1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "gimple-pretty-print.h"
30 #include "gimple-fold.h"
33 #include "gimple-iterator.h"
36 #include "tree-ssa-propagate.h"
39 #include "tree-cfgcleanup.h"
42 /* This file implements a generic value propagation engine based on
43 the same propagation used by the SSA-CCP algorithm [1].
45 Propagation is performed by simulating the execution of every
46 statement that produces the value being propagated. Simulation
49 1- Initially, all edges of the CFG are marked not executable and
50 the CFG worklist is seeded with all the statements in the entry
51 basic block (block 0).
53 2- Every statement S is simulated with a call to the call-back
54 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
57 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
58 interest and does not affect any of the work lists.
59 The statement may be simulated again if any of its input
60 operands change in future iterations of the simulator.
62 SSA_PROP_VARYING: The value produced by S cannot be determined
63 at compile time. Further simulation of S is not required.
64 If S is a conditional jump, all the outgoing edges for the
65 block are considered executable and added to the work
68 SSA_PROP_INTERESTING: S produces a value that can be computed
69 at compile time. Its result can be propagated into the
70 statements that feed from S. Furthermore, if S is a
71 conditional jump, only the edge known to be taken is added
72 to the work list. Edges that are known not to execute are
75 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
76 return value from SSA_PROP_VISIT_PHI has the same semantics as
79 4- Three work lists are kept. Statements are only added to these
80 lists if they produce one of SSA_PROP_INTERESTING or
83 CFG_BLOCKS contains the list of blocks to be simulated.
84 Blocks are added to this list if their incoming edges are
87 SSA_EDGE_WORKLIST contains the list of statements that we
90 5- Simulation terminates when all three work lists are drained.
92 Before calling ssa_propagate, it is important to clear
93 prop_simulate_again_p for all the statements in the program that
94 should be simulated. This initialization allows an implementation
95 to specify which statements should never be simulated.
97 It is also important to compute def-use information before calling
102 [1] Constant propagation with conditional branches,
103 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
105 [2] Building an Optimizing Compiler,
106 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
108 [3] Advanced Compiler Design and Implementation,
109 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
111 /* Function pointers used to parameterize the propagation engine. */
112 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
;
113 static ssa_prop_visit_phi_fn ssa_prop_visit_phi
;
115 /* Worklist of control flow edge destinations. This contains
116 the CFG order number of the blocks so we can iterate in CFG
117 order by visiting in bit-order. */
118 static bitmap cfg_blocks
;
119 static int *bb_to_cfg_order
;
120 static int *cfg_order_to_bb
;
122 /* Worklist of SSA edges which will need reexamination as their
123 definition has changed. SSA edges are def-use edges in the SSA
124 web. For each D-U edge, we store the target statement or PHI node
125 UID in a bitmap. UIDs order stmts in execution order. */
126 static bitmap ssa_edge_worklist
;
127 static vec
<gimple
*> uid_to_stmt
;
129 /* Return true if the block worklist empty. */
132 cfg_blocks_empty_p (void)
134 return bitmap_empty_p (cfg_blocks
);
138 /* Add a basic block to the worklist. The block must not be the ENTRY
142 cfg_blocks_add (basic_block bb
)
144 gcc_assert (bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
145 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
146 bitmap_set_bit (cfg_blocks
, bb_to_cfg_order
[bb
->index
]);
150 /* Remove a block from the worklist. */
153 cfg_blocks_get (void)
155 gcc_assert (!cfg_blocks_empty_p ());
156 int order_index
= bitmap_first_set_bit (cfg_blocks
);
157 bitmap_clear_bit (cfg_blocks
, order_index
);
158 return BASIC_BLOCK_FOR_FN (cfun
, cfg_order_to_bb
[order_index
]);
162 /* We have just defined a new value for VAR. If IS_VARYING is true,
163 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
164 them to INTERESTING_SSA_EDGES. */
167 add_ssa_edge (tree var
)
169 imm_use_iterator iter
;
172 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
174 gimple
*use_stmt
= USE_STMT (use_p
);
176 /* If we did not yet simulate the block wait for this to happen
177 and do not add the stmt to the SSA edge worklist. */
178 if (! (gimple_bb (use_stmt
)->flags
& BB_VISITED
))
181 if (prop_simulate_again_p (use_stmt
)
182 && bitmap_set_bit (ssa_edge_worklist
, gimple_uid (use_stmt
)))
184 uid_to_stmt
[gimple_uid (use_stmt
)] = use_stmt
;
185 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
187 fprintf (dump_file
, "ssa_edge_worklist: adding SSA use in ");
188 print_gimple_stmt (dump_file
, use_stmt
, 0, TDF_SLIM
);
195 /* Add edge E to the control flow worklist. */
