PR tree-optimization/67955
[official-gcc.git] / gcc / alias.c
blob546ae7ff891af0cd51c99da29179201f32698d43
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
43 /* The aliasing API provided here solves related but different problems:
45 Say there exists (in c)
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
52 struct Y y2, *py;
53 struct Z z2, *pz;
56 py = &x1.y1;
57 px2 = &x1;
59 Consider the four questions:
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
66 The answer to these questions can be yes, yes, yes, and maybe.
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
98 struct S { int i; double d; };
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
107 |/_ _\|
108 int double
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
129 /* The children of the alias set. These are not just the immediate
130 children, but, in fact, all descendants. So, if we have:
132 struct T { struct S s; float f; }
134 continuing our example above, the children here will be all of
135 `int', `double', `float', and `struct S'. */
136 hash_map<alias_set_hash, int> *children;
138 /* Nonzero if would have a child of zero: this effectively makes this
139 alias set the same as alias set zero. */
140 bool has_zero_child;
141 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
142 aggregate contaiing pointer.
143 This is used for a special case where we need an universal pointer type
144 compatible with all other pointer types. */
145 bool is_pointer;
146 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
147 bool has_pointer;
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
164 static void memory_modified_1 (rtx, const_rtx, void *);
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
180 /* Set up all info needed to perform alias analysis on memory references. */
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 tree expr = MEM_EXPR (mem);
289 tree base;
291 if (!expr)
292 return false;
294 ao_ref_init (ref, expr);
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
311 /* If this is a reference based on a partitioned decl replace the
312 base with a MEM_REF of the pointer representative we
313 created during stack slot partitioning. */
314 if (VAR_P (base)
315 && ! is_global_var (base)
316 && cfun->gimple_df->decls_to_pointers != NULL)
318 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
319 if (namep)
320 ref->base = build_simple_mem_ref (*namep);
323 ref->ref_alias_set = MEM_ALIAS_SET (mem);
325 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
326 is conservative, so trust it. */
327 if (!MEM_OFFSET_KNOWN_P (mem)
328 || !MEM_SIZE_KNOWN_P (mem))
329 return true;
331 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
332 drop ref->ref. */
333 if (MEM_OFFSET (mem) < 0
334 || (ref->max_size != -1
335 && ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT
336 > ref->max_size)))
337 ref->ref = NULL_TREE;
339 /* Refine size and offset we got from analyzing MEM_EXPR by using
340 MEM_SIZE and MEM_OFFSET. */
342 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
343 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
345 /* The MEM may extend into adjacent fields, so adjust max_size if
346 necessary. */
347 if (ref->max_size != -1
348 && ref->size > ref->max_size)
349 ref->max_size = ref->size;
351 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
352 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
353 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
354 && (ref->offset < 0
355 || (DECL_P (ref->base)
356 && (DECL_SIZE (ref->base) == NULL_TREE
357 || TREE_CODE (DECL_SIZE (ref->base)) != INTEGER_CST
358 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref->base)),
359 ref->offset + ref->size)))))
360 return false;
362 return true;
365 /* Query the alias-oracle on whether the two memory rtx X and MEM may
366 alias. If TBAA_P is set also apply TBAA. Returns true if the
367 two rtxen may alias, false otherwise. */
369 static bool
370 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
372 ao_ref ref1, ref2;
374 if (!ao_ref_from_mem (&ref1, x)
375 || !ao_ref_from_mem (&ref2, mem))
376 return true;
378 return refs_may_alias_p_1 (&ref1, &ref2,
379 tbaa_p
380 && MEM_ALIAS_SET (x) != 0
381 && MEM_ALIAS_SET (mem) != 0);
384 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
385 such an entry, or NULL otherwise. */
387 static inline alias_set_entry *
388 get_alias_set_entry (alias_set_type alias_set)
390 return (*alias_sets)[alias_set];
393 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
394 the two MEMs cannot alias each other. */
396 static inline int
397 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
399 return (flag_strict_aliasing
400 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
401 MEM_ALIAS_SET (mem2)));
404 /* Return true if the first alias set is a subset of the second. */
406 bool
407 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
409 alias_set_entry *ase2;
411 /* Disable TBAA oracle with !flag_strict_aliasing. */
412 if (!flag_strict_aliasing)
413 return true;
415 /* Everything is a subset of the "aliases everything" set. */
416 if (set2 == 0)
417 return true;
419 /* Check if set1 is a subset of set2. */
420 ase2 = get_alias_set_entry (set2);
421 if (ase2 != 0
422 && (ase2->has_zero_child
423 || (ase2->children && ase2->children->get (set1))))
424 return true;
426 /* As a special case we consider alias set of "void *" to be both subset
427 and superset of every alias set of a pointer. This extra symmetry does
428 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
429 to return true on the following testcase:
431 void *ptr;
432 char **ptr2=(char **)&ptr;
433 *ptr2 = ...
435 Additionally if a set contains universal pointer, we consider every pointer
436 to be a subset of it, but we do not represent this explicitely - doing so
437 would require us to update transitive closure each time we introduce new
438 pointer type. This makes aliasing_component_refs_p to return true
439 on the following testcase:
441 struct a {void *ptr;}
442 char **ptr = (char **)&a.ptr;
443 ptr = ...
445 This makes void * truly universal pointer type. See pointer handling in
446 get_alias_set for more details. */
447 if (ase2 && ase2->has_pointer)
449 alias_set_entry *ase1 = get_alias_set_entry (set1);
451 if (ase1 && ase1->is_pointer)
453 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
454 /* If one is ptr_type_node and other is pointer, then we consider
455 them subset of each other. */
456 if (set1 == voidptr_set || set2 == voidptr_set)
457 return true;
458 /* If SET2 contains universal pointer's alias set, then we consdier
459 every (non-universal) pointer. */
460 if (ase2->children && set1 != voidptr_set
461 && ase2->children->get (voidptr_set))
462 return true;
465 return false;
468 /* Return 1 if the two specified alias sets may conflict. */
471 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
473 alias_set_entry *ase1;
474 alias_set_entry *ase2;
476 /* The easy case. */
477 if (alias_sets_must_conflict_p (set1, set2))
478 return 1;
480 /* See if the first alias set is a subset of the second. */
481 ase1 = get_alias_set_entry (set1);
482 if (ase1 != 0
483 && ase1->children && ase1->children->get (set2))
485 ++alias_stats.num_dag;
486 return 1;
489 /* Now do the same, but with the alias sets reversed. */
490 ase2 = get_alias_set_entry (set2);
491 if (ase2 != 0
492 && ase2->children && ase2->children->get (set1))
494 ++alias_stats.num_dag;
495 return 1;
498 /* We want void * to be compatible with any other pointer without
499 really dropping it to alias set 0. Doing so would make it
500 compatible with all non-pointer types too.
502 This is not strictly necessary by the C/C++ language
503 standards, but avoids common type punning mistakes. In
504 addition to that, we need the existence of such universal
505 pointer to implement Fortran's C_PTR type (which is defined as
506 type compatible with all C pointers). */
507 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
509 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
511 /* If one of the sets corresponds to universal pointer,
512 we consider it to conflict with anything that is
513 or contains pointer. */
514 if (set1 == voidptr_set || set2 == voidptr_set)
516 ++alias_stats.num_universal;
517 return true;
519 /* If one of sets is (non-universal) pointer and the other
520 contains universal pointer, we also get conflict. */
521 if (ase1->is_pointer && set2 != voidptr_set
522 && ase2->children && ase2->children->get (voidptr_set))
524 ++alias_stats.num_universal;
525 return true;
527 if (ase2->is_pointer && set1 != voidptr_set
528 && ase1->children && ase1->children->get (voidptr_set))
530 ++alias_stats.num_universal;
531 return true;
535 ++alias_stats.num_disambiguated;
537 /* The two alias sets are distinct and neither one is the
538 child of the other. Therefore, they cannot conflict. */
539 return 0;
542 /* Return 1 if the two specified alias sets will always conflict. */
545 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
547 /* Disable TBAA oracle with !flag_strict_aliasing. */
548 if (!flag_strict_aliasing)
549 return 1;
550 if (set1 == 0 || set2 == 0)
552 ++alias_stats.num_alias_zero;
553 return 1;
555 if (set1 == set2)
557 ++alias_stats.num_same_alias_set;
558 return 1;
561 return 0;
564 /* Return 1 if any MEM object of type T1 will always conflict (using the
565 dependency routines in this file) with any MEM object of type T2.
