1 /* GIMPLE store merging and byte swapping passes.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of the store merging pass is to combine multiple memory stores
22 of constant values, values loaded from memory, bitwise operations on those,
23 or bit-field values, to consecutive locations, into fewer wider stores.
25 For example, if we have a sequence peforming four byte stores to
26 consecutive memory locations:
31 we can transform this into a single 4-byte store if the target supports it:
32 [p] := imm1:imm2:imm3:imm4 concatenated according to endianness.
39 if there is no overlap can be transformed into a single 4-byte
40 load followed by single 4-byte store.
44 [p + 1B] := [q + 1B] ^ imm2;
45 [p + 2B] := [q + 2B] ^ imm3;
46 [p + 3B] := [q + 3B] ^ imm4;
47 if there is no overlap can be transformed into a single 4-byte
48 load, xored with imm1:imm2:imm3:imm4 and stored using a single 4-byte store.
52 [p:31] := val & 0x7FFFFFFF;
53 we can transform this into a single 4-byte store if the target supports it:
54 [p] := imm:(val & 0x7FFFFFFF) concatenated according to endianness.
56 The algorithm is applied to each basic block in three phases:
58 1) Scan through the basic block and record assignments to destinations
59 that can be expressed as a store to memory of a certain size at a certain
60 bit offset from base expressions we can handle. For bit-fields we also
61 record the surrounding bit region, i.e. bits that could be stored in
62 a read-modify-write operation when storing the bit-field. Record store
63 chains to different bases in a hash_map (m_stores) and make sure to
64 terminate such chains when appropriate (for example when when the stored
65 values get used subsequently).
66 These stores can be a result of structure element initializers, array stores
67 etc. A store_immediate_info object is recorded for every such store.
68 Record as many such assignments to a single base as possible until a
69 statement that interferes with the store sequence is encountered.
70 Each store has up to 2 operands, which can be a either constant, a memory
71 load or an SSA name, from which the value to be stored can be computed.
72 At most one of the operands can be a constant. The operands are recorded
73 in store_operand_info struct.
75 2) Analyze the chains of stores recorded in phase 1) (i.e. the vector of
76 store_immediate_info objects) and coalesce contiguous stores into
77 merged_store_group objects. For bit-field stores, we don't need to
78 require the stores to be contiguous, just their surrounding bit regions
79 have to be contiguous. If the expression being stored is different
80 between adjacent stores, such as one store storing a constant and
81 following storing a value loaded from memory, or if the loaded memory
82 objects are not adjacent, a new merged_store_group is created as well.
84 For example, given the stores:
91 This phase would produce two merged_store_group objects, one recording the
92 two bytes stored in the memory region [p : p + 1] and another
93 recording the four bytes stored in the memory region [p + 3 : p + 6].
95 3) The merged_store_group objects produced in phase 2) are processed
96 to generate the sequence of wider stores that set the contiguous memory
97 regions to the sequence of bytes that correspond to it. This may emit
98 multiple stores per store group to handle contiguous stores that are not
99 of a size that is a power of 2. For example it can try to emit a 40-bit
100 store as a 32-bit store followed by an 8-bit store.
101 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT
102 or TARGET_SLOW_UNALIGNED_ACCESS settings.
104 Note on endianness and example:
105 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
111 The memory layout for little-endian (LE) and big-endian (BE) must be:
121 To merge these into a single 48-bit merged value 'val' in phase 2)
122 on little-endian we insert stores to higher (consecutive) bitpositions
123 into the most significant bits of the merged value.
124 The final merged value would be: 0xcdab56781234
126 For big-endian we insert stores to higher bitpositions into the least
127 significant bits of the merged value.
128 The final merged value would be: 0x12345678abcd
130 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
131 followed by a 16-bit store. Again, we must consider endianness when
132 breaking down the 48-bit value 'val' computed above.
133 For little endian we emit:
134 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
135 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
137 Whereas for big-endian we emit:
138 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
139 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
143 #include "coretypes.h"
147 #include "builtins.h"
148 #include "fold-const.h"
149 #include "tree-pass.h"
151 #include "gimple-pretty-print.h"
153 #include "fold-const.h"
155 #include "print-tree.h"
156 #include "tree-hash-traits.h"
157 #include "gimple-iterator.h"
158 #include "gimplify.h"
159 #include "gimple-fold.h"
160 #include "stor-layout.h"
162 #include "tree-cfg.h"
165 #include "gimplify-me.h"
167 #include "expr.h" /* For get_bit_range. */
168 #include "optabs-tree.h"
169 #include "selftest.h"
171 /* The maximum size (in bits) of the stores this pass should generate. */
172 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
173 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
175 /* Limit to bound the number of aliasing checks for loads with the same
176 vuse as the corresponding store. */
177 #define MAX_STORE_ALIAS_CHECKS 64
183 /* Number of hand-written 16-bit nop / bswaps found. */
186 /* Number of hand-written 32-bit nop / bswaps found. */
189 /* Number of hand-written 64-bit nop / bswaps found. */
191 } nop_stats
, bswap_stats
;
193 /* A symbolic number structure is used to detect byte permutation and selection
194 patterns of a source. To achieve that, its field N contains an artificial
195 number consisting of BITS_PER_MARKER sized markers tracking where does each
196 byte come from in the source:
198 0 - target byte has the value 0
199 FF - target byte has an unknown value (eg. due to sign extension)
200 1..size - marker value is the byte index in the source (0 for lsb).
202 To detect permutations on memory sources (arrays and structures), a symbolic
203 number is also associated:
204 - a base address BASE_ADDR and an OFFSET giving the address of the source;
205 - a range which gives the difference between the highest and lowest accessed
206 memory location to make such a symbolic number;
207 - the address SRC of the source element of lowest address as a convenience
208 to easily get BASE_ADDR + offset + lowest bytepos;
209 - number of expressions N_OPS bitwise ored together to represent
210 approximate cost of the computation.
212 Note 1: the range is different from size as size reflects the size of the
213 type of the current expression. For instance, for an array char a[],
214 (short) a[0] | (short) a[3] would have a size of 2 but a range of 4 while
215 (short) a[0] | ((short) a[0] << 1) would still have a size of 2 but this
218 Note 2: for non-memory sources, range holds the same value as size.
220 Note 3: SRC points to the SSA_NAME in case of non-memory source. */
222 struct symbolic_number
{
227 poly_int64_pod bytepos
;
231 unsigned HOST_WIDE_INT range
;
235 #define BITS_PER_MARKER 8
236 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
237 #define MARKER_BYTE_UNKNOWN MARKER_MASK
238 #define HEAD_MARKER(n, size) \
239 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
241 /* The number which the find_bswap_or_nop_1 result should match in
242 order to have a nop. The number is masked according to the size of
243 the symbolic number before using it. */
244 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
245 (uint64_t)0x08070605 << 32 | 0x04030201)
247 /* The number which the find_bswap_or_nop_1 result should match in
248 order to have a byte swap. The number is masked according to the
249 size of the symbolic number before using it. */
250 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
251 (uint64_t)0x01020304 << 32 | 0x05060708)
253 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
254 number N. Return false if the requested operation is not permitted
255 on a symbolic number. */
258 do_shift_rotate (enum tree_code code
,
259 struct symbolic_number
*n
,
262 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
263 unsigned head_marker
;
266 || count
>= TYPE_PRECISION (n
->type
)
267 || count
% BITS_PER_UNIT
!= 0)
269 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
271 /* Zero out the extra bits of N in order to avoid them being shifted
272 into the significant bits. */
273 if (size
< 64 / BITS_PER_MARKER
)
274 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
282 head_marker
= HEAD_MARKER (n
->n
, size
);
284 /* Arithmetic shift of signed type: result is dependent on the value. */
285 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
286 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
287 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
288 << ((size
- 1 - i
) * BITS_PER_MARKER
);
291 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
294 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
299 /* Zero unused bits for size. */
300 if (size
< 64 / BITS_PER_MARKER
)
301 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
305 /* Perform sanity checking for the symbolic number N and the gimple
309 verify_symbolic_number_p (struct symbolic_number
*n
, gimple
*stmt
)
313 lhs_type
= gimple_expr_type (stmt
);
315 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
318 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
324 /* Initialize the symbolic number N for the bswap pass from the base element
325 SRC manipulated by the bitwise OR expression. */
328 init_symbolic_number (struct symbolic_number
*n
, tree src
)
332 if (! INTEGRAL_TYPE_P (TREE_TYPE (src
)))
335 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
338 /* Set up the symbolic number N by setting each byte to a value between 1 and
339 the byte size of rhs1. The highest order byte is set to n->size and the
340 lowest order byte to 1. */
341 n
->type
= TREE_TYPE (src
);
342 size
= TYPE_PRECISION (n
->type
);
343 if (size
% BITS_PER_UNIT
!= 0)
345 size
/= BITS_PER_UNIT
;
346 if (size
> 64 / BITS_PER_MARKER
)
352 if (size
< 64 / BITS_PER_MARKER
)
353 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
358 /* Check if STMT might be a byte swap or a nop from a memory source and returns
359 the answer. If so, REF is that memory source and the base of the memory area
360 accessed and the offset of the access from that base are recorded in N. */
363 find_bswap_or_nop_load (gimple
*stmt
, tree ref
, struct symbolic_number
*n
)
365 /* Leaf node is an array or component ref. Memorize its base and
366 offset from base to compare to other such leaf node. */
367 poly_int64 bitsize
, bitpos
, bytepos
;
369 int unsignedp
, reversep
, volatilep
;
370 tree offset
, base_addr
;
372 /* Not prepared to handle PDP endian. */
373 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
376 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
379 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
380 &unsignedp
, &reversep
, &volatilep
);
382 if (TREE_CODE (base_addr
) == TARGET_MEM_REF
)
383 /* Do not rewrite TARGET_MEM_REF. */
385 else if (TREE_CODE (base_addr
) == MEM_REF
)
387 poly_offset_int bit_offset
= 0;
388 tree off
= TREE_OPERAND (base_addr
, 1);
390 if (!integer_zerop (off
))
392 poly_offset_int boff
= mem_ref_offset (base_addr
);
393 boff
<<= LOG2_BITS_PER_UNIT
;
397 base_addr
= TREE_OPERAND (base_addr
, 0);
399 /* Avoid returning a negative bitpos as this may wreak havoc later. */
400 if (maybe_lt (bit_offset
, 0))
402 tree byte_offset
= wide_int_to_tree
403 (sizetype
, bits_to_bytes_round_down (bit_offset
));
404 bit_offset
= num_trailing_bits (bit_offset
);
406 offset
= size_binop (PLUS_EXPR
, offset
, byte_offset
);
408 offset
= byte_offset
;
411 bitpos
+= bit_offset
.force_shwi ();
414 base_addr
= build_fold_addr_expr (base_addr
);
416 if (!multiple_p (bitpos
, BITS_PER_UNIT
, &bytepos
))
418 if (!multiple_p (bitsize
, BITS_PER_UNIT
))
423 if (!init_symbolic_number (n
, ref
))
425 n
->base_addr
= base_addr
;
427 n
->bytepos
= bytepos
;
428 n
->alias_set
= reference_alias_ptr_type (ref
);
429 n
->vuse
= gimple_vuse (stmt
);
433 /* Compute the symbolic number N representing the result of a bitwise OR on 2
434 symbolic number N1 and N2 whose source statements are respectively
435 SOURCE_STMT1 and SOURCE_STMT2. */
438 perform_symbolic_merge (gimple
*source_stmt1
, struct symbolic_number
*n1
,
439 gimple
*source_stmt2
, struct symbolic_number
*n2
,
440 struct symbolic_number
*n
)
445 struct symbolic_number
*n_start
;
447 tree rhs1
= gimple_assign_rhs1 (source_stmt1
);
448 if (TREE_CODE (rhs1
) == BIT_FIELD_REF
449 && TREE_CODE (TREE_OPERAND (rhs1
, 0)) == SSA_NAME
)
450 rhs1
= TREE_OPERAND (rhs1
, 0);
451 tree rhs2
= gimple_assign_rhs1 (source_stmt2
);
452 if (TREE_CODE (rhs2
) == BIT_FIELD_REF
453 && TREE_CODE (TREE_OPERAND (rhs2
, 0)) == SSA_NAME
)
454 rhs2
= TREE_OPERAND (rhs2
, 0);
456 /* Sources are different, cancel bswap if they are not memory location with
457 the same base (array, structure, ...). */
461 HOST_WIDE_INT start1
, start2
, start_sub
, end_sub
, end1
, end2
, end
;
462 struct symbolic_number
*toinc_n_ptr
, *n_end
;
463 basic_block bb1
, bb2
;
465 if (!n1
->base_addr
|| !n2
->base_addr
466 || !operand_equal_p (n1
->base_addr
, n2
->base_addr
, 0))
469 if (!n1
->offset
!= !n2
->offset
470 || (n1
->offset
&& !operand_equal_p (n1
->offset
, n2
->offset
, 0)))
474 if (!(n2
->bytepos
- n1
->bytepos
).is_constant (&start2
))
480 start_sub
= start2
- start1
;
485 start_sub
= start1
- start2
;
488 bb1
= gimple_bb (source_stmt1
);
489 bb2
= gimple_bb (source_stmt2
);
490 if (dominated_by_p (CDI_DOMINATORS
, bb1
, bb2
))
491 source_stmt
= source_stmt1
;
493 source_stmt
= source_stmt2
;
495 /* Find the highest address at which a load is performed and
496 compute related info. */
497 end1
= start1
+ (n1
->range
- 1);
498 end2
= start2
+ (n2
->range
- 1);
502 end_sub
= end2
- end1
;
507 end_sub
= end1
- end2
;
509 n_end
= (end2
> end1
) ? n2
: n1
;
511 /* Find symbolic number whose lsb is the most significant. */
512 if (BYTES_BIG_ENDIAN
)
513 toinc_n_ptr
= (n_end
== n1
) ? n2
: n1
;
515 toinc_n_ptr
= (n_start
== n1
) ? n2
: n1
;
517 n
->range
= end
- MIN (start1
, start2
) + 1;
519 /* Check that the range of memory covered can be represented by
520 a symbolic number. */
521 if (n
->range
> 64 / BITS_PER_MARKER
)
524 /* Reinterpret byte marks in symbolic number holding the value of
525 bigger weight according to target endianness. */
526 inc
= BYTES_BIG_ENDIAN
? end_sub
: start_sub
;
527 size
= TYPE_PRECISION (n1
->type
) / BITS_PER_UNIT
;
528 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
531 = (toinc_n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
532 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
533 toinc_n_ptr
->n
+= inc
;
538 n
->range
= n1
->range
;
540 source_stmt
= source_stmt1
;
544 || alias_ptr_types_compatible_p (n1
->alias_set
, n2
->alias_set
))
545 n
->alias_set
= n1
->alias_set
;
547 n
->alias_set
= ptr_type_node
;
548 n
->vuse
= n_start
->vuse
;
549 n
->base_addr
= n_start
->base_addr
;
550 n
->offset
= n_start
->offset
;
551 n
->src
= n_start
->src
;
552 n
->bytepos
= n_start
->bytepos
;
553 n
->type
= n_start
->type
;
554 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
556 for (i
= 0, mask
= MARKER_MASK
; i
< size
; i
++, mask
<<= BITS_PER_MARKER
)
558 uint64_t masked1
, masked2
;
560 masked1
= n1
->n
& mask
;
561 masked2
= n2
->n
& mask
;
562 if (masked1
&& masked2
&& masked1
!= masked2
)
565 n
->n
= n1
->n
| n2
->n
;
566 n
->n_ops
= n1
->n_ops
+ n2
->n_ops
;
571 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
572 the operation given by the rhs of STMT on the result. If the operation
573 could successfully be executed the function returns a gimple stmt whose
574 rhs's first tree is the expression of the source operand and NULL
578 find_bswap_or_nop_1 (gimple
*stmt
, struct symbolic_number
*n
, int limit
)
581 tree rhs1
, rhs2
= NULL
;
582 gimple
*rhs1_stmt
, *rhs2_stmt
, *source_stmt1
;
583 enum gimple_rhs_class rhs_class
;
585 if (!limit
|| !is_gimple_assign (stmt
))
588 rhs1
= gimple_assign_rhs1 (stmt
);
590 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
593 /* Handle BIT_FIELD_REF. */
594 if (TREE_CODE (rhs1
) == BIT_FIELD_REF
595 && TREE_CODE (TREE_OPERAND (rhs1
, 0)) == SSA_NAME
)
597 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TREE_OPERAND (rhs1
, 1));
598 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (TREE_OPERAND (rhs1
, 2));
599 if (bitpos
% BITS_PER_UNIT
== 0
600 && bitsize
% BITS_PER_UNIT
== 0
601 && init_symbolic_number (n
, TREE_OPERAND (rhs1
, 0)))
603 /* Handle big-endian bit numbering in BIT_FIELD_REF. */
604 if (BYTES_BIG_ENDIAN
)
605 bitpos
= TYPE_PRECISION (n
->type
) - bitpos
- bitsize
;
608 if (!do_shift_rotate (RSHIFT_EXPR
, n
, bitpos
))
613 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
614 for (unsigned i
= 0; i
< bitsize
/ BITS_PER_UNIT
;
615 i
++, tmp
<<= BITS_PER_UNIT
)
616 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
620 n
->type
= TREE_TYPE (rhs1
);
622 n
->range
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
624 return verify_symbolic_number_p (n
, stmt
) ? stmt
: NULL
;
630 if (TREE_CODE (rhs1
) != SSA_NAME
)
633 code
= gimple_assign_rhs_code (stmt
);
634 rhs_class
= gimple_assign_rhs_class (stmt
);
635 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
637 if (rhs_class
== GIMPLE_BINARY_RHS
)
638 rhs2
= gimple_assign_rhs2 (stmt
);
640 /* Handle unary rhs and binary rhs with integer constants as second
643 if (rhs_class
== GIMPLE_UNARY_RHS
644 || (rhs_class
== GIMPLE_BINARY_RHS
645 && TREE_CODE (rhs2
) == INTEGER_CST
))
647 if (code
!= BIT_AND_EXPR
648 && code
!= LSHIFT_EXPR
649 && code
!= RSHIFT_EXPR
650 && code
!= LROTATE_EXPR
651 && code
!= RROTATE_EXPR
652 && !CONVERT_EXPR_CODE_P (code
))
655 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
657 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
658 we have to initialize the symbolic number. */
661 if (gimple_assign_load_p (stmt
)
662 || !init_symbolic_number (n
, rhs1
))
671 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
672 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
673 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
675 /* Only constants masking full bytes are allowed. */
676 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
677 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
680 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
689 if (!do_shift_rotate (code
, n
, (int) TREE_INT_CST_LOW (rhs2
)))
694 int i
, type_size
, old_type_size
;
697 type
= gimple_expr_type (stmt
);
698 type_size
= TYPE_PRECISION (type
);
699 if (type_size
% BITS_PER_UNIT
!= 0)
701 type_size
/= BITS_PER_UNIT
;
702 if (type_size
> 64 / BITS_PER_MARKER
)
705 /* Sign extension: result is dependent on the value. */
706 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
707 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
708 && HEAD_MARKER (n
->n
, old_type_size
))
709 for (i
= 0; i
< type_size
- old_type_size
; i
++)
710 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
711 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
713 if (type_size
< 64 / BITS_PER_MARKER
)
715 /* If STMT casts to a smaller type mask out the bits not
716 belonging to the target type. */
717 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
721 n
->range
= type_size
;
727 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
730 /* Handle binary rhs. */
732 if (rhs_class
== GIMPLE_BINARY_RHS
)
734 struct symbolic_number n1
, n2
;
735 gimple
*source_stmt
, *source_stmt2
;
737 if (code
!= BIT_IOR_EXPR
)
740 if (TREE_CODE (rhs2
) != SSA_NAME
)
743 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
748 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
753 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
758 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
761 if (n1
.vuse
!= n2
.vuse
)
765 = perform_symbolic_merge (source_stmt1
, &n1
, source_stmt2
, &n2
, n
);
770 if (!verify_symbolic_number_p (n
, stmt
))
782 /* Helper for find_bswap_or_nop and try_coalesce_bswap to compute
783 *CMPXCHG, *CMPNOP and adjust *N. */
786 find_bswap_or_nop_finalize (struct symbolic_number
*n
, uint64_t *cmpxchg
,
792 /* The number which the find_bswap_or_nop_1 result should match in order
793 to have a full byte swap. The number is shifted to the right
794 according to the size of the symbolic number before using it. */
798 /* Find real size of result (highest non-zero byte). */
800 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
804 /* Zero out the bits corresponding to untouched bytes in original gimple
806 if (n
->range
< (int) sizeof (int64_t))
808 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
809 *cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
813 /* Zero out the bits corresponding to unused bytes in the result of the
814 gimple expression. */
815 if (rsize
< n
->range
)
817 if (BYTES_BIG_ENDIAN
)
819 mask
= ((uint64_t) 1 << (rsize
* BITS_PER_MARKER
)) - 1;
821 *cmpnop
>>= (n
->range
- rsize
) * BITS_PER_MARKER
;
825 mask
= ((uint64_t) 1 << (rsize
* BITS_PER_MARKER
)) - 1;
826 *cmpxchg
>>= (n
->range
- rsize
) * BITS_PER_MARKER
;
832 n
->range
*= BITS_PER_UNIT
;
835 /* Check if STMT completes a bswap implementation or a read in a given
836 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
837 accordingly. It also sets N to represent the kind of operations
838 performed: size of the resulting expression and whether it works on
839 a memory source, and if so alias-set and vuse. At last, the
840 function returns a stmt whose rhs's first tree is the source
844 find_bswap_or_nop (gimple
*stmt
, struct symbolic_number
*n
, bool *bswap
)
846 /* The last parameter determines the depth search limit. It usually
847 correlates directly to the number n of bytes to be touched. We
848 increase that number by log2(n) + 1 here in order to also
849 cover signed -> unsigned conversions of the src operand as can be seen
850 in libgcc, and for initial shift/and operation of the src operand. */
851 int limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
852 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
853 gimple
*ins_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
858 uint64_t cmpxchg
, cmpnop
;
859 find_bswap_or_nop_finalize (n
, &cmpxchg
, &cmpnop
);
861 /* A complete byte swap should make the symbolic number to start with
862 the largest digit in the highest order byte. Unchanged symbolic
863 number indicates a read with same endianness as target architecture. */
866 else if (n
->n
== cmpxchg
)
871 /* Useless bit manipulation performed by code. */
872 if (!n
->base_addr
&& n
->n
== cmpnop
&& n
->n_ops
== 1)
878 const pass_data pass_data_optimize_bswap
=
880 GIMPLE_PASS
, /* type */
882 OPTGROUP_NONE
, /* optinfo_flags */
884 PROP_ssa
, /* properties_required */
885 0, /* properties_provided */
886 0, /* properties_destroyed */
887 0, /* todo_flags_start */
888 0, /* todo_flags_finish */
891 class pass_optimize_bswap
: public gimple_opt_pass
894 pass_optimize_bswap (gcc::context
*ctxt
)
895 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
898 /* opt_pass methods: */
899 virtual bool gate (function
*)
901 return flag_expensive_optimizations
&& optimize
&& BITS_PER_UNIT
== 8;
904 virtual unsigned int execute (function
*);
906 }; // class pass_optimize_bswap
908 /* Perform the bswap optimization: replace the expression computed in the rhs
909 of gsi_stmt (GSI) (or if NULL add instead of replace) by an equivalent
910 bswap, load or load + bswap expression.