198 add_control_edge (edge e
)
200 basic_block bb
= e
->dest
;
201 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
204 /* If the edge had already been executed, skip it. */
205 if (e
->flags
& EDGE_EXECUTABLE
)
208 e
->flags
|= EDGE_EXECUTABLE
;
212 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
213 fprintf (dump_file
, "Adding destination of edge (%d -> %d) to worklist\n",
214 e
->src
->index
, e
->dest
->index
);
218 /* Simulate the execution of STMT and update the work lists accordingly. */
221 simulate_stmt (gimple
*stmt
)
223 enum ssa_prop_result val
= SSA_PROP_NOT_INTERESTING
;
224 edge taken_edge
= NULL
;
225 tree output_name
= NULL_TREE
;
227 /* Pull the stmt off the SSA edge worklist. */
228 bitmap_clear_bit (ssa_edge_worklist
, gimple_uid (stmt
));
230 /* Don't bother visiting statements that are already
231 considered varying by the propagator. */
232 if (!prop_simulate_again_p (stmt
))
235 if (gimple_code (stmt
) == GIMPLE_PHI
)
237 val
= ssa_prop_visit_phi (as_a
<gphi
*> (stmt
));
238 output_name
= gimple_phi_result (stmt
);
241 val
= ssa_prop_visit_stmt (stmt
, &taken_edge
, &output_name
);
243 if (val
== SSA_PROP_VARYING
)
245 prop_set_simulate_again (stmt
, false);
247 /* If the statement produced a new varying value, add the SSA
248 edges coming out of OUTPUT_NAME. */
250 add_ssa_edge (output_name
);
252 /* If STMT transfers control out of its basic block, add
253 all outgoing edges to the work list. */
254 if (stmt_ends_bb_p (stmt
))
258 basic_block bb
= gimple_bb (stmt
);
259 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
260 add_control_edge (e
);
264 else if (val
== SSA_PROP_INTERESTING
)
266 /* If the statement produced new value, add the SSA edges coming
267 out of OUTPUT_NAME. */
269 add_ssa_edge (output_name
);
271 /* If we know which edge is going to be taken out of this block,
272 add it to the CFG work list. */
274 add_control_edge (taken_edge
);
277 /* If there are no SSA uses on the stmt whose defs are simulated
278 again then this stmt will be never visited again. */
279 bool has_simulate_again_uses
= false;
282 if (gimple_code (stmt
) == GIMPLE_PHI
)
287 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->preds
)
288 if (!(e
->flags
& EDGE_EXECUTABLE
)
289 || ((arg
= PHI_ARG_DEF_FROM_EDGE (stmt
, e
))
290 && TREE_CODE (arg
) == SSA_NAME
291 && !SSA_NAME_IS_DEFAULT_DEF (arg
)
292 && prop_simulate_again_p (SSA_NAME_DEF_STMT (arg
))))
294 has_simulate_again_uses
= true;
299 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_USE
)
301 gimple
*def_stmt
= SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p
));
302 if (!gimple_nop_p (def_stmt
)
303 && prop_simulate_again_p (def_stmt
))
305 has_simulate_again_uses
= true;
309 if (!has_simulate_again_uses
)
311 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
312 fprintf (dump_file
, "marking stmt to be not simulated again\n");
313 prop_set_simulate_again (stmt
, false);
317 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
318 drain. This pops statements off the given WORKLIST and processes
319 them until one statement was simulated or there are no more statements
320 on WORKLIST. We take a pointer to WORKLIST because it may be reallocated
321 when an SSA edge is added to it in simulate_stmt. Return true if a stmt
325 process_ssa_edge_worklist ()
327 /* Process the next entry from the worklist. */
328 unsigned stmt_uid
= bitmap_first_set_bit (ssa_edge_worklist
);
329 bitmap_clear_bit (ssa_edge_worklist
, stmt_uid
);
330 gimple
*stmt
= uid_to_stmt
[stmt_uid
];
332 /* We should not have stmts in not yet simulated BBs on the worklist. */
333 gcc_assert (gimple_bb (stmt
)->flags
& BB_VISITED
);
335 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
337 fprintf (dump_file
, "\nSimulating statement: ");
338 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
341 simulate_stmt (stmt
);
345 /* Simulate the execution of BLOCK. Evaluate the statement associated
346 with each variable reference inside the block. */
349 simulate_block (basic_block block
)
351 gimple_stmt_iterator gsi
;
353 /* There is nothing to do for the exit block. */
354 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
357 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
358 fprintf (dump_file
, "\nSimulating block %d\n", block
->index
);
360 /* Always simulate PHI nodes, even if we have simulated this block
362 for (gsi
= gsi_start_phis (block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
363 simulate_stmt (gsi_stmt (gsi
));
365 /* If this is the first time we've simulated this block, then we
366 must simulate each of its statements. */
367 if (! (block
->flags
& BB_VISITED
))
369 gimple_stmt_iterator j
;
370 unsigned int normal_edge_count
;
374 for (j
= gsi_start_bb (block
); !gsi_end_p (j
); gsi_next (&j
))
375 simulate_stmt (gsi_stmt (j
));
377 /* Note that we have simulated this block. */
378 block
->flags
|= BB_VISITED
;
380 /* We can not predict when abnormal and EH edges will be executed, so
381 once a block is considered executable, we consider any
382 outgoing abnormal edges as executable.
