* dwarfout.c (field_byte_offset): Correctly compute the object's
[official-gcc.git] / gcc / explow.c
blobf06d99214e1e2737b45ad8d1721116e565cfd14c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 91, 94-97, 1998, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "expr.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "insn-flags.h"
33 #include "insn-codes.h"
35 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
36 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
37 #endif
39 static rtx break_out_memory_refs PROTO((rtx));
40 static void emit_stack_probe PROTO((rtx));
41 /* Return an rtx for the sum of X and the integer C.
43 This function should be used via the `plus_constant' macro. */
45 rtx
46 plus_constant_wide (x, c)
47 register rtx x;
48 register HOST_WIDE_INT c;
50 register RTX_CODE code;
51 register enum machine_mode mode;
52 register rtx tem;
53 int all_constant = 0;
55 if (c == 0)
56 return x;
58 restart:
60 code = GET_CODE (x);
61 mode = GET_MODE (x);
62 switch (code)
64 case CONST_INT:
65 return GEN_INT (INTVAL (x) + c);
67 case CONST_DOUBLE:
69 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
70 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
71 HOST_WIDE_INT l2 = c;
72 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
73 HOST_WIDE_INT lv, hv;
75 add_double (l1, h1, l2, h2, &lv, &hv);
77 return immed_double_const (lv, hv, VOIDmode);
80 case MEM:
81 /* If this is a reference to the constant pool, try replacing it with
82 a reference to a new constant. If the resulting address isn't
83 valid, don't return it because we have no way to validize it. */
84 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
85 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
87 /* Any rtl we create here must go in a saveable obstack, since
88 we might have been called from within combine. */
89 push_obstacks_nochange ();
90 rtl_in_saveable_obstack ();
91 tem
92 = force_const_mem (GET_MODE (x),
93 plus_constant (get_pool_constant (XEXP (x, 0)),
94 c));
95 pop_obstacks ();
96 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
97 return tem;
99 break;
101 case CONST:
102 /* If adding to something entirely constant, set a flag
103 so that we can add a CONST around the result. */
104 x = XEXP (x, 0);
105 all_constant = 1;
106 goto restart;
108 case SYMBOL_REF:
109 case LABEL_REF:
110 all_constant = 1;
111 break;
113 case PLUS:
114 /* The interesting case is adding the integer to a sum.
115 Look for constant term in the sum and combine
116 with C. For an integer constant term, we make a combined
117 integer. For a constant term that is not an explicit integer,
118 we cannot really combine, but group them together anyway.
120 Restart or use a recursive call in case the remaining operand is
121 something that we handle specially, such as a SYMBOL_REF.
123 We may not immediately return from the recursive call here, lest
124 all_constant gets lost. */
126 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
128 c += INTVAL (XEXP (x, 1));
129 x = XEXP (x, 0);
130 goto restart;
132 else if (CONSTANT_P (XEXP (x, 0)))
134 x = gen_rtx_PLUS (mode,
135 plus_constant (XEXP (x, 0), c),
136 XEXP (x, 1));
137 c = 0;
139 else if (CONSTANT_P (XEXP (x, 1)))
141 x = gen_rtx_PLUS (mode,
142 XEXP (x, 0),
143 plus_constant (XEXP (x, 1), c));
144 c = 0;
146 break;
148 default:
149 break;
152 if (c != 0)
153 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
155 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
156 return x;
157 else if (all_constant)
158 return gen_rtx_CONST (mode, x);
159 else
160 return x;
163 /* This is the same as `plus_constant', except that it handles LO_SUM.
165 This function should be used via the `plus_constant_for_output' macro. */
168 plus_constant_for_output_wide (x, c)
169 register rtx x;
170 register HOST_WIDE_INT c;
172 register enum machine_mode mode = GET_MODE (x);
174 if (GET_CODE (x) == LO_SUM)
175 return gen_rtx_LO_SUM (mode, XEXP (x, 0),
176 plus_constant_for_output (XEXP (x, 1), c));
178 else
179 return plus_constant (x, c);
182 /* If X is a sum, return a new sum like X but lacking any constant terms.
