2012-07-06 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / graphite-scop-detection.c
blobcfa06ab60c5b9929abf1ff5d5e5951b61fba37c0
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree-flow.h"
35 #include "cfgloop.h"
36 #include "tree-chrec.h"
37 #include "tree-data-ref.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-pass.h"
40 #include "sese.h"
42 #ifdef HAVE_cloog
43 #include "graphite-poly.h"
44 #include "graphite-scop-detection.h"
46 /* Forward declarations. */
47 static void make_close_phi_nodes_unique (basic_block);
49 /* The type of the analyzed basic block. */
51 typedef enum gbb_type {
52 GBB_UNKNOWN,
53 GBB_LOOP_SING_EXIT_HEADER,
54 GBB_LOOP_MULT_EXIT_HEADER,
55 GBB_LOOP_EXIT,
56 GBB_COND_HEADER,
57 GBB_SIMPLE,
58 GBB_LAST
59 } gbb_type;
61 /* Detect the type of BB. Loop headers are only marked, if they are
62 new. This means their loop_father is different to LAST_LOOP.
63 Otherwise they are treated like any other bb and their type can be
64 any other type. */
66 static gbb_type
67 get_bb_type (basic_block bb, struct loop *last_loop)
69 VEC (basic_block, heap) *dom;
70 int nb_dom, nb_suc;
71 struct loop *loop = bb->loop_father;
73 /* Check, if we entry into a new loop. */
74 if (loop != last_loop)
76 if (single_exit (loop) != NULL)
77 return GBB_LOOP_SING_EXIT_HEADER;
78 else if (loop->num != 0)
79 return GBB_LOOP_MULT_EXIT_HEADER;
80 else
81 return GBB_COND_HEADER;
84 dom = get_dominated_by (CDI_DOMINATORS, bb);
85 nb_dom = VEC_length (basic_block, dom);
86 VEC_free (basic_block, heap, dom);
88 if (nb_dom == 0)
89 return GBB_LAST;
91 nb_suc = VEC_length (edge, bb->succs);
93 if (nb_dom == 1 && nb_suc == 1)
94 return GBB_SIMPLE;
96 return GBB_COND_HEADER;
99 /* A SCoP detection region, defined using bbs as borders.
101 All control flow touching this region, comes in passing basic_block
102 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
103 edges for the borders we are able to represent also regions that do
104 not have a single entry or exit edge.
106 But as they have a single entry basic_block and a single exit
107 basic_block, we are able to generate for every sd_region a single
108 entry and exit edge.
112 3 <- entry
115 / \ This region contains: {3, 4, 5, 6, 7, 8}
120 9 <- exit */
123 typedef struct sd_region_p
125 /* The entry bb dominates all bbs in the sd_region. It is part of
126 the region. */
127 basic_block entry;
129 /* The exit bb postdominates all bbs in the sd_region, but is not
130 part of the region. */
131 basic_block exit;
132 } sd_region;
134 DEF_VEC_O(sd_region);
135 DEF_VEC_ALLOC_O(sd_region, heap);
138 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
140 static void
141 move_sd_regions (VEC (sd_region, heap) **source,
142 VEC (sd_region, heap) **target)
144 sd_region *s;
145 int i;
147 FOR_EACH_VEC_ELT (sd_region, *source, i, s)
148 VEC_safe_push (sd_region, heap, *target, s);
150 VEC_free (sd_region, heap, *source);
153 /* Something like "n * m" is not allowed. */
155 static bool
156 graphite_can_represent_init (tree e)
158 switch (TREE_CODE (e))
160 case POLYNOMIAL_CHREC:
161 return graphite_can_represent_init (CHREC_LEFT (e))
162 && graphite_can_represent_init (CHREC_RIGHT (e));
164 case MULT_EXPR:
165 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
166 return graphite_can_represent_init (TREE_OPERAND (e, 0))
167 && host_integerp (TREE_OPERAND (e, 1), 0);
168 else
169 return graphite_can_represent_init (TREE_OPERAND (e, 1))
170 && host_integerp (TREE_OPERAND (e, 0), 0);
172 case PLUS_EXPR:
173 case POINTER_PLUS_EXPR:
174 case MINUS_EXPR:
175 return graphite_can_represent_init (TREE_OPERAND (e, 0))
176 && graphite_can_represent_init (TREE_OPERAND (e, 1));
178 case NEGATE_EXPR:
179 case BIT_NOT_EXPR:
180 CASE_CONVERT:
181 case NON_LVALUE_EXPR:
182 return graphite_can_represent_init (TREE_OPERAND (e, 0));
184 default:
185 break;
188 return true;
191 /* Return true when SCEV can be represented in the polyhedral model.