384 TODO: This is not exactly true. Simplifying statement might
385 prove it non-throwing and also computed goto can be handled
386 when destination is known.
388 At the same time, if this block has only one successor that is
389 reached by non-abnormal edges, then add that successor to the
391 normal_edge_count
= 0;
393 FOR_EACH_EDGE (e
, ei
, block
->succs
)
395 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
396 add_control_edge (e
);
404 if (normal_edge_count
== 1)
405 add_control_edge (normal_edge
);
410 /* Initialize local data structures and work lists. */
419 /* Worklists of SSA edges. */
420 ssa_edge_worklist
= BITMAP_ALLOC (NULL
);
422 /* Worklist of basic-blocks. */
423 bb_to_cfg_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
) + 1);
424 cfg_order_to_bb
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
425 int n
= pre_and_rev_post_order_compute_fn (cfun
, NULL
,
426 cfg_order_to_bb
, false);
427 for (int i
= 0; i
< n
; ++i
)
428 bb_to_cfg_order
[cfg_order_to_bb
[i
]] = i
;
429 cfg_blocks
= BITMAP_ALLOC (NULL
);
431 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
432 dump_immediate_uses (dump_file
);
434 /* Initially assume that every edge in the CFG is not executable.
435 (including the edges coming out of the entry block). Mark blocks
436 as not visited, blocks not yet visited will have all their statements
437 simulated once an incoming edge gets executable. */
438 set_gimple_stmt_max_uid (cfun
, 0);
439 for (int i
= 0; i
< n
; ++i
)
441 gimple_stmt_iterator si
;
442 bb
= BASIC_BLOCK_FOR_FN (cfun
, cfg_order_to_bb
[i
]);
444 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
446 gimple
*stmt
= gsi_stmt (si
);
447 gimple_set_uid (stmt
, inc_gimple_stmt_max_uid (cfun
));
450 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
452 gimple
*stmt
= gsi_stmt (si
);
453 gimple_set_uid (stmt
, inc_gimple_stmt_max_uid (cfun
));
456 bb
->flags
&= ~BB_VISITED
;
457 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
458 e
->flags
&= ~EDGE_EXECUTABLE
;
460 uid_to_stmt
.safe_grow (gimple_stmt_max_uid (cfun
));
462 /* Seed the algorithm by adding the successors of the entry block to the
464 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
466 e
->flags
&= ~EDGE_EXECUTABLE
;
467 add_control_edge (e
);
472 /* Free allocated storage. */
477 BITMAP_FREE (cfg_blocks
);
478 free (bb_to_cfg_order
);
479 free (cfg_order_to_bb
);
480 BITMAP_FREE (ssa_edge_worklist
);
481 uid_to_stmt
.release ();
485 /* Return true if EXPR is an acceptable right-hand-side for a
486 GIMPLE assignment. We validate the entire tree, not just
487 the root node, thus catching expressions that embed complex
488 operands that are not permitted in GIMPLE. This function
489 is needed because the folding routines in fold-const.c
490 may return such expressions in some cases, e.g., an array
491 access with an embedded index addition. It may make more
492 sense to have folding routines that are sensitive to the
493 constraints on GIMPLE operands, rather than abandoning any
494 any attempt to fold if the usual folding turns out to be too
498 valid_gimple_rhs_p (tree expr
)
500 enum tree_code code
= TREE_CODE (expr
);
502 switch (TREE_CODE_CLASS (code
))
504 case tcc_declaration
:
505 if (!is_gimple_variable (expr
))
510 /* All constants are ok. */
514 /* GENERIC allows comparisons with non-boolean types, reject
515 those for GIMPLE. Let vector-typed comparisons pass - rules
516 for GENERIC and GIMPLE are the same here. */
517 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr
))
518 && (TREE_CODE (TREE_TYPE (expr
)) == BOOLEAN_TYPE
519 || TYPE_PRECISION (TREE_TYPE (expr
)) == 1))
520 && ! VECTOR_TYPE_P (TREE_TYPE (expr
)))
525 if (!is_gimple_val (TREE_OPERAND (expr
, 0))
526 || !is_gimple_val (TREE_OPERAND (expr
, 1)))
531 if (!is_gimple_val (TREE_OPERAND (expr
, 0)))
541 if (is_gimple_min_invariant (expr
))
543 t
= TREE_OPERAND (expr
, 0);
544 while (handled_component_p (t
))
546 /* ??? More checks needed, see the GIMPLE verifier. */
547 if ((TREE_CODE (t
) == ARRAY_REF
548 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
549 && !is_gimple_val (TREE_OPERAND (t
, 1)))
551 t
= TREE_OPERAND (t
, 0);
553 if (!is_gimple_id (t
))
559 if (get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
)
561 if (((code
== VEC_COND_EXPR
|| code
== COND_EXPR
)
562 ? !is_gimple_condexpr (TREE_OPERAND (expr