911 Which of these alternatives replace the rhs is given by N->base_addr (non
912 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
913 load to perform are also given in N while the builtin bswap invoke is given
914 in FNDEL. Finally, if a load is involved, INS_STMT refers to one of the
915 load statements involved to construct the rhs in gsi_stmt (GSI) and
916 N->range gives the size of the rhs expression for maintaining some
919 Note that if the replacement involve a load and if gsi_stmt (GSI) is
920 non-NULL, that stmt is moved just after INS_STMT to do the load with the
921 same VUSE which can lead to gsi_stmt (GSI) changing of basic block. */
924 bswap_replace (gimple_stmt_iterator gsi
, gimple
*ins_stmt
, tree fndecl
,
925 tree bswap_type
, tree load_type
, struct symbolic_number
*n
,
928 tree src
, tmp
, tgt
= NULL_TREE
;
931 gimple
*cur_stmt
= gsi_stmt (gsi
);
934 tgt
= gimple_assign_lhs (cur_stmt
);
936 /* Need to load the value from memory first. */
939 gimple_stmt_iterator gsi_ins
= gsi
;
941 gsi_ins
= gsi_for_stmt (ins_stmt
);
942 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
943 tree load_offset_ptr
, aligned_load_type
;
945 unsigned align
= get_object_alignment (src
);
946 poly_int64 load_offset
= 0;
950 basic_block ins_bb
= gimple_bb (ins_stmt
);
951 basic_block cur_bb
= gimple_bb (cur_stmt
);
952 if (!dominated_by_p (CDI_DOMINATORS
, cur_bb
, ins_bb
))
955 /* Move cur_stmt just before one of the load of the original
956 to ensure it has the same VUSE. See PR61517 for what could
958 if (gimple_bb (cur_stmt
) != gimple_bb (ins_stmt
))
959 reset_flow_sensitive_info (gimple_assign_lhs (cur_stmt
));
960 gsi_move_before (&gsi
, &gsi_ins
);
961 gsi
= gsi_for_stmt (cur_stmt
);
966 /* Compute address to load from and cast according to the size
968 addr_expr
= build_fold_addr_expr (src
);
969 if (is_gimple_mem_ref_addr (addr_expr
))
970 addr_tmp
= unshare_expr (addr_expr
);
973 addr_tmp
= unshare_expr (n
->base_addr
);
974 if (!is_gimple_mem_ref_addr (addr_tmp
))
975 addr_tmp
= force_gimple_operand_gsi_1 (&gsi
, addr_tmp
,
976 is_gimple_mem_ref_addr
,
979 load_offset
= n
->bytepos
;
983 = force_gimple_operand_gsi (&gsi
, unshare_expr (n
->offset
),
984 true, NULL_TREE
, true,
987 = gimple_build_assign (make_ssa_name (TREE_TYPE (addr_tmp
)),
988 POINTER_PLUS_EXPR
, addr_tmp
, off
);
989 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
990 addr_tmp
= gimple_assign_lhs (stmt
);
994 /* Perform the load. */
995 aligned_load_type
= load_type
;
996 if (align
< TYPE_ALIGN (load_type
))
997 aligned_load_type
= build_aligned_type (load_type
, align
);
998 load_offset_ptr
= build_int_cst (n
->alias_set
, load_offset
);
999 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
1005 nop_stats
.found_16bit
++;
1006 else if (n
->range
== 32)
1007 nop_stats
.found_32bit
++;
1010 gcc_assert (n
->range
== 64);
1011 nop_stats
.found_64bit
++;
1014 /* Convert the result of load if necessary. */
1015 if (tgt
&& !useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
1017 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
1019 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
1020 gimple_set_vuse (load_stmt
, n
->vuse
);
1021 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1022 gimple_assign_set_rhs_with_ops (&gsi
, NOP_EXPR
, val_tmp
);
1023 update_stmt (cur_stmt
);
1027 gimple_assign_set_rhs_with_ops (&gsi
, MEM_REF
, val_expr
);
1028 gimple_set_vuse (cur_stmt
, n
->vuse
);
1029 update_stmt (cur_stmt
);
1033 tgt
= make_ssa_name (load_type
);
1034 cur_stmt
= gimple_build_assign (tgt
, MEM_REF
, val_expr
);
1035 gimple_set_vuse (cur_stmt
, n
->vuse
);
1036 gsi_insert_before (&gsi
, cur_stmt
, GSI_SAME_STMT
);
1042 "%d bit load in target endianness found at: ",
1044 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1050 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
1051 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
1052 gimple_set_vuse (load_stmt
, n
->vuse
);
1053 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1060 if (tgt
&& !useless_type_conversion_p (TREE_TYPE (tgt
), TREE_TYPE (src
)))
1062 if (!is_gimple_val (src
))
1064 g
= gimple_build_assign (tgt
, NOP_EXPR
, src
);
1067 g
= gimple_build_assign (tgt
, src
);
1071 nop_stats
.found_16bit
++;
1072 else if (n
->range
== 32)
1073 nop_stats
.found_32bit
++;
1076 gcc_assert (n
->range
== 64);
1077 nop_stats
.found_64bit
++;
1082 "%d bit reshuffle in target endianness found at: ",
1085 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1088 print_generic_expr (dump_file
, tgt
, TDF_NONE
);
1089 fprintf (dump_file
, "\n");
1093 gsi_replace (&gsi
, g
, true);
1096 else if (TREE_CODE (src
) == BIT_FIELD_REF
)
1097 src
= TREE_OPERAND (src
, 0);
1100 bswap_stats
.found_16bit
++;
1101 else if (n
->range
== 32)
1102 bswap_stats
.found_32bit
++;
1105 gcc_assert (n
->range
== 64);
1106 bswap_stats
.found_64bit
++;
1111 /* Convert the src expression if necessary. */
1112 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
1114 gimple
*convert_stmt
;
1116 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
1117 convert_stmt
= gimple_build_assign (tmp
, NOP_EXPR
, src
);
1118 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
1121 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
1122 are considered as rotation of 2N bit values by N bits is generally not
1123 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
1124 gives 0x03040102 while a bswap for that value is 0x04030201. */
1125 if (bswap
&& n
->range
== 16)
1127 tree count
= build_int_cst (NULL
, BITS_PER_UNIT
);
1128 src
= fold_build2 (LROTATE_EXPR
, bswap_type
, tmp
, count
);
1129 bswap_stmt
= gimple_build_assign (NULL
, src
);
1132 bswap_stmt
= gimple_build_call (fndecl
, 1, tmp
);
1134 if (tgt
== NULL_TREE
)
1135 tgt
= make_ssa_name (bswap_type
);
1138 /* Convert the result if necessary. */
1139 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
1141 gimple
*convert_stmt
;
1143 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
1144 convert_stmt
= gimple_build_assign (tgt
, NOP_EXPR
, tmp
);
1145 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
1148 gimple_set_lhs (bswap_stmt
, tmp
);
1152 fprintf (dump_file
, "%d bit bswap implementation found at: ",
1155 print_gimple_stmt (dump_file
, cur_stmt
, 0);
1158 print_generic_expr (dump_file
, tgt
, TDF_NONE
);
1159 fprintf (dump_file
, "\n");
1165 gsi_insert_after (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
1166 gsi_remove (&gsi
, true);
1169 gsi_insert_before (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
1173 /* Find manual byte swap implementations as well as load in a given
1174 endianness. Byte swaps are turned into a bswap builtin invokation
1175 while endian loads are converted to bswap builtin invokation or
1176 simple load according to the target endianness. */
1179 pass_optimize_bswap::execute (function
*fun
)
1182 bool bswap32_p
, bswap64_p
;
1183 bool changed
= false;
1184 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
1186 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
1187 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
1188 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
1189 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
1190 || (bswap32_p
&& word_mode
== SImode
)));
1192 /* Determine the argument type of the builtins. The code later on
1193 assumes that the return and argument type are the same. */
1196 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1197 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1202 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1203 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1206 memset (&nop_stats
, 0, sizeof (nop_stats
));
1207 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
1208 calculate_dominance_info (CDI_DOMINATORS
);
1210 FOR_EACH_BB_FN (bb
, fun
)
1212 gimple_stmt_iterator gsi
;
1214 /* We do a reverse scan for bswap patterns to make sure we get the
1215 widest match. As bswap pattern matching doesn't handle previously
1216 inserted smaller bswap replacements as sub-patterns, the wider
1217 variant wouldn't be detected. */
1218 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
1220 gimple
*ins_stmt
, *cur_stmt
= gsi_stmt (gsi
);
1221 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
1222 enum tree_code code
;
1223 struct symbolic_number n
;
1226 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
1227 might be moved to a different basic block by bswap_replace and gsi
1228 must not points to it if that's the case. Moving the gsi_prev
1229 there make sure that gsi points to the statement previous to
1230 cur_stmt while still making sure that all statements are
1231 considered in this basic block. */
1234 if (!is_gimple_assign (cur_stmt
))
1237 code
= gimple_assign_rhs_code (cur_stmt
);
1242 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt
))
1243 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt
))
1253 ins_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
);
1261 /* Already in canonical form, nothing to do. */
1262 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
1264 load_type
= bswap_type
= uint16_type_node
;
1267 load_type
= uint32_type_node
;
1270 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
1271 bswap_type
= bswap32_type
;
1275 load_type
= uint64_type_node
;
1278 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
1279 bswap_type
= bswap64_type
;
1286 if (bswap
&& !fndecl
&& n
.range
!= 16)
1289 if (bswap_replace (gsi_for_stmt (cur_stmt
), ins_stmt
, fndecl
,
1290 bswap_type
, load_type
, &n
, bswap
))
1295 statistics_counter_event (fun
, "16-bit nop implementations found",
1296 nop_stats
.found_16bit
);
1297 statistics_counter_event (fun
, "32-bit nop implementations found",
1298 nop_stats
.found_32bit
);
1299 statistics_counter_event (fun
, "64-bit nop implementations found",
1300 nop_stats
.found_64bit
);
1301 statistics_counter_event (fun
, "16-bit bswap implementations found",
1302 bswap_stats
.found_16bit
);
1303 statistics_counter_event (fun
, "32-bit bswap implementations found",
1304 bswap_stats
.found_32bit
);
1305 statistics_counter_event (fun
, "64-bit bswap implementations found",
1306 bswap_stats
.found_64bit
);
1308 return (changed
? TODO_update_ssa
: 0);
1314 make_pass_optimize_bswap (gcc::context
*ctxt
)
1316 return new pass_optimize_bswap (ctxt
);
1321 /* Struct recording one operand for the store, which is either a constant,
1322 then VAL represents the constant and all the other fields are zero, or
1323 a memory load, then VAL represents the reference, BASE_ADDR is non-NULL
1324 and the other fields also reflect the memory load, or an SSA name, then
1325 VAL represents the SSA name and all the other fields are zero, */
1327 struct store_operand_info
1331 poly_uint64 bitsize
;
1333 poly_uint64 bitregion_start
;
1334 poly_uint64 bitregion_end
;
1337 store_operand_info ();
1340 store_operand_info::store_operand_info ()
1341 : val (NULL_TREE
), base_addr (NULL_TREE
), bitsize (0), bitpos (0),
1342 bitregion_start (0), bitregion_end (0), stmt (NULL
), bit_not_p (false)
1346 /* Struct recording the information about a single store of an immediate
1347 to memory. These are created in the first phase and coalesced into
1348 merged_store_group objects in the second phase. */
1350 struct store_immediate_info
1352 unsigned HOST_WIDE_INT bitsize
;
1353 unsigned HOST_WIDE_INT bitpos
;
1354 unsigned HOST_WIDE_INT bitregion_start
;
1355 /* This is one past the last bit of the bit region. */
1356 unsigned HOST_WIDE_INT bitregion_end
;
1359 /* INTEGER_CST for constant stores, MEM_REF for memory copy,
1360 BIT_*_EXPR for logical bitwise operation, BIT_INSERT_EXPR
1362 LROTATE_EXPR if it can be only bswap optimized and
1363 ops are not really meaningful.
1364 NOP_EXPR if bswap optimization detected identity, ops
1365 are not meaningful. */
1366 enum tree_code rhs_code
;
1367 /* Two fields for bswap optimization purposes. */
1368 struct symbolic_number n
;
1370 /* True if BIT_{AND,IOR,XOR}_EXPR result is inverted before storing. */
1372 /* True if ops have been swapped and thus ops[1] represents
1373 rhs1 of BIT_{AND,IOR,XOR}_EXPR and ops[0] represents rhs2. */
1375 /* Operands. For BIT_*_EXPR rhs_code both operands are used, otherwise
1376 just the first one. */
1377 store_operand_info ops
[2];
1378 store_immediate_info (unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
1379 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
1380 gimple
*, unsigned int, enum tree_code
,
1381 struct symbolic_number
&, gimple
*, bool,
1382 const store_operand_info
&,
1383 const store_operand_info
&);
1386 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs
,
1387 unsigned HOST_WIDE_INT bp
,
1388 unsigned HOST_WIDE_INT brs
,
1389 unsigned HOST_WIDE_INT bre
,
1392 enum tree_code rhscode
,
1393 struct symbolic_number
&nr
,
1396 const store_operand_info
&op0r
,
1397 const store_operand_info
&op1r
)
1398 : bitsize (bs
), bitpos (bp
), bitregion_start (brs
), bitregion_end (bre
),
1399 stmt (st
), order (ord
), rhs_code (rhscode
), n (nr
),
1400 ins_stmt (ins_stmtp
), bit_not_p (bitnotp
), ops_swapped_p (false)
1401 #if __cplusplus >= 201103L
1402 , ops
{ op0r
, op1r
}
1412 /* Struct representing a group of stores to contiguous memory locations.