193 An expression can be represented, if it can be expressed as an
194 affine expression. For loops (i, j) and parameters (m, n) all
195 affine expressions are of the form:
197 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
199 1 i + 20 j + (-2) m + 25
201 Something like "i * n" or "n * m" is not allowed. */
203 static bool
204 graphite_can_represent_scev (tree scev)
206 if (chrec_contains_undetermined (scev))
207 return false;
209 switch (TREE_CODE (scev))
211 case PLUS_EXPR:
212 case MINUS_EXPR:
213 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
214 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
216 case MULT_EXPR:
217 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
218 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
219 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
220 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
221 && graphite_can_represent_init (scev)
222 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
223 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
225 case POLYNOMIAL_CHREC:
226 /* Check for constant strides. With a non constant stride of
227 'n' we would have a value of 'iv * n'. Also check that the
228 initial value can represented: for example 'n * m' cannot be
229 represented. */
230 if (!evolution_function_right_is_integer_cst (scev)
231 || !graphite_can_represent_init (scev))
232 return false;
234 default:
235 break;
238 /* Only affine functions can be represented. */
239 if (!scev_is_linear_expression (scev))
240 return false;
242 return true;
246 /* Return true when EXPR can be represented in the polyhedral model.
248 This means an expression can be represented, if it is linear with
249 respect to the loops and the strides are non parametric.
250 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
251 entry of the region we analyse. */
253 static bool
254 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
255 tree expr)
257 tree scev = analyze_scalar_evolution (loop, expr);
259 scev = instantiate_scev (scop_entry, loop, scev);
261 return graphite_can_represent_scev (scev);
264 /* Return true if the data references of STMT can be represented by
265 Graphite. */
267 static bool
268 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
269 gimple stmt)
271 data_reference_p dr;
272 unsigned i;
273 int j;
274 bool res = true;
275 VEC (data_reference_p, heap) *drs = NULL;
276 loop_p outer;
278 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
280 graphite_find_data_references_in_stmt (outer,
281 loop_containing_stmt (stmt),
282 stmt, &drs);
284 FOR_EACH_VEC_ELT (data_reference_p, drs, j, dr)
285 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
286 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
288 res = false;
289 goto done;
292 free_data_refs (drs);
293 drs = NULL;
296 done:
297 free_data_refs (drs);
298 return res;
301 /* Return true only when STMT is simple enough for being handled by
302 Graphite. This depends on SCOP_ENTRY, as the parameters are
303 initialized relatively to this basic block, the linear functions
304 are initialized to OUTERMOST_LOOP and BB is the place where we try
305 to evaluate the STMT. */
307 static bool
308 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
309 gimple stmt, basic_block bb)
311 loop_p loop = bb->loop_father;
313 gcc_assert (scop_entry);
315 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
316 Calls have side-effects, except those to const or pure
317 functions. */
318 if (gimple_has_volatile_ops (stmt)
319 || (gimple_code (stmt) == GIMPLE_CALL
320 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
321 || (gimple_code (stmt) == GIMPLE_ASM))
322 return false;
324 if (is_gimple_debug (stmt))
325 return true;
327 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
328 return false;
330 switch (gimple_code (stmt))
332 case GIMPLE_RETURN:
333 case GIMPLE_LABEL:
334 return true;
336 case GIMPLE_COND:
338 tree op;
339 ssa_op_iter op_iter;
340 enum tree_code code = gimple_cond_code (stmt);
342 /* We can handle all binary comparisons. Inequalities are
343 also supported as they can be represented with union of
344 polyhedra. */
345 if (!(code == LT_EXPR
346 || code == GT_EXPR
347 || code == LE_EXPR
348 || code == GE_EXPR
349 || code == EQ_EXPR
350 || code == NE_EXPR))
351 return false;
353 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
354 if (!graphite_can_represent_expr (scop_entry, loop, op)
355 /* We can not handle REAL_TYPE. Failed for pr39260. */
356 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
357 return false;
359 return true;
362 case GIMPLE_ASSIGN:
363 case GIMPLE_CALL:
364 return true;
366 default:
367 /* These nodes cut a new scope. */
368 return false;
371 return false;
374 /* Returns the statement of BB that contains a harmful operation: that
375 can be a function call with side effects, the induction variables
376 are not linear with respect to SCOP_ENTRY, etc. The current open
377 scop should end before this statement. The evaluation is limited using
378 OUTERMOST_LOOP as outermost loop that may change. */
380 static gimple
381 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
383 gimple_stmt_iterator gsi;
385 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
386 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
387 return gsi_stmt (gsi);
389 return NULL;
392 /* Return true if LOOP can be represented in the polyhedral
393 representation. This is evaluated taking SCOP_ENTRY and
394 OUTERMOST_LOOP in mind. */
396 static bool
397 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
399 tree niter;
400 struct tree_niter_desc niter_desc;
402 /* FIXME: For the moment, graphite cannot be used on loops that
403 iterate using induction variables that wrap. */
405 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
406 && niter_desc.control.no_overflow
407 && (niter = number_of_latch_executions (loop))
408 && !chrec_contains_undetermined (niter)
409 && graphite_can_represent_expr (scop_entry, loop, niter);
