
9914 if (num_clobbers_to_add)
9916 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9917 rtvec_alloc (GET_CODE (pat) == PARALLEL
9918 ? (XVECLEN (pat, 0)
9919 + num_clobbers_to_add)
9920 : num_clobbers_to_add + 1));
9922 if (GET_CODE (pat) == PARALLEL)
9923 for (i = 0; i < XVECLEN (pat, 0); i++)
9924 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9925 else
9926 XVECEXP (newpat, 0, 0) = pat;
9928 add_clobbers (newpat, insn_code_number);
9930 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9931 i < XVECLEN (newpat, 0); i++)
9933 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9934 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9935 return -1;
9936 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9937 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9939 pat = newpat;
9942 *pnewpat = pat;
9943 *pnotes = notes;
9945 return insn_code_number;
9948 /* Like gen_lowpart but for use by combine. In combine it is not possible
9949 to create any new pseudoregs. However, it is safe to create
9950 invalid memory addresses, because combine will try to recognize
9951 them and all they will do is make the combine attempt fail.
9953 If for some reason this cannot do its job, an rtx
9954 (clobber (const_int 0)) is returned.
9955 An insn containing that will not be recognized. */
9957 #undef gen_lowpart
9959 static rtx
9960 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9962 rtx result;
9964 if (GET_MODE (x) == mode)
9965 return x;
9967 /* Return identity if this is a CONST or symbolic
9968 reference. */
9969 if (mode == Pmode
9970 && (GET_CODE (x) == CONST
9971 || GET_CODE (x) == SYMBOL_REF
9972 || GET_CODE (x) == LABEL_REF))
9973 return x;
9975 /* We can only support MODE being wider than a word if X is a
9976 constant integer or has a mode the same size. */
9978 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9979 && ! ((GET_MODE (x) == VOIDmode
9980 && (GET_CODE (x) == CONST_INT
9981 || GET_CODE (x) == CONST_DOUBLE))
9982 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9983 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9985 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9986 won't know what to do. So we will strip off the SUBREG here and
9987 process normally. */
9988 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9990 x = SUBREG_REG (x);
9991 if (GET_MODE (x) == mode)
9992 return x;
9995 result = gen_lowpart_common (mode, x);
9996 #ifdef CANNOT_CHANGE_MODE_CLASS
9997 if (result != 0
9998 && GET_CODE (result) == SUBREG
9999 && GET_CODE (SUBREG_REG (result)) == REG
10000 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10001 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10002 * MAX_MACHINE_MODE
10003 + GET_MODE (result));
10004 #endif
10006 if (result)
10007 return result;
10009 if (GET_CODE (x) == MEM)
10011 int offset = 0;
10013 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10014 address. */
10015 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10016 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10018 /* If we want to refer to something bigger than the original memref,
10019 generate a perverse subreg instead. That will force a reload
10020 of the original memref X. */
10021 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10022 return gen_rtx_SUBREG (mode, x, 0);
10024 if (WORDS_BIG_ENDIAN)
10025 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10026 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10028 if (BYTES_BIG_ENDIAN)
10030 /* Adjust the address so that the address-after-the-data is
10031 unchanged. */
10032 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10033 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10036 return adjust_address_nv (x, mode, offset);
10039 /* If X is a comparison operator, rewrite it in a new mode. This
10040 probably won't match, but may allow further simplifications. */
10041 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10042 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10044 /* If we couldn't simplify X any other way, just enclose it in a
10045 SUBREG. Normally, this SUBREG won't match, but some patterns may
10046 include an explicit SUBREG or we may simplify it further in combine. */
10047 else
10049 int offset = 0;
10050 rtx res;
10051 enum machine_mode sub_mode = GET_MODE (x);
10053 offset = subreg_lowpart_offset (mode, sub_mode);
10054 if (sub_mode == VOIDmode)
10056 sub_mode = int_mode_for_mode (mode);
10057 x = gen_lowpart_common (sub_mode, x);
10058 if (x == 0)
10059 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10061 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10062 if (res)
10063 return res;
10064 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10068 /* These routines make binary and unary operations by first seeing if they
10069 fold; if not, a new expression is allocated. */
10071 static rtx
10072 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10074 rtx result;
10075 rtx tem;
10077 if (GET_CODE (op0) == CLOBBER)
10078 return op0;
10079 else if (GET_CODE (op1) == CLOBBER)
10080 return op1;
10082 if (GET_RTX_CLASS (code) == 'c'
10083 && swap_commutative_operands_p (op0, op1))
10084 tem = op0, op0 = op1, op1 = tem;
10086 if (GET_RTX_CLASS (code) == '<')
10088 enum machine_mode op_mode = GET_MODE (op0);
10090 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10091 just (REL_OP X Y). */
10092 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10094 op1 = XEXP (op0, 1);
10095 op0 = XEXP (op0, 0);
10096 op_mode = GET_MODE (op0);
10099 if (op_mode == VOIDmode)
10100 op_mode = GET_MODE (op1);
10101 result = simplify_relational_operation (code, op_mode, op0, op1);
10103 else
10104 result = simplify_binary_operation (code, mode, op0, op1);
10106 if (result)
10107 return result;
10109 /* Put complex operands first and constants second. */
10110 if (GET_RTX_CLASS (code) == 'c'
10111 && swap_commutative_operands_p (op0, op1))
10112 return gen_rtx_fmt_ee (code, mode, op1, op0);
10114 /* If we are turning off bits already known off in OP0, we need not do
10115 an AND. */
10116 else if (code == AND && GET_CODE (op1) == CONST_INT
10117 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10118 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10119 return op0;
10121 return gen_rtx_fmt_ee (code, mode, op0, op1);
10124 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10125 comparison code that will be tested.
10127 The result is a possibly different comparison code to use. *POP0 and
10128 *POP1 may be updated.
10130 It is possible that we might detect that a comparison is either always
10131 true or always false. However, we do not perform general constant
10132 folding in combine, so this knowledge isn't useful. Such tautologies
10133 should have been detected earlier. Hence we ignore all such cases. */
10135 static enum rtx_code
10136 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10138 rtx op0 = *pop0;
10139 rtx op1 = *pop1;
10140 rtx tem, tem1;
10141 int i;
10142 enum machine_mode mode, tmode;
10144 /* Try a few ways of applying the same transformation to both operands. */
10145 while (1)
10147 #ifndef WORD_REGISTER_OPERATIONS
10148 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10149 so check specially. */
10150 if (code != GTU && code != GEU && code != LTU && code != LEU
10151 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10152 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10153 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10154 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10155 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10156 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10157 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10158 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10159 && XEXP (op0, 1) == XEXP (op1, 1)
10160 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10161 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10162 && (INTVAL (XEXP (op0, 1))
10163 == (GET_MODE_BITSIZE (GET_MODE (op0))
10164 - (GET_MODE_BITSIZE
10165 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10167 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10168 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10170 #endif
10172 /* If both operands are the same constant shift, see if we can ignore the
10173 shift. We can if the shift is a rotate or if the bits shifted out of
10174 this shift are known to be zero for both inputs and if the type of
10175 comparison is compatible with the shift. */
10176 if (GET_CODE (op0) == GET_CODE (op1)
10177 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10178 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10179 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10180 && (code != GT && code != LT && code != GE && code != LE))
10181 || (GET_CODE (op0) == ASHIFTRT
10182 && (code != GTU && code != LTU
10183 && code != GEU && code != LEU)))
10184 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10185 && INTVAL (XEXP (op0, 1)) >= 0
10186 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10187 && XEXP (op0, 1) == XEXP (op1, 1))
10189 enum machine_mode mode = GET_MODE (op0);
10190 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10191 int shift_count = INTVAL (XEXP (op0, 1));
10193 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10194 mask &= (mask >> shift_count) << shift_count;
10195 else if (GET_CODE (op0) == ASHIFT)
10196 mask = (mask & (mask << shift_count)) >> shift_count;
10198 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10199 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10200 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10201 else
10202 break;
10205 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10206 SUBREGs are of the same mode, and, in both cases, the AND would
10207 be redundant if the comparison was done in the narrower mode,
10208 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10209 and the operand's possibly nonzero bits are 0xffffff01; in that case
10210 if we only care about QImode, we don't need the AND). This case
10211 occurs if the output mode of an scc insn is not SImode and
10212 STORE_FLAG_VALUE == 1 (e.g., the 386).
10214 Similarly, check for a case where the AND's are ZERO_EXTEND
10215 operations from some narrower mode even though a SUBREG is not
10216 present. */
10218 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10219 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10220 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10222 rtx inner_op0 = XEXP (op0, 0);
10223 rtx inner_op1 = XEXP (op1, 0);
10224 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10225 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10226 int changed = 0;
10228 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10229 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10230 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10231 && (GET_MODE (SUBREG_REG (inner_op0))
10232 == GET_MODE (SUBREG_REG (inner_op1)))
10233 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10234 <= HOST_BITS_PER_WIDE_INT)
10235 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10236 GET_MODE (SUBREG_REG (inner_op0)))))
10237 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10238 GET_MODE (SUBREG_REG (inner_op1))))))
10240 op0 = SUBREG_REG (inner_op0);
10241 op1 = SUBREG_REG (inner_op1);
10243 /* The resulting comparison is always unsigned since we masked
10244 off the original sign bit. */
10245 code = unsigned_condition (code);
10247 changed = 1;
10250 else if (c0 == c1)
10251 for (tmode = GET_CLASS_NARROWEST_MODE
10252 (GET_MODE_CLASS (GET_MODE (op0)));
10253 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10254 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10256 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10257 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10258 code = unsigned_condition (code);
10259 changed = 1;
10260 break;
10263 if (! changed)
10264 break;
10267 /* If both operands are NOT, we can strip off the outer operation
10268 and adjust the comparison code for swapped operands; similarly for
10269 NEG, except that this must be an equality comparison. */
10270 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10271 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10272 && (code == EQ || code == NE)))
10273 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10275 else
10276 break;
10279 /* If the first operand is a constant, swap the operands and adjust the
10280 comparison code appropriately, but don't do this if the second operand
10281 is already a constant integer. */
10282 if (swap_commutative_operands_p (op0, op1))
10284 tem = op0, op0 = op1, op1 = tem;
10285 code = swap_condition (code);
10288 /* We now enter a loop during which we will try to simplify the comparison.