1413 These are produced by the second phase (coalescing) and consumed in the
1414 third phase that outputs the widened stores. */
1416 struct merged_store_group
1418 unsigned HOST_WIDE_INT start
;
1419 unsigned HOST_WIDE_INT width
;
1420 unsigned HOST_WIDE_INT bitregion_start
;
1421 unsigned HOST_WIDE_INT bitregion_end
;
1422 /* The size of the allocated memory for val and mask. */
1423 unsigned HOST_WIDE_INT buf_size
;
1424 unsigned HOST_WIDE_INT align_base
;
1425 poly_uint64 load_align_base
[2];
1428 unsigned int load_align
[2];
1429 unsigned int first_order
;
1430 unsigned int last_order
;
1432 bool only_constants
;
1433 unsigned int first_nonmergeable_order
;
1435 auto_vec
<store_immediate_info
*> stores
;
1436 /* We record the first and last original statements in the sequence because
1437 we'll need their vuse/vdef and replacement position. It's easier to keep
1438 track of them separately as 'stores' is reordered by apply_stores. */
1442 unsigned char *mask
;
1444 merged_store_group (store_immediate_info
*);
1445 ~merged_store_group ();
1446 bool can_be_merged_into (store_immediate_info
*);
1447 void merge_into (store_immediate_info
*);
1448 void merge_overlapping (store_immediate_info
*);
1449 bool apply_stores ();
1451 void do_merge (store_immediate_info
*);
1454 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
1457 dump_char_array (FILE *fd
, unsigned char *ptr
, unsigned int len
)
1462 for (unsigned int i
= 0; i
< len
; i
++)
1463 fprintf (fd
, "%02x ", ptr
[i
]);
1467 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
1468 bits between adjacent elements. AMNT should be within
1471 00011111|11100000 << 2 = 01111111|10000000
1472 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
1475 shift_bytes_in_array (unsigned char *ptr
, unsigned int sz
, unsigned int amnt
)
1480 unsigned char carry_over
= 0U;
1481 unsigned char carry_mask
= (~0U) << (unsigned char) (BITS_PER_UNIT
- amnt
);
1482 unsigned char clear_mask
= (~0U) << amnt
;
1484 for (unsigned int i
= 0; i
< sz
; i
++)
1486 unsigned prev_carry_over
= carry_over
;
1487 carry_over
= (ptr
[i
] & carry_mask
) >> (BITS_PER_UNIT
- amnt
);
1492 ptr
[i
] &= clear_mask
;
1493 ptr
[i
] |= prev_carry_over
;
1498 /* Like shift_bytes_in_array but for big-endian.
1499 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
1500 bits between adjacent elements. AMNT should be within
1503 00011111|11100000 >> 2 = 00000111|11111000
1504 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
1507 shift_bytes_in_array_right (unsigned char *ptr
, unsigned int sz
,
1513 unsigned char carry_over
= 0U;
1514 unsigned char carry_mask
= ~(~0U << amnt
);
1516 for (unsigned int i
= 0; i
< sz
; i
++)
1518 unsigned prev_carry_over
= carry_over
;
1519 carry_over
= ptr
[i
] & carry_mask
;
1521 carry_over
<<= (unsigned char) BITS_PER_UNIT
- amnt
;
1523 ptr
[i
] |= prev_carry_over
;
1527 /* Clear out LEN bits starting from bit START in the byte array
1528 PTR. This clears the bits to the *right* from START.
1529 START must be within [0, BITS_PER_UNIT) and counts starting from
1530 the least significant bit. */
1533 clear_bit_region_be (unsigned char *ptr
, unsigned int start
,
1538 /* Clear len bits to the right of start. */
1539 else if (len
<= start
+ 1)
1541 unsigned char mask
= (~(~0U << len
));
1542 mask
= mask
<< (start
+ 1U - len
);
1545 else if (start
!= BITS_PER_UNIT
- 1)
1547 clear_bit_region_be (ptr
, start
, (start
% BITS_PER_UNIT
) + 1);
1548 clear_bit_region_be (ptr
+ 1, BITS_PER_UNIT
- 1,
1549 len
- (start
% BITS_PER_UNIT
) - 1);
1551 else if (start
== BITS_PER_UNIT
- 1
1552 && len
> BITS_PER_UNIT
)
1554 unsigned int nbytes
= len
/ BITS_PER_UNIT
;
1555 memset (ptr
, 0, nbytes
);
1556 if (len
% BITS_PER_UNIT
!= 0)
1557 clear_bit_region_be (ptr
+ nbytes
, BITS_PER_UNIT
- 1,
1558 len
% BITS_PER_UNIT
);
1564 /* In the byte array PTR clear the bit region starting at bit
1565 START and is LEN bits wide.
1566 For regions spanning multiple bytes do this recursively until we reach
1567 zero LEN or a region contained within a single byte. */
1570 clear_bit_region (unsigned char *ptr
, unsigned int start
,
1573 /* Degenerate base case. */
1576 else if (start
>= BITS_PER_UNIT
)
1577 clear_bit_region (ptr
+ 1, start
- BITS_PER_UNIT
, len
);
1578 /* Second base case. */
1579 else if ((start
+ len
) <= BITS_PER_UNIT
)
1581 unsigned char mask
= (~0U) << (unsigned char) (BITS_PER_UNIT
- len
);
1582 mask
>>= BITS_PER_UNIT
- (start
+ len
);
1588 /* Clear most significant bits in a byte and proceed with the next byte. */
1589 else if (start
!= 0)
1591 clear_bit_region (ptr
, start
, BITS_PER_UNIT
- start
);
1592 clear_bit_region (ptr
+ 1, 0, len
- (BITS_PER_UNIT
- start
));
1594 /* Whole bytes need to be cleared. */
1595 else if (start
== 0 && len
> BITS_PER_UNIT
)
1597 unsigned int nbytes
= len
/ BITS_PER_UNIT
;
1598 /* We could recurse on each byte but we clear whole bytes, so a simple
1600 memset (ptr
, '\0', nbytes
);
1601 /* Clear the remaining sub-byte region if there is one. */
1602 if (len
% BITS_PER_UNIT
!= 0)
1603 clear_bit_region (ptr
+ nbytes
, 0, len
% BITS_PER_UNIT
);
1609 /* Write BITLEN bits of EXPR to the byte array PTR at
1610 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
1611 Return true if the operation succeeded. */
1614 encode_tree_to_bitpos (tree expr
, unsigned char *ptr
, int bitlen
, int bitpos
,
1615 unsigned int total_bytes
)
1617 unsigned int first_byte
= bitpos
/ BITS_PER_UNIT
;
1618 tree tmp_int
= expr
;
1619 bool sub_byte_op_p
= ((bitlen
% BITS_PER_UNIT
)
1620 || (bitpos
% BITS_PER_UNIT
)
1621 || !int_mode_for_size (bitlen
, 0).exists ());
1624 return native_encode_expr (tmp_int
, ptr
+ first_byte
, total_bytes
) != 0;
1627 We are writing a non byte-sized quantity or at a position that is not
1629 |--------|--------|--------| ptr + first_byte
1631 xxx xxxxxxxx xxx< bp>
1634 First native_encode_expr EXPR into a temporary buffer and shift each
1635 byte in the buffer by 'bp' (carrying the bits over as necessary).
1636 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
1637 <------bitlen---->< bp>
1638 Then we clear the destination bits:
1639 |---00000|00000000|000-----| ptr + first_byte
1640 <-------bitlen--->< bp>
1642 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1643 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
1646 We are writing a non byte-sized quantity or at a position that is not
1648 ptr + first_byte |--------|--------|--------|
1650 <bp >xxx xxxxxxxx xxx
1653 First native_encode_expr EXPR into a temporary buffer and shift each
1654 byte in the buffer to the right by (carrying the bits over as necessary).
1655 We shift by as much as needed to align the most significant bit of EXPR
1657 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
1658 <---bitlen----> <bp ><-----bitlen----->
1659 Then we clear the destination bits:
1660 ptr + first_byte |-----000||00000000||00000---|
1661 <bp ><-------bitlen----->
1663 Finally we ORR the bytes of the shifted EXPR into the cleared region:
1664 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
1665 The awkwardness comes from the fact that bitpos is counted from the
1666 most significant bit of a byte. */
1668 /* We must be dealing with fixed-size data at this point, since the
1669 total size is also fixed. */
1670 fixed_size_mode mode
= as_a
<fixed_size_mode
> (TYPE_MODE (TREE_TYPE (expr
)));
1671 /* Allocate an extra byte so that we have space to shift into. */
1672 unsigned int byte_size
= GET_MODE_SIZE (mode
) + 1;
1673 unsigned char *tmpbuf
= XALLOCAVEC (unsigned char, byte_size
);
1674 memset (tmpbuf
, '\0', byte_size
);
1675 /* The store detection code should only have allowed constants that are
1676 accepted by native_encode_expr. */
1677 if (native_encode_expr (expr
, tmpbuf
, byte_size
- 1) == 0)
1680 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
1681 bytes to write. This means it can write more than
1682 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
1683 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
1684 bitlen and zero out the bits that are not relevant as well (that may
1685 contain a sign bit due to sign-extension). */
1686 unsigned int padding
1687 = byte_size
- ROUND_UP (bitlen
, BITS_PER_UNIT
) / BITS_PER_UNIT
- 1;
1688 /* On big-endian the padding is at the 'front' so just skip the initial
1690 if (BYTES_BIG_ENDIAN
)
1693 byte_size
-= padding
;
1695 if (bitlen
% BITS_PER_UNIT
!= 0)
1697 if (BYTES_BIG_ENDIAN
)
1698 clear_bit_region_be (tmpbuf
, BITS_PER_UNIT
- 1,
1699 BITS_PER_UNIT
- (bitlen
% BITS_PER_UNIT
));
1701 clear_bit_region (tmpbuf
, bitlen
,
1702 byte_size
* BITS_PER_UNIT
- bitlen
);
1704 /* Left shifting relies on the last byte being clear if bitlen is
1705 a multiple of BITS_PER_UNIT, which might not be clear if
1706 there are padding bytes. */
1707 else if (!BYTES_BIG_ENDIAN
)
1708 tmpbuf
[byte_size
- 1] = '\0';
1710 /* Clear the bit region in PTR where the bits from TMPBUF will be
1712 if (BYTES_BIG_ENDIAN
)
1713 clear_bit_region_be (ptr
+ first_byte
,
1714 BITS_PER_UNIT
- 1 - (bitpos
% BITS_PER_UNIT
), bitlen
);
1716 clear_bit_region (ptr
+ first_byte
, bitpos
% BITS_PER_UNIT
, bitlen
);
1719 int bitlen_mod
= bitlen
% BITS_PER_UNIT
;
1720 int bitpos_mod
= bitpos
% BITS_PER_UNIT
;
1722 bool skip_byte
= false;
1723 if (BYTES_BIG_ENDIAN
)
1725 /* BITPOS and BITLEN are exactly aligned and no shifting
1727 if (bitpos_mod
+ bitlen_mod
== BITS_PER_UNIT
1728 || (bitpos_mod
== 0 && bitlen_mod
== 0))
1730 /* |. . . . . . . .|
1732 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
1733 of the value until it aligns with 'bp' in the next byte over. */
1734 else if (bitpos_mod
+ bitlen_mod
< BITS_PER_UNIT
)
1736 shift_amnt
= bitlen_mod
+ bitpos_mod
;
1737 skip_byte
= bitlen_mod
!= 0;
1739 /* |. . . . . . . .|
1742 Shift the value right within the same byte so it aligns with 'bp'. */
1744 shift_amnt
= bitlen_mod
+ bitpos_mod
- BITS_PER_UNIT
;
1747 shift_amnt
= bitpos
% BITS_PER_UNIT
;
1749 /* Create the shifted version of EXPR. */
1750 if (!BYTES_BIG_ENDIAN
)
1752 shift_bytes_in_array (tmpbuf
, byte_size
, shift_amnt
);
1753 if (shift_amnt
== 0)
1758 gcc_assert (BYTES_BIG_ENDIAN
);
1759 shift_bytes_in_array_right (tmpbuf
, byte_size
, shift_amnt
);
1760 /* If shifting right forced us to move into the next byte skip the now
1769 /* Insert the bits from TMPBUF. */
1770 for (unsigned int i
= 0; i
< byte_size
; i
++)
1771 ptr
[first_byte
+ i
] |= tmpbuf
[i
];
1776 /* Sorting function for store_immediate_info objects.
1777 Sorts them by bitposition. */
1780 sort_by_bitpos (const void *x
, const void *y
)
1782 store_immediate_info
*const *tmp
= (store_immediate_info
* const *) x
;
1783 store_immediate_info
*const *tmp2
= (store_immediate_info
* const *) y
;
1785 if ((*tmp
)->bitpos
< (*tmp2
)->bitpos
)
1787 else if ((*tmp
)->bitpos
> (*tmp2
)->bitpos
)
1790 /* If they are the same let's use the order which is guaranteed to
1792 return (*tmp
)->order
- (*tmp2
)->order
;
1795 /* Sorting function for store_immediate_info objects.
1796 Sorts them by the order field. */
1799 sort_by_order (const void *x
, const void *y
)
1801 store_immediate_info
*const *tmp
= (store_immediate_info
* const *) x
;
1802 store_immediate_info
*const *tmp2
= (store_immediate_info
* const *) y
;
1804 if ((*tmp
)->order
< (*tmp2
)->order
)
1806 else if ((*tmp
)->order
> (*tmp2
)->order
)
1812 /* Initialize a merged_store_group object from a store_immediate_info
1815 merged_store_group::merged_store_group (store_immediate_info
*info
)
1817 start
= info
->bitpos
;
1818 width
= info
->bitsize
;
1819 bitregion_start
= info
->bitregion_start
;
1820 bitregion_end
= info
->bitregion_end
;
1821 /* VAL has memory allocated for it in apply_stores once the group
1822 width has been finalized. */
1825 bit_insertion
= false;
1826 only_constants
= info
->rhs_code
== INTEGER_CST
;
1827 first_nonmergeable_order
= ~0U;
1828 unsigned HOST_WIDE_INT align_bitpos
= 0;
1829 get_object_alignment_1 (gimple_assign_lhs (info
->stmt
),
1830 &align
, &align_bitpos
);
1831 align_base
= start
- align_bitpos
;
1832 for (int i
= 0; i
< 2; ++i
)
1834 store_operand_info
&op
= info
->ops
[i
];
1835 if (op
.base_addr
== NULL_TREE
)
1838 load_align_base
[i
] = 0;
1842 get_object_alignment_1 (op
.val
, &load_align
[i
], &align_bitpos
);
1843 load_align_base
[i
] = op
.bitpos
- align_bitpos
;
1847 stores
.safe_push (info
);
1848 last_stmt
= info
->stmt
;
1849 last_order
= info
->order
;
1850 first_stmt
= last_stmt
;
1851 first_order
= last_order
;
1855 merged_store_group::~merged_store_group ()
1861 /* Return true if the store described by INFO can be merged into the group. */
1864 merged_store_group::can_be_merged_into (store_immediate_info
*info
)
1866 /* Do not merge bswap patterns. */
1867 if (info
->rhs_code
== LROTATE_EXPR
)
1870 /* The canonical case. */
1871 if (info
->rhs_code
== stores
[0]->rhs_code
)
1874 /* BIT_INSERT_EXPR is compatible with INTEGER_CST. */
1875 if (info
->rhs_code
== BIT_INSERT_EXPR
&& stores
[0]->rhs_code
== INTEGER_CST
)
1878 if (stores
[0]->rhs_code
== BIT_INSERT_EXPR
&& info
->rhs_code
== INTEGER_CST
)
1881 /* We can turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
1882 if (info
->rhs_code
== MEM_REF
1883 && (stores
[0]->rhs_code
== INTEGER_CST
1884 || stores
[0]->rhs_code
== BIT_INSERT_EXPR
)
1885 && info
->bitregion_start
== stores
[0]->bitregion_start
1886 && info
->bitregion_end
== stores
[0]->bitregion_end
)
1889 if (stores
[0]->rhs_code
== MEM_REF
1890 && (info
->rhs_code
== INTEGER_CST
1891 || info
->rhs_code
== BIT_INSERT_EXPR
)
1892 && info
->bitregion_start
== stores
[0]->bitregion_start
1893 && info
->bitregion_end
== stores
[0]->bitregion_end
)
1899 /* Helper method for merge_into and merge_overlapping to do
1903 merged_store_group::do_merge (store_immediate_info
*info
)
1905 bitregion_start
= MIN (bitregion_start
, info
->bitregion_start
);
1906 bitregion_end
= MAX (bitregion_end
, info
->bitregion_end
);
1908 unsigned int this_align
;
1909 unsigned HOST_WIDE_INT align_bitpos
= 0;
1910 get_object_alignment_1 (gimple_assign_lhs (info
->stmt
),
1911 &this_align
, &align_bitpos
);
1912 if (this_align
> align
)
1915 align_base
= info
->bitpos
- align_bitpos
;
1917 for (int i
= 0; i
< 2; ++i
)
1919 store_operand_info
&op
= info
->ops
[i
];
1923 get_object_alignment_1 (op
.val
, &this_align
, &align_bitpos
);
1924 if (this_align
> load_align
[i
])
1926 load_align
[i
] = this_align
;
1927 load_align_base
[i
] = op
.bitpos
- align_bitpos
;
1931 gimple
*stmt
= info
->stmt
;
1932 stores
.safe_push (info
);
1933 if (info
->order
> last_order
)
1935 last_order
= info
->order
;
1938 else if (info
->order
< first_order
)
1940 first_order
= info
->order
;
1943 if (info
->rhs_code
!= INTEGER_CST
)
1944 only_constants
= false;
1947 /* Merge a store recorded by INFO into this merged store.
1948 The store is not overlapping with the existing recorded
1952 merged_store_group::merge_into (store_immediate_info
*info
)
1954 /* Make sure we're inserting in the position we think we're inserting. */
1955 gcc_assert (info
->bitpos
>= start
+ width
1956 && info
->bitregion_start
<= bitregion_end
);
1958 width
= info
->bitpos
+ info
->bitsize
- start
;
1962 /* Merge a store described by INFO into this merged store.
