2001-06-20 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / boehm-gc / mark.c
blob18b5749c351cc04b42aadc51f121241fba580041
2 /*
3 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
4 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
5 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
19 # include <stdio.h>
20 # include "private/gc_pmark.h"
22 /* We put this here to minimize the risk of inlining. */
23 /*VARARGS*/
24 #ifdef __WATCOMC__
25 void GC_noop(void *p, ...) {}
26 #else
27 void GC_noop() {}
28 #endif
30 /* Single argument version, robust against whole program analysis. */
31 void GC_noop1(x)
32 word x;
34 static VOLATILE word sink;
36 sink = x;
39 /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
41 word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
43 /* Initialize GC_obj_kinds properly and standard free lists properly. */
44 /* This must be done statically since they may be accessed before */
45 /* GC_init is called. */
46 /* It's done here, since we need to deal with mark descriptors. */
47 struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
48 /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
49 0 | GC_DS_LENGTH, FALSE, FALSE },
50 /* NORMAL */ { &GC_objfreelist[0], 0,
51 0 | GC_DS_LENGTH, /* Adjusted in GC_init_inner for EXTRA_BYTES */
52 TRUE /* add length to descr */, TRUE },
53 /* UNCOLLECTABLE */
54 { &GC_uobjfreelist[0], 0,
55 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
56 # ifdef ATOMIC_UNCOLLECTABLE
57 /* AUNCOLLECTABLE */
58 { &GC_auobjfreelist[0], 0,
59 0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
60 # endif
61 # ifdef STUBBORN_ALLOC
62 /*STUBBORN*/ { &GC_sobjfreelist[0], 0,
63 0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
64 # endif
67 # ifdef ATOMIC_UNCOLLECTABLE
68 # ifdef STUBBORN_ALLOC
69 int GC_n_kinds = 5;
70 # else
71 int GC_n_kinds = 4;
72 # endif
73 # else
74 # ifdef STUBBORN_ALLOC
75 int GC_n_kinds = 4;
76 # else
77 int GC_n_kinds = 3;
78 # endif
79 # endif
82 # ifndef INITIAL_MARK_STACK_SIZE
83 # define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
84 /* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a */
85 /* multiple of HBLKSIZE. */
86 /* The incremental collector actually likes a larger */
87 /* size, since it want to push all marked dirty objs */
88 /* before marking anything new. Currently we let it */
89 /* grow dynamically. */
90 # endif
93 * Limits of stack for GC_mark routine.
94 * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
95 * need to be marked from.
98 word GC_n_rescuing_pages; /* Number of dirty pages we marked from */
99 /* excludes ptrfree pages, etc. */
101 mse * GC_mark_stack;
103 mse * GC_mark_stack_limit;
105 word GC_mark_stack_size = 0;
107 #ifdef PARALLEL_MARK
108 mse * VOLATILE GC_mark_stack_top;
109 #else
110 mse * GC_mark_stack_top;
111 #endif
113 static struct hblk * scan_ptr;
115 mark_state_t GC_mark_state = MS_NONE;
117 GC_bool GC_mark_stack_too_small = FALSE;
119 GC_bool GC_objects_are_marked = FALSE; /* Are there collectable marked */
120 /* objects in the heap? */
122 /* Is a collection in progress? Note that this can return true in the */
123 /* nonincremental case, if a collection has been abandoned and the */
124 /* mark state is now MS_INVALID. */
125 GC_bool GC_collection_in_progress()
127 return(GC_mark_state != MS_NONE);
130 /* clear all mark bits in the header */
131 void GC_clear_hdr_marks(hhdr)
132 register hdr * hhdr;
134 # ifdef USE_MARK_BYTES
135 BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
136 # else
137 BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
138 # endif
141 /* Set all mark bits in the header. Used for uncollectable blocks. */
142 void GC_set_hdr_marks(hhdr)
143 register hdr * hhdr;
145 register int i;
147 for (i = 0; i < MARK_BITS_SZ; ++i) {
148 # ifdef USE_MARK_BYTES
149 hhdr -> hb_marks[i] = 1;
150 # else
151 hhdr -> hb_marks[i] = ONES;
152 # endif
157 * Clear all mark bits associated with block h.
159 /*ARGSUSED*/
160 # if defined(__STDC__) || defined(__cplusplus)
161 static void clear_marks_for_block(struct hblk *h, word dummy)
162 # else
163 static void clear_marks_for_block(h, dummy)
164 struct hblk *h;
165 word dummy;
166 # endif
168 register hdr * hhdr = HDR(h);
170 if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
171 /* Mark bit for these is cleared only once the object is */
172 /* explicitly deallocated. This either frees the block, or */
173 /* the bit is cleared once the object is on the free list. */
174 GC_clear_hdr_marks(hhdr);
177 /* Slow but general routines for setting/clearing/asking about mark bits */
178 void GC_set_mark_bit(p)
179 ptr_t p;
181 register struct hblk *h = HBLKPTR(p);
182 register hdr * hhdr = HDR(h);
183 register int word_no = (word *)p - (word *)h;
185 set_mark_bit_from_hdr(hhdr, word_no);
188 void GC_clear_mark_bit(p)
189 ptr_t p;
191 register struct hblk *h = HBLKPTR(p);
192 register hdr * hhdr = HDR(h);
193 register int word_no = (word *)p - (word *)h;
195 clear_mark_bit_from_hdr(hhdr, word_no);
198 GC_bool GC_is_marked(p)
199 ptr_t p;
201 register struct hblk *h = HBLKPTR(p);
202 register hdr * hhdr = HDR(h);
203 register int word_no = (word *)p - (word *)h;
205 return(mark_bit_from_hdr(hhdr, word_no));
210 * Clear mark bits in all allocated heap blocks. This invalidates
211 * the marker invariant, and sets GC_mark_state to reflect this.
212 * (This implicitly starts marking to reestablish the invariant.)