412 /* Store information needed by scopdet_* functions. */
414 struct scopdet_info
416 /* Exit of the open scop would stop if the current BB is harmful. */
417 basic_block exit;
419 /* Where the next scop would start if the current BB is harmful. */
420 basic_block next;
422 /* The bb or one of its children contains open loop exits. That means
423 loop exit nodes that are not surrounded by a loop dominated by bb. */
424 bool exits;
426 /* The bb or one of its children contains only structures we can handle. */
427 bool difficult;
430 static struct scopdet_info build_scops_1 (basic_block, loop_p,
431 VEC (sd_region, heap) **, loop_p);
433 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
434 to SCOPS. TYPE is the gbb_type of BB. */
436 static struct scopdet_info
437 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
438 VEC (sd_region, heap) **scops, gbb_type type)
440 loop_p loop = bb->loop_father;
441 struct scopdet_info result;
442 gimple stmt;
444 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
445 basic_block entry_block = ENTRY_BLOCK_PTR;
446 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
447 result.difficult = (stmt != NULL);
448 result.exit = NULL;
450 switch (type)
452 case GBB_LAST:
453 result.next = NULL;
454 result.exits = false;
456 /* Mark bbs terminating a SESE region difficult, if they start
457 a condition. */
458 if (!single_succ_p (bb))
459 result.difficult = true;
460 else
461 result.exit = single_succ (bb);
463 break;
465 case GBB_SIMPLE:
466 result.next = single_succ (bb);
467 result.exits = false;
468 result.exit = single_succ (bb);
469 break;
471 case GBB_LOOP_SING_EXIT_HEADER:
473 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
474 struct scopdet_info sinfo;
475 edge exit_e = single_exit (loop);
477 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
479 if (!graphite_can_represent_loop (entry_block, loop))
480 result.difficult = true;
482 result.difficult |= sinfo.difficult;
484 /* Try again with another loop level. */
485 if (result.difficult
486 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
488 outermost_loop = loop;
490 VEC_free (sd_region, heap, regions);
491 regions = VEC_alloc (sd_region, heap, 3);
493 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
495 result = sinfo;
496 result.difficult = true;
498 if (sinfo.difficult)
499 move_sd_regions (&regions, scops);
500 else
502 sd_region open_scop;
503 open_scop.entry = bb;
504 open_scop.exit = exit_e->dest;
505 VEC_safe_push (sd_region, heap, *scops, &open_scop);
506 VEC_free (sd_region, heap, regions);
509 else
511 result.exit = exit_e->dest;
512 result.next = exit_e->dest;
514 /* If we do not dominate result.next, remove it. It's either
515 the EXIT_BLOCK_PTR, or another bb dominates it and will
516 call the scop detection for this bb. */
517 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
518 result.next = NULL;
520 if (exit_e->src->loop_father != loop)
521 result.next = NULL;
523 result.exits = false;
525 if (result.difficult)
526 move_sd_regions (&regions, scops);
527 else
528 VEC_free (sd_region, heap, regions);
531 break;
534 case GBB_LOOP_MULT_EXIT_HEADER:
536 /* XXX: For now we just do not join loops with multiple exits. If the
537 exits lead to the same bb it may be possible to join the loop. */
538 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
539 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
540 edge e;
541 int i;
542 build_scops_1 (bb, loop, &regions, loop);
544 /* Scan the code dominated by this loop. This means all bbs, that are
545 are dominated by a bb in this loop, but are not part of this loop.
547 The easiest case:
548 - The loop exit destination is dominated by the exit sources.
550 TODO: We miss here the more complex cases:
551 - The exit destinations are dominated by another bb inside
552 the loop.
553 - The loop dominates bbs, that are not exit destinations. */
554 FOR_EACH_VEC_ELT (edge, exits, i, e)
555 if (e->src->loop_father == loop
556 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
558 if (loop_outer (outermost_loop))
559 outermost_loop = loop_outer (outermost_loop);
561 /* Pass loop_outer to recognize e->dest as loop header in
562 build_scops_1. */
563 if (e->dest->loop_father->header == e->dest)
564 build_scops_1 (e->dest, outermost_loop, &regions,
565 loop_outer (e->dest->loop_father));
566 else
567 build_scops_1 (e->dest, outermost_loop, &regions,
568 e->dest->loop_father);
571 result.next = NULL;
572 result.exit = NULL;
573 result.difficult = true;
574 result.exits = false;
575 move_sd_regions (&regions, scops);
576 VEC_free (edge, heap, exits);
577 break;
579 case GBB_COND_HEADER:
581 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
582 struct scopdet_info sinfo;
583 VEC (basic_block, heap) *dominated;
584 int i;
585 basic_block dom_bb;
586 basic_block last_exit = NULL;
587 edge e;
588 result.exits = false;
590 /* First check the successors of BB, and check if it is
591 possible to join the different branches. */
592 FOR_EACH_VEC_ELT (edge, bb->succs, i, e)
594 /* Ignore loop exits. They will be handled after the loop
595 body. */
596 if (loop_exits_to_bb_p (loop, e->dest))
598 result.exits = true;
599 continue;
602 /* Do not follow edges that lead to the end of the
603 conditions block. For example, in
606 | /|\
607 | 1 2 |
608 | | | |
609 | 3 4 |
610 | \|/
613 the edge from 0 => 6. Only check if all paths lead to
614 the same node 6. */
616 if (!single_pred_p (e->dest))
618 /* Check, if edge leads directly to the end of this
619 condition. */
620 if (!last_exit)
621 last_exit = e->dest;
623 if (e->dest != last_exit)
624 result.difficult = true;
626 continue;
629 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
631 result.difficult = true;
632 continue;
635 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
637 result.exits |= sinfo.exits;
638 result.difficult |= sinfo.difficult;
640 /* Checks, if all branches end at the same point.
