Wattributes-10.c: Add -fno-common option on hppa*-*-hpux*.
[official-gcc.git] / gcc / combine.c
blob91e32c88c8898781a884cb3b263855b88206cac7
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "expr.h"
103 #include "params.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx_insn *i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 struct reg_stat_type {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn *last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx_insn *last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
256 static vec<reg_stat_type> reg_stat;
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
266 static unsigned int reg_n_sets_max;
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
271 static int mem_last_set;
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
276 static int last_call_luid;
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
284 static rtx_insn *subst_insn;
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
293 static int subst_low_luid;
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
298 static HARD_REG_SET newpat_used_regs;
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
302 that location. */
304 static rtx_insn *added_links_insn;
306 /* And similarly, for notes. */
308 static rtx_insn *added_notes_insn;
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block;
312 static bool optimize_this_for_speed_p;
315 /* Length of the currently allocated uid_insn_cost array. */
317 static int max_uid_known;
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost;
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
327 struct insn_link {
328 rtx_insn *insn;
329 unsigned int regno;
330 struct insn_link *next;
333 static struct insn_link **uid_log_links;
335 static inline int
336 insn_uid_check (const_rtx insn)
338 int uid = INSN_UID (insn);
339 gcc_checking_assert (uid <= max_uid_known);
340 return uid;
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349 /* Links for LOG_LINKS are allocated from this obstack. */
351 static struct obstack insn_link_obstack;
353 /* Allocate a link. */
355 static inline struct insn_link *
356 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
358 struct insn_link *l
359 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
360 sizeof (struct insn_link));
361 l->insn = insn;
362 l->regno = regno;
363 l->next = next;
364 return l;
367 /* Incremented for each basic block. */
369 static int label_tick;
371 /* Reset to label_tick for each extended basic block in scanning order. */
373 static int label_tick_ebb_start;
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378 static scalar_int_mode nonzero_bits_mode;
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
384 in a loop. */
386 static int nonzero_sign_valid;
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
392 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
394 struct undo
396 struct undo *next;
397 enum undo_kind kind;
398 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
399 union { rtx *r; int *i; struct insn_link **l; } where;
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
408 struct undobuf
410 struct undo *undos;
411 struct undo *frees;
412 rtx_insn *other_insn;
415 static struct undobuf undobuf;
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
420 static int n_occurrences;
422 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
423 scalar_int_mode,
424 unsigned HOST_WIDE_INT *);
425 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
426 scalar_int_mode,
427 unsigned int *);
428 static void do_SUBST (rtx *, rtx);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn *);
432 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
433 static int cant_combine_insn_p (rtx_insn *);
434 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 rtx_insn *, rtx_insn *, rtx *, rtx *);
436 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
437 static int contains_muldiv (rtx);
438 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
439 int *, rtx_insn *);
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx *find_split_point (rtx *, rtx_insn *, bool);
443 static rtx subst (rtx, rtx, rtx, int, int, int);
444 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
445 static rtx simplify_if_then_else (rtx);
446 static rtx simplify_set (rtx);
447 static rtx simplify_logical (rtx);
448 static rtx expand_compound_operation (rtx);
449 static const_rtx expand_field_assignment (const_rtx);
450 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
451 rtx, unsigned HOST_WIDE_INT, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
453 unsigned HOST_WIDE_INT *);
454 static rtx canon_reg_for_combine (rtx, rtx);
455 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
456 scalar_int_mode, unsigned HOST_WIDE_INT, int);
457 static rtx force_to_mode (rtx, machine_mode,
458 unsigned HOST_WIDE_INT, int);
459 static rtx if_then_else_cond (rtx, rtx *, rtx *);
460 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
461 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
462 static rtx make_field_assignment (rtx);
463 static rtx apply_distributive_law (rtx);
464 static rtx distribute_and_simplify_rtx (rtx, int);
465 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
466 unsigned HOST_WIDE_INT);
467 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
470 HOST_WIDE_INT, machine_mode, int *);
471 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
472 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
473 int);
474 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
475 static rtx gen_lowpart_for_combine (machine_mode, rtx);
476 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
477 rtx, rtx *);
478 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
479 static void update_table_tick (rtx);
480 static void record_value_for_reg (rtx, rtx_insn *, rtx);
481 static void check_promoted_subreg (rtx_insn *, rtx);
482 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
483 static void record_dead_and_set_regs (rtx_insn *);
484 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
485 static rtx get_last_value (const_rtx);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 case CLOBBER_HIGH:
575 return 0;
577 case SET:
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x)) != CC0
583 && GET_CODE (SET_DEST (x)) != PC
584 && !REG_P (SET_DEST (x))
585 && ! (GET_CODE (SET_DEST (x)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x)))
587 && !read_modify_subreg_p (SET_DEST (x))))
588 break;
590 return find_single_use_1 (dest, &SET_SRC (x));
592 case MEM:
593 case SUBREG:
594 return find_single_use_1 (dest, &XEXP (x, 0));
596 default:
597 break;
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
606 if (fmt[i] == 'e')
608 if (dest == XEXP (x, i)
609 || (REG_P (dest) && REG_P (XEXP (x, i))
610 && REGNO (dest) == REGNO (XEXP (x, i))))
611 this_result = loc;
612 else
613 this_result = find_single_use_1 (dest, &XEXP (x, i));
615 if (result == NULL)
616 result = this_result;
617 else if (this_result)
618 /* Duplicate usage. */
619 return NULL;
621 else if (fmt[i] == 'E')
623 int j;
625 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
627 if (XVECEXP (x, i, j) == dest
628 || (REG_P (dest)
629 && REG_P (XVECEXP (x, i, j))
630 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 return NULL;
643 return result;
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
649 it is used.
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
661 static rtx *
662 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
664 basic_block bb;
665 rtx_insn *next;
666 rtx *result;
667 struct insn_link *link;
669 if (dest == cc0_rtx)
671 next = NEXT_INSN (insn);
672 if (next == 0
673 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
674 return 0;
676 result = find_single_use_1 (dest, &PATTERN (next));
677 if (result && ploc)
678 *ploc = next;
679 return result;
682 if (!REG_P (dest))
683 return 0;
685 bb = BLOCK_FOR_INSN (insn);
686 for (next = NEXT_INSN (insn);
687 next && BLOCK_FOR_INSN (next) == bb;
688 next = NEXT_INSN (next))
689 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
691 FOR_EACH_LOG_LINK (link, next)
692 if (link->insn == insn && link->regno == REGNO (dest))
693 break;
695 if (link)
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (ploc)
699 *ploc = next;
700 return result;
704 return 0;
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
711 the undo table. */
713 static void
714 do_SUBST (rtx *into, rtx newval)
716 struct undo *buf;
717 rtx oldval = *into;
719 if (oldval == newval)
720 return;
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
728 && CONST_INT_P (newval))
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval)
733 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval))));
743 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval, 0))));
747 if (undobuf.frees)
748 buf = undobuf.frees, undobuf.frees = buf->next;
749 else
750 buf = XNEW (struct undo);
752 buf->kind = UNDO_RTX;
753 buf->where.r = into;
754 buf->old_contents.r = oldval;
755 *into = newval;
757 buf->next = undobuf.undos, undobuf.undos = buf;
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 not safe. */
766 static void
767 do_SUBST_INT (int *into, int newval)
769 struct undo *buf;
770 int oldval = *into;
772 if (oldval == newval)
773 return;
775 if (undobuf.frees)
776 buf = undobuf.frees, undobuf.frees = buf->next;
777 else
778 buf = XNEW (struct undo);
780 buf->kind = UNDO_INT;
781 buf->where.i = into;
782 buf->old_contents.i = oldval;
783 *into = newval;
785 buf->next = undobuf.undos, undobuf.undos = buf;
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
793 well. */
795 static void
796 do_SUBST_MODE (rtx *into, machine_mode newval)
798 struct undo *buf;
799 machine_mode oldval = GET_MODE (*into);
801 if (oldval == newval)
802 return;
804 if (undobuf.frees)
805 buf = undobuf.frees, undobuf.frees = buf->next;
806 else
807 buf = XNEW (struct undo);
809 buf->kind = UNDO_MODE;
810 buf->where.r = into;
811 buf->old_contents.m = oldval;
812 adjust_reg_mode (*into, newval);
814 buf->next = undobuf.undos, undobuf.undos = buf;
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
821 static void
822 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
824 struct undo *buf;
825 struct insn_link * oldval = *into;
827 if (oldval == newval)
828 return;
830 if (undobuf.frees)
831 buf = undobuf.frees, undobuf.frees = buf->next;
832 else
833 buf = XNEW (struct undo);
835 buf->kind = UNDO_LINKS;
836 buf->where.l = into;
837 buf->old_contents.l = oldval;
838 *into = newval;
840 buf->next = undobuf.undos, undobuf.undos = buf;
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
853 static bool
854 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
855 rtx newpat, rtx newi2pat, rtx newotherpat)
857 int i0_cost, i1_cost, i2_cost, i3_cost;
858 int new_i2_cost, new_i3_cost;
859 int old_cost, new_cost;
861 /* Lookup the original insn_costs. */
862 i2_cost = INSN_COST (i2);
863 i3_cost = INSN_COST (i3);
865 if (i1)
867 i1_cost = INSN_COST (i1);
868 if (i0)
870 i0_cost = INSN_COST (i0);
871 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
872 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
874 else
876 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
877 ? i1_cost + i2_cost + i3_cost : 0);
878 i0_cost = 0;
881 else
883 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
884 i1_cost = i0_cost = 0;
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
888 correct that. */
889 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
890 old_cost -= i1_cost;
893 /* Calculate the replacement insn_costs. */
894 rtx tmp = PATTERN (i3);
895 PATTERN (i3) = newpat;
896 int tmpi = INSN_CODE (i3);
897 INSN_CODE (i3) = -1;
898 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
899 PATTERN (i3) = tmp;
900 INSN_CODE (i3) = tmpi;
901 if (newi2pat)
903 tmp = PATTERN (i2);
904 PATTERN (i2) = newi2pat;
905 tmpi = INSN_CODE (i2);
906 INSN_CODE (i2) = -1;
907 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
908 PATTERN (i2) = tmp;
909 INSN_CODE (i2) = tmpi;
910 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
911 ? new_i2_cost + new_i3_cost : 0;
913 else
915 new_cost = new_i3_cost;
916 new_i2_cost = 0;
919 if (undobuf.other_insn)
921 int old_other_cost, new_other_cost;
923 old_other_cost = INSN_COST (undobuf.other_insn);
924 tmp = PATTERN (undobuf.other_insn);
925 PATTERN (undobuf.other_insn) = newotherpat;
926 tmpi = INSN_CODE (undobuf.other_insn);
927 INSN_CODE (undobuf.other_insn) = -1;
928 new_other_cost = insn_cost (undobuf.other_insn,
929 optimize_this_for_speed_p);
930 PATTERN (undobuf.other_insn) = tmp;
931 INSN_CODE (undobuf.other_insn) = tmpi;
932 if (old_other_cost > 0 && new_other_cost > 0)
934 old_cost += old_other_cost;
935 new_cost += new_other_cost;
937 else
938 old_cost = 0;
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject = old_cost > 0 && new_cost > old_cost;
945 if (dump_file)
947 fprintf (dump_file, "%s combination of insns ",
948 reject ? "rejecting" : "allowing");
949 if (i0)
950 fprintf (dump_file, "%d, ", INSN_UID (i0));
951 if (i1 && INSN_UID (i1) != INSN_UID (i2))
952 fprintf (dump_file, "%d, ", INSN_UID (i1));
953 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
955 fprintf (dump_file, "original costs ");
956 if (i0)
957 fprintf (dump_file, "%d + ", i0_cost);
958 if (i1 && INSN_UID (i1) != INSN_UID (i2))
959 fprintf (dump_file, "%d + ", i1_cost);
960 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
962 if (newi2pat)
963 fprintf (dump_file, "replacement costs %d + %d = %d\n",
964 new_i2_cost, new_i3_cost, new_cost);
965 else
966 fprintf (dump_file, "replacement cost %d\n", new_cost);
969 if (reject)
970 return false;
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2) = new_i2_cost;
974 INSN_COST (i3) = new_i3_cost;
975 if (i1)
977 INSN_COST (i1) = 0;
978 if (i0)
979 INSN_COST (i0) = 0;
982 return true;
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
989 static bool
990 delete_noop_moves (void)
992 rtx_insn *insn, *next;
993 basic_block bb;
995 bool edges_deleted = false;
997 FOR_EACH_BB_FN (bb, cfun)
999 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1001 next = NEXT_INSN (insn);
1002 if (INSN_P (insn) && noop_move_p (insn))
1004 if (dump_file)
1005 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1007 edges_deleted |= delete_insn_and_edges (insn);
1012 return edges_deleted;
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1024 unsigned int regno = DF_REF_REGNO (def);
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1034 return false;
1036 return true;
1039 /* Return false if we do not want to (or cannot) combine USE. */
1040 static bool
1041 can_combine_use_p (df_ref use)
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1045 return false;
1047 return true;
1050 /* Fill in log links field for all insns. */
1052 static void
1053 create_log_links (void)
1055 basic_block bb;
1056 rtx_insn **next_use;
1057 rtx_insn *insn;
1058 df_ref def, use;
1060 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1071 FOR_EACH_BB_FN (bb, cfun)
1073 FOR_BB_INSNS_REVERSE (bb, insn)
1075 if (!NONDEBUG_INSN_P (insn))
1076 continue;
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn));
1081 FOR_EACH_INSN_DEF (def, insn)
1083 unsigned int regno = DF_REF_REGNO (def);
1084 rtx_insn *use_insn;
1086 if (!next_use[regno])
1087 continue;
1089 if (!can_combine_def_p (def))
1090 continue;
1092 use_insn = next_use[regno];
1093 next_use[regno] = NULL;
1095 if (BLOCK_FOR_INSN (use_insn) != bb)
1096 continue;
1098 /* flow.c claimed:
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno < FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn)) >= 0)
1107 continue;
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link *links;
1111 FOR_EACH_LOG_LINK (links, use_insn)
1112 if (insn == links->insn && regno == links->regno)
1113 break;
1115 if (!links)
1116 LOG_LINKS (use_insn)
1117 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1120 FOR_EACH_INSN_USE (use, insn)
1121 if (can_combine_use_p (use))
1122 next_use[DF_REF_REGNO (use)] = insn;
1126 free (next_use);
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1134 pair. */
1136 static bool
1137 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1139 struct insn_link *links;
1140 FOR_EACH_LOG_LINK (links, b)
1141 if (links->insn == a)
1142 return true;
1143 if (HAVE_cc0 && sets_cc0_p (a))
1144 return true;
1145 return false;
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1153 static int
1154 combine_instructions (rtx_insn *f, unsigned int nregs)
1156 rtx_insn *insn, *next;
1157 rtx_insn *prev;
1158 struct insn_link *links, *nextlinks;
1159 rtx_insn *first;
1160 basic_block last_bb;
1162 int new_direct_jump_p = 0;
1164 for (first = f; first && !NONDEBUG_INSN_P (first); )
1165 first = NEXT_INSN (first);
1166 if (!first)
1167 return 0;
1169 combine_attempts = 0;
1170 combine_merges = 0;
1171 combine_extras = 0;
1172 combine_successes = 0;
1174 rtl_hooks = combine_rtl_hooks;
1176 reg_stat.safe_grow_cleared (nregs);
1178 init_recog_no_volatile ();
1180 /* Allocate array for insn info. */
1181 max_uid_known = get_max_uid ();
1182 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1183 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1184 gcc_obstack_init (&insn_link_obstack);
1186 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1191 nonzero_sign_valid = 0;
1192 label_tick = label_tick_ebb_start = 1;
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1201 setup_incoming_promotions (first);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block, cfun)
1209 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1210 last_call_luid = 0;
1211 mem_last_set = -1;
1213 label_tick++;
1214 if (!single_pred_p (this_basic_block)
1215 || single_pred (this_basic_block) != last_bb)
1216 label_tick_ebb_start = label_tick;
1217 last_bb = this_basic_block;
1219 FOR_BB_INSNS (this_basic_block, insn)
1220 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1222 rtx links;
1224 subst_low_luid = DF_INSN_LUID (insn);
1225 subst_insn = insn;
1227 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1228 insn);
1229 record_dead_and_set_regs (insn);
1231 if (AUTO_INC_DEC)
1232 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1233 if (REG_NOTE_KIND (links) == REG_INC)
1234 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1235 insn);
1237 /* Record the current insn_cost of this instruction. */
1238 if (NONJUMP_INSN_P (insn))
1239 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1240 if (dump_file)
1242 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1243 dump_insn_slim (dump_file, insn);
1248 nonzero_sign_valid = 1;
1250 /* Now scan all the insns in forward order. */
1251 label_tick = label_tick_ebb_start = 1;
1252 init_reg_last ();
1253 setup_incoming_promotions (first);
1254 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1255 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1257 FOR_EACH_BB_FN (this_basic_block, cfun)
1259 rtx_insn *last_combined_insn = NULL;
1261 /* Ignore instruction combination in basic blocks that are going to
1262 be removed as unreachable anyway. See PR82386. */
1263 if (EDGE_COUNT (this_basic_block->preds) == 0)
1264 continue;
1266 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1267 last_call_luid = 0;
1268 mem_last_set = -1;
1270 label_tick++;
1271 if (!single_pred_p (this_basic_block)
1272 || single_pred (this_basic_block) != last_bb)
1273 label_tick_ebb_start = label_tick;
1274 last_bb = this_basic_block;
1276 rtl_profile_for_bb (this_basic_block);
1277 for (insn = BB_HEAD (this_basic_block);
1278 insn != NEXT_INSN (BB_END (this_basic_block));
1279 insn = next ? next : NEXT_INSN (insn))
1281 next = 0;
1282 if (!NONDEBUG_INSN_P (insn))
1283 continue;
1285 while (last_combined_insn
1286 && (!NONDEBUG_INSN_P (last_combined_insn)
1287 || last_combined_insn->deleted ()))
1288 last_combined_insn = PREV_INSN (last_combined_insn);
1289 if (last_combined_insn == NULL_RTX
1290 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1291 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1292 last_combined_insn = insn;
1294 /* See if we know about function return values before this
1295 insn based upon SUBREG flags. */
1296 check_promoted_subreg (insn, PATTERN (insn));
1298 /* See if we can find hardregs and subreg of pseudos in
1299 narrower modes. This could help turning TRUNCATEs
1300 into SUBREGs. */
1301 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1303 /* Try this insn with each insn it links back to. */
1305 FOR_EACH_LOG_LINK (links, insn)
1306 if ((next = try_combine (insn, links->insn, NULL,
1307 NULL, &new_direct_jump_p,
1308 last_combined_insn)) != 0)
1310 statistics_counter_event (cfun, "two-insn combine", 1);
1311 goto retry;
1314 /* Try each sequence of three linked insns ending with this one. */
1316 if (max_combine >= 3)
1317 FOR_EACH_LOG_LINK (links, insn)
1319 rtx_insn *link = links->insn;
1321 /* If the linked insn has been replaced by a note, then there
1322 is no point in pursuing this chain any further. */
1323 if (NOTE_P (link))
1324 continue;
1326 FOR_EACH_LOG_LINK (nextlinks, link)
1327 if ((next = try_combine (insn, link, nextlinks->insn,
1328 NULL, &new_direct_jump_p,
1329 last_combined_insn)) != 0)
1331 statistics_counter_event (cfun, "three-insn combine", 1);
1332 goto retry;
1336 /* Try to combine a jump insn that uses CC0
1337 with a preceding insn that sets CC0, and maybe with its
1338 logical predecessor as well.
1339 This is how we make decrement-and-branch insns.
1340 We need this special code because data flow connections
1341 via CC0 do not get entered in LOG_LINKS. */
1343 if (HAVE_cc0
1344 && JUMP_P (insn)
1345 && (prev = prev_nonnote_insn (insn)) != 0
1346 && NONJUMP_INSN_P (prev)
1347 && sets_cc0_p (PATTERN (prev)))
1349 if ((next = try_combine (insn, prev, NULL, NULL,
1350 &new_direct_jump_p,
1351 last_combined_insn)) != 0)
1352 goto retry;
1354 FOR_EACH_LOG_LINK (nextlinks, prev)
1355 if ((next = try_combine (insn, prev, nextlinks->insn,
1356 NULL, &new_direct_jump_p,
1357 last_combined_insn)) != 0)
1358 goto retry;
1361 /* Do the same for an insn that explicitly references CC0. */
1362 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1363 && (prev = prev_nonnote_insn (insn)) != 0
1364 && NONJUMP_INSN_P (prev)
1365 && sets_cc0_p (PATTERN (prev))
1366 && GET_CODE (PATTERN (insn)) == SET
1367 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1369 if ((next = try_combine (insn, prev, NULL, NULL,
1370 &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1374 FOR_EACH_LOG_LINK (nextlinks, prev)
1375 if ((next = try_combine (insn, prev, nextlinks->insn,
1376 NULL, &new_direct_jump_p,
1377 last_combined_insn)) != 0)
1378 goto retry;
1381 /* Finally, see if any of the insns that this insn links to
1382 explicitly references CC0. If so, try this insn, that insn,
1383 and its predecessor if it sets CC0. */
1384 if (HAVE_cc0)
1386 FOR_EACH_LOG_LINK (links, insn)
1387 if (NONJUMP_INSN_P (links->insn)
1388 && GET_CODE (PATTERN (links->insn)) == SET
1389 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1390 && (prev = prev_nonnote_insn (links->insn)) != 0
1391 && NONJUMP_INSN_P (prev)
1392 && sets_cc0_p (PATTERN (prev))
1393 && (next = try_combine (insn, links->insn,
1394 prev, NULL, &new_direct_jump_p,
1395 last_combined_insn)) != 0)
1396 goto retry;
1399 /* Try combining an insn with two different insns whose results it
1400 uses. */
1401 if (max_combine >= 3)
1402 FOR_EACH_LOG_LINK (links, insn)
1403 for (nextlinks = links->next; nextlinks;
1404 nextlinks = nextlinks->next)
1405 if ((next = try_combine (insn, links->insn,
1406 nextlinks->insn, NULL,
1407 &new_direct_jump_p,
1408 last_combined_insn)) != 0)
1411 statistics_counter_event (cfun, "three-insn combine", 1);
1412 goto retry;
1415 /* Try four-instruction combinations. */
1416 if (max_combine >= 4)
1417 FOR_EACH_LOG_LINK (links, insn)
1419 struct insn_link *next1;
1420 rtx_insn *link = links->insn;
1422 /* If the linked insn has been replaced by a note, then there
1423 is no point in pursuing this chain any further. */
1424 if (NOTE_P (link))
1425 continue;
1427 FOR_EACH_LOG_LINK (next1, link)
1429 rtx_insn *link1 = next1->insn;
1430 if (NOTE_P (link1))
1431 continue;
1432 /* I0 -> I1 -> I2 -> I3. */
1433 FOR_EACH_LOG_LINK (nextlinks, link1)
1434 if ((next = try_combine (insn, link, link1,
1435 nextlinks->insn,
1436 &new_direct_jump_p,
1437 last_combined_insn)) != 0)
1439 statistics_counter_event (cfun, "four-insn combine", 1);
1440 goto retry;
1442 /* I0, I1 -> I2, I2 -> I3. */
1443 for (nextlinks = next1->next; nextlinks;
1444 nextlinks = nextlinks->next)
1445 if ((next = try_combine (insn, link, link1,
1446 nextlinks->insn,
1447 &new_direct_jump_p,
1448 last_combined_insn)) != 0)
1450 statistics_counter_event (cfun, "four-insn combine", 1);
1451 goto retry;
1455 for (next1 = links->next; next1; next1 = next1->next)
1457 rtx_insn *link1 = next1->insn;
1458 if (NOTE_P (link1))
1459 continue;
1460 /* I0 -> I2; I1, I2 -> I3. */
1461 FOR_EACH_LOG_LINK (nextlinks, link)
1462 if ((next = try_combine (insn, link, link1,
1463 nextlinks->insn,
1464 &new_direct_jump_p,
1465 last_combined_insn)) != 0)
1467 statistics_counter_event (cfun, "four-insn combine", 1);
1468 goto retry;
1470 /* I0 -> I1; I1, I2 -> I3. */
1471 FOR_EACH_LOG_LINK (nextlinks, link1)
1472 if ((next = try_combine (insn, link, link1,
1473 nextlinks->insn,
1474 &new_direct_jump_p,
1475 last_combined_insn)) != 0)
1477 statistics_counter_event (cfun, "four-insn combine", 1);
1478 goto retry;
1483 /* Try this insn with each REG_EQUAL note it links back to. */
1484 FOR_EACH_LOG_LINK (links, insn)
1486 rtx set, note;
1487 rtx_insn *temp = links->insn;
1488 if ((set = single_set (temp)) != 0
1489 && (note = find_reg_equal_equiv_note (temp)) != 0
1490 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1491 /* Avoid using a register that may already been marked
1492 dead by an earlier instruction. */
1493 && ! unmentioned_reg_p (note, SET_SRC (set))
1494 && (GET_MODE (note) == VOIDmode
1495 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1496 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1497 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1498 || (GET_MODE (XEXP (SET_DEST (set), 0))
1499 == GET_MODE (note))))))
1501 /* Temporarily replace the set's source with the
1502 contents of the REG_EQUAL note. The insn will
1503 be deleted or recognized by try_combine. */
1504 rtx orig_src = SET_SRC (set);
1505 rtx orig_dest = SET_DEST (set);
1506 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1507 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1508 SET_SRC (set) = note;
1509 i2mod = temp;
1510 i2mod_old_rhs = copy_rtx (orig_src);
1511 i2mod_new_rhs = copy_rtx (note);
1512 next = try_combine (insn, i2mod, NULL, NULL,
1513 &new_direct_jump_p,
1514 last_combined_insn);
1515 i2mod = NULL;
1516 if (next)
1518 statistics_counter_event (cfun, "insn-with-note combine", 1);
1519 goto retry;
1521 SET_SRC (set) = orig_src;
1522 SET_DEST (set) = orig_dest;
1526 if (!NOTE_P (insn))
1527 record_dead_and_set_regs (insn);
1529 retry:
1534 default_rtl_profile ();
1535 clear_bb_flags ();
1536 new_direct_jump_p |= purge_all_dead_edges ();
1537 new_direct_jump_p |= delete_noop_moves ();
1539 /* Clean up. */
1540 obstack_free (&insn_link_obstack, NULL);
1541 free (uid_log_links);
1542 free (uid_insn_cost);
1543 reg_stat.release ();
1546 struct undo *undo, *next;
1547 for (undo = undobuf.frees; undo; undo = next)
1549 next = undo->next;
1550 free (undo);
1552 undobuf.frees = 0;
1555 total_attempts += combine_attempts;
1556 total_merges += combine_merges;
1557 total_extras += combine_extras;
1558 total_successes += combine_successes;
1560 nonzero_sign_valid = 0;
1561 rtl_hooks = general_rtl_hooks;
1563 /* Make recognizer allow volatile MEMs again. */
1564 init_recog ();
1566 return new_direct_jump_p;
1569 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1571 static void
1572 init_reg_last (void)
1574 unsigned int i;
1575 reg_stat_type *p;
1577 FOR_EACH_VEC_ELT (reg_stat, i, p)
1578 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1581 /* Set up any promoted values for incoming argument registers. */
1583 static void
1584 setup_incoming_promotions (rtx_insn *first)
1586 tree arg;
1587 bool strictly_local = false;
1589 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1590 arg = DECL_CHAIN (arg))
1592 rtx x, reg = DECL_INCOMING_RTL (arg);
1593 int uns1, uns3;
1594 machine_mode mode1, mode2, mode3, mode4;
1596 /* Only continue if the incoming argument is in a register. */
1597 if (!REG_P (reg))
1598 continue;
1600 /* Determine, if possible, whether all call sites of the current
1601 function lie within the current compilation unit. (This does
1602 take into account the exporting of a function via taking its
1603 address, and so forth.) */
1604 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1606 /* The mode and signedness of the argument before any promotions happen
1607 (equal to the mode of the pseudo holding it at that stage). */
1608 mode1 = TYPE_MODE (TREE_TYPE (arg));
1609 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1611 /* The mode and signedness of the argument after any source language and
1612 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1613 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1614 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1616 /* The mode and signedness of the argument as it is actually passed,
1617 see assign_parm_setup_reg in function.c. */
1618 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1619 TREE_TYPE (cfun->decl), 0);
1621 /* The mode of the register in which the argument is being passed. */
1622 mode4 = GET_MODE (reg);
1624 /* Eliminate sign extensions in the callee when:
1625 (a) A mode promotion has occurred; */
1626 if (mode1 == mode3)
1627 continue;
1628 /* (b) The mode of the register is the same as the mode of
1629 the argument as it is passed; */
1630 if (mode3 != mode4)
1631 continue;
1632 /* (c) There's no language level extension; */
1633 if (mode1 == mode2)
1635 /* (c.1) All callers are from the current compilation unit. If that's
1636 the case we don't have to rely on an ABI, we only have to know
1637 what we're generating right now, and we know that we will do the
1638 mode1 to mode2 promotion with the given sign. */
1639 else if (!strictly_local)
1640 continue;
1641 /* (c.2) The combination of the two promotions is useful. This is
1642 true when the signs match, or if the first promotion is unsigned.
1643 In the later case, (sign_extend (zero_extend x)) is the same as
1644 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1645 else if (uns1)
1646 uns3 = true;
1647 else if (uns3)
1648 continue;
1650 /* Record that the value was promoted from mode1 to mode3,
1651 so that any sign extension at the head of the current
1652 function may be eliminated. */
1653 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1654 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1655 record_value_for_reg (reg, first, x);
1659 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1660 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1661 because some machines (maybe most) will actually do the sign-extension and
1662 this is the conservative approach.
1664 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1665 kludge. */
1667 static rtx
1668 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1670 scalar_int_mode int_mode;
1671 if (CONST_INT_P (src)
1672 && is_a <scalar_int_mode> (mode, &int_mode)
1673 && GET_MODE_PRECISION (int_mode) < prec
1674 && INTVAL (src) > 0
1675 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1676 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1678 return src;
1681 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1682 and SET. */
1684 static void
1685 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1686 rtx x)
1688 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1689 unsigned HOST_WIDE_INT bits = 0;
1690 rtx reg_equal = NULL, src = SET_SRC (set);
1691 unsigned int num = 0;
1693 if (reg_equal_note)
1694 reg_equal = XEXP (reg_equal_note, 0);
1696 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1698 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1699 if (reg_equal)
1700 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1703 /* Don't call nonzero_bits if it cannot change anything. */
1704 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1706 machine_mode mode = GET_MODE (x);
1707 if (GET_MODE_CLASS (mode) == MODE_INT
1708 && HWI_COMPUTABLE_MODE_P (mode))
1709 mode = nonzero_bits_mode;
1710 bits = nonzero_bits (src, mode);
1711 if (reg_equal && bits)
1712 bits &= nonzero_bits (reg_equal, mode);
1713 rsp->nonzero_bits |= bits;
1716 /* Don't call num_sign_bit_copies if it cannot change anything. */
1717 if (rsp->sign_bit_copies != 1)
1719 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1720 if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
1722 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1723 if (num == 0 || numeq > num)
1724 num = numeq;
1726 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1727 rsp->sign_bit_copies = num;
1731 /* Called via note_stores. If X is a pseudo that is narrower than
1732 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1734 If we are setting only a portion of X and we can't figure out what
1735 portion, assume all bits will be used since we don't know what will
1736 be happening.
1738 Similarly, set how many bits of X are known to be copies of the sign bit
1739 at all locations in the function. This is the smallest number implied
1740 by any set of X. */
1742 static void
1743 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1745 rtx_insn *insn = (rtx_insn *) data;
1746 scalar_int_mode mode;
1748 if (REG_P (x)
1749 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1750 /* If this register is undefined at the start of the file, we can't
1751 say what its contents were. */
1752 && ! REGNO_REG_SET_P
1753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1754 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1755 && HWI_COMPUTABLE_MODE_P (mode))
1757 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1759 if (set == 0 || GET_CODE (set) == CLOBBER)
1761 rsp->nonzero_bits = GET_MODE_MASK (mode);
1762 rsp->sign_bit_copies = 1;
1763 return;
1766 /* Should not happen as we only using pseduo registers. */
1767 gcc_assert (GET_CODE (set) != CLOBBER_HIGH);
1769 /* If this register is being initialized using itself, and the
1770 register is uninitialized in this basic block, and there are
1771 no LOG_LINKS which set the register, then part of the
1772 register is uninitialized. In that case we can't assume
1773 anything about the number of nonzero bits.
1775 ??? We could do better if we checked this in
1776 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1777 could avoid making assumptions about the insn which initially
1778 sets the register, while still using the information in other
1779 insns. We would have to be careful to check every insn
1780 involved in the combination. */
1782 if (insn
1783 && reg_referenced_p (x, PATTERN (insn))
1784 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1785 REGNO (x)))
1787 struct insn_link *link;
1789 FOR_EACH_LOG_LINK (link, insn)
1790 if (dead_or_set_p (link->insn, x))
1791 break;
1792 if (!link)
1794 rsp->nonzero_bits = GET_MODE_MASK (mode);
1795 rsp->sign_bit_copies = 1;
1796 return;
1800 /* If this is a complex assignment, see if we can convert it into a
1801 simple assignment. */
1802 set = expand_field_assignment (set);
1804 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1805 set what we know about X. */
1807 if (SET_DEST (set) == x
1808 || (paradoxical_subreg_p (SET_DEST (set))
1809 && SUBREG_REG (SET_DEST (set)) == x))
1810 update_rsp_from_reg_equal (rsp, insn, set, x);
1811 else
1813 rsp->nonzero_bits = GET_MODE_MASK (mode);
1814 rsp->sign_bit_copies = 1;
1819 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1820 optionally insns that were previously combined into I3 or that will be
1821 combined into the merger of INSN and I3. The order is PRED, PRED2,
1822 INSN, SUCC, SUCC2, I3.
1824 Return 0 if the combination is not allowed for any reason.
1826 If the combination is allowed, *PDEST will be set to the single
1827 destination of INSN and *PSRC to the single source, and this function
1828 will return 1. */
1830 static int
1831 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1832 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1833 rtx *pdest, rtx *psrc)
1835 int i;
1836 const_rtx set = 0;
1837 rtx src, dest;
1838 rtx_insn *p;
1839 rtx link;
1840 bool all_adjacent = true;
1841 int (*is_volatile_p) (const_rtx);
1843 if (succ)
1845 if (succ2)
1847 if (next_active_insn (succ2) != i3)
1848 all_adjacent = false;
1849 if (next_active_insn (succ) != succ2)
1850 all_adjacent = false;
1852 else if (next_active_insn (succ) != i3)
1853 all_adjacent = false;
1854 if (next_active_insn (insn) != succ)
1855 all_adjacent = false;
1857 else if (next_active_insn (insn) != i3)
1858 all_adjacent = false;
1860 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1861 or a PARALLEL consisting of such a SET and CLOBBERs.
1863 If INSN has CLOBBER parallel parts, ignore them for our processing.
1864 By definition, these happen during the execution of the insn. When it
1865 is merged with another insn, all bets are off. If they are, in fact,
1866 needed and aren't also supplied in I3, they may be added by
1867 recog_for_combine. Otherwise, it won't match.
1869 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1870 note.
1872 Get the source and destination of INSN. If more than one, can't
1873 combine. */
1875 if (GET_CODE (PATTERN (insn)) == SET)
1876 set = PATTERN (insn);
1877 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1878 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1880 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1882 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1884 switch (GET_CODE (elt))
1886 /* This is important to combine floating point insns
1887 for the SH4 port. */
1888 case USE:
1889 /* Combining an isolated USE doesn't make sense.
1890 We depend here on combinable_i3pat to reject them. */
1891 /* The code below this loop only verifies that the inputs of
1892 the SET in INSN do not change. We call reg_set_between_p
1893 to verify that the REG in the USE does not change between
1894 I3 and INSN.
1895 If the USE in INSN was for a pseudo register, the matching
1896 insn pattern will likely match any register; combining this
1897 with any other USE would only be safe if we knew that the
1898 used registers have identical values, or if there was
1899 something to tell them apart, e.g. different modes. For
1900 now, we forgo such complicated tests and simply disallow
1901 combining of USES of pseudo registers with any other USE. */
1902 if (REG_P (XEXP (elt, 0))
1903 && GET_CODE (PATTERN (i3)) == PARALLEL)
1905 rtx i3pat = PATTERN (i3);
1906 int i = XVECLEN (i3pat, 0) - 1;
1907 unsigned int regno = REGNO (XEXP (elt, 0));
1911 rtx i3elt = XVECEXP (i3pat, 0, i);
1913 if (GET_CODE (i3elt) == USE
1914 && REG_P (XEXP (i3elt, 0))
1915 && (REGNO (XEXP (i3elt, 0)) == regno
1916 ? reg_set_between_p (XEXP (elt, 0),
1917 PREV_INSN (insn), i3)
1918 : regno >= FIRST_PSEUDO_REGISTER))
1919 return 0;
1921 while (--i >= 0);
1923 break;
1925 /* We can ignore CLOBBERs. */
1926 case CLOBBER:
1927 case CLOBBER_HIGH:
1928 break;
1930 case SET:
1931 /* Ignore SETs whose result isn't used but not those that
1932 have side-effects. */
1933 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1934 && insn_nothrow_p (insn)
1935 && !side_effects_p (elt))
1936 break;
1938 /* If we have already found a SET, this is a second one and
1939 so we cannot combine with this insn. */
1940 if (set)
1941 return 0;
1943 set = elt;
1944 break;
1946 default:
1947 /* Anything else means we can't combine. */
1948 return 0;
1952 if (set == 0
1953 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1954 so don't do anything with it. */
1955 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1956 return 0;
1958 else
1959 return 0;
1961 if (set == 0)
1962 return 0;
1964 /* The simplification in expand_field_assignment may call back to
1965 get_last_value, so set safe guard here. */
1966 subst_low_luid = DF_INSN_LUID (insn);
1968 set = expand_field_assignment (set);
1969 src = SET_SRC (set), dest = SET_DEST (set);
1971 /* Do not eliminate user-specified register if it is in an
1972 asm input because we may break the register asm usage defined
1973 in GCC manual if allow to do so.
1974 Be aware that this may cover more cases than we expect but this
1975 should be harmless. */
1976 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1977 && extract_asm_operands (PATTERN (i3)))
1978 return 0;
1980 /* Don't eliminate a store in the stack pointer. */
1981 if (dest == stack_pointer_rtx
1982 /* Don't combine with an insn that sets a register to itself if it has
1983 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1984 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1985 /* Can't merge an ASM_OPERANDS. */
1986 || GET_CODE (src) == ASM_OPERANDS
1987 /* Can't merge a function call. */
1988 || GET_CODE (src) == CALL
1989 /* Don't eliminate a function call argument. */
1990 || (CALL_P (i3)
1991 && (find_reg_fusage (i3, USE, dest)
1992 || (REG_P (dest)
1993 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1994 && global_regs[REGNO (dest)])))
1995 /* Don't substitute into an incremented register. */
1996 || FIND_REG_INC_NOTE (i3, dest)
1997 || (succ && FIND_REG_INC_NOTE (succ, dest))
1998 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1999 /* Don't substitute into a non-local goto, this confuses CFG. */
2000 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
2001 /* Make sure that DEST is not used after INSN but before SUCC, or
2002 after SUCC and before SUCC2, or after SUCC2 but before I3. */
2003 || (!all_adjacent
2004 && ((succ2
2005 && (reg_used_between_p (dest, succ2, i3)
2006 || reg_used_between_p (dest, succ, succ2)))
2007 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
2008 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
2009 || (succ
2010 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2011 that case SUCC is not in the insn stream, so use SUCC2
2012 instead for this test. */
2013 && reg_used_between_p (dest, insn,
2014 succ2
2015 && INSN_UID (succ) == INSN_UID (succ2)
2016 ? succ2 : succ))))
2017 /* Make sure that the value that is to be substituted for the register
2018 does not use any registers whose values alter in between. However,
2019 If the insns are adjacent, a use can't cross a set even though we
2020 think it might (this can happen for a sequence of insns each setting
2021 the same destination; last_set of that register might point to
2022 a NOTE). If INSN has a REG_EQUIV note, the register is always
2023 equivalent to the memory so the substitution is valid even if there
2024 are intervening stores. Also, don't move a volatile asm or
2025 UNSPEC_VOLATILE across any other insns. */
2026 || (! all_adjacent
2027 && (((!MEM_P (src)
2028 || ! find_reg_note (insn, REG_EQUIV, src))
2029 && modified_between_p (src, insn, i3))
2030 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2031 || GET_CODE (src) == UNSPEC_VOLATILE))
2032 /* Don't combine across a CALL_INSN, because that would possibly
2033 change whether the life span of some REGs crosses calls or not,
2034 and it is a pain to update that information.
2035 Exception: if source is a constant, moving it later can't hurt.
2036 Accept that as a special case. */
2037 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2038 return 0;
2040 /* DEST must either be a REG or CC0. */
2041 if (REG_P (dest))
2043 /* If register alignment is being enforced for multi-word items in all
2044 cases except for parameters, it is possible to have a register copy
2045 insn referencing a hard register that is not allowed to contain the
2046 mode being copied and which would not be valid as an operand of most
2047 insns. Eliminate this problem by not combining with such an insn.
2049 Also, on some machines we don't want to extend the life of a hard
2050 register. */
2052 if (REG_P (src)
2053 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2054 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2055 /* Don't extend the life of a hard register unless it is
2056 user variable (if we have few registers) or it can't
2057 fit into the desired register (meaning something special
2058 is going on).
2059 Also avoid substituting a return register into I3, because
2060 reload can't handle a conflict with constraints of other
2061 inputs. */
2062 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2063 && !targetm.hard_regno_mode_ok (REGNO (src),
2064 GET_MODE (src)))))
2065 return 0;
2067 else if (GET_CODE (dest) != CC0)
2068 return 0;
2071 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2072 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2073 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2075 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2077 /* If the clobber represents an earlyclobber operand, we must not
2078 substitute an expression containing the clobbered register.
2079 As we do not analyze the constraint strings here, we have to
2080 make the conservative assumption. However, if the register is
2081 a fixed hard reg, the clobber cannot represent any operand;
2082 we leave it up to the machine description to either accept or
2083 reject use-and-clobber patterns. */
2084 if (!REG_P (reg)
2085 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2086 || !fixed_regs[REGNO (reg)])
2087 if (reg_overlap_mentioned_p (reg, src))
2088 return 0;
2091 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2092 or not), reject, unless nothing volatile comes between it and I3 */
2094 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2096 /* Make sure neither succ nor succ2 contains a volatile reference. */
2097 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2098 return 0;
2099 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2100 return 0;
2101 /* We'll check insns between INSN and I3 below. */
2104 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2105 to be an explicit register variable, and was chosen for a reason. */
2107 if (GET_CODE (src) == ASM_OPERANDS
2108 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2109 return 0;
2111 /* If INSN contains volatile references (specifically volatile MEMs),
2112 we cannot combine across any other volatile references.
2113 Even if INSN doesn't contain volatile references, any intervening
2114 volatile insn might affect machine state. */
2116 is_volatile_p = volatile_refs_p (PATTERN (insn))
2117 ? volatile_refs_p
2118 : volatile_insn_p;
2120 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2121 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2122 return 0;
2124 /* If INSN contains an autoincrement or autodecrement, make sure that
2125 register is not used between there and I3, and not already used in
2126 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2127 Also insist that I3 not be a jump; if it were one
2128 and the incremented register were spilled, we would lose. */
2130 if (AUTO_INC_DEC)
2131 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2132 if (REG_NOTE_KIND (link) == REG_INC
2133 && (JUMP_P (i3)
2134 || reg_used_between_p (XEXP (link, 0), insn, i3)
2135 || (pred != NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2137 || (pred2 != NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2139 || (succ != NULL_RTX
2140 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2141 || (succ2 != NULL_RTX
2142 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2143 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2144 return 0;
2146 /* Don't combine an insn that follows a CC0-setting insn.
2147 An insn that uses CC0 must not be separated from the one that sets it.
2148 We do, however, allow I2 to follow a CC0-setting insn if that insn
2149 is passed as I1; in that case it will be deleted also.
2150 We also allow combining in this case if all the insns are adjacent
2151 because that would leave the two CC0 insns adjacent as well.
2152 It would be more logical to test whether CC0 occurs inside I1 or I2,
2153 but that would be much slower, and this ought to be equivalent. */
2155 if (HAVE_cc0)
2157 p = prev_nonnote_insn (insn);
2158 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2159 && ! all_adjacent)
2160 return 0;
2163 /* If we get here, we have passed all the tests and the combination is
2164 to be allowed. */
2166 *pdest = dest;
2167 *psrc = src;
2169 return 1;
2172 /* LOC is the location within I3 that contains its pattern or the component
2173 of a PARALLEL of the pattern. We validate that it is valid for combining.
2175 One problem is if I3 modifies its output, as opposed to replacing it
2176 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2177 doing so would produce an insn that is not equivalent to the original insns.
2179 Consider:
2181 (set (reg:DI 101) (reg:DI 100))
2182 (set (subreg:SI (reg:DI 101) 0) <foo>)
2184 This is NOT equivalent to:
2186 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2187 (set (reg:DI 101) (reg:DI 100))])
2189 Not only does this modify 100 (in which case it might still be valid
2190 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2192 We can also run into a problem if I2 sets a register that I1
2193 uses and I1 gets directly substituted into I3 (not via I2). In that
2194 case, we would be getting the wrong value of I2DEST into I3, so we
2195 must reject the combination. This case occurs when I2 and I1 both
2196 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2197 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2198 of a SET must prevent combination from occurring. The same situation
2199 can occur for I0, in which case I0_NOT_IN_SRC is set.
2201 Before doing the above check, we first try to expand a field assignment
2202 into a set of logical operations.
2204 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2205 we place a register that is both set and used within I3. If more than one
2206 such register is detected, we fail.
2208 Return 1 if the combination is valid, zero otherwise. */
2210 static int
2211 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2212 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2214 rtx x = *loc;
2216 if (GET_CODE (x) == SET)
2218 rtx set = x ;
2219 rtx dest = SET_DEST (set);
2220 rtx src = SET_SRC (set);
2221 rtx inner_dest = dest;
2222 rtx subdest;
2224 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2225 || GET_CODE (inner_dest) == SUBREG
2226 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2227 inner_dest = XEXP (inner_dest, 0);
2229 /* Check for the case where I3 modifies its output, as discussed
2230 above. We don't want to prevent pseudos from being combined
2231 into the address of a MEM, so only prevent the combination if
2232 i1 or i2 set the same MEM. */
2233 if ((inner_dest != dest &&
2234 (!MEM_P (inner_dest)
2235 || rtx_equal_p (i2dest, inner_dest)
2236 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2237 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2238 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2239 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2240 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2242 /* This is the same test done in can_combine_p except we can't test
2243 all_adjacent; we don't have to, since this instruction will stay
2244 in place, thus we are not considering increasing the lifetime of
2245 INNER_DEST.
2247 Also, if this insn sets a function argument, combining it with
2248 something that might need a spill could clobber a previous
2249 function argument; the all_adjacent test in can_combine_p also
2250 checks this; here, we do a more specific test for this case. */
2252 || (REG_P (inner_dest)
2253 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2254 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2255 GET_MODE (inner_dest)))
2256 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2257 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2258 return 0;
2260 /* If DEST is used in I3, it is being killed in this insn, so
2261 record that for later. We have to consider paradoxical
2262 subregs here, since they kill the whole register, but we
2263 ignore partial subregs, STRICT_LOW_PART, etc.
2264 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2265 STACK_POINTER_REGNUM, since these are always considered to be
2266 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2267 subdest = dest;
2268 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2269 subdest = SUBREG_REG (subdest);
2270 if (pi3dest_killed
2271 && REG_P (subdest)
2272 && reg_referenced_p (subdest, PATTERN (i3))
2273 && REGNO (subdest) != FRAME_POINTER_REGNUM
2274 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2275 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2276 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2277 || (REGNO (subdest) != ARG_POINTER_REGNUM
2278 || ! fixed_regs [REGNO (subdest)]))
2279 && REGNO (subdest) != STACK_POINTER_REGNUM)
2281 if (*pi3dest_killed)
2282 return 0;
2284 *pi3dest_killed = subdest;
2288 else if (GET_CODE (x) == PARALLEL)
2290 int i;
2292 for (i = 0; i < XVECLEN (x, 0); i++)
2293 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2294 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2295 return 0;
2298 return 1;
2301 /* Return 1 if X is an arithmetic expression that contains a multiplication
2302 and division. We don't count multiplications by powers of two here. */
2304 static int
2305 contains_muldiv (rtx x)
2307 switch (GET_CODE (x))
2309 case MOD: case DIV: case UMOD: case UDIV:
2310 return 1;
2312 case MULT:
2313 return ! (CONST_INT_P (XEXP (x, 1))
2314 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2315 default:
2316 if (BINARY_P (x))
2317 return contains_muldiv (XEXP (x, 0))
2318 || contains_muldiv (XEXP (x, 1));
2320 if (UNARY_P (x))
2321 return contains_muldiv (XEXP (x, 0));
2323 return 0;
2327 /* Determine whether INSN can be used in a combination. Return nonzero if
2328 not. This is used in try_combine to detect early some cases where we
2329 can't perform combinations. */
2331 static int
2332 cant_combine_insn_p (rtx_insn *insn)
2334 rtx set;
2335 rtx src, dest;
2337 /* If this isn't really an insn, we can't do anything.
2338 This can occur when flow deletes an insn that it has merged into an
2339 auto-increment address. */
2340 if (!NONDEBUG_INSN_P (insn))
2341 return 1;
2343 /* Never combine loads and stores involving hard regs that are likely
2344 to be spilled. The register allocator can usually handle such
2345 reg-reg moves by tying. If we allow the combiner to make
2346 substitutions of likely-spilled regs, reload might die.
2347 As an exception, we allow combinations involving fixed regs; these are
2348 not available to the register allocator so there's no risk involved. */
2350 set = single_set (insn);
2351 if (! set)
2352 return 0;
2353 src = SET_SRC (set);
2354 dest = SET_DEST (set);
2355 if (GET_CODE (src) == SUBREG)
2356 src = SUBREG_REG (src);
2357 if (GET_CODE (dest) == SUBREG)
2358 dest = SUBREG_REG (dest);
2359 if (REG_P (src) && REG_P (dest)
2360 && ((HARD_REGISTER_P (src)
2361 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2362 #ifdef LEAF_REGISTERS
2363 && ! LEAF_REGISTERS [REGNO (src)])
2364 #else
2366 #endif
2367 || (HARD_REGISTER_P (dest)
2368 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2369 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2370 return 1;
2372 return 0;
2375 struct likely_spilled_retval_info
2377 unsigned regno, nregs;
2378 unsigned mask;
2381 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2382 hard registers that are known to be written to / clobbered in full. */
2383 static void
2384 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2386 struct likely_spilled_retval_info *const info =
2387 (struct likely_spilled_retval_info *) data;
2388 unsigned regno, nregs;
2389 unsigned new_mask;
2391 if (!REG_P (XEXP (set, 0)))
2392 return;
2393 regno = REGNO (x);
2394 if (regno >= info->regno + info->nregs)
2395 return;
2396 nregs = REG_NREGS (x);
2397 if (regno + nregs <= info->regno)
2398 return;
2399 new_mask = (2U << (nregs - 1)) - 1;
2400 if (regno < info->regno)
2401 new_mask >>= info->regno - regno;
2402 else
2403 new_mask <<= regno - info->regno;
2404 info->mask &= ~new_mask;
2407 /* Return nonzero iff part of the return value is live during INSN, and
2408 it is likely spilled. This can happen when more than one insn is needed
2409 to copy the return value, e.g. when we consider to combine into the
2410 second copy insn for a complex value. */
2412 static int
2413 likely_spilled_retval_p (rtx_insn *insn)
2415 rtx_insn *use = BB_END (this_basic_block);
2416 rtx reg;
2417 rtx_insn *p;
2418 unsigned regno, nregs;
2419 /* We assume here that no machine mode needs more than
2420 32 hard registers when the value overlaps with a register
2421 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2422 unsigned mask;
2423 struct likely_spilled_retval_info info;
2425 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2426 return 0;
2427 reg = XEXP (PATTERN (use), 0);
2428 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2429 return 0;
2430 regno = REGNO (reg);
2431 nregs = REG_NREGS (reg);
2432 if (nregs == 1)
2433 return 0;
2434 mask = (2U << (nregs - 1)) - 1;
2436 /* Disregard parts of the return value that are set later. */
2437 info.regno = regno;
2438 info.nregs = nregs;
2439 info.mask = mask;
2440 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2441 if (INSN_P (p))
2442 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2443 mask = info.mask;
2445 /* Check if any of the (probably) live return value registers is
2446 likely spilled. */
2447 nregs --;
2450 if ((mask & 1 << nregs)
2451 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2452 return 1;
2453 } while (nregs--);
2454 return 0;
2457 /* Adjust INSN after we made a change to its destination.