566 This is used when allocating temporary storage. If T1 and/or T2 are
567 NULL_TREE, it means we know nothing about the storage. */
570 objects_must_conflict_p (tree t1, tree t2)
572 alias_set_type set1, set2;
574 /* If neither has a type specified, we don't know if they'll conflict
575 because we may be using them to store objects of various types, for
576 example the argument and local variables areas of inlined functions. */
577 if (t1 == 0 && t2 == 0)
578 return 0;
580 /* If they are the same type, they must conflict. */
581 if (t1 == t2)
583 ++alias_stats.num_same_objects;
584 return 1;
586 /* Likewise if both are volatile. */
587 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
589 ++alias_stats.num_volatile;
590 return 1;
593 set1 = t1 ? get_alias_set (t1) : 0;
594 set2 = t2 ? get_alias_set (t2) : 0;
596 /* We can't use alias_sets_conflict_p because we must make sure
597 that every subtype of t1 will conflict with every subtype of
598 t2 for which a pair of subobjects of these respective subtypes
599 overlaps on the stack. */
600 return alias_sets_must_conflict_p (set1, set2);
603 /* Return the outermost parent of component present in the chain of
604 component references handled by get_inner_reference in T with the
605 following property:
606 - the component is non-addressable, or
607 - the parent has alias set zero,
608 or NULL_TREE if no such parent exists. In the former cases, the alias
609 set of this parent is the alias set that must be used for T itself. */
611 tree
612 component_uses_parent_alias_set_from (const_tree t)
614 const_tree found = NULL_TREE;
616 while (handled_component_p (t))
618 switch (TREE_CODE (t))
620 case COMPONENT_REF:
621 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
622 found = t;
623 /* Permit type-punning when accessing a union, provided the access
624 is directly through the union. For example, this code does not
625 permit taking the address of a union member and then storing
626 through it. Even the type-punning allowed here is a GCC
627 extension, albeit a common and useful one; the C standard says
628 that such accesses have implementation-defined behavior. */
629 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
630 found = t;
631 break;
633 case ARRAY_REF:
634 case ARRAY_RANGE_REF:
635 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
636 found = t;
637 break;
639 case REALPART_EXPR:
640 case IMAGPART_EXPR:
641 break;
643 case BIT_FIELD_REF:
644 case VIEW_CONVERT_EXPR:
645 /* Bitfields and casts are never addressable. */
646 found = t;
647 break;
649 default:
650 gcc_unreachable ();
653 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
654 found = t;
656 t = TREE_OPERAND (t, 0);
659 if (found)
660 return TREE_OPERAND (found, 0);
662 return NULL_TREE;
666 /* Return whether the pointer-type T effective for aliasing may
667 access everything and thus the reference has to be assigned
668 alias-set zero. */
670 static bool
671 ref_all_alias_ptr_type_p (const_tree t)
673 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
674 || TYPE_REF_CAN_ALIAS_ALL (t));
677 /* Return the alias set for the memory pointed to by T, which may be
678 either a type or an expression. Return -1 if there is nothing
679 special about dereferencing T. */
681 static alias_set_type
682 get_deref_alias_set_1 (tree t)
684 /* All we care about is the type. */
685 if (! TYPE_P (t))
686 t = TREE_TYPE (t);
688 /* If we have an INDIRECT_REF via a void pointer, we don't
689 know anything about what that might alias. Likewise if the
690 pointer is marked that way. */
691 if (ref_all_alias_ptr_type_p (t))
692 return 0;
694 return -1;
697 /* Return the alias set for the memory pointed to by T, which may be
698 either a type or an expression. */
700 alias_set_type
701 get_deref_alias_set (tree t)
703 /* If we're not doing any alias analysis, just assume everything
704 aliases everything else. */
705 if (!flag_strict_aliasing)
706 return 0;
708 alias_set_type set = get_deref_alias_set_1 (t);
710 /* Fall back to the alias-set of the pointed-to type. */
711 if (set == -1)
713 if (! TYPE_P (t))
714 t = TREE_TYPE (t);
715 set = get_alias_set (TREE_TYPE (t));
718 return set;
721 /* Return the pointer-type relevant for TBAA purposes from the
722 memory reference tree *T or NULL_TREE in which case *T is
723 adjusted to point to the outermost component reference that
724 can be used for assigning an alias set. */
726 static tree
727 reference_alias_ptr_type_1 (tree *t)
729 tree inner;
731 /* Get the base object of the reference. */
732 inner = *t;
733 while (handled_component_p (inner))
735 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
736 the type of any component references that wrap it to
737 determine the alias-set. */
738 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
739 *t = TREE_OPERAND (inner, 0);
740 inner = TREE_OPERAND (inner, 0);
743 /* Handle pointer dereferences here, they can override the
744 alias-set. */
745 if (INDIRECT_REF_P (inner)
746 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
747 return TREE_TYPE (TREE_OPERAND (inner, 0));
748 else if (TREE_CODE (inner) == TARGET_MEM_REF)
749 return TREE_TYPE (TMR_OFFSET (inner));
750 else if (TREE_CODE (inner) == MEM_REF
751 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
752 return TREE_TYPE (TREE_OPERAND (inner, 1));
754 /* If the innermost reference is a MEM_REF that has a
755 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
756 using the memory access type for determining the alias-set. */
757 if (TREE_CODE (inner) == MEM_REF
758 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
759 != TYPE_MAIN_VARIANT
760 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
761 return TREE_TYPE (TREE_OPERAND (inner, 1));
763 /* Otherwise, pick up the outermost object that we could have
764 a pointer to. */
765 tree tem = component_uses_parent_alias_set_from (*t);
766 if (tem)
767 *t = tem;
769 return NULL_TREE;
772 /* Return the pointer-type relevant for TBAA purposes from the
773 gimple memory reference tree T. This is the type to be used for
774 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
775 and guarantees that get_alias_set will return the same alias
776 set for T and the replacement. */
778 tree
779 reference_alias_ptr_type (tree t)
781 /* If the frontend assigns this alias-set zero, preserve that. */
782 if (lang_hooks.get_alias_set (t) == 0)
783 return ptr_type_node;
785 tree ptype = reference_alias_ptr_type_1 (&t);
786 /* If there is a given pointer type for aliasing purposes, return it. */
787 if (ptype != NULL_TREE)
788 return ptype;
790 /* Otherwise build one from the outermost component reference we
791 may use. */
792 if (TREE_CODE (t) == MEM_REF
793 || TREE_CODE (t) == TARGET_MEM_REF)
794 return TREE_TYPE (TREE_OPERAND (t, 1));
795 else
796 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
799 /* Return whether the pointer-types T1 and T2 used to determine
800 two alias sets of two references will yield the same answer
801 from get_deref_alias_set. */
803 bool
804 alias_ptr_types_compatible_p (tree t1, tree t2)
806 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
807 return true;
809 if (ref_all_alias_ptr_type_p (t1)
810 || ref_all_alias_ptr_type_p (t2))
811 return false;
813 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
814 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
817 /* Create emptry alias set entry. */
819 alias_set_entry *
820 init_alias_set_entry (alias_set_type set)
822 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
823 ase->alias_set = set;
824 ase->children = NULL;
825 ase->has_zero_child = false;
826 ase->is_pointer = false;
827 ase->has_pointer = false;
828 gcc_checking_assert (!get_alias_set_entry (set));
829 (*alias_sets)[set] = ase;
830 return ase;
833 /* Return the alias set for T, which may be either a type or an
834 expression. Call language-specific routine for help, if needed. */
836 alias_set_type
837 get_alias_set (tree t)
839 alias_set_type set;
841 /* We can not give up with -fno-strict-aliasing because we need to build
842 proper type representation for possible functions which are build with
843 -fstrict-aliasing. */
845 /* return 0 if this or its type is an error. */
846 if (t == error_mark_node
847 || (! TYPE_P (t)
848 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
849 return 0;
851 /* We can be passed either an expression or a type. This and the
852 language-specific routine may make mutually-recursive calls to each other
853 to figure out what to do. At each juncture, we see if this is a tree
854 that the language may need to handle specially. First handle things that
855 aren't types. */
856 if (! TYPE_P (t))
858 /* Give the language a chance to do something with this tree
859 before we look at it. */
860 STRIP_NOPS (t);
861 set = lang_hooks.get_alias_set (t);
862 if (set != -1)
863 return set;
865 /* Get the alias pointer-type to use or the outermost object
866 that we could have a pointer to. */
867 tree ptype = reference_alias_ptr_type_1 (&t);
868 if (ptype != NULL)
869 return get_deref_alias_set (ptype);
871 /* If we've already determined the alias set for a decl, just return
872 it. This is necessary for C++ anonymous unions, whose component
873 variables don't look like union members (boo!). */
874 if (VAR_P (t)
875 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
876 return MEM_ALIAS_SET (DECL_RTL (t));
878 /* Now all we care about is the type. */
879 t = TREE_TYPE (t);
882 /* Variant qualifiers don't affect the alias set, so get the main
883 variant. */
884 t = TYPE_MAIN_VARIANT (t);
886 /* Always use the canonical type as well. If this is a type that
887 requires structural comparisons to identify compatible types
888 use alias set zero. */
889 if (TYPE_STRUCTURAL_EQUALITY_P (t))
891 /* Allow the language to specify another alias set for this
892 type. */
893 set = lang_hooks.get_alias_set (t);
894 if (set != -1)
895 return set;
896 /* Handle structure type equality for pointer types, arrays and vectors.
897 This is easy to do, because the code bellow ignore canonical types on
898 these anyway. This is important for LTO, where TYPE_CANONICAL for
899 pointers can not be meaningfuly computed by the frotnend. */
900 if (canonical_type_used_p (t))
902 /* In LTO we set canonical types for all types where it makes
903 sense to do so. Double check we did not miss some type. */
904 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
905 return 0;
908 else
910 t = TYPE_CANONICAL (t);
911 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
914 /* If this is a type with a known alias set, return it. */
915 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
916 if (TYPE_ALIAS_SET_KNOWN_P (t))
917 return TYPE_ALIAS_SET (t);
919 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
920 if (!COMPLETE_TYPE_P (t))
922 /* For arrays with unknown size the conservative answer is the
923 alias set of the element type. */
924 if (TREE_CODE (t) == ARRAY_TYPE)
925 return get_alias_set (TREE_TYPE (t));
927 /* But return zero as a conservative answer for incomplete types. */
928 return 0;
931 /* See if the language has special handling for this type. */
932 set = lang_hooks.get_alias_set (t);
933 if (set != -1)
934 return set;
936 /* There are no objects of FUNCTION_TYPE, so there's no point in
937 using up an alias set for them. (There are, of course, pointers
938 and references to functions, but that's different.) */
939 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
940 set = 0;
942 /* Unless the language specifies otherwise, let vector types alias
943 their components. This avoids some nasty type punning issues in
944 normal usage. And indeed lets vectors be treated more like an
945 array slice. */
946 else if (TREE_CODE (t) == VECTOR_TYPE)
947 set = get_alias_set (TREE_TYPE (t));
949 /* Unless the language specifies otherwise, treat array types the
950 same as their components. This avoids the asymmetry we get
951 through recording the components. Consider accessing a
952 character(kind=1) through a reference to a character(kind=1)[1:1].
953 Or consider if we want to assign integer(kind=4)[0:D.1387] and
954 integer(kind=4)[4] the same alias set or not.
955 Just be pragmatic here and make sure the array and its element
956 type get the same alias set assigned. */
957 else if (TREE_CODE (t) == ARRAY_TYPE
958 && (!TYPE_NONALIASED_COMPONENT (t)
959 || TYPE_STRUCTURAL_EQUALITY_P (t)))
960 set = get_alias_set (TREE_TYPE (t));
962 /* From the former common C and C++ langhook implementation:
964 Unfortunately, there is no canonical form of a pointer type.
965 In particular, if we have `typedef int I', then `int *', and
966 `I *' are different types. So, we have to pick a canonical
967 representative. We do this below.
969 Technically, this approach is actually more conservative that
970 it needs to be. In particular, `const int *' and `int *'
971 should be in different alias sets, according to the C and C++
972 standard, since their types are not the same, and so,
973 technically, an `int **' and `const int **' cannot point at
974 the same thing.
976 But, the standard is wrong. In particular, this code is
977 legal C++:
979 int *ip;
980 int **ipp = &ip;
981 const int* const* cipp = ipp;
982 And, it doesn't make sense for that to be legal unless you
983 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
984 the pointed-to types. This issue has been reported to the
985 C++ committee.
987 For this reason go to canonical type of the unqalified pointer type.
988 Until GCC 6 this code set all pointers sets to have alias set of
989 ptr_type_node but that is a bad idea, because it prevents disabiguations
990 in between pointers. For Firefox this accounts about 20% of all
991 disambiguations in the program. */
992 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
994 tree p;
995 auto_vec <bool, 8> reference;
997 /* Unnest all pointers and references.
998 We also want to make pointer to array/vector equivalent to pointer to
999 its element (see the reasoning above). Skip all those types, too. */
1000 for (p = t; POINTER_TYPE_P (p)
1001 || (TREE_CODE (p) == ARRAY_TYPE
1002 && (!TYPE_NONALIASED_COMPONENT (p)
1003 || !COMPLETE_TYPE_P (p)
1004 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1005 || TREE_CODE (p) == VECTOR_TYPE;
1006 p = TREE_TYPE (p))
1008 /* Ada supports recusive pointers. Instead of doing recrusion check
1009 just give up once the preallocated space of 8 elements is up.