10289 For the most part, we only are concerned with comparisons with zero,
10290 but some things may really be comparisons with zero but not start
10291 out looking that way. */
10293 while (GET_CODE (op1) == CONST_INT)
10295 enum machine_mode mode = GET_MODE (op0);
10296 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10297 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10298 int equality_comparison_p;
10299 int sign_bit_comparison_p;
10300 int unsigned_comparison_p;
10301 HOST_WIDE_INT const_op;
10303 /* We only want to handle integral modes. This catches VOIDmode,
10304 CCmode, and the floating-point modes. An exception is that we
10305 can handle VOIDmode if OP0 is a COMPARE or a comparison
10306 operation. */
10308 if (GET_MODE_CLASS (mode) != MODE_INT
10309 && ! (mode == VOIDmode
10310 && (GET_CODE (op0) == COMPARE
10311 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10312 break;
10314 /* Get the constant we are comparing against and turn off all bits
10315 not on in our mode. */
10316 const_op = INTVAL (op1);
10317 if (mode != VOIDmode)
10318 const_op = trunc_int_for_mode (const_op, mode);
10319 op1 = GEN_INT (const_op);
10321 /* If we are comparing against a constant power of two and the value
10322 being compared can only have that single bit nonzero (e.g., it was
10323 `and'ed with that bit), we can replace this with a comparison
10324 with zero. */
10325 if (const_op
10326 && (code == EQ || code == NE || code == GE || code == GEU
10327 || code == LT || code == LTU)
10328 && mode_width <= HOST_BITS_PER_WIDE_INT
10329 && exact_log2 (const_op) >= 0
10330 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10332 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10333 op1 = const0_rtx, const_op = 0;
10336 /* Similarly, if we are comparing a value known to be either -1 or
10337 0 with -1, change it to the opposite comparison against zero. */
10339 if (const_op == -1
10340 && (code == EQ || code == NE || code == GT || code == LE
10341 || code == GEU || code == LTU)
10342 && num_sign_bit_copies (op0, mode) == mode_width)
10344 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10345 op1 = const0_rtx, const_op = 0;
10348 /* Do some canonicalizations based on the comparison code. We prefer
10349 comparisons against zero and then prefer equality comparisons.
10350 If we can reduce the size of a constant, we will do that too. */
10352 switch (code)
10354 case LT:
10355 /* < C is equivalent to <= (C - 1) */
10356 if (const_op > 0)
10358 const_op -= 1;
10359 op1 = GEN_INT (const_op);
10360 code = LE;
10361 /* ... fall through to LE case below. */
10363 else
10364 break;
10366 case LE:
10367 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10368 if (const_op < 0)
10370 const_op += 1;
10371 op1 = GEN_INT (const_op);
10372 code = LT;
10375 /* If we are doing a <= 0 comparison on a value known to have
10376 a zero sign bit, we can replace this with == 0. */
10377 else if (const_op == 0
10378 && mode_width <= HOST_BITS_PER_WIDE_INT
10379 && (nonzero_bits (op0, mode)
10380 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10381 code = EQ;
10382 break;
10384 case GE:
10385 /* >= C is equivalent to > (C - 1). */
10386 if (const_op > 0)
10388 const_op -= 1;
10389 op1 = GEN_INT (const_op);
10390 code = GT;
10391 /* ... fall through to GT below. */
10393 else
10394 break;
10396 case GT:
10397 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10398 if (const_op < 0)
10400 const_op += 1;
10401 op1 = GEN_INT (const_op);
10402 code = GE;
10405 /* If we are doing a > 0 comparison on a value known to have
10406 a zero sign bit, we can replace this with != 0. */
10407 else if (const_op == 0
10408 && mode_width <= HOST_BITS_PER_WIDE_INT
10409 && (nonzero_bits (op0, mode)
10410 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10411 code = NE;
10412 break;
10414 case LTU:
10415 /* < C is equivalent to <= (C - 1). */
10416 if (const_op > 0)
10418 const_op -= 1;
10419 op1 = GEN_INT (const_op);
10420 code = LEU;
10421 /* ... fall through ... */
10424 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10425 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10426 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10428 const_op = 0, op1 = const0_rtx;
10429 code = GE;
10430 break;
10432 else
10433 break;
10435 case LEU:
10436 /* unsigned <= 0 is equivalent to == 0 */
10437 if (const_op == 0)
10438 code = EQ;
10440 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10441 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10442 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10444 const_op = 0, op1 = const0_rtx;
10445 code = GE;
10447 break;
10449 case GEU:
10450 /* >= C is equivalent to < (C - 1). */
10451 if (const_op > 1)
10453 const_op -= 1;
10454 op1 = GEN_INT (const_op);
10455 code = GTU;
10456 /* ... fall through ... */
10459 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10460 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10461 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10463 const_op = 0, op1 = const0_rtx;
10464 code = LT;
10465 break;
10467 else
10468 break;
10470 case GTU:
10471 /* unsigned > 0 is equivalent to != 0 */
10472 if (const_op == 0)
10473 code = NE;
10475 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10476 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10477 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10479 const_op = 0, op1 = const0_rtx;
10480 code = LT;
10482 break;
10484 default:
10485 break;
10488 /* Compute some predicates to simplify code below. */
10490 equality_comparison_p = (code == EQ || code == NE);
10491 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10492 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10493 || code == GEU);
10495 /* If this is a sign bit comparison and we can do arithmetic in
10496 MODE, say that we will only be needing the sign bit of OP0. */
10497 if (sign_bit_comparison_p
10498 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10499 op0 = force_to_mode (op0, mode,
10500 ((HOST_WIDE_INT) 1
10501 << (GET_MODE_BITSIZE (mode) - 1)),
10502 NULL_RTX, 0);
10504 /* Now try cases based on the opcode of OP0. If none of the cases
10505 does a "continue", we exit this loop immediately after the
10506 switch. */
10508 switch (GET_CODE (op0))
10510 case ZERO_EXTRACT:
10511 /* If we are extracting a single bit from a variable position in
10512 a constant that has only a single bit set and are comparing it
10513 with zero, we can convert this into an equality comparison
10514 between the position and the location of the single bit. */
10516 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10517 && XEXP (op0, 1) == const1_rtx
10518 && equality_comparison_p && const_op == 0
10519 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10521 if (BITS_BIG_ENDIAN)
10523 enum machine_mode new_mode
10524 = mode_for_extraction (EP_extzv, 1);
10525 if (new_mode == MAX_MACHINE_MODE)
10526 i = BITS_PER_WORD - 1 - i;
10527 else
10529 mode = new_mode;
10530 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10534 op0 = XEXP (op0, 2);
10535 op1 = GEN_INT (i);
10536 const_op = i;
10538 /* Result is nonzero iff shift count is equal to I. */
10539 code = reverse_condition (code);
10540 continue;
10543 /* ... fall through ... */
10545 case SIGN_EXTRACT:
10546 tem = expand_compound_operation (op0);
10547 if (tem != op0)
10549 op0 = tem;
10550 continue;
10552 break;
10554 case NOT:
10555 /* If testing for equality, we can take the NOT of the constant. */
10556 if (equality_comparison_p
10557 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10559 op0 = XEXP (op0, 0);
10560 op1 = tem;
10561 continue;
10564 /* If just looking at the sign bit, reverse the sense of the
10565 comparison. */
10566 if (sign_bit_comparison_p)
10568 op0 = XEXP (op0, 0);
10569 code = (code == GE ? LT : GE);
10570 continue;
10572 break;
10574 case NEG:
10575 /* If testing for equality, we can take the NEG of the constant. */
10576 if (equality_comparison_p
10577 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10579 op0 = XEXP (op0, 0);
10580 op1 = tem;
10581 continue;
10584 /* The remaining cases only apply to comparisons with zero. */
10585 if (const_op != 0)
10586 break;
10588 /* When X is ABS or is known positive,
10589 (neg X) is < 0 if and only if X != 0. */
10591 if (sign_bit_comparison_p
10592 && (GET_CODE (XEXP (op0, 0)) == ABS
10593 || (mode_width <= HOST_BITS_PER_WIDE_INT
10594 && (nonzero_bits (XEXP (op0, 0), mode)
10595 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10597 op0 = XEXP (op0, 0);
10598 code = (code == LT ? NE : EQ);
10599 continue;
10602 /* If we have NEG of something whose two high-order bits are the
10603 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10604 if (num_sign_bit_copies (op0, mode) >= 2)
10606 op0 = XEXP (op0, 0);
10607 code = swap_condition (code);
10608 continue;
10610 break;
10612 case ROTATE:
10613 /* If we are testing equality and our count is a constant, we
10614 can perform the inverse operation on our RHS. */
10615 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10616 && (tem = simplify_binary_operation (ROTATERT, mode,
10617 op1, XEXP (op0, 1))) != 0)
10619 op0 = XEXP (op0, 0);
10620 op1 = tem;
10621 continue;
10624 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10625 a particular bit. Convert it to an AND of a constant of that
10626 bit. This will be converted into a ZERO_EXTRACT. */
10627 if (const_op == 0 && sign_bit_comparison_p
10628 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10629 && mode_width <= HOST_BITS_PER_WIDE_INT)
10631 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10632 ((HOST_WIDE_INT) 1
10633 << (mode_width - 1
10634 - INTVAL (XEXP (op0, 1)))));
10635 code = (code == LT ? NE : EQ);
10636 continue;
10639 /* Fall through. */
10641 case ABS:
10642 /* ABS is ignorable inside an equality comparison with zero. */
10643 if (const_op == 0 && equality_comparison_p)
10645 op0 = XEXP (op0, 0);
10646 continue;
10648 break;
10650 case SIGN_EXTEND:
10651 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10652 to (compare FOO CONST) if CONST fits in FOO's mode and we
10653 are either testing inequality or have an unsigned comparison
10654 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10655 if (! unsigned_comparison_p
10656 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10657 <= HOST_BITS_PER_WIDE_INT)
10658 && ((unsigned HOST_WIDE_INT) const_op
10659 < (((unsigned HOST_WIDE_INT) 1
10660 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10662 op0 = XEXP (op0, 0);
10663 continue;
10665 break;
10667 case SUBREG:
10668 /* Check for the case where we are comparing A - C1 with C2,
10669 both constants are smaller than 1/2 the maximum positive
10670 value in MODE, and the comparison is equality or unsigned.