183 Add all the removed constant terms into *CONSTPTR.
184 X itself is not altered. The result != X if and only if
185 it is not isomorphic to X. */
188 eliminate_constant_term (x, constptr)
189 rtx x;
190 rtx *constptr;
192 register rtx x0, x1;
193 rtx tem;
195 if (GET_CODE (x) != PLUS)
196 return x;
198 /* First handle constants appearing at this level explicitly. */
199 if (GET_CODE (XEXP (x, 1)) == CONST_INT
200 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
201 XEXP (x, 1)))
202 && GET_CODE (tem) == CONST_INT)
204 *constptr = tem;
205 return eliminate_constant_term (XEXP (x, 0), constptr);
208 tem = const0_rtx;
209 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
210 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
211 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
212 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
213 *constptr, tem))
214 && GET_CODE (tem) == CONST_INT)
216 *constptr = tem;
217 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
220 return x;
223 /* Returns the insn that next references REG after INSN, or 0
224 if REG is clobbered before next referenced or we cannot find
225 an insn that references REG in a straight-line piece of code. */
228 find_next_ref (reg, insn)
229 rtx reg;
230 rtx insn;
232 rtx next;
234 for (insn = NEXT_INSN (insn); insn; insn = next)
236 next = NEXT_INSN (insn);
237 if (GET_CODE (insn) == NOTE)
238 continue;
239 if (GET_CODE (insn) == CODE_LABEL
240 || GET_CODE (insn) == BARRIER)
241 return 0;
242 if (GET_CODE (insn) == INSN
243 || GET_CODE (insn) == JUMP_INSN
244 || GET_CODE (insn) == CALL_INSN)
246 if (reg_set_p (reg, insn))
247 return 0;
248 if (reg_mentioned_p (reg, PATTERN (insn)))
249 return insn;
250 if (GET_CODE (insn) == JUMP_INSN)
252 if (simplejump_p (insn))
253 next = JUMP_LABEL (insn);
254 else
255 return 0;
257 if (GET_CODE (insn) == CALL_INSN
258 && REGNO (reg) < FIRST_PSEUDO_REGISTER
259 && call_used_regs[REGNO (reg)])
260 return 0;
262 else
263 abort ();
265 return 0;
268 /* Return an rtx for the size in bytes of the value of EXP. */
271 expr_size (exp)
272 tree exp;
274 tree size = size_in_bytes (TREE_TYPE (exp));
276 if (TREE_CODE (size) != INTEGER_CST
277 && contains_placeholder_p (size))
278 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
280 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype),
281 EXPAND_MEMORY_USE_BAD);
284 /* Return a copy of X in which all memory references
285 and all constants that involve symbol refs
286 have been replaced with new temporary registers.
287 Also emit code to load the memory locations and constants
288 into those registers.
290 If X contains no such constants or memory references,
291 X itself (not a copy) is returned.
293 If a constant is found in the address that is not a legitimate constant
294 in an insn, it is left alone in the hope that it might be valid in the
295 address.
297 X may contain no arithmetic except addition, subtraction and multiplication.
298 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
300 static rtx
301 break_out_memory_refs (x)
302 register rtx x;
304 if (GET_CODE (x) == MEM
305 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
306 && GET_MODE (x) != VOIDmode))
307 x = force_reg (GET_MODE (x), x);
308 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
309 || GET_CODE (x) == MULT)
311 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
312 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
314 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
315 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
318 return x;
321 #ifdef POINTERS_EXTEND_UNSIGNED
323 /* Given X, a memory address in ptr_mode, convert it to an address
324 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
325 the fact that pointers are not allowed to overflow by commuting arithmetic
326 operations over conversions so that address arithmetic insns can be
327 used. */
330 convert_memory_address (to_mode, x)
331 enum machine_mode to_mode;
332 rtx x;
334 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
335 rtx temp;
337 /* Here we handle some special cases. If none of them apply, fall through
338 to the default case. */
339 switch (GET_CODE (x))
341 case CONST_INT:
342 case CONST_DOUBLE:
343 return x;
345 case LABEL_REF:
346 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
347 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
348 return temp;
350 case SYMBOL_REF:
351 temp = gen_rtx_SYMBOL_REF (to_mode, XSTR (x, 0));
352 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
353 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
354 return temp;
356 case CONST:
357 return gen_rtx_CONST (to_mode,
358 convert_memory_address (to_mode, XEXP (x, 0)));
360 case PLUS:
361 case MULT:
362 /* For addition the second operand is a small constant, we can safely
363 permute the conversion and addition operation. We can always safely
364 permute them if we are making the address narrower. In addition,
365 always permute the operations if this is a constant. */
366 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
367 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
368 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
369 || CONSTANT_P (XEXP (x, 0)))))
370 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
371 convert_memory_address (to_mode, XEXP (x, 0)),
372 convert_memory_address (to_mode, XEXP (x, 1)));
373 break;
375 default:
376 break;
379 return convert_modes (to_mode, from_mode,
380 x, POINTERS_EXTEND_UNSIGNED);
382 #endif
384 /* Given a memory address or facsimile X, construct a new address,
385 currently equivalent, that is stable: future stores won't change it.
387 X must be composed of constants, register and memory references
388 combined with addition, subtraction and multiplication:
389 in other words, just what you can get from expand_expr if sum_ok is 1.
391 Works by making copies of all regs and memory locations used
392 by X and combining them the same way X does.
393 You could also stabilize the reference to this address
394 by copying the address to a register with copy_to_reg;
395 but then you wouldn't get indexed addressing in the reference. */
398 copy_all_regs (x)
399 register rtx x;
401 if (GET_CODE (x) == REG)
403 if (REGNO (x) != FRAME_POINTER_REGNUM
404 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
405 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
406 #endif
408 x = copy_to_reg (x);
410 else if (GET_CODE (x) == MEM)
411 x = copy_to_reg (x);
412 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
413 || GET_CODE (x) == MULT)
415 register rtx op0 = copy_all_regs (XEXP (x, 0));
416 register rtx op1 = copy_all_regs (XEXP (x, 1));
417 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
418 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
420 return x;
423 /* Return something equivalent to X but valid as a memory address
424 for something of mode MODE. When X is not itself valid, this
425 works by copying X or subexpressions of it into registers. */
428 memory_address (mode, x)
429 enum machine_mode mode;
430 register rtx x;
432 register rtx oldx = x;
434 if (GET_CODE (x) == ADDRESSOF)
435 return x;
437 #ifdef POINTERS_EXTEND_UNSIGNED
438 if (GET_MODE (x) == ptr_mode)
439 x = convert_memory_address (Pmode, x);
440 #endif
442 /* By passing constant addresses thru registers
443 we get a chance to cse them. */
444 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
445 x = force_reg (Pmode, x);
447 /* Accept a QUEUED that refers to a REG
448 even though that isn't a valid address.