, 0))
563 : !is_gimple_val (TREE_OPERAND (expr
, 0)))
564 || !is_gimple_val (TREE_OPERAND (expr
, 1))
565 || !is_gimple_val (TREE_OPERAND (expr
, 2)))
576 case tcc_exceptional
:
577 if (code
== CONSTRUCTOR
)
581 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr
), i
, elt
)
582 if (!is_gimple_val (elt
))
586 if (code
!= SSA_NAME
)
591 if (code
== BIT_FIELD_REF
)
592 return is_gimple_val (TREE_OPERAND (expr
, 0));
603 /* Return true if EXPR is a CALL_EXPR suitable for representation
604 as a single GIMPLE_CALL statement. If the arguments require
605 further gimplification, return false. */
608 valid_gimple_call_p (tree expr
)
612 if (TREE_CODE (expr
) != CALL_EXPR
)
615 nargs
= call_expr_nargs (expr
);
616 for (i
= 0; i
< nargs
; i
++)
618 tree arg
= CALL_EXPR_ARG (expr
, i
);
619 if (is_gimple_reg_type (TREE_TYPE (arg
)))
621 if (!is_gimple_val (arg
))
625 if (!is_gimple_lvalue (arg
))
633 /* Make SSA names defined by OLD_STMT point to NEW_STMT
634 as their defining statement. */
637 move_ssa_defining_stmt_for_defs (gimple
*new_stmt
, gimple
*old_stmt
)
642 if (gimple_in_ssa_p (cfun
))
644 /* Make defined SSA_NAMEs point to the new
645 statement as their definition. */
646 FOR_EACH_SSA_TREE_OPERAND (var
, old_stmt
, iter
, SSA_OP_ALL_DEFS
)
648 if (TREE_CODE (var
) == SSA_NAME
)
649 SSA_NAME_DEF_STMT (var
) = new_stmt
;
654 /* Helper function for update_gimple_call and update_call_from_tree.
655 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
658 finish_update_gimple_call (gimple_stmt_iterator
*si_p
, gimple
*new_stmt
,
661 gimple_call_set_lhs (new_stmt
, gimple_call_lhs (stmt
));
662 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
663 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
664 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
665 gimple_set_location (new_stmt
, gimple_location (stmt
));
666 if (gimple_block (new_stmt
) == NULL_TREE
)
667 gimple_set_block (new_stmt
, gimple_block (stmt
));
668 gsi_replace (si_p
, new_stmt
, false);
671 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
672 with number of arguments NARGS, where the arguments in GIMPLE form
673 follow NARGS argument. */
676 update_gimple_call (gimple_stmt_iterator
*si_p
, tree fn
, int nargs
, ...)
679 gcall
*new_stmt
, *stmt
= as_a
<gcall
*> (gsi_stmt (*si_p
));
681 gcc_assert (is_gimple_call (stmt
));
682 va_start (ap
, nargs
);
683 new_stmt
= gimple_build_call_valist (fn
, nargs
, ap
);
684 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
689 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
690 value of EXPR, which is expected to be the result of folding the
691 call. This can only be done if EXPR is a CALL_EXPR with valid
692 GIMPLE operands as arguments, or if it is a suitable RHS expression
693 for a GIMPLE_ASSIGN. More complex expressions will require
694 gimplification, which will introduce additional statements. In this
695 event, no update is performed, and the function returns false.
696 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
697 replace the statement at *SI_P with an entirely new statement.
698 The new statement need not be a call, e.g., if the original call
699 folded to a constant. */
702 update_call_from_tree (gimple_stmt_iterator
*si_p
, tree expr
)
704 gimple
*stmt
= gsi_stmt (*si_p
);
706 if (valid_gimple_call_p (expr
))
708 /* The call has simplified to another call. */
709 tree fn
= CALL_EXPR_FN (expr
);
711 unsigned nargs
= call_expr_nargs (expr
);
712 vec
<tree
> args
= vNULL
;
718 args
.safe_grow_cleared (nargs
);
720 for (i
= 0; i
< nargs
; i
++)
721 args
[i
] = CALL_EXPR_ARG (expr
, i
);
724 new_stmt
= gimple_build_call_vec (fn
, args
);
725 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
730 else if (valid_gimple_rhs_p (expr
))
732 tree lhs
= gimple_call_lhs (stmt
);
735 /* The call has simplified to an expression
736 that cannot be represented as a GIMPLE_CALL. */
739 /* A value is expected.
740 Introduce a new GIMPLE_ASSIGN statement. */
741 STRIP_USELESS_TYPE_CONVERSION (expr
);
742 new_stmt
= gimple_build_assign (lhs
, expr
);
743 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
744 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
745 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
747 else if (!TREE_SIDE_EFFECTS (expr
))
749 /* No value is expected, and EXPR has no effect.