641 If that is true, the condition stays joinable.
642 Have a look at the example above. */
643 if (sinfo.exit)
645 if (!last_exit)
646 last_exit = sinfo.exit;
648 if (sinfo.exit != last_exit)
649 result.difficult = true;
651 else
652 result.difficult = true;
655 if (!last_exit)
656 result.difficult = true;
658 /* Join the branches of the condition if possible. */
659 if (!result.exits && !result.difficult)
661 /* Only return a next pointer if we dominate this pointer.
662 Otherwise it will be handled by the bb dominating it. */
663 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
664 && last_exit != bb)
665 result.next = last_exit;
666 else
667 result.next = NULL;
669 result.exit = last_exit;
671 VEC_free (sd_region, heap, regions);
672 break;
675 /* Scan remaining bbs dominated by BB. */
676 dominated = get_dominated_by (CDI_DOMINATORS, bb);
678 FOR_EACH_VEC_ELT (basic_block, dominated, i, dom_bb)
680 /* Ignore loop exits: they will be handled after the loop body. */
681 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
682 < loop_depth (loop))
684 result.exits = true;
685 continue;
688 /* Ignore the bbs processed above. */
689 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
690 continue;
692 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
693 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
694 loop_outer (loop));
695 else
696 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
698 result.exits |= sinfo.exits;
699 result.difficult = true;
700 result.exit = NULL;
703 VEC_free (basic_block, heap, dominated);
705 result.next = NULL;
706 move_sd_regions (&regions, scops);
708 break;
711 default:
712 gcc_unreachable ();
715 return result;
718 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
719 SCOPS. The analyse if a sd_region can be handled is based on the value
720 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
721 is the loop in which CURRENT is handled.
723 TODO: These functions got a little bit big. They definitely should be cleaned
724 up. */
726 static struct scopdet_info
727 build_scops_1 (basic_block current, loop_p outermost_loop,
728 VEC (sd_region, heap) **scops, loop_p loop)
730 bool in_scop = false;
731 sd_region open_scop;
732 struct scopdet_info sinfo;
734 /* Initialize result. */
735 struct scopdet_info result;
736 result.exits = false;
737 result.difficult = false;
738 result.next = NULL;
739 result.exit = NULL;
740 open_scop.entry = NULL;
741 open_scop.exit = NULL;
742 sinfo.exit = NULL;
744 /* Loop over the dominance tree. If we meet a difficult bb, close
745 the current SCoP. Loop and condition header start a new layer,
746 and can only be added if all bbs in deeper layers are simple. */
747 while (current != NULL)
749 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
750 get_bb_type (current, loop));
752 if (!in_scop && !(sinfo.exits || sinfo.difficult))
754 open_scop.entry = current;
755 open_scop.exit = NULL;
756 in_scop = true;
758 else if (in_scop && (sinfo.exits || sinfo.difficult))
760 open_scop.exit = current;
761 VEC_safe_push (sd_region, heap, *scops, &open_scop);
762 in_scop = false;
765 result.difficult |= sinfo.difficult;
766 result.exits |= sinfo.exits;
768 current = sinfo.next;
771 /* Try to close open_scop, if we are still in an open SCoP. */
772 if (in_scop)
774 open_scop.exit = sinfo.exit;
775 gcc_assert (open_scop.exit);
776 VEC_safe_push (sd_region, heap, *scops, &open_scop);
779 result.exit = sinfo.exit;
780 return result;
783 /* Checks if a bb is contained in REGION. */
785 static bool
786 bb_in_sd_region (basic_block bb, sd_region *region)
788 return bb_in_region (bb, region->entry, region->exit);
791 /* Returns the single entry edge of REGION, if it does not exits NULL. */
793 static edge
794 find_single_entry_edge (sd_region *region)
796 edge e;
797 edge_iterator ei;
798 edge entry = NULL;
800 FOR_EACH_EDGE (e, ei, region->entry->preds)
801 if (!bb_in_sd_region (e->src, region))
803 if (entry)
805 entry = NULL;
806 break;
809 else
810 entry = e;
813 return entry;
816 /* Returns the single exit edge of REGION, if it does not exits NULL. */
818 static edge
819 find_single_exit_edge (sd_region *region)
821 edge e;
822 edge_iterator ei;
823 edge exit = NULL;
825 FOR_EACH_EDGE (e, ei, region->exit->preds)
826 if (bb_in_sd_region (e->src, region))
828 if (exit)
830 exit = NULL;
831 break;
834 else
835 exit = e;
838 return exit;
841 /* Create a single entry edge for REGION. */
843 static void
844 create_single_entry_edge (sd_region *region)
846 if (find_single_entry_edge (region))
847 return;
849 /* There are multiple predecessors for bb_3
851 | 1 2
852 | | /
853 | |/
854 | 3 <- entry
855 | |\
856 | | |
857 | 4 ^
858 | | |
859 | |/
862 There are two edges (1->3, 2->3), that point from outside into the region,
863 and another one (5->3), a loop latch, lead to bb_3.