10671 In that case, if A is either zero-extended to MODE or has
10672 sufficient sign bits so that the high-order bit in MODE
10673 is a copy of the sign in the inner mode, we can prove that it is
10674 safe to do the operation in the wider mode. This simplifies
10675 many range checks. */
10677 if (mode_width <= HOST_BITS_PER_WIDE_INT
10678 && subreg_lowpart_p (op0)
10679 && GET_CODE (SUBREG_REG (op0)) == PLUS
10680 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10681 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10682 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10683 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10684 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10685 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10686 GET_MODE (SUBREG_REG (op0)))
10687 & ~GET_MODE_MASK (mode))
10688 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10689 GET_MODE (SUBREG_REG (op0)))
10690 > (unsigned int)
10691 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10692 - GET_MODE_BITSIZE (mode)))))
10694 op0 = SUBREG_REG (op0);
10695 continue;
10698 /* If the inner mode is narrower and we are extracting the low part,
10699 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10700 if (subreg_lowpart_p (op0)
10701 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10702 /* Fall through */ ;
10703 else
10704 break;
10706 /* ... fall through ... */
10708 case ZERO_EXTEND:
10709 if ((unsigned_comparison_p || equality_comparison_p)
10710 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10711 <= HOST_BITS_PER_WIDE_INT)
10712 && ((unsigned HOST_WIDE_INT) const_op
10713 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10715 op0 = XEXP (op0, 0);
10716 continue;
10718 break;
10720 case PLUS:
10721 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10722 this for equality comparisons due to pathological cases involving
10723 overflows. */
10724 if (equality_comparison_p
10725 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10726 op1, XEXP (op0, 1))))
10728 op0 = XEXP (op0, 0);
10729 op1 = tem;
10730 continue;
10733 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10734 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10735 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10737 op0 = XEXP (XEXP (op0, 0), 0);
10738 code = (code == LT ? EQ : NE);
10739 continue;
10741 break;
10743 case MINUS:
10744 /* We used to optimize signed comparisons against zero, but that
10745 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10746 arrive here as equality comparisons, or (GEU, LTU) are
10747 optimized away. No need to special-case them. */
10749 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10750 (eq B (minus A C)), whichever simplifies. We can only do
10751 this for equality comparisons due to pathological cases involving
10752 overflows. */
10753 if (equality_comparison_p
10754 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10755 XEXP (op0, 1), op1)))
10757 op0 = XEXP (op0, 0);
10758 op1 = tem;
10759 continue;
10762 if (equality_comparison_p
10763 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10764 XEXP (op0, 0), op1)))
10766 op0 = XEXP (op0, 1);
10767 op1 = tem;
10768 continue;
10771 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10772 of bits in X minus 1, is one iff X > 0. */
10773 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10774 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10775 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10776 == mode_width - 1
10777 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10779 op0 = XEXP (op0, 1);
10780 code = (code == GE ? LE : GT);
10781 continue;
10783 break;
10785 case XOR:
10786 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10787 if C is zero or B is a constant. */
10788 if (equality_comparison_p
10789 && 0 != (tem = simplify_binary_operation (XOR, mode,
10790 XEXP (op0, 1), op1)))
10792 op0 = XEXP (op0, 0);
10793 op1 = tem;
10794 continue;
10796 break;
10798 case EQ: case NE:
10799 case UNEQ: case LTGT:
10800 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10801 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10802 case UNORDERED: case ORDERED:
10803 /* We can't do anything if OP0 is a condition code value, rather
10804 than an actual data value. */
10805 if (const_op != 0
10806 || CC0_P (XEXP (op0, 0))
10807 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10808 break;
10810 /* Get the two operands being compared. */
10811 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10812 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10813 else
10814 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10816 /* Check for the cases where we simply want the result of the
10817 earlier test or the opposite of that result. */
10818 if (code == NE || code == EQ
10819 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10820 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10821 && (STORE_FLAG_VALUE
10822 & (((HOST_WIDE_INT) 1
10823 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10824 && (code == LT || code == GE)))
10826 enum rtx_code new_code;
10827 if (code == LT || code == NE)
10828 new_code = GET_CODE (op0);
10829 else
10830 new_code = combine_reversed_comparison_code (op0);
10832 if (new_code != UNKNOWN)
10834 code = new_code;
10835 op0 = tem;
10836 op1 = tem1;
10837 continue;
10840 break;
10842 case IOR:
10843 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10844 iff X <= 0. */
10845 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10846 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10847 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10849 op0 = XEXP (op0, 1);
10850 code = (code == GE ? GT : LE);
10851 continue;
10853 break;
10855 case AND:
10856 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10857 will be converted to a ZERO_EXTRACT later. */
10858 if (const_op == 0 && equality_comparison_p
10859 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10860 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10862 op0 = simplify_and_const_int
10863 (op0, mode, gen_rtx_LSHIFTRT (mode,
10864 XEXP (op0, 1),
10865 XEXP (XEXP (op0, 0), 1)),
10866 (HOST_WIDE_INT) 1);
10867 continue;
10870 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10871 zero and X is a comparison and C1 and C2 describe only bits set
10872 in STORE_FLAG_VALUE, we can compare with X. */
10873 if (const_op == 0 && equality_comparison_p
10874 && mode_width <= HOST_BITS_PER_WIDE_INT
10875 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10876 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10877 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10878 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10879 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10881 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10882 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10883 if ((~STORE_FLAG_VALUE & mask) == 0
10884 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10885 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10886 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10888 op0 = XEXP (XEXP (op0, 0), 0);
10889 continue;
10893 /* If we are doing an equality comparison of an AND of a bit equal
10894 to the sign bit, replace this with a LT or GE comparison of
10895 the underlying value. */
10896 if (equality_comparison_p
10897 && const_op == 0
10898 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10899 && mode_width <= HOST_BITS_PER_WIDE_INT
10900 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10901 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10903 op0 = XEXP (op0, 0);
10904 code = (code == EQ ? GE : LT);
10905 continue;
10908 /* If this AND operation is really a ZERO_EXTEND from a narrower
10909 mode, the constant fits within that mode, and this is either an
10910 equality or unsigned comparison, try to do this comparison in
10911 the narrower mode. */
10912 if ((equality_comparison_p || unsigned_comparison_p)
10913 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10914 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10915 & GET_MODE_MASK (mode))
10916 + 1)) >= 0
10917 && const_op >> i == 0
10918 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10920 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10921 continue;
10924 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10925 fits in both M1 and M2 and the SUBREG is either paradoxical
10926 or represents the low part, permute the SUBREG and the AND
10927 and try again. */
10928 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10930 unsigned HOST_WIDE_INT c1;
10931 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10932 /* Require an integral mode, to avoid creating something like
10933 (AND:SF ...). */
10934 if (SCALAR_INT_MODE_P (tmode)
10935 /* It is unsafe to commute the AND into the SUBREG if the
10936 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10937 not defined. As originally written the upper bits
10938 have a defined value due to the AND operation.
10939 However, if we commute the AND inside the SUBREG then
10940 they no longer have defined values and the meaning of
10941 the code has been changed. */
10942 && (0
10943 #ifdef WORD_REGISTER_OPERATIONS
10944 || (mode_width > GET_MODE_BITSIZE (tmode)
10945 && mode_width <= BITS_PER_WORD)
10946 #endif
10947 || (mode_width <= GET_MODE_BITSIZE (tmode)
10948 && subreg_lowpart_p (XEXP (op0, 0))))
10949 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10950 && mode_width <= HOST_BITS_PER_WIDE_INT
10951 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10952 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10953 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10954 && c1 != mask
10955 && c1 != GET_MODE_MASK (tmode))
10957 op0 = gen_binary (AND, tmode,
10958 SUBREG_REG (XEXP (op0, 0)),
10959 gen_int_mode (c1, tmode));
10960 op0 = gen_lowpart_for_combine (mode, op0);
10961 continue;
10965 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10966 if (const_op == 0 && equality_comparison_p
10967 && XEXP (op0, 1) == const1_rtx
10968 && GET_CODE (XEXP (op0, 0)) == NOT)
10970 op0 = simplify_and_const_int
10971 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10972 code = (code == NE ? EQ : NE);
10973 continue;
10976 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10977 (eq (and (lshiftrt X) 1) 0).
10978 Also handle the case where (not X) is expressed using xor. */
10979 if (const_op == 0 && equality_comparison_p
10980 && XEXP (op0, 1) == const1_rtx
10981 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10983 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10984 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10986 if (GET_CODE (shift_op) == NOT
10987 || (GET_CODE (shift_op) == XOR
10988 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10989 && GET_CODE (shift_count) == CONST_INT
10990 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10991 && (INTVAL (XEXP (shift_op, 1))
10992 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10994 op0 = simplify_and_const_int
10995 (NULL_RTX, mode,
10996 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10997 (HOST_WIDE_INT) 1);
10998 code = (code == NE ? EQ : NE);
10999 continue;
11002 break;
11004 case ASHIFT:
11005 /* If we have (compare (ashift FOO N) (const_int C)) and
11006 the high order N bits of FOO (N+1 if an inequality comparison)
11007 are known to be zero, we can do this by comparing FOO with C
11008 shifted right N bits so long as the low-order N bits of C are
11009 zero. */
11010 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11011 && INTVAL (XEXP (op0, 1)) >= 0
11012 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11013 < HOST_BITS_PER_WIDE_INT)
11014 && ((const_op
11015 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11016 && mode_width <= HOST_BITS_PER_WIDE_INT
11017 && (nonzero_bits (XEXP (op0, 0), mode)
11018 & ~(mask >> (INTVAL (XEXP (op0, 1))
11019 + ! equality_comparison_p))) == 0)
11021 /* We must perform a logical shift, not an arithmetic one,
11022 as we want the top N bits of C to be zero. */
11023 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11025 temp >>= INTVAL (XEXP (op0, 1));
11026 op1 = gen_int_mode (temp, mode);
11027 op0 = XEXP (op0, 0);
11028 continue;
11031 /* If we are doing a sign bit comparison, it means we are testing
11032 a particular bit. Convert it to the appropriate AND. */
11033 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11034 && mode_width <= HOST_BITS_PER_WIDE_INT)
11036 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11037 ((HOST_WIDE_INT) 1
11038 << (mode_width - 1
11039 - INTVAL (XEXP (op0, 1)))));
11040 code = (code == LT ? NE : EQ);
11041 continue;
11044 /* If this an equality comparison with zero and we are shifting
11045 the low bit to the sign bit, we can convert this to an AND of the
11046 low-order bit. */
11047 if (const_op == 0 && equality_comparison_p
11048 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11049 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11050 == mode_width - 1)
11052 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11053 (HOST_WIDE_INT) 1);
11054 continue;
11056 break;
11058 case ASHIFTRT:
11059 /* If this is an equality comparison with zero, we can do this
11060 as a logical shift, which might be much simpler. */
11061 if (equality_comparison_p && const_op == 0
11062 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11064 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11065 XEXP (op0, 0),
11066 INTVAL (XEXP (op0, 1)));
11067 continue;
11070 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11071 do the comparison in a narrower mode. */
11072 if (! unsigned_comparison_p
11073 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11074 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11075 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11076 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11077 MODE_INT, 1)) != BLKmode
11078 && (((unsigned HOST_WIDE_INT) const_op
11079 + (GET_MODE_MASK (tmode) >> 1) + 1)
11080 <= GET_MODE_MASK (tmode)))
11082 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11083 continue;
11086 /* Likewise if OP0 is a PLUS of a sign extension with a
11087 constant, which is usually represented with the PLUS
11088 between the shifts. */
11089 if (! unsigned_comparison_p
11090 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11091 && GET_CODE (XEXP (op0, 0)) == PLUS
11092 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11093 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11094 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11095 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11096 MODE_INT, 1)) != BLKmode
11097 && (((unsigned HOST_WIDE_INT) const_op
11098 + (GET_MODE_MASK (tmode) >> 1) + 1)
11099 <= GET_MODE_MASK (tmode)))
11101 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11102 rtx add_const = XEXP (XEXP (op0, 0), 1);
11103 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11104 XEXP (op0, 1));
11106 op0 = gen_binary (PLUS, tmode,
11107 gen_lowpart_for_combine (tmode, inner),
11108 new_const);
11109 continue;
11112 /* ... fall through ... */
11113 case LSHIFTRT:
11114 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11115 the low order N bits of FOO are known to be zero, we can do this
11116 by comparing FOO with C shifted left N bits so long as no
11117 overflow occurs. */
11118 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11119 && INTVAL (XEXP (op0, 1)) >= 0
11120 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11121 && mode_width <= HOST_BITS_PER_WIDE_INT
11122 && (nonzero_bits (XEXP (op0, 0), mode)
11123 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11124 && (((unsigned HOST_WIDE_INT) const_op
11125 + (GET_CODE (op0) != LSHIFTRT
11126 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11127 + 1)
11128 : 0))
11129 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11131 /* If the shift was logical, then we must make the condition
11132 unsigned. */
11133 if (GET_CODE (op0) == LSHIFTRT)
11134 code = unsigned_condition (code);
11136 const_op <<= INTVAL (XEXP (op0, 1));
11137 op1 = GEN_INT (const_op);
11138 op0 = XEXP (op0, 0);
11139 continue;
11142 /* If we are using this shift to extract just the sign bit, we
11143 can replace this with an LT or GE comparison. */
11144 if (const_op == 0
11145 && (equality_comparison_p || sign_bit_comparison_p)
11146 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11147 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11148 == mode_width - 1)
11150 op0 = XEXP (op0, 0);
11151 code = (code == NE || code == GT ? LT : GE);
11152 continue;
11154 break;
11156 default:
11157 break;
11160 break;
11163 /* Now make any compound operations involved in this comparison. Then,
11164 check for an outmost SUBREG on OP0 that is not doing anything or is
11165 paradoxical. The latter transformation must only be performed when
11166 it is known that the "extra" bits will be the same in op0 and op1 or
11167 that they don't matter. There are three cases to consider:
11169 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11170 care bits and we can assume they have any convenient value. So
11171 making the transformation is safe.