2459 Changing the destination can invalidate notes that say something about
2460 the results of the insn and a LOG_LINK pointing to the insn. */
2462 static void
2463 adjust_for_new_dest (rtx_insn *insn)
2465 /* For notes, be conservative and simply remove them. */
2466 remove_reg_equal_equiv_notes (insn);
2468 /* The new insn will have a destination that was previously the destination
2469 of an insn just above it. Call distribute_links to make a LOG_LINK from
2470 the next use of that destination. */
2472 rtx set = single_set (insn);
2473 gcc_assert (set);
2475 rtx reg = SET_DEST (set);
2477 while (GET_CODE (reg) == ZERO_EXTRACT
2478 || GET_CODE (reg) == STRICT_LOW_PART
2479 || GET_CODE (reg) == SUBREG)
2480 reg = XEXP (reg, 0);
2481 gcc_assert (REG_P (reg));
2483 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2485 df_insn_rescan (insn);
2488 /* Return TRUE if combine can reuse reg X in mode MODE.
2489 ADDED_SETS is nonzero if the original set is still required. */
2490 static bool
2491 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2493 unsigned int regno;
2495 if (!REG_P (x))
2496 return false;
2498 /* Don't change between modes with different underlying register sizes,
2499 since this could lead to invalid subregs. */
2500 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2501 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2502 return false;
2504 regno = REGNO (x);
2505 /* Allow hard registers if the new mode is legal, and occupies no more
2506 registers than the old mode. */
2507 if (regno < FIRST_PSEUDO_REGISTER)
2508 return (targetm.hard_regno_mode_ok (regno, mode)
2509 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2511 /* Or a pseudo that is only used once. */
2512 return (regno < reg_n_sets_max
2513 && REG_N_SETS (regno) == 1
2514 && !added_sets
2515 && !REG_USERVAR_P (x));
2519 /* Check whether X, the destination of a set, refers to part of
2520 the register specified by REG. */
2522 static bool
2523 reg_subword_p (rtx x, rtx reg)
2525 /* Check that reg is an integer mode register. */
2526 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2527 return false;
2529 if (GET_CODE (x) == STRICT_LOW_PART
2530 || GET_CODE (x) == ZERO_EXTRACT)
2531 x = XEXP (x, 0);
2533 return GET_CODE (x) == SUBREG
2534 && SUBREG_REG (x) == reg
2535 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2538 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2539 Note that the INSN should be deleted *after* removing dead edges, so
2540 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2541 but not for a (set (pc) (label_ref FOO)). */
2543 static void
2544 update_cfg_for_uncondjump (rtx_insn *insn)
2546 basic_block bb = BLOCK_FOR_INSN (insn);
2547 gcc_assert (BB_END (bb) == insn);
2549 purge_dead_edges (bb);
2551 delete_insn (insn);
2552 if (EDGE_COUNT (bb->succs) == 1)
2554 rtx_insn *insn;
2556 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2558 /* Remove barriers from the footer if there are any. */
2559 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2560 if (BARRIER_P (insn))
2562 if (PREV_INSN (insn))
2563 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2564 else
2565 BB_FOOTER (bb) = NEXT_INSN (insn);
2566 if (NEXT_INSN (insn))
2567 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2569 else if (LABEL_P (insn))
2570 break;
2574 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2575 by an arbitrary number of CLOBBERs. */
2576 static bool
2577 is_parallel_of_n_reg_sets (rtx pat, int n)
2579 if (GET_CODE (pat) != PARALLEL)
2580 return false;
2582 int len = XVECLEN (pat, 0);
2583 if (len < n)
2584 return false;
2586 int i;
2587 for (i = 0; i < n; i++)
2588 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2589 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2590 return false;
2591 for ( ; i < len; i++)
2592 switch (GET_CODE (XVECEXP (pat, 0, i)))
2594 case CLOBBER:
2595 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2596 return false;
2597 break;
2598 case CLOBBER_HIGH:
2599 break;
2600 default:
2601 return false;
2603 return true;
2606 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2607 CLOBBERs), can be split into individual SETs in that order, without
2608 changing semantics. */
2609 static bool
2610 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2612 if (!insn_nothrow_p (insn))
2613 return false;
2615 rtx pat = PATTERN (insn);
2617 int i, j;
2618 for (i = 0; i < n; i++)
2620 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2621 return false;
2623 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2625 for (j = i + 1; j < n; j++)
2626 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2627 return false;
2630 return true;
2633 /* Return whether X is just a single set, with the source
2634 a general_operand. */
2635 static bool
2636 is_just_move (rtx x)
2638 if (INSN_P (x))
2639 x = PATTERN (x);
2641 return (GET_CODE (x) == SET && general_operand (SET_SRC (x), VOIDmode));
2644 /* Try to combine the insns I0, I1 and I2 into I3.
2645 Here I0, I1 and I2 appear earlier than I3.
2646 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2649 If we are combining more than two insns and the resulting insn is not
2650 recognized, try splitting it into two insns. If that happens, I2 and I3
2651 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2652 Otherwise, I0, I1 and I2 are pseudo-deleted.
2654 Return 0 if the combination does not work. Then nothing is changed.
2655 If we did the combination, return the insn at which combine should
2656 resume scanning.
2658 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2659 new direct jump instruction.
2661 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2662 been I3 passed to an earlier try_combine within the same basic
2663 block. */
2665 static rtx_insn *
2666 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2667 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2669 /* New patterns for I3 and I2, respectively. */
2670 rtx newpat, newi2pat = 0;
2671 rtvec newpat_vec_with_clobbers = 0;
2672 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2673 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2674 dead. */
2675 int added_sets_0, added_sets_1, added_sets_2;
2676 /* Total number of SETs to put into I3. */
2677 int total_sets;
2678 /* Nonzero if I2's or I1's body now appears in I3. */
2679 int i2_is_used = 0, i1_is_used = 0;
2680 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2681 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2682 /* Contains I3 if the destination of I3 is used in its source, which means
2683 that the old life of I3 is being killed. If that usage is placed into
2684 I2 and not in I3, a REG_DEAD note must be made. */
2685 rtx i3dest_killed = 0;
2686 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2687 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2688 /* Copy of SET_SRC of I1 and I0, if needed. */
2689 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2690 /* Set if I2DEST was reused as a scratch register. */
2691 bool i2scratch = false;
2692 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2693 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2694 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2695 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2696 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2697 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2698 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2699 /* Notes that must be added to REG_NOTES in I3 and I2. */
2700 rtx new_i3_notes, new_i2_notes;
2701 /* Notes that we substituted I3 into I2 instead of the normal case. */
2702 int i3_subst_into_i2 = 0;
2703 /* Notes that I1, I2 or I3 is a MULT operation. */
2704 int have_mult = 0;
2705 int swap_i2i3 = 0;
2706 int split_i2i3 = 0;
2707 int changed_i3_dest = 0;
2708 bool i2_was_move = false, i3_was_move = false;
2710 int maxreg;
2711 rtx_insn *temp_insn;
2712 rtx temp_expr;
2713 struct insn_link *link;
2714 rtx other_pat = 0;
2715 rtx new_other_notes;
2716 int i;
2717 scalar_int_mode dest_mode, temp_mode;
2719 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2720 never be). */
2721 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2722 return 0;
2724 /* Only try four-insn combinations when there's high likelihood of
2725 success. Look for simple insns, such as loads of constants or
2726 binary operations involving a constant. */
2727 if (i0)
2729 int i;
2730 int ngood = 0;
2731 int nshift = 0;
2732 rtx set0, set3;
2734 if (!flag_expensive_optimizations)
2735 return 0;
2737 for (i = 0; i < 4; i++)
2739 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2740 rtx set = single_set (insn);
2741 rtx src;
2742 if (!set)
2743 continue;
2744 src = SET_SRC (set);
2745 if (CONSTANT_P (src))
2747 ngood += 2;
2748 break;
2750 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2751 ngood++;
2752 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2753 || GET_CODE (src) == LSHIFTRT)
2754 nshift++;
2757 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2758 are likely manipulating its value. Ideally we'll be able to combine
2759 all four insns into a bitfield insertion of some kind.
2761 Note the source in I0 might be inside a sign/zero extension and the
2762 memory modes in I0 and I3 might be different. So extract the address
2763 from the destination of I3 and search for it in the source of I0.
2765 In the event that there's a match but the source/dest do not actually
2766 refer to the same memory, the worst that happens is we try some
2767 combinations that we wouldn't have otherwise. */
2768 if ((set0 = single_set (i0))
2769 /* Ensure the source of SET0 is a MEM, possibly buried inside
2770 an extension. */
2771 && (GET_CODE (SET_SRC (set0)) == MEM
2772 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2773 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2774 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2775 && (set3 = single_set (i3))
2776 /* Ensure the destination of SET3 is a MEM. */
2777 && GET_CODE (SET_DEST (set3)) == MEM
2778 /* Would it be better to extract the base address for the MEM
2779 in SET3 and look for that? I don't have cases where it matters
2780 but I could envision such cases. */
2781 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2782 ngood += 2;
2784 if (ngood < 2 && nshift < 2)
2785 return 0;
2788 /* Exit early if one of the insns involved can't be used for
2789 combinations. */
2790 if (CALL_P (i2)
2791 || (i1 && CALL_P (i1))
2792 || (i0 && CALL_P (i0))
2793 || cant_combine_insn_p (i3)
2794 || cant_combine_insn_p (i2)
2795 || (i1 && cant_combine_insn_p (i1))
2796 || (i0 && cant_combine_insn_p (i0))
2797 || likely_spilled_retval_p (i3))
2798 return 0;
2800 combine_attempts++;
2801 undobuf.other_insn = 0;
2803 /* Reset the hard register usage information. */
2804 CLEAR_HARD_REG_SET (newpat_used_regs);
2806 if (dump_file && (dump_flags & TDF_DETAILS))
2808 if (i0)
2809 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2810 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2811 else if (i1)
2812 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2813 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2814 else
2815 fprintf (dump_file, "\nTrying %d -> %d:\n",
2816 INSN_UID (i2), INSN_UID (i3));
2818 if (i0)
2819 dump_insn_slim (dump_file, i0);
2820 if (i1)
2821 dump_insn_slim (dump_file, i1);
2822 dump_insn_slim (dump_file, i2);
2823 dump_insn_slim (dump_file, i3);
2826 /* If multiple insns feed into one of I2 or I3, they can be in any
2827 order. To simplify the code below, reorder them in sequence. */
2828 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2829 std::swap (i0, i2);
2830 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2831 std::swap (i0, i1);
2832 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2833 std::swap (i1, i2);
2835 added_links_insn = 0;
2836 added_notes_insn = 0;
2838 /* First check for one important special case that the code below will
2839 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2840 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2841 we may be able to replace that destination with the destination of I3.
2842 This occurs in the common code where we compute both a quotient and
2843 remainder into a structure, in which case we want to do the computation
2844 directly into the structure to avoid register-register copies.
2846 Note that this case handles both multiple sets in I2 and also cases
2847 where I2 has a number of CLOBBERs inside the PARALLEL.
2849 We make very conservative checks below and only try to handle the
2850 most common cases of this. For example, we only handle the case
2851 where I2 and I3 are adjacent to avoid making difficult register
2852 usage tests. */
2854 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2855 && REG_P (SET_SRC (PATTERN (i3)))
2856 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2857 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2858 && GET_CODE (PATTERN (i2)) == PARALLEL
2859 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2860 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2861 below would need to check what is inside (and reg_overlap_mentioned_p
2862 doesn't support those codes anyway). Don't allow those destinations;
2863 the resulting insn isn't likely to be recognized anyway. */
2864 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2865 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2866 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2867 SET_DEST (PATTERN (i3)))
2868 && next_active_insn (i2) == i3)
2870 rtx p2 = PATTERN (i2);
2872 /* Make sure that the destination of I3,
2873 which we are going to substitute into one output of I2,
2874 is not used within another output of I2. We must avoid making this:
2875 (parallel [(set (mem (reg 69)) ...)
2876 (set (reg 69) ...)])
2877 which is not well-defined as to order of actions.
2878 (Besides, reload can't handle output reloads for this.)
2880 The problem can also happen if the dest of I3 is a memory ref,
2881 if another dest in I2 is an indirect memory ref.
2883 Neither can this PARALLEL be an asm. We do not allow combining
2884 that usually (see can_combine_p), so do not here either. */
2885 bool ok = true;
2886 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2888 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2889 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER
2890 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER_HIGH)
2891 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2892 SET_DEST (XVECEXP (p2, 0, i))))
2893 ok = false;
2894 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2895 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2896 ok = false;
2899 if (ok)
2900 for (i = 0; i < XVECLEN (p2, 0); i++)
2901 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2902 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2904 combine_merges++;
2906 subst_insn = i3;
2907 subst_low_luid = DF_INSN_LUID (i2);
2909 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2910 i2src = SET_SRC (XVECEXP (p2, 0, i));
2911 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2912 i2dest_killed = dead_or_set_p (i2, i2dest);
2914 /* Replace the dest in I2 with our dest and make the resulting
2915 insn the new pattern for I3. Then skip to where we validate
2916 the pattern. Everything was set up above. */
2917 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2918 newpat = p2;
2919 i3_subst_into_i2 = 1;
2920 goto validate_replacement;
2924 /* If I2 is setting a pseudo to a constant and I3 is setting some
2925 sub-part of it to another constant, merge them by making a new
2926 constant. */
2927 if (i1 == 0
2928 && (temp_expr = single_set (i2)) != 0
2929 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2930 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2931 && GET_CODE (PATTERN (i3)) == SET
2932 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2933 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2935 rtx dest = SET_DEST (PATTERN (i3));
2936 rtx temp_dest = SET_DEST (temp_expr);
2937 int offset = -1;
2938 int width = 0;
2940 if (GET_CODE (dest) == ZERO_EXTRACT)
2942 if (CONST_INT_P (XEXP (dest, 1))
2943 && CONST_INT_P (XEXP (dest, 2))
2944 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2945 &dest_mode))
2947 width = INTVAL (XEXP (dest, 1));
2948 offset = INTVAL (XEXP (dest, 2));
2949 dest = XEXP (dest, 0);
2950 if (BITS_BIG_ENDIAN)
2951 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2954 else
2956 if (GET_CODE (dest) == STRICT_LOW_PART)
2957 dest = XEXP (dest, 0);
2958 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2960 width = GET_MODE_PRECISION (dest_mode);
2961 offset = 0;
2965 if (offset >= 0)
2967 /* If this is the low part, we're done. */
2968 if (subreg_lowpart_p (dest))
2970 /* Handle the case where inner is twice the size of outer. */
2971 else if (GET_MODE_PRECISION (temp_mode)
2972 == 2 * GET_MODE_PRECISION (dest_mode))
2973 offset += GET_MODE_PRECISION (dest_mode);
2974 /* Otherwise give up for now. */
2975 else
2976 offset = -1;
2979 if (offset >= 0)
2981 rtx inner = SET_SRC (PATTERN (i3));
2982 rtx outer = SET_SRC (temp_expr);
2984 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2985 rtx_mode_t (inner, dest_mode),
2986 offset, width);
2988 combine_merges++;
2989 subst_insn = i3;
2990 subst_low_luid = DF_INSN_LUID (i2);
2991 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2992 i2dest = temp_dest;
2993 i2dest_killed = dead_or_set_p (i2, i2dest);
2995 /* Replace the source in I2 with the new constant and make the
2996 resulting insn the new pattern for I3. Then skip to where we
2997 validate the pattern. Everything was set up above. */
2998 SUBST (SET_SRC (temp_expr),
2999 immed_wide_int_const (o, temp_mode));
3001 newpat = PATTERN (i2);
3003 /* The dest of I3 has been replaced with the dest of I2. */
3004 changed_i3_dest = 1;
3005 goto validate_replacement;
3009 /* If we have no I1 and I2 looks like:
3010 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3011 (set Y OP)])
3012 make up a dummy I1 that is
3013 (set Y OP)
3014 and change I2 to be
3015 (set (reg:CC X) (compare:CC Y (const_int 0)))
3017 (We can ignore any trailing CLOBBERs.)
3019 This undoes a previous combination and allows us to match a branch-and-
3020 decrement insn. */
3022 if (!HAVE_cc0 && i1 == 0
3023 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3024 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
3025 == MODE_CC)
3026 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
3027 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
3028 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
3029 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
3030 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3031 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3033 /* We make I1 with the same INSN_UID as I2. This gives it
3034 the same DF_INSN_LUID for value tracking. Our fake I1 will
3035 never appear in the insn stream so giving it the same INSN_UID
3036 as I2 will not cause a problem. */
3038 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3039 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3040 -1, NULL_RTX);
3041 INSN_UID (i1) = INSN_UID (i2);
3043 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3044 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3045 SET_DEST (PATTERN (i1)));
3046 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3047 SUBST_LINK (LOG_LINKS (i2),
3048 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3051 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3052 make those two SETs separate I1 and I2 insns, and make an I0 that is
3053 the original I1. */
3054 if (!HAVE_cc0 && i0 == 0
3055 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3056 && can_split_parallel_of_n_reg_sets (i2, 2)
3057 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3058 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3059 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3060 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
3062 /* If there is no I1, there is no I0 either. */
3063 i0 = i1;
3065 /* We make I1 with the same INSN_UID as I2. This gives it
3066 the same DF_INSN_LUID for value tracking. Our fake I1 will
3067 never appear in the insn stream so giving it the same INSN_UID
3068 as I2 will not cause a problem. */
3070 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3071 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3072 -1, NULL_RTX);
3073 INSN_UID (i1) = INSN_UID (i2);
3075 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3078 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3079 if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
3081 if (dump_file && (dump_flags & TDF_DETAILS))
3082 fprintf (dump_file, "Can't combine i2 into i3\n");
3083 undo_all ();
3084 return 0;
3086 if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
3088 if (dump_file && (dump_flags & TDF_DETAILS))
3089 fprintf (dump_file, "Can't combine i1 into i3\n");
3090 undo_all ();
3091 return 0;
3093 if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
3095 if (dump_file && (dump_flags & TDF_DETAILS))
3096 fprintf (dump_file, "Can't combine i0 into i3\n");
3097 undo_all ();
3098 return 0;
3101 /* Record whether i2 and i3 are trivial moves. */
3102 i2_was_move = is_just_move (i2);
3103 i3_was_move = is_just_move (i3);
3105 /* Record whether I2DEST is used in I2SRC and similarly for the other
3106 cases. Knowing this will help in register status updating below. */
3107 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3108 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3109 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3110 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3111 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3112 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3113 i2dest_killed = dead_or_set_p (i2, i2dest);
3114 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3115 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3117 /* For the earlier insns, determine which of the subsequent ones they
3118 feed. */
3119 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3120 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3121 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3122 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3123 && reg_overlap_mentioned_p (i0dest, i2src))));
3125 /* Ensure that I3's pattern can be the destination of combines. */
3126 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3127 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3128 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3129 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3130 &i3dest_killed))
3132 undo_all ();
3133 return 0;
3136 /* See if any of the insns is a MULT operation. Unless one is, we will
3137 reject a combination that is, since it must be slower. Be conservative
3138 here. */
3139 if (GET_CODE (i2src) == MULT
3140 || (i1 != 0 && GET_CODE (i1src) == MULT)
3141 || (i0 != 0 && GET_CODE (i0src) == MULT)
3142 || (GET_CODE (PATTERN (i3)) == SET
3143 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3144 have_mult = 1;
3146 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3147 We used to do this EXCEPT in one case: I3 has a post-inc in an
3148 output operand. However, that exception can give rise to insns like
3149 mov r3,(r3)+
3150 which is a famous insn on the PDP-11 where the value of r3 used as the
3151 source was model-dependent. Avoid this sort of thing. */
3153 #if 0
3154 if (!(GET_CODE (PATTERN (i3)) == SET
3155 && REG_P (SET_SRC (PATTERN (i3)))
3156 && MEM_P (SET_DEST (PATTERN (i3)))
3157 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3158 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3159 /* It's not the exception. */
3160 #endif
3161 if (AUTO_INC_DEC)
3163 rtx link;
3164 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3165 if (REG_NOTE_KIND (link) == REG_INC
3166 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3167 || (i1 != 0
3168 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3170 undo_all ();
3171 return 0;
3175 /* See if the SETs in I1 or I2 need to be kept around in the merged
3176 instruction: whenever the value set there is still needed past I3.
3177 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3179 For the SET in I1, we have two cases: if I1 and I2 independently feed
3180 into I3, the set in I1 needs to be kept around unless I1DEST dies
3181 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3182 in I1 needs to be kept around unless I1DEST dies or is set in either
3183 I2 or I3. The same considerations apply to I0. */
3185 added_sets_2 = !dead_or_set_p (i3, i2dest);
3187 if (i1)
3188 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3189 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3190 else
3191 added_sets_1 = 0;
3193 if (i0)
3194 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3195 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3196 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3197 && dead_or_set_p (i2, i0dest)));
3198 else
3199 added_sets_0 = 0;
3201 /* We are about to copy insns for the case where they need to be kept
3202 around. Check that they can be copied in the merged instruction. */
3204 if (targetm.cannot_copy_insn_p
3205 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3206 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3207 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3209 undo_all ();
3210 return 0;
3213 /* If the set in I2 needs to be kept around, we must make a copy of
3214 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3215 PATTERN (I2), we are only substituting for the original I1DEST, not into
3216 an already-substituted copy. This also prevents making self-referential
3217 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3218 I2DEST. */
3220 if (added_sets_2)
3222 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3223 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3224 else
3225 i2pat = copy_rtx (PATTERN (i2));
3228 if (added_sets_1)
3230 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3231 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3232 else
3233 i1pat = copy_rtx (PATTERN (i1));
3236 if (added_sets_0)
3238 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3239 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3240 else
3241 i0pat = copy_rtx (PATTERN (i0));
3244 combine_merges++;
3246 /* Substitute in the latest insn for the regs set by the earlier ones. */
3248 maxreg = max_reg_num ();
3250 subst_insn = i3;
3252 /* Many machines that don't use CC0 have insns that can both perform an
3253 arithmetic operation and set the condition code. These operations will
3254 be represented as a PARALLEL with the first element of the vector
3255 being a COMPARE of an arithmetic operation with the constant zero.
3256 The second element of the vector will set some pseudo to the result
3257 of the same arithmetic operation. If we simplify the COMPARE, we won't
3258 match such a pattern and so will generate an extra insn. Here we test
3259 for this case, where both the comparison and the operation result are
3260 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3261 I2SRC. Later we will make the PARALLEL that contains I2. */
3263 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3264 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3265 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3266 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3268 rtx newpat_dest;
3269 rtx *cc_use_loc = NULL;
3270 rtx_insn *cc_use_insn = NULL;
3271 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3272 machine_mode compare_mode, orig_compare_mode;
3273 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3274 scalar_int_mode mode;
3276 newpat = PATTERN (i3);
3277 newpat_dest = SET_DEST (newpat);
3278 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3280 if (undobuf.other_insn == 0
3281 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3282 &cc_use_insn)))
3284 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3285 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3286 compare_code = simplify_compare_const (compare_code, mode,
3287 op0, &op1);
3288 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3291 /* Do the rest only if op1 is const0_rtx, which may be the
3292 result of simplification. */
3293 if (op1 == const0_rtx)
3295 /* If a single use of the CC is found, prepare to modify it
3296 when SELECT_CC_MODE returns a new CC-class mode, or when
3297 the above simplify_compare_const() returned a new comparison
3298 operator. undobuf.other_insn is assigned the CC use insn
3299 when modifying it. */
3300 if (cc_use_loc)
3302 #ifdef SELECT_CC_MODE
3303 machine_mode new_mode
3304 = SELECT_CC_MODE (compare_code, op0, op1);
3305 if (new_mode != orig_compare_mode
3306 && can_change_dest_mode (SET_DEST (newpat),
3307 added_sets_2, new_mode))
3309 unsigned int regno = REGNO (newpat_dest);
3310 compare_mode = new_mode;
3311 if (regno < FIRST_PSEUDO_REGISTER)
3312 newpat_dest = gen_rtx_REG (compare_mode, regno);
3313 else
3315 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3316 newpat_dest = regno_reg_rtx[regno];
3319 #endif
3320 /* Cases for modifying the CC-using comparison. */
3321 if (compare_code != orig_compare_code
3322 /* ??? Do we need to verify the zero rtx? */
3323 && XEXP (*cc_use_loc, 1) == const0_rtx)
3325 /* Replace cc_use_loc with entire new RTX. */
3326 SUBST (*cc_use_loc,
3327 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3328 newpat_dest, const0_rtx));
3329 undobuf.other_insn = cc_use_insn;
3331 else if (compare_mode != orig_compare_mode)
3333 /* Just replace the CC reg with a new mode. */
3334 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3335 undobuf.other_insn = cc_use_insn;
3339 /* Now we modify the current newpat:
3340 First, SET_DEST(newpat) is updated if the CC mode has been
3341 altered. For targets without SELECT_CC_MODE, this should be
3342 optimized away. */
3343 if (compare_mode != orig_compare_mode)
3344 SUBST (SET_DEST (newpat), newpat_dest);
3345 /* This is always done to propagate i2src into newpat. */
3346 SUBST (SET_SRC (newpat),
3347 gen_rtx_COMPARE (compare_mode, op0, op1));
3348 /* Create new version of i2pat if needed; the below PARALLEL
3349 creation needs this to work correctly. */
3350 if (! rtx_equal_p (i2src, op0))
3351 i2pat = gen_rtx_SET (i2dest, op0);
3352 i2_is_used = 1;
3356 if (i2_is_used == 0)
3358 /* It is possible that the source of I2 or I1 may be performing
3359 an unneeded operation, such as a ZERO_EXTEND of something
3360 that is known to have the high part zero. Handle that case
3361 by letting subst look at the inner insns.
3363 Another way to do this would be to have a function that tries
3364 to simplify a single insn instead of merging two or more
3365 insns. We don't do this because of the potential of infinite
3366 loops and because of the potential extra memory required.
3367 However, doing it the way we are is a bit of a kludge and
3368 doesn't catch all cases.
3370 But only do this if -fexpensive-optimizations since it slows
3371 things down and doesn't usually win.
3373 This is not done in the COMPARE case above because the
3374 unmodified I2PAT is used in the PARALLEL and so a pattern
3375 with a modified I2SRC would not match. */
3377 if (flag_expensive_optimizations)
3379 /* Pass pc_rtx so no substitutions are done, just
3380 simplifications. */
3381 if (i1)
3383 subst_low_luid = DF_INSN_LUID (i1);
3384 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3387 subst_low_luid = DF_INSN_LUID (i2);
3388 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3391 n_occurrences = 0; /* `subst' counts here */
3392 subst_low_luid = DF_INSN_LUID (i2);
3394 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3395 copy of I2SRC each time we substitute it, in order to avoid creating
3396 self-referential RTL when we will be substituting I1SRC for I1DEST
3397 later. Likewise if I0 feeds into I2, either directly or indirectly
3398 through I1, and I0DEST is in I0SRC. */
3399 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3400 (i1_feeds_i2_n && i1dest_in_i1src)
3401 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3402 && i0dest_in_i0src));
3403 substed_i2 = 1;
3405 /* Record whether I2's body now appears within I3's body. */
3406 i2_is_used = n_occurrences;
3409 /* If we already got a failure, don't try to do more. Otherwise, try to
3410 substitute I1 if we have it. */
3412 if (i1 && GET_CODE (newpat) != CLOBBER)
3414 /* Check that an autoincrement side-effect on I1 has not been lost.
3415 This happens if I1DEST is mentioned in I2 and dies there, and
3416 has disappeared from the new pattern. */
3417 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3418 && i1_feeds_i2_n
3419 && dead_or_set_p (i2, i1dest)
3420 && !reg_overlap_mentioned_p (i1dest, newpat))
3421 /* Before we can do this substitution, we must redo the test done
3422 above (see detailed comments there) that ensures I1DEST isn't
3423 mentioned in any SETs in NEWPAT that are field assignments. */
3424 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3425 0, 0, 0))
3427 undo_all ();
3428 return 0;
3431 n_occurrences = 0;
3432 subst_low_luid = DF_INSN_LUID (i1);
3434 /* If the following substitution will modify I1SRC, make a copy of it
3435 for the case where it is substituted for I1DEST in I2PAT later. */
3436 if (added_sets_2 && i1_feeds_i2_n)
3437 i1src_copy = copy_rtx (i1src);
3439 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3440 copy of I1SRC each time we substitute it, in order to avoid creating
3441 self-referential RTL when we will be substituting I0SRC for I0DEST
3442 later. */
3443 newpat = subst (newpat, i1dest, i1src, 0, 0,
3444 i0_feeds_i1_n && i0dest_in_i0src);
3445 substed_i1 = 1;
3447 /* Record whether I1's body now appears within I3's body. */
3448 i1_is_used = n_occurrences;
3451 /* Likewise for I0 if we have it. */
3453 if (i0 && GET_CODE (newpat) != CLOBBER)
3455 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3456 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3457 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3458 && !reg_overlap_mentioned_p (i0dest, newpat))
3459 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3460 0, 0, 0))
3462 undo_all ();
3463 return 0;
3466 /* If the following substitution will modify I0SRC, make a copy of it
3467 for the case where it is substituted for I0DEST in I1PAT later. */
3468 if (added_sets_1 && i0_feeds_i1_n)
3469 i0src_copy = copy_rtx (i0src);
3470 /* And a copy for I0DEST in I2PAT substitution. */
3471 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3472 || (i0_feeds_i2_n)))
3473 i0src_copy2 = copy_rtx (i0src);
3475 n_occurrences = 0;
3476 subst_low_luid = DF_INSN_LUID (i0);
3477 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3478 substed_i0 = 1;
3481 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3482 to count all the ways that I2SRC and I1SRC can be used. */
3483 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3484 && i2_is_used + added_sets_2 > 1)
3485 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3486 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3487 > 1))
3488 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3489 && (n_occurrences + added_sets_0
3490 + (added_sets_1 && i0_feeds_i1_n)
3491 + (added_sets_2 && i0_feeds_i2_n)
3492 > 1))
3493 /* Fail if we tried to make a new register. */
3494 || max_reg_num () != maxreg
3495 /* Fail if we couldn't do something and have a CLOBBER. */
3496 || GET_CODE (newpat) == CLOBBER
3497 /* Fail if this new pattern is a MULT and we didn't have one before
3498 at the outer level. */
3499 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3500 && ! have_mult))
3502 undo_all ();
3503 return 0;
3506 /* If the actions of the earlier insns must be kept
3507 in addition to substituting them into the latest one,
3508 we must make a new PARALLEL for the latest insn
3509 to hold additional the SETs. */
3511 if (added_sets_0 || added_sets_1 || added_sets_2)
3513 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3514 combine_extras++;
3516 if (GET_CODE (newpat) == PARALLEL)
3518 rtvec old = XVEC (newpat, 0);
3519 total_sets = XVECLEN (newpat, 0) + extra_sets;
3520 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3521 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3522 sizeof (old->elem[0]) * old->num_elem);
3524 else
3526 rtx old = newpat;
3527 total_sets = 1 + extra_sets;
3528 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3529 XVECEXP (newpat, 0, 0) = old;
3532 if (added_sets_0)
3533 XVECEXP (newpat, 0, --total_sets) = i0pat;
3535 if (added_sets_1)
3537 rtx t = i1pat;
3538 if (i0_feeds_i1_n)
3539 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3541 XVECEXP (newpat, 0, --total_sets) = t;
3543 if (added_sets_2)
3545 rtx t = i2pat;
3546 if (i1_feeds_i2_n)
3547 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3548 i0_feeds_i1_n && i0dest_in_i0src);
3549 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3550 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3552 XVECEXP (newpat, 0, --total_sets) = t;
3556 validate_replacement:
3558 /* Note which hard regs this insn has as inputs. */
3559 mark_used_regs_combine (newpat);
3561 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3562 consider splitting this pattern, we might need these clobbers. */
3563 if (i1 && GET_CODE (newpat) == PARALLEL
3564 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3566 int len = XVECLEN (newpat, 0);
3568 newpat_vec_with_clobbers = rtvec_alloc (len);
3569 for (i = 0; i < len; i++)
3570 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3573 /* We have recognized nothing yet. */
3574 insn_code_number = -1;
3576 /* See if this is a PARALLEL of two SETs where one SET's destination is
3577 a register that is unused and this isn't marked as an instruction that
3578 might trap in an EH region. In that case, we just need the other SET.
3579 We prefer this over the PARALLEL.
3581 This can occur when simplifying a divmod insn. We *must* test for this
3582 case here because the code below that splits two independent SETs doesn't
3583 handle this case correctly when it updates the register status.
3585 It's pointless doing this if we originally had two sets, one from
3586 i3, and one from i2. Combining then splitting the parallel results
3587 in the original i2 again plus an invalid insn (which we delete).
3588 The net effect is only to move instructions around, which makes
3589 debug info less accurate.
3591 If the remaining SET came from I2 its destination should not be used
3592 between I2 and I3. See PR82024. */
3594 if (!(added_sets_2 && i1 == 0)
3595 && is_parallel_of_n_reg_sets (newpat, 2)
3596 && asm_noperands (newpat) < 0)
3598 rtx set0 = XVECEXP (newpat, 0, 0);
3599 rtx set1 = XVECEXP (newpat, 0, 1);
3600 rtx oldpat = newpat;
3602 if (((REG_P (SET_DEST (set1))
3603 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3604 || (GET_CODE (SET_DEST (set1)) == SUBREG
3605 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3606 && insn_nothrow_p (i3)
3607 && !side_effects_p (SET_SRC (set1)))
3609 newpat = set0;
3610 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3613 else if (((REG_P (SET_DEST (set0))
3614 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3615 || (GET_CODE (SET_DEST (set0)) == SUBREG
3616 && find_reg_note (i3, REG_UNUSED,
3617 SUBREG_REG (SET_DEST (set0)))))
3618 && insn_nothrow_p (i3)
3619 && !side_effects_p (SET_SRC (set0)))
3621 rtx dest = SET_DEST (set1);
3622 if (GET_CODE (dest) == SUBREG)
3623 dest = SUBREG_REG (dest);
3624 if (!reg_used_between_p (dest, i2, i3))
3626 newpat = set1;
3627 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3629 if (insn_code_number >= 0)
3630 changed_i3_dest = 1;
3634 if (insn_code_number < 0)
3635 newpat = oldpat;
3638 /* Is the result of combination a valid instruction? */
3639 if (insn_code_number < 0)
3640 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3642 /* If we were combining three insns and the result is a simple SET
3643 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3644 insns. There are two ways to do this. It can be split using a
3645 machine-specific method (like when you have an addition of a large
3646 constant) or by combine in the function find_split_point. */
3648 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3649 && asm_noperands (newpat) < 0)
3651 rtx parallel, *split;
3652 rtx_insn *m_split_insn;
3654 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3655 use I2DEST as a scratch register will help. In the latter case,
3656 convert I2DEST to the mode of the source of NEWPAT if we can. */
3658 m_split_insn = combine_split_insns (newpat, i3);
3660 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3661 inputs of NEWPAT. */
3663 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3664 possible to try that as a scratch reg. This would require adding
3665 more code to make it work though. */
3667 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3669 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3671 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3672 (temporarily, until we are committed to this instruction
3673 combination) does not work: for example, any call to nonzero_bits
3674 on the register (from a splitter in the MD file, for example)
3675 will get the old information, which is invalid.
3677 Since nowadays we can create registers during combine just fine,
3678 we should just create a new one here, not reuse i2dest. */
3680 /* First try to split using the original register as a
3681 scratch register. */
3682 parallel = gen_rtx_PARALLEL (VOIDmode,
3683 gen_rtvec (2, newpat,
3684 gen_rtx_CLOBBER (VOIDmode,
3685 i2dest)));
3686 m_split_insn = combine_split_insns (parallel, i3);
3688 /* If that didn't work, try changing the mode of I2DEST if
3689 we can. */
3690 if (m_split_insn == 0
3691 && new_mode != GET_MODE (i2dest)
3692 && new_mode != VOIDmode
3693 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3695 machine_mode old_mode = GET_MODE (i2dest);
3696 rtx ni2dest;
3698 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3699 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3700 else
3702 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3703 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3706 parallel = (gen_rtx_PARALLEL
3707 (VOIDmode,
3708 gen_rtvec (2, newpat,
3709 gen_rtx_CLOBBER (VOIDmode,
3710 ni2dest))));
3711 m_split_insn = combine_split_insns (parallel, i3);
3713 if (m_split_insn == 0
3714 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3716 struct undo *buf;
3718 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3719 buf = undobuf.undos;
3720 undobuf.undos = buf->next;
3721 buf->next = undobuf.frees;
3722 undobuf.frees = buf;
3726 i2scratch = m_split_insn != 0;
3729 /* If recog_for_combine has discarded clobbers, try to use them
3730 again for the split. */
3731 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3733 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3734 m_split_insn = combine_split_insns (parallel, i3);
3737 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3739 rtx m_split_pat = PATTERN (m_split_insn);
3740 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3741 if (insn_code_number >= 0)
3742 newpat = m_split_pat;
3744 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3745 && (next_nonnote_nondebug_insn (i2) == i3
3746 || !modified_between_p (PATTERN (m_split_insn), i2, i3)))
3748 rtx i2set, i3set;
3749 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3750 newi2pat = PATTERN (m_split_insn);
3752 i3set = single_set (NEXT_INSN (m_split_insn));
3753 i2set = single_set (m_split_insn);
3755 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3757 /* If I2 or I3 has multiple SETs, we won't know how to track
3758 register status, so don't use these insns. If I2's destination
3759 is used between I2 and I3, we also can't use these insns. */
3761 if (i2_code_number >= 0 && i2set && i3set
3762 && (next_nonnote_nondebug_insn (i2) == i3
3763 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3764 insn_code_number = recog_for_combine (&newi3pat, i3,
3765 &new_i3_notes);
3766 if (insn_code_number >= 0)
3767 newpat = newi3pat;
3769 /* It is possible that both insns now set the destination of I3.
3770 If so, we must show an extra use of it. */
3772 if (insn_code_number >= 0)
3774 rtx new_i3_dest = SET_DEST (i3set);
3775 rtx new_i2_dest = SET_DEST (i2set);
3777 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3778 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3779 || GET_CODE (new_i3_dest) == SUBREG)
3780 new_i3_dest = XEXP (new_i3_dest, 0);
3782 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3783 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3784 || GET_CODE (new_i2_dest) == SUBREG)
3785 new_i2_dest = XEXP (new_i2_dest, 0);
3787 if (REG_P (new_i3_dest)
3788 && REG_P (new_i2_dest)
3789 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3790 && REGNO (new_i2_dest) < reg_n_sets_max)
3791 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3795 /* If we can split it and use I2DEST, go ahead and see if that
3796 helps things be recognized. Verify that none of the registers
3797 are set between I2 and I3. */
3798 if (insn_code_number < 0
3799 && (split = find_split_point (&newpat, i3, false)) != 0
3800 && (!HAVE_cc0 || REG_P (i2dest))
3801 /* We need I2DEST in the proper mode. If it is a hard register
3802 or the only use of a pseudo, we can change its mode.
3803 Make sure we don't change a hard register to have a mode that
3804 isn't valid for it, or change the number of registers. */
3805 && (GET_MODE (*split) == GET_MODE (i2dest)
3806 || GET_MODE (*split) == VOIDmode
3807 || can_change_dest_mode (i2dest, added_sets_2,
3808 GET_MODE (*split)))
3809 && (next_nonnote_nondebug_insn (i2) == i3
3810 || !modified_between_p (*split, i2, i3))
3811 /* We can't overwrite I2DEST if its value is still used by
3812 NEWPAT. */
3813 && ! reg_referenced_p (i2dest, newpat))
3815 rtx newdest = i2dest;
3816 enum rtx_code split_code = GET_CODE (*split);
3817 machine_mode split_mode = GET_MODE (*split);
3818 bool subst_done = false;
3819 newi2pat = NULL_RTX;
3821 i2scratch = true;
3823 /* *SPLIT may be part of I2SRC, so make sure we have the
3824 original expression around for later debug processing.
3825 We should not need I2SRC any more in other cases. */
3826 if (MAY_HAVE_DEBUG_BIND_INSNS)
3827 i2src = copy_rtx (i2src);
3828 else
3829 i2src = NULL;
3831 /* Get NEWDEST as a register in the proper mode. We have already
3832 validated that we can do this. */
3833 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3835 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3836 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3837 else
3839 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3840 newdest = regno_reg_rtx[REGNO (i2dest)];
3844 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3845 an ASHIFT. This can occur if it was inside a PLUS and hence
3846 appeared to be a memory address. This is a kludge. */
3847 if (split_code == MULT
3848 && CONST_INT_P (XEXP (*split, 1))
3849 && INTVAL (XEXP (*split, 1)) > 0
3850 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3852 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3853 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3854 XEXP (*split, 0), i_rtx));
3855 /* Update split_code because we may not have a multiply
3856 anymore. */
3857 split_code = GET_CODE (*split);
3860 /* Similarly for (plus (mult FOO (const_int pow2))). */
3861 if (split_code == PLUS
3862 && GET_CODE (XEXP (*split, 0)) == MULT
3863 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3864 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3865 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3867 rtx nsplit = XEXP (*split, 0);
3868 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3869 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3870 XEXP (nsplit, 0),
3871 i_rtx));
3872 /* Update split_code because we may not have a multiply
3873 anymore. */
3874 split_code = GET_CODE (*split);
3877 #ifdef INSN_SCHEDULING
3878 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3879 be written as a ZERO_EXTEND. */
3880 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3882 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3883 what it really is. */
3884 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3885 == SIGN_EXTEND)
3886 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3887 SUBREG_REG (*split)));
3888 else
3889 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3890 SUBREG_REG (*split)));
3892 #endif
3894 /* Attempt to split binary operators using arithmetic identities. */
3895 if (BINARY_P (SET_SRC (newpat))
3896 && split_mode == GET_MODE (SET_SRC (newpat))
3897 && ! side_effects_p (SET_SRC (newpat)))
3899 rtx setsrc = SET_SRC (newpat);
3900 machine_mode mode = GET_MODE (setsrc);
3901 enum rtx_code code = GET_CODE (setsrc);
3902 rtx src_op0 = XEXP (setsrc, 0);
3903 rtx src_op1 = XEXP (setsrc, 1);
3905 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3906 if (rtx_equal_p (src_op0, src_op1))
3908 newi2pat = gen_rtx_SET (newdest, src_op0);
3909 SUBST (XEXP (setsrc, 0), newdest);
3910 SUBST (XEXP (setsrc, 1), newdest);
3911 subst_done = true;
3913 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3914 else if ((code == PLUS || code == MULT)
3915 && GET_CODE (src_op0) == code
3916 && GET_CODE (XEXP (src_op0, 0)) == code
3917 && (INTEGRAL_MODE_P (mode)
3918 || (FLOAT_MODE_P (mode)
3919 && flag_unsafe_math_optimizations)))
3921 rtx p = XEXP (XEXP (src_op0, 0), 0);
3922 rtx q = XEXP (XEXP (src_op0, 0), 1);
3923 rtx r = XEXP (src_op0, 1);
3924 rtx s = src_op1;
3926 /* Split both "((X op Y) op X) op Y" and
3927 "((X op Y) op Y) op X" as "T op T" where T is
3928 "X op Y". */
3929 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3930 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3932 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3933 SUBST (XEXP (setsrc, 0), newdest);
3934 SUBST (XEXP (setsrc, 1), newdest);
3935 subst_done = true;
3937 /* Split "((X op X) op Y) op Y)" as "T op T" where
3938 T is "X op Y". */
3939 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3941 rtx tmp = simplify_gen_binary (code, mode, p, r);
3942 newi2pat = gen_rtx_SET (newdest, tmp);
3943 SUBST (XEXP (setsrc, 0), newdest);
3944 SUBST (XEXP (setsrc, 1), newdest);
3945 subst_done = true;
3950 if (!subst_done)
3952 newi2pat = gen_rtx_SET (newdest, *split);
3953 SUBST (*split, newdest);
3956 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3958 /* recog_for_combine might have added CLOBBERs to newi2pat.
3959 Make sure NEWPAT does not depend on the clobbered regs. */
3960 if (GET_CODE (newi2pat) == PARALLEL)
3961 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3962 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3964 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3965 if (reg_overlap_mentioned_p (reg, newpat))
3967 undo_all ();
3968 return 0;
3972 /* If the split point was a MULT and we didn't have one before,
3973 don't use one now. */
3974 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3975 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3979 /* Check for a case where we loaded from memory in a narrow mode and
3980 then sign extended it, but we need both registers. In that case,
3981 we have a PARALLEL with both loads from the same memory location.
3982 We can split this into a load from memory followed by a register-register
3983 copy. This saves at least one insn, more if register allocation can
3984 eliminate the copy.
3986 We cannot do this if the destination of the first assignment is a
3987 condition code register or cc0. We eliminate this case by making sure
3988 the SET_DEST and SET_SRC have the same mode.
3990 We cannot do this if the destination of the second assignment is
3991 a register that we have already assumed is zero-extended. Similarly
3992 for a SUBREG of such a register. */
3994 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3995 && GET_CODE (newpat) == PARALLEL
3996 && XVECLEN (newpat, 0) == 2
3997 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3998 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3999 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
4000 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
4001 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4002 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
4003 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
4004 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
4005 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4006 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4007 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
4008 (REG_P (temp_expr)
4009 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4010 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4011 BITS_PER_WORD)
4012 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4013 HOST_BITS_PER_INT)
4014 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4015 != GET_MODE_MASK (word_mode))))
4016 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
4017 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
4018 (REG_P (temp_expr)
4019 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
4020 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4021 BITS_PER_WORD)
4022 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
4023 HOST_BITS_PER_INT)
4024 && (reg_stat[REGNO (temp_expr)].nonzero_bits
4025 != GET_MODE_MASK (word_mode)))))
4026 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4027 SET_SRC (XVECEXP (newpat, 0, 1)))
4028 && ! find_reg_note (i3, REG_UNUSED,
4029 SET_DEST (XVECEXP (newpat, 0, 0))))
4031 rtx ni2dest;
4033 newi2pat = XVECEXP (newpat, 0, 0);
4034 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
4035 newpat = XVECEXP (newpat, 0, 1);
4036 SUBST (SET_SRC (newpat),
4037 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
4038 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4040 if (i2_code_number >= 0)
4041 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4043 if (insn_code_number >= 0)
4044 swap_i2i3 = 1;
4047 /* Similarly, check for a case where we have a PARALLEL of two independent
4048 SETs but we started with three insns. In this case, we can do the sets
4049 as two separate insns. This case occurs when some SET allows two
4050 other insns to combine, but the destination of that SET is still live.
4052 Also do this if we started with two insns and (at least) one of the
4053 resulting sets is a noop; this noop will be deleted later.
4055 Also do this if we started with two insns neither of which was a simple
4056 move. */
4058 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
4059 && GET_CODE (newpat) == PARALLEL
4060 && XVECLEN (newpat, 0) == 2
4061 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
4062 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
4063 && (i1
4064 || set_noop_p (XVECEXP (newpat, 0, 0))
4065 || set_noop_p (XVECEXP (newpat, 0, 1))
4066 || (!i2_was_move && !i3_was_move))
4067 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4068 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4069 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4070 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4071 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4072 XVECEXP (newpat, 0, 0))
4073 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4074 XVECEXP (newpat, 0, 1))
4075 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4076 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4078 rtx set0 = XVECEXP (newpat, 0, 0);
4079 rtx set1 = XVECEXP (newpat, 0, 1);
4081 /* Normally, it doesn't matter which of the two is done first,
4082 but the one that references cc0 can't be the second, and
4083 one which uses any regs/memory set in between i2 and i3 can't
4084 be first. The PARALLEL might also have been pre-existing in i3,
4085 so we need to make sure that we won't wrongly hoist a SET to i2
4086 that would conflict with a death note present in there, or would
4087 have its dest modified between i2 and i3. */
4088 if (!modified_between_p (SET_SRC (set1), i2, i3)
4089 && !(REG_P (SET_DEST (set1))
4090 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4091 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4092 && find_reg_note (i2, REG_DEAD,
4093 SUBREG_REG (SET_DEST (set1))))
4094 && !modified_between_p (SET_DEST (set1), i2, i3)
4095 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4096 /* If I3 is a jump, ensure that set0 is a jump so that
4097 we do not create invalid RTL. */
4098 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4101 newi2pat = set1;
4102 newpat = set0;
4104 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4105 && !(REG_P (SET_DEST (set0))
4106 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4107 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4108 && find_reg_note (i2, REG_DEAD,
4109 SUBREG_REG (SET_DEST (set0))))
4110 && !modified_between_p (SET_DEST (set0), i2, i3)
4111 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4112 /* If I3 is a jump, ensure that set1 is a jump so that
4113 we do not create invalid RTL. */
4114 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4117 newi2pat = set0;
4118 newpat = set1;
4120 else
4122 undo_all ();
4123 return 0;
4126 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4128 if (i2_code_number >= 0)
4130 /* recog_for_combine might have added CLOBBERs to newi2pat.