449 On attempting to put this in an insn we will call protect_from_queue
450 which will turn it into a REG, which is valid. */
451 else if (GET_CODE (x) == QUEUED
452 && GET_CODE (QUEUED_VAR (x)) == REG)
455 /* We get better cse by rejecting indirect addressing at this stage.
456 Let the combiner create indirect addresses where appropriate.
457 For now, generate the code so that the subexpressions useful to share
458 are visible. But not if cse won't be done! */
459 else
461 if (! cse_not_expected && GET_CODE (x) != REG)
462 x = break_out_memory_refs (x);
464 /* At this point, any valid address is accepted. */
465 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
467 /* If it was valid before but breaking out memory refs invalidated it,
468 use it the old way. */
469 if (memory_address_p (mode, oldx))
470 goto win2;
472 /* Perform machine-dependent transformations on X
473 in certain cases. This is not necessary since the code
474 below can handle all possible cases, but machine-dependent
475 transformations can make better code. */
476 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x) == PLUS)
489 rtx constant_term = const0_rtx;
490 rtx y = eliminate_constant_term (x, &constant_term);
491 if (constant_term == const0_rtx
492 || ! memory_address_p (mode, y))
493 x = force_operand (x, NULL_RTX);
494 else
496 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
497 if (! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
500 x = y;
504 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
505 x = force_operand (x, NULL_RTX);
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
509 else if (GET_CODE (x) == REG)
510 x = copy_to_reg (x);
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
514 else
515 x = force_reg (Pmode, x);
517 goto done;
519 win2:
520 x = oldx;
521 win:
522 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
523 /* Don't copy an addr via a reg if it is one of our stack slots. */
524 && ! (GET_CODE (x) == PLUS
525 && (XEXP (x, 0) == virtual_stack_vars_rtx
526 || XEXP (x, 0) == virtual_incoming_args_rtx)))
528 if (general_operand (x, Pmode))
529 x = force_reg (Pmode, x);
530 else
531 x = force_operand (x, NULL_RTX);
535 done:
537 /* If we didn't change the address, we are done. Otherwise, mark
538 a reg as a pointer if we have REG or REG + CONST_INT. */
539 if (oldx == x)
540 return x;
541 else if (GET_CODE (x) == REG)
542 mark_reg_pointer (x, 1);
543 else if (GET_CODE (x) == PLUS
544 && GET_CODE (XEXP (x, 0)) == REG
545 && GET_CODE (XEXP (x, 1)) == CONST_INT)
546 mark_reg_pointer (XEXP (x, 0), 1);
548 /* OLDX may have been the address on a temporary. Update the address
549 to indicate that X is now used. */
550 update_temp_slot_address (oldx, x);
552 return x;
555 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
558 memory_address_noforce (mode, x)
559 enum machine_mode mode;
560 rtx x;
562 int ambient_force_addr = flag_force_addr;
563 rtx val;
565 flag_force_addr = 0;
566 val = memory_address (mode, x);
567 flag_force_addr = ambient_force_addr;
568 return val;
571 /* Convert a mem ref into one with a valid memory address.
572 Pass through anything else unchanged. */
575 validize_mem (ref)
576 rtx ref;
578 if (GET_CODE (ref) != MEM)
579 return ref;
580 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
581 return ref;
582 /* Don't alter REF itself, since that is probably a stack slot. */
583 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
586 /* Return a modified copy of X with its memory address copied
587 into a temporary register to protect it from side effects.