1963 INFO overlaps in some way with the current store (i.e. it's not contiguous
1964 which is handled by merged_store_group::merge_into). */
1967 merged_store_group::merge_overlapping (store_immediate_info
*info
)
1969 /* If the store extends the size of the group, extend the width. */
1970 if (info
->bitpos
+ info
->bitsize
> start
+ width
)
1971 width
= info
->bitpos
+ info
->bitsize
- start
;
1976 /* Go through all the recorded stores in this group in program order and
1977 apply their values to the VAL byte array to create the final merged
1978 value. Return true if the operation succeeded. */
1981 merged_store_group::apply_stores ()
1983 /* Make sure we have more than one store in the group, otherwise we cannot
1985 if (bitregion_start
% BITS_PER_UNIT
!= 0
1986 || bitregion_end
% BITS_PER_UNIT
!= 0
1987 || stores
.length () == 1)
1990 stores
.qsort (sort_by_order
);
1991 store_immediate_info
*info
;
1993 /* Create a power-of-2-sized buffer for native_encode_expr. */
1994 buf_size
= 1 << ceil_log2 ((bitregion_end
- bitregion_start
) / BITS_PER_UNIT
);
1995 val
= XNEWVEC (unsigned char, 2 * buf_size
);
1996 mask
= val
+ buf_size
;
1997 memset (val
, 0, buf_size
);
1998 memset (mask
, ~0U, buf_size
);
2000 FOR_EACH_VEC_ELT (stores
, i
, info
)
2002 unsigned int pos_in_buffer
= info
->bitpos
- bitregion_start
;
2004 if (info
->ops
[0].val
&& info
->ops
[0].base_addr
== NULL_TREE
)
2005 cst
= info
->ops
[0].val
;
2006 else if (info
->ops
[1].val
&& info
->ops
[1].base_addr
== NULL_TREE
)
2007 cst
= info
->ops
[1].val
;
2013 if (info
->rhs_code
== BIT_INSERT_EXPR
)
2014 bit_insertion
= true;
2016 ret
= encode_tree_to_bitpos (cst
, val
, info
->bitsize
,
2017 pos_in_buffer
, buf_size
);
2019 unsigned char *m
= mask
+ (pos_in_buffer
/ BITS_PER_UNIT
);
2020 if (BYTES_BIG_ENDIAN
)
2021 clear_bit_region_be (m
, (BITS_PER_UNIT
- 1
2022 - (pos_in_buffer
% BITS_PER_UNIT
)),
2025 clear_bit_region (m
, pos_in_buffer
% BITS_PER_UNIT
, info
->bitsize
);
2026 if (cst
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
2030 fputs ("After writing ", dump_file
);
2031 print_generic_expr (dump_file
, cst
, TDF_NONE
);
2032 fprintf (dump_file
, " of size " HOST_WIDE_INT_PRINT_DEC
2033 " at position %d\n", info
->bitsize
, pos_in_buffer
);
2034 fputs (" the merged value contains ", dump_file
);
2035 dump_char_array (dump_file
, val
, buf_size
);
2036 fputs (" the merged mask contains ", dump_file
);
2037 dump_char_array (dump_file
, mask
, buf_size
);
2039 fputs (" bit insertion is required\n", dump_file
);
2042 fprintf (dump_file
, "Failed to merge stores\n");
2047 stores
.qsort (sort_by_bitpos
);
2051 /* Structure describing the store chain. */
2053 struct imm_store_chain_info
2055 /* Doubly-linked list that imposes an order on chain processing.
2056 PNXP (prev's next pointer) points to the head of a list, or to
2057 the next field in the previous chain in the list.
2058 See pass_store_merging::m_stores_head for more rationale. */
2059 imm_store_chain_info
*next
, **pnxp
;
2061 auto_vec
<store_immediate_info
*> m_store_info
;
2062 auto_vec
<merged_store_group
*> m_merged_store_groups
;
2064 imm_store_chain_info (imm_store_chain_info
*&inspt
, tree b_a
)
2065 : next (inspt
), pnxp (&inspt
), base_addr (b_a
)
2070 gcc_checking_assert (pnxp
== next
->pnxp
);
2074 ~imm_store_chain_info ()
2079 gcc_checking_assert (&next
== next
->pnxp
);
2083 bool terminate_and_process_chain ();
2084 bool try_coalesce_bswap (merged_store_group
*, unsigned int, unsigned int);
2085 bool coalesce_immediate_stores ();
2086 bool output_merged_store (merged_store_group
*);
2087 bool output_merged_stores ();
2090 const pass_data pass_data_tree_store_merging
= {
2091 GIMPLE_PASS
, /* type */
2092 "store-merging", /* name */
2093 OPTGROUP_NONE
, /* optinfo_flags */
2094 TV_GIMPLE_STORE_MERGING
, /* tv_id */
2095 PROP_ssa
, /* properties_required */
2096 0, /* properties_provided */
2097 0, /* properties_destroyed */
2098 0, /* todo_flags_start */
2099 TODO_update_ssa
, /* todo_flags_finish */
2102 class pass_store_merging
: public gimple_opt_pass
2105 pass_store_merging (gcc::context
*ctxt
)
2106 : gimple_opt_pass (pass_data_tree_store_merging
, ctxt
), m_stores_head ()
2110 /* Pass not supported for PDP-endian, nor for insane hosts or
2111 target character sizes where native_{encode,interpret}_expr
2112 doesn't work properly. */
2116 return flag_store_merging
2117 && BYTES_BIG_ENDIAN
== WORDS_BIG_ENDIAN
2119 && BITS_PER_UNIT
== 8;
2122 virtual unsigned int execute (function
*);
2125 hash_map
<tree_operand_hash
, struct imm_store_chain_info
*> m_stores
;
2127 /* Form a doubly-linked stack of the elements of m_stores, so that
2128 we can iterate over them in a predictable way. Using this order
2129 avoids extraneous differences in the compiler output just because
2130 of tree pointer variations (e.g. different chains end up in
2131 different positions of m_stores, so they are handled in different
2132 orders, so they allocate or release SSA names in different
2133 orders, and when they get reused, subsequent passes end up
2134 getting different SSA names, which may ultimately change
2135 decisions when going out of SSA). */
2136 imm_store_chain_info
*m_stores_head
;
2138 void process_store (gimple
*);
2139 bool terminate_and_process_all_chains ();
2140 bool terminate_all_aliasing_chains (imm_store_chain_info
**, gimple
*);
2141 bool terminate_and_release_chain (imm_store_chain_info
*);
2142 }; // class pass_store_merging
2144 /* Terminate and process all recorded chains. Return true if any changes
2148 pass_store_merging::terminate_and_process_all_chains ()
2151 while (m_stores_head
)
2152 ret
|= terminate_and_release_chain (m_stores_head
);
2153 gcc_assert (m_stores
.elements () == 0);
2154 gcc_assert (m_stores_head
== NULL
);
2159 /* Terminate all chains that are affected by the statement STMT.
2160 CHAIN_INFO is the chain we should ignore from the checks if
2164 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
2170 /* If the statement doesn't touch memory it can't alias. */
2171 if (!gimple_vuse (stmt
))
2174 tree store_lhs
= gimple_store_p (stmt
) ? gimple_get_lhs (stmt
) : NULL_TREE
;
2175 for (imm_store_chain_info
*next
= m_stores_head
, *cur
= next
; cur
; cur
= next
)
2179 /* We already checked all the stores in chain_info and terminated the
2180 chain if necessary. Skip it here. */
2181 if (chain_info
&& *chain_info
== cur
)
2184 store_immediate_info
*info
;
2186 FOR_EACH_VEC_ELT (cur
->m_store_info
, i
, info
)
2188 tree lhs
= gimple_assign_lhs (info
->stmt
);
2189 if (ref_maybe_used_by_stmt_p (stmt
, lhs
)
2190 || stmt_may_clobber_ref_p (stmt
, lhs
)
2191 || (store_lhs
&& refs_output_dependent_p (store_lhs
, lhs
)))
2193 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2195 fprintf (dump_file
, "stmt causes chain termination:\n");
2196 print_gimple_stmt (dump_file
, stmt
, 0);
2198 terminate_and_release_chain (cur
);
2208 /* Helper function. Terminate the recorded chain storing to base object
2209 BASE. Return true if the merging and output was successful. The m_stores
2210 entry is removed after the processing in any case. */
2213 pass_store_merging::terminate_and_release_chain (imm_store_chain_info
*chain_info
)
2215 bool ret
= chain_info
->terminate_and_process_chain ();
2216 m_stores
.remove (chain_info
->base_addr
);
2221 /* Return true if stmts in between FIRST (inclusive) and LAST (exclusive)
2222 may clobber REF. FIRST and LAST must be in the same basic block and
2223 have non-NULL vdef. We want to be able to sink load of REF across
2224 stores between FIRST and LAST, up to right before LAST. */
2227 stmts_may_clobber_ref_p (gimple
*first
, gimple
*last
, tree ref
)
2230 ao_ref_init (&r
, ref
);
2231 unsigned int count
= 0;
2232 tree vop
= gimple_vdef (last
);
2235 gcc_checking_assert (gimple_bb (first
) == gimple_bb (last
));
2238 stmt
= SSA_NAME_DEF_STMT (vop
);
2239 if (stmt_may_clobber_ref_p_1 (stmt
, &r
))
2241 if (gimple_store_p (stmt
)
2242 && refs_anti_dependent_p (ref
, gimple_get_lhs (stmt
)))
2244 /* Avoid quadratic compile time by bounding the number of checks
2246 if (++count
> MAX_STORE_ALIAS_CHECKS
)
2248 vop
= gimple_vuse (stmt
);
2250 while (stmt
!= first
);
2254 /* Return true if INFO->ops[IDX] is mergeable with the
2255 corresponding loads already in MERGED_STORE group.
2256 BASE_ADDR is the base address of the whole store group. */
2259 compatible_load_p (merged_store_group
*merged_store
,
2260 store_immediate_info
*info
,
2261 tree base_addr
, int idx
)
2263 store_immediate_info
*infof
= merged_store
->stores
[0];
2264 if (!info
->ops
[idx
].base_addr
2265 || maybe_ne (info
->ops
[idx
].bitpos
- infof
->ops
[idx
].bitpos
,
2266 info
->bitpos
- infof
->bitpos
)
2267 || !operand_equal_p (info
->ops
[idx
].base_addr
,
2268 infof
->ops
[idx
].base_addr
, 0))
2271 store_immediate_info
*infol
= merged_store
->stores
.last ();
2272 tree load_vuse
= gimple_vuse (info
->ops
[idx
].stmt
);
2273 /* In this case all vuses should be the same, e.g.
2274 _1 = s.a; _2 = s.b; _3 = _1 | 1; t.a = _3; _4 = _2 | 2; t.b = _4;
2276 _1 = s.a; _2 = s.b; t.a = _1; t.b = _2;
2277 and we can emit the coalesced load next to any of those loads. */
2278 if (gimple_vuse (infof
->ops
[idx
].stmt
) == load_vuse
2279 && gimple_vuse (infol
->ops
[idx
].stmt
) == load_vuse
)
2282 /* Otherwise, at least for now require that the load has the same
2283 vuse as the store. See following examples. */
2284 if (gimple_vuse (info
->stmt
) != load_vuse
)
2287 if (gimple_vuse (infof
->stmt
) != gimple_vuse (infof
->ops
[idx
].stmt
)
2289 && gimple_vuse (infol
->stmt
) != gimple_vuse (infol
->ops
[idx
].stmt
)))
2292 /* If the load is from the same location as the store, already
2293 the construction of the immediate chain info guarantees no intervening
2294 stores, so no further checks are needed. Example:
2295 _1 = s.a; _2 = _1 & -7; s.a = _2; _3 = s.b; _4 = _3 & -7; s.b = _4; */
2296 if (known_eq (info
->ops
[idx
].bitpos
, info
->bitpos
)
2297 && operand_equal_p (info
->ops
[idx
].base_addr
, base_addr
, 0))
2300 /* Otherwise, we need to punt if any of the loads can be clobbered by any
2301 of the stores in the group, or any other stores in between those.
2302 Previous calls to compatible_load_p ensured that for all the
2303 merged_store->stores IDX loads, no stmts starting with
2304 merged_store->first_stmt and ending right before merged_store->last_stmt
2305 clobbers those loads. */
2306 gimple
*first
= merged_store
->first_stmt
;
2307 gimple
*last
= merged_store
->last_stmt
;
2309 store_immediate_info
*infoc
;
2310 /* The stores are sorted by increasing store bitpos, so if info->stmt store
2311 comes before the so far first load, we'll be changing
2312 merged_store->first_stmt. In that case we need to give up if
2313 any of the earlier processed loads clobber with the stmts in the new
2315 if (info
->order
< merged_store
->first_order
)
2317 FOR_EACH_VEC_ELT (merged_store
->stores
, i
, infoc
)
2318 if (stmts_may_clobber_ref_p (info
->stmt
, first
, infoc
->ops
[idx
].val
))
2322 /* Similarly, we could change merged_store->last_stmt, so ensure
2323 in that case no stmts in the new range clobber any of the earlier
2325 else if (info
->order
> merged_store
->last_order
)
2327 FOR_EACH_VEC_ELT (merged_store
->stores
, i
, infoc
)
2328 if (stmts_may_clobber_ref_p (last
, info
->stmt
, infoc
->ops
[idx
].val
))
2332 /* And finally, we'd be adding a new load to the set, ensure it isn't
2333 clobbered in the new range. */
2334 if (stmts_may_clobber_ref_p (first
, last
, info
->ops
[idx
].val
))
2337 /* Otherwise, we are looking for:
2338 _1 = s.a; _2 = _1 ^ 15; t.a = _2; _3 = s.b; _4 = _3 ^ 15; t.b = _4;
2340 _1 = s.a; t.a = _1; _2 = s.b; t.b = _2; */
2344 /* Add all refs loaded to compute VAL to REFS vector. */
2347 gather_bswap_load_refs (vec
<tree
> *refs
, tree val
)
2349 if (TREE_CODE (val
) != SSA_NAME
)
2352 gimple
*stmt
= SSA_NAME_DEF_STMT (val
);
2353 if (!is_gimple_assign (stmt
))
2356 if (gimple_assign_load_p (stmt
))
2358 refs
->safe_push (gimple_assign_rhs1 (stmt
));
2362 switch (gimple_assign_rhs_class (stmt
))
2364 case GIMPLE_BINARY_RHS
:
2365 gather_bswap_load_refs (refs
, gimple_assign_rhs2 (stmt
));
2367 case GIMPLE_UNARY_RHS
:
2368 gather_bswap_load_refs (refs
, gimple_assign_rhs1 (stmt
));
2375 /* Check if there are any stores in M_STORE_INFO after index I
2376 (where M_STORE_INFO must be sorted by sort_by_bitpos) that overlap
2377 a potential group ending with END that have their order
2378 smaller than LAST_ORDER. RHS_CODE is the kind of store in the
2379 group. Return true if there are no such stores.
2381 MEM[(long long int *)p_28] = 0;
2382 MEM[(long long int *)p_28 + 8B] = 0;
2383 MEM[(long long int *)p_28 + 16B] = 0;
2384 MEM[(long long int *)p_28 + 24B] = 0;
2386 MEM[(int *)p_28 + 8B] = _129;
2387 MEM[(int *)p_28].a = -1;
2389 MEM[(long long int *)p_28] = 0;
2390 MEM[(int *)p_28].a = -1;
2391 stmts in the current group and need to consider if it is safe to
2392 add MEM[(long long int *)p_28 + 8B] = 0; store into the same group.
2393 There is an overlap between that store and the MEM[(int *)p_28 + 8B] = _129;
2394 store though, so if we add the MEM[(long long int *)p_28 + 8B] = 0;
2395 into the group and merging of those 3 stores is successful, merged
2396 stmts will be emitted at the latest store from that group, i.e.
2397 LAST_ORDER, which is the MEM[(int *)p_28].a = -1; store.
2398 The MEM[(int *)p_28 + 8B] = _129; store that originally follows
2399 the MEM[(long long int *)p_28 + 8B] = 0; would now be before it,
2400 so we need to refuse merging MEM[(long long int *)p_28 + 8B] = 0;
2401 into the group. That way it will be its own store group and will
2402 not be touched. If RHS_CODE is INTEGER_CST and there are overlapping
2403 INTEGER_CST stores, those are mergeable using merge_overlapping,
2404 so don't return false for those. */
2407 check_no_overlap (vec
<store_immediate_info
*> m_store_info
, unsigned int i
,
2408 enum tree_code rhs_code
, unsigned int last_order
,
2409 unsigned HOST_WIDE_INT end
)
2411 unsigned int len
= m_store_info
.length ();
2412 for (++i
; i
< len
; ++i
)
2414 store_immediate_info
*info
= m_store_info
[i
];
2415 if (info
->bitpos
>= end
)
2417 if (info
->order
< last_order
2418 && (rhs_code
!= INTEGER_CST
|| info
->rhs_code
!= INTEGER_CST
))
2424 /* Return true if m_store_info[first] and at least one following store
2425 form a group which store try_size bitsize value which is byte swapped
2426 from a memory load or some value, or identity from some value.