4131 Make sure NEWPAT does not depend on the clobbered regs. */
4132 if (GET_CODE (newi2pat) == PARALLEL)
4134 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4135 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4137 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4138 if (reg_overlap_mentioned_p (reg, newpat))
4140 undo_all ();
4141 return 0;
4146 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4148 if (insn_code_number >= 0)
4149 split_i2i3 = 1;
4153 /* If it still isn't recognized, fail and change things back the way they
4154 were. */
4155 if ((insn_code_number < 0
4156 /* Is the result a reasonable ASM_OPERANDS? */
4157 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4159 undo_all ();
4160 return 0;
4163 /* If we had to change another insn, make sure it is valid also. */
4164 if (undobuf.other_insn)
4166 CLEAR_HARD_REG_SET (newpat_used_regs);
4168 other_pat = PATTERN (undobuf.other_insn);
4169 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4170 &new_other_notes);
4172 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4174 undo_all ();
4175 return 0;
4179 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4180 they are adjacent to each other or not. */
4181 if (HAVE_cc0)
4183 rtx_insn *p = prev_nonnote_insn (i3);
4184 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4185 && sets_cc0_p (newi2pat))
4187 undo_all ();
4188 return 0;
4192 /* Only allow this combination if insn_cost reports that the
4193 replacement instructions are cheaper than the originals. */
4194 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4196 undo_all ();
4197 return 0;
4200 if (MAY_HAVE_DEBUG_BIND_INSNS)
4202 struct undo *undo;
4204 for (undo = undobuf.undos; undo; undo = undo->next)
4205 if (undo->kind == UNDO_MODE)
4207 rtx reg = *undo->where.r;
4208 machine_mode new_mode = GET_MODE (reg);
4209 machine_mode old_mode = undo->old_contents.m;
4211 /* Temporarily revert mode back. */
4212 adjust_reg_mode (reg, old_mode);
4214 if (reg == i2dest && i2scratch)
4216 /* If we used i2dest as a scratch register with a
4217 different mode, substitute it for the original
4218 i2src while its original mode is temporarily
4219 restored, and then clear i2scratch so that we don't
4220 do it again later. */
4221 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4222 this_basic_block);
4223 i2scratch = false;
4224 /* Put back the new mode. */
4225 adjust_reg_mode (reg, new_mode);
4227 else
4229 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4230 rtx_insn *first, *last;
4232 if (reg == i2dest)
4234 first = i2;
4235 last = last_combined_insn;
4237 else
4239 first = i3;
4240 last = undobuf.other_insn;
4241 gcc_assert (last);
4242 if (DF_INSN_LUID (last)
4243 < DF_INSN_LUID (last_combined_insn))
4244 last = last_combined_insn;
4247 /* We're dealing with a reg that changed mode but not
4248 meaning, so we want to turn it into a subreg for
4249 the new mode. However, because of REG sharing and
4250 because its mode had already changed, we have to do
4251 it in two steps. First, replace any debug uses of
4252 reg, with its original mode temporarily restored,
4253 with this copy we have created; then, replace the
4254 copy with the SUBREG of the original shared reg,
4255 once again changed to the new mode. */
4256 propagate_for_debug (first, last, reg, tempreg,
4257 this_basic_block);
4258 adjust_reg_mode (reg, new_mode);
4259 propagate_for_debug (first, last, tempreg,
4260 lowpart_subreg (old_mode, reg, new_mode),
4261 this_basic_block);
4266 /* If we will be able to accept this, we have made a
4267 change to the destination of I3. This requires us to
4268 do a few adjustments. */
4270 if (changed_i3_dest)
4272 PATTERN (i3) = newpat;
4273 adjust_for_new_dest (i3);
4276 /* We now know that we can do this combination. Merge the insns and
4277 update the status of registers and LOG_LINKS. */
4279 if (undobuf.other_insn)
4281 rtx note, next;
4283 PATTERN (undobuf.other_insn) = other_pat;
4285 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4286 ensure that they are still valid. Then add any non-duplicate
4287 notes added by recog_for_combine. */
4288 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4290 next = XEXP (note, 1);
4292 if ((REG_NOTE_KIND (note) == REG_DEAD
4293 && !reg_referenced_p (XEXP (note, 0),
4294 PATTERN (undobuf.other_insn)))
4295 ||(REG_NOTE_KIND (note) == REG_UNUSED
4296 && !reg_set_p (XEXP (note, 0),
4297 PATTERN (undobuf.other_insn)))
4298 /* Simply drop equal note since it may be no longer valid
4299 for other_insn. It may be possible to record that CC
4300 register is changed and only discard those notes, but
4301 in practice it's unnecessary complication and doesn't
4302 give any meaningful improvement.
4304 See PR78559. */
4305 || REG_NOTE_KIND (note) == REG_EQUAL
4306 || REG_NOTE_KIND (note) == REG_EQUIV)
4307 remove_note (undobuf.other_insn, note);
4310 distribute_notes (new_other_notes, undobuf.other_insn,
4311 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4312 NULL_RTX);
4315 if (swap_i2i3)
4317 /* I3 now uses what used to be its destination and which is now
4318 I2's destination. This requires us to do a few adjustments. */
4319 PATTERN (i3) = newpat;
4320 adjust_for_new_dest (i3);
4323 if (swap_i2i3 || split_i2i3)
4325 /* We might need a LOG_LINK from I3 to I2. But then we used to
4326 have one, so we still will.
4328 However, some later insn might be using I2's dest and have
4329 a LOG_LINK pointing at I3. We should change it to point at
4330 I2 instead. */
4332 /* newi2pat is usually a SET here; however, recog_for_combine might
4333 have added some clobbers. */
4334 rtx x = newi2pat;
4335 if (GET_CODE (x) == PARALLEL)
4336 x = XVECEXP (newi2pat, 0, 0);
4338 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4339 unsigned int regno = reg_or_subregno (SET_DEST (x));
4341 bool done = false;
4342 for (rtx_insn *insn = NEXT_INSN (i3);
4343 !done
4344 && insn
4345 && NONDEBUG_INSN_P (insn)
4346 && BLOCK_FOR_INSN (insn) == this_basic_block;
4347 insn = NEXT_INSN (insn))
4349 struct insn_link *link;
4350 FOR_EACH_LOG_LINK (link, insn)
4351 if (link->insn == i3 && link->regno == regno)
4353 link->insn = i2;
4354 done = true;
4355 break;
4361 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4362 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4363 rtx midnotes = 0;
4364 int from_luid;
4365 /* Compute which registers we expect to eliminate. newi2pat may be setting
4366 either i3dest or i2dest, so we must check it. */
4367 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4368 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4369 || !i2dest_killed
4370 ? 0 : i2dest);
4371 /* For i1, we need to compute both local elimination and global
4372 elimination information with respect to newi2pat because i1dest
4373 may be the same as i3dest, in which case newi2pat may be setting
4374 i1dest. Global information is used when distributing REG_DEAD
4375 note for i2 and i3, in which case it does matter if newi2pat sets
4376 i1dest or not.
4378 Local information is used when distributing REG_DEAD note for i1,
4379 in which case it doesn't matter if newi2pat sets i1dest or not.
4380 See PR62151, if we have four insns combination:
4381 i0: r0 <- i0src
4382 i1: r1 <- i1src (using r0)
4383 REG_DEAD (r0)
4384 i2: r0 <- i2src (using r1)
4385 i3: r3 <- i3src (using r0)
4386 ix: using r0
4387 From i1's point of view, r0 is eliminated, no matter if it is set
4388 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4389 should be discarded.
4391 Note local information only affects cases in forms like "I1->I2->I3",
4392 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4393 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4394 i0dest anyway. */
4395 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4396 || !i1dest_killed
4397 ? 0 : i1dest);
4398 rtx elim_i1 = (local_elim_i1 == 0
4399 || (newi2pat && reg_set_p (i1dest, newi2pat))
4400 ? 0 : i1dest);
4401 /* Same case as i1. */
4402 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4403 ? 0 : i0dest);
4404 rtx elim_i0 = (local_elim_i0 == 0
4405 || (newi2pat && reg_set_p (i0dest, newi2pat))
4406 ? 0 : i0dest);
4408 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4409 clear them. */
4410 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4411 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4412 if (i1)
4413 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4414 if (i0)
4415 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4417 /* Ensure that we do not have something that should not be shared but
4418 occurs multiple times in the new insns. Check this by first
4419 resetting all the `used' flags and then copying anything is shared. */
4421 reset_used_flags (i3notes);
4422 reset_used_flags (i2notes);
4423 reset_used_flags (i1notes);
4424 reset_used_flags (i0notes);
4425 reset_used_flags (newpat);
4426 reset_used_flags (newi2pat);
4427 if (undobuf.other_insn)
4428 reset_used_flags (PATTERN (undobuf.other_insn));
4430 i3notes = copy_rtx_if_shared (i3notes);
4431 i2notes = copy_rtx_if_shared (i2notes);
4432 i1notes = copy_rtx_if_shared (i1notes);
4433 i0notes = copy_rtx_if_shared (i0notes);
4434 newpat = copy_rtx_if_shared (newpat);
4435 newi2pat = copy_rtx_if_shared (newi2pat);
4436 if (undobuf.other_insn)
4437 reset_used_flags (PATTERN (undobuf.other_insn));
4439 INSN_CODE (i3) = insn_code_number;
4440 PATTERN (i3) = newpat;
4442 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4444 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4445 link = XEXP (link, 1))
4447 if (substed_i2)
4449 /* I2SRC must still be meaningful at this point. Some
4450 splitting operations can invalidate I2SRC, but those
4451 operations do not apply to calls. */
4452 gcc_assert (i2src);
4453 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4454 i2dest, i2src);
4456 if (substed_i1)
4457 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4458 i1dest, i1src);
4459 if (substed_i0)
4460 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4461 i0dest, i0src);
4465 if (undobuf.other_insn)
4466 INSN_CODE (undobuf.other_insn) = other_code_number;
4468 /* We had one special case above where I2 had more than one set and
4469 we replaced a destination of one of those sets with the destination
4470 of I3. In that case, we have to update LOG_LINKS of insns later
4471 in this basic block. Note that this (expensive) case is rare.
4473 Also, in this case, we must pretend that all REG_NOTEs for I2
4474 actually came from I3, so that REG_UNUSED notes from I2 will be
4475 properly handled. */
4477 if (i3_subst_into_i2)
4479 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4480 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4481 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4482 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4483 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4484 && ! find_reg_note (i2, REG_UNUSED,
4485 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4486 for (temp_insn = NEXT_INSN (i2);
4487 temp_insn
4488 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4489 || BB_HEAD (this_basic_block) != temp_insn);
4490 temp_insn = NEXT_INSN (temp_insn))
4491 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4492 FOR_EACH_LOG_LINK (link, temp_insn)
4493 if (link->insn == i2)
4494 link->insn = i3;
4496 if (i3notes)
4498 rtx link = i3notes;
4499 while (XEXP (link, 1))
4500 link = XEXP (link, 1);
4501 XEXP (link, 1) = i2notes;
4503 else
4504 i3notes = i2notes;
4505 i2notes = 0;
4508 LOG_LINKS (i3) = NULL;
4509 REG_NOTES (i3) = 0;
4510 LOG_LINKS (i2) = NULL;
4511 REG_NOTES (i2) = 0;
4513 if (newi2pat)
4515 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4516 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4517 this_basic_block);
4518 INSN_CODE (i2) = i2_code_number;
4519 PATTERN (i2) = newi2pat;
4521 else
4523 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4524 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4525 this_basic_block);
4526 SET_INSN_DELETED (i2);
4529 if (i1)
4531 LOG_LINKS (i1) = NULL;
4532 REG_NOTES (i1) = 0;
4533 if (MAY_HAVE_DEBUG_BIND_INSNS)
4534 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4535 this_basic_block);
4536 SET_INSN_DELETED (i1);
4539 if (i0)
4541 LOG_LINKS (i0) = NULL;
4542 REG_NOTES (i0) = 0;
4543 if (MAY_HAVE_DEBUG_BIND_INSNS)
4544 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4545 this_basic_block);
4546 SET_INSN_DELETED (i0);
4549 /* Get death notes for everything that is now used in either I3 or
4550 I2 and used to die in a previous insn. If we built two new
4551 patterns, move from I1 to I2 then I2 to I3 so that we get the
4552 proper movement on registers that I2 modifies. */
4554 if (i0)
4555 from_luid = DF_INSN_LUID (i0);
4556 else if (i1)
4557 from_luid = DF_INSN_LUID (i1);
4558 else
4559 from_luid = DF_INSN_LUID (i2);
4560 if (newi2pat)
4561 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4562 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4564 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4565 if (i3notes)
4566 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4567 elim_i2, elim_i1, elim_i0);
4568 if (i2notes)
4569 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4570 elim_i2, elim_i1, elim_i0);
4571 if (i1notes)
4572 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4573 elim_i2, local_elim_i1, local_elim_i0);
4574 if (i0notes)
4575 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4576 elim_i2, elim_i1, local_elim_i0);
4577 if (midnotes)
4578 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4579 elim_i2, elim_i1, elim_i0);
4581 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4582 know these are REG_UNUSED and want them to go to the desired insn,
4583 so we always pass it as i3. */
4585 if (newi2pat && new_i2_notes)
4586 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4587 NULL_RTX);
4589 if (new_i3_notes)
4590 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4591 NULL_RTX);
4593 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4594 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4595 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4596 in that case, it might delete I2. Similarly for I2 and I1.
4597 Show an additional death due to the REG_DEAD note we make here. If
4598 we discard it in distribute_notes, we will decrement it again. */
4600 if (i3dest_killed)
4602 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4603 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4604 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4605 elim_i1, elim_i0);
4606 else
4607 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4608 elim_i2, elim_i1, elim_i0);
4611 if (i2dest_in_i2src)
4613 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4614 if (newi2pat && reg_set_p (i2dest, newi2pat))
4615 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4616 NULL_RTX, NULL_RTX);
4617 else
4618 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4619 NULL_RTX, NULL_RTX, NULL_RTX);
4622 if (i1dest_in_i1src)
4624 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4625 if (newi2pat && reg_set_p (i1dest, newi2pat))
4626 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4627 NULL_RTX, NULL_RTX);
4628 else
4629 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4630 NULL_RTX, NULL_RTX, NULL_RTX);
4633 if (i0dest_in_i0src)
4635 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4636 if (newi2pat && reg_set_p (i0dest, newi2pat))
4637 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4638 NULL_RTX, NULL_RTX);
4639 else
4640 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4641 NULL_RTX, NULL_RTX, NULL_RTX);
4644 distribute_links (i3links);
4645 distribute_links (i2links);
4646 distribute_links (i1links);
4647 distribute_links (i0links);
4649 if (REG_P (i2dest))
4651 struct insn_link *link;
4652 rtx_insn *i2_insn = 0;
4653 rtx i2_val = 0, set;
4655 /* The insn that used to set this register doesn't exist, and
4656 this life of the register may not exist either. See if one of
4657 I3's links points to an insn that sets I2DEST. If it does,
4658 that is now the last known value for I2DEST. If we don't update
4659 this and I2 set the register to a value that depended on its old
4660 contents, we will get confused. If this insn is used, thing
4661 will be set correctly in combine_instructions. */
4662 FOR_EACH_LOG_LINK (link, i3)
4663 if ((set = single_set (link->insn)) != 0
4664 && rtx_equal_p (i2dest, SET_DEST (set)))
4665 i2_insn = link->insn, i2_val = SET_SRC (set);
4667 record_value_for_reg (i2dest, i2_insn, i2_val);
4669 /* If the reg formerly set in I2 died only once and that was in I3,
4670 zero its use count so it won't make `reload' do any work. */
4671 if (! added_sets_2
4672 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4673 && ! i2dest_in_i2src
4674 && REGNO (i2dest) < reg_n_sets_max)
4675 INC_REG_N_SETS (REGNO (i2dest), -1);
4678 if (i1 && REG_P (i1dest))
4680 struct insn_link *link;
4681 rtx_insn *i1_insn = 0;
4682 rtx i1_val = 0, set;
4684 FOR_EACH_LOG_LINK (link, i3)
4685 if ((set = single_set (link->insn)) != 0
4686 && rtx_equal_p (i1dest, SET_DEST (set)))
4687 i1_insn = link->insn, i1_val = SET_SRC (set);
4689 record_value_for_reg (i1dest, i1_insn, i1_val);
4691 if (! added_sets_1
4692 && ! i1dest_in_i1src
4693 && REGNO (i1dest) < reg_n_sets_max)
4694 INC_REG_N_SETS (REGNO (i1dest), -1);
4697 if (i0 && REG_P (i0dest))
4699 struct insn_link *link;
4700 rtx_insn *i0_insn = 0;
4701 rtx i0_val = 0, set;
4703 FOR_EACH_LOG_LINK (link, i3)
4704 if ((set = single_set (link->insn)) != 0
4705 && rtx_equal_p (i0dest, SET_DEST (set)))
4706 i0_insn = link->insn, i0_val = SET_SRC (set);
4708 record_value_for_reg (i0dest, i0_insn, i0_val);
4710 if (! added_sets_0
4711 && ! i0dest_in_i0src
4712 && REGNO (i0dest) < reg_n_sets_max)
4713 INC_REG_N_SETS (REGNO (i0dest), -1);
4716 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4717 been made to this insn. The order is important, because newi2pat
4718 can affect nonzero_bits of newpat. */
4719 if (newi2pat)
4720 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4721 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4724 if (undobuf.other_insn != NULL_RTX)
4726 if (dump_file)
4728 fprintf (dump_file, "modifying other_insn ");
4729 dump_insn_slim (dump_file, undobuf.other_insn);
4731 df_insn_rescan (undobuf.other_insn);
4734 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4736 if (dump_file)
4738 fprintf (dump_file, "modifying insn i0 ");
4739 dump_insn_slim (dump_file, i0);
4741 df_insn_rescan (i0);
4744 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4746 if (dump_file)
4748 fprintf (dump_file, "modifying insn i1 ");
4749 dump_insn_slim (dump_file, i1);
4751 df_insn_rescan (i1);
4754 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4756 if (dump_file)
4758 fprintf (dump_file, "modifying insn i2 ");
4759 dump_insn_slim (dump_file, i2);
4761 df_insn_rescan (i2);
4764 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4766 if (dump_file)
4768 fprintf (dump_file, "modifying insn i3 ");
4769 dump_insn_slim (dump_file, i3);
4771 df_insn_rescan (i3);
4774 /* Set new_direct_jump_p if a new return or simple jump instruction
4775 has been created. Adjust the CFG accordingly. */
4776 if (returnjump_p (i3) || any_uncondjump_p (i3))
4778 *new_direct_jump_p = 1;
4779 mark_jump_label (PATTERN (i3), i3, 0);
4780 update_cfg_for_uncondjump (i3);
4783 if (undobuf.other_insn != NULL_RTX
4784 && (returnjump_p (undobuf.other_insn)
4785 || any_uncondjump_p (undobuf.other_insn)))
4787 *new_direct_jump_p = 1;
4788 update_cfg_for_uncondjump (undobuf.other_insn);
4791 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4792 && XEXP (PATTERN (i3), 0) == const1_rtx)
4794 basic_block bb = BLOCK_FOR_INSN (i3);
4795 gcc_assert (bb);
4796 remove_edge (split_block (bb, i3));
4797 emit_barrier_after_bb (bb);
4798 *new_direct_jump_p = 1;
4801 if (undobuf.other_insn
4802 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4803 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4805 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4806 gcc_assert (bb);
4807 remove_edge (split_block (bb, undobuf.other_insn));
4808 emit_barrier_after_bb (bb);
4809 *new_direct_jump_p = 1;
4812 /* A noop might also need cleaning up of CFG, if it comes from the
4813 simplification of a jump. */
4814 if (JUMP_P (i3)
4815 && GET_CODE (newpat) == SET
4816 && SET_SRC (newpat) == pc_rtx
4817 && SET_DEST (newpat) == pc_rtx)
4819 *new_direct_jump_p = 1;
4820 update_cfg_for_uncondjump (i3);
4823 if (undobuf.other_insn != NULL_RTX
4824 && JUMP_P (undobuf.other_insn)
4825 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4826 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4827 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4829 *new_direct_jump_p = 1;
4830 update_cfg_for_uncondjump (undobuf.other_insn);
4833 combine_successes++;
4834 undo_commit ();
4836 rtx_insn *ret = newi2pat ? i2 : i3;
4837 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4838 ret = added_links_insn;
4839 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4840 ret = added_notes_insn;
4842 return ret;
4845 /* Get a marker for undoing to the current state. */
4847 static void *
4848 get_undo_marker (void)
4850 return undobuf.undos;
4853 /* Undo the modifications up to the marker. */
4855 static void
4856 undo_to_marker (void *marker)
4858 struct undo *undo, *next;
4860 for (undo = undobuf.undos; undo != marker; undo = next)
4862 gcc_assert (undo);
4864 next = undo->next;
4865 switch (undo->kind)
4867 case UNDO_RTX:
4868 *undo->where.r = undo->old_contents.r;
4869 break;
4870 case UNDO_INT:
4871 *undo->where.i = undo->old_contents.i;
4872 break;
4873 case UNDO_MODE:
4874 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4875 break;
4876 case UNDO_LINKS:
4877 *undo->where.l = undo->old_contents.l;
4878 break;
4879 default:
4880 gcc_unreachable ();
4883 undo->next = undobuf.frees;
4884 undobuf.frees = undo;
4887 undobuf.undos = (struct undo *) marker;
4890 /* Undo all the modifications recorded in undobuf. */
4892 static void
4893 undo_all (void)
4895 undo_to_marker (0);
4898 /* We've committed to accepting the changes we made. Move all
4899 of the undos to the free list. */
4901 static void
4902 undo_commit (void)
4904 struct undo *undo, *next;
4906 for (undo = undobuf.undos; undo; undo = next)
4908 next = undo->next;
4909 undo->next = undobuf.frees;
4910 undobuf.frees = undo;
4912 undobuf.undos = 0;
4915 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4916 where we have an arithmetic expression and return that point. LOC will
4917 be inside INSN.
4919 try_combine will call this function to see if an insn can be split into
4920 two insns. */
4922 static rtx *
4923 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4925 rtx x = *loc;
4926 enum rtx_code code = GET_CODE (x);
4927 rtx *split;
4928 unsigned HOST_WIDE_INT len = 0;
4929 HOST_WIDE_INT pos = 0;
4930 int unsignedp = 0;
4931 rtx inner = NULL_RTX;
4932 scalar_int_mode mode, inner_mode;
4934 /* First special-case some codes. */
4935 switch (code)
4937 case SUBREG:
4938 #ifdef INSN_SCHEDULING
4939 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4940 point. */
4941 if (MEM_P (SUBREG_REG (x)))
4942 return loc;
4943 #endif
4944 return find_split_point (&SUBREG_REG (x), insn, false);
4946 case MEM:
4947 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4948 using LO_SUM and HIGH. */
4949 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4950 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4952 machine_mode address_mode = get_address_mode (x);
4954 SUBST (XEXP (x, 0),
4955 gen_rtx_LO_SUM (address_mode,
4956 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4957 XEXP (x, 0)));
4958 return &XEXP (XEXP (x, 0), 0);
4961 /* If we have a PLUS whose second operand is a constant and the
4962 address is not valid, perhaps we can split it up using
4963 the machine-specific way to split large constants. We use
4964 the first pseudo-reg (one of the virtual regs) as a placeholder;
4965 it will not remain in the result. */
4966 if (GET_CODE (XEXP (x, 0)) == PLUS
4967 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4968 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4969 MEM_ADDR_SPACE (x)))
4971 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4972 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4973 subst_insn);
4975 /* This should have produced two insns, each of which sets our
4976 placeholder. If the source of the second is a valid address,
4977 we can put both sources together and make a split point
4978 in the middle. */
4980 if (seq
4981 && NEXT_INSN (seq) != NULL_RTX
4982 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4983 && NONJUMP_INSN_P (seq)
4984 && GET_CODE (PATTERN (seq)) == SET
4985 && SET_DEST (PATTERN (seq)) == reg
4986 && ! reg_mentioned_p (reg,
4987 SET_SRC (PATTERN (seq)))
4988 && NONJUMP_INSN_P (NEXT_INSN (seq))
4989 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4990 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4991 && memory_address_addr_space_p
4992 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4993 MEM_ADDR_SPACE (x)))
4995 rtx src1 = SET_SRC (PATTERN (seq));
4996 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4998 /* Replace the placeholder in SRC2 with SRC1. If we can
4999 find where in SRC2 it was placed, that can become our
5000 split point and we can replace this address with SRC2.
5001 Just try two obvious places. */
5003 src2 = replace_rtx (src2, reg, src1);
5004 split = 0;
5005 if (XEXP (src2, 0) == src1)
5006 split = &XEXP (src2, 0);
5007 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
5008 && XEXP (XEXP (src2, 0), 0) == src1)
5009 split = &XEXP (XEXP (src2, 0), 0);
5011 if (split)
5013 SUBST (XEXP (x, 0), src2);
5014 return split;
5018 /* If that didn't work and we have a nested plus, like:
5019 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5020 is valid address, try to split (REG1 * CONST1). */
5021 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5022 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5023 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5024 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
5025 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5026 0), 0)))))
5028 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
5029 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
5030 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5031 MEM_ADDR_SPACE (x)))
5033 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5034 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
5036 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
5038 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
5039 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
5040 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5041 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
5042 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
5043 0), 1)))))
5045 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
5046 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
5047 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5048 MEM_ADDR_SPACE (x)))
5050 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5051 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
5053 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
5056 /* If that didn't work, perhaps the first operand is complex and
5057 needs to be computed separately, so make a split point there.
5058 This will occur on machines that just support REG + CONST
5059 and have a constant moved through some previous computation. */
5060 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
5061 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5062 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5063 return &XEXP (XEXP (x, 0), 0);
5066 /* If we have a PLUS whose first operand is complex, try computing it
5067 separately by making a split there. */
5068 if (GET_CODE (XEXP (x, 0)) == PLUS
5069 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5070 MEM_ADDR_SPACE (x))
5071 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5072 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5073 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5074 return &XEXP (XEXP (x, 0), 0);
5075 break;
5077 case SET:
5078 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5079 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5080 we need to put the operand into a register. So split at that
5081 point. */
5083 if (SET_DEST (x) == cc0_rtx
5084 && GET_CODE (SET_SRC (x)) != COMPARE
5085 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
5086 && !OBJECT_P (SET_SRC (x))
5087 && ! (GET_CODE (SET_SRC (x)) == SUBREG
5088 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
5089 return &SET_SRC (x);
5091 /* See if we can split SET_SRC as it stands. */
5092 split = find_split_point (&SET_SRC (x), insn, true);
5093 if (split && split != &SET_SRC (x))
5094 return split;
5096 /* See if we can split SET_DEST as it stands. */
5097 split = find_split_point (&SET_DEST (x), insn, false);
5098 if (split && split != &SET_DEST (x))
5099 return split;
5101 /* See if this is a bitfield assignment with everything constant. If
5102 so, this is an IOR of an AND, so split it into that. */
5103 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5104 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5105 &inner_mode)
5106 && HWI_COMPUTABLE_MODE_P (inner_mode)
5107 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5108 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5109 && CONST_INT_P (SET_SRC (x))
5110 && ((INTVAL (XEXP (SET_DEST (x), 1))
5111 + INTVAL (XEXP (SET_DEST (x), 2)))
5112 <= GET_MODE_PRECISION (inner_mode))
5113 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5115 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5116 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5117 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5118 rtx dest = XEXP (SET_DEST (x), 0);
5119 unsigned HOST_WIDE_INT mask
5120 = (HOST_WIDE_INT_1U << len) - 1;
5121 rtx or_mask;
5123 if (BITS_BIG_ENDIAN)
5124 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5126 or_mask = gen_int_mode (src << pos, inner_mode);
5127 if (src == mask)
5128 SUBST (SET_SRC (x),
5129 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5130 else
5132 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5133 SUBST (SET_SRC (x),
5134 simplify_gen_binary (IOR, inner_mode,
5135 simplify_gen_binary (AND, inner_mode,
5136 dest, negmask),
5137 or_mask));
5140 SUBST (SET_DEST (x), dest);
5142 split = find_split_point (&SET_SRC (x), insn, true);
5143 if (split && split != &SET_SRC (x))
5144 return split;
5147 /* Otherwise, see if this is an operation that we can split into two.
5148 If so, try to split that. */
5149 code = GET_CODE (SET_SRC (x));
5151 switch (code)
5153 case AND:
5154 /* If we are AND'ing with a large constant that is only a single
5155 bit and the result is only being used in a context where we
5156 need to know if it is zero or nonzero, replace it with a bit
5157 extraction. This will avoid the large constant, which might
5158 have taken more than one insn to make. If the constant were
5159 not a valid argument to the AND but took only one insn to make,
5160 this is no worse, but if it took more than one insn, it will
5161 be better. */
5163 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5164 && REG_P (XEXP (SET_SRC (x), 0))
5165 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5166 && REG_P (SET_DEST (x))
5167 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5168 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5169 && XEXP (*split, 0) == SET_DEST (x)
5170 && XEXP (*split, 1) == const0_rtx)
5172 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5173 XEXP (SET_SRC (x), 0),
5174 pos, NULL_RTX, 1, 1, 0, 0);
5175 if (extraction != 0)
5177 SUBST (SET_SRC (x), extraction);
5178 return find_split_point (loc, insn, false);
5181 break;
5183 case NE:
5184 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5185 is known to be on, this can be converted into a NEG of a shift. */
5186 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5187 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5188 && ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
5189 GET_MODE (XEXP (SET_SRC (x),
5190 0))))) >= 1))
5192 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5193 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5194 SUBST (SET_SRC (x),
5195 gen_rtx_NEG (mode,
5196 gen_rtx_LSHIFTRT (mode,
5197 XEXP (SET_SRC (x), 0),
5198 pos_rtx)));
5200 split = find_split_point (&SET_SRC (x), insn, true);
5201 if (split && split != &SET_SRC (x))
5202 return split;
5204 break;
5206 case SIGN_EXTEND:
5207 inner = XEXP (SET_SRC (x), 0);
5209 /* We can't optimize if either mode is a partial integer
5210 mode as we don't know how many bits are significant
5211 in those modes. */
5212 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5213 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5214 break;
5216 pos = 0;
5217 len = GET_MODE_PRECISION (inner_mode);
5218 unsignedp = 0;
5219 break;
5221 case SIGN_EXTRACT:
5222 case ZERO_EXTRACT:
5223 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5224 &inner_mode)
5225 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5226 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5228 inner = XEXP (SET_SRC (x), 0);
5229 len = INTVAL (XEXP (SET_SRC (x), 1));
5230 pos = INTVAL (XEXP (SET_SRC (x), 2));
5232 if (BITS_BIG_ENDIAN)
5233 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5234 unsignedp = (code == ZERO_EXTRACT);
5236 break;
5238 default:
5239 break;
5242 if (len
5243 && known_subrange_p (pos, len,
5244 0, GET_MODE_PRECISION (GET_MODE (inner)))
5245 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5247 /* For unsigned, we have a choice of a shift followed by an
5248 AND or two shifts. Use two shifts for field sizes where the
5249 constant might be too large. We assume here that we can
5250 always at least get 8-bit constants in an AND insn, which is
5251 true for every current RISC. */
5253 if (unsignedp && len <= 8)
5255 unsigned HOST_WIDE_INT mask
5256 = (HOST_WIDE_INT_1U << len) - 1;
5257 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5258 SUBST (SET_SRC (x),
5259 gen_rtx_AND (mode,
5260 gen_rtx_LSHIFTRT
5261 (mode, gen_lowpart (mode, inner), pos_rtx),
5262 gen_int_mode (mask, mode)));
5264 split = find_split_point (&SET_SRC (x), insn, true);
5265 if (split && split != &SET_SRC (x))
5266 return split;
5268 else
5270 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5271 int right_bits = GET_MODE_PRECISION (mode) - len;
5272 SUBST (SET_SRC (x),
5273 gen_rtx_fmt_ee
5274 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5275 gen_rtx_ASHIFT (mode,
5276 gen_lowpart (mode, inner),
5277 gen_int_shift_amount (mode, left_bits)),
5278 gen_int_shift_amount (mode, right_bits)));
5280 split = find_split_point (&SET_SRC (x), insn, true);
5281 if (split && split != &SET_SRC (x))
5282 return split;
5286 /* See if this is a simple operation with a constant as the second
5287 operand. It might be that this constant is out of range and hence
5288 could be used as a split point. */
5289 if (BINARY_P (SET_SRC (x))
5290 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5291 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5292 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5293 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5294 return &XEXP (SET_SRC (x), 1);
5296 /* Finally, see if this is a simple operation with its first operand
5297 not in a register. The operation might require this operand in a
5298 register, so return it as a split point. We can always do this
5299 because if the first operand were another operation, we would have
5300 already found it as a split point. */
5301 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5302 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5303 return &XEXP (SET_SRC (x), 0);
5305 return 0;
5307 case AND:
5308 case IOR:
5309 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5310 it is better to write this as (not (ior A B)) so we can split it.
5311 Similarly for IOR. */
5312 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5314 SUBST (*loc,
5315 gen_rtx_NOT (GET_MODE (x),
5316 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5317 GET_MODE (x),
5318 XEXP (XEXP (x, 0), 0),
5319 XEXP (XEXP (x, 1), 0))));
5320 return find_split_point (loc, insn, set_src);
5323 /* Many RISC machines have a large set of logical insns. If the
5324 second operand is a NOT, put it first so we will try to split the
5325 other operand first. */
5326 if (GET_CODE (XEXP (x, 1)) == NOT)
5328 rtx tem = XEXP (x, 0);
5329 SUBST (XEXP (x, 0), XEXP (x, 1));
5330 SUBST (XEXP (x, 1), tem);
5332 break;
5334 case PLUS:
5335 case MINUS:
5336 /* Canonicalization can produce (minus A (mult B C)), where C is a
5337 constant. It may be better to try splitting (plus (mult B -C) A)
5338 instead if this isn't a multiply by a power of two. */
5339 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5340 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5341 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5343 machine_mode mode = GET_MODE (x);
5344 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5345 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5346 SUBST (*loc, gen_rtx_PLUS (mode,
5347 gen_rtx_MULT (mode,
5348 XEXP (XEXP (x, 1), 0),
5349 gen_int_mode (other_int,
5350 mode)),
5351 XEXP (x, 0)));
5352 return find_split_point (loc, insn, set_src);
5355 /* Split at a multiply-accumulate instruction. However if this is
5356 the SET_SRC, we likely do not have such an instruction and it's
5357 worthless to try this split. */
5358 if (!set_src
5359 && (GET_CODE (XEXP (x, 0)) == MULT
5360 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5361 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5362 return loc;
5364 default:
5365 break;
5368 /* Otherwise, select our actions depending on our rtx class. */
5369 switch (GET_RTX_CLASS (code))
5371 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5372 case RTX_TERNARY:
5373 split = find_split_point (&XEXP (x, 2), insn, false);
5374 if (split)
5375 return split;
5376 /* fall through */
5377 case RTX_BIN_ARITH:
5378 case RTX_COMM_ARITH:
5379 case RTX_COMPARE:
5380 case RTX_COMM_COMPARE:
5381 split = find_split_point (&XEXP (x, 1), insn, false);
5382 if (split)
5383 return split;
5384 /* fall through */
5385 case RTX_UNARY:
5386 /* Some machines have (and (shift ...) ...) insns. If X is not
5387 an AND, but XEXP (X, 0) is, use it as our split point. */
5388 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5389 return &XEXP (x, 0);
5391 split = find_split_point (&XEXP (x, 0), insn, false);
5392 if (split)
5393 return split;
5394 return loc;
5396 default:
5397 /* Otherwise, we don't have a split point. */
5398 return 0;
5402 /* Throughout X, replace FROM with TO, and return the result.
5403 The result is TO if X is FROM;
5404 otherwise the result is X, but its contents may have been modified.
5405 If they were modified, a record was made in undobuf so that
5406 undo_all will (among other things) return X to its original state.
5408 If the number of changes necessary is too much to record to undo,
5409 the excess changes are not made, so the result is invalid.
5410 The changes already made can still be undone.
5411 undobuf.num_undo is incremented for such changes, so by testing that
5412 the caller can tell whether the result is valid.
5414 `n_occurrences' is incremented each time FROM is replaced.
5416 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5418 IN_COND is nonzero if we are at the top level of a condition.
5420 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5421 by copying if `n_occurrences' is nonzero. */
5423 static rtx
5424 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5426 enum rtx_code code = GET_CODE (x);
5427 machine_mode op0_mode = VOIDmode;
5428 const char *fmt;
5429 int len, i;
5430 rtx new_rtx;
5432 /* Two expressions are equal if they are identical copies of a shared
5433 RTX or if they are both registers with the same register number
5434 and mode. */
5436 #define COMBINE_RTX_EQUAL_P(X,Y) \
5437 ((X) == (Y) \
5438 || (REG_P (X) && REG_P (Y) \
5439 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5441 /* Do not substitute into clobbers of regs -- this will never result in
5442 valid RTL. */
5443 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5444 return x;
5446 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5448 n_occurrences++;
5449 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5452 /* If X and FROM are the same register but different modes, they
5453 will not have been seen as equal above. However, the log links code
5454 will make a LOG_LINKS entry for that case. If we do nothing, we
5455 will try to rerecognize our original insn and, when it succeeds,
5456 we will delete the feeding insn, which is incorrect.
5458 So force this insn not to match in this (rare) case. */
5459 if (! in_dest && code == REG && REG_P (from)
5460 && reg_overlap_mentioned_p (x, from))
5461 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5463 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5464 of which may contain things that can be combined. */
5465 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5466 return x;
5468 /* It is possible to have a subexpression appear twice in the insn.
5469 Suppose that FROM is a register that appears within TO.
5470 Then, after that subexpression has been scanned once by `subst',
5471 the second time it is scanned, TO may be found. If we were
5472 to scan TO here, we would find FROM within it and create a
5473 self-referent rtl structure which is completely wrong. */
5474 if (COMBINE_RTX_EQUAL_P (x, to))
5475 return to;
5477 /* Parallel asm_operands need special attention because all of the
5478 inputs are shared across the arms. Furthermore, unsharing the
5479 rtl results in recognition failures. Failure to handle this case
5480 specially can result in circular rtl.
5482 Solve this by doing a normal pass across the first entry of the
5483 parallel, and only processing the SET_DESTs of the subsequent
5484 entries. Ug. */
5486 if (code == PARALLEL
5487 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5488 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5490 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5492 /* If this substitution failed, this whole thing fails. */
5493 if (GET_CODE (new_rtx) == CLOBBER
5494 && XEXP (new_rtx, 0) == const0_rtx)
5495 return new_rtx;
5497 SUBST (XVECEXP (x, 0, 0), new_rtx);
5499 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5501 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5503 if (!REG_P (dest)
5504 && GET_CODE (dest) != CC0
5505 && GET_CODE (dest) != PC)
5507 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5509 /* If this substitution failed, this whole thing fails. */
5510 if (GET_CODE (new_rtx) == CLOBBER
5511 && XEXP (new_rtx, 0) == const0_rtx)
5512 return new_rtx;
5514 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5518 else
5520 len = GET_RTX_LENGTH (code);
5521 fmt = GET_RTX_FORMAT (code);
5523 /* We don't need to process a SET_DEST that is a register, CC0,
5524 or PC, so set up to skip this common case. All other cases
5525 where we want to suppress replacing something inside a
5526 SET_SRC are handled via the IN_DEST operand. */
5527 if (code == SET
5528 && (REG_P (SET_DEST (x))
5529 || GET_CODE (SET_DEST (x)) == CC0
5530 || GET_CODE (SET_DEST (x)) == PC))
5531 fmt = "ie";
5533 /* Trying to simplify the operands of a widening MULT is not likely
5534 to create RTL matching a machine insn. */
5535 if (code == MULT
5536 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5537 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5538 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5539 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5540 && REG_P (XEXP (XEXP (x, 0), 0))
5541 && REG_P (XEXP (XEXP (x, 1), 0))
5542 && from == to)
5543 return x;
5546 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5547 constant. */
5548 if (fmt[0] == 'e')
5549 op0_mode = GET_MODE (XEXP (x, 0));
5551 for (i = 0; i < len; i++)
5553 if (fmt[i] == 'E')
5555 int j;
5556 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5558 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5560 new_rtx = (unique_copy && n_occurrences
5561 ? copy_rtx (to) : to);
5562 n_occurrences++;
5564 else
5566 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5567 unique_copy);
5569 /* If this substitution failed, this whole thing
5570 fails. */
5571 if (GET_CODE (new_rtx) == CLOBBER
5572 && XEXP (new_rtx, 0) == const0_rtx)
5573 return new_rtx;
5576 SUBST (XVECEXP (x, i, j), new_rtx);
5579 else if (fmt[i] == 'e')
5581 /* If this is a register being set, ignore it. */
5582 new_rtx = XEXP (x, i);
5583 if (in_dest
5584 && i == 0
5585 && (((code == SUBREG || code == ZERO_EXTRACT)
5586 && REG_P (new_rtx))
5587 || code == STRICT_LOW_PART))
5590 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5592 /* In general, don't install a subreg involving two
5593 modes not tieable. It can worsen register
5594 allocation, and can even make invalid reload
5595 insns, since the reg inside may need to be copied
5596 from in the outside mode, and that may be invalid
5597 if it is an fp reg copied in integer mode.
5599 We allow two exceptions to this: It is valid if
5600 it is inside another SUBREG and the mode of that
5601 SUBREG and the mode of the inside of TO is
5602 tieable and it is valid if X is a SET that copies
5603 FROM to CC0. */
5605 if (GET_CODE (to) == SUBREG
5606 && !targetm.modes_tieable_p (GET_MODE (to),
5607 GET_MODE (SUBREG_REG (to)))
5608 && ! (code == SUBREG
5609 && (targetm.modes_tieable_p
5610 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5611 && (!HAVE_cc0
5612 || (! (code == SET
5613 && i == 1
5614 && XEXP (x, 0) == cc0_rtx))))
5615 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5617 if (code == SUBREG
5618 && REG_P (to)
5619 && REGNO (to) < FIRST_PSEUDO_REGISTER
5620 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5621 SUBREG_BYTE (x),
5622 GET_MODE (x)) < 0)
5623 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5625 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5626 n_occurrences++;
5628 else
5629 /* If we are in a SET_DEST, suppress most cases unless we
5630 have gone inside a MEM, in which case we want to
5631 simplify the address. We assume here that things that
5632 are actually part of the destination have their inner
5633 parts in the first expression. This is true for SUBREG,
5634 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5635 things aside from REG and MEM that should appear in a
5636 SET_DEST. */
5637 new_rtx = subst (XEXP (x, i), from, to,
5638 (((in_dest
5639 && (code == SUBREG || code == STRICT_LOW_PART
5640 || code == ZERO_EXTRACT))
5641 || code == SET)
5642 && i == 0),
5643 code == IF_THEN_ELSE && i == 0,
5644 unique_copy);
5646 /* If we found that we will have to reject this combination,
5647 indicate that by returning the CLOBBER ourselves, rather than
5648 an expression containing it. This will speed things up as
5649 well as prevent accidents where two CLOBBERs are considered
5650 to be equal, thus producing an incorrect simplification. */
5652 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5653 return new_rtx;
5655 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5657 machine_mode mode = GET_MODE (x);
5659 x = simplify_subreg (GET_MODE (x), new_rtx,
5660 GET_MODE (SUBREG_REG (x)),
5661 SUBREG_BYTE (x));
5662 if (! x)
5663 x = gen_rtx_CLOBBER (mode, const0_rtx);
5665 else if (CONST_SCALAR_INT_P (new_rtx)
5666 && (GET_CODE (x) == ZERO_EXTEND
5667 || GET_CODE (x) == FLOAT
5668 || GET_CODE (x) == UNSIGNED_FLOAT))
5670 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5671 new_rtx,
5672 GET_MODE (XEXP (x, 0)));
5673 if (!x)
5674 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5676 else
5677 SUBST (XEXP (x, i), new_rtx);
5682 /* Check if we are loading something from the constant pool via float
5683 extension; in this case we would undo compress_float_constant
5684 optimization and degenerate constant load to an immediate value. */
5685 if (GET_CODE (x) == FLOAT_EXTEND
5686 && MEM_P (XEXP (x, 0))
5687 && MEM_READONLY_P (XEXP (x, 0)))
5689 rtx tmp = avoid_constant_pool_reference (x);
5690 if (x != tmp)
5691 return x;
5694 /* Try to simplify X. If the simplification changed the code, it is likely
5695 that further simplification will help, so loop, but limit the number
5696 of repetitions that will be performed. */
5698 for (i = 0; i < 4; i++)
5700 /* If X is sufficiently simple, don't bother trying to do anything
5701 with it. */
5702 if (code != CONST_INT && code != REG && code != CLOBBER)
5703 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5705 if (GET_CODE (x) == code)
5706 break;
5708 code = GET_CODE (x);
5710 /* We no longer know the original mode of operand 0 since we
5711 have changed the form of X) */
5712 op0_mode = VOIDmode;
5715 return x;
5718 /* If X is a commutative operation whose operands are not in the canonical
5719 order, use substitutions to swap them. */
5721 static void
5722 maybe_swap_commutative_operands (rtx x)
5724 if (COMMUTATIVE_ARITH_P (x)
5725 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5727 rtx temp = XEXP (x, 0);
5728 SUBST (XEXP (x, 0), XEXP (x, 1));
5729 SUBST (XEXP (x, 1), temp);
5733 /* Simplify X, a piece of RTL. We just operate on the expression at the
5734 outer level; call `subst' to simplify recursively. Return the new
5735 expression.
5737 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5738 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5739 of a condition. */
5741 static rtx
5742 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5743 int in_cond)
5745 enum rtx_code code = GET_CODE (x);
5746 machine_mode mode = GET_MODE (x);
5747 scalar_int_mode int_mode;
5748 rtx temp;
5749 int i;
5751 /* If this is a commutative operation, put a constant last and a complex
5752 expression first. We don't need to do this for comparisons here. */
5753 maybe_swap_commutative_operands (x);
5755 /* Try to fold this expression in case we have constants that weren't
5756 present before. */
5757 temp = 0;
5758 switch (GET_RTX_CLASS (code))
5760 case RTX_UNARY:
5761 if (op0_mode == VOIDmode)
5762 op0_mode = GET_MODE (XEXP (x, 0));
5763 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5764 break;
5765 case RTX_COMPARE:
5766 case RTX_COMM_COMPARE:
5768 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5769 if (cmp_mode == VOIDmode)
5771 cmp_mode = GET_MODE (XEXP (x, 1));
5772 if (cmp_mode == VOIDmode)
5773 cmp_mode = op0_mode;
5775 temp = simplify_relational_operation (code, mode, cmp_mode,
5776 XEXP (x, 0), XEXP (x, 1));
5778 break;
5779 case RTX_COMM_ARITH:
5780 case RTX_BIN_ARITH:
5781 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5782 break;
5783 case RTX_BITFIELD_OPS:
5784 case RTX_TERNARY:
5785 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5786 XEXP (x, 1), XEXP (x, 2));
5787 break;
5788 default:
5789 break;
5792 if (temp)
5794 x = temp;
5795 code = GET_CODE (temp);
5796 op0_mode = VOIDmode;
5797 mode = GET_MODE (temp);
5800 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5801 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5802 things. Check for cases where both arms are testing the same
5803 condition.