865 We split bb_3.
867 | 1 2
868 | | /
869 | |/
870 |3.0
871 | |\ (3.0 -> 3.1) = single entry edge
872 |3.1 | <- entry
873 | | |
874 | | |
875 | 4 ^
876 | | |
877 | |/
880 If the loop is part of the SCoP, we have to redirect the loop latches.
882 | 1 2
883 | | /
884 | |/
885 |3.0
886 | | (3.0 -> 3.1) = entry edge
887 |3.1 <- entry
888 | |\
889 | | |
890 | 4 ^
891 | | |
892 | |/
893 | 5 */
895 if (region->entry->loop_father->header != region->entry
896 || dominated_by_p (CDI_DOMINATORS,
897 loop_latch_edge (region->entry->loop_father)->src,
898 region->exit))
900 edge forwarder = split_block_after_labels (region->entry);
901 region->entry = forwarder->dest;
903 else
904 /* This case is never executed, as the loop headers seem always to have a
905 single edge pointing from outside into the loop. */
906 gcc_unreachable ();
908 gcc_checking_assert (find_single_entry_edge (region));
911 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
913 static bool
914 sd_region_without_exit (edge e)
916 sd_region *r = (sd_region *) e->aux;
918 if (r)
919 return r->exit == NULL;
920 else
921 return false;
924 /* Create a single exit edge for REGION. */
926 static void
927 create_single_exit_edge (sd_region *region)
929 edge e;
930 edge_iterator ei;
931 edge forwarder = NULL;
932 basic_block exit;
934 /* We create a forwarder bb (5) for all edges leaving this region
935 (3->5, 4->5). All other edges leading to the same bb, are moved
936 to a new bb (6). If these edges where part of another region (2->5)
937 we update the region->exit pointer, of this region.
939 To identify which edge belongs to which region we depend on the e->aux
940 pointer in every edge. It points to the region of the edge or to NULL,
941 if the edge is not part of any region.
943 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
944 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
945 5 <- exit
947 changes to
949 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
950 | | \/ 3->5 no region, 4->5 no region,
951 | | 5
952 \| / 5->6 region->exit = 6
955 Now there is only a single exit edge (5->6). */
956 exit = region->exit;
957 region->exit = NULL;
958 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
960 /* Unmark the edges, that are no longer exit edges. */
961 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
962 if (e->aux)
963 e->aux = NULL;
965 /* Mark the new exit edge. */
966 single_succ_edge (forwarder->src)->aux = region;
968 /* Update the exit bb of all regions, where exit edges lead to
969 forwarder->dest. */
970 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
971 if (e->aux)
972 ((sd_region *) e->aux)->exit = forwarder->dest;
974 gcc_checking_assert (find_single_exit_edge (region));
977 /* Unmark the exit edges of all REGIONS.
978 See comment in "create_single_exit_edge". */
980 static void
981 unmark_exit_edges (VEC (sd_region, heap) *regions)
983 int i;
984 sd_region *s;
985 edge e;
986 edge_iterator ei;
988 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
989 FOR_EACH_EDGE (e, ei, s->exit->preds)
990 e->aux = NULL;
994 /* Mark the exit edges of all REGIONS.