2427 This uses the bswap pass APIs. */
2430 imm_store_chain_info::try_coalesce_bswap (merged_store_group
*merged_store
,
2432 unsigned int try_size
)
2434 unsigned int len
= m_store_info
.length (), last
= first
;
2435 unsigned HOST_WIDE_INT width
= m_store_info
[first
]->bitsize
;
2436 if (width
>= try_size
)
2438 for (unsigned int i
= first
+ 1; i
< len
; ++i
)
2440 if (m_store_info
[i
]->bitpos
!= m_store_info
[first
]->bitpos
+ width
2441 || m_store_info
[i
]->ins_stmt
== NULL
)
2443 width
+= m_store_info
[i
]->bitsize
;
2444 if (width
>= try_size
)
2450 if (width
!= try_size
)
2453 bool allow_unaligned
2454 = !STRICT_ALIGNMENT
&& PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED
);
2455 /* Punt if the combined store would not be aligned and we need alignment. */
2456 if (!allow_unaligned
)
2458 unsigned int align
= merged_store
->align
;
2459 unsigned HOST_WIDE_INT align_base
= merged_store
->align_base
;
2460 for (unsigned int i
= first
+ 1; i
<= last
; ++i
)
2462 unsigned int this_align
;
2463 unsigned HOST_WIDE_INT align_bitpos
= 0;
2464 get_object_alignment_1 (gimple_assign_lhs (m_store_info
[i
]->stmt
),
2465 &this_align
, &align_bitpos
);
2466 if (this_align
> align
)
2469 align_base
= m_store_info
[i
]->bitpos
- align_bitpos
;
2472 unsigned HOST_WIDE_INT align_bitpos
2473 = (m_store_info
[first
]->bitpos
- align_base
) & (align
- 1);
2475 align
= least_bit_hwi (align_bitpos
);
2476 if (align
< try_size
)
2483 case 16: type
= uint16_type_node
; break;
2484 case 32: type
= uint32_type_node
; break;
2485 case 64: type
= uint64_type_node
; break;
2486 default: gcc_unreachable ();
2488 struct symbolic_number n
;
2489 gimple
*ins_stmt
= NULL
;
2490 int vuse_store
= -1;
2491 unsigned int first_order
= merged_store
->first_order
;
2492 unsigned int last_order
= merged_store
->last_order
;
2493 gimple
*first_stmt
= merged_store
->first_stmt
;
2494 gimple
*last_stmt
= merged_store
->last_stmt
;
2495 unsigned HOST_WIDE_INT end
= merged_store
->start
+ merged_store
->width
;
2496 store_immediate_info
*infof
= m_store_info
[first
];
2498 for (unsigned int i
= first
; i
<= last
; ++i
)
2500 store_immediate_info
*info
= m_store_info
[i
];
2501 struct symbolic_number this_n
= info
->n
;
2503 if (!this_n
.base_addr
)
2504 this_n
.range
= try_size
/ BITS_PER_UNIT
;
2506 /* Update vuse in case it has changed by output_merged_stores. */
2507 this_n
.vuse
= gimple_vuse (info
->ins_stmt
);
2508 unsigned int bitpos
= info
->bitpos
- infof
->bitpos
;
2509 if (!do_shift_rotate (LSHIFT_EXPR
, &this_n
,
2511 ? try_size
- info
->bitsize
- bitpos
2514 if (this_n
.base_addr
&& vuse_store
)
2517 for (j
= first
; j
<= last
; ++j
)
2518 if (this_n
.vuse
== gimple_vuse (m_store_info
[j
]->stmt
))
2522 if (vuse_store
== 1)
2530 ins_stmt
= info
->ins_stmt
;
2534 if (n
.base_addr
&& n
.vuse
!= this_n
.vuse
)
2536 if (vuse_store
== 0)
2540 if (info
->order
> last_order
)
2542 last_order
= info
->order
;
2543 last_stmt
= info
->stmt
;
2545 else if (info
->order
< first_order
)
2547 first_order
= info
->order
;
2548 first_stmt
= info
->stmt
;
2550 end
= MAX (end
, info
->bitpos
+ info
->bitsize
);
2552 ins_stmt
= perform_symbolic_merge (ins_stmt
, &n
, info
->ins_stmt
,
2554 if (ins_stmt
== NULL
)
2559 uint64_t cmpxchg
, cmpnop
;
2560 find_bswap_or_nop_finalize (&n
, &cmpxchg
, &cmpnop
);
2562 /* A complete byte swap should make the symbolic number to start with
2563 the largest digit in the highest order byte. Unchanged symbolic
2564 number indicates a read with same endianness as target architecture. */
2565 if (n
.n
!= cmpnop
&& n
.n
!= cmpxchg
)
2568 if (n
.base_addr
== NULL_TREE
&& !is_gimple_val (n
.src
))
2571 if (!check_no_overlap (m_store_info
, last
, LROTATE_EXPR
, last_order
, end
))
2574 /* Don't handle memory copy this way if normal non-bswap processing
2575 would handle it too. */
2576 if (n
.n
== cmpnop
&& (unsigned) n
.n_ops
== last
- first
+ 1)
2579 for (i
= first
; i
<= last
; ++i
)
2580 if (m_store_info
[i
]->rhs_code
!= MEM_REF
)
2590 /* Will emit LROTATE_EXPR. */
2593 if (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
2594 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
)
2598 if (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
2599 && optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
)
2606 if (!allow_unaligned
&& n
.base_addr
)
2608 unsigned int align
= get_object_alignment (n
.src
);
2609 if (align
< try_size
)
2613 /* If each load has vuse of the corresponding store, need to verify
2614 the loads can be sunk right before the last store. */
2615 if (vuse_store
== 1)
2617 auto_vec
<tree
, 64> refs
;
2618 for (unsigned int i
= first
; i
<= last
; ++i
)
2619 gather_bswap_load_refs (&refs
,
2620 gimple_assign_rhs1 (m_store_info
[i
]->stmt
));
2624 FOR_EACH_VEC_ELT (refs
, i
, ref
)
2625 if (stmts_may_clobber_ref_p (first_stmt
, last_stmt
, ref
))
2631 infof
->ins_stmt
= ins_stmt
;
2632 for (unsigned int i
= first
; i
<= last
; ++i
)
2634 m_store_info
[i
]->rhs_code
= n
.n
== cmpxchg
? LROTATE_EXPR
: NOP_EXPR
;
2635 m_store_info
[i
]->ops
[0].base_addr
= NULL_TREE
;
2636 m_store_info
[i
]->ops
[1].base_addr
= NULL_TREE
;
2638 merged_store
->merge_into (m_store_info
[i
]);
2644 /* Go through the candidate stores recorded in m_store_info and merge them
2645 into merged_store_group objects recorded into m_merged_store_groups
2646 representing the widened stores. Return true if coalescing was successful
2647 and the number of widened stores is fewer than the original number
2651 imm_store_chain_info::coalesce_immediate_stores ()
2653 /* Anything less can't be processed. */
2654 if (m_store_info
.length () < 2)
2657 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2658 fprintf (dump_file
, "Attempting to coalesce %u stores in chain\n",
2659 m_store_info
.length ());
2661 store_immediate_info
*info
;
2662 unsigned int i
, ignore
= 0;
2664 /* Order the stores by the bitposition they write to. */
2665 m_store_info
.qsort (sort_by_bitpos
);
2667 info
= m_store_info
[0];
2668 merged_store_group
*merged_store
= new merged_store_group (info
);
2669 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2670 fputs ("New store group\n", dump_file
);
2672 FOR_EACH_VEC_ELT (m_store_info
, i
, info
)
2677 /* First try to handle group of stores like:
2682 using the bswap framework. */
2683 if (info
->bitpos
== merged_store
->start
+ merged_store
->width
2684 && merged_store
->stores
.length () == 1
2685 && merged_store
->stores
[0]->ins_stmt
!= NULL
2686 && info
->ins_stmt
!= NULL
)
2688 unsigned int try_size
;
2689 for (try_size
= 64; try_size
>= 16; try_size
>>= 1)
2690 if (try_coalesce_bswap (merged_store
, i
- 1, try_size
))
2695 ignore
= i
+ merged_store
->stores
.length () - 1;
2696 m_merged_store_groups
.safe_push (merged_store
);
2697 if (ignore
< m_store_info
.length ())
2698 merged_store
= new merged_store_group (m_store_info
[ignore
]);
2700 merged_store
= NULL
;
2705 if (info
->order
>= merged_store
->first_nonmergeable_order
)
2710 Overlapping stores. */
2711 else if (IN_RANGE (info
->bitpos
, merged_store
->start
,
2712 merged_store
->start
+ merged_store
->width
- 1))
2714 /* Only allow overlapping stores of constants. */
2715 if (info
->rhs_code
== INTEGER_CST
&& merged_store
->only_constants
)
2717 unsigned int last_order
2718 = MAX (merged_store
->last_order
, info
->order
);
2719 unsigned HOST_WIDE_INT end
2720 = MAX (merged_store
->start
+ merged_store
->width
,
2721 info
->bitpos
+ info
->bitsize
);
2722 if (check_no_overlap (m_store_info
, i
, INTEGER_CST
,
2725 /* check_no_overlap call above made sure there are no
2726 overlapping stores with non-INTEGER_CST rhs_code
2727 in between the first and last of the stores we've
2728 just merged. If there are any INTEGER_CST rhs_code
2729 stores in between, we need to merge_overlapping them
2730 even if in the sort_by_bitpos order there are other
2731 overlapping stores in between. Keep those stores as is.
2733 MEM[(int *)p_28] = 0;
2734 MEM[(char *)p_28 + 3B] = 1;
2735 MEM[(char *)p_28 + 1B] = 2;
2736 MEM[(char *)p_28 + 2B] = MEM[(char *)p_28 + 6B];
2737 We can't merge the zero store with the store of two and
2738 not merge anything else, because the store of one is
2739 in the original order in between those two, but in
2740 store_by_bitpos order it comes after the last store that
2741 we can't merge with them. We can merge the first 3 stores
2742 and keep the last store as is though. */
2743 unsigned int len
= m_store_info
.length ();
2744 unsigned int try_order
= last_order
;
2745 unsigned int first_nonmergeable_order
;
2747 bool last_iter
= false;
2751 unsigned int max_order
= 0;
2752 unsigned first_nonmergeable_int_order
= ~0U;
2753 unsigned HOST_WIDE_INT this_end
= end
;
2755 first_nonmergeable_order
= ~0U;
2756 for (unsigned int j
= i
+ 1; j
< len
; ++j
)
2758 store_immediate_info
*info2
= m_store_info
[j
];
2759 if (info2
->bitpos
>= this_end
)
2761 if (info2
->order
< try_order
)
2763 if (info2
->rhs_code
!= INTEGER_CST
)
2765 /* Normally check_no_overlap makes sure this
2766 doesn't happen, but if end grows below,
2767 then we need to process more stores than
2768 check_no_overlap verified. Example:
2769 MEM[(int *)p_5] = 0;
2770 MEM[(short *)p_5 + 3B] = 1;
2771 MEM[(char *)p_5 + 4B] = _9;
2772 MEM[(char *)p_5 + 2B] = 2; */
2777 this_end
= MAX (this_end
,
2778 info2
->bitpos
+ info2
->bitsize
);
2780 else if (info2
->rhs_code
== INTEGER_CST
2783 max_order
= MAX (max_order
, info2
->order
+ 1);
2784 first_nonmergeable_int_order
2785 = MIN (first_nonmergeable_int_order
,
2789 first_nonmergeable_order
2790 = MIN (first_nonmergeable_order
, info2
->order
);
2794 if (last_order
== try_order
)
2796 /* If this failed, but only because we grew
2797 try_order, retry with the last working one,
2798 so that we merge at least something. */
2799 try_order
= last_order
;
2803 last_order
= try_order
;
2804 /* Retry with a larger try_order to see if we could
2805 merge some further INTEGER_CST stores. */
2807 && (first_nonmergeable_int_order
2808 < first_nonmergeable_order
))
2810 try_order
= MIN (max_order
,
2811 first_nonmergeable_order
);
2814 merged_store
->first_nonmergeable_order
);
2815 if (try_order
> last_order
&& ++attempts
< 16)
2818 first_nonmergeable_order
2819 = MIN (first_nonmergeable_order
,
2820 first_nonmergeable_int_order
);
2828 merged_store
->merge_overlapping (info
);
2830 merged_store
->first_nonmergeable_order
2831 = MIN (merged_store
->first_nonmergeable_order
,
2832 first_nonmergeable_order
);
2834 for (unsigned int j
= i
+ 1; j
<= k
; j
++)
2836 store_immediate_info
*info2
= m_store_info
[j
];
2837 gcc_assert (info2
->bitpos
< end
);
2838 if (info2
->order
< last_order
)
2840 gcc_assert (info2
->rhs_code
== INTEGER_CST
);
2842 merged_store
->merge_overlapping (info2
);
2844 /* Other stores are kept and not merged in any
2853 /* |---store 1---||---store 2---|
2854 This store is consecutive to the previous one.
2855 Merge it into the current store group. There can be gaps in between
2856 the stores, but there can't be gaps in between bitregions. */
2857 else if (info
->bitregion_start
<= merged_store
->bitregion_end
2858 && merged_store
->can_be_merged_into (info
))
2860 store_immediate_info
*infof
= merged_store
->stores
[0];
2862 /* All the rhs_code ops that take 2 operands are commutative,
2863 swap the operands if it could make the operands compatible. */
2864 if (infof
->ops
[0].base_addr
2865 && infof
->ops
[1].base_addr
2866 && info
->ops
[0].base_addr
2867 && info
->ops
[1].base_addr
2868 && known_eq (info
->ops
[1].bitpos
- infof
->ops
[0].bitpos
,
2869 info
->bitpos
- infof
->bitpos
)
2870 && operand_equal_p (info
->ops
[1].base_addr
,
2871 infof
->ops
[0].base_addr
, 0))
2873 std::swap (info
->ops
[0], info
->ops
[1]);
2874 info
->ops_swapped_p
= true;
2876 if (check_no_overlap (m_store_info
, i
, info
->rhs_code
,
2877 MAX (merged_store
->last_order
, info
->order
),
2878 MAX (merged_store
->start
+ merged_store
->width
,
2879 info
->bitpos
+ info
->bitsize
)))
2881 /* Turn MEM_REF into BIT_INSERT_EXPR for bit-field stores. */
2882 if (info
->rhs_code
== MEM_REF
&& infof
->rhs_code
!= MEM_REF
)
2884 info
->rhs_code
= BIT_INSERT_EXPR
;
2885 info
->ops
[0].val
= gimple_assign_rhs1 (info
->stmt
);
2886 info
->ops
[0].base_addr
= NULL_TREE
;
2888 else if (infof
->rhs_code
== MEM_REF
&& info
->rhs_code
!= MEM_REF
)
2890 store_immediate_info
*infoj
;
2892 FOR_EACH_VEC_ELT (merged_store
->stores
, j
, infoj
)
2894 infoj
->rhs_code
= BIT_INSERT_EXPR
;
2895 infoj
->ops
[0].val
= gimple_assign_rhs1 (infoj
->stmt
);
2896 infoj
->ops
[0].base_addr
= NULL_TREE
;
2899 if ((infof
->ops
[0].base_addr
2900 ? compatible_load_p (merged_store
, info
, base_addr
, 0)
2901 : !info
->ops
[0].base_addr
)
2902 && (infof
->ops
[1].base_addr
2903 ? compatible_load_p (merged_store
, info
, base_addr
, 1)
2904 : !info
->ops
[1].base_addr
))
2906 merged_store
->merge_into (info
);
2912 /* |---store 1---| <gap> |---store 2---|.
2913 Gap between stores or the rhs not compatible. Start a new group. */
2915 /* Try to apply all the stores recorded for the group to determine
2916 the bitpattern they write and discard it if that fails.
2917 This will also reject single-store groups. */
2918 if (merged_store
->apply_stores ())
2919 m_merged_store_groups
.safe_push (merged_store
);
2921 delete merged_store
;
2923 merged_store
= new merged_store_group (info
);
2924 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2925 fputs ("New store group\n", dump_file
);
2928 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2930 fprintf (dump_file
, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
2931 " bitpos:" HOST_WIDE_INT_PRINT_DEC
" val:",
2932 i
, info
->bitsize
, info
->bitpos
);
2933 print_generic_expr (dump_file
, gimple_assign_rhs1 (info
->stmt
));
2934 fputc ('\n', dump_file
);
2938 /* Record or discard the last store group. */
2941 if (merged_store
->apply_stores ())
2942 m_merged_store_groups
.safe_push (merged_store
);
2944 delete merged_store
;
2947 gcc_assert (m_merged_store_groups
.length () <= m_store_info
.length ());
2950 = !m_merged_store_groups
.is_empty ()
2951 && m_merged_store_groups
.length () < m_store_info
.length ();
2953 if (success
&& dump_file
)
2954 fprintf (dump_file
, "Coalescing successful!\nMerged into %u stores\n",
2955 m_merged_store_groups
.length ());
2960 /* Return the type to use for the merged stores or loads described by STMTS.
2961 This is needed to get the alias sets right. If IS_LOAD, look for rhs,
2962 otherwise lhs. Additionally set *CLIQUEP and *BASEP to MR_DEPENDENCE_*
2963 of the MEM_REFs if any. */
2966 get_alias_type_for_stmts (vec
<gimple
*> &stmts
, bool is_load
,
2967 unsigned short *cliquep
, unsigned short *basep
)
2971 tree type
= NULL_TREE
;
2972 tree ret
= NULL_TREE
;
2976 FOR_EACH_VEC_ELT (stmts
, i
, stmt
)
2978 tree ref
= is_load
? gimple_assign_rhs1 (stmt
)
2979 : gimple_assign_lhs (stmt
);
2980 tree type1
= reference_alias_ptr_type (ref
);
2981 tree base
= get_base_address (ref
);
2985 if (TREE_CODE (base
) == MEM_REF
)
2987 *cliquep
= MR_DEPENDENCE_CLIQUE (base
);
2988 *basep
= MR_DEPENDENCE_BASE (base
);
2993 if (!alias_ptr_types_compatible_p (type
, type1
))
2994 ret
= ptr_type_node
;
2995 if (TREE_CODE (base
) != MEM_REF
2996 || *cliquep
!= MR_DEPENDENCE_CLIQUE (base
)
2997 || *basep
!= MR_DEPENDENCE_BASE (base
))
3006 /* Return the location_t information we can find among the statements
3010 get_location_for_stmts (vec
<gimple
*> &stmts
)
3015 FOR_EACH_VEC_ELT (stmts
, i
, stmt
)
3016 if (gimple_has_location (stmt
))
3017 return gimple_location (stmt
);
3019 return UNKNOWN_LOCATION
;
3022 /* Used to decribe a store resulting from splitting a wide store in smaller
3023 regularly-sized stores in split_group. */
3027 unsigned HOST_WIDE_INT bytepos
;
3028 unsigned HOST_WIDE_INT size
;
3029 unsigned HOST_WIDE_INT align
;
3030 auto_vec
<store_immediate_info
*> orig_stores
;
3031 /* True if there is a single orig stmt covering the whole split store. */
3033 split_store (unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
3034 unsigned HOST_WIDE_INT
);
3037 /* Simple constructor. */
3039 split_store::split_store (unsigned HOST_WIDE_INT bp
,
3040 unsigned HOST_WIDE_INT sz
,
3041 unsigned HOST_WIDE_INT al
)
3042 : bytepos (bp
), size (sz
), align (al
), orig (false)
3044 orig_stores
.create (0);
3047 /* Record all stores in GROUP that write to the region starting at BITPOS and
3048 is of size BITSIZE. Record infos for such statements in STORES if
3049 non-NULL. The stores in GROUP must be sorted by bitposition. Return INFO
3050 if there is exactly one original store in the range. */
3052 static store_immediate_info
*
3053 find_constituent_stores (struct merged_store_group
*group
,
3054 vec
<store_immediate_info
*> *stores
,
3055 unsigned int *first
,
3056 unsigned HOST_WIDE_INT bitpos
,
3057 unsigned HOST_WIDE_INT bitsize
)
3059 store_immediate_info
*info
, *ret
= NULL
;
3061 bool second
= false;
3062 bool update_first
= true;
3063 unsigned HOST_WIDE_INT end
= bitpos
+ bitsize
;
3064 for (i
= *first
; group
->stores
.iterate (i
, &info
); ++i
)
3066 unsigned HOST_WIDE_INT stmt_start
= info
->bitpos
;
3067 unsigned HOST_WIDE_INT stmt_end
= stmt_start
+ info
->bitsize
;
3068 if (stmt_end
<= bitpos
)
3070 /* BITPOS passed to this function never decreases from within the
3071 same split_group call, so optimize and don't scan info records
3072 which are known to end before or at BITPOS next time.