5805 Don't do anything if all operands are very simple. */
5807 if ((BINARY_P (x)
5808 && ((!OBJECT_P (XEXP (x, 0))
5809 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5810 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5811 || (!OBJECT_P (XEXP (x, 1))
5812 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5813 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5814 || (UNARY_P (x)
5815 && (!OBJECT_P (XEXP (x, 0))
5816 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5817 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5819 rtx cond, true_rtx, false_rtx;
5821 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5822 if (cond != 0
5823 /* If everything is a comparison, what we have is highly unlikely
5824 to be simpler, so don't use it. */
5825 && ! (COMPARISON_P (x)
5826 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5827 /* Similarly, if we end up with one of the expressions the same
5828 as the original, it is certainly not simpler. */
5829 && ! rtx_equal_p (x, true_rtx)
5830 && ! rtx_equal_p (x, false_rtx))
5832 rtx cop1 = const0_rtx;
5833 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5835 if (cond_code == NE && COMPARISON_P (cond))
5836 return x;
5838 /* Simplify the alternative arms; this may collapse the true and
5839 false arms to store-flag values. Be careful to use copy_rtx
5840 here since true_rtx or false_rtx might share RTL with x as a
5841 result of the if_then_else_cond call above. */
5842 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5843 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5845 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5846 is unlikely to be simpler. */
5847 if (general_operand (true_rtx, VOIDmode)
5848 && general_operand (false_rtx, VOIDmode))
5850 enum rtx_code reversed;
5852 /* Restarting if we generate a store-flag expression will cause
5853 us to loop. Just drop through in this case. */
5855 /* If the result values are STORE_FLAG_VALUE and zero, we can
5856 just make the comparison operation. */
5857 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5858 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5859 cond, cop1);
5860 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5861 && ((reversed = reversed_comparison_code_parts
5862 (cond_code, cond, cop1, NULL))
5863 != UNKNOWN))
5864 x = simplify_gen_relational (reversed, mode, VOIDmode,
5865 cond, cop1);
5867 /* Likewise, we can make the negate of a comparison operation
5868 if the result values are - STORE_FLAG_VALUE and zero. */
5869 else if (CONST_INT_P (true_rtx)
5870 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5871 && false_rtx == const0_rtx)
5872 x = simplify_gen_unary (NEG, mode,
5873 simplify_gen_relational (cond_code,
5874 mode, VOIDmode,
5875 cond, cop1),
5876 mode);
5877 else if (CONST_INT_P (false_rtx)
5878 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5879 && true_rtx == const0_rtx
5880 && ((reversed = reversed_comparison_code_parts
5881 (cond_code, cond, cop1, NULL))
5882 != UNKNOWN))
5883 x = simplify_gen_unary (NEG, mode,
5884 simplify_gen_relational (reversed,
5885 mode, VOIDmode,
5886 cond, cop1),
5887 mode);
5888 else
5889 return gen_rtx_IF_THEN_ELSE (mode,
5890 simplify_gen_relational (cond_code,
5891 mode,
5892 VOIDmode,
5893 cond,
5894 cop1),
5895 true_rtx, false_rtx);
5897 code = GET_CODE (x);
5898 op0_mode = VOIDmode;
5903 /* First see if we can apply the inverse distributive law. */
5904 if (code == PLUS || code == MINUS
5905 || code == AND || code == IOR || code == XOR)
5907 x = apply_distributive_law (x);
5908 code = GET_CODE (x);
5909 op0_mode = VOIDmode;
5912 /* If CODE is an associative operation not otherwise handled, see if we
5913 can associate some operands. This can win if they are constants or
5914 if they are logically related (i.e. (a & b) & a). */
5915 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5916 || code == AND || code == IOR || code == XOR
5917 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5918 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5919 || (flag_associative_math && FLOAT_MODE_P (mode))))
5921 if (GET_CODE (XEXP (x, 0)) == code)
5923 rtx other = XEXP (XEXP (x, 0), 0);
5924 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5925 rtx inner_op1 = XEXP (x, 1);
5926 rtx inner;
5928 /* Make sure we pass the constant operand if any as the second
5929 one if this is a commutative operation. */
5930 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5931 std::swap (inner_op0, inner_op1);
5932 inner = simplify_binary_operation (code == MINUS ? PLUS
5933 : code == DIV ? MULT
5934 : code,
5935 mode, inner_op0, inner_op1);
5937 /* For commutative operations, try the other pair if that one
5938 didn't simplify. */
5939 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5941 other = XEXP (XEXP (x, 0), 1);
5942 inner = simplify_binary_operation (code, mode,
5943 XEXP (XEXP (x, 0), 0),
5944 XEXP (x, 1));
5947 if (inner)
5948 return simplify_gen_binary (code, mode, other, inner);
5952 /* A little bit of algebraic simplification here. */
5953 switch (code)
5955 case MEM:
5956 /* Ensure that our address has any ASHIFTs converted to MULT in case
5957 address-recognizing predicates are called later. */
5958 temp = make_compound_operation (XEXP (x, 0), MEM);
5959 SUBST (XEXP (x, 0), temp);
5960 break;
5962 case SUBREG:
5963 if (op0_mode == VOIDmode)
5964 op0_mode = GET_MODE (SUBREG_REG (x));
5966 /* See if this can be moved to simplify_subreg. */
5967 if (CONSTANT_P (SUBREG_REG (x))
5968 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5969 /* Don't call gen_lowpart if the inner mode
5970 is VOIDmode and we cannot simplify it, as SUBREG without
5971 inner mode is invalid. */
5972 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5973 || gen_lowpart_common (mode, SUBREG_REG (x))))
5974 return gen_lowpart (mode, SUBREG_REG (x));
5976 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5977 break;
5979 rtx temp;
5980 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5981 SUBREG_BYTE (x));
5982 if (temp)
5983 return temp;
5985 /* If op is known to have all lower bits zero, the result is zero. */
5986 scalar_int_mode int_mode, int_op0_mode;
5987 if (!in_dest
5988 && is_a <scalar_int_mode> (mode, &int_mode)
5989 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5990 && (GET_MODE_PRECISION (int_mode)
5991 < GET_MODE_PRECISION (int_op0_mode))
5992 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5993 SUBREG_BYTE (x))
5994 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5995 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5996 & GET_MODE_MASK (int_mode)) == 0)
5997 && !side_effects_p (SUBREG_REG (x)))
5998 return CONST0_RTX (int_mode);
6001 /* Don't change the mode of the MEM if that would change the meaning
6002 of the address. */
6003 if (MEM_P (SUBREG_REG (x))
6004 && (MEM_VOLATILE_P (SUBREG_REG (x))
6005 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
6006 MEM_ADDR_SPACE (SUBREG_REG (x)))))
6007 return gen_rtx_CLOBBER (mode, const0_rtx);
6009 /* Note that we cannot do any narrowing for non-constants since
6010 we might have been counting on using the fact that some bits were
6011 zero. We now do this in the SET. */
6013 break;
6015 case NEG:
6016 temp = expand_compound_operation (XEXP (x, 0));
6018 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6019 replaced by (lshiftrt X C). This will convert
6020 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6022 if (GET_CODE (temp) == ASHIFTRT
6023 && CONST_INT_P (XEXP (temp, 1))
6024 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
6025 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
6026 INTVAL (XEXP (temp, 1)));
6028 /* If X has only a single bit that might be nonzero, say, bit I, convert
6029 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6030 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6031 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6032 or a SUBREG of one since we'd be making the expression more
6033 complex if it was just a register. */
6035 if (!REG_P (temp)
6036 && ! (GET_CODE (temp) == SUBREG
6037 && REG_P (SUBREG_REG (temp)))
6038 && is_a <scalar_int_mode> (mode, &int_mode)
6039 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
6041 rtx temp1 = simplify_shift_const
6042 (NULL_RTX, ASHIFTRT, int_mode,
6043 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
6044 GET_MODE_PRECISION (int_mode) - 1 - i),
6045 GET_MODE_PRECISION (int_mode) - 1 - i);
6047 /* If all we did was surround TEMP with the two shifts, we
6048 haven't improved anything, so don't use it. Otherwise,
6049 we are better off with TEMP1. */
6050 if (GET_CODE (temp1) != ASHIFTRT
6051 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
6052 || XEXP (XEXP (temp1, 0), 0) != temp)
6053 return temp1;
6055 break;
6057 case TRUNCATE:
6058 /* We can't handle truncation to a partial integer mode here
6059 because we don't know the real bitsize of the partial
6060 integer mode. */
6061 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6062 break;
6064 if (HWI_COMPUTABLE_MODE_P (mode))
6065 SUBST (XEXP (x, 0),
6066 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6067 GET_MODE_MASK (mode), 0));
6069 /* We can truncate a constant value and return it. */
6071 poly_int64 c;
6072 if (poly_int_rtx_p (XEXP (x, 0), &c))
6073 return gen_int_mode (c, mode);
6076 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6077 whose value is a comparison can be replaced with a subreg if
6078 STORE_FLAG_VALUE permits. */
6079 if (HWI_COMPUTABLE_MODE_P (mode)
6080 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6081 && (temp = get_last_value (XEXP (x, 0)))
6082 && COMPARISON_P (temp))
6083 return gen_lowpart (mode, XEXP (x, 0));
6084 break;
6086 case CONST:
6087 /* (const (const X)) can become (const X). Do it this way rather than
6088 returning the inner CONST since CONST can be shared with a
6089 REG_EQUAL note. */
6090 if (GET_CODE (XEXP (x, 0)) == CONST)
6091 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6092 break;
6094 case LO_SUM:
6095 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6096 can add in an offset. find_split_point will split this address up
6097 again if it doesn't match. */
6098 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6099 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6100 return XEXP (x, 1);
6101 break;
6103 case PLUS:
6104 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6105 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6106 bit-field and can be replaced by either a sign_extend or a
6107 sign_extract. The `and' may be a zero_extend and the two
6108 <c>, -<c> constants may be reversed. */
6109 if (GET_CODE (XEXP (x, 0)) == XOR
6110 && is_a <scalar_int_mode> (mode, &int_mode)
6111 && CONST_INT_P (XEXP (x, 1))
6112 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6113 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6114 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6115 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6116 && HWI_COMPUTABLE_MODE_P (int_mode)
6117 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6118 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6119 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6120 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6121 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6122 && known_eq ((GET_MODE_PRECISION
6123 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6124 (unsigned int) i + 1))))
6125 return simplify_shift_const
6126 (NULL_RTX, ASHIFTRT, int_mode,
6127 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6128 XEXP (XEXP (XEXP (x, 0), 0), 0),
6129 GET_MODE_PRECISION (int_mode) - (i + 1)),
6130 GET_MODE_PRECISION (int_mode) - (i + 1));
6132 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6133 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6134 the bitsize of the mode - 1. This allows simplification of
6135 "a = (b & 8) == 0;" */
6136 if (XEXP (x, 1) == constm1_rtx
6137 && !REG_P (XEXP (x, 0))
6138 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6139 && REG_P (SUBREG_REG (XEXP (x, 0))))
6140 && is_a <scalar_int_mode> (mode, &int_mode)
6141 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6142 return simplify_shift_const
6143 (NULL_RTX, ASHIFTRT, int_mode,
6144 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6145 gen_rtx_XOR (int_mode, XEXP (x, 0),
6146 const1_rtx),
6147 GET_MODE_PRECISION (int_mode) - 1),
6148 GET_MODE_PRECISION (int_mode) - 1);
6150 /* If we are adding two things that have no bits in common, convert
6151 the addition into an IOR. This will often be further simplified,
6152 for example in cases like ((a & 1) + (a & 2)), which can
6153 become a & 3. */
6155 if (HWI_COMPUTABLE_MODE_P (mode)
6156 && (nonzero_bits (XEXP (x, 0), mode)
6157 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6159 /* Try to simplify the expression further. */
6160 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6161 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6163 /* If we could, great. If not, do not go ahead with the IOR
6164 replacement, since PLUS appears in many special purpose
6165 address arithmetic instructions. */
6166 if (GET_CODE (temp) != CLOBBER
6167 && (GET_CODE (temp) != IOR
6168 || ((XEXP (temp, 0) != XEXP (x, 0)
6169 || XEXP (temp, 1) != XEXP (x, 1))
6170 && (XEXP (temp, 0) != XEXP (x, 1)
6171 || XEXP (temp, 1) != XEXP (x, 0)))))
6172 return temp;
6175 /* Canonicalize x + x into x << 1. */
6176 if (GET_MODE_CLASS (mode) == MODE_INT
6177 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6178 && !side_effects_p (XEXP (x, 0)))
6179 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6181 break;
6183 case MINUS:
6184 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6185 (and <foo> (const_int pow2-1)) */
6186 if (is_a <scalar_int_mode> (mode, &int_mode)
6187 && GET_CODE (XEXP (x, 1)) == AND
6188 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6189 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6190 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6191 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6192 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6193 break;
6195 case MULT:
6196 /* If we have (mult (plus A B) C), apply the distributive law and then
6197 the inverse distributive law to see if things simplify. This
6198 occurs mostly in addresses, often when unrolling loops. */
6200 if (GET_CODE (XEXP (x, 0)) == PLUS)
6202 rtx result = distribute_and_simplify_rtx (x, 0);
6203 if (result)
6204 return result;
6207 /* Try simplify a*(b/c) as (a*b)/c. */
6208 if (FLOAT_MODE_P (mode) && flag_associative_math
6209 && GET_CODE (XEXP (x, 0)) == DIV)
6211 rtx tem = simplify_binary_operation (MULT, mode,
6212 XEXP (XEXP (x, 0), 0),
6213 XEXP (x, 1));
6214 if (tem)
6215 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6217 break;
6219 case UDIV:
6220 /* If this is a divide by a power of two, treat it as a shift if
6221 its first operand is a shift. */
6222 if (is_a <scalar_int_mode> (mode, &int_mode)
6223 && CONST_INT_P (XEXP (x, 1))
6224 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6225 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6226 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6227 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6228 || GET_CODE (XEXP (x, 0)) == ROTATE
6229 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6230 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6231 XEXP (x, 0), i);
6232 break;
6234 case EQ: case NE:
6235 case GT: case GTU: case GE: case GEU:
6236 case LT: case LTU: case LE: case LEU:
6237 case UNEQ: case LTGT:
6238 case UNGT: case UNGE:
6239 case UNLT: case UNLE:
6240 case UNORDERED: case ORDERED:
6241 /* If the first operand is a condition code, we can't do anything
6242 with it. */
6243 if (GET_CODE (XEXP (x, 0)) == COMPARE
6244 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6245 && ! CC0_P (XEXP (x, 0))))
6247 rtx op0 = XEXP (x, 0);
6248 rtx op1 = XEXP (x, 1);
6249 enum rtx_code new_code;
6251 if (GET_CODE (op0) == COMPARE)
6252 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6254 /* Simplify our comparison, if possible. */
6255 new_code = simplify_comparison (code, &op0, &op1);
6257 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6258 if only the low-order bit is possibly nonzero in X (such as when
6259 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6260 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6261 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6262 (plus X 1).
6264 Remove any ZERO_EXTRACT we made when thinking this was a
6265 comparison. It may now be simpler to use, e.g., an AND. If a
6266 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6267 the call to make_compound_operation in the SET case.
6269 Don't apply these optimizations if the caller would
6270 prefer a comparison rather than a value.
6271 E.g., for the condition in an IF_THEN_ELSE most targets need
6272 an explicit comparison. */
6274 if (in_cond)
6277 else if (STORE_FLAG_VALUE == 1
6278 && new_code == NE
6279 && is_int_mode (mode, &int_mode)
6280 && op1 == const0_rtx
6281 && int_mode == GET_MODE (op0)
6282 && nonzero_bits (op0, int_mode) == 1)
6283 return gen_lowpart (int_mode,
6284 expand_compound_operation (op0));
6286 else if (STORE_FLAG_VALUE == 1
6287 && new_code == NE
6288 && is_int_mode (mode, &int_mode)
6289 && op1 == const0_rtx
6290 && int_mode == GET_MODE (op0)
6291 && (num_sign_bit_copies (op0, int_mode)
6292 == GET_MODE_PRECISION (int_mode)))
6294 op0 = expand_compound_operation (op0);
6295 return simplify_gen_unary (NEG, int_mode,
6296 gen_lowpart (int_mode, op0),
6297 int_mode);
6300 else if (STORE_FLAG_VALUE == 1
6301 && new_code == EQ
6302 && is_int_mode (mode, &int_mode)
6303 && op1 == const0_rtx
6304 && int_mode == GET_MODE (op0)
6305 && nonzero_bits (op0, int_mode) == 1)
6307 op0 = expand_compound_operation (op0);
6308 return simplify_gen_binary (XOR, int_mode,
6309 gen_lowpart (int_mode, op0),
6310 const1_rtx);
6313 else if (STORE_FLAG_VALUE == 1
6314 && new_code == EQ
6315 && is_int_mode (mode, &int_mode)
6316 && op1 == const0_rtx
6317 && int_mode == GET_MODE (op0)
6318 && (num_sign_bit_copies (op0, int_mode)
6319 == GET_MODE_PRECISION (int_mode)))
6321 op0 = expand_compound_operation (op0);
6322 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6325 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6326 those above. */
6327 if (in_cond)
6330 else if (STORE_FLAG_VALUE == -1
6331 && new_code == NE
6332 && is_int_mode (mode, &int_mode)
6333 && op1 == const0_rtx
6334 && int_mode == GET_MODE (op0)
6335 && (num_sign_bit_copies (op0, int_mode)
6336 == GET_MODE_PRECISION (int_mode)))
6337 return gen_lowpart (int_mode, expand_compound_operation (op0));
6339 else if (STORE_FLAG_VALUE == -1
6340 && new_code == NE
6341 && is_int_mode (mode, &int_mode)
6342 && op1 == const0_rtx
6343 && int_mode == GET_MODE (op0)
6344 && nonzero_bits (op0, int_mode) == 1)
6346 op0 = expand_compound_operation (op0);
6347 return simplify_gen_unary (NEG, int_mode,
6348 gen_lowpart (int_mode, op0),
6349 int_mode);
6352 else if (STORE_FLAG_VALUE == -1
6353 && new_code == EQ
6354 && is_int_mode (mode, &int_mode)
6355 && op1 == const0_rtx
6356 && int_mode == GET_MODE (op0)
6357 && (num_sign_bit_copies (op0, int_mode)
6358 == GET_MODE_PRECISION (int_mode)))
6360 op0 = expand_compound_operation (op0);
6361 return simplify_gen_unary (NOT, int_mode,
6362 gen_lowpart (int_mode, op0),
6363 int_mode);
6366 /* If X is 0/1, (eq X 0) is X-1. */
6367 else if (STORE_FLAG_VALUE == -1
6368 && new_code == EQ
6369 && is_int_mode (mode, &int_mode)
6370 && op1 == const0_rtx
6371 && int_mode == GET_MODE (op0)
6372 && nonzero_bits (op0, int_mode) == 1)
6374 op0 = expand_compound_operation (op0);
6375 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6378 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6379 one bit that might be nonzero, we can convert (ne x 0) to
6380 (ashift x c) where C puts the bit in the sign bit. Remove any
6381 AND with STORE_FLAG_VALUE when we are done, since we are only
6382 going to test the sign bit. */
6383 if (new_code == NE
6384 && is_int_mode (mode, &int_mode)
6385 && HWI_COMPUTABLE_MODE_P (int_mode)
6386 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6387 && op1 == const0_rtx
6388 && int_mode == GET_MODE (op0)
6389 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6391 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6392 expand_compound_operation (op0),
6393 GET_MODE_PRECISION (int_mode) - 1 - i);
6394 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6395 return XEXP (x, 0);
6396 else
6397 return x;
6400 /* If the code changed, return a whole new comparison.
6401 We also need to avoid using SUBST in cases where
6402 simplify_comparison has widened a comparison with a CONST_INT,
6403 since in that case the wider CONST_INT may fail the sanity
6404 checks in do_SUBST. */
6405 if (new_code != code
6406 || (CONST_INT_P (op1)
6407 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6408 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6409 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6411 /* Otherwise, keep this operation, but maybe change its operands.
6412 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6413 SUBST (XEXP (x, 0), op0);
6414 SUBST (XEXP (x, 1), op1);
6416 break;
6418 case IF_THEN_ELSE:
6419 return simplify_if_then_else (x);
6421 case ZERO_EXTRACT:
6422 case SIGN_EXTRACT:
6423 case ZERO_EXTEND:
6424 case SIGN_EXTEND:
6425 /* If we are processing SET_DEST, we are done. */
6426 if (in_dest)
6427 return x;
6429 return expand_compound_operation (x);
6431 case SET:
6432 return simplify_set (x);
6434 case AND:
6435 case IOR:
6436 return simplify_logical (x);
6438 case ASHIFT:
6439 case LSHIFTRT:
6440 case ASHIFTRT:
6441 case ROTATE:
6442 case ROTATERT:
6443 /* If this is a shift by a constant amount, simplify it. */
6444 if (CONST_INT_P (XEXP (x, 1)))
6445 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6446 INTVAL (XEXP (x, 1)));
6448 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6449 SUBST (XEXP (x, 1),
6450 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6451 (HOST_WIDE_INT_1U
6452 << exact_log2 (GET_MODE_UNIT_BITSIZE
6453 (GET_MODE (x))))
6454 - 1,
6455 0));
6456 break;
6458 default:
6459 break;
6462 return x;
6465 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6467 static rtx
6468 simplify_if_then_else (rtx x)
6470 machine_mode mode = GET_MODE (x);
6471 rtx cond = XEXP (x, 0);
6472 rtx true_rtx = XEXP (x, 1);
6473 rtx false_rtx = XEXP (x, 2);
6474 enum rtx_code true_code = GET_CODE (cond);
6475 int comparison_p = COMPARISON_P (cond);
6476 rtx temp;
6477 int i;
6478 enum rtx_code false_code;
6479 rtx reversed;
6480 scalar_int_mode int_mode, inner_mode;
6482 /* Simplify storing of the truth value. */
6483 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6484 return simplify_gen_relational (true_code, mode, VOIDmode,
6485 XEXP (cond, 0), XEXP (cond, 1));
6487 /* Also when the truth value has to be reversed. */
6488 if (comparison_p
6489 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6490 && (reversed = reversed_comparison (cond, mode)))
6491 return reversed;
6493 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6494 in it is being compared against certain values. Get the true and false
6495 comparisons and see if that says anything about the value of each arm. */
6497 if (comparison_p
6498 && ((false_code = reversed_comparison_code (cond, NULL))
6499 != UNKNOWN)
6500 && REG_P (XEXP (cond, 0)))
6502 HOST_WIDE_INT nzb;
6503 rtx from = XEXP (cond, 0);
6504 rtx true_val = XEXP (cond, 1);
6505 rtx false_val = true_val;
6506 int swapped = 0;
6508 /* If FALSE_CODE is EQ, swap the codes and arms. */
6510 if (false_code == EQ)
6512 swapped = 1, true_code = EQ, false_code = NE;
6513 std::swap (true_rtx, false_rtx);
6516 scalar_int_mode from_mode;
6517 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6519 /* If we are comparing against zero and the expression being
6520 tested has only a single bit that might be nonzero, that is
6521 its value when it is not equal to zero. Similarly if it is
6522 known to be -1 or 0. */
6523 if (true_code == EQ
6524 && true_val == const0_rtx
6525 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6527 false_code = EQ;
6528 false_val = gen_int_mode (nzb, from_mode);
6530 else if (true_code == EQ
6531 && true_val == const0_rtx
6532 && (num_sign_bit_copies (from, from_mode)
6533 == GET_MODE_PRECISION (from_mode)))
6535 false_code = EQ;
6536 false_val = constm1_rtx;
6540 /* Now simplify an arm if we know the value of the register in the
6541 branch and it is used in the arm. Be careful due to the potential
6542 of locally-shared RTL. */
6544 if (reg_mentioned_p (from, true_rtx))
6545 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6546 from, true_val),
6547 pc_rtx, pc_rtx, 0, 0, 0);
6548 if (reg_mentioned_p (from, false_rtx))
6549 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6550 from, false_val),
6551 pc_rtx, pc_rtx, 0, 0, 0);
6553 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6554 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6556 true_rtx = XEXP (x, 1);
6557 false_rtx = XEXP (x, 2);
6558 true_code = GET_CODE (cond);
6561 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6562 reversed, do so to avoid needing two sets of patterns for
6563 subtract-and-branch insns. Similarly if we have a constant in the true
6564 arm, the false arm is the same as the first operand of the comparison, or
6565 the false arm is more complicated than the true arm. */
6567 if (comparison_p
6568 && reversed_comparison_code (cond, NULL) != UNKNOWN
6569 && (true_rtx == pc_rtx
6570 || (CONSTANT_P (true_rtx)
6571 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6572 || true_rtx == const0_rtx
6573 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6574 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6575 && !OBJECT_P (false_rtx))
6576 || reg_mentioned_p (true_rtx, false_rtx)
6577 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6579 true_code = reversed_comparison_code (cond, NULL);
6580 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6581 SUBST (XEXP (x, 1), false_rtx);
6582 SUBST (XEXP (x, 2), true_rtx);
6584 std::swap (true_rtx, false_rtx);
6585 cond = XEXP (x, 0);
6587 /* It is possible that the conditional has been simplified out. */
6588 true_code = GET_CODE (cond);
6589 comparison_p = COMPARISON_P (cond);
6592 /* If the two arms are identical, we don't need the comparison. */
6594 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6595 return true_rtx;
6597 /* Convert a == b ? b : a to "a". */
6598 if (true_code == EQ && ! side_effects_p (cond)
6599 && !HONOR_NANS (mode)
6600 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6601 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6602 return false_rtx;
6603 else if (true_code == NE && ! side_effects_p (cond)
6604 && !HONOR_NANS (mode)
6605 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6606 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6607 return true_rtx;
6609 /* Look for cases where we have (abs x) or (neg (abs X)). */
6611 if (GET_MODE_CLASS (mode) == MODE_INT
6612 && comparison_p
6613 && XEXP (cond, 1) == const0_rtx
6614 && GET_CODE (false_rtx) == NEG
6615 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6616 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6617 && ! side_effects_p (true_rtx))
6618 switch (true_code)
6620 case GT:
6621 case GE:
6622 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6623 case LT:
6624 case LE:
6625 return
6626 simplify_gen_unary (NEG, mode,
6627 simplify_gen_unary (ABS, mode, true_rtx, mode),
6628 mode);
6629 default:
6630 break;
6633 /* Look for MIN or MAX. */
6635 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6636 && comparison_p
6637 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6638 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6639 && ! side_effects_p (cond))
6640 switch (true_code)
6642 case GE:
6643 case GT:
6644 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6645 case LE:
6646 case LT:
6647 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6648 case GEU:
6649 case GTU:
6650 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6651 case LEU:
6652 case LTU:
6653 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6654 default:
6655 break;
6658 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6659 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6660 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6661 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6662 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6663 neither 1 or -1, but it isn't worth checking for. */
6665 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6666 && comparison_p
6667 && is_int_mode (mode, &int_mode)
6668 && ! side_effects_p (x))
6670 rtx t = make_compound_operation (true_rtx, SET);
6671 rtx f = make_compound_operation (false_rtx, SET);
6672 rtx cond_op0 = XEXP (cond, 0);
6673 rtx cond_op1 = XEXP (cond, 1);
6674 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6675 scalar_int_mode m = int_mode;
6676 rtx z = 0, c1 = NULL_RTX;
6678 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6679 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6680 || GET_CODE (t) == ASHIFT
6681 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6682 && rtx_equal_p (XEXP (t, 0), f))
6683 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6685 /* If an identity-zero op is commutative, check whether there
6686 would be a match if we swapped the operands. */
6687 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6688 || GET_CODE (t) == XOR)
6689 && rtx_equal_p (XEXP (t, 1), f))
6690 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6691 else if (GET_CODE (t) == SIGN_EXTEND
6692 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6693 && (GET_CODE (XEXP (t, 0)) == PLUS
6694 || GET_CODE (XEXP (t, 0)) == MINUS
6695 || GET_CODE (XEXP (t, 0)) == IOR
6696 || GET_CODE (XEXP (t, 0)) == XOR
6697 || GET_CODE (XEXP (t, 0)) == ASHIFT
6698 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6699 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6700 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6701 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6702 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6703 && (num_sign_bit_copies (f, GET_MODE (f))
6704 > (unsigned int)
6705 (GET_MODE_PRECISION (int_mode)
6706 - GET_MODE_PRECISION (inner_mode))))
6708 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6709 extend_op = SIGN_EXTEND;
6710 m = inner_mode;
6712 else if (GET_CODE (t) == SIGN_EXTEND
6713 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6714 && (GET_CODE (XEXP (t, 0)) == PLUS
6715 || GET_CODE (XEXP (t, 0)) == IOR
6716 || GET_CODE (XEXP (t, 0)) == XOR)
6717 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6718 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6719 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6720 && (num_sign_bit_copies (f, GET_MODE (f))
6721 > (unsigned int)
6722 (GET_MODE_PRECISION (int_mode)
6723 - GET_MODE_PRECISION (inner_mode))))
6725 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6726 extend_op = SIGN_EXTEND;
6727 m = inner_mode;
6729 else if (GET_CODE (t) == ZERO_EXTEND
6730 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6731 && (GET_CODE (XEXP (t, 0)) == PLUS
6732 || GET_CODE (XEXP (t, 0)) == MINUS
6733 || GET_CODE (XEXP (t, 0)) == IOR
6734 || GET_CODE (XEXP (t, 0)) == XOR
6735 || GET_CODE (XEXP (t, 0)) == ASHIFT
6736 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6737 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6738 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6739 && HWI_COMPUTABLE_MODE_P (int_mode)
6740 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6741 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6742 && ((nonzero_bits (f, GET_MODE (f))
6743 & ~GET_MODE_MASK (inner_mode))
6744 == 0))
6746 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6747 extend_op = ZERO_EXTEND;
6748 m = inner_mode;
6750 else if (GET_CODE (t) == ZERO_EXTEND
6751 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6752 && (GET_CODE (XEXP (t, 0)) == PLUS
6753 || GET_CODE (XEXP (t, 0)) == IOR
6754 || GET_CODE (XEXP (t, 0)) == XOR)
6755 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6756 && HWI_COMPUTABLE_MODE_P (int_mode)
6757 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6758 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6759 && ((nonzero_bits (f, GET_MODE (f))
6760 & ~GET_MODE_MASK (inner_mode))
6761 == 0))
6763 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6764 extend_op = ZERO_EXTEND;
6765 m = inner_mode;
6768 if (z)
6770 machine_mode cm = m;
6771 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6772 && GET_MODE (c1) != VOIDmode)
6773 cm = GET_MODE (c1);
6774 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6775 cond_op0, cond_op1),
6776 pc_rtx, pc_rtx, 0, 0, 0);
6777 temp = simplify_gen_binary (MULT, cm, temp,
6778 simplify_gen_binary (MULT, cm, c1,
6779 const_true_rtx));
6780 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6781 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6783 if (extend_op != UNKNOWN)
6784 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6786 return temp;
6790 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6791 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6792 negation of a single bit, we can convert this operation to a shift. We
6793 can actually do this more generally, but it doesn't seem worth it. */
6795 if (true_code == NE
6796 && is_a <scalar_int_mode> (mode, &int_mode)
6797 && XEXP (cond, 1) == const0_rtx
6798 && false_rtx == const0_rtx
6799 && CONST_INT_P (true_rtx)
6800 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6801 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6802 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6803 == GET_MODE_PRECISION (int_mode))
6804 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6805 return
6806 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6807 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6809 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6810 non-zero bit in A is C1. */
6811 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6812 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6813 && is_a <scalar_int_mode> (mode, &int_mode)
6814 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6815 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6816 == nonzero_bits (XEXP (cond, 0), inner_mode)
6817 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6819 rtx val = XEXP (cond, 0);
6820 if (inner_mode == int_mode)
6821 return val;
6822 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6823 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6826 return x;
6829 /* Simplify X, a SET expression. Return the new expression. */
6831 static rtx
6832 simplify_set (rtx x)
6834 rtx src = SET_SRC (x);
6835 rtx dest = SET_DEST (x);
6836 machine_mode mode
6837 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6838 rtx_insn *other_insn;
6839 rtx *cc_use;
6840 scalar_int_mode int_mode;
6842 /* (set (pc) (return)) gets written as (return). */
6843 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6844 return src;
6846 /* Now that we know for sure which bits of SRC we are using, see if we can
6847 simplify the expression for the object knowing that we only need the
6848 low-order bits. */
6850 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6852 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6853 SUBST (SET_SRC (x), src);
6856 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6857 the comparison result and try to simplify it unless we already have used
6858 undobuf.other_insn. */
6859 if ((GET_MODE_CLASS (mode) == MODE_CC
6860 || GET_CODE (src) == COMPARE
6861 || CC0_P (dest))
6862 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6863 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6864 && COMPARISON_P (*cc_use)
6865 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6867 enum rtx_code old_code = GET_CODE (*cc_use);
6868 enum rtx_code new_code;
6869 rtx op0, op1, tmp;
6870 int other_changed = 0;
6871 rtx inner_compare = NULL_RTX;
6872 machine_mode compare_mode = GET_MODE (dest);
6874 if (GET_CODE (src) == COMPARE)
6876 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6877 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6879 inner_compare = op0;
6880 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6883 else
6884 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6886 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6887 op0, op1);
6888 if (!tmp)
6889 new_code = old_code;
6890 else if (!CONSTANT_P (tmp))
6892 new_code = GET_CODE (tmp);
6893 op0 = XEXP (tmp, 0);
6894 op1 = XEXP (tmp, 1);
6896 else
6898 rtx pat = PATTERN (other_insn);
6899 undobuf.other_insn = other_insn;
6900 SUBST (*cc_use, tmp);
6902 /* Attempt to simplify CC user. */
6903 if (GET_CODE (pat) == SET)
6905 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6906 if (new_rtx != NULL_RTX)
6907 SUBST (SET_SRC (pat), new_rtx);
6910 /* Convert X into a no-op move. */
6911 SUBST (SET_DEST (x), pc_rtx);
6912 SUBST (SET_SRC (x), pc_rtx);
6913 return x;
6916 /* Simplify our comparison, if possible. */
6917 new_code = simplify_comparison (new_code, &op0, &op1);
6919 #ifdef SELECT_CC_MODE
6920 /* If this machine has CC modes other than CCmode, check to see if we
6921 need to use a different CC mode here. */
6922 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6923 compare_mode = GET_MODE (op0);
6924 else if (inner_compare
6925 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6926 && new_code == old_code
6927 && op0 == XEXP (inner_compare, 0)
6928 && op1 == XEXP (inner_compare, 1))
6929 compare_mode = GET_MODE (inner_compare);
6930 else
6931 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6933 /* If the mode changed, we have to change SET_DEST, the mode in the
6934 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6935 a hard register, just build new versions with the proper mode. If it
6936 is a pseudo, we lose unless it is only time we set the pseudo, in
6937 which case we can safely change its mode. */
6938 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6940 if (can_change_dest_mode (dest, 0, compare_mode))
6942 unsigned int regno = REGNO (dest);
6943 rtx new_dest;
6945 if (regno < FIRST_PSEUDO_REGISTER)
6946 new_dest = gen_rtx_REG (compare_mode, regno);
6947 else
6949 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6950 new_dest = regno_reg_rtx[regno];
6953 SUBST (SET_DEST (x), new_dest);
6954 SUBST (XEXP (*cc_use, 0), new_dest);
6955 other_changed = 1;
6957 dest = new_dest;
6960 #endif /* SELECT_CC_MODE */
6962 /* If the code changed, we have to build a new comparison in
6963 undobuf.other_insn. */
6964 if (new_code != old_code)
6966 int other_changed_previously = other_changed;
6967 unsigned HOST_WIDE_INT mask;
6968 rtx old_cc_use = *cc_use;
6970 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6971 dest, const0_rtx));
6972 other_changed = 1;
6974 /* If the only change we made was to change an EQ into an NE or
6975 vice versa, OP0 has only one bit that might be nonzero, and OP1
6976 is zero, check if changing the user of the condition code will
6977 produce a valid insn. If it won't, we can keep the original code
6978 in that insn by surrounding our operation with an XOR. */
6980 if (((old_code == NE && new_code == EQ)
6981 || (old_code == EQ && new_code == NE))
6982 && ! other_changed_previously && op1 == const0_rtx
6983 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6984 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6986 rtx pat = PATTERN (other_insn), note = 0;
6988 if ((recog_for_combine (&pat, other_insn, &note) < 0
6989 && ! check_asm_operands (pat)))
6991 *cc_use = old_cc_use;
6992 other_changed = 0;
6994 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6995 gen_int_mode (mask,
6996 GET_MODE (op0)));
7001 if (other_changed)
7002 undobuf.other_insn = other_insn;
7004 /* Don't generate a compare of a CC with 0, just use that CC. */
7005 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
7007 SUBST (SET_SRC (x), op0);
7008 src = SET_SRC (x);
7010 /* Otherwise, if we didn't previously have the same COMPARE we
7011 want, create it from scratch. */
7012 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
7013 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
7015 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
7016 src = SET_SRC (x);
7019 else
7021 /* Get SET_SRC in a form where we have placed back any
7022 compound expressions. Then do the checks below. */
7023 src = make_compound_operation (src, SET);
7024 SUBST (SET_SRC (x), src);
7027 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7028 and X being a REG or (subreg (reg)), we may be able to convert this to
7029 (set (subreg:m2 x) (op)).
7031 We can always do this if M1 is narrower than M2 because that means that
7032 we only care about the low bits of the result.
7034 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7035 perform a narrower operation than requested since the high-order bits will
7036 be undefined. On machine where it is defined, this transformation is safe
7037 as long as M1 and M2 have the same number of words. */
7039 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
7040 && !OBJECT_P (SUBREG_REG (src))
7041 && (known_equal_after_align_up
7042 (GET_MODE_SIZE (GET_MODE (src)),
7043 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
7044 UNITS_PER_WORD))
7045 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
7046 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
7047 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
7048 GET_MODE (SUBREG_REG (src)),
7049 GET_MODE (src)))
7050 && (REG_P (dest)
7051 || (GET_CODE (dest) == SUBREG
7052 && REG_P (SUBREG_REG (dest)))))
7054 SUBST (SET_DEST (x),
7055 gen_lowpart (GET_MODE (SUBREG_REG (src)),
7056 dest));
7057 SUBST (SET_SRC (x), SUBREG_REG (src));
7059 src = SET_SRC (x), dest = SET_DEST (x);
7062 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7063 in SRC. */
7064 if (dest == cc0_rtx
7065 && partial_subreg_p (src)
7066 && subreg_lowpart_p (src))
7068 rtx inner = SUBREG_REG (src);
7069 machine_mode inner_mode = GET_MODE (inner);
7071 /* Here we make sure that we don't have a sign bit on. */
7072 if (val_signbit_known_clear_p (GET_MODE (src),
7073 nonzero_bits (inner, inner_mode)))
7075 SUBST (SET_SRC (x), inner);
7076 src = SET_SRC (x);
7080 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7081 would require a paradoxical subreg. Replace the subreg with a
7082 zero_extend to avoid the reload that would otherwise be required.
7083 Don't do this unless we have a scalar integer mode, otherwise the
7084 transformation is incorrect. */
7086 enum rtx_code extend_op;
7087 if (paradoxical_subreg_p (src)
7088 && MEM_P (SUBREG_REG (src))
7089 && SCALAR_INT_MODE_P (GET_MODE (src))
7090 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7092 SUBST (SET_SRC (x),
7093 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7095 src = SET_SRC (x);
7098 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7099 are comparing an item known to be 0 or -1 against 0, use a logical
7100 operation instead. Check for one of the arms being an IOR of the other
7101 arm with some value. We compute three terms to be IOR'ed together. In
7102 practice, at most two will be nonzero. Then we do the IOR's. */
7104 if (GET_CODE (dest) != PC
7105 && GET_CODE (src) == IF_THEN_ELSE
7106 && is_int_mode (GET_MODE (src), &int_mode)
7107 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7108 && XEXP (XEXP (src, 0), 1) == const0_rtx
7109 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7110 && (!HAVE_conditional_move
7111 || ! can_conditionally_move_p (int_mode))
7112 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7113 == GET_MODE_PRECISION (int_mode))
7114 && ! side_effects_p (src))
7116 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7117 ? XEXP (src, 1) : XEXP (src, 2));
7118 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7119 ? XEXP (src, 2) : XEXP (src, 1));
7120 rtx term1 = const0_rtx, term2, term3;
7122 if (GET_CODE (true_rtx) == IOR
7123 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7124 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7125 else if (GET_CODE (true_rtx) == IOR
7126 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7127 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7128 else if (GET_CODE (false_rtx) == IOR
7129 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7130 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7131 else if (GET_CODE (false_rtx) == IOR
7132 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7133 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7135 term2 = simplify_gen_binary (AND, int_mode,
7136 XEXP (XEXP (src, 0), 0), true_rtx);
7137 term3 = simplify_gen_binary (AND, int_mode,
7138 simplify_gen_unary (NOT, int_mode,
7139 XEXP (XEXP (src, 0), 0),
7140 int_mode),
7141 false_rtx);
7143 SUBST (SET_SRC (x),
7144 simplify_gen_binary (IOR, int_mode,
7145 simplify_gen_binary (IOR, int_mode,
7146 term1, term2),
7147 term3));
7149 src = SET_SRC (x);
7152 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7153 whole thing fail. */
7154 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7155 return src;
7156 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7157 return dest;
7158 else
7159 /* Convert this into a field assignment operation, if possible. */
7160 return make_field_assignment (x);
7163 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7164 result. */
7166 static rtx
7167 simplify_logical (rtx x)
7169 rtx op0 = XEXP (x, 0);
7170 rtx op1 = XEXP (x, 1);
7171 scalar_int_mode mode;
7173 switch (GET_CODE (x))
7175 case AND:
7176 /* We can call simplify_and_const_int only if we don't lose
7177 any (sign) bits when converting INTVAL (op1) to
7178 "unsigned HOST_WIDE_INT". */
7179 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7180 && CONST_INT_P (op1)
7181 && (HWI_COMPUTABLE_MODE_P (mode)
7182 || INTVAL (op1) > 0))
7184 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7185 if (GET_CODE (x) != AND)
7186 return x;
7188 op0 = XEXP (x, 0);
7189 op1 = XEXP (x, 1);
7192 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7193 apply the distributive law and then the inverse distributive
7194 law to see if things simplify. */
7195 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7197 rtx result = distribute_and_simplify_rtx (x, 0);
7198 if (result)
7199 return result;
7201 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7203 rtx result = distribute_and_simplify_rtx (x, 1);
7204 if (result)
7205 return result;
7207 break;
7209 case IOR:
7210 /* If we have (ior (and A B) C), apply the distributive law and then
7211 the inverse distributive law to see if things simplify. */
7213 if (GET_CODE (op0) == AND)
7215 rtx result = distribute_and_simplify_rtx (x, 0);
7216 if (result)
7217 return result;
7220 if (GET_CODE (op1) == AND)
7222 rtx result = distribute_and_simplify_rtx (x, 1);
7223 if (result)
7224 return result;
7226 break;
7228 default:
7229 gcc_unreachable ();
7232 return x;
7235 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7236 operations" because they can be replaced with two more basic operations.
7237 ZERO_EXTEND is also considered "compound" because it can be replaced with
7238 an AND operation, which is simpler, though only one operation.
7240 The function expand_compound_operation is called with an rtx expression
7241 and will convert it to the appropriate shifts and AND operations,
7242 simplifying at each stage.
7244 The function make_compound_operation is called to convert an expression
7245 consisting of shifts and ANDs into the equivalent compound expression.
7246 It is the inverse of this function, loosely speaking. */
7248 static rtx
7249 expand_compound_operation (rtx x)
7251 unsigned HOST_WIDE_INT pos = 0, len;
7252 int unsignedp = 0;
7253 unsigned int modewidth;
7254 rtx tem;
7255 scalar_int_mode inner_mode;
7257 switch (GET_CODE (x))
7259 case ZERO_EXTEND:
7260 unsignedp = 1;
7261 /* FALLTHRU */
7262 case SIGN_EXTEND:
7263 /* We can't necessarily use a const_int for a multiword mode;
7264 it depends on implicitly extending the value.
7265 Since we don't know the right way to extend it,
7266 we can't tell whether the implicit way is right.
7268 Even for a mode that is no wider than a const_int,
7269 we can't win, because we need to sign extend one of its bits through
7270 the rest of it, and we don't know which bit. */
7271 if (CONST_INT_P (XEXP (x, 0)))
7272 return x;
7274 /* Reject modes that aren't scalar integers because turning vector
7275 or complex modes into shifts causes problems. */
7276 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7277 return x;
7279 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7280 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7281 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7282 reloaded. If not for that, MEM's would very rarely be safe.
7284 Reject modes bigger than a word, because we might not be able
7285 to reference a two-register group starting with an arbitrary register
7286 (and currently gen_lowpart might crash for a SUBREG). */
7288 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7289 return x;
7291 len = GET_MODE_PRECISION (inner_mode);
7292 /* If the inner object has VOIDmode (the only way this can happen
7293 is if it is an ASM_OPERANDS), we can't do anything since we don't
7294 know how much masking to do. */
7295 if (len == 0)
7296 return x;
7298 break;
7300 case ZERO_EXTRACT:
7301 unsignedp = 1;
7303 /* fall through */
7305 case SIGN_EXTRACT:
7306 /* If the operand is a CLOBBER, just return it. */
7307 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7308 return XEXP (x, 0);
7310 if (!CONST_INT_P (XEXP (x, 1))
7311 || !CONST_INT_P (XEXP (x, 2)))
7312 return x;
7314 /* Reject modes that aren't scalar integers because turning vector
7315 or complex modes into shifts causes problems. */
7316 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7317 return x;
7319 len = INTVAL (XEXP (x, 1));
7320 pos = INTVAL (XEXP (x, 2));
7322 /* This should stay within the object being extracted, fail otherwise. */
7323 if (len + pos > GET_MODE_PRECISION (inner_mode))
7324 return x;
7326 if (BITS_BIG_ENDIAN)
7327 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7329 break;
7331 default:
7332 return x;
7335 /* We've rejected non-scalar operations by now. */
7336 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7338 /* Convert sign extension to zero extension, if we know that the high
7339 bit is not set, as this is easier to optimize. It will be converted
7340 back to cheaper alternative in make_extraction. */
7341 if (GET_CODE (x) == SIGN_EXTEND
7342 && HWI_COMPUTABLE_MODE_P (mode)
7343 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7344 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7345 == 0))
7347 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7348 rtx temp2 = expand_compound_operation (temp);
7350 /* Make sure this is a profitable operation. */
7351 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7352 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7353 return temp2;
7354 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7355 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7356 return temp;
7357 else
7358 return x;
7361 /* We can optimize some special cases of ZERO_EXTEND. */
7362 if (GET_CODE (x) == ZERO_EXTEND)
7364 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7365 know that the last value didn't have any inappropriate bits
7366 set. */
7367 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7368 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7369 && HWI_COMPUTABLE_MODE_P (mode)
7370 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7371 & ~GET_MODE_MASK (inner_mode)) == 0)
7372 return XEXP (XEXP (x, 0), 0);
7374 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7375 if (GET_CODE (XEXP (x, 0)) == SUBREG
7376 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7377 && subreg_lowpart_p (XEXP (x, 0))
7378 && HWI_COMPUTABLE_MODE_P (mode)
7379 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7380 & ~GET_MODE_MASK (inner_mode)) == 0)
7381 return SUBREG_REG (XEXP (x, 0));
7383 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7384 is a comparison and STORE_FLAG_VALUE permits. This is like
7385 the first case, but it works even when MODE is larger
7386 than HOST_WIDE_INT. */
7387 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7388 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7389 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7390 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7391 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7392 return XEXP (XEXP (x, 0), 0);
7394 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7395 if (GET_CODE (XEXP (x, 0)) == SUBREG
7396 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7397 && subreg_lowpart_p (XEXP (x, 0))
7398 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7399 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7400 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7401 return SUBREG_REG (XEXP (x, 0));
7405 /* If we reach here, we want to return a pair of shifts. The inner
7406 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7407 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7408 logical depending on the value of UNSIGNEDP.
7410 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7411 converted into an AND of a shift.
7413 We must check for the case where the left shift would have a negative
7414 count. This can happen in a case like (x >> 31) & 255 on machines
7415 that can't shift by a constant. On those machines, we would first
7416 combine the shift with the AND to produce a variable-position
7417 extraction. Then the constant of 31 would be substituted in
7418 to produce such a position. */
7420 modewidth = GET_MODE_PRECISION (mode);
7421 if (modewidth >= pos + len)
7423 tem = gen_lowpart (mode, XEXP (x, 0));
7424 if (!tem || GET_CODE (tem) == CLOBBER)
7425 return x;
7426 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7427 tem, modewidth - pos - len);
7428 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7429 mode, tem, modewidth - len);
7431 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7432 tem = simplify_and_const_int (NULL_RTX, mode,
7433 simplify_shift_const (NULL_RTX, LSHIFTRT,
7434 mode, XEXP (x, 0),
7435 pos),
7436 (HOST_WIDE_INT_1U << len) - 1);
7437 else
7438 /* Any other cases we can't handle. */
7439 return x;
7441 /* If we couldn't do this for some reason, return the original
7442 expression. */
7443 if (GET_CODE (tem) == CLOBBER)
7444 return x;
7446 return tem;
7449 /* X is a SET which contains an assignment of one object into
7450 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7451 or certain SUBREGS). If possible, convert it into a series of
7452 logical operations.
7454 We half-heartedly support variable positions, but do not at all
7455 support variable lengths. */
7457 static const_rtx
7458 expand_field_assignment (const_rtx x)
7460 rtx inner;
7461 rtx pos; /* Always counts from low bit. */
7462 int len, inner_len;
7463 rtx mask, cleared, masked;
7464 scalar_int_mode compute_mode;
7466 /* Loop until we find something we can't simplify. */
7467 while (1)
7469 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7470 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7472 rtx x0 = XEXP (SET_DEST (x), 0);
7473 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
7474 break;
7475 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7476 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7477 MAX_MODE_INT);
7479 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7480 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7482 inner = XEXP (SET_DEST (x), 0);
7483 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
7484 break;
7486 len = INTVAL (XEXP (SET_DEST (x), 1));
7487 pos = XEXP (SET_DEST (x), 2);
7489 /* A constant position should stay within the width of INNER. */
7490 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7491 break;
7493 if (BITS_BIG_ENDIAN)
7495 if (CONST_INT_P (pos))
7496 pos = GEN_INT (inner_len - len - INTVAL (pos));
7497 else if (GET_CODE (pos) == MINUS
7498 && CONST_INT_P (XEXP (pos, 1))
7499 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7500 /* If position is ADJUST - X, new position is X. */
7501 pos = XEXP (pos, 0);
7502 else
7503 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7504 gen_int_mode (inner_len - len,
7505 GET_MODE (pos)),
7506 pos);
7510 /* If the destination is a subreg that overwrites the whole of the inner
7511 register, we can move the subreg to the source. */
7512 else if (GET_CODE (SET_DEST (x)) == SUBREG
7513 /* We need SUBREGs to compute nonzero_bits properly. */
7514 && nonzero_sign_valid
7515 && !read_modify_subreg_p (SET_DEST (x)))
7517 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7518 gen_lowpart
7519 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7520 SET_SRC (x)));
7521 continue;
7523 else
7524 break;
7526 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7527 inner = SUBREG_REG (inner);
7529 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7530 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7532 /* Don't do anything for vector or complex integral types. */
7533 if (! FLOAT_MODE_P (GET_MODE (inner)))
7534 break;
7536 /* Try to find an integral mode to pun with. */
7537 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7538 .exists (&compute_mode))
7539 break;
7541 inner = gen_lowpart (compute_mode, inner);
7544 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7545 if (len >= HOST_BITS_PER_WIDE_INT)
7546 break;
7548 /* Don't try to compute in too wide unsupported modes. */
7549 if (!targetm.scalar_mode_supported_p (compute_mode))
7550 break;
7552 /* Now compute the equivalent expression. Make a copy of INNER
7553 for the SET_DEST in case it is a MEM into which we will substitute;
7554 we don't want shared RTL in that case. */
7555 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7556 compute_mode);
7557 cleared = simplify_gen_binary (AND, compute_mode,
7558 simplify_gen_unary (NOT, compute_mode,
7559 simplify_gen_binary (ASHIFT,
7560 compute_mode,
7561 mask, pos),
7562 compute_mode),
7563 inner);
7564 masked = simplify_gen_binary (ASHIFT, compute_mode,
7565 simplify_gen_binary (
7566 AND, compute_mode,
7567 gen_lowpart (compute_mode, SET_SRC (x)),
7568 mask),
7569 pos);
7571 x = gen_rtx_SET (copy_rtx (inner),
7572 simplify_gen_binary (IOR, compute_mode,
7573 cleared, masked));
7576 return x;
7579 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7580 it is an RTX that represents the (variable) starting position; otherwise,
7581 POS is the (constant) starting bit position. Both are counted from the LSB.
7583 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7585 IN_DEST is nonzero if this is a reference in the destination of a SET.
7586 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7587 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7588 be used.
7590 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7591 ZERO_EXTRACT should be built even for bits starting at bit 0.
7593 MODE is the desired mode of the result (if IN_DEST == 0).
7595 The result is an RTX for the extraction or NULL_RTX if the target
7596 can't handle it. */
7598 static rtx
7599 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7600 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7601 int in_dest, int in_compare)
7603 /* This mode describes the size of the storage area
7604 to fetch the overall value from. Within that, we
7605 ignore the POS lowest bits, etc. */
7606 machine_mode is_mode = GET_MODE (inner);
7607 machine_mode inner_mode;
7608 scalar_int_mode wanted_inner_mode;
7609 scalar_int_mode wanted_inner_reg_mode = word_mode;
7610 scalar_int_mode pos_mode = word_mode;
7611 machine_mode extraction_mode = word_mode;
7612 rtx new_rtx = 0;
7613 rtx orig_pos_rtx = pos_rtx;
7614 HOST_WIDE_INT orig_pos;
7616 if (pos_rtx && CONST_INT_P (pos_rtx))
7617 pos = INTVAL (pos_rtx), pos_rtx = 0;
7619 if (GET_CODE (inner) == SUBREG
7620 && subreg_lowpart_p (inner)
7621 && (paradoxical_subreg_p (inner)
7622 /* If trying or potentionally trying to extract
7623 bits outside of is_mode, don't look through
7624 non-paradoxical SUBREGs. See PR82192. */
7625 || (pos_rtx == NULL_RTX
7626 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7628 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7629 consider just the QI as the memory to extract from.
7630 The subreg adds or removes high bits; its mode is
7631 irrelevant to the meaning of this extraction,
7632 since POS and LEN count from the lsb. */
7633 if (MEM_P (SUBREG_REG (inner)))
7634 is_mode = GET_MODE (SUBREG_REG (inner));
7635 inner = SUBREG_REG (inner);
7637 else if (GET_CODE (inner) == ASHIFT
7638 && CONST_INT_P (XEXP (inner, 1))
7639 && pos_rtx == 0 && pos == 0
7640 && len > UINTVAL (XEXP (inner, 1)))
7642 /* We're extracting the least significant bits of an rtx
7643 (ashift X (const_int C)), where LEN > C. Extract the
7644 least significant (LEN - C) bits of X, giving an rtx
7645 whose mode is MODE, then shift it left C times. */
7646 new_rtx = make_extraction (mode, XEXP (inner, 0),
7647 0, 0, len - INTVAL (XEXP (inner, 1)),
7648 unsignedp, in_dest, in_compare);
7649 if (new_rtx != 0)
7650 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7652 else if (GET_CODE (inner) == TRUNCATE
7653 /* If trying or potentionally trying to extract
7654 bits outside of is_mode, don't look through
7655 TRUNCATE. See PR82192. */
7656 && pos_rtx == NULL_RTX
7657 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7658 inner = XEXP (inner, 0);
7660 inner_mode = GET_MODE (inner);
7662 /* See if this can be done without an extraction. We never can if the
7663 width of the field is not the same as that of some integer mode. For
7664 registers, we can only avoid the extraction if the position is at the
7665 low-order bit and this is either not in the destination or we have the
7666 appropriate STRICT_LOW_PART operation available.
7668 For MEM, we can avoid an extract if the field starts on an appropriate
7669 boundary and we can change the mode of the memory reference. */
7671 scalar_int_mode tmode;
7672 if (int_mode_for_size (len, 1).exists (&tmode)
7673 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7674 && !MEM_P (inner)
7675 && (pos == 0 || REG_P (inner))
7676 && (inner_mode == tmode
7677 || !REG_P (inner)
7678 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7679 || reg_truncated_to_mode (tmode, inner))
7680 && (! in_dest
7681 || (REG_P (inner)
7682 && have_insn_for (STRICT_LOW_PART, tmode))))
7683 || (MEM_P (inner) && pos_rtx == 0
7684 && (pos
7685 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7686 : BITS_PER_UNIT)) == 0
7687 /* We can't do this if we are widening INNER_MODE (it
7688 may not be aligned, for one thing). */
7689 && !paradoxical_subreg_p (tmode, inner_mode)
7690 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7691 && (inner_mode == tmode
7692 || (! mode_dependent_address_p (XEXP (inner, 0),
7693 MEM_ADDR_SPACE (inner))
7694 && ! MEM_VOLATILE_P (inner))))))
7696 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7697 field. If the original and current mode are the same, we need not
7698 adjust the offset. Otherwise, we do if bytes big endian.