214 void GC_clear_marks()
216 GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
217 GC_objects_are_marked = FALSE;
218 GC_mark_state = MS_INVALID;
219 scan_ptr = 0;
220 # ifdef GATHERSTATS
221 /* Counters reflect currently marked objects: reset here */
222 GC_composite_in_use = 0;
223 GC_atomic_in_use = 0;
224 # endif
228 /* Initiate a garbage collection. Initiates a full collection if the */
229 /* mark state is invalid. */
230 /*ARGSUSED*/
231 void GC_initiate_gc()
233 if (GC_dirty_maintained) GC_read_dirty();
234 # ifdef STUBBORN_ALLOC
235 GC_read_changed();
236 # endif
237 # ifdef CHECKSUMS
239 extern void GC_check_dirty();
241 if (GC_dirty_maintained) GC_check_dirty();
243 # endif
244 GC_n_rescuing_pages = 0;
245 if (GC_mark_state == MS_NONE) {
246 GC_mark_state = MS_PUSH_RESCUERS;
247 } else if (GC_mark_state != MS_INVALID) {
248 ABORT("unexpected state");
249 } /* else this is really a full collection, and mark */
250 /* bits are invalid. */
251 scan_ptr = 0;
255 static void alloc_mark_stack();
257 /* Perform a small amount of marking. */
258 /* We try to touch roughly a page of memory. */
259 /* Return TRUE if we just finished a mark phase. */
260 /* Cold_gc_frame is an address inside a GC frame that */
261 /* remains valid until all marking is complete. */
262 /* A zero value indicates that it's OK to miss some */
263 /* register values. */
264 GC_bool GC_mark_some(cold_gc_frame)
265 ptr_t cold_gc_frame;
267 #ifdef MSWIN32
268 /* Windows 98 appears to asynchronously create and remove writable */
269 /* memory mappings, for reasons we haven't yet understood. Since */
270 /* we look for writable regions to determine the root set, we may */
271 /* try to mark from an address range that disappeared since we */
272 /* started the collection. Thus we have to recover from faults here. */
273 /* This code does not appear to be necessary for Windows 95/NT/2000. */
274 /* Note that this code should never generate an incremental GC write */
275 /* fault. */
276 __try {
277 #endif
278 switch(GC_mark_state) {
279 case MS_NONE:
280 return(FALSE);
282 case MS_PUSH_RESCUERS:
283 if (GC_mark_stack_top
284 >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
285 /* Go ahead and mark, even though that might cause us to */
286 /* see more marked dirty objects later on. Avoid this */
287 /* in the future. */
288 GC_mark_stack_too_small = TRUE;
289 MARK_FROM_MARK_STACK();
290 return(FALSE);
291 } else {
292 scan_ptr = GC_push_next_marked_dirty(scan_ptr);
293 if (scan_ptr == 0) {
294 # ifdef CONDPRINT
295 if (GC_print_stats) {
296 GC_printf1("Marked from %lu dirty pages\n",
297 (unsigned long)GC_n_rescuing_pages);
299 # endif
300 GC_push_roots(FALSE, cold_gc_frame);
301 GC_objects_are_marked = TRUE;
302 if (GC_mark_state != MS_INVALID) {
303 GC_mark_state = MS_ROOTS_PUSHED;
307 return(FALSE);
309 case MS_PUSH_UNCOLLECTABLE:
310 if (GC_mark_stack_top
311 >= GC_mark_stack + GC_mark_stack_size/4) {
312 # ifdef PARALLEL_MARK
313 /* Avoid this, since we don't parallelize the marker */
314 /* here. */
315 if (GC_parallel) GC_mark_stack_too_small = TRUE;
316 # endif
317 MARK_FROM_MARK_STACK();
318 return(FALSE);
319 } else {
320 scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
321 if (scan_ptr == 0) {
322 GC_push_roots(TRUE, cold_gc_frame);
323 GC_objects_are_marked = TRUE;
324 if (GC_mark_state != MS_INVALID) {
325 GC_mark_state = MS_ROOTS_PUSHED;
329 return(FALSE);
331 case MS_ROOTS_PUSHED:
332 # ifdef PARALLEL_MARK
333 /* In the incremental GC case, this currently doesn't */
334 /* quite do the right thing, since it runs to */
335 /* completion. On the other hand, starting a */
336 /* parallel marker is expensive, so perhaps it is */
337 /* the right thing? */
338 /* Eventually, incremental marking should run */
339 /* asynchronously in multiple threads, without grabbing */
340 /* the allocation lock. */
341 if (GC_parallel) {
342 GC_do_parallel_mark();
343 GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
344 GC_mark_stack_top = GC_mark_stack - 1;
345 if (GC_mark_stack_too_small) {
346 alloc_mark_stack(2*GC_mark_stack_size);
348 if (GC_mark_state == MS_ROOTS_PUSHED) {
349 GC_mark_state = MS_NONE;
350 return(TRUE);
351 } else {
352 return(FALSE);
355 # endif
356 if (GC_mark_stack_top >= GC_mark_stack) {
357 MARK_FROM_MARK_STACK();
358 return(FALSE);
359 } else {
360 GC_mark_state = MS_NONE;
361 if (GC_mark_stack_too_small) {
362 alloc_mark_stack(2*GC_mark_stack_size);
364 return(TRUE);
367 case MS_INVALID:
368 case MS_PARTIALLY_INVALID:
369 if (!GC_objects_are_marked) {
370 GC_mark_state = MS_PUSH_UNCOLLECTABLE;
371 return(FALSE);
373 if (GC_mark_stack_top >= GC_mark_stack) {
374 MARK_FROM_MARK_STACK();
375 return(FALSE);
377 if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
378 /* About to start a heap scan for marked objects. */
379 /* Mark stack is empty. OK to reallocate. */
380 if (GC_mark_stack_too_small) {
381 alloc_mark_stack(2*GC_mark_stack_size);
383 GC_mark_state = MS_PARTIALLY_INVALID;
385 scan_ptr = GC_push_next_marked(scan_ptr);
386 if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
387 GC_push_roots(TRUE, cold_gc_frame);
388 GC_objects_are_marked = TRUE;
389 if (GC_mark_state != MS_INVALID) {
390 GC_mark_state = MS_ROOTS_PUSHED;
393 return(FALSE);
394 default:
395 ABORT("GC_mark_some: bad state");
396 return(FALSE);
398 #ifdef MSWIN32
399 } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
400 EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
401 # ifdef CONDPRINT
402 if (GC_print_stats) {
403 GC_printf0("Caught ACCESS_VIOLATION in marker. "
404 "Memory mapping disappeared.\n");
406 # endif /* CONDPRINT */
407 /* We have bad roots on the stack. Discard mark stack. */
408 /* Rescan from marked objects. Redetermine roots. */
409 GC_invalidate_mark_state();
410 scan_ptr = 0;
411 return FALSE;
413 #endif /* MSWIN32 */
417 GC_bool GC_mark_stack_empty()
419 return(GC_mark_stack_top < GC_mark_stack);
422 #ifdef PROF_MARKER
423 word GC_prof_array[10];
424 # define PROF(n) GC_prof_array[n]++
425 #else
426 # define PROF(n)
427 #endif
429 /* Given a pointer to someplace other than a small object page or the */
430 /* first page of a large object, return a pointer either to the */
431 /* start of the large object or NIL. */
432 /* In the latter case black list the address current. */
433 /* Returns NIL without black listing if current points to a block */
434 /* with IGNORE_OFF_PAGE set. */
435 /*ARGSUSED*/
436 # ifdef PRINT_BLACK_LIST
437 ptr_t GC_find_start(current, hhdr, source)
438 word source;
439 # else
440 ptr_t GC_find_start(current, hhdr)
441 # define source 0
442 # endif
443 register ptr_t current;
444 register hdr * hhdr;
446 if (GC_all_interior_pointers) {
447 if (hhdr != 0) {
448 register ptr_t orig = current;
450 current = (ptr_t)HBLKPTR(current);
451 do {
452 current = current - HBLKSIZE*(word)hhdr;
453 hhdr = HDR(current);
454 } while(IS_FORWARDING_ADDR_OR_NIL(hhdr));
455 /* current points to the start of the large object */
456 if (hhdr -> hb_flags & IGNORE_OFF_PAGE) return(0);
457 if ((word *)orig - (word *)current
458 >= (ptrdiff_t)(hhdr->hb_sz)) {
459 /* Pointer past the end of the block */
460 GC_ADD_TO_BLACK_LIST_NORMAL((word)orig, source);
461 return(0);
463 return(current);
464 } else {
465 GC_ADD_TO_BLACK_LIST_NORMAL((word)current, source);
466 return(0);
468 } else {
469 GC_ADD_TO_BLACK_LIST_NORMAL((word)current, source);
470 return(0);
472 # undef source
475 void GC_invalidate_mark_state()
477 GC_mark_state = MS_INVALID;
478 GC_mark_stack_top = GC_mark_stack-1;
481 mse * GC_signal_mark_stack_overflow(msp)
482 mse * msp;
484 GC_mark_state = MS_INVALID;
485 GC_mark_stack_too_small = TRUE;
486 # ifdef CONDPRINT
487 if (GC_print_stats) {
488 GC_printf1("Mark stack overflow; current size = %lu entries\n",
489 GC_mark_stack_size);
491 # endif
492 return(msp - GC_MARK_STACK_DISCARDS);
496 * Mark objects pointed to by the regions described by
497 * mark stack entries between GC_mark_stack and GC_mark_stack_top,
498 * inclusive. Assumes the upper limit of a mark stack entry
499 * is never 0. A mark stack entry never has size 0.