1010 In this case just punt to void * alias set. */
1011 if (reference.length () == 8)
1013 p = ptr_type_node;
1014 break;
1016 if (TREE_CODE (p) == REFERENCE_TYPE)
1017 /* In LTO we want languages that use references to be compatible
1018 with languages that use pointers. */
1019 reference.safe_push (true && !in_lto_p);
1020 if (TREE_CODE (p) == POINTER_TYPE)
1021 reference.safe_push (false);
1023 p = TYPE_MAIN_VARIANT (p);
1025 /* Make void * compatible with char * and also void **.
1026 Programs are commonly violating TBAA by this.
1028 We also make void * to conflict with every pointer
1029 (see record_component_aliases) and thus it is safe it to use it for
1030 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1031 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1032 set = get_alias_set (ptr_type_node);
1033 else
1035 /* Rebuild pointer type starting from canonical types using
1036 unqualified pointers and references only. This way all such
1037 pointers will have the same alias set and will conflict with
1038 each other.
1040 Most of time we already have pointers or references of a given type.
1041 If not we build new one just to be sure that if someone later
1042 (probably only middle-end can, as we should assign all alias
1043 classes only after finishing translation unit) builds the pointer
1044 type, the canonical type will match. */
1045 p = TYPE_CANONICAL (p);
1046 while (!reference.is_empty ())
1048 if (reference.pop ())
1049 p = build_reference_type (p);
1050 else
1051 p = build_pointer_type (p);
1052 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1053 /* build_pointer_type should always return the canonical type.
1054 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1055 them. Be sure that frontends do not glob canonical types of
1056 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1057 in all other cases. */
1058 gcc_checking_assert (!TYPE_CANONICAL (p)
1059 || p == TYPE_CANONICAL (p));
1062 /* Assign the alias set to both p and t.
1063 We can not call get_alias_set (p) here as that would trigger
1064 infinite recursion when p == t. In other cases it would just
1065 trigger unnecesary legwork of rebuilding the pointer again. */
1066 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1067 if (TYPE_ALIAS_SET_KNOWN_P (p))
1068 set = TYPE_ALIAS_SET (p);
1069 else
1071 set = new_alias_set ();
1072 TYPE_ALIAS_SET (p) = set;
1076 /* Alias set of ptr_type_node is special and serve as universal pointer which
1077 is TBAA compatible with every other pointer type. Be sure we have the
1078 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1079 of pointer types NULL. */
1080 else if (t == ptr_type_node)
1081 set = new_alias_set ();
1083 /* Otherwise make a new alias set for this type. */
1084 else
1086 /* Each canonical type gets its own alias set, so canonical types
1087 shouldn't form a tree. It doesn't really matter for types
1088 we handle specially above, so only check it where it possibly
1089 would result in a bogus alias set. */
1090 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1092 set = new_alias_set ();
1095 TYPE_ALIAS_SET (t) = set;
1097 /* If this is an aggregate type or a complex type, we must record any
1098 component aliasing information. */
1099 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1100 record_component_aliases (t);
1102 /* We treat pointer types specially in alias_set_subset_of. */
1103 if (POINTER_TYPE_P (t) && set)
1105 alias_set_entry *ase = get_alias_set_entry (set);
1106 if (!ase)
1107 ase = init_alias_set_entry (set);
1108 ase->is_pointer = true;
1109 ase->has_pointer = true;
1112 return set;
1115 /* Return a brand-new alias set. */
1117 alias_set_type
1118 new_alias_set (void)
1120 if (alias_sets == 0)
1121 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1122 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1123 return alias_sets->length () - 1;
1126 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1127 not everything that aliases SUPERSET also aliases SUBSET. For example,
1128 in C, a store to an `int' can alias a load of a structure containing an
1129 `int', and vice versa. But it can't alias a load of a 'double' member
1130 of the same structure. Here, the structure would be the SUPERSET and
1131 `int' the SUBSET. This relationship is also described in the comment at
1132 the beginning of this file.
1134 This function should be called only once per SUPERSET/SUBSET pair.
1136 It is illegal for SUPERSET to be zero; everything is implicitly a
1137 subset of alias set zero. */
1139 void
1140 record_alias_subset (alias_set_type superset, alias_set_type subset)
1142 alias_set_entry *superset_entry;
1143 alias_set_entry *subset_entry;
1145 /* It is possible in complex type situations for both sets to be the same,
1146 in which case we can ignore this operation. */
1147 if (superset == subset)
1148 return;
1150 gcc_assert (superset);
1152 superset_entry = get_alias_set_entry (superset);
1153 if (superset_entry == 0)
1155 /* Create an entry for the SUPERSET, so that we have a place to
1156 attach the SUBSET. */
1157 superset_entry = init_alias_set_entry (superset);
1160 if (subset == 0)
1161 superset_entry->has_zero_child = 1;
1162 else
1164 subset_entry = get_alias_set_entry (subset);
1165 if (!superset_entry->children)
1166 superset_entry->children
1167 = hash_map<alias_set_hash, int>::create_ggc (64);
1168 /* If there is an entry for the subset, enter all of its children
1169 (if they are not already present) as children of the SUPERSET. */
1170 if (subset_entry)
1172 if (subset_entry->has_zero_child)
1173 superset_entry->has_zero_child = true;
1174 if (subset_entry->has_pointer)
1175 superset_entry->has_pointer = true;
1177 if (subset_entry->children)
1179 hash_map<alias_set_hash, int>::iterator iter
1180 = subset_entry->children->begin ();
1181 for (; iter != subset_entry->children->end (); ++iter)
1182 superset_entry->children->put ((*iter).first, (*iter).second);
1186 /* Enter the SUBSET itself as a child of the SUPERSET. */
1187 superset_entry->children->put (subset, 0);
1191 /* Record that component types of TYPE, if any, are part of that type for
1192 aliasing purposes. For record types, we only record component types
1193 for fields that are not marked non-addressable. For array types, we
1194 only record the component type if it is not marked non-aliased. */
1196 void
1197 record_component_aliases (tree type)
1199 alias_set_type superset = get_alias_set (type);
1200 tree field;
1202 if (superset == 0)
1203 return;
1205 switch (TREE_CODE (type))
1207 case RECORD_TYPE:
1208 case UNION_TYPE:
1209 case QUAL_UNION_TYPE:
1210 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1211 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1213 /* LTO type merging does not make any difference between
1214 component pointer types. We may have
1216 struct foo {int *a;};
1218 as TYPE_CANONICAL of
1220 struct bar {float *a;};
1222 Because accesses to int * and float * do not alias, we would get
1223 false negative when accessing the same memory location by
1224 float ** and bar *. We thus record the canonical type as:
1226 struct {void *a;};
1228 void * is special cased and works as a universal pointer type.
1229 Accesses to it conflicts with accesses to any other pointer
1230 type. */
1231 tree t = TREE_TYPE (field);
1232 if (in_lto_p)
1234 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1235 element type and that type has to be normalized to void *,
1236 too, in the case it is a pointer. */
1237 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1239 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1240 t = TREE_TYPE (t);
1242 if (POINTER_TYPE_P (t))
1243 t = ptr_type_node;
1244 else if (flag_checking)
1245 gcc_checking_assert (get_alias_set (t)
1246 == get_alias_set (TREE_TYPE (field)));
1249 record_alias_subset (superset, get_alias_set (t));
1251 break;
1253 case COMPLEX_TYPE:
1254 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1255 break;
1257 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1258 element type. */
1260 default:
1261 break;
1265 /* Allocate an alias set for use in storing and reading from the varargs
1266 spill area. */
1268 static GTY(()) alias_set_type varargs_set = -1;
1270 alias_set_type
1271 get_varargs_alias_set (void)
1273 #if 1
1274 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1275 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1276 consistently use the varargs alias set for loads from the varargs
1277 area. So don't use it anywhere. */
1278 return 0;
1279 #else
1280 if (varargs_set == -1)
1281 varargs_set = new_alias_set ();
1283 return varargs_set;
1284 #endif
1287 /* Likewise, but used for the fixed portions of the frame, e.g., register
1288 save areas. */
1290 static GTY(()) alias_set_type frame_set = -1;
1292 alias_set_type
1293 get_frame_alias_set (void)
1295 if (frame_set == -1)
1296 frame_set = new_alias_set ();
1298 return frame_set;
1301 /* Create a new, unique base with id ID. */
1303 static rtx
1304 unique_base_value (HOST_WIDE_INT id)
1306 return gen_rtx_ADDRESS (Pmode, id);
1309 /* Return true if accesses based on any other base value cannot alias
1310 those based on X. */
1312 static bool
1313 unique_base_value_p (rtx x)
1315 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1318 /* Return true if X is known to be a base value. */
1320 static bool
1321 known_base_value_p (rtx x)
1323 switch (GET_CODE (x))
1325 case LABEL_REF:
1326 case SYMBOL_REF:
1327 return true;
1329 case ADDRESS:
1330 /* Arguments may or may not be bases; we don't know for sure. */
1331 return GET_MODE (x) != VOIDmode;
1333 default:
1334 return false;
1338 /* Inside SRC, the source of a SET, find a base address. */
1340 static rtx
1341 find_base_value (rtx src)
1343 unsigned int regno;
1345 #if defined (FIND_BASE_TERM)
1346 /* Try machine-dependent ways to find the base term. */
1347 src = FIND_BASE_TERM (src);
1348 #endif
1350 switch (GET_CODE (src))
1352 case SYMBOL_REF:
1353 case LABEL_REF:
1354 return src;
1356 case REG:
1357 regno = REGNO (src);
1358 /* At the start of a function, argument registers have known base
1359 values which may be lost later. Returning an ADDRESS
1360 expression here allows optimization based on argument values
1361 even when the argument registers are used for other purposes. */
1362 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1363 return new_reg_base_value[regno];
1365 /* If a pseudo has a known base value, return it. Do not do this
1366 for non-fixed hard regs since it can result in a circular
1367 dependency chain for registers which have values at function entry.