3073 Only do it if all stores before this one also pass this. */
3079 update_first
= false;
3081 /* The stores in GROUP are ordered by bitposition so if we're past
3082 the region for this group return early. */
3083 if (stmt_start
>= end
)
3088 stores
->safe_push (info
);
3103 /* Return how many SSA_NAMEs used to compute value to store in the INFO
3104 store have multiple uses. If any SSA_NAME has multiple uses, also
3105 count statements needed to compute it. */
3108 count_multiple_uses (store_immediate_info
*info
)
3110 gimple
*stmt
= info
->stmt
;
3112 switch (info
->rhs_code
)
3119 if (info
->bit_not_p
)
3121 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3122 ret
= 1; /* Fall through below to return
3123 the BIT_NOT_EXPR stmt and then
3124 BIT_{AND,IOR,XOR}_EXPR and anything it
3127 /* stmt is after this the BIT_NOT_EXPR. */
3128 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3130 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3132 ret
+= 1 + info
->ops
[0].bit_not_p
;
3133 if (info
->ops
[1].base_addr
)
3134 ret
+= 1 + info
->ops
[1].bit_not_p
;
3137 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3138 /* stmt is now the BIT_*_EXPR. */
3139 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3140 ret
+= 1 + info
->ops
[info
->ops_swapped_p
].bit_not_p
;
3141 else if (info
->ops
[info
->ops_swapped_p
].bit_not_p
)
3143 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3144 if (!has_single_use (gimple_assign_rhs1 (stmt2
)))
3147 if (info
->ops
[1].base_addr
== NULL_TREE
)
3149 gcc_checking_assert (!info
->ops_swapped_p
);
3152 if (!has_single_use (gimple_assign_rhs2 (stmt
)))
3153 ret
+= 1 + info
->ops
[1 - info
->ops_swapped_p
].bit_not_p
;
3154 else if (info
->ops
[1 - info
->ops_swapped_p
].bit_not_p
)
3156 gimple
*stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt
));
3157 if (!has_single_use (gimple_assign_rhs1 (stmt2
)))
3162 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3163 return 1 + info
->ops
[0].bit_not_p
;
3164 else if (info
->ops
[0].bit_not_p
)
3166 stmt
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
3167 if (!has_single_use (gimple_assign_rhs1 (stmt
)))
3171 case BIT_INSERT_EXPR
:
3172 return has_single_use (gimple_assign_rhs1 (stmt
)) ? 0 : 1;
3178 /* Split a merged store described by GROUP by populating the SPLIT_STORES
3179 vector (if non-NULL) with split_store structs describing the byte offset
3180 (from the base), the bit size and alignment of each store as well as the
3181 original statements involved in each such split group.
3182 This is to separate the splitting strategy from the statement
3183 building/emission/linking done in output_merged_store.
3184 Return number of new stores.
3185 If ALLOW_UNALIGNED_STORE is false, then all stores must be aligned.
3186 If ALLOW_UNALIGNED_LOAD is false, then all loads must be aligned.
3187 If SPLIT_STORES is NULL, it is just a dry run to count number of
3191 split_group (merged_store_group
*group
, bool allow_unaligned_store
,
3192 bool allow_unaligned_load
,
3193 vec
<struct split_store
*> *split_stores
,
3194 unsigned *total_orig
,
3195 unsigned *total_new
)
3197 unsigned HOST_WIDE_INT pos
= group
->bitregion_start
;
3198 unsigned HOST_WIDE_INT size
= group
->bitregion_end
- pos
;
3199 unsigned HOST_WIDE_INT bytepos
= pos
/ BITS_PER_UNIT
;
3200 unsigned HOST_WIDE_INT group_align
= group
->align
;
3201 unsigned HOST_WIDE_INT align_base
= group
->align_base
;
3202 unsigned HOST_WIDE_INT group_load_align
= group_align
;
3203 bool any_orig
= false;
3205 gcc_assert ((size
% BITS_PER_UNIT
== 0) && (pos
% BITS_PER_UNIT
== 0));
3207 if (group
->stores
[0]->rhs_code
== LROTATE_EXPR
3208 || group
->stores
[0]->rhs_code
== NOP_EXPR
)
3210 /* For bswap framework using sets of stores, all the checking
3211 has been done earlier in try_coalesce_bswap and needs to be
3212 emitted as a single store. */
3215 /* Avoid the old/new stmt count heuristics. It should be
3216 always beneficial. */
3223 unsigned HOST_WIDE_INT align_bitpos
3224 = (group
->start
- align_base
) & (group_align
- 1);
3225 unsigned HOST_WIDE_INT align
= group_align
;
3227 align
= least_bit_hwi (align_bitpos
);
3228 bytepos
= group
->start
/ BITS_PER_UNIT
;
3229 struct split_store
*store
3230 = new split_store (bytepos
, group
->width
, align
);
3231 unsigned int first
= 0;
3232 find_constituent_stores (group
, &store
->orig_stores
,
3233 &first
, group
->start
, group
->width
);
3234 split_stores
->safe_push (store
);
3240 unsigned int ret
= 0, first
= 0;
3241 unsigned HOST_WIDE_INT try_pos
= bytepos
;
3246 store_immediate_info
*info
= group
->stores
[0];
3249 total_orig
[0] = 1; /* The orig store. */
3250 info
= group
->stores
[0];
3251 if (info
->ops
[0].base_addr
)
3253 if (info
->ops
[1].base_addr
)
3255 switch (info
->rhs_code
)
3260 total_orig
[0]++; /* The orig BIT_*_EXPR stmt. */
3265 total_orig
[0] *= group
->stores
.length ();
3267 FOR_EACH_VEC_ELT (group
->stores
, i
, info
)
3269 total_new
[0] += count_multiple_uses (info
);
3270 total_orig
[0] += (info
->bit_not_p
3271 + info
->ops
[0].bit_not_p
3272 + info
->ops
[1].bit_not_p
);
3276 if (!allow_unaligned_load
)
3277 for (int i
= 0; i
< 2; ++i
)
3278 if (group
->load_align
[i
])
3279 group_load_align
= MIN (group_load_align
, group
->load_align
[i
]);
3283 if ((allow_unaligned_store
|| group_align
<= BITS_PER_UNIT
)
3284 && group
->mask
[try_pos
- bytepos
] == (unsigned char) ~0U)
3286 /* Skip padding bytes. */
3288 size
-= BITS_PER_UNIT
;
3292 unsigned HOST_WIDE_INT try_bitpos
= try_pos
* BITS_PER_UNIT
;
3293 unsigned int try_size
= MAX_STORE_BITSIZE
, nonmasked
;
3294 unsigned HOST_WIDE_INT align_bitpos
3295 = (try_bitpos
- align_base
) & (group_align
- 1);
3296 unsigned HOST_WIDE_INT align
= group_align
;
3298 align
= least_bit_hwi (align_bitpos
);
3299 if (!allow_unaligned_store
)
3300 try_size
= MIN (try_size
, align
);
3301 if (!allow_unaligned_load
)
3303 /* If we can't do or don't want to do unaligned stores
3304 as well as loads, we need to take the loads into account
3306 unsigned HOST_WIDE_INT load_align
= group_load_align
;
3307 align_bitpos
= (try_bitpos
- align_base
) & (load_align
- 1);
3309 load_align
= least_bit_hwi (align_bitpos
);
3310 for (int i
= 0; i
< 2; ++i
)
3311 if (group
->load_align
[i
])
3314 = known_alignment (try_bitpos
3315 - group
->stores
[0]->bitpos
3316 + group
->stores
[0]->ops
[i
].bitpos
3317 - group
->load_align_base
[i
]);
3318 if (align_bitpos
& (group_load_align
- 1))
3320 unsigned HOST_WIDE_INT a
= least_bit_hwi (align_bitpos
);
3321 load_align
= MIN (load_align
, a
);
3324 try_size
= MIN (try_size
, load_align
);
3326 store_immediate_info
*info
3327 = find_constituent_stores (group
, NULL
, &first
, try_bitpos
, try_size
);
3330 /* If there is just one original statement for the range, see if
3331 we can just reuse the original store which could be even larger
3333 unsigned HOST_WIDE_INT stmt_end
3334 = ROUND_UP (info
->bitpos
+ info
->bitsize
, BITS_PER_UNIT
);
3335 info
= find_constituent_stores (group
, NULL
, &first
, try_bitpos
,
3336 stmt_end
- try_bitpos
);
3337 if (info
&& info
->bitpos
>= try_bitpos
)
3339 try_size
= stmt_end
- try_bitpos
;
3344 /* Approximate store bitsize for the case when there are no padding
3346 while (try_size
> size
)
3348 /* Now look for whole padding bytes at the end of that bitsize. */
3349 for (nonmasked
= try_size
/ BITS_PER_UNIT
; nonmasked
> 0; --nonmasked
)
3350 if (group
->mask
[try_pos
- bytepos
+ nonmasked
- 1]
3351 != (unsigned char) ~0U)
3355 /* If entire try_size range is padding, skip it. */
3356 try_pos
+= try_size
/ BITS_PER_UNIT
;
3360 /* Otherwise try to decrease try_size if second half, last 3 quarters
3361 etc. are padding. */
3362 nonmasked
*= BITS_PER_UNIT
;
3363 while (nonmasked
<= try_size
/ 2)
3365 if (!allow_unaligned_store
&& group_align
> BITS_PER_UNIT
)
3367 /* Now look for whole padding bytes at the start of that bitsize. */
3368 unsigned int try_bytesize
= try_size
/ BITS_PER_UNIT
, masked
;
3369 for (masked
= 0; masked
< try_bytesize
; ++masked
)
3370 if (group
->mask
[try_pos
- bytepos
+ masked
] != (unsigned char) ~0U)
3372 masked
*= BITS_PER_UNIT
;
3373 gcc_assert (masked
< try_size
);
3374 if (masked
>= try_size
/ 2)
3376 while (masked
>= try_size
/ 2)
3379 try_pos
+= try_size
/ BITS_PER_UNIT
;
3383 /* Need to recompute the alignment, so just retry at the new
3394 struct split_store
*store
3395 = new split_store (try_pos
, try_size
, align
);
3396 info
= find_constituent_stores (group
, &store
->orig_stores
,
3397 &first
, try_bitpos
, try_size
);
3399 && info
->bitpos
>= try_bitpos
3400 && info
->bitpos
+ info
->bitsize
<= try_bitpos
+ try_size
)
3405 split_stores
->safe_push (store
);
3408 try_pos
+= try_size
/ BITS_PER_UNIT
;
3415 struct split_store
*store
;
3416 /* If we are reusing some original stores and any of the
3417 original SSA_NAMEs had multiple uses, we need to subtract
3418 those now before we add the new ones. */
3419 if (total_new
[0] && any_orig
)
3421 FOR_EACH_VEC_ELT (*split_stores
, i
, store
)
3423 total_new
[0] -= count_multiple_uses (store
->orig_stores
[0]);
3425 total_new
[0] += ret
; /* The new store. */
3426 store_immediate_info
*info
= group
->stores
[0];
3427 if (info
->ops
[0].base_addr
)
3428 total_new
[0] += ret
;
3429 if (info
->ops
[1].base_addr
)
3430 total_new
[0] += ret
;
3431 switch (info
->rhs_code
)
3436 total_new
[0] += ret
; /* The new BIT_*_EXPR stmt. */
3441 FOR_EACH_VEC_ELT (*split_stores
, i
, store
)
3444 bool bit_not_p
[3] = { false, false, false };
3445 /* If all orig_stores have certain bit_not_p set, then
3446 we'd use a BIT_NOT_EXPR stmt and need to account for it.
3447 If some orig_stores have certain bit_not_p set, then
3448 we'd use a BIT_XOR_EXPR with a mask and need to account for
3450 FOR_EACH_VEC_ELT (store
->orig_stores
, j
, info
)
3452 if (info
->ops
[0].bit_not_p
)
3453 bit_not_p
[0] = true;
3454 if (info
->ops
[1].bit_not_p
)
3455 bit_not_p
[1] = true;
3456 if (info
->bit_not_p
)
3457 bit_not_p
[2] = true;
3459 total_new
[0] += bit_not_p
[0] + bit_not_p
[1] + bit_not_p
[2];
3467 /* Return the operation through which the operand IDX (if < 2) or
3468 result (IDX == 2) should be inverted. If NOP_EXPR, no inversion
3469 is done, if BIT_NOT_EXPR, all bits are inverted, if BIT_XOR_EXPR,
3470 the bits should be xored with mask. */
3472 static enum tree_code
3473 invert_op (split_store
*split_store
, int idx
, tree int_type
, tree
&mask
)
3476 store_immediate_info
*info
;
3477 unsigned int cnt
= 0;
3478 bool any_paddings
= false;
3479 FOR_EACH_VEC_ELT (split_store
->orig_stores
, i
, info
)
3481 bool bit_not_p
= idx
< 2 ? info
->ops
[idx
].bit_not_p
: info
->bit_not_p
;
3485 tree lhs
= gimple_assign_lhs (info
->stmt
);
3486 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3487 && TYPE_PRECISION (TREE_TYPE (lhs
)) < info
->bitsize
)
3488 any_paddings
= true;
3494 if (cnt
== split_store
->orig_stores
.length () && !any_paddings
)
3495 return BIT_NOT_EXPR
;
3497 unsigned HOST_WIDE_INT try_bitpos
= split_store
->bytepos
* BITS_PER_UNIT
;
3498 unsigned buf_size
= split_store
->size
/ BITS_PER_UNIT
;
3500 = XALLOCAVEC (unsigned char, buf_size
);
3501 memset (buf
, ~0U, buf_size
);
3502 FOR_EACH_VEC_ELT (split_store
->orig_stores
, i
, info
)
3504 bool bit_not_p
= idx
< 2 ? info
->ops
[idx
].bit_not_p
: info
->bit_not_p
;
3507 /* Clear regions with bit_not_p and invert afterwards, rather than
3508 clear regions with !bit_not_p, so that gaps in between stores aren't
3510 unsigned HOST_WIDE_INT bitsize
= info
->bitsize
;
3511 unsigned HOST_WIDE_INT prec
= bitsize
;
3512 unsigned int pos_in_buffer
= 0;
3515 tree lhs
= gimple_assign_lhs (info
->stmt
);
3516 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
3517 && TYPE_PRECISION (TREE_TYPE (lhs
)) < bitsize
)
3518 prec
= TYPE_PRECISION (TREE_TYPE (lhs
));
3520 if (info
->bitpos
< try_bitpos
)
3522 gcc_assert (info
->bitpos
+ bitsize
> try_bitpos
);
3523 if (!BYTES_BIG_ENDIAN
)
3525 if (prec
<= try_bitpos
- info
->bitpos
)
3527 prec
-= try_bitpos
- info
->bitpos
;
3529 bitsize
-= try_bitpos
- info
->bitpos
;
3530 if (BYTES_BIG_ENDIAN
&& prec
> bitsize
)
3534 pos_in_buffer
= info
->bitpos
- try_bitpos
;
3537 /* If this is a bool inversion, invert just the least significant
3538 prec bits rather than all bits of it. */
3539 if (BYTES_BIG_ENDIAN
)
3541 pos_in_buffer
+= bitsize
- prec
;
3542 if (pos_in_buffer
>= split_store
->size
)
3547 if (pos_in_buffer
+ bitsize
> split_store
->size
)
3548 bitsize
= split_store
->size
- pos_in_buffer
;
3549 unsigned char *p
= buf
+ (pos_in_buffer
/ BITS_PER_UNIT
);
3550 if (BYTES_BIG_ENDIAN
)
3551 clear_bit_region_be (p
, (BITS_PER_UNIT
- 1
3552 - (pos_in_buffer
% BITS_PER_UNIT
)), bitsize
);
3554 clear_bit_region (p
, pos_in_buffer
% BITS_PER_UNIT
, bitsize
);
3556 for (unsigned int i
= 0; i
< buf_size
; ++i
)
3558 mask
= native_interpret_expr (int_type
, buf
, buf_size
);
3559 return BIT_XOR_EXPR
;
3562 /* Given a merged store group GROUP output the widened version of it.
3563 The store chain is against the base object BASE.
3564 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
3565 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
3566 Make sure that the number of statements output is less than the number of
3567 original statements. If a better sequence is possible emit it and
3571 imm_store_chain_info::output_merged_store (merged_store_group
*group
)
3573 split_store
*split_store
;
3575 unsigned HOST_WIDE_INT start_byte_pos
3576 = group
->bitregion_start
/ BITS_PER_UNIT
;
3578 unsigned int orig_num_stmts
= group
->stores
.length ();
3579 if (orig_num_stmts
< 2)
3582 auto_vec
<struct split_store
*, 32> split_stores
;
3583 bool allow_unaligned_store
3584 = !STRICT_ALIGNMENT
&& PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED
);
3585 bool allow_unaligned_load
= allow_unaligned_store
;
3586 if (allow_unaligned_store
)
3588 /* If unaligned stores are allowed, see how many stores we'd emit
3589 for unaligned and how many stores we'd emit for aligned stores.
3590 Only use unaligned stores if it allows fewer stores than aligned. */
3591 unsigned aligned_cnt
3592 = split_group (group
, false, allow_unaligned_load
, NULL
, NULL
, NULL
);
3593 unsigned unaligned_cnt
3594 = split_group (group
, true, allow_unaligned_load
, NULL
, NULL
, NULL
);
3595 if (aligned_cnt
<= unaligned_cnt
)
3596 allow_unaligned_store
= false;
3598 unsigned total_orig
, total_new
;
3599 split_group (group
, allow_unaligned_store
, allow_unaligned_load
,
3600 &split_stores
, &total_orig
, &total_new
);
3602 if (split_stores
.length () >= orig_num_stmts
)
3604 /* We didn't manage to reduce the number of statements. Bail out. */
3605 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3606 fprintf (dump_file
, "Exceeded original number of stmts (%u)."