500 * We try to traverse on the order of a hblk of memory before we return.
501 * Caller is responsible for calling this until the mark stack is empty.
502 * Note that this is the most performance critical routine in the
503 * collector. Hence it contains all sorts of ugly hacks to speed
504 * things up. In particular, we avoid procedure calls on the common
505 * path, we take advantage of peculiarities of the mark descriptor
506 * encoding, we optionally maintain a cache for the block address to
507 * header mapping, we prefetch when an object is "grayed", etc.
509 mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
510 mse * mark_stack_top;
511 mse * mark_stack;
512 mse * mark_stack_limit;
514 int credit = HBLKSIZE; /* Remaining credit for marking work */
515 register word * current_p; /* Pointer to current candidate ptr. */
516 register word current; /* Candidate pointer. */
517 register word * limit; /* (Incl) limit of current candidate */
518 /* range */
519 register word descr;
520 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
521 register ptr_t least_ha = GC_least_plausible_heap_addr;
522 DECLARE_HDR_CACHE;
524 # define SPLIT_RANGE_WORDS 128 /* Must be power of 2. */
526 GC_objects_are_marked = TRUE;
527 INIT_HDR_CACHE;
528 # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
529 while (mark_stack_top >= mark_stack && credit >= 0) {
530 # else
531 while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
532 >= 0) {
533 # endif
534 current_p = mark_stack_top -> mse_start;
535 descr = mark_stack_top -> mse_descr;
536 retry:
537 /* current_p and descr describe the current object. */
538 /* *mark_stack_top is vacant. */
539 /* The following is 0 only for small objects described by a simple */
540 /* length descriptor. For many applications this is the common */
541 /* case, so we try to detect it quickly. */
542 if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
543 word tag = descr & GC_DS_TAGS;
545 switch(tag) {
546 case GC_DS_LENGTH:
547 /* Large length. */
548 /* Process part of the range to avoid pushing too much on the */
549 /* stack. */
550 # ifdef PARALLEL_MARK
551 # define SHARE_BYTES 2048
552 if (descr > SHARE_BYTES && GC_parallel
553 && mark_stack_top < mark_stack_limit - 1) {
554 int new_size = (descr/2) & ~(sizeof(word)-1);
555 GC_ASSERT(descr < GC_greatest_plausible_heap_addr
556 - GC_least_plausible_heap_addr);
557 mark_stack_top -> mse_start = current_p;
558 mark_stack_top -> mse_descr = new_size + sizeof(word);
559 /* makes sure we handle */
560 /* misaligned pointers. */
561 mark_stack_top++;
562 current_p = (word *) ((char *)current_p + new_size);
563 descr -= new_size;
564 goto retry;
566 # endif /* PARALLEL_MARK */
567 mark_stack_top -> mse_start =
568 limit = current_p + SPLIT_RANGE_WORDS-1;
569 mark_stack_top -> mse_descr =
570 descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
571 /* Make sure that pointers overlapping the two ranges are */
572 /* considered. */
573 limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
574 break;
575 case GC_DS_BITMAP:
576 mark_stack_top--;
577 descr &= ~GC_DS_TAGS;
578 credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
579 while (descr != 0) {
580 if ((signed_word)descr < 0) {
581 current = *current_p;
582 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
583 PREFETCH(current);
584 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
585 mark_stack_limit, current_p, exit1);
588 descr <<= 1;
589 ++ current_p;
591 continue;
592 case GC_DS_PROC:
593 mark_stack_top--;
594 credit -= GC_PROC_BYTES;
595 mark_stack_top =
596 (*PROC(descr))
597 (current_p, mark_stack_top,
598 mark_stack_limit, ENV(descr));
599 continue;
600 case GC_DS_PER_OBJECT:
601 if ((signed_word)descr >= 0) {
602 /* Descriptor is in the object. */
603 descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
604 } else {
605 /* Descriptor is in type descriptor pointed to by first */
606 /* word in object. */
607 ptr_t type_descr = *(ptr_t *)current_p;
608 /* type_descr is either a valid pointer to the descriptor */
609 /* structure, or this object was on a free list. If it */
610 /* it was anything but the last object on the free list, */
611 /* we will misinterpret the next object on the free list as */
612 /* the type descriptor, and get a 0 GC descriptor, which */
613 /* is ideal. Unfortunately, we need to check for the last */
614 /* object case explicitly. */
615 if (0 == type_descr) {
616 /* Rarely executed. */
617 mark_stack_top--;
618 continue;
620 descr = *(word *)(type_descr
621 - (descr - (GC_DS_PER_OBJECT
622 - GC_INDIR_PER_OBJ_BIAS)));
624 if (0 == descr) {
625 /* Can happen either because we generated a 0 descriptor */
626 /* or we saw a pointer to a free object. */
627 mark_stack_top--;
628 continue;
630 goto retry;
632 } else /* Small object with length descriptor */ {
633 mark_stack_top--;
634 limit = (word *)(((ptr_t)current_p) + (word)descr);
636 /* The simple case in which we're scanning a range. */
637 GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
638 credit -= (ptr_t)limit - (ptr_t)current_p;
639 limit -= 1;
641 # define PREF_DIST 4
643 # ifndef SMALL_CONFIG
644 word deferred;
646 /* Try to prefetch the next pointer to be examined asap. */
647 /* Empirically, this also seems to help slightly without */
648 /* prefetches, at least on linux/X86. Presumably this loop */
649 /* ends up with less register pressure, and gcc thus ends up */
650 /* generating slightly better code. Overall gcc code quality */
651 /* for this loop is still not great. */
652 for(;;) {
653 PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
654 GC_ASSERT(limit >= current_p);
655 deferred = *limit;
656 limit = (word *)((char *)limit - ALIGNMENT);
657 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
658 PREFETCH(deferred);
659 break;
661 if (current_p > limit) goto next_object;
662 /* Unroll once, so we don't do too many of the prefetches */
663 /* based on limit. */
664 deferred = *limit;
665 limit = (word *)((char *)limit - ALIGNMENT);
666 if ((ptr_t)deferred >= least_ha && (ptr_t)deferred < greatest_ha) {
667 PREFETCH(deferred);
668 break;
670 if (current_p > limit) goto next_object;
672 # endif
674 while (current_p <= limit) {
675 /* Empirically, unrolling this loop doesn't help a lot. */