1369 The test above is not sufficient because the scheduler may move
1370 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1371 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1372 && regno < vec_safe_length (reg_base_value))
1374 /* If we're inside init_alias_analysis, use new_reg_base_value
1375 to reduce the number of relaxation iterations. */
1376 if (new_reg_base_value && new_reg_base_value[regno]
1377 && DF_REG_DEF_COUNT (regno) == 1)
1378 return new_reg_base_value[regno];
1380 if ((*reg_base_value)[regno])
1381 return (*reg_base_value)[regno];
1384 return 0;
1386 case MEM:
1387 /* Check for an argument passed in memory. Only record in the
1388 copying-arguments block; it is too hard to track changes
1389 otherwise. */
1390 if (copying_arguments
1391 && (XEXP (src, 0) == arg_pointer_rtx
1392 || (GET_CODE (XEXP (src, 0)) == PLUS
1393 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1394 return arg_base_value;
1395 return 0;
1397 case CONST:
1398 src = XEXP (src, 0);
1399 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1400 break;
1402 /* fall through */
1404 case PLUS:
1405 case MINUS:
1407 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1409 /* If either operand is a REG that is a known pointer, then it
1410 is the base. */
1411 if (REG_P (src_0) && REG_POINTER (src_0))
1412 return find_base_value (src_0);
1413 if (REG_P (src_1) && REG_POINTER (src_1))
1414 return find_base_value (src_1);
1416 /* If either operand is a REG, then see if we already have
1417 a known value for it. */
1418 if (REG_P (src_0))
1420 temp = find_base_value (src_0);
1421 if (temp != 0)
1422 src_0 = temp;
1425 if (REG_P (src_1))
1427 temp = find_base_value (src_1);
1428 if (temp!= 0)
1429 src_1 = temp;
1432 /* If either base is named object or a special address
1433 (like an argument or stack reference), then use it for the
1434 base term. */
1435 if (src_0 != 0 && known_base_value_p (src_0))
1436 return src_0;
1438 if (src_1 != 0 && known_base_value_p (src_1))
1439 return src_1;
1441 /* Guess which operand is the base address:
1442 If either operand is a symbol, then it is the base. If
1443 either operand is a CONST_INT, then the other is the base. */
1444 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1445 return find_base_value (src_0);
1446 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1447 return find_base_value (src_1);
1449 return 0;
1452 case LO_SUM:
1453 /* The standard form is (lo_sum reg sym) so look only at the
1454 second operand. */
1455 return find_base_value (XEXP (src, 1));
1457 case AND:
1458 /* If the second operand is constant set the base
1459 address to the first operand. */
1460 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1461 return find_base_value (XEXP (src, 0));
1462 return 0;
1464 case TRUNCATE:
1465 /* As we do not know which address space the pointer is referring to, we can
1466 handle this only if the target does not support different pointer or
1467 address modes depending on the address space. */
1468 if (!target_default_pointer_address_modes_p ())
1469 break;
1470 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1471 break;
1472 /* Fall through. */
1473 case HIGH:
1474 case PRE_INC:
1475 case PRE_DEC:
1476 case POST_INC:
1477 case POST_DEC:
1478 case PRE_MODIFY:
1479 case POST_MODIFY:
1480 return find_base_value (XEXP (src, 0));
1482 case ZERO_EXTEND:
1483 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1484 /* As we do not know which address space the pointer is referring to, we can
1485 handle this only if the target does not support different pointer or
1486 address modes depending on the address space. */
1487 if (!target_default_pointer_address_modes_p ())
1488 break;
1491 rtx temp = find_base_value (XEXP (src, 0));
1493 if (temp != 0 && CONSTANT_P (temp))
1494 temp = convert_memory_address (Pmode, temp);
1496 return temp;
1499 default:
1500 break;
1503 return 0;
1506 /* Called from init_alias_analysis indirectly through note_stores,
1507 or directly if DEST is a register with a REG_NOALIAS note attached.
1508 SET is null in the latter case. */
1510 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1511 register N has been set in this function. */
1512 static sbitmap reg_seen;
1514 static void
1515 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1517 unsigned regno;
1518 rtx src;
1519 int n;
1521 if (!REG_P (dest))
1522 return;
1524 regno = REGNO (dest);
1526 gcc_checking_assert (regno < reg_base_value->length ());
1528 n = REG_NREGS (dest);
1529 if (n != 1)
1531 while (--n >= 0)
1533 bitmap_set_bit (reg_seen, regno + n);
1534 new_reg_base_value[regno + n] = 0;
1536 return;
1539 if (set)
1541 /* A CLOBBER wipes out any old value but does not prevent a previously
1542 unset register from acquiring a base address (i.e. reg_seen is not
1543 set). */
1544 if (GET_CODE (set) == CLOBBER)
1546 new_reg_base_value[regno] = 0;
1547 return;
1549 src = SET_SRC (set);
1551 else
1553 /* There's a REG_NOALIAS note against DEST. */
1554 if (bitmap_bit_p (reg_seen, regno))
1556 new_reg_base_value[regno] = 0;
1557 return;
1559 bitmap_set_bit (reg_seen, regno);
1560 new_reg_base_value[regno] = unique_base_value (unique_id++);
1561 return;
1564 /* If this is not the first set of REGNO, see whether the new value
1565 is related to the old one. There are two cases of interest:
1567 (1) The register might be assigned an entirely new value
1568 that has the same base term as the original set.
1570 (2) The set might be a simple self-modification that
1571 cannot change REGNO's base value.
1573 If neither case holds, reject the original base value as invalid.
1574 Note that the following situation is not detected:
1576 extern int x, y; int *p = &x; p += (&y-&x);
1578 ANSI C does not allow computing the difference of addresses
1579 of distinct top level objects. */
1580 if (new_reg_base_value[regno] != 0
1581 && find_base_value (src) != new_reg_base_value[regno])
1582 switch (GET_CODE (src))
1584 case LO_SUM:
1585 case MINUS:
1586 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1587 new_reg_base_value[regno] = 0;
1588 break;
1589 case PLUS:
1590 /* If the value we add in the PLUS is also a valid base value,
1591 this might be the actual base value, and the original value
1592 an index. */
1594 rtx other = NULL_RTX;
1596 if (XEXP (src, 0) == dest)
1597 other = XEXP (src, 1);
1598 else if (XEXP (src, 1) == dest)
1599 other = XEXP (src, 0);
1601 if (! other || find_base_value (other))
1602 new_reg_base_value[regno] = 0;
1603 break;
1605 case AND:
1606 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1607 new_reg_base_value[regno] = 0;
1608 break;
1609 default:
1610 new_reg_base_value[regno] = 0;
1611 break;
1613 /* If this is the first set of a register, record the value. */
1614 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1615 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1616 new_reg_base_value[regno] = find_base_value (src);
1618 bitmap_set_bit (reg_seen, regno);
1621 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1622 using hard registers with non-null REG_BASE_VALUE for renaming. */
1624 get_reg_base_value (unsigned int regno)
1626 return (*reg_base_value)[regno];
1629 /* If a value is known for REGNO, return it. */
1632 get_reg_known_value (unsigned int regno)
1634 if (regno >= FIRST_PSEUDO_REGISTER)
1636 regno -= FIRST_PSEUDO_REGISTER;
1637 if (regno < vec_safe_length (reg_known_value))
1638 return (*reg_known_value)[regno];
1640 return NULL;
1643 /* Set it. */
1645 static void
1646 set_reg_known_value (unsigned int regno, rtx val)
1648 if (regno >= FIRST_PSEUDO_REGISTER)
1650 regno -= FIRST_PSEUDO_REGISTER;
1651 if (regno < vec_safe_length (reg_known_value))
1652 (*reg_known_value)[regno] = val;
1656 /* Similarly for reg_known_equiv_p. */
1658 bool
1659 get_reg_known_equiv_p (unsigned int regno)
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1663 regno -= FIRST_PSEUDO_REGISTER;
1664 if (regno < vec_safe_length (reg_known_value))
1665 return bitmap_bit_p (reg_known_equiv_p, regno);
1667 return false;
1670 static void
1671 set_reg_known_equiv_p (unsigned int regno, bool val)
1673 if (regno >= FIRST_PSEUDO_REGISTER)
1675 regno -= FIRST_PSEUDO_REGISTER;
1676 if (regno < vec_safe_length (reg_known_value))
1678 if (val)
1679 bitmap_set_bit (reg_known_equiv_p, regno);
1680 else
1681 bitmap_clear_bit (reg_known_equiv_p, regno);
1687 /* Returns a canonical version of X, from the point of view alias
1688 analysis. (For example, if X is a MEM whose address is a register,
1689 and the register has a known value (say a SYMBOL_REF), then a MEM
1690 whose address is the SYMBOL_REF is returned.) */
1693 canon_rtx (rtx x)
1695 /* Recursively look for equivalences. */
1696 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1698 rtx t = get_reg_known_value (REGNO (x));
1699 if (t == x)
1700 return x;
1701 if (t)
1702 return canon_rtx (t);
1705 if (GET_CODE (x) == PLUS)
1707 rtx x0 = canon_rtx (XEXP (x, 0));
1708 rtx x1 = canon_rtx (XEXP (x, 1));
1710 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1711 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1714 /* This gives us much better alias analysis when called from
1715 the loop optimizer. Note we want to leave the original
1716 MEM alone, but need to return the canonicalized MEM with
1717 all the flags with their original values. */
1718 else if (MEM_P (x))
1719 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1721 return x;
1724 /* Return 1 if X and Y are identical-looking rtx's.
1725 Expect that X and Y has been already canonicalized.
1727 We use the data in reg_known_value above to see if two registers with
1728 different numbers are, in fact, equivalent. */
1730 static int
1731 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1733 int i;
1734 int j;
1735 enum rtx_code code;
1736 const char *fmt;
1738 if (x == 0 && y == 0)
1739 return 1;
1740 if (x == 0 || y == 0)
1741 return 0;
1743 if (x == y)
1744 return 1;
1746 code = GET_CODE (x);
1747 /* Rtx's of different codes cannot be equal. */
1748 if (code != GET_CODE (y))
1749 return 0;
1751 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1752 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1754 if (GET_MODE (x) != GET_MODE (y))
1755 return 0;
1757 /* Some RTL can be compared without a recursive examination. */
1758 switch (code)
1760 case REG:
1761 return REGNO (x) == REGNO (y);
1763 case LABEL_REF:
1764 return label_ref_label (x) == label_ref_label (y);
1766 case SYMBOL_REF:
1767 return compare_base_symbol_refs (x, y) == 1;
1769 case ENTRY_VALUE:
1770 /* This is magic, don't go through canonicalization et al. */
1771 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1773 case VALUE:
1774 CASE_CONST_UNIQUE:
1775 /* Pointer equality guarantees equality for these nodes. */
1776 return 0;
1778 default:
1779 break;
1782 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1783 if (code == PLUS)
1784 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1785 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1786 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1787 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1788 /* For commutative operations, the RTX match if the operand match in any
1789 order. Also handle the simple binary and unary cases without a loop. */
1790 if (COMMUTATIVE_P (x))
1792 rtx xop0 = canon_rtx (XEXP (x, 0));
1793 rtx yop0 = canon_rtx (XEXP (y, 0));
1794 rtx yop1 = canon_rtx (XEXP (y, 1));
1796 return ((rtx_equal_for_memref_p (xop0, yop0)
1797 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1798 || (rtx_equal_for_memref_p (xop0, yop1)
1799 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1801 else if (NON_COMMUTATIVE_P (x))
1803 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1804 canon_rtx (XEXP (y, 0)))
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1806 canon_rtx (XEXP (y, 1))));
1808 else if (UNARY_P (x))
1809 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1810 canon_rtx (XEXP (y, 0)));
1812 /* Compare the elements. If any pair of corresponding elements
1813 fail to match, return 0 for the whole things.