588 If X is not a MEM, it is returned unchanged (and not copied).
589 Perhaps even if it is a MEM, if there is no need to change it. */
592 stabilize (x)
593 rtx x;
595 register rtx addr;
596 if (GET_CODE (x) != MEM)
597 return x;
598 addr = XEXP (x, 0);
599 if (rtx_unstable_p (addr))
601 rtx temp = copy_all_regs (addr);
602 rtx mem;
603 if (GET_CODE (temp) != REG)
604 temp = copy_to_reg (temp);
605 mem = gen_rtx_MEM (GET_MODE (x), temp);
607 /* Mark returned memref with in_struct if it's in an array or
608 structure. Copy const and volatile from original memref. */
610 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
611 MEM_COPY_ATTRIBUTES (mem, x);
612 if (GET_CODE (addr) == PLUS)
613 MEM_SET_IN_STRUCT_P (mem, 1);
615 /* Since the new MEM is just like the old X, it can alias only
616 the things that X could. */
617 MEM_ALIAS_SET (mem) = MEM_ALIAS_SET (x);
619 return mem;
621 return x;
624 /* Copy the value or contents of X to a new temp reg and return that reg. */
627 copy_to_reg (x)
628 rtx x;
630 register rtx temp = gen_reg_rtx (GET_MODE (x));
632 /* If not an operand, must be an address with PLUS and MULT so
633 do the computation. */
634 if (! general_operand (x, VOIDmode))
635 x = force_operand (x, temp);
637 if (x != temp)
638 emit_move_insn (temp, x);
640 return temp;
643 /* Like copy_to_reg but always give the new register mode Pmode
644 in case X is a constant. */
647 copy_addr_to_reg (x)
648 rtx x;
650 return copy_to_mode_reg (Pmode, x);
653 /* Like copy_to_reg but always give the new register mode MODE
654 in case X is a constant. */
657 copy_to_mode_reg (mode, x)
658 enum machine_mode mode;
659 rtx x;
661 register rtx temp = gen_reg_rtx (mode);
663 /* If not an operand, must be an address with PLUS and MULT so
664 do the computation. */
665 if (! general_operand (x, VOIDmode))
666 x = force_operand (x, temp);
668 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
669 abort ();
670 if (x != temp)
671 emit_move_insn (temp, x);
672 return temp;
675 /* Load X into a register if it is not already one.
676 Use mode MODE for the register.
677 X should be valid for mode MODE, but it may be a constant which
678 is valid for all integer modes; that's why caller must specify MODE.
680 The caller must not alter the value in the register we return,
681 since we mark it as a "constant" register. */
684 force_reg (mode, x)
685 enum machine_mode mode;
686 rtx x;
688 register rtx temp, insn, set;
690 if (GET_CODE (x) == REG)
691 return x;
692 temp = gen_reg_rtx (mode);
693 insn = emit_move_insn (temp, x);
695 /* Let optimizers know that TEMP's value never changes
696 and that X can be substituted for it. Don't get confused
697 if INSN set something else (such as a SUBREG of TEMP). */
698 if (CONSTANT_P (x)
699 && (set = single_set (insn)) != 0
700 && SET_DEST (set) == temp)
702 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
704 if (note)
705 XEXP (note, 0) = x;
706 else
707 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, x, REG_NOTES (insn));
709 return temp;
712 /* If X is a memory ref, copy its contents to a new temp reg and return
713 that reg. Otherwise, return X. */
716 force_not_mem (x)
717 rtx x;
719 register rtx temp;
720 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
721 return x;
722 temp = gen_reg_rtx (GET_MODE (x));
723 emit_move_insn (temp, x);
724 return temp;
727 /* Copy X to TARGET (if it's nonzero and a reg)
728 or to a new temp reg and return that reg.
729 MODE is the mode to use for X in case it is a constant. */
732 copy_to_suggested_reg (x, target, mode)
733 rtx x, target;
734 enum machine_mode mode;
736 register rtx temp;
738 if (target && GET_CODE (target) == REG)
739 temp = target;
740 else
741 temp = gen_reg_rtx (mode);
743 emit_move_insn (temp, x);
744 return temp;
747 /* Return the mode to use to store a scalar of TYPE and MODE.
748 PUNSIGNEDP points to the signedness of the type and may be adjusted
749 to show what signedness to use on extension operations.
751 FOR_CALL is non-zero if this call is promoting args for a call. */
753 enum machine_mode
754 promote_mode (type, mode, punsignedp, for_call)
755 tree type;
756 enum machine_mode mode;
757 int *punsignedp;
758 int for_call ATTRIBUTE_UNUSED;
760 enum tree_code code = TREE_CODE (type);
761 int unsignedp = *punsignedp;
763 #ifdef PROMOTE_FOR_CALL_ONLY
764 if (! for_call)
765 return mode;
766 #endif
768 switch (code)
770 #ifdef PROMOTE_MODE
771 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
772 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
773 PROMOTE_MODE (mode, unsignedp, type);
774 break;
775 #endif
777 #ifdef POINTERS_EXTEND_UNSIGNED
778 case REFERENCE_TYPE:
779 case POINTER_TYPE:
780 mode = Pmode;
781 unsignedp = POINTERS_EXTEND_UNSIGNED;
782 break;
783 #endif
785 default:
786 break;
789 *punsignedp = unsignedp;
790 return mode;
793 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
794 This pops when ADJUST is positive. ADJUST need not be constant. */
796 void
797 adjust_stack (adjust)
798 rtx adjust;
800 rtx temp;
801 adjust = protect_from_queue (adjust, 0);
803 if (adjust == const0_rtx)
804 return;
806 temp = expand_binop (Pmode,
807 #ifdef STACK_GROWS_DOWNWARD
808 add_optab,
809 #else
810 sub_optab,
811 #endif
812 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
813 OPTAB_LIB_WIDEN);
815 if (temp != stack_pointer_rtx)
816 emit_move_insn (stack_pointer_rtx, temp);
819 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
820 This pushes when ADJUST is positive. ADJUST need not be constant. */
822 void
823 anti_adjust_stack (adjust)
824 rtx adjust;
826 rtx temp;
827 adjust = protect_from_queue (adjust, 0);
829 if (adjust == const0_rtx)
830 return;
832 temp = expand_binop (Pmode,
833 #ifdef STACK_GROWS_DOWNWARD
834 sub_optab,
835 #else
836 add_optab,
837 #endif
838 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
839 OPTAB_LIB_WIDEN);
841 if (temp != stack_pointer_rtx)
842 emit_move_insn (stack_pointer_rtx, temp);
845 /* Round the size of a block to be pushed up to the boundary required
846 by this machine. SIZE is the desired size, which need not be constant. */
849 round_push (size)
850 rtx size;
852 #ifdef PREFERRED_STACK_BOUNDARY
853 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
854 if (align == 1)
855 return size;
856 if (GET_CODE (size) == CONST_INT)
858 int new = (INTVAL (size) + align - 1) / align * align;
859 if (INTVAL (size) != new)
860 size = GEN_INT (new);
862 else
864 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
865 but we know it can't. So add ourselves and then do
866 TRUNC_DIV_EXPR. */
867 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
868 NULL_RTX, 1, OPTAB_LIB_WIDEN);
869 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
870 NULL_RTX, 1);
871 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
873 #endif /* PREFERRED_STACK_BOUNDARY */
874 return size;
877 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
878 to a previously-created save area. If no save area has been allocated,
879 this function will allocate one. If a save area is specified, it
880 must be of the proper mode.