11173 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11174 In this case the upper bits of op0 are undefined. We should not make
11175 the simplification in that case as we do not know the contents of
11176 those bits.
11178 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11179 NIL. In that case we know those bits are zeros or ones. We must
11180 also be sure that they are the same as the upper bits of op1.
11182 We can never remove a SUBREG for a non-equality comparison because
11183 the sign bit is in a different place in the underlying object. */
11185 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11186 op1 = make_compound_operation (op1, SET);
11188 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11189 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11190 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11191 && (code == NE || code == EQ))
11193 if (GET_MODE_SIZE (GET_MODE (op0))
11194 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11196 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11197 implemented. */
11198 if (GET_CODE (SUBREG_REG (op0)) == REG)
11200 op0 = SUBREG_REG (op0);
11201 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11204 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11205 <= HOST_BITS_PER_WIDE_INT)
11206 && (nonzero_bits (SUBREG_REG (op0),
11207 GET_MODE (SUBREG_REG (op0)))
11208 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11210 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11212 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11213 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11214 op0 = SUBREG_REG (op0), op1 = tem;
11218 /* We now do the opposite procedure: Some machines don't have compare
11219 insns in all modes. If OP0's mode is an integer mode smaller than a
11220 word and we can't do a compare in that mode, see if there is a larger
11221 mode for which we can do the compare. There are a number of cases in
11222 which we can use the wider mode. */
11224 mode = GET_MODE (op0);
11225 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11226 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11227 && ! have_insn_for (COMPARE, mode))
11228 for (tmode = GET_MODE_WIDER_MODE (mode);
11229 (tmode != VOIDmode
11230 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11231 tmode = GET_MODE_WIDER_MODE (tmode))
11232 if (have_insn_for (COMPARE, tmode))
11234 int zero_extended;
11236 /* If the only nonzero bits in OP0 and OP1 are those in the
11237 narrower mode and this is an equality or unsigned comparison,
11238 we can use the wider mode. Similarly for sign-extended
11239 values, in which case it is true for all comparisons. */
11240 zero_extended = ((code == EQ || code == NE
11241 || code == GEU || code == GTU
11242 || code == LEU || code == LTU)
11243 && (nonzero_bits (op0, tmode)
11244 & ~GET_MODE_MASK (mode)) == 0
11245 && ((GET_CODE (op1) == CONST_INT
11246 || (nonzero_bits (op1, tmode)
11247 & ~GET_MODE_MASK (mode)) == 0)));
11249 if (zero_extended
11250 || ((num_sign_bit_copies (op0, tmode)
11251 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11252 - GET_MODE_BITSIZE (mode)))
11253 && (num_sign_bit_copies (op1, tmode)
11254 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11255 - GET_MODE_BITSIZE (mode)))))
11257 /* If OP0 is an AND and we don't have an AND in MODE either,
11258 make a new AND in the proper mode. */
11259 if (GET_CODE (op0) == AND
11260 && !have_insn_for (AND, mode))
11261 op0 = gen_binary (AND, tmode,
11262 gen_lowpart_for_combine (tmode,
11263 XEXP (op0, 0)),
11264 gen_lowpart_for_combine (tmode,
11265 XEXP (op0, 1)));
11267 op0 = gen_lowpart_for_combine (tmode, op0);
11268 if (zero_extended && GET_CODE (op1) == CONST_INT)
11269 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11270 op1 = gen_lowpart_for_combine (tmode, op1);
11271 break;
11274 /* If this is a test for negative, we can make an explicit
11275 test of the sign bit. */
11277 if (op1 == const0_rtx && (code == LT || code == GE)
11278 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11280 op0 = gen_binary (AND, tmode,
11281 gen_lowpart_for_combine (tmode, op0),
11282 GEN_INT ((HOST_WIDE_INT) 1
11283 << (GET_MODE_BITSIZE (mode) - 1)));
11284 code = (code == LT) ? NE : EQ;
11285 break;
11289 #ifdef CANONICALIZE_COMPARISON
11290 /* If this machine only supports a subset of valid comparisons, see if we
11291 can convert an unsupported one into a supported one. */
11292 CANONICALIZE_COMPARISON (code, op0, op1);
11293 #endif
11295 *pop0 = op0;
11296 *pop1 = op1;
11298 return code;
11301 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11302 searching backward. */
11303 static enum rtx_code
11304 combine_reversed_comparison_code (rtx exp)
11306 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11307 rtx x;
11309 if (code1 != UNKNOWN
11310 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11311 return code1;
11312 /* Otherwise try and find where the condition codes were last set and
11313 use that. */
11314 x = get_last_value (XEXP (exp, 0));
11315 if (!x || GET_CODE (x) != COMPARE)
11316 return UNKNOWN;
11317 return reversed_comparison_code_parts (GET_CODE (exp),
11318 XEXP (x, 0), XEXP (x, 1), NULL);
11321 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11322 Return NULL_RTX in case we fail to do the reversal. */
11323 static rtx
11324 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11326 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11327 if (reversed_code == UNKNOWN)
11328 return NULL_RTX;
11329 else
11330 return gen_binary (reversed_code, mode, op0, op1);
11333 /* Utility function for following routine. Called when X is part of a value
11334 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11335 for each register mentioned. Similar to mention_regs in cse.c */
11337 static void
11338 update_table_tick (rtx x)
11340 enum rtx_code code = GET_CODE (x);
11341 const char *fmt = GET_RTX_FORMAT (code);
11342 int i;
11344 if (code == REG)
11346 unsigned int regno = REGNO (x);
11347 unsigned int endregno
11348 = regno + (regno < FIRST_PSEUDO_REGISTER
11349 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11350 unsigned int r;
11352 for (r = regno; r < endregno; r++)
11353 reg_last_set_table_tick[r] = label_tick;
11355 return;
11358 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11359 /* Note that we can't have an "E" in values stored; see
11360 get_last_value_validate. */
11361 if (fmt[i] == 'e')
11363 /* Check for identical subexpressions. If x contains
11364 identical subexpression we only have to traverse one of
11365 them. */
11366 if (i == 0
11367 && (GET_RTX_CLASS (code) == '2'
11368 || GET_RTX_CLASS (code) == 'c'))
11370 /* Note that at this point x1 has already been
11371 processed. */
11372 rtx x0 = XEXP (x, 0);
11373 rtx x1 = XEXP (x, 1);
11375 /* If x0 and x1 are identical then there is no need to
11376 process x0. */
11377 if (x0 == x1)
11378 break;
11380 /* If x0 is identical to a subexpression of x1 then while
11381 processing x1, x0 has already been processed. Thus we
11382 are done with x. */
11383 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11384 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11385 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11386 break;
11388 /* If x1 is identical to a subexpression of x0 then we
11389 still have to process the rest of x0. */
11390 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11391 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11392 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11394 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11395 break;
11399 update_table_tick (XEXP (x, i));
11403 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11404 are saying that the register is clobbered and we no longer know its
11405 value. If INSN is zero, don't update reg_last_set; this is only permitted
11406 with VALUE also zero and is used to invalidate the register. */
11408 static void
11409 record_value_for_reg (rtx reg, rtx insn, rtx value)
11411 unsigned int regno = REGNO (reg);
11412 unsigned int endregno
11413 = regno + (regno < FIRST_PSEUDO_REGISTER
11414 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11415 unsigned int i;
11417 /* If VALUE contains REG and we have a previous value for REG, substitute
11418 the previous value. */
11419 if (value && insn && reg_overlap_mentioned_p (reg, value))
11421 rtx tem;
11423 /* Set things up so get_last_value is allowed to see anything set up to
11424 our insn. */
11425 subst_low_cuid = INSN_CUID (insn);
11426 tem = get_last_value (reg);
11428 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11429 it isn't going to be useful and will take a lot of time to process,
11430 so just use the CLOBBER. */
11432 if (tem)
11434 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11435 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11436 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11437 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11438 tem = XEXP (tem, 0);
11440 value = replace_rtx (copy_rtx (value), reg, tem);
11444 /* For each register modified, show we don't know its value, that
11445 we don't know about its bitwise content, that its value has been
11446 updated, and that we don't know the location of the death of the
11447 register. */
11448 for (i = regno; i < endregno; i++)
11450 if (insn)
11451 reg_last_set[i] = insn;
11453 reg_last_set_value[i] = 0;
11454 reg_last_set_mode[i] = 0;
11455 reg_last_set_nonzero_bits[i] = 0;
11456 reg_last_set_sign_bit_copies[i] = 0;
11457 reg_last_death[i] = 0;
11460 /* Mark registers that are being referenced in this value. */
11461 if (value)
11462 update_table_tick (value);
11464 /* Now update the status of each register being set.