7700 If INNER is not a MEM, get a piece consisting of just the field
7701 of interest (in this case POS % BITS_PER_WORD must be 0). */
7703 if (MEM_P (inner))
7705 poly_int64 offset;
7707 /* POS counts from lsb, but make OFFSET count in memory order. */
7708 if (BYTES_BIG_ENDIAN)
7709 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7710 - len - pos);
7711 else
7712 offset = pos / BITS_PER_UNIT;
7714 new_rtx = adjust_address_nv (inner, tmode, offset);
7716 else if (REG_P (inner))
7718 if (tmode != inner_mode)
7720 /* We can't call gen_lowpart in a DEST since we
7721 always want a SUBREG (see below) and it would sometimes
7722 return a new hard register. */
7723 if (pos || in_dest)
7725 poly_uint64 offset
7726 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7728 /* Avoid creating invalid subregs, for example when
7729 simplifying (x>>32)&255. */
7730 if (!validate_subreg (tmode, inner_mode, inner, offset))
7731 return NULL_RTX;
7733 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7735 else
7736 new_rtx = gen_lowpart (tmode, inner);
7738 else
7739 new_rtx = inner;
7741 else
7742 new_rtx = force_to_mode (inner, tmode,
7743 len >= HOST_BITS_PER_WIDE_INT
7744 ? HOST_WIDE_INT_M1U
7745 : (HOST_WIDE_INT_1U << len) - 1, 0);
7747 /* If this extraction is going into the destination of a SET,
7748 make a STRICT_LOW_PART unless we made a MEM. */
7750 if (in_dest)
7751 return (MEM_P (new_rtx) ? new_rtx
7752 : (GET_CODE (new_rtx) != SUBREG
7753 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7754 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7756 if (mode == tmode)
7757 return new_rtx;
7759 if (CONST_SCALAR_INT_P (new_rtx))
7760 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7761 mode, new_rtx, tmode);
7763 /* If we know that no extraneous bits are set, and that the high
7764 bit is not set, convert the extraction to the cheaper of
7765 sign and zero extension, that are equivalent in these cases. */
7766 if (flag_expensive_optimizations
7767 && (HWI_COMPUTABLE_MODE_P (tmode)
7768 && ((nonzero_bits (new_rtx, tmode)
7769 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7770 == 0)))
7772 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7773 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7775 /* Prefer ZERO_EXTENSION, since it gives more information to
7776 backends. */
7777 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7778 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7779 return temp;
7780 return temp1;
7783 /* Otherwise, sign- or zero-extend unless we already are in the
7784 proper mode. */
7786 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7787 mode, new_rtx));
7790 /* Unless this is a COMPARE or we have a funny memory reference,
7791 don't do anything with zero-extending field extracts starting at
7792 the low-order bit since they are simple AND operations. */
7793 if (pos_rtx == 0 && pos == 0 && ! in_dest
7794 && ! in_compare && unsignedp)
7795 return 0;
7797 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7798 if the position is not a constant and the length is not 1. In all
7799 other cases, we would only be going outside our object in cases when
7800 an original shift would have been undefined. */
7801 if (MEM_P (inner)
7802 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7803 || (pos_rtx != 0 && len != 1)))
7804 return 0;
7806 enum extraction_pattern pattern = (in_dest ? EP_insv
7807 : unsignedp ? EP_extzv : EP_extv);
7809 /* If INNER is not from memory, we want it to have the mode of a register
7810 extraction pattern's structure operand, or word_mode if there is no
7811 such pattern. The same applies to extraction_mode and pos_mode
7812 and their respective operands.
7814 For memory, assume that the desired extraction_mode and pos_mode
7815 are the same as for a register operation, since at present we don't
7816 have named patterns for aligned memory structures. */
7817 struct extraction_insn insn;
7818 unsigned int inner_size;
7819 if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
7820 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7822 wanted_inner_reg_mode = insn.struct_mode.require ();
7823 pos_mode = insn.pos_mode;
7824 extraction_mode = insn.field_mode;
7827 /* Never narrow an object, since that might not be safe. */
7829 if (mode != VOIDmode
7830 && partial_subreg_p (extraction_mode, mode))
7831 extraction_mode = mode;
7833 /* Punt if len is too large for extraction_mode. */
7834 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7835 return NULL_RTX;
7837 if (!MEM_P (inner))
7838 wanted_inner_mode = wanted_inner_reg_mode;
7839 else
7841 /* Be careful not to go beyond the extracted object and maintain the
7842 natural alignment of the memory. */
7843 wanted_inner_mode = smallest_int_mode_for_size (len);
7844 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7845 > GET_MODE_BITSIZE (wanted_inner_mode))
7846 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7849 orig_pos = pos;
7851 if (BITS_BIG_ENDIAN)
7853 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7854 BITS_BIG_ENDIAN style. If position is constant, compute new
7855 position. Otherwise, build subtraction.
7856 Note that POS is relative to the mode of the original argument.
7857 If it's a MEM we need to recompute POS relative to that.
7858 However, if we're extracting from (or inserting into) a register,
7859 we want to recompute POS relative to wanted_inner_mode. */
7860 int width;
7861 if (!MEM_P (inner))
7862 width = GET_MODE_BITSIZE (wanted_inner_mode);
7863 else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
7864 return NULL_RTX;
7866 if (pos_rtx == 0)
7867 pos = width - len - pos;
7868 else
7869 pos_rtx
7870 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7871 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7872 pos_rtx);
7873 /* POS may be less than 0 now, but we check for that below.
7874 Note that it can only be less than 0 if !MEM_P (inner). */
7877 /* If INNER has a wider mode, and this is a constant extraction, try to
7878 make it smaller and adjust the byte to point to the byte containing
7879 the value. */
7880 if (wanted_inner_mode != VOIDmode
7881 && inner_mode != wanted_inner_mode
7882 && ! pos_rtx
7883 && partial_subreg_p (wanted_inner_mode, is_mode)
7884 && MEM_P (inner)
7885 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7886 && ! MEM_VOLATILE_P (inner))
7888 poly_int64 offset = 0;
7890 /* The computations below will be correct if the machine is big
7891 endian in both bits and bytes or little endian in bits and bytes.
7892 If it is mixed, we must adjust. */
7894 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7895 adjust OFFSET to compensate. */
7896 if (BYTES_BIG_ENDIAN
7897 && paradoxical_subreg_p (is_mode, inner_mode))
7898 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7900 /* We can now move to the desired byte. */
7901 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7902 * GET_MODE_SIZE (wanted_inner_mode);
7903 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7905 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7906 && is_mode != wanted_inner_mode)
7907 offset = (GET_MODE_SIZE (is_mode)
7908 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7910 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7913 /* If INNER is not memory, get it into the proper mode. If we are changing
7914 its mode, POS must be a constant and smaller than the size of the new
7915 mode. */
7916 else if (!MEM_P (inner))
7918 /* On the LHS, don't create paradoxical subregs implicitely truncating
7919 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7920 if (in_dest
7921 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7922 wanted_inner_mode))
7923 return NULL_RTX;
7925 if (GET_MODE (inner) != wanted_inner_mode
7926 && (pos_rtx != 0
7927 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7928 return NULL_RTX;
7930 if (orig_pos < 0)
7931 return NULL_RTX;
7933 inner = force_to_mode (inner, wanted_inner_mode,
7934 pos_rtx
7935 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7936 ? HOST_WIDE_INT_M1U
7937 : (((HOST_WIDE_INT_1U << len) - 1)
7938 << orig_pos),
7942 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7943 have to zero extend. Otherwise, we can just use a SUBREG.
7945 We dealt with constant rtxes earlier, so pos_rtx cannot
7946 have VOIDmode at this point. */
7947 if (pos_rtx != 0
7948 && (GET_MODE_SIZE (pos_mode)
7949 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7951 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7952 GET_MODE (pos_rtx));
7954 /* If we know that no extraneous bits are set, and that the high
7955 bit is not set, convert extraction to cheaper one - either
7956 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7957 cases. */
7958 if (flag_expensive_optimizations
7959 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7960 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7961 & ~(((unsigned HOST_WIDE_INT)
7962 GET_MODE_MASK (GET_MODE (pos_rtx)))
7963 >> 1))
7964 == 0)))
7966 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7967 GET_MODE (pos_rtx));
7969 /* Prefer ZERO_EXTENSION, since it gives more information to
7970 backends. */
7971 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7972 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7973 temp = temp1;
7975 pos_rtx = temp;
7978 /* Make POS_RTX unless we already have it and it is correct. If we don't
7979 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7980 be a CONST_INT. */
7981 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7982 pos_rtx = orig_pos_rtx;
7984 else if (pos_rtx == 0)
7985 pos_rtx = GEN_INT (pos);
7987 /* Make the required operation. See if we can use existing rtx. */
7988 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7989 extraction_mode, inner, GEN_INT (len), pos_rtx);
7990 if (! in_dest)
7991 new_rtx = gen_lowpart (mode, new_rtx);
7993 return new_rtx;
7996 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7997 can be commuted with any other operations in X. Return X without
7998 that shift if so. */
8000 static rtx
8001 extract_left_shift (scalar_int_mode mode, rtx x, int count)
8003 enum rtx_code code = GET_CODE (x);
8004 rtx tem;
8006 switch (code)
8008 case ASHIFT:
8009 /* This is the shift itself. If it is wide enough, we will return
8010 either the value being shifted if the shift count is equal to
8011 COUNT or a shift for the difference. */
8012 if (CONST_INT_P (XEXP (x, 1))
8013 && INTVAL (XEXP (x, 1)) >= count)
8014 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
8015 INTVAL (XEXP (x, 1)) - count);
8016 break;
8018 case NEG: case NOT:
8019 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8020 return simplify_gen_unary (code, mode, tem, mode);
8022 break;
8024 case PLUS: case IOR: case XOR: case AND:
8025 /* If we can safely shift this constant and we find the inner shift,
8026 make a new operation. */
8027 if (CONST_INT_P (XEXP (x, 1))
8028 && (UINTVAL (XEXP (x, 1))
8029 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
8030 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
8032 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
8033 return simplify_gen_binary (code, mode, tem,
8034 gen_int_mode (val, mode));
8036 break;
8038 default:
8039 break;
8042 return 0;
8045 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8046 level of the expression and MODE is its mode. IN_CODE is as for
8047 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8048 that should be used when recursing on operands of *X_PTR.
8050 There are two possible actions:
8052 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8053 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8055 - Return a new rtx, which the caller returns directly. */
8057 static rtx
8058 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8059 enum rtx_code in_code,
8060 enum rtx_code *next_code_ptr)
8062 rtx x = *x_ptr;
8063 enum rtx_code next_code = *next_code_ptr;
8064 enum rtx_code code = GET_CODE (x);
8065 int mode_width = GET_MODE_PRECISION (mode);
8066 rtx rhs, lhs;
8067 rtx new_rtx = 0;
8068 int i;
8069 rtx tem;
8070 scalar_int_mode inner_mode;
8071 bool equality_comparison = false;
8073 if (in_code == EQ)
8075 equality_comparison = true;
8076 in_code = COMPARE;
8079 /* Process depending on the code of this operation. If NEW is set
8080 nonzero, it will be returned. */
8082 switch (code)
8084 case ASHIFT:
8085 /* Convert shifts by constants into multiplications if inside
8086 an address. */
8087 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8088 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8089 && INTVAL (XEXP (x, 1)) >= 0)
8091 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8092 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8094 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8095 if (GET_CODE (new_rtx) == NEG)
8097 new_rtx = XEXP (new_rtx, 0);
8098 multval = -multval;
8100 multval = trunc_int_for_mode (multval, mode);
8101 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8103 break;
8105 case PLUS:
8106 lhs = XEXP (x, 0);
8107 rhs = XEXP (x, 1);
8108 lhs = make_compound_operation (lhs, next_code);
8109 rhs = make_compound_operation (rhs, next_code);
8110 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8112 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
8113 XEXP (lhs, 1));
8114 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8116 else if (GET_CODE (lhs) == MULT
8117 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8119 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
8120 simplify_gen_unary (NEG, mode,
8121 XEXP (lhs, 1),
8122 mode));
8123 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
8125 else
8127 SUBST (XEXP (x, 0), lhs);
8128 SUBST (XEXP (x, 1), rhs);
8130 maybe_swap_commutative_operands (x);
8131 return x;
8133 case MINUS:
8134 lhs = XEXP (x, 0);
8135 rhs = XEXP (x, 1);
8136 lhs = make_compound_operation (lhs, next_code);
8137 rhs = make_compound_operation (rhs, next_code);
8138 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8140 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8141 XEXP (rhs, 1));
8142 return simplify_gen_binary (PLUS, mode, tem, lhs);
8144 else if (GET_CODE (rhs) == MULT
8145 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8147 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8148 simplify_gen_unary (NEG, mode,
8149 XEXP (rhs, 1),
8150 mode));
8151 return simplify_gen_binary (PLUS, mode, tem, lhs);
8153 else
8155 SUBST (XEXP (x, 0), lhs);
8156 SUBST (XEXP (x, 1), rhs);
8157 return x;
8160 case AND:
8161 /* If the second operand is not a constant, we can't do anything
8162 with it. */
8163 if (!CONST_INT_P (XEXP (x, 1)))
8164 break;
8166 /* If the constant is a power of two minus one and the first operand
8167 is a logical right shift, make an extraction. */
8168 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8169 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8171 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8172 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8173 i, 1, 0, in_code == COMPARE);
8176 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8177 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8178 && subreg_lowpart_p (XEXP (x, 0))
8179 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8180 &inner_mode)
8181 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8182 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8184 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8185 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8186 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8187 XEXP (inner_x0, 1),
8188 i, 1, 0, in_code == COMPARE);
8190 /* If we narrowed the mode when dropping the subreg, then we lose. */
8191 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8192 new_rtx = NULL;
8194 /* If that didn't give anything, see if the AND simplifies on
8195 its own. */
8196 if (!new_rtx && i >= 0)
8198 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8199 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8200 0, in_code == COMPARE);
8203 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8204 else if ((GET_CODE (XEXP (x, 0)) == XOR
8205 || GET_CODE (XEXP (x, 0)) == IOR)
8206 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8207 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8208 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8210 /* Apply the distributive law, and then try to make extractions. */
8211 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8212 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8213 XEXP (x, 1)),
8214 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8215 XEXP (x, 1)));
8216 new_rtx = make_compound_operation (new_rtx, in_code);
8219 /* If we are have (and (rotate X C) M) and C is larger than the number
8220 of bits in M, this is an extraction. */
8222 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8223 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8224 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8225 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8227 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8228 new_rtx = make_extraction (mode, new_rtx,
8229 (GET_MODE_PRECISION (mode)
8230 - INTVAL (XEXP (XEXP (x, 0), 1))),
8231 NULL_RTX, i, 1, 0, in_code == COMPARE);
8234 /* On machines without logical shifts, if the operand of the AND is
8235 a logical shift and our mask turns off all the propagated sign
8236 bits, we can replace the logical shift with an arithmetic shift. */
8237 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8238 && !have_insn_for (LSHIFTRT, mode)
8239 && have_insn_for (ASHIFTRT, mode)
8240 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8241 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8242 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8243 && mode_width <= HOST_BITS_PER_WIDE_INT)
8245 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8247 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8248 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8249 SUBST (XEXP (x, 0),
8250 gen_rtx_ASHIFTRT (mode,
8251 make_compound_operation (XEXP (XEXP (x,
8254 next_code),
8255 XEXP (XEXP (x, 0), 1)));
8258 /* If the constant is one less than a power of two, this might be
8259 representable by an extraction even if no shift is present.
8260 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8261 we are in a COMPARE. */
8262 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8263 new_rtx = make_extraction (mode,
8264 make_compound_operation (XEXP (x, 0),
8265 next_code),
8266 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8268 /* If we are in a comparison and this is an AND with a power of two,
8269 convert this into the appropriate bit extract. */
8270 else if (in_code == COMPARE
8271 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8272 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8273 new_rtx = make_extraction (mode,
8274 make_compound_operation (XEXP (x, 0),
8275 next_code),
8276 i, NULL_RTX, 1, 1, 0, 1);
8278 /* If the one operand is a paradoxical subreg of a register or memory and
8279 the constant (limited to the smaller mode) has only zero bits where
8280 the sub expression has known zero bits, this can be expressed as
8281 a zero_extend. */
8282 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8284 rtx sub;
8286 sub = XEXP (XEXP (x, 0), 0);
8287 machine_mode sub_mode = GET_MODE (sub);
8288 int sub_width;
8289 if ((REG_P (sub) || MEM_P (sub))
8290 && GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
8291 && sub_width < mode_width)
8293 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8294 unsigned HOST_WIDE_INT mask;
8296 /* original AND constant with all the known zero bits set */
8297 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8298 if ((mask & mode_mask) == mode_mask)
8300 new_rtx = make_compound_operation (sub, next_code);
8301 new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
8302 1, 0, in_code == COMPARE);
8307 break;
8309 case LSHIFTRT:
8310 /* If the sign bit is known to be zero, replace this with an
8311 arithmetic shift. */
8312 if (have_insn_for (ASHIFTRT, mode)
8313 && ! have_insn_for (LSHIFTRT, mode)
8314 && mode_width <= HOST_BITS_PER_WIDE_INT
8315 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8317 new_rtx = gen_rtx_ASHIFTRT (mode,
8318 make_compound_operation (XEXP (x, 0),
8319 next_code),
8320 XEXP (x, 1));
8321 break;
8324 /* fall through */
8326 case ASHIFTRT:
8327 lhs = XEXP (x, 0);
8328 rhs = XEXP (x, 1);
8330 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8331 this is a SIGN_EXTRACT. */
8332 if (CONST_INT_P (rhs)
8333 && GET_CODE (lhs) == ASHIFT
8334 && CONST_INT_P (XEXP (lhs, 1))
8335 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8336 && INTVAL (XEXP (lhs, 1)) >= 0
8337 && INTVAL (rhs) < mode_width)
8339 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8340 new_rtx = make_extraction (mode, new_rtx,
8341 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8342 NULL_RTX, mode_width - INTVAL (rhs),
8343 code == LSHIFTRT, 0, in_code == COMPARE);
8344 break;
8347 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8348 If so, try to merge the shifts into a SIGN_EXTEND. We could
8349 also do this for some cases of SIGN_EXTRACT, but it doesn't
8350 seem worth the effort; the case checked for occurs on Alpha. */
8352 if (!OBJECT_P (lhs)
8353 && ! (GET_CODE (lhs) == SUBREG
8354 && (OBJECT_P (SUBREG_REG (lhs))))
8355 && CONST_INT_P (rhs)
8356 && INTVAL (rhs) >= 0
8357 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8358 && INTVAL (rhs) < mode_width
8359 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8360 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8361 next_code),
8362 0, NULL_RTX, mode_width - INTVAL (rhs),
8363 code == LSHIFTRT, 0, in_code == COMPARE);
8365 break;
8367 case SUBREG:
8368 /* Call ourselves recursively on the inner expression. If we are
8369 narrowing the object and it has a different RTL code from
8370 what it originally did, do this SUBREG as a force_to_mode. */
8372 rtx inner = SUBREG_REG (x), simplified;
8373 enum rtx_code subreg_code = in_code;
8375 /* If the SUBREG is masking of a logical right shift,
8376 make an extraction. */
8377 if (GET_CODE (inner) == LSHIFTRT
8378 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8379 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8380 && CONST_INT_P (XEXP (inner, 1))
8381 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8382 && subreg_lowpart_p (x))
8384 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8385 int width = GET_MODE_PRECISION (inner_mode)
8386 - INTVAL (XEXP (inner, 1));
8387 if (width > mode_width)
8388 width = mode_width;
8389 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8390 width, 1, 0, in_code == COMPARE);
8391 break;
8394 /* If in_code is COMPARE, it isn't always safe to pass it through
8395 to the recursive make_compound_operation call. */
8396 if (subreg_code == COMPARE
8397 && (!subreg_lowpart_p (x)
8398 || GET_CODE (inner) == SUBREG
8399 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8400 is (const_int 0), rather than
8401 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8402 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8403 for non-equality comparisons against 0 is not equivalent
8404 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8405 || (GET_CODE (inner) == AND
8406 && CONST_INT_P (XEXP (inner, 1))
8407 && partial_subreg_p (x)
8408 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8409 >= GET_MODE_BITSIZE (mode) - 1)))
8410 subreg_code = SET;
8412 tem = make_compound_operation (inner, subreg_code);
8414 simplified
8415 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8416 if (simplified)
8417 tem = simplified;
8419 if (GET_CODE (tem) != GET_CODE (inner)
8420 && partial_subreg_p (x)
8421 && subreg_lowpart_p (x))
8423 rtx newer
8424 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8426 /* If we have something other than a SUBREG, we might have
8427 done an expansion, so rerun ourselves. */
8428 if (GET_CODE (newer) != SUBREG)
8429 newer = make_compound_operation (newer, in_code);
8431 /* force_to_mode can expand compounds. If it just re-expanded
8432 the compound, use gen_lowpart to convert to the desired
8433 mode. */
8434 if (rtx_equal_p (newer, x)
8435 /* Likewise if it re-expanded the compound only partially.
8436 This happens for SUBREG of ZERO_EXTRACT if they extract
8437 the same number of bits. */
8438 || (GET_CODE (newer) == SUBREG
8439 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8440 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8441 && GET_CODE (inner) == AND
8442 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8443 return gen_lowpart (GET_MODE (x), tem);
8445 return newer;
8448 if (simplified)
8449 return tem;
8451 break;
8453 default:
8454 break;
8457 if (new_rtx)
8458 *x_ptr = gen_lowpart (mode, new_rtx);
8459 *next_code_ptr = next_code;
8460 return NULL_RTX;
8463 /* Look at the expression rooted at X. Look for expressions
8464 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8465 Form these expressions.
8467 Return the new rtx, usually just X.
8469 Also, for machines like the VAX that don't have logical shift insns,
8470 try to convert logical to arithmetic shift operations in cases where
8471 they are equivalent. This undoes the canonicalizations to logical
8472 shifts done elsewhere.
8474 We try, as much as possible, to re-use rtl expressions to save memory.
8476 IN_CODE says what kind of expression we are processing. Normally, it is
8477 SET. In a memory address it is MEM. When processing the arguments of
8478 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8479 precisely it is an equality comparison against zero. */
8482 make_compound_operation (rtx x, enum rtx_code in_code)
8484 enum rtx_code code = GET_CODE (x);
8485 const char *fmt;
8486 int i, j;
8487 enum rtx_code next_code;
8488 rtx new_rtx, tem;
8490 /* Select the code to be used in recursive calls. Once we are inside an
8491 address, we stay there. If we have a comparison, set to COMPARE,
8492 but once inside, go back to our default of SET. */
8494 next_code = (code == MEM ? MEM
8495 : ((code == COMPARE || COMPARISON_P (x))
8496 && XEXP (x, 1) == const0_rtx) ? COMPARE
8497 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8499 scalar_int_mode mode;
8500 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8502 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8503 &next_code);
8504 if (new_rtx)
8505 return new_rtx;
8506 code = GET_CODE (x);
8509 /* Now recursively process each operand of this operation. We need to
8510 handle ZERO_EXTEND specially so that we don't lose track of the
8511 inner mode. */
8512 if (code == ZERO_EXTEND)
8514 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8515 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8516 new_rtx, GET_MODE (XEXP (x, 0)));
8517 if (tem)
8518 return tem;
8519 SUBST (XEXP (x, 0), new_rtx);
8520 return x;
8523 fmt = GET_RTX_FORMAT (code);
8524 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8525 if (fmt[i] == 'e')
8527 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8528 SUBST (XEXP (x, i), new_rtx);
8530 else if (fmt[i] == 'E')
8531 for (j = 0; j < XVECLEN (x, i); j++)
8533 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8534 SUBST (XVECEXP (x, i, j), new_rtx);
8537 maybe_swap_commutative_operands (x);
8538 return x;
8541 /* Given M see if it is a value that would select a field of bits
8542 within an item, but not the entire word. Return -1 if not.
8543 Otherwise, return the starting position of the field, where 0 is the
8544 low-order bit.
8546 *PLEN is set to the length of the field. */
8548 static int
8549 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8551 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8552 int pos = m ? ctz_hwi (m) : -1;
8553 int len = 0;
8555 if (pos >= 0)
8556 /* Now shift off the low-order zero bits and see if we have a
8557 power of two minus 1. */
8558 len = exact_log2 ((m >> pos) + 1);
8560 if (len <= 0)
8561 pos = -1;
8563 *plen = len;
8564 return pos;
8567 /* If X refers to a register that equals REG in value, replace these
8568 references with REG. */
8569 static rtx
8570 canon_reg_for_combine (rtx x, rtx reg)
8572 rtx op0, op1, op2;
8573 const char *fmt;
8574 int i;
8575 bool copied;
8577 enum rtx_code code = GET_CODE (x);
8578 switch (GET_RTX_CLASS (code))
8580 case RTX_UNARY:
8581 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8582 if (op0 != XEXP (x, 0))
8583 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8584 GET_MODE (reg));
8585 break;
8587 case RTX_BIN_ARITH:
8588 case RTX_COMM_ARITH:
8589 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8590 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8591 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8592 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8593 break;
8595 case RTX_COMPARE:
8596 case RTX_COMM_COMPARE:
8597 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8598 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8599 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8600 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8601 GET_MODE (op0), op0, op1);
8602 break;
8604 case RTX_TERNARY:
8605 case RTX_BITFIELD_OPS:
8606 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8607 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8608 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8609 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8610 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8611 GET_MODE (op0), op0, op1, op2);
8612 /* FALLTHRU */
8614 case RTX_OBJ:
8615 if (REG_P (x))
8617 if (rtx_equal_p (get_last_value (reg), x)
8618 || rtx_equal_p (reg, get_last_value (x)))
8619 return reg;
8620 else
8621 break;
8624 /* fall through */
8626 default:
8627 fmt = GET_RTX_FORMAT (code);
8628 copied = false;
8629 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8630 if (fmt[i] == 'e')
8632 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8633 if (op != XEXP (x, i))
8635 if (!copied)
8637 copied = true;
8638 x = copy_rtx (x);
8640 XEXP (x, i) = op;
8643 else if (fmt[i] == 'E')
8645 int j;
8646 for (j = 0; j < XVECLEN (x, i); j++)
8648 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8649 if (op != XVECEXP (x, i, j))
8651 if (!copied)
8653 copied = true;
8654 x = copy_rtx (x);
8656 XVECEXP (x, i, j) = op;
8661 break;
8664 return x;
8667 /* Return X converted to MODE. If the value is already truncated to
8668 MODE we can just return a subreg even though in the general case we
8669 would need an explicit truncation. */
8671 static rtx
8672 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8674 if (!CONST_INT_P (x)
8675 && partial_subreg_p (mode, GET_MODE (x))
8676 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8677 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8679 /* Bit-cast X into an integer mode. */
8680 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8681 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8682 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8683 x, GET_MODE (x));
8686 return gen_lowpart (mode, x);
8689 /* See if X can be simplified knowing that we will only refer to it in
8690 MODE and will only refer to those bits that are nonzero in MASK.
8691 If other bits are being computed or if masking operations are done
8692 that select a superset of the bits in MASK, they can sometimes be
8693 ignored.
8695 Return a possibly simplified expression, but always convert X to
8696 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8698 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8699 are all off in X. This is used when X will be complemented, by either
8700 NOT, NEG, or XOR. */
8702 static rtx
8703 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8704 int just_select)
8706 enum rtx_code code = GET_CODE (x);
8707 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8708 machine_mode op_mode;
8709 unsigned HOST_WIDE_INT nonzero;
8711 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8712 code below will do the wrong thing since the mode of such an
8713 expression is VOIDmode.
8715 Also do nothing if X is a CLOBBER; this can happen if X was
8716 the return value from a call to gen_lowpart. */
8717 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8718 return x;
8720 /* We want to perform the operation in its present mode unless we know
8721 that the operation is valid in MODE, in which case we do the operation
8722 in MODE. */
8723 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8724 && have_insn_for (code, mode))
8725 ? mode : GET_MODE (x));
8727 /* It is not valid to do a right-shift in a narrower mode
8728 than the one it came in with. */
8729 if ((code == LSHIFTRT || code == ASHIFTRT)
8730 && partial_subreg_p (mode, GET_MODE (x)))
8731 op_mode = GET_MODE (x);
8733 /* Truncate MASK to fit OP_MODE. */
8734 if (op_mode)
8735 mask &= GET_MODE_MASK (op_mode);
8737 /* Determine what bits of X are guaranteed to be (non)zero. */
8738 nonzero = nonzero_bits (x, mode);
8740 /* If none of the bits in X are needed, return a zero. */
8741 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8742 x = const0_rtx;
8744 /* If X is a CONST_INT, return a new one. Do this here since the
8745 test below will fail. */
8746 if (CONST_INT_P (x))
8748 if (SCALAR_INT_MODE_P (mode))
8749 return gen_int_mode (INTVAL (x) & mask, mode);
8750 else
8752 x = GEN_INT (INTVAL (x) & mask);
8753 return gen_lowpart_common (mode, x);
8757 /* If X is narrower than MODE and we want all the bits in X's mode, just
8758 get X in the proper mode. */
8759 if (paradoxical_subreg_p (mode, GET_MODE (x))
8760 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8761 return gen_lowpart (mode, x);
8763 /* We can ignore the effect of a SUBREG if it narrows the mode or
8764 if the constant masks to zero all the bits the mode doesn't have. */
8765 if (GET_CODE (x) == SUBREG
8766 && subreg_lowpart_p (x)
8767 && (partial_subreg_p (x)
8768 || (mask
8769 & GET_MODE_MASK (GET_MODE (x))
8770 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8771 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8773 scalar_int_mode int_mode, xmode;
8774 if (is_a <scalar_int_mode> (mode, &int_mode)
8775 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8776 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8777 integer too. */
8778 return force_int_to_mode (x, int_mode, xmode,
8779 as_a <scalar_int_mode> (op_mode),
8780 mask, just_select);
8782 return gen_lowpart_or_truncate (mode, x);
8785 /* Subroutine of force_to_mode that handles cases in which both X and
8786 the result are scalar integers. MODE is the mode of the result,
8787 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8788 is preferred for simplified versions of X. The other arguments
8789 are as for force_to_mode. */
8791 static rtx
8792 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8793 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8794 int just_select)
8796 enum rtx_code code = GET_CODE (x);
8797 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8798 unsigned HOST_WIDE_INT fuller_mask;
8799 rtx op0, op1, temp;
8800 poly_int64 const_op0;
8802 /* When we have an arithmetic operation, or a shift whose count we
8803 do not know, we need to assume that all bits up to the highest-order
8804 bit in MASK will be needed. This is how we form such a mask. */
8805 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8806 fuller_mask = HOST_WIDE_INT_M1U;
8807 else
8808 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8809 - 1);
8811 switch (code)
8813 case CLOBBER:
8814 /* If X is a (clobber (const_int)), return it since we know we are
8815 generating something that won't match. */
8816 return x;
8818 case SIGN_EXTEND:
8819 case ZERO_EXTEND:
8820 case ZERO_EXTRACT:
8821 case SIGN_EXTRACT:
8822 x = expand_compound_operation (x);
8823 if (GET_CODE (x) != code)
8824 return force_to_mode (x, mode, mask, next_select);
8825 break;
8827 case TRUNCATE:
8828 /* Similarly for a truncate. */
8829 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8831 case AND:
8832 /* If this is an AND with a constant, convert it into an AND
8833 whose constant is the AND of that constant with MASK. If it
8834 remains an AND of MASK, delete it since it is redundant. */
8836 if (CONST_INT_P (XEXP (x, 1)))
8838 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8839 mask & INTVAL (XEXP (x, 1)));
8840 xmode = op_mode;
8842 /* If X is still an AND, see if it is an AND with a mask that
8843 is just some low-order bits. If so, and it is MASK, we don't
8844 need it. */
8846 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8847 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8848 x = XEXP (x, 0);
8850 /* If it remains an AND, try making another AND with the bits
8851 in the mode mask that aren't in MASK turned on. If the
8852 constant in the AND is wide enough, this might make a
8853 cheaper constant. */
8855 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8856 && GET_MODE_MASK (xmode) != mask
8857 && HWI_COMPUTABLE_MODE_P (xmode))
8859 unsigned HOST_WIDE_INT cval
8860 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8861 rtx y;
8863 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8864 gen_int_mode (cval, xmode));
8865 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8866 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8867 x = y;
8870 break;
8873 goto binop;
8875 case PLUS:
8876 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8877 low-order bits (as in an alignment operation) and FOO is already
8878 aligned to that boundary, mask C1 to that boundary as well.
8879 This may eliminate that PLUS and, later, the AND. */
8882 unsigned int width = GET_MODE_PRECISION (mode);
8883 unsigned HOST_WIDE_INT smask = mask;
8885 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8886 number, sign extend it. */
8888 if (width < HOST_BITS_PER_WIDE_INT
8889 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8890 smask |= HOST_WIDE_INT_M1U << width;
8892 if (CONST_INT_P (XEXP (x, 1))
8893 && pow2p_hwi (- smask)
8894 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8895 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8896 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8897 (INTVAL (XEXP (x, 1)) & smask)),
8898 mode, smask, next_select);
8901 /* fall through */
8903 case MULT:
8904 /* Substituting into the operands of a widening MULT is not likely to
8905 create RTL matching a machine insn. */
8906 if (code == MULT
8907 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8908 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8909 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8910 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8911 && REG_P (XEXP (XEXP (x, 0), 0))
8912 && REG_P (XEXP (XEXP (x, 1), 0)))
8913 return gen_lowpart_or_truncate (mode, x);
8915 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8916 most significant bit in MASK since carries from those bits will
8917 affect the bits we are interested in. */
8918 mask = fuller_mask;
8919 goto binop;
8921 case MINUS:
8922 /* If X is (minus C Y) where C's least set bit is larger than any bit
8923 in the mask, then we may replace with (neg Y). */
8924 if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
8925 && (unsigned HOST_WIDE_INT) known_alignment (const_op0) > mask)
8927 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8928 return force_to_mode (x, mode, mask, next_select);
8931 /* Similarly, if C contains every bit in the fuller_mask, then we may
8932 replace with (not Y). */
8933 if (CONST_INT_P (XEXP (x, 0))
8934 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8936 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8937 return force_to_mode (x, mode, mask, next_select);
8940 mask = fuller_mask;
8941 goto binop;
8943 case IOR:
8944 case XOR:
8945 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8946 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8947 operation which may be a bitfield extraction. Ensure that the
8948 constant we form is not wider than the mode of X. */
8950 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8951 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8952 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8953 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8954 && CONST_INT_P (XEXP (x, 1))
8955 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8956 + floor_log2 (INTVAL (XEXP (x, 1))))
8957 < GET_MODE_PRECISION (xmode))
8958 && (UINTVAL (XEXP (x, 1))
8959 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8961 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8962 << INTVAL (XEXP (XEXP (x, 0), 1)),
8963 xmode);
8964 temp = simplify_gen_binary (GET_CODE (x), xmode,
8965 XEXP (XEXP (x, 0), 0), temp);
8966 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8967 XEXP (XEXP (x, 0), 1));
8968 return force_to_mode (x, mode, mask, next_select);
8971 binop:
8972 /* For most binary operations, just propagate into the operation and
8973 change the mode if we have an operation of that mode. */
8975 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8976 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8978 /* If we ended up truncating both operands, truncate the result of the
8979 operation instead. */
8980 if (GET_CODE (op0) == TRUNCATE
8981 && GET_CODE (op1) == TRUNCATE)
8983 op0 = XEXP (op0, 0);
8984 op1 = XEXP (op1, 0);
8987 op0 = gen_lowpart_or_truncate (op_mode, op0);
8988 op1 = gen_lowpart_or_truncate (op_mode, op1);
8990 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8992 x = simplify_gen_binary (code, op_mode, op0, op1);
8993 xmode = op_mode;
8995 break;
8997 case ASHIFT:
8998 /* For left shifts, do the same, but just for the first operand.
8999 However, we cannot do anything with shifts where we cannot
9000 guarantee that the counts are smaller than the size of the mode
9001 because such a count will have a different meaning in a
9002 wider mode. */
9004 if (! (CONST_INT_P (XEXP (x, 1))
9005 && INTVAL (XEXP (x, 1)) >= 0
9006 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
9007 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
9008 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
9009 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
9010 break;
9012 /* If the shift count is a constant and we can do arithmetic in
9013 the mode of the shift, refine which bits we need. Otherwise, use the
9014 conservative form of the mask. */
9015 if (CONST_INT_P (XEXP (x, 1))
9016 && INTVAL (XEXP (x, 1)) >= 0
9017 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
9018 && HWI_COMPUTABLE_MODE_P (op_mode))
9019 mask >>= INTVAL (XEXP (x, 1));
9020 else
9021 mask = fuller_mask;
9023 op0 = gen_lowpart_or_truncate (op_mode,
9024 force_to_mode (XEXP (x, 0), mode,
9025 mask, next_select));
9027 if (op_mode != xmode || op0 != XEXP (x, 0))
9029 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
9030 xmode = op_mode;
9032 break;
9034 case LSHIFTRT:
9035 /* Here we can only do something if the shift count is a constant,
9036 this shift constant is valid for the host, and we can do arithmetic
9037 in OP_MODE. */
9039 if (CONST_INT_P (XEXP (x, 1))
9040 && INTVAL (XEXP (x, 1)) >= 0
9041 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
9042 && HWI_COMPUTABLE_MODE_P (op_mode))
9044 rtx inner = XEXP (x, 0);
9045 unsigned HOST_WIDE_INT inner_mask;
9047 /* Select the mask of the bits we need for the shift operand. */
9048 inner_mask = mask << INTVAL (XEXP (x, 1));
9050 /* We can only change the mode of the shift if we can do arithmetic
9051 in the mode of the shift and INNER_MASK is no wider than the
9052 width of X's mode. */
9053 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9054 op_mode = xmode;
9056 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
9058 if (xmode != op_mode || inner != XEXP (x, 0))
9060 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
9061 xmode = op_mode;
9065 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9066 shift and AND produces only copies of the sign bit (C2 is one less
9067 than a power of two), we can do this with just a shift. */
9069 if (GET_CODE (x) == LSHIFTRT
9070 && CONST_INT_P (XEXP (x, 1))
9071 /* The shift puts one of the sign bit copies in the least significant
9072 bit. */
9073 && ((INTVAL (XEXP (x, 1))
9074 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9075 >= GET_MODE_PRECISION (xmode))
9076 && pow2p_hwi (mask + 1)
9077 /* Number of bits left after the shift must be more than the mask
9078 needs. */
9079 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
9080 <= GET_MODE_PRECISION (xmode))
9081 /* Must be more sign bit copies than the mask needs. */
9082 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9083 >= exact_log2 (mask + 1)))
9085 int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
9086 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
9087 gen_int_shift_amount (xmode, nbits));
9089 goto shiftrt;
9091 case ASHIFTRT:
9092 /* If we are just looking for the sign bit, we don't need this shift at
9093 all, even if it has a variable count. */
9094 if (val_signbit_p (xmode, mask))
9095 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9097 /* If this is a shift by a constant, get a mask that contains those bits
9098 that are not copies of the sign bit. We then have two cases: If
9099 MASK only includes those bits, this can be a logical shift, which may
9100 allow simplifications. If MASK is a single-bit field not within
9101 those bits, we are requesting a copy of the sign bit and hence can
9102 shift the sign bit to the appropriate location. */
9104 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9105 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9107 unsigned HOST_WIDE_INT nonzero;
9108 int i;
9110 /* If the considered data is wider than HOST_WIDE_INT, we can't
9111 represent a mask for all its bits in a single scalar.
9112 But we only care about the lower bits, so calculate these. */
9114 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
9116 nonzero = HOST_WIDE_INT_M1U;
9118 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9119 is the number of bits a full-width mask would have set.
9120 We need only shift if these are fewer than nonzero can
9121 hold. If not, we must keep all bits set in nonzero. */
9123 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
9124 < HOST_BITS_PER_WIDE_INT)
9125 nonzero >>= INTVAL (XEXP (x, 1))
9126 + HOST_BITS_PER_WIDE_INT
9127 - GET_MODE_PRECISION (xmode);
9129 else
9131 nonzero = GET_MODE_MASK (xmode);
9132 nonzero >>= INTVAL (XEXP (x, 1));
9135 if ((mask & ~nonzero) == 0)
9137 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9138 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9139 if (GET_CODE (x) != ASHIFTRT)
9140 return force_to_mode (x, mode, mask, next_select);
9143 else if ((i = exact_log2 (mask)) >= 0)
9145 x = simplify_shift_const
9146 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9147 GET_MODE_PRECISION (xmode) - 1 - i);
9149 if (GET_CODE (x) != ASHIFTRT)
9150 return force_to_mode (x, mode, mask, next_select);
9154 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9155 even if the shift count isn't a constant. */
9156 if (mask == 1)
9157 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9159 shiftrt:
9161 /* If this is a zero- or sign-extension operation that just affects bits
9162 we don't care about, remove it. Be sure the call above returned
9163 something that is still a shift. */
9165 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9166 && CONST_INT_P (XEXP (x, 1))
9167 && INTVAL (XEXP (x, 1)) >= 0
9168 && (INTVAL (XEXP (x, 1))
9169 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9170 && GET_CODE (XEXP (x, 0)) == ASHIFT
9171 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9172 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9173 next_select);
9175 break;
9177 case ROTATE:
9178 case ROTATERT:
9179 /* If the shift count is constant and we can do computations
9180 in the mode of X, compute where the bits we care about are.
9181 Otherwise, we can't do anything. Don't change the mode of
9182 the shift or propagate MODE into the shift, though. */
9183 if (CONST_INT_P (XEXP (x, 1))
9184 && INTVAL (XEXP (x, 1)) >= 0)
9186 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9187 xmode, gen_int_mode (mask, xmode),
9188 XEXP (x, 1));
9189 if (temp && CONST_INT_P (temp))
9190 x = simplify_gen_binary (code, xmode,
9191 force_to_mode (XEXP (x, 0), xmode,
9192 INTVAL (temp), next_select),
9193 XEXP (x, 1));
9195 break;
9197 case NEG:
9198 /* If we just want the low-order bit, the NEG isn't needed since it
9199 won't change the low-order bit. */
9200 if (mask == 1)
9201 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9203 /* We need any bits less significant than the most significant bit in
9204 MASK since carries from those bits will affect the bits we are
9205 interested in. */
9206 mask = fuller_mask;
9207 goto unop;
9209 case NOT:
9210 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9211 same as the XOR case above. Ensure that the constant we form is not
9212 wider than the mode of X. */
9214 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9215 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9216 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9217 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9218 < GET_MODE_PRECISION (xmode))
9219 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9221 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9222 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9223 x = simplify_gen_binary (LSHIFTRT, xmode,
9224 temp, XEXP (XEXP (x, 0), 1));
9226 return force_to_mode (x, mode, mask, next_select);
9229 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9230 use the full mask inside the NOT. */
9231 mask = fuller_mask;
9233 unop:
9234 op0 = gen_lowpart_or_truncate (op_mode,
9235 force_to_mode (XEXP (x, 0), mode, mask,
9236 next_select));
9237 if (op_mode != xmode || op0 != XEXP (x, 0))
9239 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9240 xmode = op_mode;
9242 break;
9244 case NE:
9245 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9246 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9247 which is equal to STORE_FLAG_VALUE. */
9248 if ((mask & ~STORE_FLAG_VALUE) == 0
9249 && XEXP (x, 1) == const0_rtx
9250 && GET_MODE (XEXP (x, 0)) == mode
9251 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9252 && (nonzero_bits (XEXP (x, 0), mode)
9253 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9254 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9256 break;
9258 case IF_THEN_ELSE:
9259 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9260 written in a narrower mode. We play it safe and do not do so. */
9262 op0 = gen_lowpart_or_truncate (xmode,
9263 force_to_mode (XEXP (x, 1), mode,
9264 mask, next_select));
9265 op1 = gen_lowpart_or_truncate (xmode,
9266 force_to_mode (XEXP (x, 2), mode,
9267 mask, next_select));
9268 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9269 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9270 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9271 op0, op1);
9272 break;
9274 default:
9275 break;
9278 /* Ensure we return a value of the proper mode. */
9279 return gen_lowpart_or_truncate (mode, x);
9282 /* Return nonzero if X is an expression that has one of two values depending on
9283 whether some other value is zero or nonzero. In that case, we return the
9284 value that is being tested, *PTRUE is set to the value if the rtx being
9285 returned has a nonzero value, and *PFALSE is set to the other alternative.
9287 If we return zero, we set *PTRUE and *PFALSE to X. */
9289 static rtx
9290 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9292 machine_mode mode = GET_MODE (x);
9293 enum rtx_code code = GET_CODE (x);
9294 rtx cond0, cond1, true0, true1, false0, false1;
9295 unsigned HOST_WIDE_INT nz;
9296 scalar_int_mode int_mode;
9298 /* If we are comparing a value against zero, we are done. */
9299 if ((code == NE || code == EQ)
9300 && XEXP (x, 1) == const0_rtx)
9302 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9303 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9304 return XEXP (x, 0);
9307 /* If this is a unary operation whose operand has one of two values, apply
9308 our opcode to compute those values. */
9309 else if (UNARY_P (x)
9310 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9312 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9313 *pfalse = simplify_gen_unary (code, mode, false0,
9314 GET_MODE (XEXP (x, 0)));
9315 return cond0;
9318 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9319 make can't possibly match and would suppress other optimizations. */
9320 else if (code == COMPARE)
9323 /* If this is a binary operation, see if either side has only one of two
9324 values. If either one does or if both do and they are conditional on
9325 the same value, compute the new true and false values. */
9326 else if (BINARY_P (x))
9328 rtx op0 = XEXP (x, 0);
9329 rtx op1 = XEXP (x, 1);
9330 cond0 = if_then_else_cond (op0, &true0, &false0);
9331 cond1 = if_then_else_cond (op1, &true1, &false1);
9333 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9334 && (REG_P (op0) || REG_P (op1)))
9336 /* Try to enable a simplification by undoing work done by
9337 if_then_else_cond if it converted a REG into something more
9338 complex. */
9339 if (REG_P (op0))
9341 cond0 = 0;
9342 true0 = false0 = op0;
9344 else
9346 cond1 = 0;
9347 true1 = false1 = op1;
9351 if ((cond0 != 0 || cond1 != 0)
9352 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9354 /* If if_then_else_cond returned zero, then true/false are the
9355 same rtl. We must copy one of them to prevent invalid rtl
9356 sharing. */
9357 if (cond0 == 0)
9358 true0 = copy_rtx (true0);
9359 else if (cond1 == 0)
9360 true1 = copy_rtx (true1);
9362 if (COMPARISON_P (x))
9364 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9365 true0, true1);
9366 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9367 false0, false1);
9369 else
9371 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9372 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9375 return cond0 ? cond0 : cond1;
9378 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9379 operands is zero when the other is nonzero, and vice-versa,
9380 and STORE_FLAG_VALUE is 1 or -1. */
9382 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9383 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9384 || code == UMAX)
9385 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9387 rtx op0 = XEXP (XEXP (x, 0), 1);
9388 rtx op1 = XEXP (XEXP (x, 1), 1);
9390 cond0 = XEXP (XEXP (x, 0), 0);
9391 cond1 = XEXP (XEXP (x, 1), 0);
9393 if (COMPARISON_P (cond0)
9394 && COMPARISON_P (cond1)
9395 && SCALAR_INT_MODE_P (mode)
9396 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9397 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9398 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9399 || ((swap_condition (GET_CODE (cond0))
9400 == reversed_comparison_code (cond1, NULL))
9401 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9402 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9403 && ! side_effects_p (x))
9405 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9406 *pfalse = simplify_gen_binary (MULT, mode,
9407 (code == MINUS
9408 ? simplify_gen_unary (NEG, mode,
9409 op1, mode)
9410 : op1),
9411 const_true_rtx);
9412 return cond0;
9416 /* Similarly for MULT, AND and UMIN, except that for these the result
9417 is always zero. */
9418 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9419 && (code == MULT || code == AND || code == UMIN)
9420 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9422 cond0 = XEXP (XEXP (x, 0), 0);
9423 cond1 = XEXP (XEXP (x, 1), 0);
9425 if (COMPARISON_P (cond0)
9426 && COMPARISON_P (cond1)
9427 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9428 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9429 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9430 || ((swap_condition (GET_CODE (cond0))
9431 == reversed_comparison_code (cond1, NULL))
9432 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9433 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9434 && ! side_effects_p (x))
9436 *ptrue = *pfalse = const0_rtx;
9437 return cond0;
9442 else if (code == IF_THEN_ELSE)
9444 /* If we have IF_THEN_ELSE already, extract the condition and
9445 canonicalize it if it is NE or EQ. */
9446 cond0 = XEXP (x, 0);
9447 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9448 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9449 return XEXP (cond0, 0);
9450 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9452 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9453 return XEXP (cond0, 0);
9455 else
9456 return cond0;
9459 /* If X is a SUBREG, we can narrow both the true and false values
9460 if the inner expression, if there is a condition. */
9461 else if (code == SUBREG
9462 && (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
9463 &false0)) != 0)
9465 true0 = simplify_gen_subreg (mode, true0,
9466 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9467 false0 = simplify_gen_subreg (mode, false0,
9468 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9469 if (true0 && false0)
9471 *ptrue = true0;
9472 *pfalse = false0;
9473 return cond0;
9477 /* If X is a constant, this isn't special and will cause confusions
9478 if we treat it as such. Likewise if it is equivalent to a constant. */
9479 else if (CONSTANT_P (x)
9480 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9483 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9484 will be least confusing to the rest of the compiler. */
9485 else if (mode == BImode)
9487 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9488 return x;
9491 /* If X is known to be either 0 or -1, those are the true and
9492 false values when testing X. */
9493 else if (x == constm1_rtx || x == const0_rtx
9494 || (is_a <scalar_int_mode> (mode, &int_mode)
9495 && (num_sign_bit_copies (x, int_mode)
9496 == GET_MODE_PRECISION (int_mode))))
9498 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9499 return x;
9502 /* Likewise for 0 or a single bit. */
9503 else if (HWI_COMPUTABLE_MODE_P (mode)
9504 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9506 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9507 return x;
9510 /* Otherwise fail; show no condition with true and false values the same. */
9511 *ptrue = *pfalse = x;
9512 return 0;
9515 /* Return the value of expression X given the fact that condition COND
9516 is known to be true when applied to REG as its first operand and VAL
9517 as its second. X is known to not be shared and so can be modified in
9518 place.
9520 We only handle the simplest cases, and specifically those cases that
9521 arise with IF_THEN_ELSE expressions. */
9523 static rtx
9524 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9526 enum rtx_code code = GET_CODE (x);
9527 const char *fmt;
9528 int i, j;
9530 if (side_effects_p (x))
9531 return x;
9533 /* If either operand of the condition is a floating point value,
9534 then we have to avoid collapsing an EQ comparison. */
9535 if (cond == EQ
9536 && rtx_equal_p (x, reg)
9537 && ! FLOAT_MODE_P (GET_MODE (x))
9538 && ! FLOAT_MODE_P (GET_MODE (val)))
9539 return val;
9541 if (cond == UNEQ && rtx_equal_p (x, reg))
9542 return val;
9544 /* If X is (abs REG) and we know something about REG's relationship
9545 with zero, we may be able to simplify this. */
9547 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9548 switch (cond)
9550 case GE: case GT: case EQ:
9551 return XEXP (x, 0);
9552 case LT: case LE:
9553 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9554 XEXP (x, 0),
9555 GET_MODE (XEXP (x, 0)));
9556 default:
9557 break;
9560 /* The only other cases we handle are MIN, MAX, and comparisons if the
9561 operands are the same as REG and VAL. */
9563 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9565 if (rtx_equal_p (XEXP (x, 0), val))
9567 std::swap (val, reg);
9568 cond = swap_condition (cond);
9571 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9573 if (COMPARISON_P (x))
9575 if (comparison_dominates_p (cond, code))
9576 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9578 code = reversed_comparison_code (x, NULL);
9579 if (code != UNKNOWN
9580 && comparison_dominates_p (cond, code))
9581 return CONST0_RTX (GET_MODE (x));
9582 else
9583 return x;
9585 else if (code == SMAX || code == SMIN
9586 || code == UMIN || code == UMAX)
9588 int unsignedp = (code == UMIN || code == UMAX);
9590 /* Do not reverse the condition when it is NE or EQ.