882 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
883 are emitted at the current position. */
885 void
886 emit_stack_save (save_level, psave, after)
887 enum save_level save_level;
888 rtx *psave;
889 rtx after;
891 rtx sa = *psave;
892 /* The default is that we use a move insn and save in a Pmode object. */
893 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
894 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
896 /* See if this machine has anything special to do for this kind of save. */
897 switch (save_level)
899 #ifdef HAVE_save_stack_block
900 case SAVE_BLOCK:
901 if (HAVE_save_stack_block)
902 fcn = gen_save_stack_block;
903 break;
904 #endif
905 #ifdef HAVE_save_stack_function
906 case SAVE_FUNCTION:
907 if (HAVE_save_stack_function)
908 fcn = gen_save_stack_function;
909 break;
910 #endif
911 #ifdef HAVE_save_stack_nonlocal
912 case SAVE_NONLOCAL:
913 if (HAVE_save_stack_nonlocal)
914 fcn = gen_save_stack_nonlocal;
915 break;
916 #endif
917 default:
918 break;
921 /* If there is no save area and we have to allocate one, do so. Otherwise
922 verify the save area is the proper mode. */
924 if (sa == 0)
926 if (mode != VOIDmode)
928 if (save_level == SAVE_NONLOCAL)
929 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
930 else
931 *psave = sa = gen_reg_rtx (mode);
934 else
936 if (mode == VOIDmode || GET_MODE (sa) != mode)
937 abort ();
940 if (after)
942 rtx seq;
944 start_sequence ();
945 /* We must validize inside the sequence, to ensure that any instructions
946 created by the validize call also get moved to the right place. */
947 if (sa != 0)
948 sa = validize_mem (sa);
949 emit_insn (fcn (sa, stack_pointer_rtx));
950 seq = gen_sequence ();
951 end_sequence ();
952 emit_insn_after (seq, after);
954 else
956 if (sa != 0)
957 sa = validize_mem (sa);
958 emit_insn (fcn (sa, stack_pointer_rtx));
962 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
963 area made by emit_stack_save. If it is zero, we have nothing to do.
965 Put any emitted insns after insn AFTER, if nonzero, otherwise at
966 current position. */
968 void
969 emit_stack_restore (save_level, sa, after)
970 enum save_level save_level;
971 rtx after;
972 rtx sa;
974 /* The default is that we use a move insn. */
975 rtx (*fcn) PROTO ((rtx, rtx)) = gen_move_insn;
977 /* See if this machine has anything special to do for this kind of save. */
978 switch (save_level)
980 #ifdef HAVE_restore_stack_block
981 case SAVE_BLOCK:
982 if (HAVE_restore_stack_block)
983 fcn = gen_restore_stack_block;
984 break;
985 #endif
986 #ifdef HAVE_restore_stack_function
987 case SAVE_FUNCTION:
988 if (HAVE_restore_stack_function)
989 fcn = gen_restore_stack_function;
990 break;
991 #endif
992 #ifdef HAVE_restore_stack_nonlocal
993 case SAVE_NONLOCAL:
994 if (HAVE_restore_stack_nonlocal)
995 fcn = gen_restore_stack_nonlocal;
996 break;
997 #endif
998 default:
999 break;
1002 if (sa != 0)
1003 sa = validize_mem (sa);
1005 if (after)
1007 rtx seq;
1009 start_sequence ();
1010 emit_insn (fcn (stack_pointer_rtx, sa));
1011 seq = gen_sequence ();
1012 end_sequence ();
1013 emit_insn_after (seq, after);
1015 else
1016 emit_insn (fcn (stack_pointer_rtx, sa));
1019 #ifdef SETJMP_VIA_SAVE_AREA
1020 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1021 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1022 platforms, the dynamic stack space used can corrupt the original
1023 frame, thus causing a crash if a longjmp unwinds to it. */
1025 void
1026 optimize_save_area_alloca (insns)
1027 rtx insns;
1029 rtx insn;
1031 for (insn = insns; insn; insn = NEXT_INSN(insn))
1033 rtx note;
1035 if (GET_CODE (insn) != INSN)
1036 continue;
1038 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1040 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1041 continue;
1043 if (!current_function_calls_setjmp)
1045 rtx pat = PATTERN (insn);
1047 /* If we do not see the note in a pattern matching
1048 these precise characteristics, we did something
1049 entirely wrong in allocate_dynamic_stack_space.