11465 If someone is using this register in this block, set this register
11466 to invalid since we will get confused between the two lives in this
11467 basic block. This makes using this register always invalid. In cse, we
11468 scan the table to invalidate all entries using this register, but this
11469 is too much work for us. */
11471 for (i = regno; i < endregno; i++)
11473 reg_last_set_label[i] = label_tick;
11474 if (value && reg_last_set_table_tick[i] == label_tick)
11475 reg_last_set_invalid[i] = 1;
11476 else
11477 reg_last_set_invalid[i] = 0;
11480 /* The value being assigned might refer to X (like in "x++;"). In that
11481 case, we must replace it with (clobber (const_int 0)) to prevent
11482 infinite loops. */
11483 if (value && ! get_last_value_validate (&value, insn,
11484 reg_last_set_label[regno], 0))
11486 value = copy_rtx (value);
11487 if (! get_last_value_validate (&value, insn,
11488 reg_last_set_label[regno], 1))
11489 value = 0;
11492 /* For the main register being modified, update the value, the mode, the
11493 nonzero bits, and the number of sign bit copies. */
11495 reg_last_set_value[regno] = value;
11497 if (value)
11499 enum machine_mode mode = GET_MODE (reg);
11500 subst_low_cuid = INSN_CUID (insn);
11501 reg_last_set_mode[regno] = mode;
11502 if (GET_MODE_CLASS (mode) == MODE_INT
11503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11504 mode = nonzero_bits_mode;
11505 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11506 reg_last_set_sign_bit_copies[regno]
11507 = num_sign_bit_copies (value, GET_MODE (reg));
11511 /* Called via note_stores from record_dead_and_set_regs to handle one
11512 SET or CLOBBER in an insn. DATA is the instruction in which the
11513 set is occurring. */
11515 static void
11516 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11518 rtx record_dead_insn = (rtx) data;
11520 if (GET_CODE (dest) == SUBREG)
11521 dest = SUBREG_REG (dest);
11523 if (GET_CODE (dest) == REG)
11525 /* If we are setting the whole register, we know its value. Otherwise
11526 show that we don't know the value. We can handle SUBREG in
11527 some cases. */
11528 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11529 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11530 else if (GET_CODE (setter) == SET
11531 && GET_CODE (SET_DEST (setter)) == SUBREG
11532 && SUBREG_REG (SET_DEST (setter)) == dest
11533 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11534 && subreg_lowpart_p (SET_DEST (setter)))
11535 record_value_for_reg (dest, record_dead_insn,
11536 gen_lowpart_for_combine (GET_MODE (dest),
11537 SET_SRC (setter)));
11538 else
11539 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11541 else if (GET_CODE (dest) == MEM
11542 /* Ignore pushes, they clobber nothing. */
11543 && ! push_operand (dest, GET_MODE (dest)))
11544 mem_last_set = INSN_CUID (record_dead_insn);
11547 /* Update the records of when each REG was most recently set or killed
11548 for the things done by INSN. This is the last thing done in processing
11549 INSN in the combiner loop.
11551 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11552 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11553 and also the similar information mem_last_set (which insn most recently
11554 modified memory) and last_call_cuid (which insn was the most recent
11555 subroutine call). */
11557 static void
11558 record_dead_and_set_regs (rtx insn)
11560 rtx link;
11561 unsigned int i;
11563 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11565 if (REG_NOTE_KIND (link) == REG_DEAD
11566 && GET_CODE (XEXP (link, 0)) == REG)
11568 unsigned int regno = REGNO (XEXP (link, 0));
11569 unsigned int endregno
11570 = regno + (regno < FIRST_PSEUDO_REGISTER
11571 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11572 : 1);
11574 for (i = regno; i < endregno; i++)
11575 reg_last_death[i] = insn;
11577 else if (REG_NOTE_KIND (link) == REG_INC)
11578 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11581 if (GET_CODE (insn) == CALL_INSN)
11583 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11584 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11586 reg_last_set_value[i] = 0;
11587 reg_last_set_mode[i] = 0;
11588 reg_last_set_nonzero_bits[i] = 0;
11589 reg_last_set_sign_bit_copies[i] = 0;
11590 reg_last_death[i] = 0;
11593 last_call_cuid = mem_last_set = INSN_CUID (insn);
11595 /* Don't bother recording what this insn does. It might set the
11596 return value register, but we can't combine into a call
11597 pattern anyway, so there's no point trying (and it may cause
11598 a crash, if e.g. we wind up asking for last_set_value of a
11599 SUBREG of the return value register). */
11600 return;
11603 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11606 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11607 register present in the SUBREG, so for each such SUBREG go back and
11608 adjust nonzero and sign bit information of the registers that are
11609 known to have some zero/sign bits set.
11611 This is needed because when combine blows the SUBREGs away, the
11612 information on zero/sign bits is lost and further combines can be
11613 missed because of that. */
11615 static void
11616 record_promoted_value (rtx insn, rtx subreg)
11618 rtx links, set;
11619 unsigned int regno = REGNO (SUBREG_REG (subreg));
11620 enum machine_mode mode = GET_MODE (subreg);
11622 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11623 return;
11625 for (links = LOG_LINKS (insn); links;)
11627 insn = XEXP (links, 0);
11628 set = single_set (insn);
11630 if (! set || GET_CODE (SET_DEST (set)) != REG
11631 || REGNO (SET_DEST (set)) != regno
11632 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11634 links = XEXP (links, 1);
11635 continue;
11638 if (reg_last_set[regno] == insn)
11640 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11641 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11644 if (GET_CODE (SET_SRC (set)) == REG)
11646 regno = REGNO (SET_SRC (set));
11647 links = LOG_LINKS (insn);
11649 else
11650 break;
11654 /* Scan X for promoted SUBREGs. For each one found,
11655 note what it implies to the registers used in it. */
11657 static void
11658 check_promoted_subreg (rtx insn, rtx x)
11660 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11661 && GET_CODE (SUBREG_REG (x)) == REG)
11662 record_promoted_value (insn, x);
11663 else
11665 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11666 int i, j;
11668 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11669 switch (format[i])
11671 case 'e':
11672 check_promoted_subreg (insn, XEXP (x, i));
11673 break;
11674 case 'V':
11675 case 'E':
11676 if (XVEC (x, i) != 0)
11677 for (j = 0; j < XVECLEN (x, i); j++)
11678 check_promoted_subreg (insn, XVECEXP (x, i, j));
11679 break;
11684 /* Utility routine for the following function. Verify that all the registers
11685 mentioned in *LOC are valid when *LOC was part of a value set when
11686 label_tick == TICK. Return 0 if some are not.
11688 If REPLACE is nonzero, replace the invalid reference with
11689 (clobber (const_int 0)) and return 1. This replacement is useful because
11690 we often can get useful information about the form of a value (e.g., if
11691 it was produced by a shift that always produces -1 or 0) even though
11692 we don't know exactly what registers it was produced from. */
11694 static int
11695 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11697 rtx x = *loc;
11698 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11699 int len = GET_RTX_LENGTH (GET_CODE (x));
11700 int i;
11702 if (GET_CODE (x) == REG)
11704 unsigned int regno = REGNO (x);
11705 unsigned int endregno
11706 = regno + (regno < FIRST_PSEUDO_REGISTER
11707 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11708 unsigned int j;
11710 for (j = regno; j < endregno; j++)
11711 if (reg_last_set_invalid[j]
11712 /* If this is a pseudo-register that was only set once and not
11713 live at the beginning of the function, it is always valid. */
11714 || (! (regno >= FIRST_PSEUDO_REGISTER
11715 && REG_N_SETS (regno) == 1
11716 && (! REGNO_REG_SET_P
11717 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11718 && reg_last_set_label[j] > tick))
11720 if (replace)
11721 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11722 return replace;
11725 return 1;
11727 /* If this is a memory reference, make sure that there were
11728 no stores after it that might have clobbered the value. We don't
11729 have alias info, so we assume any store invalidates it. */
11730 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11731 && INSN_CUID (insn) <= mem_last_set)
11733 if (replace)
11734 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11735 return replace;
11738 for (i = 0; i < len; i++)
11740 if (fmt[i] == 'e')
11742 /* Check for identical subexpressions. If x contains
11743 identical subexpression we only have to traverse one of
11744 them. */
11745 if (i == 1
11746 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11747 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11749 /* Note that at this point x0 has already been checked
11750 and found valid. */
11751 rtx x0 = XEXP (x, 0);
11752 rtx x1 = XEXP (x, 1);
11754 /* If x0 and x1 are identical then x is also valid. */
11755 if (x0 == x1)
11756 return 1;
11758 /* If x1 is identical to a subexpression of x0 then
11759 while checking x0, x1 has already been checked. Thus
11760 it is valid and so as x. */
11761 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11762 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11763 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11764 return 1;
11766 /* If x0 is identical to a subexpression of x1 then x is
11767 valid iff the rest of x1 is valid. */
11768 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11769 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11770 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11771 return
11772 get_last_value_validate (&XEXP (x1,
11773 x0 == XEXP (x1, 0) ? 1 : 0),
11774 insn, tick, replace);
11777 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11778 replace) == 0)
11779 return 0;
11781 /* Don't bother with these. They shouldn't occur anyway. */
11782 else if (fmt[i] == 'E')
11783 return 0;
11786 /* If we haven't found a reason for it to be invalid, it is valid. */
11787 return 1;
11790 /* Get the last value assigned to X, if known. Some registers
11791 in the value may be replaced with (clobber (const_int 0)) if their value
11792 is known longer known reliably. */
11794 static rtx
11795 get_last_value (rtx x)
11797 unsigned int regno;
11798 rtx value;
11800 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11801 then convert it to the desired mode. If this is a paradoxical SUBREG,
11802 we cannot predict what values the "extra" bits might have. */
11803 if (GET_CODE (x) == SUBREG
11804 && subreg_lowpart_p (x)
11805 && (GET_MODE_SIZE (GET_MODE (x))
11806 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11807 && (value = get_last_value (SUBREG_REG (x))) != 0)
11808 return gen_lowpart_for_combine (GET_MODE (x), value);
11810 if (GET_CODE (x) != REG)
11811 return 0;
11813 regno = REGNO (x);
11814 value = reg_last_set_value[regno];
11816 /* If we don't have a value, or if it isn't for this basic block and
11817 it's either a hard register, set more than once, or it's a live
11818 at the beginning of the function, return 0.
11820 Because if it's not live at the beginning of the function then the reg
11821 is always set before being used (is never used without being set).