750 Replace it with an empty statement. */
751 new_stmt
= gimple_build_nop ();
752 if (gimple_in_ssa_p (cfun
))
754 unlink_stmt_vdef (stmt
);
760 /* No value is expected, but EXPR has an effect,
761 e.g., it could be a reference to a volatile
762 variable. Create an assignment statement
763 with a dummy (unused) lhs variable. */
764 STRIP_USELESS_TYPE_CONVERSION (expr
);
765 if (gimple_in_ssa_p (cfun
))
766 lhs
= make_ssa_name (TREE_TYPE (expr
));
768 lhs
= create_tmp_var (TREE_TYPE (expr
));
769 new_stmt
= gimple_build_assign (lhs
, expr
);
770 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
771 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
772 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
774 gimple_set_location (new_stmt
, gimple_location (stmt
));
775 gsi_replace (si_p
, new_stmt
, false);
779 /* The call simplified to an expression that is
780 not a valid GIMPLE RHS. */
785 /* Entry point to the propagation engine.
787 VISIT_STMT is called for every statement visited.
788 VISIT_PHI is called for every PHI node visited. */
791 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt
,
792 ssa_prop_visit_phi_fn visit_phi
)
794 ssa_prop_visit_stmt
= visit_stmt
;
795 ssa_prop_visit_phi
= visit_phi
;
799 /* Iterate until the worklists are empty. */
800 while (! cfg_blocks_empty_p ()
801 || ! bitmap_empty_p (ssa_edge_worklist
))
803 /* First simulate whole blocks. */
804 if (! cfg_blocks_empty_p ())
806 /* Pull the next block to simulate off the worklist. */
807 basic_block dest_block
= cfg_blocks_get ();
808 simulate_block (dest_block
);
812 /* Then simulate from the SSA edge worklist. */
813 process_ssa_edge_worklist ();
820 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
821 is a non-volatile pointer dereference, a structure reference or a
822 reference to a single _DECL. Ignore volatile memory references
823 because they are not interesting for the optimizers. */
826 stmt_makes_single_store (gimple
*stmt
)
830 if (gimple_code (stmt
) != GIMPLE_ASSIGN
831 && gimple_code (stmt
) != GIMPLE_CALL
)
834 if (!gimple_vdef (stmt
))
837 lhs
= gimple_get_lhs (stmt
);
839 /* A call statement may have a null LHS. */
843 return (!TREE_THIS_VOLATILE (lhs
)
845 || REFERENCE_CLASS_P (lhs
)));
849 /* Propagation statistics. */
854 long num_stmts_folded
;
858 static struct prop_stats_d prop_stats
;
860 /* Replace USE references in statement STMT with the values stored in
861 PROP_VALUE. Return true if at least one reference was replaced. */
864 replace_uses_in (gimple
*stmt
, ssa_prop_get_value_fn get_value
)
866 bool replaced
= false;
870 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
872 tree tuse
= USE_FROM_PTR (use
);
873 tree val
= (*get_value
) (tuse
);
875 if (val
== tuse
|| val
== NULL_TREE
)
878 if (gimple_code (stmt
) == GIMPLE_ASM
879 && !may_propagate_copy_into_asm (tuse
))
882 if (!may_propagate_copy (tuse
, val
))
885 if (TREE_CODE (val
) != SSA_NAME
)
886 prop_stats
.num_const_prop
++;
888 prop_stats
.num_copy_prop
++;
890 propagate_value (use
, val
);
899 /* Replace propagated values into all the arguments for PHI using the
900 values from PROP_VALUE. */
903 replace_phi_args_in (gphi
*phi
, ssa_prop_get_value_fn get_value
)
906 bool replaced
= false;
908 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
910 fprintf (dump_file
, "Folding PHI node: ");
911 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
914 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
916 tree arg
= gimple_phi_arg_def (phi
, i
);
918 if (TREE_CODE (arg
) == SSA_NAME
)
920 tree val
= (*get_value
) (arg
);
922 if (val
&& val
!= arg
&& may_propagate_copy (arg
, val
))
924 edge e
= gimple_phi_arg_edge (phi
, i
);
926 if (TREE_CODE (val
) != SSA_NAME
)
927 prop_stats
.num_const_prop
++;
929 prop_stats
.num_copy_prop
++;
931 propagate_value (PHI_ARG_DEF_PTR (phi
, i
), val
);
934 /* If we propagated a copy and this argument flows
935 through an abnormal edge, update the replacement
937 if (TREE_CODE (val
) == SSA_NAME
938 && e
->flags
& EDGE_ABNORMAL
939 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
941 /* This can only occur for virtual operands, since
942 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
943 would prevent replacement. */
944 gcc_checking_assert (virtual_operand_p (val
));
945 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
951 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
954 fprintf (dump_file
, "No folding possible\n");
957 fprintf (dump_file
, "Folded into: ");
958 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
959 fprintf (dump_file
, "\n");
967 class substitute_and_fold_dom_walker
: public dom_walker
970 substitute_and_fold_dom_walker (cdi_direction direction
,
971 ssa_prop_get_value_fn get_value_fn_
,