1051 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1052 was defined on a machine where stacks grow towards higher
1053 addresses.
1055 Right now only supported port with stack that grow upward
1056 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1057 if (GET_CODE (pat) != SET
1058 || SET_DEST (pat) != stack_pointer_rtx
1059 || GET_CODE (SET_SRC (pat)) != MINUS
1060 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1061 abort ();
1063 /* This will now be transformed into a (set REG REG)
1064 so we can just blow away all the other notes. */
1065 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1066 REG_NOTES (insn) = NULL_RTX;
1068 else
1070 /* setjmp was called, we must remove the REG_SAVE_AREA
1071 note so that later passes do not get confused by its
1072 presence. */
1073 if (note == REG_NOTES (insn))
1075 REG_NOTES (insn) = XEXP (note, 1);
1077 else
1079 rtx srch;
1081 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1082 if (XEXP (srch, 1) == note)
1083 break;
1085 if (srch == NULL_RTX)
1086 abort();
1088 XEXP (srch, 1) = XEXP (note, 1);
1091 /* Once we've seen the note of interest, we need not look at
1092 the rest of them. */
1093 break;
1097 #endif /* SETJMP_VIA_SAVE_AREA */
1099 /* Return an rtx representing the address of an area of memory dynamically
1100 pushed on the stack. This region of memory is always aligned to
1101 a multiple of BIGGEST_ALIGNMENT.
1103 Any required stack pointer alignment is preserved.
1105 SIZE is an rtx representing the size of the area.
1106 TARGET is a place in which the address can be placed.
1108 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1111 allocate_dynamic_stack_space (size, target, known_align)
1112 rtx size;
1113 rtx target;
1114 int known_align;
1116 #ifdef SETJMP_VIA_SAVE_AREA
1117 rtx setjmpless_size = NULL_RTX;
1118 #endif
1120 /* If we're asking for zero bytes, it doesn't matter what we point
1121 to since we can't dereference it. But return a reasonable
1122 address anyway. */
1123 if (size == const0_rtx)
1124 return virtual_stack_dynamic_rtx;
1126 /* Otherwise, show we're calling alloca or equivalent. */
1127 current_function_calls_alloca = 1;
1129 /* Ensure the size is in the proper mode. */
1130 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1131 size = convert_to_mode (Pmode, size, 1);
1133 /* We will need to ensure that the address we return is aligned to
1134 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1135 always know its final value at this point in the compilation (it
1136 might depend on the size of the outgoing parameter lists, for
1137 example), so we must align the value to be returned in that case.
1138 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1139 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1140 We must also do an alignment operation on the returned value if
1141 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1143 If we have to align, we must leave space in SIZE for the hole
1144 that might result from the alignment operation. */
1146 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (PREFERRED_STACK_BOUNDARY)
1147 #define MUST_ALIGN 1
1148 #else
1149 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1150 #endif
1152 if (MUST_ALIGN)
1154 if (GET_CODE (size) == CONST_INT)
1155 size = GEN_INT (INTVAL (size)
1156 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
1157 else
1158 size = expand_binop (Pmode, add_optab, size,
1159 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1160 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1163 #ifdef SETJMP_VIA_SAVE_AREA
1164 /* If setjmp restores regs from a save area in the stack frame,
1165 avoid clobbering the reg save area. Note that the offset of
1166 virtual_incoming_args_rtx includes the preallocated stack args space.
1167 It would be no problem to clobber that, but it's on the wrong side
1168 of the old save area. */
1170 rtx dynamic_offset
1171 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1172 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1174 if (!current_function_calls_setjmp)
1176 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1178 /* See optimize_save_area_alloca to understand what is being
1179 set up here. */
1181 #if !defined(PREFERRED_STACK_BOUNDARY) || !defined(MUST_ALIGN) || (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1182 /* If anyone creates a target with these characteristics, let them
1183 know that our optimization cannot work correctly in such a case. */
1184 abort();
1185 #endif
1187 if (GET_CODE (size) == CONST_INT)
1189 int new = INTVAL (size) / align * align;
1191 if (INTVAL (size) != new)
1192 setjmpless_size = GEN_INT (new);
1193 else
1194 setjmpless_size = size;
1196 else
1198 /* Since we know overflow is not possible, we avoid using
1199 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1200 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1201 GEN_INT (align), NULL_RTX, 1);
1202 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1203 GEN_INT (align), NULL_RTX, 1);
1205 /* Our optimization works based upon being able to perform a simple
1206 transformation of this RTL into a (set REG REG) so make sure things
1207 did in fact end up in a REG. */
1208 if (!register_operand (setjmpless_size, Pmode))
1209 setjmpless_size = force_reg (Pmode, setjmpless_size);
1212 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1213 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1215 #endif /* SETJMP_VIA_SAVE_AREA */
1217 /* Round the size to a multiple of the required stack alignment.