676 /* Since HC_PUSH_CONTENTS expands to a lot of code, */
677 /* we don't. */
678 current = *current_p;
679 PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
680 if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
681 /* Prefetch the contents of the object we just pushed. It's */
682 /* likely we will need them soon. */
683 PREFETCH(current);
684 HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
685 mark_stack_limit, current_p, exit2);
687 current_p = (word *)((char *)current_p + ALIGNMENT);
690 # ifndef SMALL_CONFIG
691 /* We still need to mark the entry we previously prefetched. */
692 /* We alrady know that it passes the preliminary pointer */
693 /* validity test. */
694 HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
695 mark_stack_limit, current_p, exit4);
696 next_object:;
697 # endif
700 return mark_stack_top;
703 #ifdef PARALLEL_MARK
705 /* We assume we have an ANSI C Compiler. */
706 GC_bool GC_help_wanted = FALSE;
707 unsigned GC_helper_count = 0;
708 unsigned GC_active_count = 0;
709 mse * VOLATILE GC_first_nonempty;
710 word GC_mark_no = 0;
712 #define LOCAL_MARK_STACK_SIZE HBLKSIZE
713 /* Under normal circumstances, this is big enough to guarantee */
714 /* We don't overflow half of it in a single call to */
715 /* GC_mark_from. */
718 /* Steal mark stack entries starting at mse low into mark stack local */
719 /* until we either steal mse high, or we have max entries. */
720 /* Return a pointer to the top of the local mark stack. */
721 /* *next is replaced by a pointer to the next unscanned mark stack */
722 /* entry. */
723 mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
724 unsigned max, mse **next)
726 mse *p;
727 mse *top = local - 1;
728 unsigned i = 0;
730 GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
731 for (p = low; p <= high && i <= max; ++p) {
732 word descr = *(volatile word *) &(p -> mse_descr);
733 if (descr != 0) {
734 *(volatile word *) &(p -> mse_descr) = 0;
735 ++top;
736 top -> mse_descr = descr;
737 top -> mse_start = p -> mse_start;
738 GC_ASSERT( top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH ||
739 top -> mse_descr < GC_greatest_plausible_heap_addr
740 - GC_least_plausible_heap_addr);
741 /* There is no synchronization here. We assume that at */
742 /* least one thread will see the original descriptor. */
743 /* Otherwise we need a barrier. */
744 /* More than one thread may get this entry, but that's only */
745 /* a minor performance problem. */
746 /* If this is a big object, count it as */
747 /* size/256 + 1 objects. */
748 ++i;
749 if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
752 *next = p;
753 return top;
756 /* Copy back a local mark stack. */
757 /* low and high are inclusive bounds. */
758 void GC_return_mark_stack(mse * low, mse * high)
760 mse * my_top;
761 mse * my_start;
762 size_t stack_size;
764 if (high < low) return;
765 stack_size = high - low + 1;
766 GC_acquire_mark_lock();
767 my_top = GC_mark_stack_top;
768 my_start = my_top + 1;
769 if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
770 # ifdef CONDPRINT
771 if (GC_print_stats) {
772 GC_printf0("No room to copy back mark stack.");
774 # endif
775 GC_mark_state = MS_INVALID;
776 GC_mark_stack_too_small = TRUE;
777 /* We drop the local mark stack. We'll fix things later. */
778 } else {
779 BCOPY(low, my_start, stack_size * sizeof(mse));
780 GC_ASSERT(GC_mark_stack_top = my_top);
781 # if !defined(IA64) && !defined(HP_PA)
782 GC_memory_write_barrier();
783 # endif
784 /* On IA64, the volatile write acts as a release barrier. */
785 GC_mark_stack_top = my_top + stack_size;
787 GC_release_mark_lock();
788 GC_notify_all_marker();
791 /* Mark from the local mark stack. */
792 /* On return, the local mark stack is empty. */
793 /* But this may be achieved by copying the */
794 /* local mark stack back into the global one. */
795 void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
797 unsigned n;
798 # define N_LOCAL_ITERS 1
800 # ifdef GC_ASSERTIONS
801 /* Make sure we don't hold mark lock. */
802 GC_acquire_mark_lock();
803 GC_release_mark_lock();
804 # endif
805 for (;;) {
806 for (n = 0; n < N_LOCAL_ITERS; ++n) {
807 local_top = GC_mark_from(local_top, local_mark_stack,
808 local_mark_stack + LOCAL_MARK_STACK_SIZE);
809 if (local_top < local_mark_stack) return;
810 if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
811 GC_return_mark_stack(local_mark_stack, local_top);
812 return;
815 if (GC_mark_stack_top < GC_first_nonempty &&
816 GC_active_count < GC_helper_count
817 && local_top > local_mark_stack + 1) {
818 /* Try to share the load, since the main stack is empty, */
819 /* and helper threads are waiting for a refill. */
820 /* The entries near the bottom of the stack are likely */
821 /* to require more work. Thus we return those, eventhough */
822 /* it's harder. */
823 mse * p;
824 mse * new_bottom = local_mark_stack
825 + (local_top - local_mark_stack)/2;
826 GC_ASSERT(new_bottom > local_mark_stack
827 && new_bottom < local_top);
828 GC_return_mark_stack(local_mark_stack, new_bottom - 1);
829 memmove(local_mark_stack, new_bottom,
830 (local_top - new_bottom + 1) * sizeof(mse));
831 local_top -= (new_bottom - local_mark_stack);
836 #define ENTRIES_TO_GET 5
838 long GC_markers = 2; /* Normally changed by thread-library- */
839 /* -specific code. */
841 /* Mark using the local mark stack until the global mark stack is empty */
842 /* and ther are no active workers. Update GC_first_nonempty to reflect */
843 /* progress. */
844 /* Caller does not hold mark lock. */
845 /* Caller has already incremented GC_helper_count. We decrement it, */
846 /* and maintain GC_active_count. */
847 void GC_mark_local(mse *local_mark_stack, int id)
849 mse * my_first_nonempty;
851 GC_acquire_mark_lock();
852 GC_active_count++;
853 my_first_nonempty = GC_first_nonempty;
854 GC_ASSERT(GC_first_nonempty >= GC_mark_stack &&
855 GC_first_nonempty <= GC_mark_stack_top + 1);
856 # ifdef PRINTSTATS
857 GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
858 # endif
859 GC_release_mark_lock();
860 for (;;) {
861 size_t n_on_stack;
862 size_t n_to_get;
863 mse *next;
864 mse * my_top;
865 mse * local_top;
866 mse * global_first_nonempty = GC_first_nonempty;