995 See comment in "create_single_exit_edge". */
997 static void
998 mark_exit_edges (VEC (sd_region, heap) *regions)
1000 int i;
1001 sd_region *s;
1002 edge e;
1003 edge_iterator ei;
1005 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1006 FOR_EACH_EDGE (e, ei, s->exit->preds)
1007 if (bb_in_sd_region (e->src, s))
1008 e->aux = s;
1011 /* Create for all scop regions a single entry and a single exit edge. */
1013 static void
1014 create_sese_edges (VEC (sd_region, heap) *regions)
1016 int i;
1017 sd_region *s;
1019 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1020 create_single_entry_edge (s);
1022 mark_exit_edges (regions);
1024 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1025 /* Don't handle multiple edges exiting the function. */
1026 if (!find_single_exit_edge (s)
1027 && s->exit != EXIT_BLOCK_PTR)
1028 create_single_exit_edge (s);
1030 unmark_exit_edges (regions);
1032 fix_loop_structure (NULL);
1034 #ifdef ENABLE_CHECKING
1035 verify_loop_structure ();
1036 verify_ssa (false);
1037 #endif
1040 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1042 static void
1043 build_graphite_scops (VEC (sd_region, heap) *regions,
1044 VEC (scop_p, heap) **scops)
1046 int i;
1047 sd_region *s;
1049 FOR_EACH_VEC_ELT (sd_region, regions, i, s)
1051 edge entry = find_single_entry_edge (s);
1052 edge exit = find_single_exit_edge (s);
1053 scop_p scop;
1055 if (!exit)
1056 continue;
1058 scop = new_scop (new_sese (entry, exit));
1059 VEC_safe_push (scop_p, heap, *scops, scop);
1061 /* Are there overlapping SCoPs? */
1062 #ifdef ENABLE_CHECKING
1064 int j;
1065 sd_region *s2;
1067 FOR_EACH_VEC_ELT (sd_region, regions, j, s2)
1068 if (s != s2)
1069 gcc_assert (!bb_in_sd_region (s->entry, s2));
1071 #endif
1075 /* Returns true when BB contains only close phi nodes. */
1077 static bool
1078 contains_only_close_phi_nodes (basic_block bb)
1080 gimple_stmt_iterator gsi;
1082 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1083 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1084 return false;
1086 return true;
1089 /* Print statistics for SCOP to FILE. */
1091 static void
1092 print_graphite_scop_statistics (FILE* file, scop_p scop)
1094 long n_bbs = 0;
1095 long n_loops = 0;
1096 long n_stmts = 0;
1097 long n_conditions = 0;
1098 long n_p_bbs = 0;
1099 long n_p_loops = 0;
1100 long n_p_stmts = 0;
1101 long n_p_conditions = 0;
1103 basic_block bb;
1105 FOR_ALL_BB (bb)
1107 gimple_stmt_iterator psi;
1108 loop_p loop = bb->loop_father;
1110 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1111 continue;
1113 n_bbs++;
1114 n_p_bbs += bb->count;
1116 if (VEC_length (edge, bb->succs) > 1)
1118 n_conditions++;
1119 n_p_conditions += bb->count;
1122 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1124 n_stmts++;
1125 n_p_stmts += bb->count;
1128 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1130 n_loops++;
1131 n_p_loops += bb->count;
1136 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1137 fprintf (file, "BBS:%ld, ", n_bbs);
1138 fprintf (file, "LOOPS:%ld, ", n_loops);
1139 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1140 fprintf (file, "STMTS:%ld)\n", n_stmts);
1141 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1142 fprintf (file, "BBS:%ld, ", n_p_bbs);
1143 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1144 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1145 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1148 /* Print statistics for SCOPS to FILE. */
1150 static void
1151 print_graphite_statistics (FILE* file, VEC (scop_p, heap) *scops)
1153 int i;
1154 scop_p scop;
1156 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1157 print_graphite_scop_statistics (file, scop);
1160 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1162 Example:
1164 for (i |
1166 for (j | SCoP 1
1167 for (k |
1170 * SCoP frontier, as this line is not surrounded by any loop. *
1172 for (l | SCoP 2
1174 This is necessary as scalar evolution and parameter detection need a
1175 outermost loop to initialize parameters correctly.
1177 TODO: FIX scalar evolution and parameter detection to allow more flexible
1178 SCoP frontiers. */
1180 static void
1181 limit_scops (VEC (scop_p, heap) **scops)
1183 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1185 int i;
1186 scop_p scop;
1188 FOR_EACH_VEC_ELT (scop_p, *scops, i, scop)
1190 int j;
1191 loop_p loop;
1192 sese region = SCOP_REGION (scop);
1193 build_sese_loop_nests (region);
1195 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), j, loop)
1196 if (!loop_in_sese_p (loop_outer (loop), region)
1197 && single_exit (loop))
1199 sd_region open_scop;
1200 open_scop.entry = loop->header;
1201 open_scop.exit = single_exit (loop)->dest;
1203 /* This is a hack on top of the limit_scops hack. The
1204 limit_scops hack should disappear all together. */
1205 if (single_succ_p (open_scop.exit)
1206 && contains_only_close_phi_nodes (open_scop.exit))
1207 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1209 VEC_safe_push (sd_region, heap, regions, &open_scop);
1213 free_scops (*scops);
1214 *scops = VEC_alloc (scop_p, heap, 3);
1216 create_sese_edges (regions);
1217 build_graphite_scops (regions, scops);
1218 VEC_free (sd_region, heap, regions);
1221 /* Returns true when P1 and P2 are close phis with the same
1222 argument. */
1224 static inline bool