3607 " Not profitable to emit new sequence.\n",
3609 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
3613 if (total_orig
<= total_new
)
3615 /* If number of estimated new statements is above estimated original
3616 statements, bail out too. */
3617 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3618 fprintf (dump_file
, "Estimated number of original stmts (%u)"
3619 " not larger than estimated number of new"
3621 total_orig
, total_new
);
3622 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
3627 gimple_stmt_iterator last_gsi
= gsi_for_stmt (group
->last_stmt
);
3628 gimple_seq seq
= NULL
;
3629 tree last_vdef
, new_vuse
;
3630 last_vdef
= gimple_vdef (group
->last_stmt
);
3631 new_vuse
= gimple_vuse (group
->last_stmt
);
3632 tree bswap_res
= NULL_TREE
;
3634 if (group
->stores
[0]->rhs_code
== LROTATE_EXPR
3635 || group
->stores
[0]->rhs_code
== NOP_EXPR
)
3637 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
3638 gimple
*ins_stmt
= group
->stores
[0]->ins_stmt
;
3639 struct symbolic_number
*n
= &group
->stores
[0]->n
;
3640 bool bswap
= group
->stores
[0]->rhs_code
== LROTATE_EXPR
;
3645 load_type
= bswap_type
= uint16_type_node
;
3648 load_type
= uint32_type_node
;
3651 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
3652 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
3656 load_type
= uint64_type_node
;
3659 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
3660 bswap_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
3667 /* If the loads have each vuse of the corresponding store,
3668 we've checked the aliasing already in try_coalesce_bswap and
3669 we want to sink the need load into seq. So need to use new_vuse
3673 if (n
->vuse
== NULL
)
3679 /* Update vuse in case it has changed by output_merged_stores. */
3680 n
->vuse
= gimple_vuse (ins_stmt
);
3682 bswap_res
= bswap_replace (gsi_start (seq
), ins_stmt
, fndecl
,
3683 bswap_type
, load_type
, n
, bswap
);
3684 gcc_assert (bswap_res
);
3687 gimple
*stmt
= NULL
;
3688 auto_vec
<gimple
*, 32> orig_stmts
;
3689 gimple_seq this_seq
;
3690 tree addr
= force_gimple_operand_1 (unshare_expr (base_addr
), &this_seq
,
3691 is_gimple_mem_ref_addr
, NULL_TREE
);
3692 gimple_seq_add_seq_without_update (&seq
, this_seq
);
3694 tree load_addr
[2] = { NULL_TREE
, NULL_TREE
};
3695 gimple_seq load_seq
[2] = { NULL
, NULL
};
3696 gimple_stmt_iterator load_gsi
[2] = { gsi_none (), gsi_none () };
3697 for (int j
= 0; j
< 2; ++j
)
3699 store_operand_info
&op
= group
->stores
[0]->ops
[j
];
3700 if (op
.base_addr
== NULL_TREE
)
3703 store_immediate_info
*infol
= group
->stores
.last ();
3704 if (gimple_vuse (op
.stmt
) == gimple_vuse (infol
->ops
[j
].stmt
))
3706 /* We can't pick the location randomly; while we've verified
3707 all the loads have the same vuse, they can be still in different
3708 basic blocks and we need to pick the one from the last bb:
3714 otherwise if we put the wider load at the q[0] load, we might
3715 segfault if q[1] is not mapped. */
3716 basic_block bb
= gimple_bb (op
.stmt
);
3717 gimple
*ostmt
= op
.stmt
;
3718 store_immediate_info
*info
;
3719 FOR_EACH_VEC_ELT (group
->stores
, i
, info
)
3721 gimple
*tstmt
= info
->ops
[j
].stmt
;
3722 basic_block tbb
= gimple_bb (tstmt
);
3723 if (dominated_by_p (CDI_DOMINATORS
, tbb
, bb
))
3729 load_gsi
[j
] = gsi_for_stmt (ostmt
);
3731 = force_gimple_operand_1 (unshare_expr (op
.base_addr
),
3732 &load_seq
[j
], is_gimple_mem_ref_addr
,
3735 else if (operand_equal_p (base_addr
, op
.base_addr
, 0))
3736 load_addr
[j
] = addr
;
3740 = force_gimple_operand_1 (unshare_expr (op
.base_addr
),
3741 &this_seq
, is_gimple_mem_ref_addr
,
3743 gimple_seq_add_seq_without_update (&seq
, this_seq
);
3747 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
3749 unsigned HOST_WIDE_INT try_size
= split_store
->size
;
3750 unsigned HOST_WIDE_INT try_pos
= split_store
->bytepos
;
3751 unsigned HOST_WIDE_INT try_bitpos
= try_pos
* BITS_PER_UNIT
;
3752 unsigned HOST_WIDE_INT align
= split_store
->align
;
3755 if (split_store
->orig
)
3757 /* If there is just a single constituent store which covers
3758 the whole area, just reuse the lhs and rhs. */
3759 gimple
*orig_stmt
= split_store
->orig_stores
[0]->stmt
;
3760 dest
= gimple_assign_lhs (orig_stmt
);
3761 src
= gimple_assign_rhs1 (orig_stmt
);
3762 loc
= gimple_location (orig_stmt
);
3766 store_immediate_info
*info
;
3767 unsigned short clique
, base
;
3769 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
3770 orig_stmts
.safe_push (info
->stmt
);
3772 = get_alias_type_for_stmts (orig_stmts
, false, &clique
, &base
);
3773 loc
= get_location_for_stmts (orig_stmts
);
3774 orig_stmts
.truncate (0);
3776 tree int_type
= build_nonstandard_integer_type (try_size
, UNSIGNED
);
3777 int_type
= build_aligned_type (int_type
, align
);
3778 dest
= fold_build2 (MEM_REF
, int_type
, addr
,
3779 build_int_cst (offset_type
, try_pos
));
3780 if (TREE_CODE (dest
) == MEM_REF
)
3782 MR_DEPENDENCE_CLIQUE (dest
) = clique
;
3783 MR_DEPENDENCE_BASE (dest
) = base
;
3788 mask
= integer_zero_node
;
3790 mask
= native_interpret_expr (int_type
,
3791 group
->mask
+ try_pos
3797 j
< 1 + (split_store
->orig_stores
[0]->ops
[1].val
!= NULL_TREE
);
3800 store_operand_info
&op
= split_store
->orig_stores
[0]->ops
[j
];
3803 else if (op
.base_addr
)
3805 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
3806 orig_stmts
.safe_push (info
->ops
[j
].stmt
);
3808 offset_type
= get_alias_type_for_stmts (orig_stmts
, true,
3810 location_t load_loc
= get_location_for_stmts (orig_stmts
);
3811 orig_stmts
.truncate (0);
3813 unsigned HOST_WIDE_INT load_align
= group
->load_align
[j
];
3814 unsigned HOST_WIDE_INT align_bitpos
3815 = known_alignment (try_bitpos
3816 - split_store
->orig_stores
[0]->bitpos
3818 if (align_bitpos
& (load_align
- 1))
3819 load_align
= least_bit_hwi (align_bitpos
);
3822 = build_nonstandard_integer_type (try_size
, UNSIGNED
);
3824 = build_aligned_type (load_int_type
, load_align
);
3826 poly_uint64 load_pos
3827 = exact_div (try_bitpos
3828 - split_store
->orig_stores
[0]->bitpos
3831 ops
[j
] = fold_build2 (MEM_REF
, load_int_type
, load_addr
[j
],
3832 build_int_cst (offset_type
, load_pos
));
3833 if (TREE_CODE (ops
[j
]) == MEM_REF
)
3835 MR_DEPENDENCE_CLIQUE (ops
[j
]) = clique
;
3836 MR_DEPENDENCE_BASE (ops
[j
]) = base
;
3838 if (!integer_zerop (mask
))
3839 /* The load might load some bits (that will be masked off
3840 later on) uninitialized, avoid -W*uninitialized
3841 warnings in that case. */
3842 TREE_NO_WARNING (ops
[j
]) = 1;
3844 stmt
= gimple_build_assign (make_ssa_name (int_type
),
3846 gimple_set_location (stmt
, load_loc
);
3847 if (gsi_bb (load_gsi
[j
]))
3849 gimple_set_vuse (stmt
, gimple_vuse (op
.stmt
));
3850 gimple_seq_add_stmt_without_update (&load_seq
[j
], stmt
);
3854 gimple_set_vuse (stmt
, new_vuse
);
3855 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3857 ops
[j
] = gimple_assign_lhs (stmt
);
3859 enum tree_code inv_op
3860 = invert_op (split_store
, j
, int_type
, xor_mask
);
3861 if (inv_op
!= NOP_EXPR
)
3863 stmt
= gimple_build_assign (make_ssa_name (int_type
),
3864 inv_op
, ops
[j
], xor_mask
);
3865 gimple_set_location (stmt
, load_loc
);
3866 ops
[j
] = gimple_assign_lhs (stmt
);
3868 if (gsi_bb (load_gsi
[j
]))
3869 gimple_seq_add_stmt_without_update (&load_seq
[j
],
3872 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3876 ops
[j
] = native_interpret_expr (int_type
,
3877 group
->val
+ try_pos
3882 switch (split_store
->orig_stores
[0]->rhs_code
)
3887 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
3889 tree rhs1
= gimple_assign_rhs1 (info
->stmt
);
3890 orig_stmts
.safe_push (SSA_NAME_DEF_STMT (rhs1
));
3893 bit_loc
= get_location_for_stmts (orig_stmts
);
3894 orig_stmts
.truncate (0);
3897 = gimple_build_assign (make_ssa_name (int_type
),
3898 split_store
->orig_stores
[0]->rhs_code
,
3900 gimple_set_location (stmt
, bit_loc
);
3901 /* If there is just one load and there is a separate
3902 load_seq[0], emit the bitwise op right after it. */
3903 if (load_addr
[1] == NULL_TREE
&& gsi_bb (load_gsi
[0]))
3904 gimple_seq_add_stmt_without_update (&load_seq
[0], stmt
);
3905 /* Otherwise, if at least one load is in seq, we need to
3906 emit the bitwise op right before the store. If there
3907 are two loads and are emitted somewhere else, it would
3908 be better to emit the bitwise op as early as possible;
3909 we don't track where that would be possible right now
3912 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3913 src
= gimple_assign_lhs (stmt
);
3915 enum tree_code inv_op
;
3916 inv_op
= invert_op (split_store
, 2, int_type
, xor_mask
);
3917 if (inv_op
!= NOP_EXPR
)
3919 stmt
= gimple_build_assign (make_ssa_name (int_type
),
3920 inv_op
, src
, xor_mask
);
3921 gimple_set_location (stmt
, bit_loc
);
3922 if (load_addr
[1] == NULL_TREE
&& gsi_bb (load_gsi
[0]))
3923 gimple_seq_add_stmt_without_update (&load_seq
[0], stmt
);
3925 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3926 src
= gimple_assign_lhs (stmt
);
3932 if (!is_gimple_val (src
))
3934 stmt
= gimple_build_assign (make_ssa_name (TREE_TYPE (src
)),
3936 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3937 src
= gimple_assign_lhs (stmt
);
3939 if (!useless_type_conversion_p (int_type
, TREE_TYPE (src
)))
3941 stmt
= gimple_build_assign (make_ssa_name (int_type
),
3943 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3944 src
= gimple_assign_lhs (stmt
);
3946 inv_op
= invert_op (split_store
, 2, int_type
, xor_mask
);
3947 if (inv_op
!= NOP_EXPR
)
3949 stmt
= gimple_build_assign (make_ssa_name (int_type
),
3950 inv_op
, src
, xor_mask
);
3951 gimple_set_location (stmt
, loc
);
3952 gimple_seq_add_stmt_without_update (&seq
, stmt
);
3953 src
= gimple_assign_lhs (stmt
);
3961 /* If bit insertion is required, we use the source as an accumulator
3962 into which the successive bit-field values are manually inserted.
3963 FIXME: perhaps use BIT_INSERT_EXPR instead in some cases? */
3964 if (group
->bit_insertion
)
3965 FOR_EACH_VEC_ELT (split_store
->orig_stores
, k
, info
)
3966 if (info
->rhs_code
== BIT_INSERT_EXPR
3967 && info
->bitpos
< try_bitpos
+ try_size
3968 && info
->bitpos
+ info
->bitsize
> try_bitpos
)
3970 /* Mask, truncate, convert to final type, shift and ior into
3971 the accumulator. Note that every step can be a no-op. */
3972 const HOST_WIDE_INT start_gap
= info
->bitpos
- try_bitpos
;
3973 const HOST_WIDE_INT end_gap
3974 = (try_bitpos
+ try_size
) - (info
->bitpos
+ info
->bitsize
);
3975 tree tem
= info
->ops
[0].val
;
3976 if (TYPE_PRECISION (TREE_TYPE (tem
)) <= info
->bitsize
)
3979 = build_nonstandard_integer_type (info
->bitsize
,
3981 tem
= gimple_convert (&seq
, loc
, bitfield_type
, tem
);
3983 else if ((BYTES_BIG_ENDIAN
? start_gap
: end_gap
) > 0)
3985 const unsigned HOST_WIDE_INT imask
3986 = (HOST_WIDE_INT_1U
<< info
->bitsize
) - 1;
3987 tem
= gimple_build (&seq
, loc
,
3988 BIT_AND_EXPR
, TREE_TYPE (tem
), tem
,
3989 build_int_cst (TREE_TYPE (tem
),
3992 const HOST_WIDE_INT shift
3993 = (BYTES_BIG_ENDIAN
? end_gap
: start_gap
);
3995 tem
= gimple_build (&seq
, loc
,
3996 RSHIFT_EXPR
, TREE_TYPE (tem
), tem
,
3997 build_int_cst (NULL_TREE
, -shift
));
3998 tem
= gimple_convert (&seq
, loc
, int_type
, tem
);
4000 tem
= gimple_build (&seq
, loc
,
4001 LSHIFT_EXPR
, int_type
, tem
,
4002 build_int_cst (NULL_TREE
, shift
));
4003 src
= gimple_build (&seq
, loc
,
4004 BIT_IOR_EXPR
, int_type
, tem
, src
);
4007 if (!integer_zerop (mask
))
4009 tree tem
= make_ssa_name (int_type
);
4010 tree load_src
= unshare_expr (dest
);
4011 /* The load might load some or all bits uninitialized,
4012 avoid -W*uninitialized warnings in that case.
4013 As optimization, it would be nice if all the bits are
4014 provably uninitialized (no stores at all yet or previous
4015 store a CLOBBER) we'd optimize away the load and replace
4017 TREE_NO_WARNING (load_src
) = 1;
4018 stmt
= gimple_build_assign (tem
, load_src
);
4019 gimple_set_location (stmt
, loc
);
4020 gimple_set_vuse (stmt
, new_vuse
);
4021 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4023 /* FIXME: If there is a single chunk of zero bits in mask,
4024 perhaps use BIT_INSERT_EXPR instead? */
4025 stmt
= gimple_build_assign (make_ssa_name (int_type
),
4026 BIT_AND_EXPR
, tem
, mask
);
4027 gimple_set_location (stmt
, loc
);
4028 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4029 tem
= gimple_assign_lhs (stmt
);
4031 if (TREE_CODE (src
) == INTEGER_CST
)
4032 src
= wide_int_to_tree (int_type
,
4033 wi::bit_and_not (wi::to_wide (src
),
4034 wi::to_wide (mask
)));
4038 = wide_int_to_tree (int_type
,
4039 wi::bit_not (wi::to_wide (mask
)));
4040 stmt
= gimple_build_assign (make_ssa_name (int_type
),
4041 BIT_AND_EXPR
, src
, nmask
);
4042 gimple_set_location (stmt
, loc
);
4043 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4044 src
= gimple_assign_lhs (stmt
);
4046 stmt
= gimple_build_assign (make_ssa_name (int_type
),
4047 BIT_IOR_EXPR
, tem
, src
);
4048 gimple_set_location (stmt
, loc
);
4049 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4050 src
= gimple_assign_lhs (stmt
);
4054 stmt
= gimple_build_assign (dest
, src
);
4055 gimple_set_location (stmt
, loc
);
4056 gimple_set_vuse (stmt
, new_vuse
);
4057 gimple_seq_add_stmt_without_update (&seq
, stmt
);
4060 if (i
< split_stores
.length () - 1)
4061 new_vdef
= make_ssa_name (gimple_vop (cfun
), stmt
);
4063 new_vdef
= last_vdef
;
4065 gimple_set_vdef (stmt
, new_vdef
);
4066 SSA_NAME_DEF_STMT (new_vdef
) = stmt
;
4067 new_vuse
= new_vdef
;
4070 FOR_EACH_VEC_ELT (split_stores
, i
, split_store
)
4077 "New sequence of %u stores to replace old one of %u stores\n",
4078 split_stores
.length (), orig_num_stmts
);
4079 if (dump_flags
& TDF_DETAILS
)
4080 print_gimple_seq (dump_file
, seq
, 0, TDF_VOPS
| TDF_MEMSYMS
);
4082 gsi_insert_seq_after (&last_gsi
, seq
, GSI_SAME_STMT
);
4083 for (int j
= 0; j
< 2; ++j
)
4085 gsi_insert_seq_after (&load_gsi
[j
], load_seq
[j
], GSI_SAME_STMT
);
4090 /* Process the merged_store_group objects created in the coalescing phase.
4091 The stores are all against the base object BASE.
4092 Try to output the widened stores and delete the original statements if
4093 successful. Return true iff any changes were made. */
4096 imm_store_chain_info::output_merged_stores ()
4099 merged_store_group
*merged_store
;
4101 FOR_EACH_VEC_ELT (m_merged_store_groups
, i
, merged_store
)
4103 if (output_merged_store (merged_store
))
4106 store_immediate_info
*store
;
4107 FOR_EACH_VEC_ELT (merged_store
->stores
, j
, store
)
4109 gimple
*stmt
= store
->stmt
;
4110 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
4111 gsi_remove (&gsi
, true);
4112 if (stmt
!= merged_store
->last_stmt
)
4114 unlink_stmt_vdef (stmt
);
4115 release_defs (stmt
);
4121 if (ret
&& dump_file
)
4122 fprintf (dump_file
, "Merging successful!\n");
4127 /* Coalesce the store_immediate_info objects recorded against the base object
4128 BASE in the first phase and output them.
4129 Delete the allocated structures.
4130 Return true if any changes were made. */
4133 imm_store_chain_info::terminate_and_process_chain ()
4135 /* Process store chain. */
4137 if (m_store_info
.length () > 1)
4139 ret
= coalesce_immediate_stores ();
4141 ret
= output_merged_stores ();
4144 /* Delete all the entries we allocated ourselves. */
4145 store_immediate_info
*info
;
4147 FOR_EACH_VEC_ELT (m_store_info
, i
, info
)
4150 merged_store_group
*merged_info
;
4151 FOR_EACH_VEC_ELT (m_merged_store_groups
, i
, merged_info
)
4157 /* Return true iff LHS is a destination potentially interesting for
4158 store merging. In practice these are the codes that get_inner_reference
4162 lhs_valid_for_store_merging_p (tree lhs
)
4164 tree_code code
= TREE_CODE (lhs
);
4166 if (code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
|| code
== MEM_REF
4167 || code
== COMPONENT_REF
|| code
== BIT_FIELD_REF
)
4173 /* Return true if the tree RHS is a constant we want to consider
4174 during store merging. In practice accept all codes that
4175 native_encode_expr accepts. */
4178 rhs_valid_for_store_merging_p (tree rhs
)
4180 unsigned HOST_WIDE_INT size
;
4181 return (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (rhs
))).is_constant (&size
)
4182 && native_encode_expr (rhs
, NULL
, size
) != 0);
4185 /* If MEM is a memory reference usable for store merging (either as
4186 store destination or for loads), return the non-NULL base_addr
4187 and set *PBITSIZE, *PBITPOS, *PBITREGION_START and *PBITREGION_END.