972 ssa_prop_fold_stmt_fn fold_fn_
)
973 : dom_walker (direction
), get_value_fn (get_value_fn_
),
974 fold_fn (fold_fn_
), something_changed (false)
976 stmts_to_remove
.create (0);
977 stmts_to_fixup
.create (0);
978 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
980 ~substitute_and_fold_dom_walker ()
982 stmts_to_remove
.release ();
983 stmts_to_fixup
.release ();
984 BITMAP_FREE (need_eh_cleanup
);
987 virtual edge
before_dom_children (basic_block
);
988 virtual void after_dom_children (basic_block
) {}
990 ssa_prop_get_value_fn get_value_fn
;
991 ssa_prop_fold_stmt_fn fold_fn
;
992 bool something_changed
;
993 vec
<gimple
*> stmts_to_remove
;
994 vec
<gimple
*> stmts_to_fixup
;
995 bitmap need_eh_cleanup
;
999 substitute_and_fold_dom_walker::before_dom_children (basic_block bb
)
1001 /* Propagate known values into PHI nodes. */
1002 for (gphi_iterator i
= gsi_start_phis (bb
);
1006 gphi
*phi
= i
.phi ();
1007 tree res
= gimple_phi_result (phi
);
1008 if (virtual_operand_p (res
))
1010 if (res
&& TREE_CODE (res
) == SSA_NAME
)
1012 tree sprime
= get_value_fn (res
);
1015 && may_propagate_copy (res
, sprime
))
1017 stmts_to_remove
.safe_push (phi
);
1021 something_changed
|= replace_phi_args_in (phi
, get_value_fn
);
1024 /* Propagate known values into stmts. In some case it exposes
1025 more trivially deletable stmts to walk backward. */
1026 for (gimple_stmt_iterator i
= gsi_start_bb (bb
);
1031 gimple
*stmt
= gsi_stmt (i
);
1033 /* No point propagating into a stmt we have a value for we
1034 can propagate into all uses. Mark it for removal instead. */
1035 tree lhs
= gimple_get_lhs (stmt
);
1036 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1038 tree sprime
= get_value_fn (lhs
);
1041 && may_propagate_copy (lhs
, sprime
)
1042 && !stmt_could_throw_p (stmt
)
1043 && !gimple_has_side_effects (stmt
)
1044 /* We have to leave ASSERT_EXPRs around for jump-threading. */
1045 && (!is_gimple_assign (stmt
)
1046 || gimple_assign_rhs_code (stmt
) != ASSERT_EXPR
))
1048 stmts_to_remove
.safe_push (stmt
);
1053 /* Replace the statement with its folded version and mark it
1055 did_replace
= false;
1056 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1058 fprintf (dump_file
, "Folding statement: ");
1059 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1062 gimple
*old_stmt
= stmt
;
1063 bool was_noreturn
= (is_gimple_call (stmt
)
1064 && gimple_call_noreturn_p (stmt
));
1066 /* Replace real uses in the statement. */
1067 did_replace
|= replace_uses_in (stmt
, get_value_fn
);
1069 /* If we made a replacement, fold the statement. */
1072 fold_stmt (&i
, follow_single_use_edges
);
1073 stmt
= gsi_stmt (i
);
1074 gimple_set_modified (stmt
, true);
1077 /* Some statements may be simplified using propagator
1078 specific information. Do this before propagating
1079 into the stmt to not disturb pass specific information. */
1082 update_stmt_if_modified (stmt
);
1086 prop_stats
.num_stmts_folded
++;
1087 stmt
= gsi_stmt (i
);
1088 gimple_set_modified (stmt
, true);
1092 /* If this is a control statement the propagator left edges
1093 unexecuted on force the condition in a way consistent with
1094 that. See PR66945 for cases where the propagator can end
1095 up with a different idea of a taken edge than folding
1096 (once undefined behavior is involved). */
1097 if (gimple_code (stmt
) == GIMPLE_COND
)
1099 if ((EDGE_SUCC (bb
, 0)->flags
& EDGE_EXECUTABLE
)
1100 ^ (EDGE_SUCC (bb
, 1)->flags
& EDGE_EXECUTABLE
))
1102 if (((EDGE_SUCC (bb
, 0)->flags
& EDGE_TRUE_VALUE
) != 0)
1103 == ((EDGE_SUCC (bb
, 0)->flags
& EDGE_EXECUTABLE
) != 0))
1104 gimple_cond_make_true (as_a
<gcond
*> (stmt
));
1106 gimple_cond_make_false (as_a
<gcond
*> (stmt
));
1107 gimple_set_modified (stmt
, true);
1115 /* If we cleaned up EH information from the statement,
1117 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1118 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
1120 /* If we turned a not noreturn call into a noreturn one
1121 schedule it for fixup. */
1123 && is_gimple_call (stmt
)
1124 && gimple_call_noreturn_p (stmt
))
1125 stmts_to_fixup
.safe_push (stmt
);
1127 if (gimple_assign_single_p (stmt
))
1129 tree rhs
= gimple_assign_rhs1 (stmt
);
1131 if (TREE_CODE (rhs
) == ADDR_EXPR
)
1132 recompute_tree_invariant_for_addr_expr (rhs
);
1135 /* Determine what needs to be done to update the SSA form. */
1136 update_stmt_if_modified (stmt
);
1137 if (!is_gimple_debug (stmt
))
1138 something_changed
= true;
1141 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1145 fprintf (dump_file
, "Folded into: ");
1146 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1147 fprintf (dump_file
, "\n");
1150 fprintf (dump_file
, "Not folded\n");
1158 /* Perform final substitution and folding of propagated values.