9591 This is because we cannot conclude anything about
9592 the value of 'SMAX (x, y)' when x is not equal to y,
9593 but we can when x equals y. */
9594 if ((code == SMAX || code == UMAX)
9595 && ! (cond == EQ || cond == NE))
9596 cond = reverse_condition (cond);
9598 switch (cond)
9600 case GE: case GT:
9601 return unsignedp ? x : XEXP (x, 1);
9602 case LE: case LT:
9603 return unsignedp ? x : XEXP (x, 0);
9604 case GEU: case GTU:
9605 return unsignedp ? XEXP (x, 1) : x;
9606 case LEU: case LTU:
9607 return unsignedp ? XEXP (x, 0) : x;
9608 default:
9609 break;
9614 else if (code == SUBREG)
9616 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9617 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9619 if (SUBREG_REG (x) != r)
9621 /* We must simplify subreg here, before we lose track of the
9622 original inner_mode. */
9623 new_rtx = simplify_subreg (GET_MODE (x), r,
9624 inner_mode, SUBREG_BYTE (x));
9625 if (new_rtx)
9626 return new_rtx;
9627 else
9628 SUBST (SUBREG_REG (x), r);
9631 return x;
9633 /* We don't have to handle SIGN_EXTEND here, because even in the
9634 case of replacing something with a modeless CONST_INT, a
9635 CONST_INT is already (supposed to be) a valid sign extension for
9636 its narrower mode, which implies it's already properly
9637 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9638 story is different. */
9639 else if (code == ZERO_EXTEND)
9641 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9642 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9644 if (XEXP (x, 0) != r)
9646 /* We must simplify the zero_extend here, before we lose
9647 track of the original inner_mode. */
9648 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9649 r, inner_mode);
9650 if (new_rtx)
9651 return new_rtx;
9652 else
9653 SUBST (XEXP (x, 0), r);
9656 return x;
9659 fmt = GET_RTX_FORMAT (code);
9660 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9662 if (fmt[i] == 'e')
9663 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9664 else if (fmt[i] == 'E')
9665 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9666 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9667 cond, reg, val));
9670 return x;
9673 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9674 assignment as a field assignment. */
9676 static int
9677 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9679 if (widen_x && GET_MODE (x) != GET_MODE (y))
9681 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9682 return 0;
9683 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9684 return 0;
9685 x = adjust_address_nv (x, GET_MODE (y),
9686 byte_lowpart_offset (GET_MODE (y),
9687 GET_MODE (x)));
9690 if (x == y || rtx_equal_p (x, y))
9691 return 1;
9693 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9694 return 0;
9696 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9697 Note that all SUBREGs of MEM are paradoxical; otherwise they
9698 would have been rewritten. */
9699 if (MEM_P (x) && GET_CODE (y) == SUBREG
9700 && MEM_P (SUBREG_REG (y))
9701 && rtx_equal_p (SUBREG_REG (y),
9702 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9703 return 1;
9705 if (MEM_P (y) && GET_CODE (x) == SUBREG
9706 && MEM_P (SUBREG_REG (x))
9707 && rtx_equal_p (SUBREG_REG (x),
9708 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9709 return 1;
9711 /* We used to see if get_last_value of X and Y were the same but that's
9712 not correct. In one direction, we'll cause the assignment to have
9713 the wrong destination and in the case, we'll import a register into this
9714 insn that might have already have been dead. So fail if none of the
9715 above cases are true. */
9716 return 0;
9719 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9720 Return that assignment if so.
9722 We only handle the most common cases. */
9724 static rtx
9725 make_field_assignment (rtx x)
9727 rtx dest = SET_DEST (x);
9728 rtx src = SET_SRC (x);
9729 rtx assign;
9730 rtx rhs, lhs;
9731 HOST_WIDE_INT c1;
9732 HOST_WIDE_INT pos;
9733 unsigned HOST_WIDE_INT len;
9734 rtx other;
9736 /* All the rules in this function are specific to scalar integers. */
9737 scalar_int_mode mode;
9738 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9739 return x;
9741 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9742 a clear of a one-bit field. We will have changed it to
9743 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9744 for a SUBREG. */
9746 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9747 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9748 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9749 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9751 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9752 1, 1, 1, 0);
9753 if (assign != 0)
9754 return gen_rtx_SET (assign, const0_rtx);
9755 return x;
9758 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9759 && subreg_lowpart_p (XEXP (src, 0))
9760 && partial_subreg_p (XEXP (src, 0))
9761 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9762 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9763 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9764 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9766 assign = make_extraction (VOIDmode, dest, 0,
9767 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9768 1, 1, 1, 0);
9769 if (assign != 0)
9770 return gen_rtx_SET (assign, const0_rtx);
9771 return x;
9774 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9775 one-bit field. */
9776 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9777 && XEXP (XEXP (src, 0), 0) == const1_rtx
9778 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9780 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9781 1, 1, 1, 0);
9782 if (assign != 0)
9783 return gen_rtx_SET (assign, const1_rtx);
9784 return x;
9787 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9788 SRC is an AND with all bits of that field set, then we can discard
9789 the AND. */
9790 if (GET_CODE (dest) == ZERO_EXTRACT
9791 && CONST_INT_P (XEXP (dest, 1))
9792 && GET_CODE (src) == AND
9793 && CONST_INT_P (XEXP (src, 1)))
9795 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9796 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9797 unsigned HOST_WIDE_INT ze_mask;
9799 if (width >= HOST_BITS_PER_WIDE_INT)
9800 ze_mask = -1;
9801 else
9802 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9804 /* Complete overlap. We can remove the source AND. */
9805 if ((and_mask & ze_mask) == ze_mask)
9806 return gen_rtx_SET (dest, XEXP (src, 0));
9808 /* Partial overlap. We can reduce the source AND. */
9809 if ((and_mask & ze_mask) != and_mask)
9811 src = gen_rtx_AND (mode, XEXP (src, 0),
9812 gen_int_mode (and_mask & ze_mask, mode));
9813 return gen_rtx_SET (dest, src);
9817 /* The other case we handle is assignments into a constant-position
9818 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9819 a mask that has all one bits except for a group of zero bits and
9820 OTHER is known to have zeros where C1 has ones, this is such an
9821 assignment. Compute the position and length from C1. Shift OTHER
9822 to the appropriate position, force it to the required mode, and
9823 make the extraction. Check for the AND in both operands. */
9825 /* One or more SUBREGs might obscure the constant-position field
9826 assignment. The first one we are likely to encounter is an outer
9827 narrowing SUBREG, which we can just strip for the purposes of
9828 identifying the constant-field assignment. */
9829 scalar_int_mode src_mode = mode;
9830 if (GET_CODE (src) == SUBREG
9831 && subreg_lowpart_p (src)
9832 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9833 src = SUBREG_REG (src);
9835 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9836 return x;
9838 rhs = expand_compound_operation (XEXP (src, 0));
9839 lhs = expand_compound_operation (XEXP (src, 1));
9841 if (GET_CODE (rhs) == AND
9842 && CONST_INT_P (XEXP (rhs, 1))
9843 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9844 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9845 /* The second SUBREG that might get in the way is a paradoxical
9846 SUBREG around the first operand of the AND. We want to
9847 pretend the operand is as wide as the destination here. We
9848 do this by adjusting the MEM to wider mode for the sole
9849 purpose of the call to rtx_equal_for_field_assignment_p. Also
9850 note this trick only works for MEMs. */
9851 else if (GET_CODE (rhs) == AND
9852 && paradoxical_subreg_p (XEXP (rhs, 0))
9853 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9854 && CONST_INT_P (XEXP (rhs, 1))
9855 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9856 dest, true))
9857 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9858 else if (GET_CODE (lhs) == AND
9859 && CONST_INT_P (XEXP (lhs, 1))
9860 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9861 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9862 /* The second SUBREG that might get in the way is a paradoxical
9863 SUBREG around the first operand of the AND. We want to
9864 pretend the operand is as wide as the destination here. We
9865 do this by adjusting the MEM to wider mode for the sole
9866 purpose of the call to rtx_equal_for_field_assignment_p. Also
9867 note this trick only works for MEMs. */
9868 else if (GET_CODE (lhs) == AND
9869 && paradoxical_subreg_p (XEXP (lhs, 0))
9870 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9871 && CONST_INT_P (XEXP (lhs, 1))
9872 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9873 dest, true))
9874 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9875 else
9876 return x;
9878 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9879 if (pos < 0
9880 || pos + len > GET_MODE_PRECISION (mode)
9881 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9882 || (c1 & nonzero_bits (other, mode)) != 0)
9883 return x;
9885 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9886 if (assign == 0)
9887 return x;
9889 /* The mode to use for the source is the mode of the assignment, or of
9890 what is inside a possible STRICT_LOW_PART. */
9891 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9892 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9894 /* Shift OTHER right POS places and make it the source, restricting it
9895 to the proper length and mode. */
9897 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9898 src_mode, other, pos),
9899 dest);
9900 src = force_to_mode (src, new_mode,
9901 len >= HOST_BITS_PER_WIDE_INT
9902 ? HOST_WIDE_INT_M1U
9903 : (HOST_WIDE_INT_1U << len) - 1,
9906 /* If SRC is masked by an AND that does not make a difference in
9907 the value being stored, strip it. */
9908 if (GET_CODE (assign) == ZERO_EXTRACT
9909 && CONST_INT_P (XEXP (assign, 1))
9910 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9911 && GET_CODE (src) == AND
9912 && CONST_INT_P (XEXP (src, 1))
9913 && UINTVAL (XEXP (src, 1))
9914 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9915 src = XEXP (src, 0);
9917 return gen_rtx_SET (assign, src);
9920 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9921 if so. */
9923 static rtx
9924 apply_distributive_law (rtx x)
9926 enum rtx_code code = GET_CODE (x);
9927 enum rtx_code inner_code;
9928 rtx lhs, rhs, other;
9929 rtx tem;
9931 /* Distributivity is not true for floating point as it can change the
9932 value. So we don't do it unless -funsafe-math-optimizations. */
9933 if (FLOAT_MODE_P (GET_MODE (x))
9934 && ! flag_unsafe_math_optimizations)
9935 return x;
9937 /* The outer operation can only be one of the following: */
9938 if (code != IOR && code != AND && code != XOR
9939 && code != PLUS && code != MINUS)
9940 return x;
9942 lhs = XEXP (x, 0);
9943 rhs = XEXP (x, 1);
9945 /* If either operand is a primitive we can't do anything, so get out
9946 fast. */
9947 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9948 return x;
9950 lhs = expand_compound_operation (lhs);
9951 rhs = expand_compound_operation (rhs);
9952 inner_code = GET_CODE (lhs);
9953 if (inner_code != GET_CODE (rhs))
9954 return x;
9956 /* See if the inner and outer operations distribute. */
9957 switch (inner_code)
9959 case LSHIFTRT:
9960 case ASHIFTRT:
9961 case AND:
9962 case IOR:
9963 /* These all distribute except over PLUS. */
9964 if (code == PLUS || code == MINUS)
9965 return x;
9966 break;
9968 case MULT:
9969 if (code != PLUS && code != MINUS)
9970 return x;
9971 break;
9973 case ASHIFT:
9974 /* This is also a multiply, so it distributes over everything. */
9975 break;
9977 /* This used to handle SUBREG, but this turned out to be counter-
9978 productive, since (subreg (op ...)) usually is not handled by
9979 insn patterns, and this "optimization" therefore transformed
9980 recognizable patterns into unrecognizable ones. Therefore the
9981 SUBREG case was removed from here.
9983 It is possible that distributing SUBREG over arithmetic operations
9984 leads to an intermediate result than can then be optimized further,
9985 e.g. by moving the outer SUBREG to the other side of a SET as done
9986 in simplify_set. This seems to have been the original intent of
9987 handling SUBREGs here.
9989 However, with current GCC this does not appear to actually happen,
9990 at least on major platforms. If some case is found where removing
9991 the SUBREG case here prevents follow-on optimizations, distributing
9992 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9994 default:
9995 return x;
9998 /* Set LHS and RHS to the inner operands (A and B in the example
9999 above) and set OTHER to the common operand (C in the example).
10000 There is only one way to do this unless the inner operation is
10001 commutative. */
10002 if (COMMUTATIVE_ARITH_P (lhs)
10003 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
10004 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
10005 else if (COMMUTATIVE_ARITH_P (lhs)
10006 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
10007 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
10008 else if (COMMUTATIVE_ARITH_P (lhs)
10009 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
10010 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
10011 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
10012 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
10013 else
10014 return x;
10016 /* Form the new inner operation, seeing if it simplifies first. */
10017 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
10019 /* There is one exception to the general way of distributing:
10020 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10021 if (code == XOR && inner_code == IOR)
10023 inner_code = AND;
10024 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
10027 /* We may be able to continuing distributing the result, so call
10028 ourselves recursively on the inner operation before forming the
10029 outer operation, which we return. */
10030 return simplify_gen_binary (inner_code, GET_MODE (x),
10031 apply_distributive_law (tem), other);
10034 /* See if X is of the form (* (+ A B) C), and if so convert to
10035 (+ (* A C) (* B C)) and try to simplify.
10037 Most of the time, this results in no change. However, if some of
10038 the operands are the same or inverses of each other, simplifications
10039 will result.
10041 For example, (and (ior A B) (not B)) can occur as the result of
10042 expanding a bit field assignment. When we apply the distributive
10043 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10044 which then simplifies to (and (A (not B))).
10046 Note that no checks happen on the validity of applying the inverse
10047 distributive law. This is pointless since we can do it in the
10048 few places where this routine is called.
10050 N is the index of the term that is decomposed (the arithmetic operation,
10051 i.e. (+ A B) in the first example above). !N is the index of the term that
10052 is distributed, i.e. of C in the first example above. */
10053 static rtx
10054 distribute_and_simplify_rtx (rtx x, int n)
10056 machine_mode mode;
10057 enum rtx_code outer_code, inner_code;
10058 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10060 /* Distributivity is not true for floating point as it can change the
10061 value. So we don't do it unless -funsafe-math-optimizations. */
10062 if (FLOAT_MODE_P (GET_MODE (x))
10063 && ! flag_unsafe_math_optimizations)
10064 return NULL_RTX;
10066 decomposed = XEXP (x, n);
10067 if (!ARITHMETIC_P (decomposed))
10068 return NULL_RTX;
10070 mode = GET_MODE (x);
10071 outer_code = GET_CODE (x);
10072 distributed = XEXP (x, !n);
10074 inner_code = GET_CODE (decomposed);
10075 inner_op0 = XEXP (decomposed, 0);
10076 inner_op1 = XEXP (decomposed, 1);
10078 /* Special case (and (xor B C) (not A)), which is equivalent to
10079 (xor (ior A B) (ior A C)) */
10080 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10082 distributed = XEXP (distributed, 0);
10083 outer_code = IOR;
10086 if (n == 0)
10088 /* Distribute the second term. */
10089 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
10090 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
10092 else
10094 /* Distribute the first term. */
10095 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
10096 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
10099 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
10100 new_op0, new_op1));
10101 if (GET_CODE (tmp) != outer_code
10102 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
10103 < set_src_cost (x, mode, optimize_this_for_speed_p)))
10104 return tmp;
10106 return NULL_RTX;
10109 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10110 in MODE. Return an equivalent form, if different from (and VAROP
10111 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10113 static rtx
10114 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10115 unsigned HOST_WIDE_INT constop)
10117 unsigned HOST_WIDE_INT nonzero;
10118 unsigned HOST_WIDE_INT orig_constop;
10119 rtx orig_varop;
10120 int i;
10122 orig_varop = varop;
10123 orig_constop = constop;
10124 if (GET_CODE (varop) == CLOBBER)
10125 return NULL_RTX;
10127 /* Simplify VAROP knowing that we will be only looking at some of the
10128 bits in it.
10130 Note by passing in CONSTOP, we guarantee that the bits not set in
10131 CONSTOP are not significant and will never be examined. We must
10132 ensure that is the case by explicitly masking out those bits
10133 before returning. */
10134 varop = force_to_mode (varop, mode, constop, 0);
10136 /* If VAROP is a CLOBBER, we will fail so return it. */
10137 if (GET_CODE (varop) == CLOBBER)
10138 return varop;
10140 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10141 to VAROP and return the new constant. */
10142 if (CONST_INT_P (varop))
10143 return gen_int_mode (INTVAL (varop) & constop, mode);
10145 /* See what bits may be nonzero in VAROP. Unlike the general case of
10146 a call to nonzero_bits, here we don't care about bits outside
10147 MODE. */
10149 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10151 /* Turn off all bits in the constant that are known to already be zero.
10152 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10153 which is tested below. */
10155 constop &= nonzero;
10157 /* If we don't have any bits left, return zero. */
10158 if (constop == 0)
10159 return const0_rtx;
10161 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10162 a power of two, we can replace this with an ASHIFT. */
10163 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10164 && (i = exact_log2 (constop)) >= 0)
10165 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10167 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10168 or XOR, then try to apply the distributive law. This may eliminate
10169 operations if either branch can be simplified because of the AND.
10170 It may also make some cases more complex, but those cases probably
10171 won't match a pattern either with or without this. */
10173 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10175 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10176 return
10177 gen_lowpart
10178 (mode,
10179 apply_distributive_law
10180 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10181 simplify_and_const_int (NULL_RTX, varop_mode,
10182 XEXP (varop, 0),
10183 constop),
10184 simplify_and_const_int (NULL_RTX, varop_mode,
10185 XEXP (varop, 1),
10186 constop))));
10189 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10190 the AND and see if one of the operands simplifies to zero. If so, we
10191 may eliminate it. */
10193 if (GET_CODE (varop) == PLUS
10194 && pow2p_hwi (constop + 1))
10196 rtx o0, o1;
10198 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10199 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10200 if (o0 == const0_rtx)
10201 return o1;
10202 if (o1 == const0_rtx)
10203 return o0;
10206 /* Make a SUBREG if necessary. If we can't make it, fail. */
10207 varop = gen_lowpart (mode, varop);
10208 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10209 return NULL_RTX;
10211 /* If we are only masking insignificant bits, return VAROP. */
10212 if (constop == nonzero)
10213 return varop;
10215 if (varop == orig_varop && constop == orig_constop)
10216 return NULL_RTX;
10218 /* Otherwise, return an AND. */
10219 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10223 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10224 in MODE.
10226 Return an equivalent form, if different from X. Otherwise, return X. If
10227 X is zero, we are to always construct the equivalent form. */
10229 static rtx
10230 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10231 unsigned HOST_WIDE_INT constop)
10233 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10234 if (tem)
10235 return tem;
10237 if (!x)
10238 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10239 gen_int_mode (constop, mode));
10240 if (GET_MODE (x) != mode)
10241 x = gen_lowpart (mode, x);
10242 return x;
10245 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10246 We don't care about bits outside of those defined in MODE.
10247 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10249 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10250 a shift, AND, or zero_extract, we can do better. */
10252 static rtx
10253 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10254 scalar_int_mode mode,
10255 unsigned HOST_WIDE_INT *nonzero)
10257 rtx tem;
10258 reg_stat_type *rsp;
10260 /* If X is a register whose nonzero bits value is current, use it.
10261 Otherwise, if X is a register whose value we can find, use that
10262 value. Otherwise, use the previously-computed global nonzero bits
10263 for this register. */
10265 rsp = &reg_stat[REGNO (x)];
10266 if (rsp->last_set_value != 0
10267 && (rsp->last_set_mode == mode
10268 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10269 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10270 && GET_MODE_CLASS (mode) == MODE_INT))
10271 && ((rsp->last_set_label >= label_tick_ebb_start
10272 && rsp->last_set_label < label_tick)
10273 || (rsp->last_set_label == label_tick
10274 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10275 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10276 && REGNO (x) < reg_n_sets_max
10277 && REG_N_SETS (REGNO (x)) == 1
10278 && !REGNO_REG_SET_P
10279 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10280 REGNO (x)))))
10282 /* Note that, even if the precision of last_set_mode is lower than that
10283 of mode, record_value_for_reg invoked nonzero_bits on the register
10284 with nonzero_bits_mode (because last_set_mode is necessarily integral
10285 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10286 are all valid, hence in mode too since nonzero_bits_mode is defined
10287 to the largest HWI_COMPUTABLE_MODE_P mode. */
10288 *nonzero &= rsp->last_set_nonzero_bits;
10289 return NULL;
10292 tem = get_last_value (x);
10293 if (tem)
10295 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10296 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10298 return tem;
10301 if (nonzero_sign_valid && rsp->nonzero_bits)
10303 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10305 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10306 /* We don't know anything about the upper bits. */
10307 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10309 *nonzero &= mask;
10312 return NULL;
10315 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10316 end of X that are known to be equal to the sign bit. X will be used
10317 in mode MODE; the returned value will always be between 1 and the
10318 number of bits in MODE. */
10320 static rtx
10321 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10322 scalar_int_mode mode,
10323 unsigned int *result)
10325 rtx tem;
10326 reg_stat_type *rsp;
10328 rsp = &reg_stat[REGNO (x)];
10329 if (rsp->last_set_value != 0
10330 && rsp->last_set_mode == mode
10331 && ((rsp->last_set_label >= label_tick_ebb_start
10332 && rsp->last_set_label < label_tick)
10333 || (rsp->last_set_label == label_tick
10334 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10335 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10336 && REGNO (x) < reg_n_sets_max
10337 && REG_N_SETS (REGNO (x)) == 1
10338 && !REGNO_REG_SET_P
10339 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10340 REGNO (x)))))
10342 *result = rsp->last_set_sign_bit_copies;
10343 return NULL;
10346 tem = get_last_value (x);
10347 if (tem != 0)
10348 return tem;
10350 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10351 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10352 *result = rsp->sign_bit_copies;
10354 return NULL;
10357 /* Return the number of "extended" bits there are in X, when interpreted
10358 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10359 unsigned quantities, this is the number of high-order zero bits.
10360 For signed quantities, this is the number of copies of the sign bit
10361 minus 1. In both case, this function returns the number of "spare"
10362 bits. For example, if two quantities for which this function returns
10363 at least 1 are added, the addition is known not to overflow.
10365 This function will always return 0 unless called during combine, which
10366 implies that it must be called from a define_split. */
10368 unsigned int
10369 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10371 if (nonzero_sign_valid == 0)
10372 return 0;
10374 scalar_int_mode int_mode;
10375 return (unsignedp
10376 ? (is_a <scalar_int_mode> (mode, &int_mode)
10377 && HWI_COMPUTABLE_MODE_P (int_mode)
10378 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10379 - floor_log2 (nonzero_bits (x, int_mode)))
10380 : 0)
10381 : num_sign_bit_copies (x, mode) - 1);
10384 /* This function is called from `simplify_shift_const' to merge two
10385 outer operations. Specifically, we have already found that we need
10386 to perform operation *POP0 with constant *PCONST0 at the outermost
10387 position. We would now like to also perform OP1 with constant CONST1
10388 (with *POP0 being done last).
10390 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10391 the resulting operation. *PCOMP_P is set to 1 if we would need to
10392 complement the innermost operand, otherwise it is unchanged.
10394 MODE is the mode in which the operation will be done. No bits outside
10395 the width of this mode matter. It is assumed that the width of this mode
10396 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10398 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10399 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10400 result is simply *PCONST0.
10402 If the resulting operation cannot be expressed as one operation, we
10403 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10405 static int
10406 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10408 enum rtx_code op0 = *pop0;
10409 HOST_WIDE_INT const0 = *pconst0;
10411 const0 &= GET_MODE_MASK (mode);
10412 const1 &= GET_MODE_MASK (mode);
10414 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10415 if (op0 == AND)
10416 const1 &= const0;
10418 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10419 if OP0 is SET. */
10421 if (op1 == UNKNOWN || op0 == SET)
10422 return 1;
10424 else if (op0 == UNKNOWN)
10425 op0 = op1, const0 = const1;
10427 else if (op0 == op1)
10429 switch (op0)
10431 case AND:
10432 const0 &= const1;
10433 break;
10434 case IOR:
10435 const0 |= const1;
10436 break;
10437 case XOR:
10438 const0 ^= const1;
10439 break;
10440 case PLUS:
10441 const0 += const1;
10442 break;
10443 case NEG:
10444 op0 = UNKNOWN;
10445 break;
10446 default:
10447 break;
10451 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10452 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10453 return 0;
10455 /* If the two constants aren't the same, we can't do anything. The
10456 remaining six cases can all be done. */
10457 else if (const0 != const1)
10458 return 0;
10460 else
10461 switch (op0)
10463 case IOR:
10464 if (op1 == AND)
10465 /* (a & b) | b == b */
10466 op0 = SET;
10467 else /* op1 == XOR */
10468 /* (a ^ b) | b == a | b */
10470 break;
10472 case XOR:
10473 if (op1 == AND)
10474 /* (a & b) ^ b == (~a) & b */
10475 op0 = AND, *pcomp_p = 1;
10476 else /* op1 == IOR */
10477 /* (a | b) ^ b == a & ~b */
10478 op0 = AND, const0 = ~const0;
10479 break;
10481 case AND:
10482 if (op1 == IOR)
10483 /* (a | b) & b == b */
10484 op0 = SET;
10485 else /* op1 == XOR */
10486 /* (a ^ b) & b) == (~a) & b */
10487 *pcomp_p = 1;
10488 break;
10489 default:
10490 break;
10493 /* Check for NO-OP cases. */
10494 const0 &= GET_MODE_MASK (mode);
10495 if (const0 == 0
10496 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10497 op0 = UNKNOWN;
10498 else if (const0 == 0 && op0 == AND)
10499 op0 = SET;
10500 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10501 && op0 == AND)
10502 op0 = UNKNOWN;
10504 *pop0 = op0;
10506 /* ??? Slightly redundant with the above mask, but not entirely.
10507 Moving this above means we'd have to sign-extend the mode mask
10508 for the final test. */
10509 if (op0 != UNKNOWN && op0 != NEG)
10510 *pconst0 = trunc_int_for_mode (const0, mode);
10512 return 1;
10515 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10516 the shift in. The original shift operation CODE is performed on OP in
10517 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10518 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10519 result of the shift is subject to operation OUTER_CODE with operand
10520 OUTER_CONST. */
10522 static scalar_int_mode
10523 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10524 scalar_int_mode orig_mode, scalar_int_mode mode,
10525 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10527 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10529 /* In general we can't perform in wider mode for right shift and rotate. */
10530 switch (code)
10532 case ASHIFTRT:
10533 /* We can still widen if the bits brought in from the left are identical
10534 to the sign bit of ORIG_MODE. */
10535 if (num_sign_bit_copies (op, mode)
10536 > (unsigned) (GET_MODE_PRECISION (mode)
10537 - GET_MODE_PRECISION (orig_mode)))
10538 return mode;
10539 return orig_mode;
10541 case LSHIFTRT:
10542 /* Similarly here but with zero bits. */
10543 if (HWI_COMPUTABLE_MODE_P (mode)
10544 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10545 return mode;
10547 /* We can also widen if the bits brought in will be masked off. This
10548 operation is performed in ORIG_MODE. */
10549 if (outer_code == AND)
10551 int care_bits = low_bitmask_len (orig_mode, outer_const);
10553 if (care_bits >= 0
10554 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10555 return mode;
10557 /* fall through */
10559 case ROTATE:
10560 return orig_mode;
10562 case ROTATERT:
10563 gcc_unreachable ();
10565 default:
10566 return mode;
10570 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10571 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10572 if we cannot simplify it. Otherwise, return a simplified value.
10574 The shift is normally computed in the widest mode we find in VAROP, as
10575 long as it isn't a different number of words than RESULT_MODE. Exceptions
10576 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10578 static rtx
10579 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10580 rtx varop, int orig_count)
10582 enum rtx_code orig_code = code;
10583 rtx orig_varop = varop;
10584 int count, log2;
10585 machine_mode mode = result_mode;
10586 machine_mode shift_mode;
10587 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10588 /* We form (outer_op (code varop count) (outer_const)). */
10589 enum rtx_code outer_op = UNKNOWN;
10590 HOST_WIDE_INT outer_const = 0;
10591 int complement_p = 0;
10592 rtx new_rtx, x;
10594 /* Make sure and truncate the "natural" shift on the way in. We don't
10595 want to do this inside the loop as it makes it more difficult to
10596 combine shifts. */
10597 if (SHIFT_COUNT_TRUNCATED)
10598 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10600 /* If we were given an invalid count, don't do anything except exactly
10601 what was requested. */
10603 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10604 return NULL_RTX;
10606 count = orig_count;
10608 /* Unless one of the branches of the `if' in this loop does a `continue',
10609 we will `break' the loop after the `if'. */
10611 while (count != 0)
10613 /* If we have an operand of (clobber (const_int 0)), fail. */
10614 if (GET_CODE (varop) == CLOBBER)
10615 return NULL_RTX;
10617 /* Convert ROTATERT to ROTATE. */
10618 if (code == ROTATERT)
10620 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10621 code = ROTATE;
10622 count = bitsize - count;
10625 shift_mode = result_mode;
10626 if (shift_mode != mode)
10628 /* We only change the modes of scalar shifts. */
10629 int_mode = as_a <scalar_int_mode> (mode);
10630 int_result_mode = as_a <scalar_int_mode> (result_mode);
10631 shift_mode = try_widen_shift_mode (code, varop, count,
10632 int_result_mode, int_mode,
10633 outer_op, outer_const);
10636 scalar_int_mode shift_unit_mode
10637 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10639 /* Handle cases where the count is greater than the size of the mode
10640 minus 1. For ASHIFT, use the size minus one as the count (this can
10641 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10642 take the count modulo the size. For other shifts, the result is
10643 zero.
10645 Since these shifts are being produced by the compiler by combining
10646 multiple operations, each of which are defined, we know what the
10647 result is supposed to be. */
10649 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10651 if (code == ASHIFTRT)
10652 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10653 else if (code == ROTATE || code == ROTATERT)
10654 count %= GET_MODE_PRECISION (shift_unit_mode);
10655 else
10657 /* We can't simply return zero because there may be an
10658 outer op. */
10659 varop = const0_rtx;
10660 count = 0;
10661 break;
10665 /* If we discovered we had to complement VAROP, leave. Making a NOT
10666 here would cause an infinite loop. */
10667 if (complement_p)
10668 break;
10670 if (shift_mode == shift_unit_mode)
10672 /* An arithmetic right shift of a quantity known to be -1 or 0
10673 is a no-op. */
10674 if (code == ASHIFTRT
10675 && (num_sign_bit_copies (varop, shift_unit_mode)
10676 == GET_MODE_PRECISION (shift_unit_mode)))
10678 count = 0;
10679 break;
10682 /* If we are doing an arithmetic right shift and discarding all but
10683 the sign bit copies, this is equivalent to doing a shift by the
10684 bitsize minus one. Convert it into that shift because it will
10685 often allow other simplifications. */
10687 if (code == ASHIFTRT
10688 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10689 >= GET_MODE_PRECISION (shift_unit_mode)))
10690 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10692 /* We simplify the tests below and elsewhere by converting
10693 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10694 `make_compound_operation' will convert it to an ASHIFTRT for
10695 those machines (such as VAX) that don't have an LSHIFTRT. */
10696 if (code == ASHIFTRT
10697 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10698 && val_signbit_known_clear_p (shift_unit_mode,
10699 nonzero_bits (varop,
10700 shift_unit_mode)))
10701 code = LSHIFTRT;
10703 if (((code == LSHIFTRT
10704 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10705 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10706 || (code == ASHIFT
10707 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10708 && !((nonzero_bits (varop, shift_unit_mode) << count)
10709 & GET_MODE_MASK (shift_unit_mode))))
10710 && !side_effects_p (varop))
10711 varop = const0_rtx;
10714 switch (GET_CODE (varop))
10716 case SIGN_EXTEND:
10717 case ZERO_EXTEND:
10718 case SIGN_EXTRACT:
10719 case ZERO_EXTRACT:
10720 new_rtx = expand_compound_operation (varop);
10721 if (new_rtx != varop)
10723 varop = new_rtx;
10724 continue;
10726 break;
10728 case MEM:
10729 /* The following rules apply only to scalars. */
10730 if (shift_mode != shift_unit_mode)
10731 break;
10732 int_mode = as_a <scalar_int_mode> (mode);
10734 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10735 minus the width of a smaller mode, we can do this with a
10736 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10737 if ((code == ASHIFTRT || code == LSHIFTRT)
10738 && ! mode_dependent_address_p (XEXP (varop, 0),
10739 MEM_ADDR_SPACE (varop))
10740 && ! MEM_VOLATILE_P (varop)
10741 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10742 .exists (&tmode)))
10744 new_rtx = adjust_address_nv (varop, tmode,
10745 BYTES_BIG_ENDIAN ? 0
10746 : count / BITS_PER_UNIT);
10748 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10749 : ZERO_EXTEND, int_mode, new_rtx);
10750 count = 0;
10751 continue;
10753 break;
10755 case SUBREG:
10756 /* The following rules apply only to scalars. */
10757 if (shift_mode != shift_unit_mode)
10758 break;
10759 int_mode = as_a <scalar_int_mode> (mode);
10760 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10762 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10763 the same number of words as what we've seen so far. Then store
10764 the widest mode in MODE. */
10765 if (subreg_lowpart_p (varop)
10766 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10767 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10768 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10769 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10770 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10772 varop = SUBREG_REG (varop);
10773 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10774 mode = inner_mode;
10775 continue;
10777 break;
10779 case MULT:
10780 /* Some machines use MULT instead of ASHIFT because MULT
10781 is cheaper. But it is still better on those machines to
10782 merge two shifts into one. */
10783 if (CONST_INT_P (XEXP (varop, 1))
10784 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10786 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10787 varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10788 XEXP (varop, 0), log2_rtx);
10789 continue;
10791 break;
10793 case UDIV:
10794 /* Similar, for when divides are cheaper. */
10795 if (CONST_INT_P (XEXP (varop, 1))
10796 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10798 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10799 varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10800 XEXP (varop, 0), log2_rtx);
10801 continue;
10803 break;
10805 case ASHIFTRT:
10806 /* If we are extracting just the sign bit of an arithmetic
10807 right shift, that shift is not needed. However, the sign
10808 bit of a wider mode may be different from what would be
10809 interpreted as the sign bit in a narrower mode, so, if
10810 the result is narrower, don't discard the shift. */
10811 if (code == LSHIFTRT
10812 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10813 && (GET_MODE_UNIT_BITSIZE (result_mode)
10814 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10816 varop = XEXP (varop, 0);
10817 continue;
10820 /* fall through */
10822 case LSHIFTRT:
10823 case ASHIFT:
10824 case ROTATE:
10825 /* The following rules apply only to scalars. */
10826 if (shift_mode != shift_unit_mode)
10827 break;
10828 int_mode = as_a <scalar_int_mode> (mode);
10829 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10830 int_result_mode = as_a <scalar_int_mode> (result_mode);
10832 /* Here we have two nested shifts. The result is usually the
10833 AND of a new shift with a mask. We compute the result below. */
10834 if (CONST_INT_P (XEXP (varop, 1))
10835 && INTVAL (XEXP (varop, 1)) >= 0
10836 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10837 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10838 && HWI_COMPUTABLE_MODE_P (int_mode))
10840 enum rtx_code first_code = GET_CODE (varop);
10841 unsigned int first_count = INTVAL (XEXP (varop, 1));
10842 unsigned HOST_WIDE_INT mask;
10843 rtx mask_rtx;
10845 /* We have one common special case. We can't do any merging if
10846 the inner code is an ASHIFTRT of a smaller mode. However, if
10847 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10848 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10849 we can convert it to
10850 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10851 This simplifies certain SIGN_EXTEND operations. */
10852 if (code == ASHIFT && first_code == ASHIFTRT
10853 && count == (GET_MODE_PRECISION (int_result_mode)
10854 - GET_MODE_PRECISION (int_varop_mode)))
10856 /* C3 has the low-order C1 bits zero. */
10858 mask = GET_MODE_MASK (int_mode)
10859 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10861 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10862 XEXP (varop, 0), mask);
10863 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10864 int_result_mode, varop, count);
10865 count = first_count;
10866 code = ASHIFTRT;
10867 continue;
10870 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10871 than C1 high-order bits equal to the sign bit, we can convert
10872 this to either an ASHIFT or an ASHIFTRT depending on the
10873 two counts.
10875 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10877 if (code == ASHIFTRT && first_code == ASHIFT
10878 && int_varop_mode == shift_unit_mode
10879 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10880 > first_count))
10882 varop = XEXP (varop, 0);
10883 count -= first_count;
10884 if (count < 0)
10886 count = -count;
10887 code = ASHIFT;
10890 continue;
10893 /* There are some cases we can't do. If CODE is ASHIFTRT,
10894 we can only do this if FIRST_CODE is also ASHIFTRT.
10896 We can't do the case when CODE is ROTATE and FIRST_CODE is
10897 ASHIFTRT.
10899 If the mode of this shift is not the mode of the outer shift,
10900 we can't do this if either shift is a right shift or ROTATE.
10902 Finally, we can't do any of these if the mode is too wide
10903 unless the codes are the same.
10905 Handle the case where the shift codes are the same
10906 first. */
10908 if (code == first_code)
10910 if (int_varop_mode != int_result_mode
10911 && (code == ASHIFTRT || code == LSHIFTRT
10912 || code == ROTATE))
10913 break;
10915 count += first_count;
10916 varop = XEXP (varop, 0);
10917 continue;
10920 if (code == ASHIFTRT
10921 || (code == ROTATE && first_code == ASHIFTRT)
10922 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10923 || (int_varop_mode != int_result_mode
10924 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10925 || first_code == ROTATE
10926 || code == ROTATE)))
10927 break;
10929 /* To compute the mask to apply after the shift, shift the
10930 nonzero bits of the inner shift the same way the
10931 outer shift will. */
10933 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10934 int_result_mode);
10935 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10936 mask_rtx
10937 = simplify_const_binary_operation (code, int_result_mode,
10938 mask_rtx, count_rtx);
10940 /* Give up if we can't compute an outer operation to use. */
10941 if (mask_rtx == 0
10942 || !CONST_INT_P (mask_rtx)
10943 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10944 INTVAL (mask_rtx),
10945 int_result_mode, &complement_p))
10946 break;
10948 /* If the shifts are in the same direction, we add the
10949 counts. Otherwise, we subtract them. */
10950 if ((code == ASHIFTRT || code == LSHIFTRT)
10951 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10952 count += first_count;
10953 else
10954 count -= first_count;
10956 /* If COUNT is positive, the new shift is usually CODE,
10957 except for the two exceptions below, in which case it is
10958 FIRST_CODE. If the count is negative, FIRST_CODE should
10959 always be used */
10960 if (count > 0
10961 && ((first_code == ROTATE && code == ASHIFT)
10962 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10963 code = first_code;
10964 else if (count < 0)
10965 code = first_code, count = -count;
10967 varop = XEXP (varop, 0);
10968 continue;
10971 /* If we have (A << B << C) for any shift, we can convert this to
10972 (A << C << B). This wins if A is a constant. Only try this if
10973 B is not a constant. */
10975 else if (GET_CODE (varop) == code
10976 && CONST_INT_P (XEXP (varop, 0))
10977 && !CONST_INT_P (XEXP (varop, 1)))
10979 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10980 sure the result will be masked. See PR70222. */
10981 if (code == LSHIFTRT
10982 && int_mode != int_result_mode
10983 && !merge_outer_ops (&outer_op, &outer_const, AND,
10984 GET_MODE_MASK (int_result_mode)
10985 >> orig_count, int_result_mode,
10986 &complement_p))
10987 break;
10988 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10989 up outer sign extension (often left and right shift) is
10990 hardly more efficient than the original. See PR70429. */
10991 if (code == ASHIFTRT && int_mode != int_result_mode)
10992 break;
10994 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10995 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10996 XEXP (varop, 0),
10997 count_rtx);
10998 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10999 count = 0;
11000 continue;
11002 break;
11004 case NOT:
11005 /* The following rules apply only to scalars. */
11006 if (shift_mode != shift_unit_mode)
11007 break;
11009 /* Make this fit the case below. */
11010 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
11011 continue;
11013 case IOR:
11014 case AND:
11015 case XOR:
11016 /* The following rules apply only to scalars. */
11017 if (shift_mode != shift_unit_mode)
11018 break;
11019 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11020 int_result_mode = as_a <scalar_int_mode> (result_mode);
11022 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11023 with C the size of VAROP - 1 and the shift is logical if
11024 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11025 we have an (le X 0) operation. If we have an arithmetic shift
11026 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11027 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11029 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
11030 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
11031 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11032 && (code == LSHIFTRT || code == ASHIFTRT)
11033 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11034 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11036 count = 0;
11037 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11038 const0_rtx);
11040 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11041 varop = gen_rtx_NEG (int_varop_mode, varop);
11043 continue;
11046 /* If we have (shift (logical)), move the logical to the outside
11047 to allow it to possibly combine with another logical and the
11048 shift to combine with another shift. This also canonicalizes to
11049 what a ZERO_EXTRACT looks like. Also, some machines have
11050 (and (shift)) insns. */
11052 if (CONST_INT_P (XEXP (varop, 1))
11053 /* We can't do this if we have (ashiftrt (xor)) and the
11054 constant has its sign bit set in shift_unit_mode with
11055 shift_unit_mode wider than result_mode. */
11056 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11057 && int_result_mode != shift_unit_mode
11058 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11059 shift_unit_mode) < 0)
11060 && (new_rtx = simplify_const_binary_operation
11061 (code, int_result_mode,
11062 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11063 gen_int_shift_amount (int_result_mode, count))) != 0
11064 && CONST_INT_P (new_rtx)
11065 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
11066 INTVAL (new_rtx), int_result_mode,
11067 &complement_p))
11069 varop = XEXP (varop, 0);
11070 continue;
11073 /* If we can't do that, try to simplify the shift in each arm of the
11074 logical expression, make a new logical expression, and apply
11075 the inverse distributive law. This also can't be done for
11076 (ashiftrt (xor)) where we've widened the shift and the constant
11077 changes the sign bit. */
11078 if (CONST_INT_P (XEXP (varop, 1))
11079 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11080 && int_result_mode != shift_unit_mode
11081 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11082 shift_unit_mode) < 0))
11084 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11085 XEXP (varop, 0), count);
11086 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11087 XEXP (varop, 1), count);
11089 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
11090 lhs, rhs);
11091 varop = apply_distributive_law (varop);
11093 count = 0;
11094 continue;
11096 break;
11098 case EQ:
11099 /* The following rules apply only to scalars. */
11100 if (shift_mode != shift_unit_mode)
11101 break;
11102 int_result_mode = as_a <scalar_int_mode> (result_mode);
11104 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11105 says that the sign bit can be tested, FOO has mode MODE, C is
11106 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11107 that may be nonzero. */
11108 if (code == LSHIFTRT
11109 && XEXP (varop, 1) == const0_rtx
11110 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11111 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11112 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11113 && STORE_FLAG_VALUE == -1
11114 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11115 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11116 int_result_mode, &complement_p))
11118 varop = XEXP (varop, 0);
11119 count = 0;
11120 continue;
11122 break;
11124 case NEG:
11125 /* The following rules apply only to scalars. */
11126 if (shift_mode != shift_unit_mode)
11127 break;
11128 int_result_mode = as_a <scalar_int_mode> (result_mode);
11130 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11131 than the number of bits in the mode is equivalent to A. */
11132 if (code == LSHIFTRT
11133 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11134 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11136 varop = XEXP (varop, 0);
11137 count = 0;
11138 continue;
11141 /* NEG commutes with ASHIFT since it is multiplication. Move the
11142 NEG outside to allow shifts to combine. */
11143 if (code == ASHIFT
11144 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11145 int_result_mode, &complement_p))
11147 varop = XEXP (varop, 0);
11148 continue;
11150 break;
11152 case PLUS:
11153 /* The following rules apply only to scalars. */
11154 if (shift_mode != shift_unit_mode)
11155 break;
11156 int_result_mode = as_a <scalar_int_mode> (result_mode);
11158 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11159 is one less than the number of bits in the mode is
11160 equivalent to (xor A 1). */
11161 if (code == LSHIFTRT
11162 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11163 && XEXP (varop, 1) == constm1_rtx
11164 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11165 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11166 int_result_mode, &complement_p))
11168 count = 0;
11169 varop = XEXP (varop, 0);
11170 continue;
11173 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11174 that might be nonzero in BAR are those being shifted out and those
11175 bits are known zero in FOO, we can replace the PLUS with FOO.
11176 Similarly in the other operand order. This code occurs when
11177 we are computing the size of a variable-size array. */
11179 if ((code == ASHIFTRT || code == LSHIFTRT)
11180 && count < HOST_BITS_PER_WIDE_INT
11181 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11182 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11183 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11185 varop = XEXP (varop, 0);
11186 continue;
11188 else if ((code == ASHIFTRT || code == LSHIFTRT)
11189 && count < HOST_BITS_PER_WIDE_INT
11190 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11191 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11192 >> count) == 0
11193 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11194 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11196 varop = XEXP (varop, 1);
11197 continue;
11200 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11201 if (code == ASHIFT
11202 && CONST_INT_P (XEXP (varop, 1))
11203 && (new_rtx = simplify_const_binary_operation
11204 (ASHIFT, int_result_mode,
11205 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11206 gen_int_shift_amount (int_result_mode, count))) != 0
11207 && CONST_INT_P (new_rtx)
11208 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11209 INTVAL (new_rtx), int_result_mode,
11210 &complement_p))
11212 varop = XEXP (varop, 0);
11213 continue;
11216 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11217 signbit', and attempt to change the PLUS to an XOR and move it to
11218 the outer operation as is done above in the AND/IOR/XOR case
11219 leg for shift(logical). See details in logical handling above
11220 for reasoning in doing so. */
11221 if (code == LSHIFTRT
11222 && CONST_INT_P (XEXP (varop, 1))
11223 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11224 && (new_rtx = simplify_const_binary_operation
11225 (code, int_result_mode,
11226 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11227 gen_int_shift_amount (int_result_mode, count))) != 0
11228 && CONST_INT_P (new_rtx)
11229 && merge_outer_ops (&outer_op, &outer_const, XOR,
11230 INTVAL (new_rtx), int_result_mode,
11231 &complement_p))
11233 varop = XEXP (varop, 0);
11234 continue;
11237 break;
11239 case MINUS:
11240 /* The following rules apply only to scalars. */
11241 if (shift_mode != shift_unit_mode)
11242 break;
11243 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11245 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11246 with C the size of VAROP - 1 and the shift is logical if
11247 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11248 we have a (gt X 0) operation. If the shift is arithmetic with
11249 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11250 we have a (neg (gt X 0)) operation. */
11252 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11253 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11254 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11255 && (code == LSHIFTRT || code == ASHIFTRT)
11256 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11257 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11258 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11260 count = 0;
11261 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11262 const0_rtx);
11264 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11265 varop = gen_rtx_NEG (int_varop_mode, varop);
11267 continue;
11269 break;
11271 case TRUNCATE:
11272 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11273 if the truncate does not affect the value. */
11274 if (code == LSHIFTRT
11275 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11276 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11277 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11278 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11279 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11281 rtx varop_inner = XEXP (varop, 0);
11282 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11283 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11284 new_count);
11285 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11286 XEXP (varop_inner, 0),
11287 new_count_rtx);
11288 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11289 count = 0;
11290 continue;
11292 break;
11294 default:
11295 break;
11298 break;
11301 shift_mode = result_mode;
11302 if (shift_mode != mode)
11304 /* We only change the modes of scalar shifts. */
11305 int_mode = as_a <scalar_int_mode> (mode);
11306 int_result_mode = as_a <scalar_int_mode> (result_mode);
11307 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11308 int_mode, outer_op, outer_const);
11311 /* We have now finished analyzing the shift. The result should be
11312 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11313 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11314 to the result of the shift. OUTER_CONST is the relevant constant,
11315 but we must turn off all bits turned off in the shift. */
11317 if (outer_op == UNKNOWN
11318 && orig_code == code && orig_count == count
11319 && varop == orig_varop
11320 && shift_mode == GET_MODE (varop))
11321 return NULL_RTX;
11323 /* Make a SUBREG if necessary. If we can't make it, fail. */
11324 varop = gen_lowpart (shift_mode, varop);
11325 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11326 return NULL_RTX;
11328 /* If we have an outer operation and we just made a shift, it is
11329 possible that we could have simplified the shift were it not
11330 for the outer operation. So try to do the simplification
11331 recursively. */
11333 if (outer_op != UNKNOWN)
11334 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11335 else
11336 x = NULL_RTX;
11338 if (x == NULL_RTX)
11339 x = simplify_gen_binary (code, shift_mode, varop,
11340 gen_int_shift_amount (shift_mode, count));
11342 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11343 turn off all the bits that the shift would have turned off. */
11344 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11345 /* We only change the modes of scalar shifts. */
11346 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11347 x, GET_MODE_MASK (result_mode) >> orig_count);
11349 /* Do the remainder of the processing in RESULT_MODE. */
11350 x = gen_lowpart_or_truncate (result_mode, x);
11352 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11353 operation. */
11354 if (complement_p)
11355 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11357 if (outer_op != UNKNOWN)
11359 int_result_mode = as_a <scalar_int_mode> (result_mode);
11361 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11362 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11363 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11365 if (outer_op == AND)
11366 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11367 else if (outer_op == SET)
11369 /* This means that we have determined that the result is
11370 equivalent to a constant. This should be rare. */
11371 if (!side_effects_p (x))
11372 x = GEN_INT (outer_const);
11374 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11375 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11376 else
11377 x = simplify_gen_binary (outer_op, int_result_mode, x,
11378 GEN_INT (outer_const));
11381 return x;
11384 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11385 The result of the shift is RESULT_MODE. If we cannot simplify it,
11386 return X or, if it is NULL, synthesize the expression with
11387 simplify_gen_binary. Otherwise, return a simplified value.