1815 Limit cases to types which actually appear in addresses. */
1817 fmt = GET_RTX_FORMAT (code);
1818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1820 switch (fmt[i])
1822 case 'i':
1823 if (XINT (x, i) != XINT (y, i))
1824 return 0;
1825 break;
1827 case 'E':
1828 /* Two vectors must have the same length. */
1829 if (XVECLEN (x, i) != XVECLEN (y, i))
1830 return 0;
1832 /* And the corresponding elements must match. */
1833 for (j = 0; j < XVECLEN (x, i); j++)
1834 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1835 canon_rtx (XVECEXP (y, i, j))) == 0)
1836 return 0;
1837 break;
1839 case 'e':
1840 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1841 canon_rtx (XEXP (y, i))) == 0)
1842 return 0;
1843 break;
1845 /* This can happen for asm operands. */
1846 case 's':
1847 if (strcmp (XSTR (x, i), XSTR (y, i)))
1848 return 0;
1849 break;
1851 /* This can happen for an asm which clobbers memory. */
1852 case '0':
1853 break;
1855 /* It is believed that rtx's at this level will never
1856 contain anything but integers and other rtx's,
1857 except for within LABEL_REFs and SYMBOL_REFs. */
1858 default:
1859 gcc_unreachable ();
1862 return 1;
1865 static rtx
1866 find_base_term (rtx x)
1868 cselib_val *val;
1869 struct elt_loc_list *l, *f;
1870 rtx ret;
1872 #if defined (FIND_BASE_TERM)
1873 /* Try machine-dependent ways to find the base term. */
1874 x = FIND_BASE_TERM (x);
1875 #endif
1877 switch (GET_CODE (x))
1879 case REG:
1880 return REG_BASE_VALUE (x);
1882 case TRUNCATE:
1883 /* As we do not know which address space the pointer is referring to, we can
1884 handle this only if the target does not support different pointer or
1885 address modes depending on the address space. */
1886 if (!target_default_pointer_address_modes_p ())
1887 return 0;
1888 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1889 return 0;
1890 /* Fall through. */
1891 case HIGH:
1892 case PRE_INC:
1893 case PRE_DEC:
1894 case POST_INC:
1895 case POST_DEC:
1896 case PRE_MODIFY:
1897 case POST_MODIFY:
1898 return find_base_term (XEXP (x, 0));
1900 case ZERO_EXTEND:
1901 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1902 /* As we do not know which address space the pointer is referring to, we can
1903 handle this only if the target does not support different pointer or
1904 address modes depending on the address space. */
1905 if (!target_default_pointer_address_modes_p ())
1906 return 0;
1909 rtx temp = find_base_term (XEXP (x, 0));
1911 if (temp != 0 && CONSTANT_P (temp))
1912 temp = convert_memory_address (Pmode, temp);
1914 return temp;
1917 case VALUE:
1918 val = CSELIB_VAL_PTR (x);
1919 ret = NULL_RTX;
1921 if (!val)
1922 return ret;
1924 if (cselib_sp_based_value_p (val))
1925 return static_reg_base_value[STACK_POINTER_REGNUM];
1927 f = val->locs;
1928 /* Temporarily reset val->locs to avoid infinite recursion. */
1929 val->locs = NULL;
1931 for (l = f; l; l = l->next)
1932 if (GET_CODE (l->loc) == VALUE
1933 && CSELIB_VAL_PTR (l->loc)->locs
1934 && !CSELIB_VAL_PTR (l->loc)->locs->next
1935 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1936 continue;
1937 else if ((ret = find_base_term (l->loc)) != 0)
1938 break;
1940 val->locs = f;
1941 return ret;
1943 case LO_SUM:
1944 /* The standard form is (lo_sum reg sym) so look only at the
1945 second operand. */
1946 return find_base_term (XEXP (x, 1));
1948 case CONST:
1949 x = XEXP (x, 0);
1950 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1951 return 0;
1952 /* Fall through. */
1953 case PLUS:
1954 case MINUS:
1956 rtx tmp1 = XEXP (x, 0);
1957 rtx tmp2 = XEXP (x, 1);
1959 /* This is a little bit tricky since we have to determine which of
1960 the two operands represents the real base address. Otherwise this
1961 routine may return the index register instead of the base register.
1963 That may cause us to believe no aliasing was possible, when in
1964 fact aliasing is possible.
1966 We use a few simple tests to guess the base register. Additional
1967 tests can certainly be added. For example, if one of the operands
1968 is a shift or multiply, then it must be the index register and the
1969 other operand is the base register. */
1971 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1972 return find_base_term (tmp2);
1974 /* If either operand is known to be a pointer, then prefer it
1975 to determine the base term. */
1976 if (REG_P (tmp1) && REG_POINTER (tmp1))
1978 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1979 std::swap (tmp1, tmp2);
1980 /* If second argument is constant which has base term, prefer it
1981 over variable tmp1. See PR64025. */
1982 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1983 std::swap (tmp1, tmp2);
1985 /* Go ahead and find the base term for both operands. If either base
1986 term is from a pointer or is a named object or a special address
1987 (like an argument or stack reference), then use it for the
1988 base term. */
1989 rtx base = find_base_term (tmp1);
1990 if (base != NULL_RTX
1991 && ((REG_P (tmp1) && REG_POINTER (tmp1))
1992 || known_base_value_p (base)))
1993 return base;
1994 base = find_base_term (tmp2);
1995 if (base != NULL_RTX
1996 && ((REG_P (tmp2) && REG_POINTER (tmp2))
1997 || known_base_value_p (base)))
1998 return base;
2000 /* We could not determine which of the two operands was the
2001 base register and which was the index. So we can determine
2002 nothing from the base alias check. */
2003 return 0;
2006 case AND:
2007 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2008 return find_base_term (XEXP (x, 0));
2009 return 0;
2011 case SYMBOL_REF:
2012 case LABEL_REF:
2013 return x;
2015 default:
2016 return 0;
2020 /* Return true if accesses to address X may alias accesses based
2021 on the stack pointer. */
2023 bool
2024 may_be_sp_based_p (rtx x)
2026 rtx base = find_base_term (x);
2027 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2030 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2031 if they refer to different objects and -1 if we can not decide. */
2034 compare_base_decls (tree base1, tree base2)
2036 int ret;
2037 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2038 if (base1 == base2)
2039 return 1;
2041 /* Declarations of non-automatic variables may have aliases. All other
2042 decls are unique. */
2043 if (!decl_in_symtab_p (base1)
2044 || !decl_in_symtab_p (base2))
2045 return 0;
2047 /* Don't cause symbols to be inserted by the act of checking. */
2048 symtab_node *node1 = symtab_node::get (base1);
2049 if (!node1)
2050 return 0;
2051 symtab_node *node2 = symtab_node::get (base2);
2052 if (!node2)
2053 return 0;
2055 ret = node1->equal_address_to (node2, true);
2056 return ret;
2059 /* Same as compare_base_decls but for SYMBOL_REF. */
2061 static int
2062 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2064 tree x_decl = SYMBOL_REF_DECL (x_base);
2065 tree y_decl = SYMBOL_REF_DECL (y_base);
2066 bool binds_def = true;
2068 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2069 return 1;
2070 if (x_decl && y_decl)
2071 return compare_base_decls (x_decl, y_decl);
2072 if (x_decl || y_decl)
2074 if (!x_decl)
2076 std::swap (x_decl, y_decl);
2077 std::swap (x_base, y_base);
2079 /* We handle specially only section anchors and assume that other
2080 labels may overlap with user variables in an arbitrary way. */
2081 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2082 return -1;
2083 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2084 to ignore CONST_DECLs because they are readonly. */
2085 if (!VAR_P (x_decl)
2086 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2087 return 0;
2089 symtab_node *x_node = symtab_node::get_create (x_decl)
2090 ->ultimate_alias_target ();
2091 /* External variable can not be in section anchor. */
2092 if (!x_node->definition)
2093 return 0;
2094 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2095 /* If not in anchor, we can disambiguate. */
2096 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2097 return 0;
2099 /* We have an alias of anchored variable. If it can be interposed;
2100 we must assume it may or may not alias its anchor. */
2101 binds_def = decl_binds_to_current_def_p (x_decl);
2103 /* If we have variable in section anchor, we can compare by offset. */
2104 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2105 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2107 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2108 return 0;
2109 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2110 return binds_def ? 1 : -1;
2111 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2112 return -1;
2113 return 0;
2115 /* In general we assume that memory locations pointed to by different labels
2116 may overlap in undefined ways. */
2117 return -1;
2120 /* Return 0 if the addresses X and Y are known to point to different
2121 objects, 1 if they might be pointers to the same object. */
2123 static int
2124 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2125 machine_mode x_mode, machine_mode y_mode)
2127 /* If the address itself has no known base see if a known equivalent
2128 value has one. If either address still has no known base, nothing
2129 is known about aliasing. */
2130 if (x_base == 0)
2132 rtx x_c;
2134 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2135 return 1;
2137 x_base = find_base_term (x_c);
2138 if (x_base == 0)
2139 return 1;
2142 if (y_base == 0)
2144 rtx y_c;
2145 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2146 return 1;
2148 y_base = find_base_term (y_c);
2149 if (y_base == 0)
2150 return 1;
2153 /* If the base addresses are equal nothing is known about aliasing. */
2154 if (rtx_equal_p (x_base, y_base))
2155 return 1;
2157 /* The base addresses are different expressions. If they are not accessed
2158 via AND, there is no conflict. We can bring knowledge of object
2159 alignment into play here. For example, on alpha, "char a, b;" can
2160 alias one another, though "char a; long b;" cannot. AND addesses may
2161 implicitly alias surrounding objects; i.e. unaligned access in DImode
2162 via AND address can alias all surrounding object types except those
2163 with aligment 8 or higher. */
2164 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2165 return 1;
2166 if (GET_CODE (x) == AND
2167 && (!CONST_INT_P (XEXP (x, 1))
2168 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2169 return 1;
2170 if (GET_CODE (y) == AND
2171 && (!CONST_INT_P (XEXP (y, 1))
2172 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2173 return 1;
2175 /* Differing symbols not accessed via AND never alias. */
2176 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2177 return compare_base_symbol_refs (x_base, y_base) != 0;
2179 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2180 return 0;
2182 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2183 return 0;
2185 return 1;
2188 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2189 (or equal to) that of V. */
2191 static bool
2192 refs_newer_value_p (const_rtx expr, rtx v)
2194 int minuid = CSELIB_VAL_PTR (v)->uid;
2195 subrtx_iterator::array_type array;
2196 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2197 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2198 return true;
2199 return false;
2202 /* Convert the address X into something we can use. This is done by returning
2203 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2204 we call cselib to get a more useful rtx. */
2207 get_addr (rtx x)
2209 cselib_val *v;
2210 struct elt_loc_list *l;
2212 if (GET_CODE (x) != VALUE)
2214 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2215 && GET_CODE (XEXP (x, 0)) == VALUE
2216 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2218 rtx op0 = get_addr (XEXP (x, 0));
2219 if (op0 != XEXP (x, 0))
2221 if (GET_CODE (x) == PLUS
2222 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2223 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2224 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2225 op0, XEXP (x, 1));
2228 return x;
2230 v = CSELIB_VAL_PTR (x);
2231 if (v)
2233 bool have_equivs = cselib_have_permanent_equivalences ();
2234 if (have_equivs)
2235 v = canonical_cselib_val (v);
2236 for (l = v->locs; l; l = l->next)
2237 if (CONSTANT_P (l->loc))
2238 return l->loc;
2239 for (l = v->locs; l; l = l->next)
2240 if (!REG_P (l->loc) && !MEM_P (l->loc)
2241 /* Avoid infinite recursion when potentially dealing with
2242 var-tracking artificial equivalences, by skipping the
2243 equivalences themselves, and not choosing expressions
2244 that refer to newer VALUEs. */
2245 && (!have_equivs
2246 || (GET_CODE (l->loc) != VALUE
2247 && !refs_newer_value_p (l->loc, x))))
2248 return l->loc;
2249 if (have_equivs)
2251 for (l = v->locs; l; l = l->next)
2252 if (REG_P (l->loc)
2253 || (GET_CODE (l->loc) != VALUE
2254 && !refs_newer_value_p (l->loc, x)))
2255 return l->loc;
2256 /* Return the canonical value. */
2257 return v->val_rtx;
2259 if (v->locs)
2260 return v->locs->loc;
2262 return x;
2265 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2266 where SIZE is the size in bytes of the memory reference. If ADDR
2267 is not modified by the memory reference then ADDR is returned. */
2269 static rtx
2270 addr_side_effect_eval (rtx addr, int size, int n_refs)
2272 int offset = 0;
2274 switch (GET_CODE (addr))
2276 case PRE_INC:
2277 offset = (n_refs + 1) * size;
2278 break;
2279 case PRE_DEC:
2280 offset = -(n_refs + 1) * size;
2281 break;
2282 case POST_INC:
2283 offset = n_refs * size;
2284 break;
2285 case POST_DEC:
2286 offset = -n_refs * size;
2287 break;
2289 default:
2290 return addr;
2293 if (offset)
2294 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
2295 gen_int_mode (offset, GET_MODE (addr)));
2296 else
2297 addr = XEXP (addr, 0);
2298 addr = canon_rtx (addr);
2300 return addr;
2303 /* Return TRUE if an object X sized at XSIZE bytes and another object
2304 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2305 any of the sizes is zero, assume an overlap, otherwise use the
2306 absolute value of the sizes as the actual sizes. */
2308 static inline bool
2309 offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
2311 return (xsize == 0 || ysize == 0
2312 || (c >= 0
2313 ? (abs (xsize) > c)
2314 : (abs (ysize) > -c)));
2317 /* Return one if X and Y (memory addresses) reference the
2318 same location in memory or if the references overlap.