1160 PROP_VALUE[I] contains the single value that should be substituted
1161 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1164 If FOLD_FN is non-NULL the function will be invoked on all statements
1165 before propagating values for pass specific simplification.
1167 DO_DCE is true if trivially dead stmts can be removed.
1169 If DO_DCE is true, the statements within a BB are walked from
1170 last to first element. Otherwise we scan from first to last element.
1172 Return TRUE when something changed. */
1175 substitute_and_fold (ssa_prop_get_value_fn get_value_fn
,
1176 ssa_prop_fold_stmt_fn fold_fn
)
1178 gcc_assert (get_value_fn
);
1180 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1181 fprintf (dump_file
, "\nSubstituting values and folding statements\n\n");
1183 memset (&prop_stats
, 0, sizeof (prop_stats
));
1185 calculate_dominance_info (CDI_DOMINATORS
);
1186 substitute_and_fold_dom_walker
walker(CDI_DOMINATORS
,
1187 get_value_fn
, fold_fn
);
1188 walker
.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
1190 /* We cannot remove stmts during the BB walk, especially not release
1191 SSA names there as that destroys the lattice of our callers.
1192 Remove stmts in reverse order to make debug stmt creation possible. */
1193 while (!walker
.stmts_to_remove
.is_empty ())
1195 gimple
*stmt
= walker
.stmts_to_remove
.pop ();
1196 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1198 fprintf (dump_file
, "Removing dead stmt ");
1199 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1200 fprintf (dump_file
, "\n");
1202 prop_stats
.num_dce
++;
1203 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1204 if (gimple_code (stmt
) == GIMPLE_PHI
)
1205 remove_phi_node (&gsi
, true);
1208 unlink_stmt_vdef (stmt
);
1209 gsi_remove (&gsi
, true);
1210 release_defs (stmt
);
1214 if (!bitmap_empty_p (walker
.need_eh_cleanup
))
1215 gimple_purge_all_dead_eh_edges (walker
.need_eh_cleanup
);
1217 /* Fixup stmts that became noreturn calls. This may require splitting
1218 blocks and thus isn't possible during the dominator walk. Do this
1219 in reverse order so we don't inadvertedly remove a stmt we want to
1220 fixup by visiting a dominating now noreturn call first. */
1221 while (!walker
.stmts_to_fixup
.is_empty ())
1223 gimple
*stmt
= walker
.stmts_to_fixup
.pop ();
1224 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1226 fprintf (dump_file
, "Fixing up noreturn call ");
1227 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1228 fprintf (dump_file
, "\n");
1230 fixup_noreturn_call (stmt
);
1233 statistics_counter_event (cfun
, "Constants propagated",
1234 prop_stats
.num_const_prop
);
1235 statistics_counter_event (cfun
, "Copies propagated",
1236 prop_stats
.num_copy_prop
);
1237 statistics_counter_event (cfun
, "Statements folded",
1238 prop_stats
.num_stmts_folded
);
1239 statistics_counter_event (cfun
, "Statements deleted",
1240 prop_stats
.num_dce
);
1242 return walker
.something_changed
;
1246 /* Return true if we may propagate ORIG into DEST, false otherwise. */
1249 may_propagate_copy (tree dest
, tree orig
)
1251 tree type_d
= TREE_TYPE (dest
);
1252 tree type_o
= TREE_TYPE (orig
);
1254 /* If ORIG is a default definition which flows in from an abnormal edge
1255 then the copy can be propagated. It is important that we do so to avoid
1256 uninitialized copies. */
1257 if (TREE_CODE (orig
) == SSA_NAME
1258 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig
)
1259 && SSA_NAME_IS_DEFAULT_DEF (orig
)
1260 && (SSA_NAME_VAR (orig
) == NULL_TREE
1261 || TREE_CODE (SSA_NAME_VAR (orig
)) == VAR_DECL
))
1263 /* Otherwise if ORIG just flows in from an abnormal edge then the copy cannot
1265 else if (TREE_CODE (orig
) == SSA_NAME
1266 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig
))
1268 /* Similarly if DEST flows in from an abnormal edge then the copy cannot be
1270 else if (TREE_CODE (dest
) == SSA_NAME
1271 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest
))
1274 /* Do not copy between types for which we *do* need a conversion. */
1275 if (!useless_type_conversion_p (type_d
, type_o
))
1278 /* Generally propagating virtual operands is not ok as that may
1279 create overlapping life-ranges. */
1280 if (TREE_CODE (dest
) == SSA_NAME
&& virtual_operand_p (dest
))
1283 /* Anything else is OK. */
1287 /* Like may_propagate_copy, but use as the destination expression
1288 the principal expression (typically, the RHS) contained in
1289 statement DEST. This is more efficient when working with the
1290 gimple tuples representation. */