1218 Since the stack if presumed to be rounded before this allocation,
1219 this will maintain the required alignment.
1221 If the stack grows downward, we could save an insn by subtracting
1222 SIZE from the stack pointer and then aligning the stack pointer.
1223 The problem with this is that the stack pointer may be unaligned
1224 between the execution of the subtraction and alignment insns and
1225 some machines do not allow this. Even on those that do, some
1226 signal handlers malfunction if a signal should occur between those
1227 insns. Since this is an extremely rare event, we have no reliable
1228 way of knowing which systems have this problem. So we avoid even
1229 momentarily mis-aligning the stack. */
1231 #ifdef PREFERRED_STACK_BOUNDARY
1232 /* If we added a variable amount to SIZE,
1233 we can no longer assume it is aligned. */
1234 #if !defined (SETJMP_VIA_SAVE_AREA)
1235 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1236 #endif
1237 size = round_push (size);
1238 #endif
1240 do_pending_stack_adjust ();
1242 /* If needed, check that we have the required amount of stack. Take into
1243 account what has already been checked. */
1244 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1245 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1247 /* Don't use a TARGET that isn't a pseudo. */
1248 if (target == 0 || GET_CODE (target) != REG
1249 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1250 target = gen_reg_rtx (Pmode);
1252 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
1254 /* Perform the required allocation from the stack. Some systems do
1255 this differently than simply incrementing/decrementing from the
1256 stack pointer, such as acquiring the space by calling malloc(). */
1257 #ifdef HAVE_allocate_stack
1258 if (HAVE_allocate_stack)
1260 enum machine_mode mode = STACK_SIZE_MODE;
1262 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1263 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1264 (target, Pmode)))
1265 #ifdef POINTERS_EXTEND_UNSIGNED
1266 target = convert_memory_address (Pmode, target);
1267 #else
1268 target = copy_to_mode_reg (Pmode, target);
1269 #endif
1270 size = convert_modes (mode, ptr_mode, size, 1);
1271 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][1]
1272 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][1])
1273 (size, mode)))
1274 size = copy_to_mode_reg (mode, size);
1276 emit_insn (gen_allocate_stack (target, size));
1278 else
1279 #endif
1281 #ifndef STACK_GROWS_DOWNWARD
1282 emit_move_insn (target, virtual_stack_dynamic_rtx);
1283 #endif
1284 size = convert_modes (Pmode, ptr_mode, size, 1);
1285 anti_adjust_stack (size);
1286 #ifdef SETJMP_VIA_SAVE_AREA
1287 if (setjmpless_size != NULL_RTX)
1289 rtx note_target = get_last_insn ();
1291 REG_NOTES (note_target)
1292 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1293 REG_NOTES (note_target));
1295 #endif /* SETJMP_VIA_SAVE_AREA */
1296 #ifdef STACK_GROWS_DOWNWARD
1297 emit_move_insn (target, virtual_stack_dynamic_rtx);
1298 #endif
1301 if (MUST_ALIGN)
1303 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1304 but we know it can't. So add ourselves and then do
1305 TRUNC_DIV_EXPR. */
1306 target = expand_binop (Pmode, add_optab, target,
1307 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1308 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1309 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1310 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1311 NULL_RTX, 1);
1312 target = expand_mult (Pmode, target,
1313 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1314 NULL_RTX, 1);
1317 /* Some systems require a particular insn to refer to the stack
1318 to make the pages exist. */
1319 #ifdef HAVE_probe
1320 if (HAVE_probe)
1321 emit_insn (gen_probe ());
1322 #endif
1324 /* Record the new stack level for nonlocal gotos. */
1325 if (nonlocal_goto_handler_slots != 0)
1326 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1328 return target;
1331 /* Emit one stack probe at ADDRESS, an address within the stack. */
1333 static void
1334 emit_stack_probe (address)
1335 rtx address;
1337 rtx memref = gen_rtx_MEM (word_mode, address);
1339 MEM_VOLATILE_P (memref) = 1;
1341 if (STACK_CHECK_PROBE_LOAD)
1342 emit_move_insn (gen_reg_rtx (word_mode), memref);
1343 else
1344 emit_move_insn (memref, const0_rtx);
1347 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1348 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1349 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1350 subtract from the stack. If SIZE is constant, this is done
1351 with a fixed number of probes. Otherwise, we must make a loop. */
1353 #ifdef STACK_GROWS_DOWNWARD
1354 #define STACK_GROW_OP MINUS
1355 #else
1356 #define STACK_GROW_OP PLUS
1357 #endif
1359 void
1360 probe_stack_range (first, size)
1361 HOST_WIDE_INT first;
1362 rtx size;
1364 /* First see if we have an insn to check the stack. Use it if so. */