2319 Return zero if they do not overlap, else return
2320 minus one in which case they still might reference the same location.
2322 C is an offset accumulator. When
2323 C is nonzero, we are testing aliases between X and Y + C.
2324 XSIZE is the size in bytes of the X reference,
2325 similarly YSIZE is the size in bytes for Y.
2326 Expect that canon_rtx has been already called for X and Y.
2328 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2329 referenced (the reference was BLKmode), so make the most pessimistic
2330 assumptions.
2332 If XSIZE or YSIZE is negative, we may access memory outside the object
2333 being referenced as a side effect. This can happen when using AND to
2334 align memory references, as is done on the Alpha.
2336 Nice to notice that varying addresses cannot conflict with fp if no
2337 local variables had their addresses taken, but that's too hard now.
2339 ??? Contrary to the tree alias oracle this does not return
2340 one for X + non-constant and Y + non-constant when X and Y are equal.
2341 If that is fixed the TBAA hack for union type-punning can be removed. */
2343 static int
2344 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
2346 if (GET_CODE (x) == VALUE)
2348 if (REG_P (y))
2350 struct elt_loc_list *l = NULL;
2351 if (CSELIB_VAL_PTR (x))
2352 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2353 l; l = l->next)
2354 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2355 break;
2356 if (l)
2357 x = y;
2358 else
2359 x = get_addr (x);
2361 /* Don't call get_addr if y is the same VALUE. */
2362 else if (x != y)
2363 x = get_addr (x);
2365 if (GET_CODE (y) == VALUE)
2367 if (REG_P (x))
2369 struct elt_loc_list *l = NULL;
2370 if (CSELIB_VAL_PTR (y))
2371 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2372 l; l = l->next)
2373 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2374 break;
2375 if (l)
2376 y = x;
2377 else
2378 y = get_addr (y);
2380 /* Don't call get_addr if x is the same VALUE. */
2381 else if (y != x)
2382 y = get_addr (y);
2384 if (GET_CODE (x) == HIGH)
2385 x = XEXP (x, 0);
2386 else if (GET_CODE (x) == LO_SUM)
2387 x = XEXP (x, 1);
2388 else
2389 x = addr_side_effect_eval (x, abs (xsize), 0);
2390 if (GET_CODE (y) == HIGH)
2391 y = XEXP (y, 0);
2392 else if (GET_CODE (y) == LO_SUM)
2393 y = XEXP (y, 1);
2394 else
2395 y = addr_side_effect_eval (y, abs (ysize), 0);
2397 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2399 int cmp = compare_base_symbol_refs (x,y);
2401 /* If both decls are the same, decide by offsets. */
2402 if (cmp == 1)
2403 return offset_overlap_p (c, xsize, ysize);
2404 /* Assume a potential overlap for symbolic addresses that went
2405 through alignment adjustments (i.e., that have negative
2406 sizes), because we can't know how far they are from each
2407 other. */
2408 if (xsize < 0 || ysize < 0)
2409 return -1;
2410 /* If decls are different or we know by offsets that there is no overlap,
2411 we win. */
2412 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2413 return 0;
2414 /* Decls may or may not be different and offsets overlap....*/
2415 return -1;
2417 else if (rtx_equal_for_memref_p (x, y))
2419 return offset_overlap_p (c, xsize, ysize);
2422 /* This code used to check for conflicts involving stack references and
2423 globals but the base address alias code now handles these cases. */
2425 if (GET_CODE (x) == PLUS)
2427 /* The fact that X is canonicalized means that this
2428 PLUS rtx is canonicalized. */
2429 rtx x0 = XEXP (x, 0);
2430 rtx x1 = XEXP (x, 1);
2432 /* However, VALUEs might end up in different positions even in
2433 canonical PLUSes. Comparing their addresses is enough. */
2434 if (x0 == y)
2435 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2436 else if (x1 == y)
2437 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2439 if (GET_CODE (y) == PLUS)
2441 /* The fact that Y is canonicalized means that this
2442 PLUS rtx is canonicalized. */
2443 rtx y0 = XEXP (y, 0);
2444 rtx y1 = XEXP (y, 1);
2446 if (x0 == y1)
2447 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2448 if (x1 == y0)
2449 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2451 if (rtx_equal_for_memref_p (x1, y1))
2452 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2453 if (rtx_equal_for_memref_p (x0, y0))
2454 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2455 if (CONST_INT_P (x1))
2457 if (CONST_INT_P (y1))
2458 return memrefs_conflict_p (xsize, x0, ysize, y0,
2459 c - INTVAL (x1) + INTVAL (y1));
2460 else
2461 return memrefs_conflict_p (xsize, x0, ysize, y,
2462 c - INTVAL (x1));
2464 else if (CONST_INT_P (y1))
2465 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2467 return -1;
2469 else if (CONST_INT_P (x1))
2470 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2472 else if (GET_CODE (y) == PLUS)
2474 /* The fact that Y is canonicalized means that this
2475 PLUS rtx is canonicalized. */
2476 rtx y0 = XEXP (y, 0);
2477 rtx y1 = XEXP (y, 1);
2479 if (x == y0)
2480 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2481 if (x == y1)
2482 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2484 if (CONST_INT_P (y1))
2485 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2486 else
2487 return -1;
2490 if (GET_CODE (x) == GET_CODE (y))
2491 switch (GET_CODE (x))
2493 case MULT:
2495 /* Handle cases where we expect the second operands to be the
2496 same, and check only whether the first operand would conflict
2497 or not. */
2498 rtx x0, y0;
2499 rtx x1 = canon_rtx (XEXP (x, 1));
2500 rtx y1 = canon_rtx (XEXP (y, 1));
2501 if (! rtx_equal_for_memref_p (x1, y1))
2502 return -1;
2503 x0 = canon_rtx (XEXP (x, 0));
2504 y0 = canon_rtx (XEXP (y, 0));
2505 if (rtx_equal_for_memref_p (x0, y0))
2506 return offset_overlap_p (c, xsize, ysize);
2508 /* Can't properly adjust our sizes. */
2509 if (!CONST_INT_P (x1))
2510 return -1;
2511 xsize /= INTVAL (x1);
2512 ysize /= INTVAL (x1);
2513 c /= INTVAL (x1);
2514 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2517 default:
2518 break;
2521 /* Deal with alignment ANDs by adjusting offset and size so as to
2522 cover the maximum range, without taking any previously known
2523 alignment into account. Make a size negative after such an
2524 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2525 assume a potential overlap, because they may end up in contiguous
2526 memory locations and the stricter-alignment access may span over
2527 part of both. */
2528 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2530 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2531 unsigned HOST_WIDE_INT uc = sc;
2532 if (sc < 0 && pow2_or_zerop (-uc))
2534 if (xsize > 0)
2535 xsize = -xsize;
2536 if (xsize)
2537 xsize += sc + 1;
2538 c -= sc + 1;
2539 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2540 ysize, y, c);
2543 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2545 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2546 unsigned HOST_WIDE_INT uc = sc;
2547 if (sc < 0 && pow2_or_zerop (-uc))
2549 if (ysize > 0)
2550 ysize = -ysize;
2551 if (ysize)
2552 ysize += sc + 1;
2553 c += sc + 1;
2554 return memrefs_conflict_p (xsize, x,
2555 ysize, canon_rtx (XEXP (y, 0)), c);
2559 if (CONSTANT_P (x))
2561 if (CONST_INT_P (x) && CONST_INT_P (y))
2563 c += (INTVAL (y) - INTVAL (x));
2564 return offset_overlap_p (c, xsize, ysize);
2567 if (GET_CODE (x) == CONST)
2569 if (GET_CODE (y) == CONST)
2570 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2571 ysize, canon_rtx (XEXP (y, 0)), c);
2572 else
2573 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2574 ysize, y, c);
2576 if (GET_CODE (y) == CONST)
2577 return memrefs_conflict_p (xsize, x, ysize,
2578 canon_rtx (XEXP (y, 0)), c);
2580 /* Assume a potential overlap for symbolic addresses that went
2581 through alignment adjustments (i.e., that have negative
2582 sizes), because we can't know how far they are from each
2583 other. */
2584 if (CONSTANT_P (y))
2585 return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
2587 return -1;
2590 return -1;
2593 /* Functions to compute memory dependencies.