11822 And, if it's set only once, and it's always set before use, then all
11823 uses must have the same last value, even if it's not from this basic
11824 block. */
11826 if (value == 0
11827 || (reg_last_set_label[regno] != label_tick
11828 && (regno < FIRST_PSEUDO_REGISTER
11829 || REG_N_SETS (regno) != 1
11830 || (REGNO_REG_SET_P
11831 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11832 return 0;
11834 /* If the value was set in a later insn than the ones we are processing,
11835 we can't use it even if the register was only set once. */
11836 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11837 return 0;
11839 /* If the value has all its registers valid, return it. */
11840 if (get_last_value_validate (&value, reg_last_set[regno],
11841 reg_last_set_label[regno], 0))
11842 return value;
11844 /* Otherwise, make a copy and replace any invalid register with
11845 (clobber (const_int 0)). If that fails for some reason, return 0. */
11847 value = copy_rtx (value);
11848 if (get_last_value_validate (&value, reg_last_set[regno],
11849 reg_last_set_label[regno], 1))
11850 return value;
11852 return 0;
11855 /* Return nonzero if expression X refers to a REG or to memory
11856 that is set in an instruction more recent than FROM_CUID. */
11858 static int
11859 use_crosses_set_p (rtx x, int from_cuid)
11861 const char *fmt;
11862 int i;
11863 enum rtx_code code = GET_CODE (x);
11865 if (code == REG)
11867 unsigned int regno = REGNO (x);
11868 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11869 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11871 #ifdef PUSH_ROUNDING
11872 /* Don't allow uses of the stack pointer to be moved,
11873 because we don't know whether the move crosses a push insn. */
11874 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11875 return 1;
11876 #endif
11877 for (; regno < endreg; regno++)
11878 if (reg_last_set[regno]
11879 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11880 return 1;
11881 return 0;
11884 if (code == MEM && mem_last_set > from_cuid)
11885 return 1;
11887 fmt = GET_RTX_FORMAT (code);
11889 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11891 if (fmt[i] == 'E')
11893 int j;
11894 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11895 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11896 return 1;
11898 else if (fmt[i] == 'e'
11899 && use_crosses_set_p (XEXP (x, i), from_cuid))
11900 return 1;
11902 return 0;
11905 /* Define three variables used for communication between the following
11906 routines. */
11908 static unsigned int reg_dead_regno, reg_dead_endregno;
11909 static int reg_dead_flag;
11911 /* Function called via note_stores from reg_dead_at_p.
11913 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11914 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11916 static void
11917 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11919 unsigned int regno, endregno;
11921 if (GET_CODE (dest) != REG)
11922 return;
11924 regno = REGNO (dest);
11925 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11926 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11928 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11929 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11932 /* Return nonzero if REG is known to be dead at INSN.
11934 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11935 referencing REG, it is dead. If we hit a SET referencing REG, it is
11936 live. Otherwise, see if it is live or dead at the start of the basic
11937 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11938 must be assumed to be always live. */
11940 static int
11941 reg_dead_at_p (rtx reg, rtx insn)
11943 basic_block block;
11944 unsigned int i;
11946 /* Set variables for reg_dead_at_p_1. */
11947 reg_dead_regno = REGNO (reg);
11948 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11949 ? HARD_REGNO_NREGS (reg_dead_regno,
11950 GET_MODE (reg))
11951 : 1);
11953 reg_dead_flag = 0;
11955 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11956 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11958 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11959 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11960 return 0;
11963 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11964 beginning of function. */
11965 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11966 insn = prev_nonnote_insn (insn))
11968 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11969 if (reg_dead_flag)
11970 return reg_dead_flag == 1 ? 1 : 0;
11972 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11973 return 1;
11976 /* Get the basic block that we were in. */
11977 if (insn == 0)
11978 block = ENTRY_BLOCK_PTR->next_bb;
11979 else
11981 FOR_EACH_BB (block)
11982 if (insn == BB_HEAD (block))
11983 break;
11985 if (block == EXIT_BLOCK_PTR)
11986 return 0;
11989 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11990 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11991 return 0;
11993 return 1;
11996 /* Note hard registers in X that are used. This code is similar to
11997 that in flow.c, but much simpler since we don't care about pseudos. */
11999 static void
12000 mark_used_regs_combine (rtx x)
12002 RTX_CODE code = GET_CODE (x);
12003 unsigned int regno;
12004 int i;
12006 switch (code)
12008 case LABEL_REF:
12009 case SYMBOL_REF:
12010 case CONST_INT:
12011 case CONST:
12012 case CONST_DOUBLE:
12013 case CONST_VECTOR:
12014 case PC:
12015 case ADDR_VEC:
12016 case ADDR_DIFF_VEC:
12017 case ASM_INPUT:
12018 #ifdef HAVE_cc0
12019 /* CC0 must die in the insn after it is set, so we don't need to take
12020 special note of it here. */
12021 case CC0:
12022 #endif
12023 return;
12025 case CLOBBER:
12026 /* If we are clobbering a MEM, mark any hard registers inside the
12027 address as used. */
12028 if (GET_CODE (XEXP (x, 0)) == MEM)
12029 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12030 return;
12032 case REG:
12033 regno = REGNO (x);
12034 /* A hard reg in a wide mode may really be multiple registers.
12035 If so, mark all of them just like the first. */
12036 if (regno < FIRST_PSEUDO_REGISTER)
12038 unsigned int endregno, r;
12040 /* None of this applies to the stack, frame or arg pointers. */
12041 if (regno == STACK_POINTER_REGNUM
12042 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12043 || regno == HARD_FRAME_POINTER_REGNUM
12044 #endif
12045 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12046 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12047 #endif
12048 || regno == FRAME_POINTER_REGNUM)
12049 return;
12051 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12052 for (r = regno; r < endregno; r++)
12053 SET_HARD_REG_BIT (newpat_used_regs, r);
12055 return;
12057 case SET:
12059 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12060 the address. */
12061 rtx testreg = SET_DEST (x);
12063 while (GET_CODE (testreg) == SUBREG
12064 || GET_CODE (testreg) == ZERO_EXTRACT
12065 || GET_CODE (testreg) == SIGN_EXTRACT
12066 || GET_CODE (testreg) == STRICT_LOW_PART)
12067 testreg = XEXP (testreg, 0);
12069 if (GET_CODE (testreg) == MEM)
12070 mark_used_regs_combine (XEXP (testreg, 0));
12072 mark_used_regs_combine (SET_SRC (x));
12074 return;
12076 default:
12077 break;
12080 /* Recursively scan the operands of this expression. */
12083 const char *fmt = GET_RTX_FORMAT (code);
12085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12087 if (fmt[i] == 'e')
12088 mark_used_regs_combine (XEXP (x, i));
12089 else if (fmt[i] == 'E')
12091 int j;
12093 for (j = 0; j < XVECLEN (x, i); j++)
12094 mark_used_regs_combine (XVECEXP (x, i, j));
12100 /* Remove register number REGNO from the dead registers list of INSN.
12102 Return the note used to record the death, if there was one. */
12105 remove_death (unsigned int regno, rtx insn)
12107 rtx note = find_regno_note (insn, REG_DEAD, regno);
12109 if (note)
12111 REG_N_DEATHS (regno)--;
12112 remove_note (insn, note);
12115 return note;
12118 /* For each register (hardware or pseudo) used within expression X, if its
12119 death is in an instruction with cuid between FROM_CUID (inclusive) and
12120 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12121 list headed by PNOTES.
12123 That said, don't move registers killed by maybe_kill_insn.
12125 This is done when X is being merged by combination into TO_INSN. These
12126 notes will then be distributed as needed. */
12128 static void
12129 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12130 rtx *pnotes)
12132 const char *fmt;
12133 int len, i;
12134 enum rtx_code code = GET_CODE (x);
12136 if (code == REG)
12138 unsigned int regno = REGNO (x);
12139 rtx where_dead = reg_last_death[regno];
12140 rtx before_dead, after_dead;
12142 /* Don't move the register if it gets killed in between from and to. */
12143 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12144 && ! reg_referenced_p (x, maybe_kill_insn))
12145 return;
12147 /* WHERE_DEAD could be a USE insn made by combine, so first we
12148 make sure that we have insns with valid INSN_CUID values. */
12149 before_dead = where_dead;
12150 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12151 before_dead = PREV_INSN (before_dead);
12153 after_dead = where_dead;
12154 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12155 after_dead = NEXT_INSN (after_dead);
12157 if (before_dead && after_dead
12158 && INSN_CUID (before_dead) >= from_cuid
12159 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12160 || (where_dead != after_dead
12161 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12163 rtx note = remove_death (regno, where_dead);
12165 /* It is possible for the call above to return 0. This can occur
12166 when reg_last_death points to I2 or I1 that we combined with.
12167 In that case make a new note.
12169 We must also check for the case where X is a hard register
12170 and NOTE is a death note for a range of hard registers
12171 including X. In that case, we must put REG_DEAD notes for
12172 the remaining registers in place of NOTE. */
12174 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12175 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12176 > GET_MODE_SIZE (GET_MODE (x))))
12178 unsigned int deadregno = REGNO (XEXP (note, 0));
12179 unsigned int deadend
12180 = (deadregno + HARD_REGNO_NREGS (deadregno,
12181 GET_MODE (XEXP (note, 0))));
12182 unsigned int ourend
12183 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12184 unsigned int i;
12186 for (i = deadregno; i < deadend; i++)
12187 if (i < regno || i >= ourend)
12188 REG_NOTES (where_dead)
12189 = gen_rtx_EXPR_LIST (REG_DEAD,
12190 regno_reg_rtx[i],
12191 REG_NOTES (where_dead));
12194 /* If we didn't find any note, or if we found a REG_DEAD note that
12195 covers only part of the given reg, and we have a multi-reg hard
12196 register, then to be safe we must check for REG_DEAD notes
12197 for each register other than the first. They could have
12198 their own REG_DEAD notes lying around. */
12199 else if ((note == 0
12200 || (note != 0
12201 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12202 < GET_MODE_SIZE (GET_MODE (x)))))
12203 && regno < FIRST_PSEUDO_REGISTER
12204 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12206 unsigned int ourend
12207 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12208 unsigned int i, offset;
12209 rtx oldnotes = 0;
12211 if (note)
12212 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12213 else
12214 offset = 1;
12216 for (i = regno + offset; i < ourend; i++)
12217 move_deaths (regno_reg_rtx[i],
12218 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12221 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12223 XEXP (note, 1) = *pnotes;
12224 *pnotes = note;
12226 else
12227 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12229 REG_N_DEATHS (regno)++;
12232 return;
12235 else if (GET_CODE (x) == SET)
12237 rtx dest = SET_DEST (x);
12239 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12241 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12242 that accesses one word of a multi-word item, some
12243 piece of everything register in the expression is used by
12244 this insn, so remove any old death. */
12245 /* ??? So why do we test for equality of the sizes? */
12247 if (GET_CODE (dest) == ZERO_EXTRACT
12248 || GET_CODE (dest) == STRICT_LOW_PART
12249 || (GET_CODE (dest) == SUBREG
12250 && (((GET_MODE_SIZE (GET_MODE (dest))
12251 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12252 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12253 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12255 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12256 return;
12259 /* If this is some other SUBREG, we know it replaces the entire
12260 value, so use that as the destination. */
12261 if (GET_CODE (dest) == SUBREG)
12262 dest = SUBREG_REG (dest);
12264 /* If this is a MEM, adjust deaths of anything used in the address.