868 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
869 my_first_nonempty <= GC_mark_stack_top + 1);
870 GC_ASSERT(global_first_nonempty >= GC_mark_stack &&
871 global_first_nonempty <= GC_mark_stack_top + 1);
872 if (my_first_nonempty < global_first_nonempty) {
873 my_first_nonempty = global_first_nonempty;
874 } else if (global_first_nonempty < my_first_nonempty) {
875 GC_compare_and_exchange((word *)(&GC_first_nonempty),
876 (word) global_first_nonempty,
877 (word) my_first_nonempty);
878 /* If this fails, we just go ahead, without updating */
879 /* GC_first_nonempty. */
881 /* Perhaps we should also update GC_first_nonempty, if it */
882 /* is less. But that would require using atomic updates. */
883 my_top = GC_mark_stack_top;
884 n_on_stack = my_top - my_first_nonempty + 1;
885 if (0 == n_on_stack) {
886 GC_acquire_mark_lock();
887 my_top = GC_mark_stack_top;
888 n_on_stack = my_top - my_first_nonempty + 1;
889 if (0 == n_on_stack) {
890 GC_active_count--;
891 GC_ASSERT(GC_active_count <= GC_helper_count);
892 /* Other markers may redeposit objects */
893 /* on the stack. */
894 if (0 == GC_active_count) GC_notify_all_marker();
895 while (GC_active_count > 0
896 && GC_first_nonempty > GC_mark_stack_top) {
897 /* We will be notified if either GC_active_count */
898 /* reaches zero, or if more objects are pushed on */
899 /* the global mark stack. */
900 GC_wait_marker();
902 if (GC_active_count == 0 &&
903 GC_first_nonempty > GC_mark_stack_top) {
904 GC_bool need_to_notify = FALSE;
905 /* The above conditions can't be falsified while we */
906 /* hold the mark lock, since neither */
907 /* GC_active_count nor GC_mark_stack_top can */
908 /* change. GC_first_nonempty can only be */
909 /* incremented asynchronously. Thus we know that */
910 /* both conditions actually held simultaneously. */
911 GC_helper_count--;
912 if (0 == GC_helper_count) need_to_notify = TRUE;
913 # ifdef PRINTSTATS
914 GC_printf1(
915 "Finished mark helper %lu\n", (unsigned long)id);
916 # endif
917 GC_release_mark_lock();
918 if (need_to_notify) GC_notify_all_marker();
919 return;
921 /* else there's something on the stack again, or */
922 /* another help may push something. */
923 GC_active_count++;
924 GC_ASSERT(GC_active_count > 0);
925 GC_release_mark_lock();
926 continue;
927 } else {
928 GC_release_mark_lock();
931 n_to_get = ENTRIES_TO_GET;
932 if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
933 local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
934 local_mark_stack, n_to_get,
935 &my_first_nonempty);
936 GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
937 my_first_nonempty <= GC_mark_stack_top + 1);
938 GC_do_local_mark(local_mark_stack, local_top);
942 /* Perform Parallel mark. */
943 /* We hold the GC lock, not the mark lock. */
944 /* Currently runs until the mark stack is */
945 /* empty. */
946 void GC_do_parallel_mark()
948 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
949 mse * local_top;
950 mse * my_top;
952 GC_acquire_mark_lock();
953 GC_ASSERT(I_HOLD_LOCK());
954 GC_ASSERT(!GC_help_wanted);
955 GC_ASSERT(GC_active_count == 0);
956 # ifdef PRINTSTATS
957 GC_printf1("Starting marking for mark phase number %lu\n",
958 (unsigned long)GC_mark_no);
959 # endif
960 GC_first_nonempty = GC_mark_stack;
961 GC_active_count = 0;
962 GC_helper_count = 1;
963 GC_help_wanted = TRUE;
964 GC_release_mark_lock();
965 GC_notify_all_marker();
966 /* Wake up potential helpers. */
967 GC_mark_local(local_mark_stack, 0);
968 GC_acquire_mark_lock();
969 GC_help_wanted = FALSE;
970 /* Done; clean up. */
971 while (GC_helper_count > 0) GC_wait_marker();
972 /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
973 # ifdef PRINTSTATS
974 GC_printf1(
975 "Finished marking for mark phase number %lu\n",
976 (unsigned long)GC_mark_no);
977 # endif
978 GC_mark_no++;
979 GC_release_mark_lock();
980 GC_notify_all_marker();
984 /* Try to help out the marker, if it's running. */
985 /* We do not hold the GC lock, but the requestor does. */
986 void GC_help_marker(word my_mark_no)
988 mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
989 unsigned my_id;
990 mse * my_first_nonempty;
992 if (!GC_parallel) return;
993 GC_acquire_mark_lock();
994 while (GC_mark_no < my_mark_no
995 || !GC_help_wanted && GC_mark_no == my_mark_no) {
996 GC_wait_marker();
998 my_id = GC_helper_count;
999 if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
1000 /* Second test is useful only if original threads can also */
1001 /* act as helpers. Under Linux they can't. */
1002 GC_release_mark_lock();
1003 return;
1005 GC_helper_count = my_id + 1;
1006 GC_release_mark_lock();
1007 GC_mark_local(local_mark_stack, my_id);
1008 /* GC_mark_local decrements GC_helper_count. */
1011 #endif /* PARALLEL_MARK */
1013 /* Allocate or reallocate space for mark stack of size s words */
1014 /* May silently fail. */
1015 static void alloc_mark_stack(n)
1016 word n;
1018 mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
1020 GC_mark_stack_too_small = FALSE;
1021 if (GC_mark_stack_size != 0) {
1022 if (new_stack != 0) {
1023 word displ = (word)GC_mark_stack & (GC_page_size - 1);
1024 signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
1026 /* Recycle old space */
1027 if (0 != displ) displ = GC_page_size - displ;
1028 size = (size - displ) & ~(GC_page_size - 1);
1029 if (size > 0) {
1030 GC_add_to_heap((struct hblk *)
1031 ((word)GC_mark_stack + displ), (word)size);
1033 GC_mark_stack = new_stack;
1034 GC_mark_stack_size = n;
1035 GC_mark_stack_limit = new_stack + n;
1036 # ifdef CONDPRINT
1037 if (GC_print_stats) {
1038 GC_printf1("Grew mark stack to %lu frames\n",
1039 (unsigned long) GC_mark_stack_size);
1041 # endif
1042 } else {
1043 # ifdef CONDPRINT
1044 if (GC_print_stats) {
1045 GC_printf1("Failed to grow mark stack to %lu frames\n",
1046 (unsigned long) n);
1048 # endif
1050 } else {
1051 if (new_stack == 0) {
1052 GC_err_printf0("No space for mark stack\n");
1053 EXIT();
1055 GC_mark_stack = new_stack;
1056 GC_mark_stack_size = n;
1057 GC_mark_stack_limit = new_stack + n;
1059 GC_mark_stack_top = GC_mark_stack-1;
1062 void GC_mark_init()
1064 alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
1068 * Push all locations between b and t onto the mark stack.