2595 Since we process the insns in execution order, we can build tables
2596 to keep track of what registers are fixed (and not aliased), what registers
2597 are varying in known ways, and what registers are varying in unknown
2598 ways.
2600 If both memory references are volatile, then there must always be a
2601 dependence between the two references, since their order can not be
2602 changed. A volatile and non-volatile reference can be interchanged
2603 though.
2605 We also must allow AND addresses, because they may generate accesses
2606 outside the object being referenced. This is used to generate aligned
2607 addresses from unaligned addresses, for instance, the alpha
2608 storeqi_unaligned pattern. */
2610 /* Read dependence: X is read after read in MEM takes place. There can
2611 only be a dependence here if both reads are volatile, or if either is
2612 an explicit barrier. */
2615 read_dependence (const_rtx mem, const_rtx x)
2617 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2618 return true;
2619 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2620 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2621 return true;
2622 return false;
2625 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2627 static tree
2628 decl_for_component_ref (tree x)
2632 x = TREE_OPERAND (x, 0);
2634 while (x && TREE_CODE (x) == COMPONENT_REF);
2636 return x && DECL_P (x) ? x : NULL_TREE;
2639 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2640 for the offset of the field reference. *KNOWN_P says whether the
2641 offset is known. */
2643 static void
2644 adjust_offset_for_component_ref (tree x, bool *known_p,
2645 HOST_WIDE_INT *offset)
2647 if (!*known_p)
2648 return;
2651 tree xoffset = component_ref_field_offset (x);
2652 tree field = TREE_OPERAND (x, 1);
2653 if (TREE_CODE (xoffset) != INTEGER_CST)
2655 *known_p = false;
2656 return;
2659 offset_int woffset
2660 = (wi::to_offset (xoffset)
2661 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2662 >> LOG2_BITS_PER_UNIT));
2663 if (!wi::fits_uhwi_p (woffset))
2665 *known_p = false;
2666 return;
2668 *offset += woffset.to_uhwi ();
2670 x = TREE_OPERAND (x, 0);
2672 while (x && TREE_CODE (x) == COMPONENT_REF);
2675 /* Return nonzero if we can determine the exprs corresponding to memrefs
2676 X and Y and they do not overlap.
2677 If LOOP_VARIANT is set, skip offset-based disambiguation */
2680 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2682 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2683 rtx rtlx, rtly;
2684 rtx basex, basey;
2685 bool moffsetx_known_p, moffsety_known_p;
2686 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2687 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey;
2689 /* Unless both have exprs, we can't tell anything. */
2690 if (exprx == 0 || expry == 0)
2691 return 0;
2693 /* For spill-slot accesses make sure we have valid offsets. */
2694 if ((exprx == get_spill_slot_decl (false)
2695 && ! MEM_OFFSET_KNOWN_P (x))
2696 || (expry == get_spill_slot_decl (false)
2697 && ! MEM_OFFSET_KNOWN_P (y)))
2698 return 0;
2700 /* If the field reference test failed, look at the DECLs involved. */
2701 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2702 if (moffsetx_known_p)
2703 moffsetx = MEM_OFFSET (x);
2704 if (TREE_CODE (exprx) == COMPONENT_REF)
2706 tree t = decl_for_component_ref (exprx);
2707 if (! t)
2708 return 0;
2709 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2710 exprx = t;
2713 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2714 if (moffsety_known_p)
2715 moffsety = MEM_OFFSET (y);
2716 if (TREE_CODE (expry) == COMPONENT_REF)
2718 tree t = decl_for_component_ref (expry);
2719 if (! t)
2720 return 0;
2721 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2722 expry = t;
2725 if (! DECL_P (exprx) || ! DECL_P (expry))
2726 return 0;
2728 /* If we refer to different gimple registers, or one gimple register
2729 and one non-gimple-register, we know they can't overlap. First,
2730 gimple registers don't have their addresses taken. Now, there
2731 could be more than one stack slot for (different versions of) the
2732 same gimple register, but we can presumably tell they don't
2733 overlap based on offsets from stack base addresses elsewhere.
2734 It's important that we don't proceed to DECL_RTL, because gimple
2735 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2736 able to do anything about them since no SSA information will have
2737 remained to guide it. */
2738 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2739 return exprx != expry
2740 || (moffsetx_known_p && moffsety_known_p
2741 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2742 && !offset_overlap_p (moffsety - moffsetx,
2743 MEM_SIZE (x), MEM_SIZE (y)));
2745 /* With invalid code we can end up storing into the constant pool.
2746 Bail out to avoid ICEing when creating RTL for this.
2747 See gfortran.dg/lto/20091028-2_0.f90. */
2748 if (TREE_CODE (exprx) == CONST_DECL
2749 || TREE_CODE (expry) == CONST_DECL)
2750 return 1;
2752 /* If one decl is known to be a function or label in a function and
2753 the other is some kind of data, they can't overlap. */
2754 if ((TREE_CODE (exprx) == FUNCTION_DECL
2755 || TREE_CODE (exprx) == LABEL_DECL)
2756 != (TREE_CODE (expry) == FUNCTION_DECL
2757 || TREE_CODE (expry) == LABEL_DECL))
2758 return 1;
2760 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2761 living in multiple places), we can't tell anything. Exception
2762 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2763 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2764 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2765 return 0;
2767 rtlx = DECL_RTL (exprx);
2768 rtly = DECL_RTL (expry);
2770 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2771 can't overlap unless they are the same because we never reuse that part
2772 of the stack frame used for locals for spilled pseudos. */
2773 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2774 && ! rtx_equal_p (rtlx, rtly))
2775 return 1;
2777 /* If we have MEMs referring to different address spaces (which can
2778 potentially overlap), we cannot easily tell from the addresses
2779 whether the references overlap. */
2780 if (MEM_P (rtlx) && MEM_P (rtly)
2781 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2782 return 0;
2784 /* Get the base and offsets of both decls. If either is a register, we
2785 know both are and are the same, so use that as the base. The only
2786 we can avoid overlap is if we can deduce that they are nonoverlapping
2787 pieces of that decl, which is very rare. */
2788 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2789 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2790 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2792 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2793 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2794 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2796 /* If the bases are different, we know they do not overlap if both
2797 are constants or if one is a constant and the other a pointer into the
2798 stack frame. Otherwise a different base means we can't tell if they
2799 overlap or not. */
2800 if (compare_base_decls (exprx, expry) == 0)
2801 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2802 || (CONSTANT_P (basex) && REG_P (basey)
2803 && REGNO_PTR_FRAME_P (REGNO (basey)))
2804 || (CONSTANT_P (basey) && REG_P (basex)
2805 && REGNO_PTR_FRAME_P (REGNO (basex))));
2807 /* Offset based disambiguation not appropriate for loop invariant */
2808 if (loop_invariant)
2809 return 0;
2811 /* Offset based disambiguation is OK even if we do not know that the
2812 declarations are necessarily different
2813 (i.e. compare_base_decls (exprx, expry) == -1) */
2815 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2816 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2817 : -1);
2818 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2819 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2820 : -1);
2822 /* If we have an offset for either memref, it can update the values computed
2823 above. */
2824 if (moffsetx_known_p)
2825 offsetx += moffsetx, sizex -= moffsetx;
2826 if (moffsety_known_p)
2827 offsety += moffsety, sizey -= moffsety;
2829 /* If a memref has both a size and an offset, we can use the smaller size.
2830 We can't do this if the offset isn't known because we must view this
2831 memref as being anywhere inside the DECL's MEM. */
2832 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2833 sizex = MEM_SIZE (x);
2834 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2835 sizey = MEM_SIZE (y);
2837 /* Put the values of the memref with the lower offset in X's values. */
2838 if (offsetx > offsety)
2840 std::swap (offsetx, offsety);
2841 std::swap (sizex, sizey);
2844 /* If we don't know the size of the lower-offset value, we can't tell
2845 if they conflict. Otherwise, we do the test. */
2846 return sizex >= 0 && offsety >= offsetx + sizex;
2849 /* Helper for true_dependence and canon_true_dependence.
2850 Checks for true dependence: X is read after store in MEM takes place.
2852 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2853 NULL_RTX, and the canonical addresses of MEM and X are both computed
2854 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2856 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2858 Returns 1 if there is a true dependence, 0 otherwise. */
2860 static int
2861 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2862 const_rtx x, rtx x_addr, bool mem_canonicalized)
2864 rtx true_mem_addr;
2865 rtx base;
2866 int ret;
2868 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2869 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2871 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2872 return 1;
2874 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2875 This is used in epilogue deallocation functions, and in cselib. */
2876 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2877 return 1;
2878 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2879 return 1;
2880 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2881 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2882 return 1;
2884 if (! x_addr)
2885 x_addr = XEXP (x, 0);
2886 x_addr = get_addr (x_addr);
2888 if (! mem_addr)
2890 mem_addr = XEXP (mem, 0);
2891 if (mem_mode == VOIDmode)
2892 mem_mode = GET_MODE (mem);
2894 true_mem_addr = get_addr (mem_addr);
2896 /* Read-only memory is by definition never modified, and therefore can't
2897 conflict with anything. However, don't assume anything when AND
2898 addresses are involved and leave to the code below to determine
2899 dependence. We don't expect to find read-only set on MEM, but
2900 stupid user tricks can produce them, so don't die. */
2901 if (MEM_READONLY_P (x)
2902 && GET_CODE (x_addr) != AND
2903 && GET_CODE (true_mem_addr) != AND)
2904 return 0;
2906 /* If we have MEMs referring to different address spaces (which can
2907 potentially overlap), we cannot easily tell from the addresses
2908 whether the references overlap. */
2909 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2910 return 1;
2912 base = find_base_term (x_addr);
2913 if (base && (GET_CODE (base) == LABEL_REF
2914 || (GET_CODE (base) == SYMBOL_REF
2915 && CONSTANT_POOL_ADDRESS_P (base))))
2916 return 0;
2918 rtx mem_base = find_base_term (true_mem_addr);
2919 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2920 GET_MODE (x), mem_mode))
2921 return 0;
2923 x_addr = canon_rtx (x_addr);
2924 if (!mem_canonicalized)
2925 mem_addr = canon_rtx (true_mem_addr);
2927 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2928 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2929 return ret;
2931 if (mems_in_disjoint_alias_sets_p (x, mem))
2932 return 0;
2934 if (nonoverlapping_memrefs_p (mem, x, false))
2935 return 0;
2937 return rtx_refs_may_alias_p (x, mem, true);
2940 /* True dependence: X is read after store in MEM takes place. */
2943 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2945 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2946 x, NULL_RTX, /*mem_canonicalized=*/false);
2949 /* Canonical true dependence: X is read after store in MEM takes place.