12265 For a REG (the only other possibility), the entire value is
12266 being replaced so the old value is not used in this insn. */
12268 if (GET_CODE (dest) == MEM)
12269 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12270 to_insn, pnotes);
12271 return;
12274 else if (GET_CODE (x) == CLOBBER)
12275 return;
12277 len = GET_RTX_LENGTH (code);
12278 fmt = GET_RTX_FORMAT (code);
12280 for (i = 0; i < len; i++)
12282 if (fmt[i] == 'E')
12284 int j;
12285 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12286 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12287 to_insn, pnotes);
12289 else if (fmt[i] == 'e')
12290 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12294 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12295 pattern of an insn. X must be a REG. */
12297 static int
12298 reg_bitfield_target_p (rtx x, rtx body)
12300 int i;
12302 if (GET_CODE (body) == SET)
12304 rtx dest = SET_DEST (body);
12305 rtx target;
12306 unsigned int regno, tregno, endregno, endtregno;
12308 if (GET_CODE (dest) == ZERO_EXTRACT)
12309 target = XEXP (dest, 0);
12310 else if (GET_CODE (dest) == STRICT_LOW_PART)
12311 target = SUBREG_REG (XEXP (dest, 0));
12312 else
12313 return 0;
12315 if (GET_CODE (target) == SUBREG)
12316 target = SUBREG_REG (target);
12318 if (GET_CODE (target) != REG)
12319 return 0;
12321 tregno = REGNO (target), regno = REGNO (x);
12322 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12323 return target == x;
12325 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12326 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12328 return endregno > tregno && regno < endtregno;
12331 else if (GET_CODE (body) == PARALLEL)
12332 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12333 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12334 return 1;
12336 return 0;
12339 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12340 as appropriate. I3 and I2 are the insns resulting from the combination
12341 insns including FROM (I2 may be zero).
12343 Each note in the list is either ignored or placed on some insns, depending
12344 on the type of note. */
12346 static void
12347 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12349 rtx note, next_note;
12350 rtx tem;
12352 for (note = notes; note; note = next_note)
12354 rtx place = 0, place2 = 0;
12356 /* If this NOTE references a pseudo register, ensure it references
12357 the latest copy of that register. */
12358 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12359 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12360 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12362 next_note = XEXP (note, 1);
12363 switch (REG_NOTE_KIND (note))
12365 case REG_BR_PROB:
12366 case REG_BR_PRED:
12367 /* Doesn't matter much where we put this, as long as it's somewhere.
12368 It is preferable to keep these notes on branches, which is most
12369 likely to be i3. */
12370 place = i3;
12371 break;
12373 case REG_VALUE_PROFILE:
12374 /* Just get rid of this note, as it is unused later anyway. */
12375 break;
12377 case REG_VTABLE_REF:
12378 /* ??? Should remain with *a particular* memory load. Given the
12379 nature of vtable data, the last insn seems relatively safe. */
12380 place = i3;
12381 break;
12383 case REG_NON_LOCAL_GOTO:
12384 if (GET_CODE (i3) == JUMP_INSN)
12385 place = i3;
12386 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12387 place = i2;
12388 else
12389 abort ();
12390 break;
12392 case REG_EH_REGION:
12393 /* These notes must remain with the call or trapping instruction. */
12394 if (GET_CODE (i3) == CALL_INSN)
12395 place = i3;
12396 else if (i2 && GET_CODE (i2) == CALL_INSN)
12397 place = i2;
12398 else if (flag_non_call_exceptions)
12400 if (may_trap_p (i3))
12401 place = i3;
12402 else if (i2 && may_trap_p (i2))
12403 place = i2;
12404 /* ??? Otherwise assume we've combined things such that we
12405 can now prove that the instructions can't trap. Drop the
12406 note in this case. */
12408 else
12409 abort ();
12410 break;
12412 case REG_ALWAYS_RETURN:
12413 case REG_NORETURN:
12414 case REG_SETJMP:
12415 /* These notes must remain with the call. It should not be
12416 possible for both I2 and I3 to be a call. */
12417 if (GET_CODE (i3) == CALL_INSN)
12418 place = i3;
12419 else if (i2 && GET_CODE (i2) == CALL_INSN)
12420 place = i2;
12421 else
12422 abort ();
12423 break;
12425 case REG_UNUSED:
12426 /* Any clobbers for i3 may still exist, and so we must process
12427 REG_UNUSED notes from that insn.
12429 Any clobbers from i2 or i1 can only exist if they were added by
12430 recog_for_combine. In that case, recog_for_combine created the
12431 necessary REG_UNUSED notes. Trying to keep any original
12432 REG_UNUSED notes from these insns can cause incorrect output
12433 if it is for the same register as the original i3 dest.
12434 In that case, we will notice that the register is set in i3,
12435 and then add a REG_UNUSED note for the destination of i3, which
12436 is wrong. However, it is possible to have REG_UNUSED notes from
12437 i2 or i1 for register which were both used and clobbered, so
12438 we keep notes from i2 or i1 if they will turn into REG_DEAD
12439 notes. */
12441 /* If this register is set or clobbered in I3, put the note there
12442 unless there is one already. */
12443 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12445 if (from_insn != i3)
12446 break;
12448 if (! (GET_CODE (XEXP (note, 0)) == REG
12449 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12450 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12451 place = i3;
12453 /* Otherwise, if this register is used by I3, then this register
12454 now dies here, so we must put a REG_DEAD note here unless there
12455 is one already. */
12456 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12457 && ! (GET_CODE (XEXP (note, 0)) == REG
12458 ? find_regno_note (i3, REG_DEAD,
12459 REGNO (XEXP (note, 0)))
12460 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12462 PUT_REG_NOTE_KIND (note, REG_DEAD);
12463 place = i3;
12465 break;
12467 case REG_EQUAL:
12468 case REG_EQUIV:
12469 case REG_NOALIAS:
12470 /* These notes say something about results of an insn. We can
12471 only support them if they used to be on I3 in which case they
12472 remain on I3. Otherwise they are ignored.
12474 If the note refers to an expression that is not a constant, we
12475 must also ignore the note since we cannot tell whether the
12476 equivalence is still true. It might be possible to do
12477 slightly better than this (we only have a problem if I2DEST
12478 or I1DEST is present in the expression), but it doesn't
12479 seem worth the trouble. */
12481 if (from_insn == i3
12482 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12483 place = i3;
12484 break;
12486 case REG_INC:
12487 case REG_NO_CONFLICT:
12488 /* These notes say something about how a register is used. They must
12489 be present on any use of the register in I2 or I3. */
12490 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12491 place = i3;
12493 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12495 if (place)
12496 place2 = i2;
12497 else
12498 place = i2;
12500 break;
12502 case REG_LABEL:
12503 /* This can show up in several ways -- either directly in the
12504 pattern, or hidden off in the constant pool with (or without?)
12505 a REG_EQUAL note. */
12506 /* ??? Ignore the without-reg_equal-note problem for now. */
12507 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12508 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12509 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12510 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12511 place = i3;
12513 if (i2
12514 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12515 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12516 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12517 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12519 if (place)
12520 place2 = i2;
12521 else
12522 place = i2;
12525 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12526 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12527 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12529 if (JUMP_LABEL (place) != XEXP (note, 0))
12530 abort ();
12531 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12532 LABEL_NUSES (JUMP_LABEL (place))--;
12533 place = 0;
12535 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12537 if (JUMP_LABEL (place2) != XEXP (note, 0))
12538 abort ();
12539 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12540 LABEL_NUSES (JUMP_LABEL (place2))--;
12541 place2 = 0;
12543 break;
12545 case REG_NONNEG:
12546 /* This note says something about the value of a register prior
12547 to the execution of an insn. It is too much trouble to see
12548 if the note is still correct in all situations. It is better
12549 to simply delete it. */
12550 break;
12552 case REG_RETVAL:
12553 /* If the insn previously containing this note still exists,
12554 put it back where it was. Otherwise move it to the previous
12555 insn. Adjust the corresponding REG_LIBCALL note. */
12556 if (GET_CODE (from_insn) != NOTE)
12557 place = from_insn;
12558 else
12560 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12561 place = prev_real_insn (from_insn);
12562 if (tem && place)
12563 XEXP (tem, 0) = place;
12564 /* If we're deleting the last remaining instruction of a
12565 libcall sequence, don't add the notes. */
12566 else if (XEXP (note, 0) == from_insn)
12567 tem = place = 0;
12569 break;
12571 case REG_LIBCALL:
12572 /* This is handled similarly to REG_RETVAL. */
12573 if (GET_CODE (from_insn) != NOTE)
12574 place = from_insn;
12575 else
12577 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12578 place = next_real_insn (from_insn);
12579 if (tem && place)
12580 XEXP (tem, 0) = place;
12581 /* If we're deleting the last remaining instruction of a
12582 libcall sequence, don't add the notes. */
12583 else if (XEXP (note, 0) == from_insn)
12584 tem = place = 0;
12586 break;
12588 case REG_DEAD:
12589 /* If the register is used as an input in I3, it dies there.
12590 Similarly for I2, if it is nonzero and adjacent to I3.
12592 If the register is not used as an input in either I3 or I2
12593 and it is not one of the registers we were supposed to eliminate,
12594 there are two possibilities. We might have a non-adjacent I2
12595 or we might have somehow eliminated an additional register
12596 from a computation. For example, we might have had A & B where
12597 we discover that B will always be zero. In this case we will
12598 eliminate the reference to A.
12600 In both cases, we must search to see if we can find a previous
12601 use of A and put the death note there. */
12603 if (from_insn
12604 && GET_CODE (from_insn) == CALL_INSN
12605 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12606 place = from_insn;
12607 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12608 place = i3;
12609 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12610 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12611 place = i2;
12613 if (place == 0)
12615 basic_block bb = this_basic_block;
12617 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12619 if (! INSN_P (tem))
12621 if (tem == BB_HEAD (bb))
12622 break;
12623 continue;
12626 /* If the register is being set at TEM, see if that is all
12627 TEM is doing. If so, delete TEM. Otherwise, make this
12628 into a REG_UNUSED note instead. */
12629 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12631 rtx set = single_set (tem);
12632 rtx inner_dest = 0;
12633 #ifdef HAVE_cc0
12634 rtx cc0_setter = NULL_RTX;
12635 #endif
12637 if (set != 0)
12638 for (inner_dest = SET_DEST (set);
12639 (GET_CODE (inner_dest) == STRICT_LOW_PART
12640 || GET_CODE (inner_dest) == SUBREG
12641 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12642 inner_dest = XEXP (inner_dest, 0))
12645 /* Verify that it was the set, and not a clobber that
12646 modified the register.