1293 may_propagate_copy_into_stmt (gimple
*dest
, tree orig
)
1298 /* If the statement is a switch or a single-rhs assignment,
1299 then the expression to be replaced by the propagation may
1300 be an SSA_NAME. Fortunately, there is an explicit tree
1301 for the expression, so we delegate to may_propagate_copy. */
1303 if (gimple_assign_single_p (dest
))
1304 return may_propagate_copy (gimple_assign_rhs1 (dest
), orig
);
1305 else if (gswitch
*dest_swtch
= dyn_cast
<gswitch
*> (dest
))
1306 return may_propagate_copy (gimple_switch_index (dest_swtch
), orig
);
1308 /* In other cases, the expression is not materialized, so there
1309 is no destination to pass to may_propagate_copy. On the other
1310 hand, the expression cannot be an SSA_NAME, so the analysis
1313 if (TREE_CODE (orig
) == SSA_NAME
1314 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig
))
1317 if (is_gimple_assign (dest
))
1318 type_d
= TREE_TYPE (gimple_assign_lhs (dest
));
1319 else if (gimple_code (dest
) == GIMPLE_COND
)
1320 type_d
= boolean_type_node
;
1321 else if (is_gimple_call (dest
)
1322 && gimple_call_lhs (dest
) != NULL_TREE
)
1323 type_d
= TREE_TYPE (gimple_call_lhs (dest
));
1327 type_o
= TREE_TYPE (orig
);
1329 if (!useless_type_conversion_p (type_d
, type_o
))
1335 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
1338 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED
)
1344 /* Common code for propagate_value and replace_exp.
1346 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
1347 replacement is done to propagate a value or not. */
1350 replace_exp_1 (use_operand_p op_p
, tree val
,
1351 bool for_propagation ATTRIBUTE_UNUSED
)
1355 tree op
= USE_FROM_PTR (op_p
);
1356 gcc_assert (!(for_propagation
1357 && TREE_CODE (op
) == SSA_NAME
1358 && TREE_CODE (val
) == SSA_NAME
1359 && !may_propagate_copy (op
, val
)));
1362 if (TREE_CODE (val
) == SSA_NAME
)
1363 SET_USE (op_p
, val
);
1365 SET_USE (op_p
, unshare_expr (val
));
1369 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1370 into the operand pointed to by OP_P.
1372 Use this version for const/copy propagation as it will perform additional
1373 checks to ensure validity of the const/copy propagation. */
1376 propagate_value (use_operand_p op_p
, tree val
)
1378 replace_exp_1 (op_p
, val
, true);
1381 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
1383 Use this version when not const/copy propagating values. For example,
1384 PRE uses this version when building expressions as they would appear
1385 in specific blocks taking into account actions of PHI nodes.
1387 The statement in which an expression has been replaced should be
1388 folded using fold_stmt_inplace. */
1391 replace_exp (use_operand_p op_p
, tree val
)
1393 replace_exp_1 (op_p
, val
, false);
1397 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1398 into the tree pointed to by OP_P.
1400 Use this version for const/copy propagation when SSA operands are not
1401 available. It will perform the additional checks to ensure validity of
1402 the const/copy propagation, but will not update any operand information.
1403 Be sure to mark the stmt as modified. */
1406 propagate_tree_value (tree
*op_p
, tree val
)
1408 if (TREE_CODE (val
) == SSA_NAME
)
1411 *op_p
= unshare_expr (val
);
1415 /* Like propagate_tree_value, but use as the operand to replace
1416 the principal expression (typically, the RHS) contained in the
1417 statement referenced by iterator GSI. Note that it is not
1418 always possible to update the statement in-place, so a new
1419 statement may be created to replace the original. */
1422 propagate_tree_value_into_stmt (gimple_stmt_iterator
*gsi
, tree val
)
1424 gimple
*stmt
= gsi_stmt (*gsi
);
1426 if (is_gimple_assign (stmt
))
1428 tree expr
= NULL_TREE
;
1429 if (gimple_assign_single_p (stmt
))
1430 expr
= gimple_assign_rhs1 (stmt
);
1431 propagate_tree_value (&expr
, val
);
1432 gimple_assign_set_rhs_from_tree (gsi
, expr
);
1434 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
1436 tree lhs
= NULL_TREE
;
1437 tree rhs
= build_zero_cst (TREE_TYPE (val
));
1438 propagate_tree_value (&lhs
, val
);
1439 gimple_cond_set_code (cond_stmt
, NE_EXPR
);
1440 gimple_cond_set_lhs (cond_stmt
, lhs
);
1441 gimple_cond_set_rhs (cond_stmt
, rhs
);
1443 else if (is_gimple_call (stmt
)
1444 && gimple_call_lhs (stmt
) != NULL_TREE
)
1446 tree expr
= NULL_TREE
;
1448 propagate_tree_value (&expr
, val
);
1449 res
= update_call_from_tree (gsi
, expr
);
1452 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
1453 propagate_tree_value (gimple_switch_index_ptr (swtch_stmt
), val
);