1225 same_close_phi_node (gimple p1, gimple p2)
1227 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1228 gimple_phi_arg_def (p2, 0), 0);
1231 /* Remove the close phi node at GSI and replace its rhs with the rhs
1232 of PHI. */
1234 static void
1235 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1237 gimple use_stmt;
1238 use_operand_p use_p;
1239 imm_use_iterator imm_iter;
1240 tree res = gimple_phi_result (phi);
1241 tree def = gimple_phi_result (gsi_stmt (*gsi));
1243 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1245 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1247 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1248 SET_USE (use_p, res);
1250 update_stmt (use_stmt);
1252 /* It is possible that we just created a duplicate close-phi
1253 for an already-processed containing loop. Check for this
1254 case and clean it up. */
1255 if (gimple_code (use_stmt) == GIMPLE_PHI
1256 && gimple_phi_num_args (use_stmt) == 1)
1257 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1260 remove_phi_node (gsi, true);
1263 /* Removes all the close phi duplicates from BB. */
1265 static void
1266 make_close_phi_nodes_unique (basic_block bb)
1268 gimple_stmt_iterator psi;
1270 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1272 gimple_stmt_iterator gsi = psi;
1273 gimple phi = gsi_stmt (psi);
1275 /* At this point, PHI should be a close phi in normal form. */
1276 gcc_assert (gimple_phi_num_args (phi) == 1);
1278 /* Iterate over the next phis and remove duplicates. */
1279 gsi_next (&gsi);
1280 while (!gsi_end_p (gsi))
1281 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1282 remove_duplicate_close_phi (phi, &gsi);
1283 else
1284 gsi_next (&gsi);
1288 /* Transforms LOOP to the canonical loop closed SSA form. */
1290 static void
1291 canonicalize_loop_closed_ssa (loop_p loop)
1293 edge e = single_exit (loop);
1294 basic_block bb;
1296 if (!e || e->flags & EDGE_ABNORMAL)
1297 return;
1299 bb = e->dest;
1301 if (VEC_length (edge, bb->preds) == 1)
1303 e = split_block_after_labels (bb);
1304 make_close_phi_nodes_unique (e->src);
1306 else
1308 gimple_stmt_iterator psi;
1309 basic_block close = split_edge (e);
1311 e = single_succ_edge (close);
1313 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1315 gimple phi = gsi_stmt (psi);
1316 unsigned i;
1318 for (i = 0; i < gimple_phi_num_args (phi); i++)
1319 if (gimple_phi_arg_edge (phi, i) == e)
1321 tree res, arg = gimple_phi_arg_def (phi, i);
1322 use_operand_p use_p;
1323 gimple close_phi;
1325 if (TREE_CODE (arg) != SSA_NAME)
1326 continue;
1328 close_phi = create_phi_node (arg, close);
1329 res = create_new_def_for (gimple_phi_result (close_phi),
1330 close_phi,
1331 gimple_phi_result_ptr (close_phi));
1332 add_phi_arg (close_phi, arg,
1333 gimple_phi_arg_edge (close_phi, 0),
1334 UNKNOWN_LOCATION);
1335 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1336 replace_exp (use_p, res);
1337 update_stmt (phi);
1341 make_close_phi_nodes_unique (close);
1344 /* The code above does not properly handle changes in the post dominance
1345 information (yet). */
1346 free_dominance_info (CDI_POST_DOMINATORS);
1349 /* Converts the current loop closed SSA form to a canonical form
1350 expected by the Graphite code generation.
1352 The loop closed SSA form has the following invariant: a variable
1353 defined in a loop that is used outside the loop appears only in the
1354 phi nodes in the destination of the loop exit. These phi nodes are
1355 called close phi nodes.
1357 The canonical loop closed SSA form contains the extra invariants:
1359 - when the loop contains only one exit, the close phi nodes contain
1360 only one argument. That implies that the basic block that contains
1361 the close phi nodes has only one predecessor, that is a basic block
1362 in the loop.
1364 - the basic block containing the close phi nodes does not contain
1365 other statements.
1367 - there exist only one phi node per definition in the loop.
1370 static void
1371 canonicalize_loop_closed_ssa_form (void)
1373 loop_iterator li;
1374 loop_p loop;
1376 #ifdef ENABLE_CHECKING
1377 verify_loop_closed_ssa (true);
1378 #endif
1380 FOR_EACH_LOOP (li, loop, 0)
1381 canonicalize_loop_closed_ssa (loop);
1383 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1384 update_ssa (TODO_update_ssa);
1386 #ifdef ENABLE_CHECKING
1387 verify_loop_closed_ssa (true);
1388 #endif
1391 /* Find Static Control Parts (SCoP) in the current function and pushes
1392 them to SCOPS. */
1394 void
1395 build_scops (VEC (scop_p, heap) **scops)
1397 struct loop *loop = current_loops->tree_root;
1398 VEC (sd_region, heap) *regions = VEC_alloc (sd_region, heap, 3);
1400 canonicalize_loop_closed_ssa_form ();
1401 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1402 &regions, loop);
1403 create_sese_edges (regions);
1404 build_graphite_scops (regions, scops);
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 print_graphite_statistics (dump_file, *scops);
1409 limit_scops (scops);
1410 VEC_free (sd_region, heap, regions);
1412 if (dump_file && (dump_flags & TDF_DETAILS))
1413 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1414 VEC_length (scop_p, *scops));
1417 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1418 different colors. If there are not enough colors, paint the
1419 remaining SCoPs in gray.