1069 * b is the first location to be checked. t is one past the last
1070 * location to be checked.
1071 * Should only be used if there is no possibility of mark stack
1072 * overflow.
1074 void GC_push_all(bottom, top)
1075 ptr_t bottom;
1076 ptr_t top;
1078 register word length;
1080 bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1081 top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
1082 if (top == 0 || bottom == top) return;
1083 GC_mark_stack_top++;
1084 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1085 ABORT("unexpected mark stack overflow");
1087 length = top - bottom;
1088 # if GC_DS_TAGS > ALIGNMENT - 1
1089 length += GC_DS_TAGS;
1090 length &= ~GC_DS_TAGS;
1091 # endif
1092 GC_mark_stack_top -> mse_start = (word *)bottom;
1093 GC_mark_stack_top -> mse_descr = length;
1097 * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
1098 * We use push_fn to actually push the block.
1099 * Used both to selectively push dirty pages, or to push a block
1100 * in piecemeal fashion, to allow for more marking concurrency.
1101 * Will not overflow mark stack if push_fn pushes a small fixed number
1102 * of entries. (This is invoked only if push_fn pushes a single entry,
1103 * or if it marks each object before pushing it, thus ensuring progress
1104 * in the event of a stack overflow.)
1106 void GC_push_selected(bottom, top, dirty_fn, push_fn)
1107 ptr_t bottom;
1108 ptr_t top;
1109 int (*dirty_fn) GC_PROTO((struct hblk * h));
1110 void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
1112 register struct hblk * h;
1114 bottom = (ptr_t)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1115 top = (ptr_t)(((long) top) & ~(ALIGNMENT-1));
1117 if (top == 0 || bottom == top) return;
1118 h = HBLKPTR(bottom + HBLKSIZE);
1119 if (top <= (ptr_t) h) {
1120 if ((*dirty_fn)(h-1)) {
1121 (*push_fn)(bottom, top);
1123 return;
1125 if ((*dirty_fn)(h-1)) {
1126 (*push_fn)(bottom, (ptr_t)h);
1128 while ((ptr_t)(h+1) <= top) {
1129 if ((*dirty_fn)(h)) {
1130 if ((word)(GC_mark_stack_top - GC_mark_stack)
1131 > 3 * GC_mark_stack_size / 4) {
1132 /* Danger of mark stack overflow */
1133 (*push_fn)((ptr_t)h, top);
1134 return;
1135 } else {
1136 (*push_fn)((ptr_t)h, (ptr_t)(h+1));
1139 h++;
1141 if ((ptr_t)h != top) {
1142 if ((*dirty_fn)(h)) {
1143 (*push_fn)((ptr_t)h, top);
1146 if (GC_mark_stack_top >= GC_mark_stack_limit) {
1147 ABORT("unexpected mark stack overflow");
1151 # ifndef SMALL_CONFIG
1153 #ifdef PARALLEL_MARK
1154 /* Break up root sections into page size chunks to better spread */
1155 /* out work. */
1156 GC_bool GC_true_func(struct hblk *h) { return TRUE; }
1157 # define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
1158 #else
1159 # define GC_PUSH_ALL(b,t) GC_push_all(b,t);
1160 #endif
1163 void GC_push_conditional(bottom, top, all)
1164 ptr_t bottom;
1165 ptr_t top;
1166 int all;
1168 if (all) {
1169 if (GC_dirty_maintained) {
1170 # ifdef PROC_VDB
1171 /* Pages that were never dirtied cannot contain pointers */
1172 GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
1173 # else
1174 GC_push_all(bottom, top);
1175 # endif
1176 } else {
1177 GC_push_all(bottom, top);
1179 } else {
1180 GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
1183 #endif
1185 # if defined(MSWIN32) || defined(MSWINCE)
1186 void __cdecl GC_push_one(p)
1187 # else
1188 void GC_push_one(p)
1189 # endif
1190 word p;
1192 GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
1195 struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
1196 GC_PTR obj;
1197 struct GC_ms_entry * mark_stack_ptr;
1198 struct GC_ms_entry * mark_stack_limit;
1199 GC_PTR *src;
1201 PREFETCH(obj);
1202 PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
1203 was_marked /* internally generated exit label */);
1204 return mark_stack_ptr;
1207 # ifdef __STDC__
1208 # define BASE(p) (word)GC_base((void *)(p))
1209 # else
1210 # define BASE(p) (word)GC_base((char *)(p))
1211 # endif
1213 /* Mark and push (i.e. gray) a single object p onto the main */
1214 /* mark stack. Consider p to be valid if it is an interior */
1215 /* pointer. */
1216 /* The object p has passed a preliminary pointer validity */
1217 /* test, but we do not definitely know whether it is valid. */
1218 /* Mark bits are NOT atomically updated. Thus this must be the */
1219 /* only thread setting them. */
1220 # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
1221 void GC_mark_and_push_stack(p, source)
1222 ptr_t source;
1223 # else
1224 void GC_mark_and_push_stack(p)
1225 # define source 0
1226 # endif
1227 register word p;
1229 register word r;
1230 register hdr * hhdr;
1231 register int displ;
1233 GET_HDR(p, hhdr);
1234 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
1235 if (hhdr != 0) {
1236 r = BASE(p);
1237 hhdr = HDR(r);
1238 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1240 } else {
1241 register map_entry_type map_entry;
1243 displ = HBLKDISPL(p);
1244 map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
1245 if (map_entry >= MAX_OFFSET) {
1246 if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
1247 r = BASE(p);
1248 displ = BYTES_TO_WORDS(HBLKDISPL(r));
1249 if (r == 0) hhdr = 0;
1250 } else {
1251 /* Offset invalid, but map reflects interior pointers */
1252 hhdr = 0;
1254 } else {
1255 displ = BYTES_TO_WORDS(displ);
1256 displ -= map_entry;
1257 r = (word)((word *)(HBLKPTR(p)) + displ);
1260 /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
1261 /* displ is the word index within the block. */
1262 if (hhdr == 0) {
1263 # ifdef PRINT_BLACK_LIST
1264 GC_add_to_black_list_stack(p, source);
1265 # else
1266 GC_add_to_black_list_stack(p);
1267 # endif
1268 # undef source /* In case we had to define it. */
1269 } else {
1270 if (!mark_bit_from_hdr(hhdr, displ)) {
1271 set_mark_bit_from_hdr(hhdr, displ);
1272 GC_STORE_BACK_PTR(source, (ptr_t)r);
1273 PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
1274 GC_mark_stack_limit);
1279 # ifdef TRACE_BUF
1281 # define TRACE_ENTRIES 1000
1283 struct trace_entry {
1284 char * kind;
1285 word gc_no;
1286 word words_allocd;
1287 word arg1;
1288 word arg2;
1289 } GC_trace_buf[TRACE_ENTRIES];
1291 int GC_trace_buf_ptr = 0;
1293 void GC_add_trace_entry(char *kind, word arg1, word arg2)
1295 GC_trace_buf[GC_trace_buf_ptr].kind = kind;
1296 GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
1297 GC_trace_buf[GC_trace_buf_ptr].words_allocd = GC_words_allocd;
1298 GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
1299 GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
1300 GC_trace_buf_ptr++;
1301 if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
1304 void GC_print_trace(word gc_no, GC_bool lock)
1306 int i;
1307 struct trace_entry *p;
1309 if (lock) LOCK();
1310 for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
1311 if (i < 0) i = TRACE_ENTRIES-1;
1312 p = GC_trace_buf + i;
1313 if (p -> gc_no < gc_no || p -> kind == 0) return;
1314 printf("Trace:%s (gc:%d,words:%d) 0x%X, 0x%X\n",
1315 p -> kind, p -> gc_no, p -> words_allocd,
1316 (p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
1318 printf("Trace incomplete\n");
1319 if (lock) UNLOCK();
1322 # endif /* TRACE_BUF */
1325 * A version of GC_push_all that treats all interior pointers as valid
1326 * and scans the entire region immediately, in case the contents
1327 * change.