11389 The shift is normally computed in the widest mode we find in VAROP, as
11390 long as it isn't a different number of words than RESULT_MODE. Exceptions
11391 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11393 static rtx
11394 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11395 rtx varop, int count)
11397 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11398 if (tem)
11399 return tem;
11401 if (!x)
11402 x = simplify_gen_binary (code, GET_MODE (varop), varop,
11403 gen_int_shift_amount (GET_MODE (varop), count));
11404 if (GET_MODE (x) != result_mode)
11405 x = gen_lowpart (result_mode, x);
11406 return x;
11410 /* A subroutine of recog_for_combine. See there for arguments and
11411 return value. */
11413 static int
11414 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11416 rtx pat = *pnewpat;
11417 rtx pat_without_clobbers;
11418 int insn_code_number;
11419 int num_clobbers_to_add = 0;
11420 int i;
11421 rtx notes = NULL_RTX;
11422 rtx old_notes, old_pat;
11423 int old_icode;
11425 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11426 we use to indicate that something didn't match. If we find such a
11427 thing, force rejection. */
11428 if (GET_CODE (pat) == PARALLEL)
11429 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11430 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11431 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11432 return -1;
11434 old_pat = PATTERN (insn);
11435 old_notes = REG_NOTES (insn);
11436 PATTERN (insn) = pat;
11437 REG_NOTES (insn) = NULL_RTX;
11439 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11440 if (dump_file && (dump_flags & TDF_DETAILS))
11442 if (insn_code_number < 0)
11443 fputs ("Failed to match this instruction:\n", dump_file);
11444 else
11445 fputs ("Successfully matched this instruction:\n", dump_file);
11446 print_rtl_single (dump_file, pat);
11449 /* If it isn't, there is the possibility that we previously had an insn
11450 that clobbered some register as a side effect, but the combined
11451 insn doesn't need to do that. So try once more without the clobbers
11452 unless this represents an ASM insn. */
11454 if (insn_code_number < 0 && ! check_asm_operands (pat)
11455 && GET_CODE (pat) == PARALLEL)
11457 int pos;
11459 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11460 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11462 if (i != pos)
11463 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11464 pos++;
11467 SUBST_INT (XVECLEN (pat, 0), pos);
11469 if (pos == 1)
11470 pat = XVECEXP (pat, 0, 0);
11472 PATTERN (insn) = pat;
11473 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11474 if (dump_file && (dump_flags & TDF_DETAILS))
11476 if (insn_code_number < 0)
11477 fputs ("Failed to match this instruction:\n", dump_file);
11478 else
11479 fputs ("Successfully matched this instruction:\n", dump_file);
11480 print_rtl_single (dump_file, pat);
11484 pat_without_clobbers = pat;
11486 PATTERN (insn) = old_pat;
11487 REG_NOTES (insn) = old_notes;
11489 /* Recognize all noop sets, these will be killed by followup pass. */
11490 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11491 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11493 /* If we had any clobbers to add, make a new pattern than contains
11494 them. Then check to make sure that all of them are dead. */
11495 if (num_clobbers_to_add)
11497 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11498 rtvec_alloc (GET_CODE (pat) == PARALLEL
11499 ? (XVECLEN (pat, 0)
11500 + num_clobbers_to_add)
11501 : num_clobbers_to_add + 1));
11503 if (GET_CODE (pat) == PARALLEL)
11504 for (i = 0; i < XVECLEN (pat, 0); i++)
11505 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11506 else
11507 XVECEXP (newpat, 0, 0) = pat;
11509 add_clobbers (newpat, insn_code_number);
11511 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11512 i < XVECLEN (newpat, 0); i++)
11514 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11515 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11516 return -1;
11517 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11519 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11520 notes = alloc_reg_note (REG_UNUSED,
11521 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11524 pat = newpat;
11527 if (insn_code_number >= 0
11528 && insn_code_number != NOOP_MOVE_INSN_CODE)
11530 old_pat = PATTERN (insn);
11531 old_notes = REG_NOTES (insn);
11532 old_icode = INSN_CODE (insn);
11533 PATTERN (insn) = pat;
11534 REG_NOTES (insn) = notes;
11535 INSN_CODE (insn) = insn_code_number;
11537 /* Allow targets to reject combined insn. */
11538 if (!targetm.legitimate_combined_insn (insn))
11540 if (dump_file && (dump_flags & TDF_DETAILS))
11541 fputs ("Instruction not appropriate for target.",
11542 dump_file);
11544 /* Callers expect recog_for_combine to strip
11545 clobbers from the pattern on failure. */
11546 pat = pat_without_clobbers;
11547 notes = NULL_RTX;
11549 insn_code_number = -1;
11552 PATTERN (insn) = old_pat;
11553 REG_NOTES (insn) = old_notes;
11554 INSN_CODE (insn) = old_icode;
11557 *pnewpat = pat;
11558 *pnotes = notes;
11560 return insn_code_number;
11563 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11564 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11565 Return whether anything was so changed. */
11567 static bool
11568 change_zero_ext (rtx pat)
11570 bool changed = false;
11571 rtx *src = &SET_SRC (pat);
11573 subrtx_ptr_iterator::array_type array;
11574 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11576 rtx x = **iter;
11577 scalar_int_mode mode, inner_mode;
11578 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11579 continue;
11580 int size;
11582 if (GET_CODE (x) == ZERO_EXTRACT
11583 && CONST_INT_P (XEXP (x, 1))
11584 && CONST_INT_P (XEXP (x, 2))
11585 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11586 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11588 size = INTVAL (XEXP (x, 1));
11590 int start = INTVAL (XEXP (x, 2));
11591 if (BITS_BIG_ENDIAN)
11592 start = GET_MODE_PRECISION (inner_mode) - size - start;
11594 if (start != 0)
11595 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11596 gen_int_shift_amount (inner_mode, start));
11597 else
11598 x = XEXP (x, 0);
11600 if (mode != inner_mode)
11602 if (REG_P (x) && HARD_REGISTER_P (x)
11603 && !can_change_dest_mode (x, 0, mode))
11604 continue;
11606 x = gen_lowpart_SUBREG (mode, x);
11609 else if (GET_CODE (x) == ZERO_EXTEND
11610 && GET_CODE (XEXP (x, 0)) == SUBREG
11611 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11612 && !paradoxical_subreg_p (XEXP (x, 0))
11613 && subreg_lowpart_p (XEXP (x, 0)))
11615 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11616 size = GET_MODE_PRECISION (inner_mode);
11617 x = SUBREG_REG (XEXP (x, 0));
11618 if (GET_MODE (x) != mode)
11620 if (REG_P (x) && HARD_REGISTER_P (x)
11621 && !can_change_dest_mode (x, 0, mode))
11622 continue;
11624 x = gen_lowpart_SUBREG (mode, x);
11627 else if (GET_CODE (x) == ZERO_EXTEND
11628 && REG_P (XEXP (x, 0))
11629 && HARD_REGISTER_P (XEXP (x, 0))
11630 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11632 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11633 size = GET_MODE_PRECISION (inner_mode);
11634 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11636 else
11637 continue;
11639 if (!(GET_CODE (x) == LSHIFTRT
11640 && CONST_INT_P (XEXP (x, 1))
11641 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11643 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11644 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11647 SUBST (**iter, x);
11648 changed = true;
11651 if (changed)
11652 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11653 maybe_swap_commutative_operands (**iter);
11655 rtx *dst = &SET_DEST (pat);
11656 scalar_int_mode mode;
11657 if (GET_CODE (*dst) == ZERO_EXTRACT
11658 && REG_P (XEXP (*dst, 0))
11659 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11660 && CONST_INT_P (XEXP (*dst, 1))
11661 && CONST_INT_P (XEXP (*dst, 2)))
11663 rtx reg = XEXP (*dst, 0);
11664 int width = INTVAL (XEXP (*dst, 1));
11665 int offset = INTVAL (XEXP (*dst, 2));
11666 int reg_width = GET_MODE_PRECISION (mode);
11667 if (BITS_BIG_ENDIAN)
11668 offset = reg_width - width - offset;
11670 rtx x, y, z, w;
11671 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11672 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11673 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11674 if (offset)
11675 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11676 else
11677 y = SET_SRC (pat);
11678 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11679 w = gen_rtx_IOR (mode, x, z);
11680 SUBST (SET_DEST (pat), reg);
11681 SUBST (SET_SRC (pat), w);
11683 changed = true;
11686 return changed;
11689 /* Like recog, but we receive the address of a pointer to a new pattern.
11690 We try to match the rtx that the pointer points to.
11691 If that fails, we may try to modify or replace the pattern,
11692 storing the replacement into the same pointer object.
11694 Modifications include deletion or addition of CLOBBERs. If the
11695 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11696 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11697 (and undo if that fails).
11699 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11700 the CLOBBERs are placed.
11702 The value is the final insn code from the pattern ultimately matched,
11703 or -1. */
11705 static int
11706 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11708 rtx pat = *pnewpat;
11709 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11710 if (insn_code_number >= 0 || check_asm_operands (pat))
11711 return insn_code_number;
11713 void *marker = get_undo_marker ();
11714 bool changed = false;
11716 if (GET_CODE (pat) == SET)
11717 changed = change_zero_ext (pat);
11718 else if (GET_CODE (pat) == PARALLEL)
11720 int i;
11721 for (i = 0; i < XVECLEN (pat, 0); i++)
11723 rtx set = XVECEXP (pat, 0, i);
11724 if (GET_CODE (set) == SET)
11725 changed |= change_zero_ext (set);
11729 if (changed)
11731 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11733 if (insn_code_number < 0)
11734 undo_to_marker (marker);
11737 return insn_code_number;
11740 /* Like gen_lowpart_general but for use by combine. In combine it
11741 is not possible to create any new pseudoregs. However, it is
11742 safe to create invalid memory addresses, because combine will
11743 try to recognize them and all they will do is make the combine
11744 attempt fail.
11746 If for some reason this cannot do its job, an rtx
11747 (clobber (const_int 0)) is returned.
11748 An insn containing that will not be recognized. */
11750 static rtx
11751 gen_lowpart_for_combine (machine_mode omode, rtx x)
11753 machine_mode imode = GET_MODE (x);
11754 rtx result;
11756 if (omode == imode)
11757 return x;
11759 /* We can only support MODE being wider than a word if X is a
11760 constant integer or has a mode the same size. */
11761 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11762 && ! (CONST_SCALAR_INT_P (x)
11763 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11764 goto fail;
11766 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11767 won't know what to do. So we will strip off the SUBREG here and
11768 process normally. */
11769 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11771 x = SUBREG_REG (x);
11773 /* For use in case we fall down into the address adjustments
11774 further below, we need to adjust the known mode and size of
11775 x; imode and isize, since we just adjusted x. */
11776 imode = GET_MODE (x);
11778 if (imode == omode)
11779 return x;
11782 result = gen_lowpart_common (omode, x);
11784 if (result)
11785 return result;
11787 if (MEM_P (x))
11789 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11790 address. */
11791 if (MEM_VOLATILE_P (x)
11792 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11793 goto fail;
11795 /* If we want to refer to something bigger than the original memref,
11796 generate a paradoxical subreg instead. That will force a reload
11797 of the original memref X. */
11798 if (paradoxical_subreg_p (omode, imode))
11799 return gen_rtx_SUBREG (omode, x, 0);
11801 poly_int64 offset = byte_lowpart_offset (omode, imode);
11802 return adjust_address_nv (x, omode, offset);
11805 /* If X is a comparison operator, rewrite it in a new mode. This
11806 probably won't match, but may allow further simplifications. */
11807 else if (COMPARISON_P (x))
11808 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11810 /* If we couldn't simplify X any other way, just enclose it in a
11811 SUBREG. Normally, this SUBREG won't match, but some patterns may
11812 include an explicit SUBREG or we may simplify it further in combine. */
11813 else
11815 rtx res;
11817 if (imode == VOIDmode)
11819 imode = int_mode_for_mode (omode).require ();
11820 x = gen_lowpart_common (imode, x);
11821 if (x == NULL)
11822 goto fail;
11824 res = lowpart_subreg (omode, x, imode);
11825 if (res)
11826 return res;
11829 fail:
11830 return gen_rtx_CLOBBER (omode, const0_rtx);
11833 /* Try to simplify a comparison between OP0 and a constant OP1,
11834 where CODE is the comparison code that will be tested, into a
11835 (CODE OP0 const0_rtx) form.
11837 The result is a possibly different comparison code to use.
11838 *POP1 may be updated. */
11840 static enum rtx_code
11841 simplify_compare_const (enum rtx_code code, machine_mode mode,
11842 rtx op0, rtx *pop1)
11844 scalar_int_mode int_mode;
11845 HOST_WIDE_INT const_op = INTVAL (*pop1);
11847 /* Get the constant we are comparing against and turn off all bits
11848 not on in our mode. */
11849 if (mode != VOIDmode)
11850 const_op = trunc_int_for_mode (const_op, mode);
11852 /* If we are comparing against a constant power of two and the value
11853 being compared can only have that single bit nonzero (e.g., it was
11854 `and'ed with that bit), we can replace this with a comparison
11855 with zero. */
11856 if (const_op
11857 && (code == EQ || code == NE || code == GE || code == GEU
11858 || code == LT || code == LTU)
11859 && is_a <scalar_int_mode> (mode, &int_mode)
11860 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11861 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11862 && (nonzero_bits (op0, int_mode)
11863 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11865 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11866 const_op = 0;
11869 /* Similarly, if we are comparing a value known to be either -1 or
11870 0 with -1, change it to the opposite comparison against zero. */
11871 if (const_op == -1
11872 && (code == EQ || code == NE || code == GT || code == LE
11873 || code == GEU || code == LTU)
11874 && is_a <scalar_int_mode> (mode, &int_mode)
11875 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11877 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11878 const_op = 0;
11881 /* Do some canonicalizations based on the comparison code. We prefer
11882 comparisons against zero and then prefer equality comparisons.
11883 If we can reduce the size of a constant, we will do that too. */
11884 switch (code)
11886 case LT:
11887 /* < C is equivalent to <= (C - 1) */
11888 if (const_op > 0)
11890 const_op -= 1;
11891 code = LE;
11892 /* ... fall through to LE case below. */
11893 gcc_fallthrough ();
11895 else
11896 break;
11898 case LE:
11899 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11900 if (const_op < 0)
11902 const_op += 1;
11903 code = LT;
11906 /* If we are doing a <= 0 comparison on a value known to have
11907 a zero sign bit, we can replace this with == 0. */
11908 else if (const_op == 0
11909 && is_a <scalar_int_mode> (mode, &int_mode)
11910 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11911 && (nonzero_bits (op0, int_mode)
11912 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11913 == 0)
11914 code = EQ;
11915 break;
11917 case GE:
11918 /* >= C is equivalent to > (C - 1). */
11919 if (const_op > 0)
11921 const_op -= 1;
11922 code = GT;
11923 /* ... fall through to GT below. */
11924 gcc_fallthrough ();
11926 else
11927 break;
11929 case GT:
11930 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11931 if (const_op < 0)
11933 const_op += 1;
11934 code = GE;
11937 /* If we are doing a > 0 comparison on a value known to have
11938 a zero sign bit, we can replace this with != 0. */
11939 else if (const_op == 0
11940 && is_a <scalar_int_mode> (mode, &int_mode)
11941 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11942 && (nonzero_bits (op0, int_mode)
11943 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11944 == 0)
11945 code = NE;
11946 break;
11948 case LTU:
11949 /* < C is equivalent to <= (C - 1). */
11950 if (const_op > 0)
11952 const_op -= 1;
11953 code = LEU;
11954 /* ... fall through ... */
11955 gcc_fallthrough ();
11957 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11958 else if (is_a <scalar_int_mode> (mode, &int_mode)
11959 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11960 && ((unsigned HOST_WIDE_INT) const_op
11961 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11963 const_op = 0;
11964 code = GE;
11965 break;
11967 else
11968 break;
11970 case LEU:
11971 /* unsigned <= 0 is equivalent to == 0 */
11972 if (const_op == 0)
11973 code = EQ;
11974 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11975 else if (is_a <scalar_int_mode> (mode, &int_mode)
11976 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11977 && ((unsigned HOST_WIDE_INT) const_op
11978 == ((HOST_WIDE_INT_1U
11979 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11981 const_op = 0;
11982 code = GE;
11984 break;
11986 case GEU:
11987 /* >= C is equivalent to > (C - 1). */
11988 if (const_op > 1)
11990 const_op -= 1;
11991 code = GTU;
11992 /* ... fall through ... */
11993 gcc_fallthrough ();
11996 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11997 else if (is_a <scalar_int_mode> (mode, &int_mode)
11998 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11999 && ((unsigned HOST_WIDE_INT) const_op
12000 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
12002 const_op = 0;
12003 code = LT;
12004 break;
12006 else
12007 break;
12009 case GTU:
12010 /* unsigned > 0 is equivalent to != 0 */
12011 if (const_op == 0)
12012 code = NE;
12013 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12014 else if (is_a <scalar_int_mode> (mode, &int_mode)
12015 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12016 && ((unsigned HOST_WIDE_INT) const_op
12017 == (HOST_WIDE_INT_1U
12018 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
12020 const_op = 0;
12021 code = LT;
12023 break;
12025 default:
12026 break;
12029 *pop1 = GEN_INT (const_op);
12030 return code;
12033 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12034 comparison code that will be tested.
12036 The result is a possibly different comparison code to use. *POP0 and
12037 *POP1 may be updated.
12039 It is possible that we might detect that a comparison is either always
12040 true or always false. However, we do not perform general constant
12041 folding in combine, so this knowledge isn't useful. Such tautologies
12042 should have been detected earlier. Hence we ignore all such cases. */
12044 static enum rtx_code
12045 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12047 rtx op0 = *pop0;
12048 rtx op1 = *pop1;
12049 rtx tem, tem1;
12050 int i;
12051 scalar_int_mode mode, inner_mode, tmode;
12052 opt_scalar_int_mode tmode_iter;
12054 /* Try a few ways of applying the same transformation to both operands. */
12055 while (1)
12057 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12058 so check specially. */
12059 if (!WORD_REGISTER_OPERATIONS
12060 && code != GTU && code != GEU && code != LTU && code != LEU
12061 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12062 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12063 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12064 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12065 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12066 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
12067 && (is_a <scalar_int_mode>
12068 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
12069 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12070 && CONST_INT_P (XEXP (op0, 1))
12071 && XEXP (op0, 1) == XEXP (op1, 1)
12072 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12073 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12074 && (INTVAL (XEXP (op0, 1))
12075 == (GET_MODE_PRECISION (mode)
12076 - GET_MODE_PRECISION (inner_mode))))
12078 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12079 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12082 /* If both operands are the same constant shift, see if we can ignore the
12083 shift. We can if the shift is a rotate or if the bits shifted out of
12084 this shift are known to be zero for both inputs and if the type of
12085 comparison is compatible with the shift. */
12086 if (GET_CODE (op0) == GET_CODE (op1)
12087 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12088 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12089 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12090 && (code != GT && code != LT && code != GE && code != LE))
12091 || (GET_CODE (op0) == ASHIFTRT
12092 && (code != GTU && code != LTU
12093 && code != GEU && code != LEU)))
12094 && CONST_INT_P (XEXP (op0, 1))
12095 && INTVAL (XEXP (op0, 1)) >= 0
12096 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12097 && XEXP (op0, 1) == XEXP (op1, 1))
12099 machine_mode mode = GET_MODE (op0);
12100 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12101 int shift_count = INTVAL (XEXP (op0, 1));
12103 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12104 mask &= (mask >> shift_count) << shift_count;
12105 else if (GET_CODE (op0) == ASHIFT)
12106 mask = (mask & (mask << shift_count)) >> shift_count;
12108 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12109 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12110 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12111 else
12112 break;
12115 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12116 SUBREGs are of the same mode, and, in both cases, the AND would
12117 be redundant if the comparison was done in the narrower mode,
12118 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12119 and the operand's possibly nonzero bits are 0xffffff01; in that case
12120 if we only care about QImode, we don't need the AND). This case
12121 occurs if the output mode of an scc insn is not SImode and
12122 STORE_FLAG_VALUE == 1 (e.g., the 386).
12124 Similarly, check for a case where the AND's are ZERO_EXTEND
12125 operations from some narrower mode even though a SUBREG is not
12126 present. */
12128 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12129 && CONST_INT_P (XEXP (op0, 1))
12130 && CONST_INT_P (XEXP (op1, 1)))
12132 rtx inner_op0 = XEXP (op0, 0);
12133 rtx inner_op1 = XEXP (op1, 0);
12134 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12135 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12136 int changed = 0;
12138 if (paradoxical_subreg_p (inner_op0)
12139 && GET_CODE (inner_op1) == SUBREG
12140 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12141 && (GET_MODE (SUBREG_REG (inner_op0))
12142 == GET_MODE (SUBREG_REG (inner_op1)))
12143 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12144 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12145 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12146 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12148 op0 = SUBREG_REG (inner_op0);
12149 op1 = SUBREG_REG (inner_op1);
12151 /* The resulting comparison is always unsigned since we masked
12152 off the original sign bit. */
12153 code = unsigned_condition (code);
12155 changed = 1;
12158 else if (c0 == c1)
12159 FOR_EACH_MODE_UNTIL (tmode,
12160 as_a <scalar_int_mode> (GET_MODE (op0)))
12161 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12163 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12164 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12165 code = unsigned_condition (code);
12166 changed = 1;
12167 break;
12170 if (! changed)
12171 break;
12174 /* If both operands are NOT, we can strip off the outer operation
12175 and adjust the comparison code for swapped operands; similarly for
12176 NEG, except that this must be an equality comparison. */
12177 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12178 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12179 && (code == EQ || code == NE)))
12180 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12182 else
12183 break;
12186 /* If the first operand is a constant, swap the operands and adjust the
12187 comparison code appropriately, but don't do this if the second operand
12188 is already a constant integer. */
12189 if (swap_commutative_operands_p (op0, op1))
12191 std::swap (op0, op1);
12192 code = swap_condition (code);
12195 /* We now enter a loop during which we will try to simplify the comparison.
12196 For the most part, we only are concerned with comparisons with zero,
12197 but some things may really be comparisons with zero but not start
12198 out looking that way. */
12200 while (CONST_INT_P (op1))
12202 machine_mode raw_mode = GET_MODE (op0);
12203 scalar_int_mode int_mode;
12204 int equality_comparison_p;
12205 int sign_bit_comparison_p;
12206 int unsigned_comparison_p;
12207 HOST_WIDE_INT const_op;
12209 /* We only want to handle integral modes. This catches VOIDmode,
12210 CCmode, and the floating-point modes. An exception is that we
12211 can handle VOIDmode if OP0 is a COMPARE or a comparison
12212 operation. */
12214 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12215 && ! (raw_mode == VOIDmode
12216 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12217 break;
12219 /* Try to simplify the compare to constant, possibly changing the
12220 comparison op, and/or changing op1 to zero. */
12221 code = simplify_compare_const (code, raw_mode, op0, &op1);
12222 const_op = INTVAL (op1);
12224 /* Compute some predicates to simplify code below. */
12226 equality_comparison_p = (code == EQ || code == NE);
12227 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12228 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12229 || code == GEU);
12231 /* If this is a sign bit comparison and we can do arithmetic in
12232 MODE, say that we will only be needing the sign bit of OP0. */
12233 if (sign_bit_comparison_p
12234 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12235 && HWI_COMPUTABLE_MODE_P (int_mode))
12236 op0 = force_to_mode (op0, int_mode,
12237 HOST_WIDE_INT_1U
12238 << (GET_MODE_PRECISION (int_mode) - 1),
12241 if (COMPARISON_P (op0))
12243 /* We can't do anything if OP0 is a condition code value, rather
12244 than an actual data value. */
12245 if (const_op != 0
12246 || CC0_P (XEXP (op0, 0))
12247 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12248 break;
12250 /* Get the two operands being compared. */
12251 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12252 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12253 else
12254 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12256 /* Check for the cases where we simply want the result of the
12257 earlier test or the opposite of that result. */
12258 if (code == NE || code == EQ
12259 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12260 && (code == LT || code == GE)))
12262 enum rtx_code new_code;
12263 if (code == LT || code == NE)
12264 new_code = GET_CODE (op0);
12265 else
12266 new_code = reversed_comparison_code (op0, NULL);
12268 if (new_code != UNKNOWN)
12270 code = new_code;
12271 op0 = tem;
12272 op1 = tem1;
12273 continue;
12276 break;
12279 if (raw_mode == VOIDmode)
12280 break;
12281 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12283 /* Now try cases based on the opcode of OP0. If none of the cases
12284 does a "continue", we exit this loop immediately after the
12285 switch. */
12287 unsigned int mode_width = GET_MODE_PRECISION (mode);
12288 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12289 switch (GET_CODE (op0))
12291 case ZERO_EXTRACT:
12292 /* If we are extracting a single bit from a variable position in
12293 a constant that has only a single bit set and are comparing it
12294 with zero, we can convert this into an equality comparison
12295 between the position and the location of the single bit. */
12296 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12297 have already reduced the shift count modulo the word size. */
12298 if (!SHIFT_COUNT_TRUNCATED
12299 && CONST_INT_P (XEXP (op0, 0))
12300 && XEXP (op0, 1) == const1_rtx
12301 && equality_comparison_p && const_op == 0
12302 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12304 if (BITS_BIG_ENDIAN)
12305 i = BITS_PER_WORD - 1 - i;
12307 op0 = XEXP (op0, 2);
12308 op1 = GEN_INT (i);
12309 const_op = i;
12311 /* Result is nonzero iff shift count is equal to I. */
12312 code = reverse_condition (code);
12313 continue;
12316 /* fall through */
12318 case SIGN_EXTRACT:
12319 tem = expand_compound_operation (op0);
12320 if (tem != op0)
12322 op0 = tem;
12323 continue;
12325 break;
12327 case NOT:
12328 /* If testing for equality, we can take the NOT of the constant. */
12329 if (equality_comparison_p
12330 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12332 op0 = XEXP (op0, 0);
12333 op1 = tem;
12334 continue;
12337 /* If just looking at the sign bit, reverse the sense of the
12338 comparison. */
12339 if (sign_bit_comparison_p)
12341 op0 = XEXP (op0, 0);
12342 code = (code == GE ? LT : GE);
12343 continue;
12345 break;
12347 case NEG:
12348 /* If testing for equality, we can take the NEG of the constant. */
12349 if (equality_comparison_p
12350 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12352 op0 = XEXP (op0, 0);
12353 op1 = tem;
12354 continue;
12357 /* The remaining cases only apply to comparisons with zero. */
12358 if (const_op != 0)
12359 break;
12361 /* When X is ABS or is known positive,
12362 (neg X) is < 0 if and only if X != 0. */
12364 if (sign_bit_comparison_p
12365 && (GET_CODE (XEXP (op0, 0)) == ABS
12366 || (mode_width <= HOST_BITS_PER_WIDE_INT
12367 && (nonzero_bits (XEXP (op0, 0), mode)
12368 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12369 == 0)))
12371 op0 = XEXP (op0, 0);
12372 code = (code == LT ? NE : EQ);
12373 continue;
12376 /* If we have NEG of something whose two high-order bits are the
12377 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12378 if (num_sign_bit_copies (op0, mode) >= 2)
12380 op0 = XEXP (op0, 0);
12381 code = swap_condition (code);
12382 continue;
12384 break;
12386 case ROTATE:
12387 /* If we are testing equality and our count is a constant, we
12388 can perform the inverse operation on our RHS. */
12389 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12390 && (tem = simplify_binary_operation (ROTATERT, mode,
12391 op1, XEXP (op0, 1))) != 0)
12393 op0 = XEXP (op0, 0);
12394 op1 = tem;
12395 continue;
12398 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12399 a particular bit. Convert it to an AND of a constant of that
12400 bit. This will be converted into a ZERO_EXTRACT. */
12401 if (const_op == 0 && sign_bit_comparison_p
12402 && CONST_INT_P (XEXP (op0, 1))
12403 && mode_width <= HOST_BITS_PER_WIDE_INT)
12405 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12406 (HOST_WIDE_INT_1U
12407 << (mode_width - 1
12408 - INTVAL (XEXP (op0, 1)))));
12409 code = (code == LT ? NE : EQ);
12410 continue;
12413 /* Fall through. */
12415 case ABS:
12416 /* ABS is ignorable inside an equality comparison with zero. */
12417 if (const_op == 0 && equality_comparison_p)
12419 op0 = XEXP (op0, 0);
12420 continue;
12422 break;
12424 case SIGN_EXTEND:
12425 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12426 (compare FOO CONST) if CONST fits in FOO's mode and we
12427 are either testing inequality or have an unsigned
12428 comparison with ZERO_EXTEND or a signed comparison with
12429 SIGN_EXTEND. But don't do it if we don't have a compare
12430 insn of the given mode, since we'd have to revert it
12431 later on, and then we wouldn't know whether to sign- or
12432 zero-extend. */
12433 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12434 && ! unsigned_comparison_p
12435 && HWI_COMPUTABLE_MODE_P (mode)
12436 && trunc_int_for_mode (const_op, mode) == const_op
12437 && have_insn_for (COMPARE, mode))
12439 op0 = XEXP (op0, 0);
12440 continue;
12442 break;
12444 case SUBREG:
12445 /* Check for the case where we are comparing A - C1 with C2, that is
12447 (subreg:MODE (plus (A) (-C1))) op (C2)
12449 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12450 comparison in the wider mode. One of the following two conditions
12451 must be true in order for this to be valid:
12453 1. The mode extension results in the same bit pattern being added
12454 on both sides and the comparison is equality or unsigned. As
12455 C2 has been truncated to fit in MODE, the pattern can only be
12456 all 0s or all 1s.
12458 2. The mode extension results in the sign bit being copied on
12459 each side.
12461 The difficulty here is that we have predicates for A but not for
12462 (A - C1) so we need to check that C1 is within proper bounds so
12463 as to perturbate A as little as possible. */
12465 if (mode_width <= HOST_BITS_PER_WIDE_INT
12466 && subreg_lowpart_p (op0)
12467 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12468 &inner_mode)
12469 && GET_MODE_PRECISION (inner_mode) > mode_width
12470 && GET_CODE (SUBREG_REG (op0)) == PLUS
12471 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12473 rtx a = XEXP (SUBREG_REG (op0), 0);
12474 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12476 if ((c1 > 0
12477 && (unsigned HOST_WIDE_INT) c1
12478 < HOST_WIDE_INT_1U << (mode_width - 1)
12479 && (equality_comparison_p || unsigned_comparison_p)
12480 /* (A - C1) zero-extends if it is positive and sign-extends
12481 if it is negative, C2 both zero- and sign-extends. */
12482 && (((nonzero_bits (a, inner_mode)
12483 & ~GET_MODE_MASK (mode)) == 0
12484 && const_op >= 0)
12485 /* (A - C1) sign-extends if it is positive and 1-extends
12486 if it is negative, C2 both sign- and 1-extends. */
12487 || (num_sign_bit_copies (a, inner_mode)
12488 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12489 - mode_width)
12490 && const_op < 0)))
12491 || ((unsigned HOST_WIDE_INT) c1
12492 < HOST_WIDE_INT_1U << (mode_width - 2)
12493 /* (A - C1) always sign-extends, like C2. */
12494 && num_sign_bit_copies (a, inner_mode)
12495 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12496 - (mode_width - 1))))
12498 op0 = SUBREG_REG (op0);
12499 continue;
12503 /* If the inner mode is narrower and we are extracting the low part,
12504 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12505 if (paradoxical_subreg_p (op0))
12507 else if (subreg_lowpart_p (op0)
12508 && GET_MODE_CLASS (mode) == MODE_INT
12509 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12510 && (code == NE || code == EQ)
12511 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12512 && !paradoxical_subreg_p (op0)
12513 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12514 & ~GET_MODE_MASK (mode)) == 0)
12516 /* Remove outer subregs that don't do anything. */
12517 tem = gen_lowpart (inner_mode, op1);
12519 if ((nonzero_bits (tem, inner_mode)
12520 & ~GET_MODE_MASK (mode)) == 0)
12522 op0 = SUBREG_REG (op0);
12523 op1 = tem;
12524 continue;
12526 break;
12528 else
12529 break;
12531 /* FALLTHROUGH */
12533 case ZERO_EXTEND:
12534 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12535 && (unsigned_comparison_p || equality_comparison_p)
12536 && HWI_COMPUTABLE_MODE_P (mode)
12537 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12538 && const_op >= 0
12539 && have_insn_for (COMPARE, mode))
12541 op0 = XEXP (op0, 0);
12542 continue;
12544 break;
12546 case PLUS:
12547 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12548 this for equality comparisons due to pathological cases involving
12549 overflows. */
12550 if (equality_comparison_p
12551 && (tem = simplify_binary_operation (MINUS, mode,
12552 op1, XEXP (op0, 1))) != 0)
12554 op0 = XEXP (op0, 0);
12555 op1 = tem;
12556 continue;
12559 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12560 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12561 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12563 op0 = XEXP (XEXP (op0, 0), 0);
12564 code = (code == LT ? EQ : NE);
12565 continue;
12567 break;
12569 case MINUS:
12570 /* We used to optimize signed comparisons against zero, but that
12571 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12572 arrive here as equality comparisons, or (GEU, LTU) are
12573 optimized away. No need to special-case them. */
12575 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12576 (eq B (minus A C)), whichever simplifies. We can only do
12577 this for equality comparisons due to pathological cases involving
12578 overflows. */
12579 if (equality_comparison_p
12580 && (tem = simplify_binary_operation (PLUS, mode,
12581 XEXP (op0, 1), op1)) != 0)
12583 op0 = XEXP (op0, 0);
12584 op1 = tem;
12585 continue;
12588 if (equality_comparison_p
12589 && (tem = simplify_binary_operation (MINUS, mode,
12590 XEXP (op0, 0), op1)) != 0)
12592 op0 = XEXP (op0, 1);
12593 op1 = tem;
12594 continue;
12597 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12598 of bits in X minus 1, is one iff X > 0. */
12599 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12600 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12601 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12602 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12604 op0 = XEXP (op0, 1);
12605 code = (code == GE ? LE : GT);
12606 continue;
12608 break;
12610 case XOR:
12611 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12612 if C is zero or B is a constant. */
12613 if (equality_comparison_p
12614 && (tem = simplify_binary_operation (XOR, mode,
12615 XEXP (op0, 1), op1)) != 0)
12617 op0 = XEXP (op0, 0);
12618 op1 = tem;
12619 continue;
12621 break;
12624 case IOR:
12625 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12626 iff X <= 0. */
12627 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12628 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12629 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12631 op0 = XEXP (op0, 1);
12632 code = (code == GE ? GT : LE);
12633 continue;
12635 break;
12637 case AND:
12638 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12639 will be converted to a ZERO_EXTRACT later. */
12640 if (const_op == 0 && equality_comparison_p
12641 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12642 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12644 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12645 XEXP (XEXP (op0, 0), 1));
12646 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12647 continue;
12650 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12651 zero and X is a comparison and C1 and C2 describe only bits set
12652 in STORE_FLAG_VALUE, we can compare with X. */
12653 if (const_op == 0 && equality_comparison_p
12654 && mode_width <= HOST_BITS_PER_WIDE_INT
12655 && CONST_INT_P (XEXP (op0, 1))
12656 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12657 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12658 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12659 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12661 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12662 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12663 if ((~STORE_FLAG_VALUE & mask) == 0
12664 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12665 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12666 && COMPARISON_P (tem))))
12668 op0 = XEXP (XEXP (op0, 0), 0);
12669 continue;
12673 /* If we are doing an equality comparison of an AND of a bit equal
12674 to the sign bit, replace this with a LT or GE comparison of
12675 the underlying value. */
12676 if (equality_comparison_p
12677 && const_op == 0
12678 && CONST_INT_P (XEXP (op0, 1))
12679 && mode_width <= HOST_BITS_PER_WIDE_INT
12680 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12681 == HOST_WIDE_INT_1U << (mode_width - 1)))
12683 op0 = XEXP (op0, 0);
12684 code = (code == EQ ? GE : LT);
12685 continue;
12688 /* If this AND operation is really a ZERO_EXTEND from a narrower
12689 mode, the constant fits within that mode, and this is either an
12690 equality or unsigned comparison, try to do this comparison in
12691 the narrower mode.
12693 Note that in:
12695 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12696 -> (ne:DI (reg:SI 4) (const_int 0))
12698 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12699 known to hold a value of the required mode the
12700 transformation is invalid. */
12701 if ((equality_comparison_p || unsigned_comparison_p)
12702 && CONST_INT_P (XEXP (op0, 1))
12703 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12704 & GET_MODE_MASK (mode))
12705 + 1)) >= 0
12706 && const_op >> i == 0
12707 && int_mode_for_size (i, 1).exists (&tmode))
12709 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12710 continue;
12713 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12714 fits in both M1 and M2 and the SUBREG is either paradoxical
12715 or represents the low part, permute the SUBREG and the AND
12716 and try again. */
12717 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12718 && CONST_INT_P (XEXP (op0, 1)))
12720 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12721 /* Require an integral mode, to avoid creating something like
12722 (AND:SF ...). */
12723 if ((is_a <scalar_int_mode>
12724 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12725 /* It is unsafe to commute the AND into the SUBREG if the
12726 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12727 not defined. As originally written the upper bits
12728 have a defined value due to the AND operation.
12729 However, if we commute the AND inside the SUBREG then
12730 they no longer have defined values and the meaning of
12731 the code has been changed.
12732 Also C1 should not change value in the smaller mode,
12733 see PR67028 (a positive C1 can become negative in the
12734 smaller mode, so that the AND does no longer mask the
12735 upper bits). */
12736 && ((WORD_REGISTER_OPERATIONS
12737 && mode_width > GET_MODE_PRECISION (tmode)
12738 && mode_width <= BITS_PER_WORD
12739 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12740 || (mode_width <= GET_MODE_PRECISION (tmode)
12741 && subreg_lowpart_p (XEXP (op0, 0))))
12742 && mode_width <= HOST_BITS_PER_WIDE_INT
12743 && HWI_COMPUTABLE_MODE_P (tmode)
12744 && (c1 & ~mask) == 0
12745 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12746 && c1 != mask
12747 && c1 != GET_MODE_MASK (tmode))
12749 op0 = simplify_gen_binary (AND, tmode,
12750 SUBREG_REG (XEXP (op0, 0)),
12751 gen_int_mode (c1, tmode));
12752 op0 = gen_lowpart (mode, op0);
12753 continue;
12757 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12758 if (const_op == 0 && equality_comparison_p
12759 && XEXP (op0, 1) == const1_rtx
12760 && GET_CODE (XEXP (op0, 0)) == NOT)
12762 op0 = simplify_and_const_int (NULL_RTX, mode,
12763 XEXP (XEXP (op0, 0), 0), 1);
12764 code = (code == NE ? EQ : NE);
12765 continue;
12768 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12769 (eq (and (lshiftrt X) 1) 0).
12770 Also handle the case where (not X) is expressed using xor. */
12771 if (const_op == 0 && equality_comparison_p
12772 && XEXP (op0, 1) == const1_rtx
12773 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12775 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12776 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12778 if (GET_CODE (shift_op) == NOT
12779 || (GET_CODE (shift_op) == XOR
12780 && CONST_INT_P (XEXP (shift_op, 1))
12781 && CONST_INT_P (shift_count)
12782 && HWI_COMPUTABLE_MODE_P (mode)
12783 && (UINTVAL (XEXP (shift_op, 1))
12784 == HOST_WIDE_INT_1U
12785 << INTVAL (shift_count))))
12788 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12789 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12790 code = (code == NE ? EQ : NE);
12791 continue;
12794 break;
12796 case ASHIFT:
12797 /* If we have (compare (ashift FOO N) (const_int C)) and
12798 the high order N bits of FOO (N+1 if an inequality comparison)
12799 are known to be zero, we can do this by comparing FOO with C
12800 shifted right N bits so long as the low-order N bits of C are
12801 zero. */
12802 if (CONST_INT_P (XEXP (op0, 1))
12803 && INTVAL (XEXP (op0, 1)) >= 0
12804 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12805 < HOST_BITS_PER_WIDE_INT)
12806 && (((unsigned HOST_WIDE_INT) const_op
12807 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12808 - 1)) == 0)
12809 && mode_width <= HOST_BITS_PER_WIDE_INT
12810 && (nonzero_bits (XEXP (op0, 0), mode)
12811 & ~(mask >> (INTVAL (XEXP (op0, 1))
12812 + ! equality_comparison_p))) == 0)
12814 /* We must perform a logical shift, not an arithmetic one,
12815 as we want the top N bits of C to be zero. */
12816 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12818 temp >>= INTVAL (XEXP (op0, 1));
12819 op1 = gen_int_mode (temp, mode);
12820 op0 = XEXP (op0, 0);
12821 continue;
12824 /* If we are doing a sign bit comparison, it means we are testing
12825 a particular bit. Convert it to the appropriate AND. */
12826 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12827 && mode_width <= HOST_BITS_PER_WIDE_INT)
12829 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12830 (HOST_WIDE_INT_1U
12831 << (mode_width - 1
12832 - INTVAL (XEXP (op0, 1)))));
12833 code = (code == LT ? NE : EQ);
12834 continue;
12837 /* If this an equality comparison with zero and we are shifting
12838 the low bit to the sign bit, we can convert this to an AND of the
12839 low-order bit. */
12840 if (const_op == 0 && equality_comparison_p
12841 && CONST_INT_P (XEXP (op0, 1))
12842 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12844 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12845 continue;
12847 break;
12849 case ASHIFTRT:
12850 /* If this is an equality comparison with zero, we can do this
12851 as a logical shift, which might be much simpler. */
12852 if (equality_comparison_p && const_op == 0
12853 && CONST_INT_P (XEXP (op0, 1)))
12855 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12856 XEXP (op0, 0),
12857 INTVAL (XEXP (op0, 1)));
12858 continue;
12861 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12862 do the comparison in a narrower mode. */
12863 if (! unsigned_comparison_p
12864 && CONST_INT_P (XEXP (op0, 1))
12865 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12866 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12867 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12868 .exists (&tmode))
12869 && (((unsigned HOST_WIDE_INT) const_op
12870 + (GET_MODE_MASK (tmode) >> 1) + 1)
12871 <= GET_MODE_MASK (tmode)))
12873 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12874 continue;
12877 /* Likewise if OP0 is a PLUS of a sign extension with a
12878 constant, which is usually represented with the PLUS
12879 between the shifts. */
12880 if (! unsigned_comparison_p
12881 && CONST_INT_P (XEXP (op0, 1))
12882 && GET_CODE (XEXP (op0, 0)) == PLUS
12883 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12884 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12885 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12886 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12887 .exists (&tmode))
12888 && (((unsigned HOST_WIDE_INT) const_op
12889 + (GET_MODE_MASK (tmode) >> 1) + 1)
12890 <= GET_MODE_MASK (tmode)))
12892 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12893 rtx add_const = XEXP (XEXP (op0, 0), 1);
12894 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12895 add_const, XEXP (op0, 1));
12897 op0 = simplify_gen_binary (PLUS, tmode,
12898 gen_lowpart (tmode, inner),
12899 new_const);
12900 continue;
12903 /* FALLTHROUGH */
12904 case LSHIFTRT:
12905 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12906 the low order N bits of FOO are known to be zero, we can do this
12907 by comparing FOO with C shifted left N bits so long as no
12908 overflow occurs. Even if the low order N bits of FOO aren't known
12909 to be zero, if the comparison is >= or < we can use the same
12910 optimization and for > or <= by setting all the low
12911 order N bits in the comparison constant. */
12912 if (CONST_INT_P (XEXP (op0, 1))
12913 && INTVAL (XEXP (op0, 1)) > 0
12914 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12915 && mode_width <= HOST_BITS_PER_WIDE_INT
12916 && (((unsigned HOST_WIDE_INT) const_op
12917 + (GET_CODE (op0) != LSHIFTRT
12918 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12919 + 1)
12920 : 0))
12921 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12923 unsigned HOST_WIDE_INT low_bits
12924 = (nonzero_bits (XEXP (op0, 0), mode)
12925 & ((HOST_WIDE_INT_1U
12926 << INTVAL (XEXP (op0, 1))) - 1));
12927 if (low_bits == 0 || !equality_comparison_p)
12929 /* If the shift was logical, then we must make the condition
12930 unsigned. */
12931 if (GET_CODE (op0) == LSHIFTRT)
12932 code = unsigned_condition (code);
12934 const_op = (unsigned HOST_WIDE_INT) const_op
12935 << INTVAL (XEXP (op0, 1));
12936 if (low_bits != 0
12937 && (code == GT || code == GTU
12938 || code == LE || code == LEU))
12939 const_op
12940 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12941 op1 = GEN_INT (const_op);
12942 op0 = XEXP (op0, 0);
12943 continue;
12947 /* If we are using this shift to extract just the sign bit, we
12948 can replace this with an LT or GE comparison. */
12949 if (const_op == 0
12950 && (equality_comparison_p || sign_bit_comparison_p)
12951 && CONST_INT_P (XEXP (op0, 1))
12952 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12954 op0 = XEXP (op0, 0);
12955 code = (code == NE || code == GT ? LT : GE);
12956 continue;
12958 break;
12960 default:
12961 break;
12964 break;
12967 /* Now make any compound operations involved in this comparison. Then,
12968 check for an outmost SUBREG on OP0 that is not doing anything or is
12969 paradoxical. The latter transformation must only be performed when
12970 it is known that the "extra" bits will be the same in op0 and op1 or
12971 that they don't matter. There are three cases to consider:
12973 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12974 care bits and we can assume they have any convenient value. So
12975 making the transformation is safe.
12977 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12978 In this case the upper bits of op0 are undefined. We should not make
12979 the simplification in that case as we do not know the contents of
12980 those bits.
12982 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12983 In that case we know those bits are zeros or ones. We must also be
12984 sure that they are the same as the upper bits of op1.
12986 We can never remove a SUBREG for a non-equality comparison because
12987 the sign bit is in a different place in the underlying object. */
12989 rtx_code op0_mco_code = SET;
12990 if (op1 == const0_rtx)
12991 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12993 op0 = make_compound_operation (op0, op0_mco_code);
12994 op1 = make_compound_operation (op1, SET);
12996 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12997 && is_int_mode (GET_MODE (op0), &mode)
12998 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12999 && (code == NE || code == EQ))
13001 if (paradoxical_subreg_p (op0))
13003 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13004 implemented. */
13005 if (REG_P (SUBREG_REG (op0)))
13007 op0 = SUBREG_REG (op0);
13008 op1 = gen_lowpart (inner_mode, op1);
13011 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
13012 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13013 & ~GET_MODE_MASK (mode)) == 0)
13015 tem = gen_lowpart (inner_mode, op1);
13017 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13018 op0 = SUBREG_REG (op0), op1 = tem;
13022 /* We now do the opposite procedure: Some machines don't have compare
13023 insns in all modes. If OP0's mode is an integer mode smaller than a
13024 word and we can't do a compare in that mode, see if there is a larger
13025 mode for which we can do the compare. There are a number of cases in
13026 which we can use the wider mode. */
13028 if (is_int_mode (GET_MODE (op0), &mode)
13029 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13030 && ! have_insn_for (COMPARE, mode))
13031 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13033 tmode = tmode_iter.require ();
13034 if (!HWI_COMPUTABLE_MODE_P (tmode))
13035 break;
13036 if (have_insn_for (COMPARE, tmode))
13038 int zero_extended;
13040 /* If this is a test for negative, we can make an explicit
13041 test of the sign bit. Test this first so we can use
13042 a paradoxical subreg to extend OP0. */
13044 if (op1 == const0_rtx && (code == LT || code == GE)
13045 && HWI_COMPUTABLE_MODE_P (mode))
13047 unsigned HOST_WIDE_INT sign
13048 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13049 op0 = simplify_gen_binary (AND, tmode,
13050 gen_lowpart (tmode, op0),
13051 gen_int_mode (sign, tmode));
13052 code = (code == LT) ? NE : EQ;
13053 break;
13056 /* If the only nonzero bits in OP0 and OP1 are those in the
13057 narrower mode and this is an equality or unsigned comparison,
13058 we can use the wider mode. Similarly for sign-extended
13059 values, in which case it is true for all comparisons. */
13060 zero_extended = ((code == EQ || code == NE
13061 || code == GEU || code == GTU
13062 || code == LEU || code == LTU)
13063 && (nonzero_bits (op0, tmode)
13064 & ~GET_MODE_MASK (mode)) == 0
13065 && ((CONST_INT_P (op1)
13066 || (nonzero_bits (op1, tmode)
13067 & ~GET_MODE_MASK (mode)) == 0)));
13069 if (zero_extended
13070 || ((num_sign_bit_copies (op0, tmode)
13071 > (unsigned int) (GET_MODE_PRECISION (tmode)
13072 - GET_MODE_PRECISION (mode)))
13073 && (num_sign_bit_copies (op1, tmode)
13074 > (unsigned int) (GET_MODE_PRECISION (tmode)
13075 - GET_MODE_PRECISION (mode)))))
13077 /* If OP0 is an AND and we don't have an AND in MODE either,
13078 make a new AND in the proper mode. */
13079 if (GET_CODE (op0) == AND
13080 && !have_insn_for (AND, mode))
13081 op0 = simplify_gen_binary (AND, tmode,
13082 gen_lowpart (tmode,
13083 XEXP (op0, 0)),
13084 gen_lowpart (tmode,
13085 XEXP (op0, 1)));
13086 else
13088 if (zero_extended)
13090 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
13091 op0, mode);
13092 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
13093 op1, mode);
13095 else
13097 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
13098 op0, mode);
13099 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
13100 op1, mode);
13102 break;
13108 /* We may have changed the comparison operands. Re-canonicalize. */
13109 if (swap_commutative_operands_p (op0, op1))
13111 std::swap (op0, op1);
13112 code = swap_condition (code);
13115 /* If this machine only supports a subset of valid comparisons, see if we
13116 can convert an unsupported one into a supported one. */
13117 target_canonicalize_comparison (&code, &op0, &op1, 0);
13119 *pop0 = op0;
13120 *pop1 = op1;
13122 return code;
13125 /* Utility function for record_value_for_reg. Count number of
13126 rtxs in X. */
13127 static int
13128 count_rtxs (rtx x)
13130 enum rtx_code code = GET_CODE (x);
13131 const char *fmt;
13132 int i, j, ret = 1;
13134 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13135 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13137 rtx x0 = XEXP (x, 0);
13138 rtx x1 = XEXP (x, 1);
13140 if (x0 == x1)
13141 return 1 + 2 * count_rtxs (x0);
13143 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13144 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13145 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13146 return 2 + 2 * count_rtxs (x0)
13147 + count_rtxs (x == XEXP (x1, 0)
13148 ? XEXP (x1, 1) : XEXP (x1, 0));
13150 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13151 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13152 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13153 return 2 + 2 * count_rtxs (x1)
13154 + count_rtxs (x == XEXP (x0, 0)
13155 ? XEXP (x0, 1) : XEXP (x0, 0));
13158 fmt = GET_RTX_FORMAT (code);
13159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13160 if (fmt[i] == 'e')
13161 ret += count_rtxs (XEXP (x, i));
13162 else if (fmt[i] == 'E')
13163 for (j = 0; j < XVECLEN (x, i); j++)
13164 ret += count_rtxs (XVECEXP (x, i, j));
13166 return ret;
13169 /* Utility function for following routine. Called when X is part of a value
13170 being stored into last_set_value. Sets last_set_table_tick
13171 for each register mentioned. Similar to mention_regs in cse.c */
13173 static void
13174 update_table_tick (rtx x)
13176 enum rtx_code code = GET_CODE (x);
13177 const char *fmt = GET_RTX_FORMAT (code);
13178 int i, j;
13180 if (code == REG)
13182 unsigned int regno = REGNO (x);
13183 unsigned int endregno = END_REGNO (x);
13184 unsigned int r;
13186 for (r = regno; r < endregno; r++)
13188 reg_stat_type *rsp = &reg_stat[r];
13189 rsp->last_set_table_tick = label_tick;
13192 return;
13195 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13196 if (fmt[i] == 'e')
13198 /* Check for identical subexpressions. If x contains
13199 identical subexpression we only have to traverse one of
13200 them. */
13201 if (i == 0 && ARITHMETIC_P (x))
13203 /* Note that at this point x1 has already been
13204 processed. */
13205 rtx x0 = XEXP (x, 0);
13206 rtx x1 = XEXP (x, 1);
13208 /* If x0 and x1 are identical then there is no need to
13209 process x0. */
13210 if (x0 == x1)
13211 break;
13213 /* If x0 is identical to a subexpression of x1 then while
13214 processing x1, x0 has already been processed. Thus we
13215 are done with x. */
13216 if (ARITHMETIC_P (x1)
13217 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13218 break;
13220 /* If x1 is identical to a subexpression of x0 then we
13221 still have to process the rest of x0. */
13222 if (ARITHMETIC_P (x0)
13223 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13225 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13226 break;
13230 update_table_tick (XEXP (x, i));
13232 else if (fmt[i] == 'E')
13233 for (j = 0; j < XVECLEN (x, i); j++)
13234 update_table_tick (XVECEXP (x, i, j));
13237 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13238 are saying that the register is clobbered and we no longer know its
13239 value. If INSN is zero, don't update reg_stat[].last_set; this is
13240 only permitted with VALUE also zero and is used to invalidate the
13241 register. */
13243 static void
13244 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13246 unsigned int regno = REGNO (reg);
13247 unsigned int endregno = END_REGNO (reg);
13248 unsigned int i;
13249 reg_stat_type *rsp;
13251 /* If VALUE contains REG and we have a previous value for REG, substitute
13252 the previous value. */
13253 if (value && insn && reg_overlap_mentioned_p (reg, value))
13255 rtx tem;
13257 /* Set things up so get_last_value is allowed to see anything set up to
13258 our insn. */
13259 subst_low_luid = DF_INSN_LUID (insn);
13260 tem = get_last_value (reg);
13262 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13263 it isn't going to be useful and will take a lot of time to process,
13264 so just use the CLOBBER. */
13266 if (tem)
13268 if (ARITHMETIC_P (tem)
13269 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13270 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13271 tem = XEXP (tem, 0);
13272 else if (count_occurrences (value, reg, 1) >= 2)
13274 /* If there are two or more occurrences of REG in VALUE,
13275 prevent the value from growing too much. */
13276 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13277 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13280 value = replace_rtx (copy_rtx (value), reg, tem);
13284 /* For each register modified, show we don't know its value, that
13285 we don't know about its bitwise content, that its value has been
13286 updated, and that we don't know the location of the death of the
13287 register. */
13288 for (i = regno; i < endregno; i++)
13290 rsp = &reg_stat[i];
13292 if (insn)
13293 rsp->last_set = insn;
13295 rsp->last_set_value = 0;
13296 rsp->last_set_mode = VOIDmode;
13297 rsp->last_set_nonzero_bits = 0;
13298 rsp->last_set_sign_bit_copies = 0;
13299 rsp->last_death = 0;
13300 rsp->truncated_to_mode = VOIDmode;
13303 /* Mark registers that are being referenced in this value. */
13304 if (value)
13305 update_table_tick (value);
13307 /* Now update the status of each register being set.