1421 Special nodes:
1422 - "*" after the node number denotes the entry of a SCoP,
1423 - "#" after the node number denotes the exit of a SCoP,
1424 - "()" around the node number denotes the entry or the
1425 exit nodes of the SCOP. These are not part of SCoP. */
1427 static void
1428 dot_all_scops_1 (FILE *file, VEC (scop_p, heap) *scops)
1430 basic_block bb;
1431 edge e;
1432 edge_iterator ei;
1433 scop_p scop;
1434 const char* color;
1435 int i;
1437 /* Disable debugging while printing graph. */
1438 int tmp_dump_flags = dump_flags;
1439 dump_flags = 0;
1441 fprintf (file, "digraph all {\n");
1443 FOR_ALL_BB (bb)
1445 int part_of_scop = false;
1447 /* Use HTML for every bb label. So we are able to print bbs
1448 which are part of two different SCoPs, with two different
1449 background colors. */
1450 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1451 bb->index);
1452 fprintf (file, "CELLSPACING=\"0\">\n");
1454 /* Select color for SCoP. */
1455 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
1457 sese region = SCOP_REGION (scop);
1458 if (bb_in_sese_p (bb, region)
1459 || (SESE_EXIT_BB (region) == bb)
1460 || (SESE_ENTRY_BB (region) == bb))
1462 switch (i % 17)
1464 case 0: /* red */
1465 color = "#e41a1c";
1466 break;
1467 case 1: /* blue */
1468 color = "#377eb8";
1469 break;
1470 case 2: /* green */
1471 color = "#4daf4a";
1472 break;
1473 case 3: /* purple */
1474 color = "#984ea3";
1475 break;
1476 case 4: /* orange */
1477 color = "#ff7f00";
1478 break;
1479 case 5: /* yellow */
1480 color = "#ffff33";
1481 break;
1482 case 6: /* brown */
1483 color = "#a65628";
1484 break;
1485 case 7: /* rose */
1486 color = "#f781bf";
1487 break;
1488 case 8:
1489 color = "#8dd3c7";
1490 break;
1491 case 9:
1492 color = "#ffffb3";
1493 break;
1494 case 10:
1495 color = "#bebada";
1496 break;
1497 case 11:
1498 color = "#fb8072";
1499 break;
1500 case 12:
1501 color = "#80b1d3";
1502 break;
1503 case 13:
1504 color = "#fdb462";
1505 break;
1506 case 14:
1507 color = "#b3de69";
1508 break;
1509 case 15:
1510 color = "#fccde5";
1511 break;
1512 case 16:
1513 color = "#bc80bd";
1514 break;
1515 default: /* gray */
1516 color = "#999999";
1519 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1521 if (!bb_in_sese_p (bb, region))
1522 fprintf (file, " (");
1524 if (bb == SESE_ENTRY_BB (region)
1525 && bb == SESE_EXIT_BB (region))
1526 fprintf (file, " %d*# ", bb->index);
1527 else if (bb == SESE_ENTRY_BB (region))
1528 fprintf (file, " %d* ", bb->index);
1529 else if (bb == SESE_EXIT_BB (region))
1530 fprintf (file, " %d# ", bb->index);
1531 else
1532 fprintf (file, " %d ", bb->index);
1534 if (!bb_in_sese_p (bb,region))
1535 fprintf (file, ")");
1537 fprintf (file, "</TD></TR>\n");
1538 part_of_scop = true;
1542 if (!part_of_scop)
1544 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1545 fprintf (file, " %d </TD></TR>\n", bb->index);
1547 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1550 FOR_ALL_BB (bb)
1552 FOR_EACH_EDGE (e, ei, bb->succs)
1553 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1556 fputs ("}\n\n", file);
1558 /* Enable debugging again. */
1559 dump_flags = tmp_dump_flags;
1562 /* Display all SCoPs using dotty. */
1564 DEBUG_FUNCTION void
1565 dot_all_scops (VEC (scop_p, heap) *scops)
1567 /* When debugging, enable the following code. This cannot be used
1568 in production compilers because it calls "system". */
1569 #if 0
1570 int x;
1571 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1572 gcc_assert (stream);
1574 dot_all_scops_1 (stream, scops);
1575 fclose (stream);
1577 x = system ("dotty /tmp/allscops.dot &");
1578 #else
1579 dot_all_scops_1 (stderr, scops);
1580 #endif
1583 /* Display all SCoPs using dotty. */
1585 DEBUG_FUNCTION void
1586 dot_scop (scop_p scop)
1588 VEC (scop_p, heap) *scops = NULL;
1590 if (scop)
1591 VEC_safe_push (scop_p, heap, scops, scop);
1593 /* When debugging, enable the following code. This cannot be used
1594 in production compilers because it calls "system". */
1595 #if 0
1597 int x;
1598 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1599 gcc_assert (stream);
1601 dot_all_scops_1 (stream, scops);
1602 fclose (stream);
1603 x = system ("dotty /tmp/allscops.dot &");
1605 #else
1606 dot_all_scops_1 (stderr, scops);
1607 #endif
1609 VEC_free (scop_p, heap, scops);
1612 #endif