1329 void GC_push_all_eager(bottom, top)
1330 ptr_t bottom;
1331 ptr_t top;
1333 word * b = (word *)(((long) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
1334 word * t = (word *)(((long) top) & ~(ALIGNMENT-1));
1335 register word *p;
1336 register word q;
1337 register word *lim;
1338 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1339 register ptr_t least_ha = GC_least_plausible_heap_addr;
1340 # define GC_greatest_plausible_heap_addr greatest_ha
1341 # define GC_least_plausible_heap_addr least_ha
1343 if (top == 0) return;
1344 /* check all pointers in range and put in push if they appear */
1345 /* to be valid. */
1346 lim = t - 1 /* longword */;
1347 for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
1348 q = *p;
1349 GC_PUSH_ONE_STACK(q, p);
1351 # undef GC_greatest_plausible_heap_addr
1352 # undef GC_least_plausible_heap_addr
1355 #ifndef THREADS
1357 * A version of GC_push_all that treats all interior pointers as valid
1358 * and scans part of the area immediately, to make sure that saved
1359 * register values are not lost.
1360 * Cold_gc_frame delimits the stack section that must be scanned
1361 * eagerly. A zero value indicates that no eager scanning is needed.
1363 void GC_push_all_stack_partially_eager(bottom, top, cold_gc_frame)
1364 ptr_t bottom;
1365 ptr_t top;
1366 ptr_t cold_gc_frame;
1368 if (GC_all_interior_pointers) {
1369 # define EAGER_BYTES 1024
1370 /* Push the hot end of the stack eagerly, so that register values */
1371 /* saved inside GC frames are marked before they disappear. */
1372 /* The rest of the marking can be deferred until later. */
1373 if (0 == cold_gc_frame) {
1374 GC_push_all_stack(bottom, top);
1375 return;
1377 # ifdef STACK_GROWS_DOWN
1378 GC_push_all_eager(bottom, cold_gc_frame);
1379 GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
1380 # else /* STACK_GROWS_UP */
1381 GC_push_all_eager(cold_gc_frame, top);
1382 GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
1383 # endif /* STACK_GROWS_UP */
1384 } else {
1385 GC_push_all_eager(bottom, top);
1387 # ifdef TRACE_BUF
1388 GC_add_trace_entry("GC_push_all_stack", bottom, top);
1389 # endif
1391 #endif /* !THREADS */
1393 void GC_push_all_stack(bottom, top)
1394 ptr_t bottom;
1395 ptr_t top;
1397 if (GC_all_interior_pointers) {
1398 GC_push_all(bottom, top);
1399 } else {
1400 GC_push_all_eager(bottom, top);
1404 #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1405 /* Push all objects reachable from marked objects in the given block */
1406 /* of size 1 objects. */
1407 void GC_push_marked1(h, hhdr)
1408 struct hblk *h;
1409 register hdr * hhdr;
1411 word * mark_word_addr = &(hhdr->hb_marks[0]);
1412 register word *p;
1413 word *plim;
1414 register int i;
1415 register word q;
1416 register word mark_word;
1417 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1418 register ptr_t least_ha = GC_least_plausible_heap_addr;
1419 register mse * mark_stack_top = GC_mark_stack_top;
1420 register mse * mark_stack_limit = GC_mark_stack_limit;
1421 # define GC_mark_stack_top mark_stack_top
1422 # define GC_mark_stack_limit mark_stack_limit
1423 # define GC_greatest_plausible_heap_addr greatest_ha
1424 # define GC_least_plausible_heap_addr least_ha
1426 p = (word *)(h->hb_body);
1427 plim = (word *)(((word)h) + HBLKSIZE);
1429 /* go through all words in block */
1430 while( p < plim ) {
1431 mark_word = *mark_word_addr++;
1432 i = 0;
1433 while(mark_word != 0) {
1434 if (mark_word & 1) {
1435 q = p[i];
1436 GC_PUSH_ONE_HEAP(q, p + i);
1438 i++;
1439 mark_word >>= 1;
1441 p += WORDSZ;
1443 # undef GC_greatest_plausible_heap_addr
1444 # undef GC_least_plausible_heap_addr
1445 # undef GC_mark_stack_top
1446 # undef GC_mark_stack_limit
1447 GC_mark_stack_top = mark_stack_top;
1451 #ifndef UNALIGNED
1453 /* Push all objects reachable from marked objects in the given block */
1454 /* of size 2 objects. */
1455 void GC_push_marked2(h, hhdr)
1456 struct hblk *h;
1457 register hdr * hhdr;
1459 word * mark_word_addr = &(hhdr->hb_marks[0]);
1460 register word *p;
1461 word *plim;
1462 register int i;
1463 register word q;
1464 register word mark_word;
1465 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1466 register ptr_t least_ha = GC_least_plausible_heap_addr;
1467 register mse * mark_stack_top = GC_mark_stack_top;
1468 register mse * mark_stack_limit = GC_mark_stack_limit;
1469 # define GC_mark_stack_top mark_stack_top
1470 # define GC_mark_stack_limit mark_stack_limit
1471 # define GC_greatest_plausible_heap_addr greatest_ha
1472 # define GC_least_plausible_heap_addr least_ha
1474 p = (word *)(h->hb_body);
1475 plim = (word *)(((word)h) + HBLKSIZE);
1477 /* go through all words in block */
1478 while( p < plim ) {
1479 mark_word = *mark_word_addr++;
1480 i = 0;
1481 while(mark_word != 0) {
1482 if (mark_word & 1) {
1483 q = p[i];
1484 GC_PUSH_ONE_HEAP(q, p + i);
1485 q = p[i+1];
1486 GC_PUSH_ONE_HEAP(q, p + i);
1488 i += 2;
1489 mark_word >>= 2;
1491 p += WORDSZ;
1493 # undef GC_greatest_plausible_heap_addr
1494 # undef GC_least_plausible_heap_addr
1495 # undef GC_mark_stack_top
1496 # undef GC_mark_stack_limit
1497 GC_mark_stack_top = mark_stack_top;
1500 /* Push all objects reachable from marked objects in the given block */
1501 /* of size 4 objects. */
1502 /* There is a risk of mark stack overflow here. But we handle that. */