4188 Otherwise return NULL, *PBITPOS should be still valid even for that
4192 mem_valid_for_store_merging (tree mem
, poly_uint64
*pbitsize
,
4193 poly_uint64
*pbitpos
,
4194 poly_uint64
*pbitregion_start
,
4195 poly_uint64
*pbitregion_end
)
4197 poly_int64 bitsize
, bitpos
;
4198 poly_uint64 bitregion_start
= 0, bitregion_end
= 0;
4200 int unsignedp
= 0, reversep
= 0, volatilep
= 0;
4202 tree base_addr
= get_inner_reference (mem
, &bitsize
, &bitpos
, &offset
, &mode
,
4203 &unsignedp
, &reversep
, &volatilep
);
4204 *pbitsize
= bitsize
;
4205 if (known_eq (bitsize
, 0))
4208 if (TREE_CODE (mem
) == COMPONENT_REF
4209 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (mem
, 1)))
4211 get_bit_range (&bitregion_start
, &bitregion_end
, mem
, &bitpos
, &offset
);
4212 if (maybe_ne (bitregion_end
, 0U))
4219 /* We do not want to rewrite TARGET_MEM_REFs. */
4220 if (TREE_CODE (base_addr
) == TARGET_MEM_REF
)
4222 /* In some cases get_inner_reference may return a
4223 MEM_REF [ptr + byteoffset]. For the purposes of this pass
4224 canonicalize the base_addr to MEM_REF [ptr] and take
4225 byteoffset into account in the bitpos. This occurs in
4226 PR 23684 and this way we can catch more chains. */
4227 else if (TREE_CODE (base_addr
) == MEM_REF
)
4229 poly_offset_int byte_off
= mem_ref_offset (base_addr
);
4230 poly_offset_int bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4232 if (known_ge (bit_off
, 0) && bit_off
.to_shwi (&bitpos
))
4234 if (maybe_ne (bitregion_end
, 0U))
4236 bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4237 bit_off
+= bitregion_start
;
4238 if (bit_off
.to_uhwi (&bitregion_start
))
4240 bit_off
= byte_off
<< LOG2_BITS_PER_UNIT
;
4241 bit_off
+= bitregion_end
;
4242 if (!bit_off
.to_uhwi (&bitregion_end
))
4251 base_addr
= TREE_OPERAND (base_addr
, 0);
4253 /* get_inner_reference returns the base object, get at its
4257 if (maybe_lt (bitpos
, 0))
4259 base_addr
= build_fold_addr_expr (base_addr
);
4262 if (known_eq (bitregion_end
, 0U))
4264 bitregion_start
= round_down_to_byte_boundary (bitpos
);
4265 bitregion_end
= bitpos
;
4266 bitregion_end
= round_up_to_byte_boundary (bitregion_end
+ bitsize
);
4269 if (offset
!= NULL_TREE
)
4271 /* If the access is variable offset then a base decl has to be
4272 address-taken to be able to emit pointer-based stores to it.
4273 ??? We might be able to get away with re-using the original
4274 base up to the first variable part and then wrapping that inside
4276 tree base
= get_base_address (base_addr
);
4278 || (DECL_P (base
) && ! TREE_ADDRESSABLE (base
)))
4281 base_addr
= build2 (POINTER_PLUS_EXPR
, TREE_TYPE (base_addr
),
4285 *pbitsize
= bitsize
;
4287 *pbitregion_start
= bitregion_start
;
4288 *pbitregion_end
= bitregion_end
;
4292 /* Return true if STMT is a load that can be used for store merging.
4293 In that case fill in *OP. BITSIZE, BITPOS, BITREGION_START and
4294 BITREGION_END are properties of the corresponding store. */
4297 handled_load (gimple
*stmt
, store_operand_info
*op
,
4298 poly_uint64 bitsize
, poly_uint64 bitpos
,
4299 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
)
4301 if (!is_gimple_assign (stmt
))
4303 if (gimple_assign_rhs_code (stmt
) == BIT_NOT_EXPR
)
4305 tree rhs1
= gimple_assign_rhs1 (stmt
);
4306 if (TREE_CODE (rhs1
) == SSA_NAME
4307 && handled_load (SSA_NAME_DEF_STMT (rhs1
), op
, bitsize
, bitpos
,
4308 bitregion_start
, bitregion_end
))
4310 /* Don't allow _1 = load; _2 = ~1; _3 = ~_2; which should have
4311 been optimized earlier, but if allowed here, would confuse the
4312 multiple uses counting. */
4315 op
->bit_not_p
= !op
->bit_not_p
;
4320 if (gimple_vuse (stmt
)
4321 && gimple_assign_load_p (stmt
)
4322 && !stmt_can_throw_internal (cfun
, stmt
)
4323 && !gimple_has_volatile_ops (stmt
))
4325 tree mem
= gimple_assign_rhs1 (stmt
);
4327 = mem_valid_for_store_merging (mem
, &op
->bitsize
, &op
->bitpos
,
4328 &op
->bitregion_start
,
4329 &op
->bitregion_end
);
4330 if (op
->base_addr
!= NULL_TREE
4331 && known_eq (op
->bitsize
, bitsize
)
4332 && multiple_p (op
->bitpos
- bitpos
, BITS_PER_UNIT
)
4333 && known_ge (op
->bitpos
- op
->bitregion_start
,
4334 bitpos
- bitregion_start
)
4335 && known_ge (op
->bitregion_end
- op
->bitpos
,
4336 bitregion_end
- bitpos
))
4340 op
->bit_not_p
= false;
4347 /* Record the store STMT for store merging optimization if it can be
4351 pass_store_merging::process_store (gimple
*stmt
)
4353 tree lhs
= gimple_assign_lhs (stmt
);
4354 tree rhs
= gimple_assign_rhs1 (stmt
);
4355 poly_uint64 bitsize
, bitpos
;
4356 poly_uint64 bitregion_start
, bitregion_end
;
4358 = mem_valid_for_store_merging (lhs
, &bitsize
, &bitpos
,
4359 &bitregion_start
, &bitregion_end
);
4360 if (known_eq (bitsize
, 0U))
4363 bool invalid
= (base_addr
== NULL_TREE
4364 || (maybe_gt (bitsize
,
4365 (unsigned int) MAX_BITSIZE_MODE_ANY_INT
)
4366 && (TREE_CODE (rhs
) != INTEGER_CST
)));
4367 enum tree_code rhs_code
= ERROR_MARK
;
4368 bool bit_not_p
= false;
4369 struct symbolic_number n
;
4370 gimple
*ins_stmt
= NULL
;
4371 store_operand_info ops
[2];
4374 else if (rhs_valid_for_store_merging_p (rhs
))
4376 rhs_code
= INTEGER_CST
;
4379 else if (TREE_CODE (rhs
) != SSA_NAME
)
4383 gimple
*def_stmt
= SSA_NAME_DEF_STMT (rhs
), *def_stmt1
, *def_stmt2
;
4384 if (!is_gimple_assign (def_stmt
))
4386 else if (handled_load (def_stmt
, &ops
[0], bitsize
, bitpos
,
4387 bitregion_start
, bitregion_end
))
4389 else if (gimple_assign_rhs_code (def_stmt
) == BIT_NOT_EXPR
)
4391 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
4392 if (TREE_CODE (rhs1
) == SSA_NAME
4393 && is_gimple_assign (SSA_NAME_DEF_STMT (rhs1
)))
4396 def_stmt
= SSA_NAME_DEF_STMT (rhs1
);
4400 if (rhs_code
== ERROR_MARK
&& !invalid
)
4401 switch ((rhs_code
= gimple_assign_rhs_code (def_stmt
)))
4407 rhs1
= gimple_assign_rhs1 (def_stmt
);
4408 rhs2
= gimple_assign_rhs2 (def_stmt
);
4410 if (TREE_CODE (rhs1
) != SSA_NAME
)
4412 def_stmt1
= SSA_NAME_DEF_STMT (rhs1
);
4413 if (!is_gimple_assign (def_stmt1
)
4414 || !handled_load (def_stmt1
, &ops
[0], bitsize
, bitpos
,
4415 bitregion_start
, bitregion_end
))
4417 if (rhs_valid_for_store_merging_p (rhs2
))
4419 else if (TREE_CODE (rhs2
) != SSA_NAME
)
4423 def_stmt2
= SSA_NAME_DEF_STMT (rhs2
);
4424 if (!is_gimple_assign (def_stmt2
))
4426 else if (!handled_load (def_stmt2
, &ops
[1], bitsize
, bitpos
,
4427 bitregion_start
, bitregion_end
))
4437 unsigned HOST_WIDE_INT const_bitsize
;
4438 if (bitsize
.is_constant (&const_bitsize
)
4439 && (const_bitsize
% BITS_PER_UNIT
) == 0
4440 && const_bitsize
<= 64
4441 && multiple_p (bitpos
, BITS_PER_UNIT
))
4443 ins_stmt
= find_bswap_or_nop_1 (def_stmt
, &n
, 12);
4447 for (unsigned HOST_WIDE_INT i
= 0;
4449 i
+= BITS_PER_UNIT
, nn
>>= BITS_PER_MARKER
)
4450 if ((nn
& MARKER_MASK
) == 0
4451 || (nn
& MARKER_MASK
) == MARKER_BYTE_UNKNOWN
)
4460 rhs_code
= LROTATE_EXPR
;
4461 ops
[0].base_addr
= NULL_TREE
;
4462 ops
[1].base_addr
= NULL_TREE
;
4470 && bitsize
.is_constant (&const_bitsize
)
4471 && ((const_bitsize
% BITS_PER_UNIT
) != 0
4472 || !multiple_p (bitpos
, BITS_PER_UNIT
))
4473 && const_bitsize
<= 64)
4475 /* Bypass a conversion to the bit-field type. */
4477 && is_gimple_assign (def_stmt
)
4478 && CONVERT_EXPR_CODE_P (rhs_code
))
4480 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
4481 if (TREE_CODE (rhs1
) == SSA_NAME
4482 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
4485 rhs_code
= BIT_INSERT_EXPR
;
4488 ops
[0].base_addr
= NULL_TREE
;
4489 ops
[1].base_addr
= NULL_TREE
;
4494 unsigned HOST_WIDE_INT const_bitsize
, const_bitpos
;
4495 unsigned HOST_WIDE_INT const_bitregion_start
, const_bitregion_end
;
4497 || !bitsize
.is_constant (&const_bitsize
)
4498 || !bitpos
.is_constant (&const_bitpos
)
4499 || !bitregion_start
.is_constant (&const_bitregion_start
)
4500 || !bitregion_end
.is_constant (&const_bitregion_end
))
4502 terminate_all_aliasing_chains (NULL
, stmt
);
4507 memset (&n
, 0, sizeof (n
));
4509 struct imm_store_chain_info
**chain_info
= NULL
;
4511 chain_info
= m_stores
.get (base_addr
);
4513 store_immediate_info
*info
;
4516 unsigned int ord
= (*chain_info
)->m_store_info
.length ();
4517 info
= new store_immediate_info (const_bitsize
, const_bitpos
,
4518 const_bitregion_start
,
4519 const_bitregion_end
,
4520 stmt
, ord
, rhs_code
, n
, ins_stmt
,
4521 bit_not_p
, ops
[0], ops
[1]);
4522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4524 fprintf (dump_file
, "Recording immediate store from stmt:\n");
4525 print_gimple_stmt (dump_file
, stmt
, 0);
4527 (*chain_info
)->m_store_info
.safe_push (info
);
4528 terminate_all_aliasing_chains (chain_info
, stmt
);
4529 /* If we reach the limit of stores to merge in a chain terminate and
4530 process the chain now. */
4531 if ((*chain_info
)->m_store_info
.length ()
4532 == (unsigned int) PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE
))
4534 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4536 "Reached maximum number of statements to merge:\n");
4537 terminate_and_release_chain (*chain_info
);
4542 /* Store aliases any existing chain? */
4543 terminate_all_aliasing_chains (NULL
, stmt
);
4544 /* Start a new chain. */
4545 struct imm_store_chain_info
*new_chain
4546 = new imm_store_chain_info (m_stores_head
, base_addr
);
4547 info
= new store_immediate_info (const_bitsize
, const_bitpos
,
4548 const_bitregion_start
,
4549 const_bitregion_end
,
4550 stmt
, 0, rhs_code
, n
, ins_stmt
,
4551 bit_not_p
, ops
[0], ops
[1]);
4552 new_chain
->m_store_info
.safe_push (info
);
4553 m_stores
.put (base_addr
, new_chain
);
4554 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4556 fprintf (dump_file
, "Starting new chain with statement:\n");
4557 print_gimple_stmt (dump_file
, stmt
, 0);
4558 fprintf (dump_file
, "The base object is:\n");
4559 print_generic_expr (dump_file
, base_addr
);
4560 fprintf (dump_file
, "\n");
4564 /* Entry point for the pass. Go over each basic block recording chains of
4565 immediate stores. Upon encountering a terminating statement (as defined
4566 by stmt_terminates_chain_p) process the recorded stores and emit the widened
4570 pass_store_merging::execute (function
*fun
)
4573 hash_set
<gimple
*> orig_stmts
;
4575 calculate_dominance_info (CDI_DOMINATORS
);
4577 FOR_EACH_BB_FN (bb
, fun
)
4579 gimple_stmt_iterator gsi
;
4580 unsigned HOST_WIDE_INT num_statements
= 0;
4581 /* Record the original statements so that we can keep track of
4582 statements emitted in this pass and not re-process new
4584 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4586 if (is_gimple_debug (gsi_stmt (gsi
)))
4589 if (++num_statements
>= 2)
4593 if (num_statements
< 2)
4596 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4597 fprintf (dump_file
, "Processing basic block <%d>:\n", bb
->index
);
4599 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4601 gimple
*stmt
= gsi_stmt (gsi
);
4603 if (is_gimple_debug (stmt
))
4606 if (gimple_has_volatile_ops (stmt
))
4608 /* Terminate all chains. */
4609 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4610 fprintf (dump_file
, "Volatile access terminates "
4612 terminate_and_process_all_chains ();
4616 if (gimple_assign_single_p (stmt
) && gimple_vdef (stmt
)
4617 && !stmt_can_throw_internal (cfun
, stmt
)
4618 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt
)))
4619 process_store (stmt
);
4621 terminate_all_aliasing_chains (NULL
, stmt
);
4623 terminate_and_process_all_chains ();
4630 /* Construct and return a store merging pass object. */
4633 make_pass_store_merging (gcc::context
*ctxt
)
4635 return new pass_store_merging (ctxt
);
4640 namespace selftest
{
4642 /* Selftests for store merging helpers. */
4644 /* Assert that all elements of the byte arrays X and Y, both of length N
4648 verify_array_eq (unsigned char *x
, unsigned char *y
, unsigned int n
)
4650 for (unsigned int i
= 0; i
< n
; i
++)
4654 fprintf (stderr
, "Arrays do not match. X:\n");
4655 dump_char_array (stderr
, x
, n
);
4656 fprintf (stderr
, "Y:\n");
4657 dump_char_array (stderr
, y
, n
);
4659 ASSERT_EQ (x
[i
], y
[i
]);
4663 /* Test shift_bytes_in_array and that it carries bits across between
4667 verify_shift_bytes_in_array (void)
4670 00011111 | 11100000. */
4671 unsigned char orig
[2] = { 0xe0, 0x1f };
4672 unsigned char in
[2];
4673 memcpy (in
, orig
, sizeof orig
);
4675 unsigned char expected
[2] = { 0x80, 0x7f };
4676 shift_bytes_in_array (in
, sizeof (in
), 2);
4677 verify_array_eq (in
, expected
, sizeof (in
));
4679 memcpy (in
, orig
, sizeof orig
);
4680 memcpy (expected
, orig
, sizeof orig
);
4681 /* Check that shifting by zero doesn't change anything. */
4682 shift_bytes_in_array (in
, sizeof (in
), 0);
4683 verify_array_eq (in
, expected
, sizeof (in
));
4687 /* Test shift_bytes_in_array_right and that it carries bits across between
4691 verify_shift_bytes_in_array_right (void)
4694 00011111 | 11100000. */
4695 unsigned char orig
[2] = { 0x1f, 0xe0};
4696 unsigned char in
[2];
4697 memcpy (in
, orig
, sizeof orig
);
4698 unsigned char expected
[2] = { 0x07, 0xf8};
4699 shift_bytes_in_array_right (in
, sizeof (in
), 2);
4700 verify_array_eq (in
, expected
, sizeof (in
));
4702 memcpy (in
, orig
, sizeof orig
);
4703 memcpy (expected
, orig
, sizeof orig
);
4704 /* Check that shifting by zero doesn't change anything. */
4705 shift_bytes_in_array_right (in
, sizeof (in
), 0);
4706 verify_array_eq (in
, expected
, sizeof (in
));
4709 /* Test clear_bit_region that it clears exactly the bits asked and
4713 verify_clear_bit_region (void)
4715 /* Start with all bits set and test clearing various patterns in them. */
4716 unsigned char orig
[3] = { 0xff, 0xff, 0xff};
4717 unsigned char in
[3];
4718 unsigned char expected
[3];
4719 memcpy (in
, orig
, sizeof in
);
4721 /* Check zeroing out all the bits. */
4722 clear_bit_region (in
, 0, 3 * BITS_PER_UNIT
);
4723 expected
[0] = expected
[1] = expected
[2] = 0;
4724 verify_array_eq (in
, expected
, sizeof in
);
4726 memcpy (in
, orig
, sizeof in
);
4727 /* Leave the first and last bits intact. */
4728 clear_bit_region (in
, 1, 3 * BITS_PER_UNIT
- 2);
4732 verify_array_eq (in
, expected
, sizeof in
);
4735 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
4739 verify_clear_bit_region_be (void)
4741 /* Start with all bits set and test clearing various patterns in them. */
4742 unsigned char orig
[3] = { 0xff, 0xff, 0xff};
4743 unsigned char in
[3];
4744 unsigned char expected
[3];
4745 memcpy (in
, orig
, sizeof in
);
4747 /* Check zeroing out all the bits. */
4748 clear_bit_region_be (in
, BITS_PER_UNIT
- 1, 3 * BITS_PER_UNIT
);
4749 expected
[0] = expected
[1] = expected
[2] = 0;
4750 verify_array_eq (in
, expected
, sizeof in
);
4752 memcpy (in
, orig
, sizeof in
);
4753 /* Leave the first and last bits intact. */
4754 clear_bit_region_be (in
, BITS_PER_UNIT
- 2, 3 * BITS_PER_UNIT
- 2);
4758 verify_array_eq (in
, expected
, sizeof in
);
4762 /* Run all of the selftests within this file. */
4765 store_merging_c_tests (void)
4767 verify_shift_bytes_in_array ();
4768 verify_shift_bytes_in_array_right ();
4769 verify_clear_bit_region ();
4770 verify_clear_bit_region_be ();
4773 } // namespace selftest
4774 #endif /* CHECKING_P. */