13308 If someone is using this register in this block, set this register
13309 to invalid since we will get confused between the two lives in this
13310 basic block. This makes using this register always invalid. In cse, we
13311 scan the table to invalidate all entries using this register, but this
13312 is too much work for us. */
13314 for (i = regno; i < endregno; i++)
13316 rsp = &reg_stat[i];
13317 rsp->last_set_label = label_tick;
13318 if (!insn
13319 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13320 rsp->last_set_invalid = 1;
13321 else
13322 rsp->last_set_invalid = 0;
13325 /* The value being assigned might refer to X (like in "x++;"). In that
13326 case, we must replace it with (clobber (const_int 0)) to prevent
13327 infinite loops. */
13328 rsp = &reg_stat[regno];
13329 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13331 value = copy_rtx (value);
13332 if (!get_last_value_validate (&value, insn, label_tick, 1))
13333 value = 0;
13336 /* For the main register being modified, update the value, the mode, the
13337 nonzero bits, and the number of sign bit copies. */
13339 rsp->last_set_value = value;
13341 if (value)
13343 machine_mode mode = GET_MODE (reg);
13344 subst_low_luid = DF_INSN_LUID (insn);
13345 rsp->last_set_mode = mode;
13346 if (GET_MODE_CLASS (mode) == MODE_INT
13347 && HWI_COMPUTABLE_MODE_P (mode))
13348 mode = nonzero_bits_mode;
13349 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13350 rsp->last_set_sign_bit_copies
13351 = num_sign_bit_copies (value, GET_MODE (reg));
13355 /* Called via note_stores from record_dead_and_set_regs to handle one
13356 SET or CLOBBER in an insn. DATA is the instruction in which the
13357 set is occurring. */
13359 static void
13360 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13362 rtx_insn *record_dead_insn = (rtx_insn *) data;
13364 if (GET_CODE (dest) == SUBREG)
13365 dest = SUBREG_REG (dest);
13367 if (!record_dead_insn)
13369 if (REG_P (dest))
13370 record_value_for_reg (dest, NULL, NULL_RTX);
13371 return;
13374 if (REG_P (dest))
13376 /* If we are setting the whole register, we know its value. Otherwise
13377 show that we don't know the value. We can handle a SUBREG if it's
13378 the low part, but we must be careful with paradoxical SUBREGs on
13379 RISC architectures because we cannot strip e.g. an extension around
13380 a load and record the naked load since the RTL middle-end considers
13381 that the upper bits are defined according to LOAD_EXTEND_OP. */
13382 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13383 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13384 else if (GET_CODE (setter) == SET
13385 && GET_CODE (SET_DEST (setter)) == SUBREG
13386 && SUBREG_REG (SET_DEST (setter)) == dest
13387 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13388 BITS_PER_WORD)
13389 && subreg_lowpart_p (SET_DEST (setter)))
13390 record_value_for_reg (dest, record_dead_insn,
13391 WORD_REGISTER_OPERATIONS
13392 && word_register_operation_p (SET_SRC (setter))
13393 && paradoxical_subreg_p (SET_DEST (setter))
13394 ? SET_SRC (setter)
13395 : gen_lowpart (GET_MODE (dest),
13396 SET_SRC (setter)));
13397 else if (GET_CODE (setter) == CLOBBER_HIGH)
13399 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13400 if (rsp->last_set_value
13401 && reg_is_clobbered_by_clobber_high
13402 (REGNO (dest), GET_MODE (rsp->last_set_value),
13403 XEXP (setter, 0)))
13404 record_value_for_reg (dest, NULL, NULL_RTX);
13406 else
13407 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13409 else if (MEM_P (dest)
13410 /* Ignore pushes, they clobber nothing. */
13411 && ! push_operand (dest, GET_MODE (dest)))
13412 mem_last_set = DF_INSN_LUID (record_dead_insn);
13415 /* Update the records of when each REG was most recently set or killed
13416 for the things done by INSN. This is the last thing done in processing
13417 INSN in the combiner loop.
13419 We update reg_stat[], in particular fields last_set, last_set_value,
13420 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13421 last_death, and also the similar information mem_last_set (which insn
13422 most recently modified memory) and last_call_luid (which insn was the
13423 most recent subroutine call). */
13425 static void
13426 record_dead_and_set_regs (rtx_insn *insn)
13428 rtx link;
13429 unsigned int i;
13431 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13433 if (REG_NOTE_KIND (link) == REG_DEAD
13434 && REG_P (XEXP (link, 0)))
13436 unsigned int regno = REGNO (XEXP (link, 0));
13437 unsigned int endregno = END_REGNO (XEXP (link, 0));
13439 for (i = regno; i < endregno; i++)
13441 reg_stat_type *rsp;
13443 rsp = &reg_stat[i];
13444 rsp->last_death = insn;
13447 else if (REG_NOTE_KIND (link) == REG_INC)
13448 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13451 if (CALL_P (insn))
13453 hard_reg_set_iterator hrsi;
13454 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13456 reg_stat_type *rsp;
13458 rsp = &reg_stat[i];
13459 rsp->last_set_invalid = 1;
13460 rsp->last_set = insn;
13461 rsp->last_set_value = 0;
13462 rsp->last_set_mode = VOIDmode;
13463 rsp->last_set_nonzero_bits = 0;
13464 rsp->last_set_sign_bit_copies = 0;
13465 rsp->last_death = 0;
13466 rsp->truncated_to_mode = VOIDmode;
13469 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13471 /* We can't combine into a call pattern. Remember, though, that
13472 the return value register is set at this LUID. We could
13473 still replace a register with the return value from the
13474 wrong subroutine call! */
13475 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13477 else
13478 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13481 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13482 register present in the SUBREG, so for each such SUBREG go back and
13483 adjust nonzero and sign bit information of the registers that are
13484 known to have some zero/sign bits set.
13486 This is needed because when combine blows the SUBREGs away, the
13487 information on zero/sign bits is lost and further combines can be
13488 missed because of that. */
13490 static void
13491 record_promoted_value (rtx_insn *insn, rtx subreg)
13493 struct insn_link *links;
13494 rtx set;
13495 unsigned int regno = REGNO (SUBREG_REG (subreg));
13496 machine_mode mode = GET_MODE (subreg);
13498 if (!HWI_COMPUTABLE_MODE_P (mode))
13499 return;
13501 for (links = LOG_LINKS (insn); links;)
13503 reg_stat_type *rsp;
13505 insn = links->insn;
13506 set = single_set (insn);
13508 if (! set || !REG_P (SET_DEST (set))
13509 || REGNO (SET_DEST (set)) != regno
13510 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13512 links = links->next;
13513 continue;
13516 rsp = &reg_stat[regno];
13517 if (rsp->last_set == insn)
13519 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13520 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13523 if (REG_P (SET_SRC (set)))
13525 regno = REGNO (SET_SRC (set));
13526 links = LOG_LINKS (insn);
13528 else
13529 break;
13533 /* Check if X, a register, is known to contain a value already
13534 truncated to MODE. In this case we can use a subreg to refer to
13535 the truncated value even though in the generic case we would need
13536 an explicit truncation. */
13538 static bool
13539 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13541 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13542 machine_mode truncated = rsp->truncated_to_mode;
13544 if (truncated == 0
13545 || rsp->truncation_label < label_tick_ebb_start)
13546 return false;
13547 if (!partial_subreg_p (mode, truncated))
13548 return true;
13549 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13550 return true;
13551 return false;
13554 /* If X is a hard reg or a subreg record the mode that the register is
13555 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13556 able to turn a truncate into a subreg using this information. Return true
13557 if traversing X is complete. */
13559 static bool
13560 record_truncated_value (rtx x)
13562 machine_mode truncated_mode;
13563 reg_stat_type *rsp;
13565 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13567 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13568 truncated_mode = GET_MODE (x);
13570 if (!partial_subreg_p (truncated_mode, original_mode))
13571 return true;
13573 truncated_mode = GET_MODE (x);
13574 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13575 return true;
13577 x = SUBREG_REG (x);
13579 /* ??? For hard-regs we now record everything. We might be able to
13580 optimize this using last_set_mode. */
13581 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13582 truncated_mode = GET_MODE (x);
13583 else
13584 return false;
13586 rsp = &reg_stat[REGNO (x)];
13587 if (rsp->truncated_to_mode == 0
13588 || rsp->truncation_label < label_tick_ebb_start
13589 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13591 rsp->truncated_to_mode = truncated_mode;
13592 rsp->truncation_label = label_tick;
13595 return true;
13598 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13599 the modes they are used in. This can help truning TRUNCATEs into
13600 SUBREGs. */
13602 static void
13603 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13605 subrtx_var_iterator::array_type array;
13606 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13607 if (record_truncated_value (*iter))
13608 iter.skip_subrtxes ();
13611 /* Scan X for promoted SUBREGs. For each one found,
13612 note what it implies to the registers used in it. */
13614 static void
13615 check_promoted_subreg (rtx_insn *insn, rtx x)
13617 if (GET_CODE (x) == SUBREG
13618 && SUBREG_PROMOTED_VAR_P (x)
13619 && REG_P (SUBREG_REG (x)))
13620 record_promoted_value (insn, x);
13621 else
13623 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13624 int i, j;
13626 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13627 switch (format[i])
13629 case 'e':
13630 check_promoted_subreg (insn, XEXP (x, i));
13631 break;
13632 case 'V':
13633 case 'E':
13634 if (XVEC (x, i) != 0)
13635 for (j = 0; j < XVECLEN (x, i); j++)
13636 check_promoted_subreg (insn, XVECEXP (x, i, j));
13637 break;
13642 /* Verify that all the registers and memory references mentioned in *LOC are
13643 still valid. *LOC was part of a value set in INSN when label_tick was
13644 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13645 the invalid references with (clobber (const_int 0)) and return 1. This
13646 replacement is useful because we often can get useful information about
13647 the form of a value (e.g., if it was produced by a shift that always
13648 produces -1 or 0) even though we don't know exactly what registers it
13649 was produced from. */
13651 static int
13652 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13654 rtx x = *loc;
13655 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13656 int len = GET_RTX_LENGTH (GET_CODE (x));
13657 int i, j;
13659 if (REG_P (x))
13661 unsigned int regno = REGNO (x);
13662 unsigned int endregno = END_REGNO (x);
13663 unsigned int j;
13665 for (j = regno; j < endregno; j++)
13667 reg_stat_type *rsp = &reg_stat[j];
13668 if (rsp->last_set_invalid
13669 /* If this is a pseudo-register that was only set once and not
13670 live at the beginning of the function, it is always valid. */
13671 || (! (regno >= FIRST_PSEUDO_REGISTER
13672 && regno < reg_n_sets_max
13673 && REG_N_SETS (regno) == 1
13674 && (!REGNO_REG_SET_P
13675 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13676 regno)))
13677 && rsp->last_set_label > tick))
13679 if (replace)
13680 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13681 return replace;
13685 return 1;
13687 /* If this is a memory reference, make sure that there were no stores after
13688 it that might have clobbered the value. We don't have alias info, so we
13689 assume any store invalidates it. Moreover, we only have local UIDs, so
13690 we also assume that there were stores in the intervening basic blocks. */
13691 else if (MEM_P (x) && !MEM_READONLY_P (x)
13692 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13694 if (replace)
13695 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13696 return replace;
13699 for (i = 0; i < len; i++)
13701 if (fmt[i] == 'e')
13703 /* Check for identical subexpressions. If x contains
13704 identical subexpression we only have to traverse one of
13705 them. */
13706 if (i == 1 && ARITHMETIC_P (x))
13708 /* Note that at this point x0 has already been checked
13709 and found valid. */
13710 rtx x0 = XEXP (x, 0);
13711 rtx x1 = XEXP (x, 1);
13713 /* If x0 and x1 are identical then x is also valid. */
13714 if (x0 == x1)
13715 return 1;
13717 /* If x1 is identical to a subexpression of x0 then
13718 while checking x0, x1 has already been checked. Thus
13719 it is valid and so as x. */
13720 if (ARITHMETIC_P (x0)
13721 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13722 return 1;
13724 /* If x0 is identical to a subexpression of x1 then x is
13725 valid iff the rest of x1 is valid. */
13726 if (ARITHMETIC_P (x1)
13727 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13728 return
13729 get_last_value_validate (&XEXP (x1,
13730 x0 == XEXP (x1, 0) ? 1 : 0),
13731 insn, tick, replace);
13734 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13735 replace) == 0)
13736 return 0;
13738 else if (fmt[i] == 'E')
13739 for (j = 0; j < XVECLEN (x, i); j++)
13740 if (get_last_value_validate (&XVECEXP (x, i, j),
13741 insn, tick, replace) == 0)
13742 return 0;
13745 /* If we haven't found a reason for it to be invalid, it is valid. */
13746 return 1;
13749 /* Get the last value assigned to X, if known. Some registers
13750 in the value may be replaced with (clobber (const_int 0)) if their value
13751 is known longer known reliably. */
13753 static rtx
13754 get_last_value (const_rtx x)
13756 unsigned int regno;
13757 rtx value;
13758 reg_stat_type *rsp;
13760 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13761 then convert it to the desired mode. If this is a paradoxical SUBREG,
13762 we cannot predict what values the "extra" bits might have. */
13763 if (GET_CODE (x) == SUBREG
13764 && subreg_lowpart_p (x)
13765 && !paradoxical_subreg_p (x)
13766 && (value = get_last_value (SUBREG_REG (x))) != 0)
13767 return gen_lowpart (GET_MODE (x), value);
13769 if (!REG_P (x))
13770 return 0;
13772 regno = REGNO (x);
13773 rsp = &reg_stat[regno];
13774 value = rsp->last_set_value;
13776 /* If we don't have a value, or if it isn't for this basic block and
13777 it's either a hard register, set more than once, or it's a live
13778 at the beginning of the function, return 0.
13780 Because if it's not live at the beginning of the function then the reg
13781 is always set before being used (is never used without being set).
13782 And, if it's set only once, and it's always set before use, then all
13783 uses must have the same last value, even if it's not from this basic
13784 block. */
13786 if (value == 0
13787 || (rsp->last_set_label < label_tick_ebb_start
13788 && (regno < FIRST_PSEUDO_REGISTER
13789 || regno >= reg_n_sets_max
13790 || REG_N_SETS (regno) != 1
13791 || REGNO_REG_SET_P
13792 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13793 return 0;
13795 /* If the value was set in a later insn than the ones we are processing,
13796 we can't use it even if the register was only set once. */
13797 if (rsp->last_set_label == label_tick
13798 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13799 return 0;
13801 /* If fewer bits were set than what we are asked for now, we cannot use
13802 the value. */
13803 if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
13804 GET_MODE_PRECISION (GET_MODE (x))))
13805 return 0;
13807 /* If the value has all its registers valid, return it. */
13808 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13809 return value;
13811 /* Otherwise, make a copy and replace any invalid register with
13812 (clobber (const_int 0)). If that fails for some reason, return 0. */
13814 value = copy_rtx (value);
13815 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13816 return value;
13818 return 0;
13821 /* Define three variables used for communication between the following
13822 routines. */
13824 static unsigned int reg_dead_regno, reg_dead_endregno;
13825 static int reg_dead_flag;
13826 rtx reg_dead_reg;
13828 /* Function called via note_stores from reg_dead_at_p.
13830 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13831 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13833 static void
13834 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13836 unsigned int regno, endregno;
13838 if (!REG_P (dest))
13839 return;
13841 if (GET_CODE (x) == CLOBBER_HIGH
13842 && !reg_is_clobbered_by_clobber_high (reg_dead_reg, XEXP (x, 0)))
13843 return;
13845 regno = REGNO (dest);
13846 endregno = END_REGNO (dest);
13847 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13848 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13851 /* Return nonzero if REG is known to be dead at INSN.
13853 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13854 referencing REG, it is dead. If we hit a SET referencing REG, it is
13855 live. Otherwise, see if it is live or dead at the start of the basic
13856 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13857 must be assumed to be always live. */
13859 static int
13860 reg_dead_at_p (rtx reg, rtx_insn *insn)
13862 basic_block block;
13863 unsigned int i;
13865 /* Set variables for reg_dead_at_p_1. */
13866 reg_dead_regno = REGNO (reg);
13867 reg_dead_endregno = END_REGNO (reg);
13868 reg_dead_reg = reg;
13870 reg_dead_flag = 0;
13872 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13873 we allow the machine description to decide whether use-and-clobber
13874 patterns are OK. */
13875 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13877 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13878 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13879 return 0;
13882 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13883 beginning of basic block. */
13884 block = BLOCK_FOR_INSN (insn);
13885 for (;;)
13887 if (INSN_P (insn))
13889 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13890 return 1;
13892 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13893 if (reg_dead_flag)
13894 return reg_dead_flag == 1 ? 1 : 0;
13896 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13897 return 1;
13900 if (insn == BB_HEAD (block))
13901 break;
13903 insn = PREV_INSN (insn);
13906 /* Look at live-in sets for the basic block that we were in. */
13907 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13908 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13909 return 0;
13911 return 1;
13914 /* Note hard registers in X that are used. */
13916 static void
13917 mark_used_regs_combine (rtx x)
13919 RTX_CODE code = GET_CODE (x);
13920 unsigned int regno;
13921 int i;
13923 switch (code)
13925 case LABEL_REF:
13926 case SYMBOL_REF:
13927 case CONST:
13928 CASE_CONST_ANY:
13929 case PC:
13930 case ADDR_VEC:
13931 case ADDR_DIFF_VEC:
13932 case ASM_INPUT:
13933 /* CC0 must die in the insn after it is set, so we don't need to take
13934 special note of it here. */
13935 case CC0:
13936 return;
13938 case CLOBBER:
13939 /* If we are clobbering a MEM, mark any hard registers inside the
13940 address as used. */
13941 if (MEM_P (XEXP (x, 0)))
13942 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13943 return;
13945 case REG:
13946 regno = REGNO (x);
13947 /* A hard reg in a wide mode may really be multiple registers.
13948 If so, mark all of them just like the first. */
13949 if (regno < FIRST_PSEUDO_REGISTER)
13951 /* None of this applies to the stack, frame or arg pointers. */
13952 if (regno == STACK_POINTER_REGNUM
13953 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13954 && regno == HARD_FRAME_POINTER_REGNUM)
13955 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13956 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13957 || regno == FRAME_POINTER_REGNUM)
13958 return;
13960 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13962 return;
13964 case SET:
13966 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13967 the address. */
13968 rtx testreg = SET_DEST (x);
13970 while (GET_CODE (testreg) == SUBREG
13971 || GET_CODE (testreg) == ZERO_EXTRACT
13972 || GET_CODE (testreg) == STRICT_LOW_PART)
13973 testreg = XEXP (testreg, 0);
13975 if (MEM_P (testreg))
13976 mark_used_regs_combine (XEXP (testreg, 0));
13978 mark_used_regs_combine (SET_SRC (x));
13980 return;
13982 default:
13983 break;
13986 /* Recursively scan the operands of this expression. */
13989 const char *fmt = GET_RTX_FORMAT (code);
13991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13993 if (fmt[i] == 'e')
13994 mark_used_regs_combine (XEXP (x, i));
13995 else if (fmt[i] == 'E')
13997 int j;
13999 for (j = 0; j < XVECLEN (x, i); j++)
14000 mark_used_regs_combine (XVECEXP (x, i, j));
14006 /* Remove register number REGNO from the dead registers list of INSN.
14008 Return the note used to record the death, if there was one. */
14011 remove_death (unsigned int regno, rtx_insn *insn)
14013 rtx note = find_regno_note (insn, REG_DEAD, regno);
14015 if (note)
14016 remove_note (insn, note);
14018 return note;
14021 /* For each register (hardware or pseudo) used within expression X, if its
14022 death is in an instruction with luid between FROM_LUID (inclusive) and
14023 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14024 list headed by PNOTES.
14026 That said, don't move registers killed by maybe_kill_insn.
14028 This is done when X is being merged by combination into TO_INSN. These
14029 notes will then be distributed as needed. */
14031 static void
14032 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14033 rtx *pnotes)
14035 const char *fmt;
14036 int len, i;
14037 enum rtx_code code = GET_CODE (x);
14039 if (code == REG)
14041 unsigned int regno = REGNO (x);
14042 rtx_insn *where_dead = reg_stat[regno].last_death;
14044 /* If we do not know where the register died, it may still die between
14045 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14046 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14048 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14049 while (insn
14050 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
14051 && DF_INSN_LUID (insn) >= from_luid)
14053 if (dead_or_set_regno_p (insn, regno))
14055 if (find_regno_note (insn, REG_DEAD, regno))
14056 where_dead = insn;
14057 break;
14060 insn = prev_real_nondebug_insn (insn);
14064 /* Don't move the register if it gets killed in between from and to. */
14065 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14066 && ! reg_referenced_p (x, maybe_kill_insn))
14067 return;
14069 if (where_dead
14070 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
14071 && DF_INSN_LUID (where_dead) >= from_luid
14072 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14074 rtx note = remove_death (regno, where_dead);
14076 /* It is possible for the call above to return 0. This can occur
14077 when last_death points to I2 or I1 that we combined with.
14078 In that case make a new note.
14080 We must also check for the case where X is a hard register
14081 and NOTE is a death note for a range of hard registers
14082 including X. In that case, we must put REG_DEAD notes for
14083 the remaining registers in place of NOTE. */
14085 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14086 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14088 unsigned int deadregno = REGNO (XEXP (note, 0));
14089 unsigned int deadend = END_REGNO (XEXP (note, 0));
14090 unsigned int ourend = END_REGNO (x);
14091 unsigned int i;
14093 for (i = deadregno; i < deadend; i++)
14094 if (i < regno || i >= ourend)
14095 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14098 /* If we didn't find any note, or if we found a REG_DEAD note that
14099 covers only part of the given reg, and we have a multi-reg hard
14100 register, then to be safe we must check for REG_DEAD notes
14101 for each register other than the first. They could have
14102 their own REG_DEAD notes lying around. */
14103 else if ((note == 0
14104 || (note != 0
14105 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14106 GET_MODE (x))))
14107 && regno < FIRST_PSEUDO_REGISTER
14108 && REG_NREGS (x) > 1)
14110 unsigned int ourend = END_REGNO (x);
14111 unsigned int i, offset;
14112 rtx oldnotes = 0;
14114 if (note)
14115 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14116 else
14117 offset = 1;
14119 for (i = regno + offset; i < ourend; i++)
14120 move_deaths (regno_reg_rtx[i],
14121 maybe_kill_insn, from_luid, to_insn, &oldnotes);
14124 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14126 XEXP (note, 1) = *pnotes;
14127 *pnotes = note;
14129 else
14130 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14133 return;
14136 else if (GET_CODE (x) == SET)
14138 rtx dest = SET_DEST (x);
14140 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14142 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14143 that accesses one word of a multi-word item, some
14144 piece of everything register in the expression is used by
14145 this insn, so remove any old death. */
14146 /* ??? So why do we test for equality of the sizes? */
14148 if (GET_CODE (dest) == ZERO_EXTRACT
14149 || GET_CODE (dest) == STRICT_LOW_PART
14150 || (GET_CODE (dest) == SUBREG
14151 && !read_modify_subreg_p (dest)))
14153 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14154 return;
14157 /* If this is some other SUBREG, we know it replaces the entire
14158 value, so use that as the destination. */
14159 if (GET_CODE (dest) == SUBREG)
14160 dest = SUBREG_REG (dest);
14162 /* If this is a MEM, adjust deaths of anything used in the address.
14163 For a REG (the only other possibility), the entire value is
14164 being replaced so the old value is not used in this insn. */
14166 if (MEM_P (dest))
14167 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14168 to_insn, pnotes);
14169 return;
14172 else if (GET_CODE (x) == CLOBBER)
14173 return;
14175 len = GET_RTX_LENGTH (code);
14176 fmt = GET_RTX_FORMAT (code);
14178 for (i = 0; i < len; i++)
14180 if (fmt[i] == 'E')
14182 int j;
14183 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14184 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14185 to_insn, pnotes);
14187 else if (fmt[i] == 'e')
14188 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14192 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14193 pattern of an insn. X must be a REG. */
14195 static int
14196 reg_bitfield_target_p (rtx x, rtx body)
14198 int i;
14200 if (GET_CODE (body) == SET)
14202 rtx dest = SET_DEST (body);
14203 rtx target;
14204 unsigned int regno, tregno, endregno, endtregno;
14206 if (GET_CODE (dest) == ZERO_EXTRACT)
14207 target = XEXP (dest, 0);
14208 else if (GET_CODE (dest) == STRICT_LOW_PART)
14209 target = SUBREG_REG (XEXP (dest, 0));
14210 else
14211 return 0;
14213 if (GET_CODE (target) == SUBREG)
14214 target = SUBREG_REG (target);
14216 if (!REG_P (target))
14217 return 0;
14219 tregno = REGNO (target), regno = REGNO (x);
14220 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14221 return target == x;
14223 endtregno = end_hard_regno (GET_MODE (target), tregno);
14224 endregno = end_hard_regno (GET_MODE (x), regno);
14226 return endregno > tregno && regno < endtregno;
14229 else if (GET_CODE (body) == PARALLEL)
14230 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14231 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14232 return 1;
14234 return 0;
14237 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14238 as appropriate. I3 and I2 are the insns resulting from the combination
14239 insns including FROM (I2 may be zero).
14241 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14242 not need REG_DEAD notes because they are being substituted for. This
14243 saves searching in the most common cases.
14245 Each note in the list is either ignored or placed on some insns, depending
14246 on the type of note. */
14248 static void
14249 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14250 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14252 rtx note, next_note;
14253 rtx tem_note;
14254 rtx_insn *tem_insn;
14256 for (note = notes; note; note = next_note)
14258 rtx_insn *place = 0, *place2 = 0;
14260 next_note = XEXP (note, 1);
14261 switch (REG_NOTE_KIND (note))
14263 case REG_BR_PROB:
14264 case REG_BR_PRED:
14265 /* Doesn't matter much where we put this, as long as it's somewhere.
14266 It is preferable to keep these notes on branches, which is most
14267 likely to be i3. */
14268 place = i3;
14269 break;
14271 case REG_NON_LOCAL_GOTO:
14272 if (JUMP_P (i3))
14273 place = i3;
14274 else
14276 gcc_assert (i2 && JUMP_P (i2));
14277 place = i2;
14279 break;
14281 case REG_EH_REGION:
14282 /* These notes must remain with the call or trapping instruction. */
14283 if (CALL_P (i3))
14284 place = i3;
14285 else if (i2 && CALL_P (i2))
14286 place = i2;
14287 else
14289 gcc_assert (cfun->can_throw_non_call_exceptions);
14290 if (may_trap_p (i3))
14291 place = i3;
14292 else if (i2 && may_trap_p (i2))
14293 place = i2;
14294 /* ??? Otherwise assume we've combined things such that we
14295 can now prove that the instructions can't trap. Drop the
14296 note in this case. */
14298 break;
14300 case REG_ARGS_SIZE:
14301 /* ??? How to distribute between i3-i1. Assume i3 contains the
14302 entire adjustment. Assert i3 contains at least some adjust. */
14303 if (!noop_move_p (i3))
14305 poly_int64 old_size, args_size = get_args_size (note);
14306 /* fixup_args_size_notes looks at REG_NORETURN note,
14307 so ensure the note is placed there first. */
14308 if (CALL_P (i3))
14310 rtx *np;
14311 for (np = &next_note; *np; np = &XEXP (*np, 1))
14312 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14314 rtx n = *np;
14315 *np = XEXP (n, 1);
14316 XEXP (n, 1) = REG_NOTES (i3);
14317 REG_NOTES (i3) = n;
14318 break;
14321 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14322 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14323 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14324 gcc_assert (maybe_ne (old_size, args_size)
14325 || (CALL_P (i3)
14326 && !ACCUMULATE_OUTGOING_ARGS
14327 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14329 break;
14331 case REG_NORETURN:
14332 case REG_SETJMP:
14333 case REG_TM:
14334 case REG_CALL_DECL:
14335 case REG_CALL_NOCF_CHECK:
14336 /* These notes must remain with the call. It should not be
14337 possible for both I2 and I3 to be a call. */
14338 if (CALL_P (i3))
14339 place = i3;
14340 else
14342 gcc_assert (i2 && CALL_P (i2));
14343 place = i2;
14345 break;
14347 case REG_UNUSED:
14348 /* Any clobbers for i3 may still exist, and so we must process
14349 REG_UNUSED notes from that insn.
14351 Any clobbers from i2 or i1 can only exist if they were added by
14352 recog_for_combine. In that case, recog_for_combine created the
14353 necessary REG_UNUSED notes. Trying to keep any original
14354 REG_UNUSED notes from these insns can cause incorrect output
14355 if it is for the same register as the original i3 dest.
14356 In that case, we will notice that the register is set in i3,
14357 and then add a REG_UNUSED note for the destination of i3, which
14358 is wrong. However, it is possible to have REG_UNUSED notes from
14359 i2 or i1 for register which were both used and clobbered, so
14360 we keep notes from i2 or i1 if they will turn into REG_DEAD
14361 notes. */
14363 /* If this register is set or clobbered in I3, put the note there
14364 unless there is one already. */
14365 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14367 if (from_insn != i3)
14368 break;
14370 if (! (REG_P (XEXP (note, 0))
14371 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14372 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14373 place = i3;
14375 /* Otherwise, if this register is used by I3, then this register
14376 now dies here, so we must put a REG_DEAD note here unless there
14377 is one already. */
14378 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14379 && ! (REG_P (XEXP (note, 0))
14380 ? find_regno_note (i3, REG_DEAD,
14381 REGNO (XEXP (note, 0)))
14382 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14384 PUT_REG_NOTE_KIND (note, REG_DEAD);
14385 place = i3;
14388 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14389 but we can't tell which at this point. We must reset any
14390 expectations we had about the value that was previously
14391 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14392 and, if appropriate, restore its previous value, but we
14393 don't have enough information for that at this point. */
14394 else
14396 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14398 /* Otherwise, if this register is now referenced in i2
14399 then the register used to be modified in one of the
14400 original insns. If it was i3 (say, in an unused
14401 parallel), it's now completely gone, so the note can
14402 be discarded. But if it was modified in i2, i1 or i0
14403 and we still reference it in i2, then we're
14404 referencing the previous value, and since the
14405 register was modified and REG_UNUSED, we know that
14406 the previous value is now dead. So, if we only
14407 reference the register in i2, we change the note to
14408 REG_DEAD, to reflect the previous value. However, if
14409 we're also setting or clobbering the register as
14410 scratch, we know (because the register was not
14411 referenced in i3) that it's unused, just as it was
14412 unused before, and we place the note in i2. */
14413 if (from_insn != i3 && i2 && INSN_P (i2)
14414 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14416 if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
14417 PUT_REG_NOTE_KIND (note, REG_DEAD);
14418 if (! (REG_P (XEXP (note, 0))
14419 ? find_regno_note (i2, REG_NOTE_KIND (note),
14420 REGNO (XEXP (note, 0)))
14421 : find_reg_note (i2, REG_NOTE_KIND (note),
14422 XEXP (note, 0))))
14423 place = i2;
14427 break;
14429 case REG_EQUAL:
14430 case REG_EQUIV:
14431 case REG_NOALIAS:
14432 /* These notes say something about results of an insn. We can
14433 only support them if they used to be on I3 in which case they
14434 remain on I3. Otherwise they are ignored.
14436 If the note refers to an expression that is not a constant, we
14437 must also ignore the note since we cannot tell whether the
14438 equivalence is still true. It might be possible to do
14439 slightly better than this (we only have a problem if I2DEST
14440 or I1DEST is present in the expression), but it doesn't
14441 seem worth the trouble. */
14443 if (from_insn == i3
14444 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14445 place = i3;
14446 break;
14448 case REG_INC:
14449 /* These notes say something about how a register is used. They must
14450 be present on any use of the register in I2 or I3. */
14451 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14452 place = i3;
14454 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14456 if (place)
14457 place2 = i2;
14458 else
14459 place = i2;
14461 break;
14463 case REG_LABEL_TARGET:
14464 case REG_LABEL_OPERAND:
14465 /* This can show up in several ways -- either directly in the
14466 pattern, or hidden off in the constant pool with (or without?)
14467 a REG_EQUAL note. */
14468 /* ??? Ignore the without-reg_equal-note problem for now. */
14469 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14470 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14471 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14472 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14473 place = i3;
14475 if (i2
14476 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14477 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14478 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14479 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14481 if (place)
14482 place2 = i2;
14483 else
14484 place = i2;
14487 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14488 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14489 there. */
14490 if (place && JUMP_P (place)
14491 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14492 && (JUMP_LABEL (place) == NULL
14493 || JUMP_LABEL (place) == XEXP (note, 0)))
14495 rtx label = JUMP_LABEL (place);
14497 if (!label)
14498 JUMP_LABEL (place) = XEXP (note, 0);
14499 else if (LABEL_P (label))
14500 LABEL_NUSES (label)--;
14503 if (place2 && JUMP_P (place2)
14504 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14505 && (JUMP_LABEL (place2) == NULL
14506 || JUMP_LABEL (place2) == XEXP (note, 0)))
14508 rtx label = JUMP_LABEL (place2);
14510 if (!label)
14511 JUMP_LABEL (place2) = XEXP (note, 0);
14512 else if (LABEL_P (label))
14513 LABEL_NUSES (label)--;
14514 place2 = 0;
14516 break;
14518 case REG_NONNEG:
14519 /* This note says something about the value of a register prior
14520 to the execution of an insn. It is too much trouble to see
14521 if the note is still correct in all situations. It is better
14522 to simply delete it. */
14523 break;
14525 case REG_DEAD:
14526 /* If we replaced the right hand side of FROM_INSN with a
14527 REG_EQUAL note, the original use of the dying register
14528 will not have been combined into I3 and I2. In such cases,
14529 FROM_INSN is guaranteed to be the first of the combined
14530 instructions, so we simply need to search back before
14531 FROM_INSN for the previous use or set of this register,
14532 then alter the notes there appropriately.
14534 If the register is used as an input in I3, it dies there.
14535 Similarly for I2, if it is nonzero and adjacent to I3.
14537 If the register is not used as an input in either I3 or I2
14538 and it is not one of the registers we were supposed to eliminate,
14539 there are two possibilities. We might have a non-adjacent I2
14540 or we might have somehow eliminated an additional register
14541 from a computation. For example, we might have had A & B where
14542 we discover that B will always be zero. In this case we will
14543 eliminate the reference to A.
14545 In both cases, we must search to see if we can find a previous
14546 use of A and put the death note there. */
14548 if (from_insn
14549 && from_insn == i2mod
14550 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14551 tem_insn = from_insn;
14552 else
14554 if (from_insn
14555 && CALL_P (from_insn)
14556 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14557 place = from_insn;
14558 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14560 /* If the new I2 sets the same register that is marked
14561 dead in the note, we do not in general know where to
14562 put the note. One important case we _can_ handle is
14563 when the note comes from I3. */
14564 if (from_insn == i3)
14565 place = i3;
14566 else
14567 break;
14569 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14570 place = i3;
14571 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14572 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14573 place = i2;
14574 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14575 && !(i2mod
14576 && reg_overlap_mentioned_p (XEXP (note, 0),
14577 i2mod_old_rhs)))
14578 || rtx_equal_p (XEXP (note, 0), elim_i1)
14579 || rtx_equal_p (XEXP (note, 0), elim_i0))
14580 break;
14581 tem_insn = i3;
14584 if (place == 0)
14586 basic_block bb = this_basic_block;
14588 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14590 if (!NONDEBUG_INSN_P (tem_insn))
14592 if (tem_insn == BB_HEAD (bb))
14593 break;
14594 continue;
14597 /* If the register is being set at TEM_INSN, see if that is all
14598 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14599 into a REG_UNUSED note instead. Don't delete sets to
14600 global register vars. */
14601 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14602 || !global_regs[REGNO (XEXP (note, 0))])
14603 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14605 rtx set = single_set (tem_insn);
14606 rtx inner_dest = 0;
14607 rtx_insn *cc0_setter = NULL;
14609 if (set != 0)
14610 for (inner_dest = SET_DEST (set);
14611 (GET_CODE (inner_dest) == STRICT_LOW_PART
14612 || GET_CODE (inner_dest) == SUBREG
14613 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14614 inner_dest = XEXP (inner_dest, 0))
14617 /* Verify that it was the set, and not a clobber that
14618 modified the register.
14620 CC0 targets must be careful to maintain setter/user
14621 pairs. If we cannot delete the setter due to side
14622 effects, mark the user with an UNUSED note instead
14623 of deleting it. */
14625 if (set != 0 && ! side_effects_p (SET_SRC (set))
14626 && rtx_equal_p (XEXP (note, 0), inner_dest)
14627 && (!HAVE_cc0
14628 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14629 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14630 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14632 /* Move the notes and links of TEM_INSN elsewhere.
14633 This might delete other dead insns recursively.
14634 First set the pattern to something that won't use
14635 any register. */
14636 rtx old_notes = REG_NOTES (tem_insn);
14638 PATTERN (tem_insn) = pc_rtx;
14639 REG_NOTES (tem_insn) = NULL;
14641 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14642 NULL_RTX, NULL_RTX, NULL_RTX);
14643 distribute_links (LOG_LINKS (tem_insn));
14645 unsigned int regno = REGNO (XEXP (note, 0));
14646 reg_stat_type *rsp = &reg_stat[regno];
14647 if (rsp->last_set == tem_insn)
14648 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14650 SET_INSN_DELETED (tem_insn);
14651 if (tem_insn == i2)
14652 i2 = NULL;
14654 /* Delete the setter too. */
14655 if (cc0_setter)
14657 PATTERN (cc0_setter) = pc_rtx;
14658 old_notes = REG_NOTES (cc0_setter);
14659 REG_NOTES (cc0_setter) = NULL;
14661 distribute_notes (old_notes, cc0_setter,
14662 cc0_setter, NULL,
14663 NULL_RTX, NULL_RTX, NULL_RTX);
14664 distribute_links (LOG_LINKS (cc0_setter));
14666 SET_INSN_DELETED (cc0_setter);
14667 if (cc0_setter == i2)
14668 i2 = NULL;
14671 else
14673 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14675 /* If there isn't already a REG_UNUSED note, put one
14676 here. Do not place a REG_DEAD note, even if
14677 the register is also used here; that would not
14678 match the algorithm used in lifetime analysis
14679 and can cause the consistency check in the
14680 scheduler to fail. */
14681 if (! find_regno_note (tem_insn, REG_UNUSED,
14682 REGNO (XEXP (note, 0))))
14683 place = tem_insn;
14684 break;
14687 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14688 || (CALL_P (tem_insn)
14689 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14691 place = tem_insn;
14693 /* If we are doing a 3->2 combination, and we have a
14694 register which formerly died in i3 and was not used
14695 by i2, which now no longer dies in i3 and is used in
14696 i2 but does not die in i2, and place is between i2
14697 and i3, then we may need to move a link from place to
14698 i2. */
14699 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14700 && from_insn
14701 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14702 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14704 struct insn_link *links = LOG_LINKS (place);
14705 LOG_LINKS (place) = NULL;
14706 distribute_links (links);
14708 break;
14711 if (tem_insn == BB_HEAD (bb))
14712 break;
14717 /* If the register is set or already dead at PLACE, we needn't do
14718 anything with this note if it is still a REG_DEAD note.
14719 We check here if it is set at all, not if is it totally replaced,
14720 which is what `dead_or_set_p' checks, so also check for it being
14721 set partially. */
14723 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14725 unsigned int regno = REGNO (XEXP (note, 0));
14726 reg_stat_type *rsp = &reg_stat[regno];
14728 if (dead_or_set_p (place, XEXP (note, 0))
14729 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14731 /* Unless the register previously died in PLACE, clear
14732 last_death. [I no longer understand why this is
14733 being done.] */
14734 if (rsp->last_death != place)
14735 rsp->last_death = 0;
14736 place = 0;
14738 else
14739 rsp->last_death = place;
14741 /* If this is a death note for a hard reg that is occupying
14742 multiple registers, ensure that we are still using all
14743 parts of the object. If we find a piece of the object
14744 that is unused, we must arrange for an appropriate REG_DEAD
14745 note to be added for it. However, we can't just emit a USE
14746 and tag the note to it, since the register might actually
14747 be dead; so we recourse, and the recursive call then finds
14748 the previous insn that used this register. */
14750 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14752 unsigned int endregno = END_REGNO (XEXP (note, 0));
14753 bool all_used = true;
14754 unsigned int i;
14756 for (i = regno; i < endregno; i++)
14757 if ((! refers_to_regno_p (i, PATTERN (place))
14758 && ! find_regno_fusage (place, USE, i))
14759 || dead_or_set_regno_p (place, i))
14761 all_used = false;
14762 break;
14765 if (! all_used)
14767 /* Put only REG_DEAD notes for pieces that are
14768 not already dead or set. */
14770 for (i = regno; i < endregno;
14771 i += hard_regno_nregs (i, reg_raw_mode[i]))
14773 rtx piece = regno_reg_rtx[i];
14774 basic_block bb = this_basic_block;
14776 if (! dead_or_set_p (place, piece)
14777 && ! reg_bitfield_target_p (piece,
14778 PATTERN (place)))
14780 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14781 NULL_RTX);
14783 distribute_notes (new_note, place, place,
14784 NULL, NULL_RTX, NULL_RTX,
14785 NULL_RTX);
14787 else if (! refers_to_regno_p (i, PATTERN (place))
14788 && ! find_regno_fusage (place, USE, i))
14789 for (tem_insn = PREV_INSN (place); ;
14790 tem_insn = PREV_INSN (tem_insn))
14792 if (!NONDEBUG_INSN_P (tem_insn))
14794 if (tem_insn == BB_HEAD (bb))
14795 break;
14796 continue;
14798 if (dead_or_set_p (tem_insn, piece)
14799 || reg_bitfield_target_p (piece,
14800 PATTERN (tem_insn)))
14802 add_reg_note (tem_insn, REG_UNUSED, piece);
14803 break;
14808 place = 0;
14812 break;
14814 default:
14815 /* Any other notes should not be present at this point in the
14816 compilation. */
14817 gcc_unreachable ();
14820 if (place)
14822 XEXP (note, 1) = REG_NOTES (place);
14823 REG_NOTES (place) = note;
14825 /* Set added_notes_insn to the earliest insn we added a note to. */
14826 if (added_notes_insn == 0
14827 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14828 added_notes_insn = place;
14831 if (place2)
14833 add_shallow_copy_of_reg_note (place2, note);
14835 /* Set added_notes_insn to the earliest insn we added a note to. */
14836 if (added_notes_insn == 0
14837 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14838 added_notes_insn = place2;
14843 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14844 I3, I2, and I1 to new locations. This is also called to add a link
14845 pointing at I3 when I3's destination is changed. */
14847 static void
14848 distribute_links (struct insn_link *links)
14850 struct insn_link *link, *next_link;
14852 for (link = links; link; link = next_link)
14854 rtx_insn *place = 0;
14855 rtx_insn *insn;
14856 rtx set, reg;
14858 next_link = link->next;
14860 /* If the insn that this link points to is a NOTE, ignore it. */
14861 if (NOTE_P (link->insn))
14862 continue;
14864 set = 0;
14865 rtx pat = PATTERN (link->insn);
14866 if (GET_CODE (pat) == SET)
14867 set = pat;
14868 else if (GET_CODE (pat) == PARALLEL)
14870 int i;
14871 for (i = 0; i < XVECLEN (pat, 0); i++)
14873 set = XVECEXP (pat, 0, i);
14874 if (GET_CODE (set) != SET)
14875 continue;
14877 reg = SET_DEST (set);
14878 while (GET_CODE (reg) == ZERO_EXTRACT
14879 || GET_CODE (reg) == STRICT_LOW_PART
14880 || GET_CODE (reg) == SUBREG)
14881 reg = XEXP (reg, 0);
14883 if (!REG_P (reg))
14884 continue;
14886 if (REGNO (reg) == link->regno)
14887 break;
14889 if (i == XVECLEN (pat, 0))
14890 continue;
14892 else
14893 continue;
14895 reg = SET_DEST (set);
14897 while (GET_CODE (reg) == ZERO_EXTRACT
14898 || GET_CODE (reg) == STRICT_LOW_PART
14899 || GET_CODE (reg) == SUBREG)
14900 reg = XEXP (reg, 0);
14902 if (reg == pc_rtx)
14903 continue;
14905 /* A LOG_LINK is defined as being placed on the first insn that uses
14906 a register and points to the insn that sets the register. Start
14907 searching at the next insn after the target of the link and stop
14908 when we reach a set of the register or the end of the basic block.
14910 Note that this correctly handles the link that used to point from
14911 I3 to I2. Also note that not much searching is typically done here
14912 since most links don't point very far away. */
14914 for (insn = NEXT_INSN (link->insn);
14915 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14916 || BB_HEAD (this_basic_block->next_bb) != insn));
14917 insn = NEXT_INSN (insn))
14918 if (DEBUG_INSN_P (insn))
14919 continue;
14920 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14922 if (reg_referenced_p (reg, PATTERN (insn)))
14923 place = insn;
14924 break;
14926 else if (CALL_P (insn)
14927 && find_reg_fusage (insn, USE, reg))
14929 place = insn;
14930 break;
14932 else if (INSN_P (insn) && reg_set_p (reg, insn))
14933 break;
14935 /* If we found a place to put the link, place it there unless there
14936 is already a link to the same insn as LINK at that point. */
14938 if (place)
14940 struct insn_link *link2;
14942 FOR_EACH_LOG_LINK (link2, place)
14943 if (link2->insn == link->insn && link2->regno == link->regno)
14944 break;
14946 if (link2 == NULL)
14948 link->next = LOG_LINKS (place);
14949 LOG_LINKS (place) = link;
14951 /* Set added_links_insn to the earliest insn we added a
14952 link to. */
14953 if (added_links_insn == 0
14954 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14955 added_links_insn = place;
14961 /* Check for any register or memory mentioned in EQUIV that is not
14962 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14963 of EXPR where some registers may have been replaced by constants. */
14965 static bool
14966 unmentioned_reg_p (rtx equiv, rtx expr)
14968 subrtx_iterator::array_type array;
14969 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14971 const_rtx x = *iter;
14972 if ((REG_P (x) || MEM_P (x))
14973 && !reg_mentioned_p (x, expr))
14974 return true;
14976 return false;
14979 DEBUG_FUNCTION void
14980 dump_combine_stats (FILE *file)
14982 fprintf
14983 (file,
14984 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14985 combine_attempts, combine_merges, combine_extras, combine_successes);
14988 void
14989 dump_combine_total_stats (FILE *file)
14991 fprintf
14992 (file,
14993 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14994 total_attempts, total_merges, total_extras, total_successes);
14997 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14998 the reg-to-reg copy can usefully combine with later instructions, but we
14999 do not want to combine the hard reg into later instructions, for that
15000 restricts register allocation. */
15001 static void
15002 make_more_copies (void)
15004 basic_block bb;
15006 FOR_EACH_BB_FN (bb, cfun)
15008 rtx_insn *insn;
15010 FOR_BB_INSNS (bb, insn)
15012 if (!NONDEBUG_INSN_P (insn))
15013 continue;
15015 rtx set = single_set (insn);
15016 if (!set)
15017 continue;
15019 rtx dest = SET_DEST (set);
15020 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15021 continue;
15023 rtx src = SET_SRC (set);
15024 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15025 continue;
15026 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15027 continue;
15029 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15030 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15031 SET_SRC (set) = new_reg;
15032 emit_insn_before (new_insn, insn);
15033 df_insn_rescan (insn);
15038 /* Try combining insns through substitution. */
15039 static unsigned int
15040 rest_of_handle_combine (void)
15042 make_more_copies ();
15044 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15045 df_note_add_problem ();
15046 df_analyze ();
15048 regstat_init_n_sets_and_refs ();
15049 reg_n_sets_max = max_reg_num ();
15051 int rebuild_jump_labels_after_combine
15052 = combine_instructions (get_insns (), max_reg_num ());
15054 /* Combining insns may have turned an indirect jump into a
15055 direct jump. Rebuild the JUMP_LABEL fields of jumping
15056 instructions. */
15057 if (rebuild_jump_labels_after_combine)
15059 if (dom_info_available_p (CDI_DOMINATORS))
15060 free_dominance_info (CDI_DOMINATORS);
15061 timevar_push (TV_JUMP);
15062 rebuild_jump_labels (get_insns ());
15063 cleanup_cfg (0);
15064 timevar_pop (TV_JUMP);
15067 regstat_free_n_sets_and_refs ();
15068 return 0;
15071 namespace {
15073 const pass_data pass_data_combine =
15075 RTL_PASS, /* type */
15076 "combine", /* name */
15077 OPTGROUP_NONE, /* optinfo_flags */
15078 TV_COMBINE, /* tv_id */
15079 PROP_cfglayout, /* properties_required */
15080 0, /* properties_provided */
15081 0, /* properties_destroyed */
15082 0, /* todo_flags_start */
15083 TODO_df_finish, /* todo_flags_finish */
15086 class pass_combine : public rtl_opt_pass
15088 public:
15089 pass_combine (gcc::context *ctxt)
15090 : rtl_opt_pass (pass_data_combine, ctxt)
15093 /* opt_pass methods: */
15094 virtual bool gate (function *) { return (optimize > 0); }
15095 virtual unsigned int execute (function *)
15097 return rest_of_handle_combine ();
15100 }; // class pass_combine
15102 } // anon namespace
15104 rtl_opt_pass *
15105 make_pass_combine (gcc::context *ctxt)
15107 return new pass_combine (ctxt);