1503 /* And only unmarked objects get pushed, so it's not very likely. */
1504 void GC_push_marked4(h, hhdr)
1505 struct hblk *h;
1506 register hdr * hhdr;
1508 word * mark_word_addr = &(hhdr->hb_marks[0]);
1509 register word *p;
1510 word *plim;
1511 register int i;
1512 register word q;
1513 register word mark_word;
1514 register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
1515 register ptr_t least_ha = GC_least_plausible_heap_addr;
1516 register mse * mark_stack_top = GC_mark_stack_top;
1517 register mse * mark_stack_limit = GC_mark_stack_limit;
1518 # define GC_mark_stack_top mark_stack_top
1519 # define GC_mark_stack_limit mark_stack_limit
1520 # define GC_greatest_plausible_heap_addr greatest_ha
1521 # define GC_least_plausible_heap_addr least_ha
1523 p = (word *)(h->hb_body);
1524 plim = (word *)(((word)h) + HBLKSIZE);
1526 /* go through all words in block */
1527 while( p < plim ) {
1528 mark_word = *mark_word_addr++;
1529 i = 0;
1530 while(mark_word != 0) {
1531 if (mark_word & 1) {
1532 q = p[i];
1533 GC_PUSH_ONE_HEAP(q, p + i);
1534 q = p[i+1];
1535 GC_PUSH_ONE_HEAP(q, p + i + 1);
1536 q = p[i+2];
1537 GC_PUSH_ONE_HEAP(q, p + i + 2);
1538 q = p[i+3];
1539 GC_PUSH_ONE_HEAP(q, p + i + 3);
1541 i += 4;
1542 mark_word >>= 4;
1544 p += WORDSZ;
1546 # undef GC_greatest_plausible_heap_addr
1547 # undef GC_least_plausible_heap_addr
1548 # undef GC_mark_stack_top
1549 # undef GC_mark_stack_limit
1550 GC_mark_stack_top = mark_stack_top;
1553 #endif /* UNALIGNED */
1555 #endif /* SMALL_CONFIG */
1557 /* Push all objects reachable from marked objects in the given block */
1558 void GC_push_marked(h, hhdr)
1559 struct hblk *h;
1560 register hdr * hhdr;
1562 register int sz = hhdr -> hb_sz;
1563 register int descr = hhdr -> hb_descr;
1564 register word * p;
1565 register int word_no;
1566 register word * lim;
1567 register mse * GC_mark_stack_top_reg;
1568 register mse * mark_stack_limit = GC_mark_stack_limit;
1570 /* Some quick shortcuts: */
1571 if ((0 | GC_DS_LENGTH) == descr) return;
1572 if (GC_block_empty(hhdr)/* nothing marked */) return;
1573 GC_n_rescuing_pages++;
1574 GC_objects_are_marked = TRUE;
1575 if (sz > MAXOBJSZ) {
1576 lim = (word *)h;
1577 } else {
1578 lim = (word *)(h + 1) - sz;
1581 switch(sz) {
1582 # if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
1583 case 1:
1584 GC_push_marked1(h, hhdr);
1585 break;
1586 # endif
1587 # if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
1588 !defined(USE_MARK_BYTES)
1589 case 2:
1590 GC_push_marked2(h, hhdr);
1591 break;
1592 case 4:
1593 GC_push_marked4(h, hhdr);
1594 break;
1595 # endif
1596 default:
1597 GC_mark_stack_top_reg = GC_mark_stack_top;
1598 for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
1599 if (mark_bit_from_hdr(hhdr, word_no)) {
1600 /* Mark from fields inside the object */
1601 PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
1602 # ifdef GATHERSTATS
1603 /* Subtract this object from total, since it was */
1604 /* added in twice. */
1605 GC_composite_in_use -= sz;
1606 # endif
1609 GC_mark_stack_top = GC_mark_stack_top_reg;
1613 #ifndef SMALL_CONFIG
1614 /* Test whether any page in the given block is dirty */
1615 GC_bool GC_block_was_dirty(h, hhdr)
1616 struct hblk *h;
1617 register hdr * hhdr;
1619 register int sz = hhdr -> hb_sz;
1621 if (sz < MAXOBJSZ) {
1622 return(GC_page_was_dirty(h));
1623 } else {
1624 register ptr_t p = (ptr_t)h;
1625 sz = WORDS_TO_BYTES(sz);
1626 while (p < (ptr_t)h + sz) {
1627 if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
1628 p += HBLKSIZE;
1630 return(FALSE);
1633 #endif /* SMALL_CONFIG */
1635 /* Similar to GC_push_next_marked, but return address of next block */
1636 struct hblk * GC_push_next_marked(h)
1637 struct hblk *h;
1639 register hdr * hhdr;
1641 h = GC_next_used_block(h);
1642 if (h == 0) return(0);
1643 hhdr = HDR(h);
1644 GC_push_marked(h, hhdr);
1645 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1648 #ifndef SMALL_CONFIG
1649 /* Identical to above, but mark only from dirty pages */
1650 struct hblk * GC_push_next_marked_dirty(h)
1651 struct hblk *h;
1653 register hdr * hhdr;
1655 if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
1656 for (;;) {
1657 h = GC_next_used_block(h);
1658 if (h == 0) return(0);
1659 hhdr = HDR(h);
1660 # ifdef STUBBORN_ALLOC
1661 if (hhdr -> hb_obj_kind == STUBBORN) {
1662 if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
1663 break;
1665 } else {
1666 if (GC_block_was_dirty(h, hhdr)) break;
1668 # else
1669 if (GC_block_was_dirty(h, hhdr)) break;
1670 # endif
1671 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1673 GC_push_marked(h, hhdr);
1674 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
1676 #endif
1678 /* Similar to above, but for uncollectable pages. Needed since we */
1679 /* do not clear marks for such pages, even for full collections. */
1680 struct hblk * GC_push_next_marked_uncollectable(h)
1681 struct hblk *h;
1683 register hdr * hhdr = HDR(h);
1685 for (;;) {
1686 h = GC_next_used_block(h);
1687 if (h == 0) return(0);
1688 hhdr = HDR(h);
1689 if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
1690 h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
1692 GC_push_marked(h, hhdr);
1693 return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));