12648 CC0 targets must be careful to maintain setter/user
12649 pairs. If we cannot delete the setter due to side
12650 effects, mark the user with an UNUSED note instead
12651 of deleting it. */
12653 if (set != 0 && ! side_effects_p (SET_SRC (set))
12654 && rtx_equal_p (XEXP (note, 0), inner_dest)
12655 #ifdef HAVE_cc0
12656 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12657 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12658 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12659 #endif
12662 /* Move the notes and links of TEM elsewhere.
12663 This might delete other dead insns recursively.
12664 First set the pattern to something that won't use
12665 any register. */
12666 rtx old_notes = REG_NOTES (tem);
12668 PATTERN (tem) = pc_rtx;
12669 REG_NOTES (tem) = NULL;
12671 distribute_notes (old_notes, tem, tem, NULL_RTX);
12672 distribute_links (LOG_LINKS (tem));
12674 PUT_CODE (tem, NOTE);
12675 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12676 NOTE_SOURCE_FILE (tem) = 0;
12678 #ifdef HAVE_cc0
12679 /* Delete the setter too. */
12680 if (cc0_setter)
12682 PATTERN (cc0_setter) = pc_rtx;
12683 old_notes = REG_NOTES (cc0_setter);
12684 REG_NOTES (cc0_setter) = NULL;
12686 distribute_notes (old_notes, cc0_setter,
12687 cc0_setter, NULL_RTX);
12688 distribute_links (LOG_LINKS (cc0_setter));
12690 PUT_CODE (cc0_setter, NOTE);
12691 NOTE_LINE_NUMBER (cc0_setter)
12692 = NOTE_INSN_DELETED;
12693 NOTE_SOURCE_FILE (cc0_setter) = 0;
12695 #endif
12697 /* If the register is both set and used here, put the
12698 REG_DEAD note here, but place a REG_UNUSED note
12699 here too unless there already is one. */
12700 else if (reg_referenced_p (XEXP (note, 0),
12701 PATTERN (tem)))
12703 place = tem;
12705 if (! find_regno_note (tem, REG_UNUSED,
12706 REGNO (XEXP (note, 0))))
12707 REG_NOTES (tem)
12708 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12709 REG_NOTES (tem));
12711 else
12713 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12715 /* If there isn't already a REG_UNUSED note, put one
12716 here. */
12717 if (! find_regno_note (tem, REG_UNUSED,
12718 REGNO (XEXP (note, 0))))
12719 place = tem;
12720 break;
12723 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12724 || (GET_CODE (tem) == CALL_INSN
12725 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12727 place = tem;
12729 /* If we are doing a 3->2 combination, and we have a
12730 register which formerly died in i3 and was not used
12731 by i2, which now no longer dies in i3 and is used in
12732 i2 but does not die in i2, and place is between i2
12733 and i3, then we may need to move a link from place to
12734 i2. */
12735 if (i2 && INSN_UID (place) <= max_uid_cuid
12736 && INSN_CUID (place) > INSN_CUID (i2)
12737 && from_insn
12738 && INSN_CUID (from_insn) > INSN_CUID (i2)
12739 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12741 rtx links = LOG_LINKS (place);
12742 LOG_LINKS (place) = 0;
12743 distribute_links (links);
12745 break;
12748 if (tem == BB_HEAD (bb))
12749 break;
12752 /* We haven't found an insn for the death note and it
12753 is still a REG_DEAD note, but we have hit the beginning
12754 of the block. If the existing life info says the reg
12755 was dead, there's nothing left to do. Otherwise, we'll
12756 need to do a global life update after combine. */
12757 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12758 && REGNO_REG_SET_P (bb->global_live_at_start,
12759 REGNO (XEXP (note, 0))))
12760 SET_BIT (refresh_blocks, this_basic_block->index);
12763 /* If the register is set or already dead at PLACE, we needn't do
12764 anything with this note if it is still a REG_DEAD note.
12765 We can here if it is set at all, not if is it totally replace,
12766 which is what `dead_or_set_p' checks, so also check for it being
12767 set partially. */
12769 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12771 unsigned int regno = REGNO (XEXP (note, 0));
12773 /* Similarly, if the instruction on which we want to place
12774 the note is a noop, we'll need do a global live update
12775 after we remove them in delete_noop_moves. */
12776 if (noop_move_p (place))
12777 SET_BIT (refresh_blocks, this_basic_block->index);
12779 if (dead_or_set_p (place, XEXP (note, 0))
12780 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12782 /* Unless the register previously died in PLACE, clear
12783 reg_last_death. [I no longer understand why this is
12784 being done.] */
12785 if (reg_last_death[regno] != place)
12786 reg_last_death[regno] = 0;
12787 place = 0;
12789 else
12790 reg_last_death[regno] = place;
12792 /* If this is a death note for a hard reg that is occupying
12793 multiple registers, ensure that we are still using all
12794 parts of the object. If we find a piece of the object
12795 that is unused, we must arrange for an appropriate REG_DEAD
12796 note to be added for it. However, we can't just emit a USE
12797 and tag the note to it, since the register might actually
12798 be dead; so we recourse, and the recursive call then finds
12799 the previous insn that used this register. */
12801 if (place && regno < FIRST_PSEUDO_REGISTER
12802 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12804 unsigned int endregno
12805 = regno + HARD_REGNO_NREGS (regno,
12806 GET_MODE (XEXP (note, 0)));
12807 int all_used = 1;
12808 unsigned int i;
12810 for (i = regno; i < endregno; i++)
12811 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12812 && ! find_regno_fusage (place, USE, i))
12813 || dead_or_set_regno_p (place, i))
12814 all_used = 0;
12816 if (! all_used)
12818 /* Put only REG_DEAD notes for pieces that are
12819 not already dead or set. */
12821 for (i = regno; i < endregno;
12822 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12824 rtx piece = regno_reg_rtx[i];
12825 basic_block bb = this_basic_block;
12827 if (! dead_or_set_p (place, piece)
12828 && ! reg_bitfield_target_p (piece,
12829 PATTERN (place)))
12831 rtx new_note
12832 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12834 distribute_notes (new_note, place, place,
12835 NULL_RTX);
12837 else if (! refers_to_regno_p (i, i + 1,
12838 PATTERN (place), 0)
12839 && ! find_regno_fusage (place, USE, i))
12840 for (tem = PREV_INSN (place); ;
12841 tem = PREV_INSN (tem))
12843 if (! INSN_P (tem))
12845 if (tem == BB_HEAD (bb))
12847 SET_BIT (refresh_blocks,
12848 this_basic_block->index);
12849 break;
12851 continue;
12853 if (dead_or_set_p (tem, piece)
12854 || reg_bitfield_target_p (piece,
12855 PATTERN (tem)))
12857 REG_NOTES (tem)
12858 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12859 REG_NOTES (tem));
12860 break;
12866 place = 0;
12870 break;
12872 default:
12873 /* Any other notes should not be present at this point in the
12874 compilation. */
12875 abort ();
12878 if (place)
12880 XEXP (note, 1) = REG_NOTES (place);
12881 REG_NOTES (place) = note;
12883 else if ((REG_NOTE_KIND (note) == REG_DEAD
12884 || REG_NOTE_KIND (note) == REG_UNUSED)
12885 && GET_CODE (XEXP (note, 0)) == REG)
12886 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12888 if (place2)
12890 if ((REG_NOTE_KIND (note) == REG_DEAD
12891 || REG_NOTE_KIND (note) == REG_UNUSED)
12892 && GET_CODE (XEXP (note, 0)) == REG)
12893 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12895 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12896 REG_NOTE_KIND (note),
12897 XEXP (note, 0),
12898 REG_NOTES (place2));
12903 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12904 I3, I2, and I1 to new locations. This is also called to add a link
12905 pointing at I3 when I3's destination is changed. */
12907 static void
12908 distribute_links (rtx links)
12910 rtx link, next_link;
12912 for (link = links; link; link = next_link)
12914 rtx place = 0;
12915 rtx insn;
12916 rtx set, reg;
12918 next_link = XEXP (link, 1);
12920 /* If the insn that this link points to is a NOTE or isn't a single
12921 set, ignore it. In the latter case, it isn't clear what we
12922 can do other than ignore the link, since we can't tell which
12923 register it was for. Such links wouldn't be used by combine
12924 anyway.
12926 It is not possible for the destination of the target of the link to
12927 have been changed by combine. The only potential of this is if we
12928 replace I3, I2, and I1 by I3 and I2. But in that case the
12929 destination of I2 also remains unchanged. */
12931 if (GET_CODE (XEXP (link, 0)) == NOTE
12932 || (set = single_set (XEXP (link, 0))) == 0)
12933 continue;
12935 reg = SET_DEST (set);
12936 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12937 || GET_CODE (reg) == SIGN_EXTRACT
12938 || GET_CODE (reg) == STRICT_LOW_PART)
12939 reg = XEXP (reg, 0);
12941 /* A LOG_LINK is defined as being placed on the first insn that uses
12942 a register and points to the insn that sets the register. Start
12943 searching at the next insn after the target of the link and stop
12944 when we reach a set of the register or the end of the basic block.
12946 Note that this correctly handles the link that used to point from
12947 I3 to I2. Also note that not much searching is typically done here
12948 since most links don't point very far away. */
12950 for (insn = NEXT_INSN (XEXP (link, 0));
12951 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12952 || BB_HEAD (this_basic_block->next_bb) != insn));
12953 insn = NEXT_INSN (insn))
12954 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12956 if (reg_referenced_p (reg, PATTERN (insn)))
12957 place = insn;
12958 break;
12960 else if (GET_CODE (insn) == CALL_INSN
12961 && find_reg_fusage (insn, USE, reg))
12963 place = insn;
12964 break;
12966 else if (INSN_P (insn) && reg_set_p (reg, insn))
12967 break;
12969 /* If we found a place to put the link, place it there unless there
12970 is already a link to the same insn as LINK at that point. */
12972 if (place)
12974 rtx link2;
12976 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12977 if (XEXP (link2, 0) == XEXP (link, 0))
12978 break;
12980 if (link2 == 0)
12982 XEXP (link, 1) = LOG_LINKS (place);
12983 LOG_LINKS (place) = link;
12985 /* Set added_links_insn to the earliest insn we added a
12986 link to. */
12987 if (added_links_insn == 0
12988 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12989 added_links_insn = place;
12995 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12997 static int
12998 insn_cuid (rtx insn)
13000 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13001 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13002 insn = NEXT_INSN (insn);
13004 if (INSN_UID (insn) > max_uid_cuid)
13005 abort ();
13007 return INSN_CUID (insn);
13010 void
13011 dump_combine_stats (FILE *file)
13013 fnotice
13014 (file,
13015 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13016 combine_attempts, combine_merges, combine_extras, combine_successes);
13019 void
13020 dump_combine_total_stats (FILE *file)
13022 fnotice
13023 (file,
13024 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13025 total_attempts, total_merges, total_extras, total_successes);