1365 #ifdef HAVE_check_stack
1366 if (HAVE_check_stack)
1368 rtx last_addr
1369 = force_operand (gen_rtx_STACK_GROW_OP (Pmode,
1370 stack_pointer_rtx,
1371 plus_constant (size, first)),
1372 NULL_RTX);
1374 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1375 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1376 (last_address, Pmode)))
1377 last_address = copy_to_mode_reg (Pmode, last_address);
1379 emit_insn (gen_check_stack (last_address));
1380 return;
1382 #endif
1384 /* If we have to generate explicit probes, see if we have a constant
1385 small number of them to generate. If so, that's the easy case. */
1386 if (GET_CODE (size) == CONST_INT
1387 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1389 HOST_WIDE_INT offset;
1391 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1392 for values of N from 1 until it exceeds LAST. If only one
1393 probe is needed, this will not generate any code. Then probe
1394 at LAST. */
1395 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1396 offset < INTVAL (size);
1397 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1398 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1399 stack_pointer_rtx,
1400 GEN_INT (offset)));
1402 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1403 stack_pointer_rtx,
1404 plus_constant (size, first)));
1407 /* In the variable case, do the same as above, but in a loop. We emit loop
1408 notes so that loop optimization can be done. */
1409 else
1411 rtx test_addr
1412 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1413 stack_pointer_rtx,
1414 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1415 NULL_RTX);
1416 rtx last_addr
1417 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1418 stack_pointer_rtx,
1419 plus_constant (size, first)),
1420 NULL_RTX);
1421 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1422 rtx loop_lab = gen_label_rtx ();
1423 rtx test_lab = gen_label_rtx ();
1424 rtx end_lab = gen_label_rtx ();
1425 rtx temp;
1427 if (GET_CODE (test_addr) != REG
1428 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1429 test_addr = force_reg (Pmode, test_addr);
1431 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1432 emit_jump (test_lab);
1434 emit_label (loop_lab);
1435 emit_stack_probe (test_addr);
1437 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1439 #ifdef STACK_GROWS_DOWNWARD
1440 #define CMP_OPCODE GTU
1441 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1442 1, OPTAB_WIDEN);
1443 #else
1444 #define CMP_OPCODE LTU
1445 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1446 1, OPTAB_WIDEN);
1447 #endif
1449 if (temp != test_addr)
1450 abort ();
1452 emit_label (test_lab);
1453 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1454 NULL_RTX, Pmode, 1, 0, loop_lab);
1455 emit_jump (end_lab);
1456 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1457 emit_label (end_lab);
1459 /* If will be doing stupid optimization, show test_addr is still live. */
1460 if (obey_regdecls)
1461 emit_insn (gen_rtx_USE (VOIDmode, test_addr));
1463 emit_stack_probe (last_addr);
1467 /* Return an rtx representing the register or memory location
1468 in which a scalar value of data type VALTYPE
1469 was returned by a function call to function FUNC.
1470 FUNC is a FUNCTION_DECL node if the precise function is known,
1471 otherwise 0. */
1474 hard_function_value (valtype, func)
1475 tree valtype;
1476 tree func ATTRIBUTE_UNUSED;
1478 rtx val = FUNCTION_VALUE (valtype, func);
1479 if (GET_CODE (val) == REG
1480 && GET_MODE (val) == BLKmode)
1482 int bytes = int_size_in_bytes (valtype);
1483 enum machine_mode tmpmode;
1484 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1485 tmpmode != MAX_MACHINE_MODE;
1486 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1488 /* Have we found a large enough mode? */
1489 if (GET_MODE_SIZE (tmpmode) >= bytes)
1490 break;
1493 /* No suitable mode found. */
1494 if (tmpmode == MAX_MACHINE_MODE)
1495 abort ();
1497 PUT_MODE (val, tmpmode);
1499 return val;
1502 /* Return an rtx representing the register or memory location
1503 in which a scalar value of mode MODE was returned by a library call. */
1506 hard_libcall_value (mode)
1507 enum machine_mode mode;
1509 return LIBCALL_VALUE (mode);
1512 /* Look up the tree code for a given rtx code
1513 to provide the arithmetic operation for REAL_ARITHMETIC.
1514 The function returns an int because the caller may not know
1515 what `enum tree_code' means. */
1518 rtx_to_tree_code (code)
1519 enum rtx_code code;
1521 enum tree_code tcode;
1523 switch (code)
1525 case PLUS:
1526 tcode = PLUS_EXPR;
1527 break;
1528 case MINUS:
1529 tcode = MINUS_EXPR;
1530 break;
1531 case MULT:
1532 tcode = MULT_EXPR;
1533 break;
1534 case DIV:
1535 tcode = RDIV_EXPR;
1536 break;
1537 case SMIN:
1538 tcode = MIN_EXPR;
1539 break;
1540 case SMAX:
1541 tcode = MAX_EXPR;
1542 break;
1543 default:
1544 tcode = LAST_AND_UNUSED_TREE_CODE;
1545 break;
1547 return ((int) tcode);