2950 Variant of true_dependence which assumes MEM has already been
2951 canonicalized (hence we no longer do that here).
2952 The mem_addr argument has been added, since true_dependence_1 computed
2953 this value prior to canonicalizing. */
2956 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2957 const_rtx x, rtx x_addr)
2959 return true_dependence_1 (mem, mem_mode, mem_addr,
2960 x, x_addr, /*mem_canonicalized=*/true);
2963 /* Returns nonzero if a write to X might alias a previous read from
2964 (or, if WRITEP is true, a write to) MEM.
2965 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2966 and X_MODE the mode for that access.
2967 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2969 static int
2970 write_dependence_p (const_rtx mem,
2971 const_rtx x, machine_mode x_mode, rtx x_addr,
2972 bool mem_canonicalized, bool x_canonicalized, bool writep)
2974 rtx mem_addr;
2975 rtx true_mem_addr, true_x_addr;
2976 rtx base;
2977 int ret;
2979 gcc_checking_assert (x_canonicalized
2980 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
2981 : (x_addr == NULL_RTX && x_mode == VOIDmode));
2983 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2984 return 1;
2986 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2987 This is used in epilogue deallocation functions. */
2988 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2989 return 1;
2990 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2991 return 1;
2992 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2993 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2994 return 1;
2996 if (!x_addr)
2997 x_addr = XEXP (x, 0);
2998 true_x_addr = get_addr (x_addr);
3000 mem_addr = XEXP (mem, 0);
3001 true_mem_addr = get_addr (mem_addr);
3003 /* A read from read-only memory can't conflict with read-write memory.
3004 Don't assume anything when AND addresses are involved and leave to
3005 the code below to determine dependence. */
3006 if (!writep
3007 && MEM_READONLY_P (mem)
3008 && GET_CODE (true_x_addr) != AND
3009 && GET_CODE (true_mem_addr) != AND)
3010 return 0;
3012 /* If we have MEMs referring to different address spaces (which can
3013 potentially overlap), we cannot easily tell from the addresses
3014 whether the references overlap. */
3015 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3016 return 1;
3018 base = find_base_term (true_mem_addr);
3019 if (! writep
3020 && base
3021 && (GET_CODE (base) == LABEL_REF
3022 || (GET_CODE (base) == SYMBOL_REF
3023 && CONSTANT_POOL_ADDRESS_P (base))))
3024 return 0;
3026 rtx x_base = find_base_term (true_x_addr);
3027 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3028 GET_MODE (x), GET_MODE (mem)))
3029 return 0;
3031 if (!x_canonicalized)
3033 x_addr = canon_rtx (true_x_addr);
3034 x_mode = GET_MODE (x);
3036 if (!mem_canonicalized)
3037 mem_addr = canon_rtx (true_mem_addr);
3039 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3040 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3041 return ret;
3043 if (nonoverlapping_memrefs_p (x, mem, false))
3044 return 0;
3046 return rtx_refs_may_alias_p (x, mem, false);
3049 /* Anti dependence: X is written after read in MEM takes place. */
3052 anti_dependence (const_rtx mem, const_rtx x)
3054 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3055 /*mem_canonicalized=*/false,
3056 /*x_canonicalized*/false, /*writep=*/false);
3059 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3060 Also, consider X in X_MODE (which might be from an enclosing
3061 STRICT_LOW_PART / ZERO_EXTRACT).
3062 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3065 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3066 const_rtx x, machine_mode x_mode, rtx x_addr)
3068 return write_dependence_p (mem, x, x_mode, x_addr,
3069 mem_canonicalized, /*x_canonicalized=*/true,
3070 /*writep=*/false);
3073 /* Output dependence: X is written after store in MEM takes place. */
3076 output_dependence (const_rtx mem, const_rtx x)
3078 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3079 /*mem_canonicalized=*/false,
3080 /*x_canonicalized*/false, /*writep=*/true);
3083 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3084 Also, consider X in X_MODE (which might be from an enclosing
3085 STRICT_LOW_PART / ZERO_EXTRACT).
3086 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3089 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3090 const_rtx x, machine_mode x_mode, rtx x_addr)
3092 return write_dependence_p (mem, x, x_mode, x_addr,
3093 mem_canonicalized, /*x_canonicalized=*/true,
3094 /*writep=*/true);
3099 /* Check whether X may be aliased with MEM. Don't do offset-based
3100 memory disambiguation & TBAA. */
3102 may_alias_p (const_rtx mem, const_rtx x)
3104 rtx x_addr, mem_addr;
3106 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3107 return 1;
3109 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3110 This is used in epilogue deallocation functions. */
3111 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3112 return 1;
3113 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3114 return 1;
3115 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3116 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3117 return 1;
3119 x_addr = XEXP (x, 0);
3120 x_addr = get_addr (x_addr);
3122 mem_addr = XEXP (mem, 0);
3123 mem_addr = get_addr (mem_addr);
3125 /* Read-only memory is by definition never modified, and therefore can't
3126 conflict with anything. However, don't assume anything when AND
3127 addresses are involved and leave to the code below to determine
3128 dependence. We don't expect to find read-only set on MEM, but
3129 stupid user tricks can produce them, so don't die. */
3130 if (MEM_READONLY_P (x)
3131 && GET_CODE (x_addr) != AND
3132 && GET_CODE (mem_addr) != AND)
3133 return 0;
3135 /* If we have MEMs referring to different address spaces (which can
3136 potentially overlap), we cannot easily tell from the addresses
3137 whether the references overlap. */
3138 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3139 return 1;
3141 rtx x_base = find_base_term (x_addr);
3142 rtx mem_base = find_base_term (mem_addr);
3143 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3144 GET_MODE (x), GET_MODE (mem_addr)))
3145 return 0;
3147 if (nonoverlapping_memrefs_p (mem, x, true))
3148 return 0;
3150 /* TBAA not valid for loop_invarint */
3151 return rtx_refs_may_alias_p (x, mem, false);
3154 void
3155 init_alias_target (void)
3157 int i;
3159 if (!arg_base_value)
3160 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3162 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3165 /* Check whether this register can hold an incoming pointer
3166 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3167 numbers, so translate if necessary due to register windows. */
3168 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3169 && HARD_REGNO_MODE_OK (i, Pmode))
3170 static_reg_base_value[i] = arg_base_value;
3172 static_reg_base_value[STACK_POINTER_REGNUM]
3173 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3174 static_reg_base_value[ARG_POINTER_REGNUM]
3175 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3176 static_reg_base_value[FRAME_POINTER_REGNUM]
3177 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3178 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3179 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3180 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3183 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3184 to be memory reference. */
3185 static bool memory_modified;
3186 static void
3187 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3189 if (MEM_P (x))
3191 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3192 memory_modified = true;
3197 /* Return true when INSN possibly modify memory contents of MEM
3198 (i.e. address can be modified). */
3199 bool
3200 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3202 if (!INSN_P (insn))
3203 return false;
3204 memory_modified = false;
3205 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3206 return memory_modified;
3209 /* Return TRUE if the destination of a set is rtx identical to
3210 ITEM. */
3211 static inline bool
3212 set_dest_equal_p (const_rtx set, const_rtx item)
3214 rtx dest = SET_DEST (set);
3215 return rtx_equal_p (dest, item);
3218 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3219 array. */
3221 void
3222 init_alias_analysis (void)
3224 unsigned int maxreg = max_reg_num ();
3225 int changed, pass;
3226 int i;
3227 unsigned int ui;
3228 rtx_insn *insn;
3229 rtx val;
3230 int rpo_cnt;
3231 int *rpo;
3233 timevar_push (TV_ALIAS_ANALYSIS);
3235 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3236 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3237 bitmap_clear (reg_known_equiv_p);
3239 /* If we have memory allocated from the previous run, use it. */
3240 if (old_reg_base_value)
3241 reg_base_value = old_reg_base_value;
3243 if (reg_base_value)
3244 reg_base_value->truncate (0);
3246 vec_safe_grow_cleared (reg_base_value, maxreg);
3248 new_reg_base_value = XNEWVEC (rtx, maxreg);
3249 reg_seen = sbitmap_alloc (maxreg);
3251 /* The basic idea is that each pass through this loop will use the
3252 "constant" information from the previous pass to propagate alias
3253 information through another level of assignments.
3255 The propagation is done on the CFG in reverse post-order, to propagate
3256 things forward as far as possible in each iteration.
3258 This could get expensive if the assignment chains are long. Maybe
3259 we should throttle the number of iterations, possibly based on
3260 the optimization level or flag_expensive_optimizations.
3262 We could propagate more information in the first pass by making use
3263 of DF_REG_DEF_COUNT to determine immediately that the alias information
3264 for a pseudo is "constant".
3266 A program with an uninitialized variable can cause an infinite loop
3267 here. Instead of doing a full dataflow analysis to detect such problems
3268 we just cap the number of iterations for the loop.
3270 The state of the arrays for the set chain in question does not matter
3271 since the program has undefined behavior. */
3273 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3274 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3276 /* The prologue/epilogue insns are not threaded onto the
3277 insn chain until after reload has completed. Thus,
3278 there is no sense wasting time checking if INSN is in
3279 the prologue/epilogue until after reload has completed. */
3280 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3281 || targetm.have_epilogue ())
3282 && reload_completed);
3284 pass = 0;
3287 /* Assume nothing will change this iteration of the loop. */
3288 changed = 0;
3290 /* We want to assign the same IDs each iteration of this loop, so
3291 start counting from one each iteration of the loop. */
3292 unique_id = 1;
3294 /* We're at the start of the function each iteration through the
3295 loop, so we're copying arguments. */
3296 copying_arguments = true;
3298 /* Wipe the potential alias information clean for this pass. */
3299 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3301 /* Wipe the reg_seen array clean. */
3302 bitmap_clear (reg_seen);
3304 /* Initialize the alias information for this pass. */
3305 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3306 if (static_reg_base_value[i])
3308 new_reg_base_value[i] = static_reg_base_value[i];
3309 bitmap_set_bit (reg_seen, i);
3312 /* Walk the insns adding values to the new_reg_base_value array. */
3313 for (i = 0; i < rpo_cnt; i++)
3315 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3316 FOR_BB_INSNS (bb, insn)
3318 if (NONDEBUG_INSN_P (insn))
3320 rtx note, set;
3322 if (could_be_prologue_epilogue
3323 && prologue_epilogue_contains (insn))
3324 continue;
3326 /* If this insn has a noalias note, process it, Otherwise,
3327 scan for sets. A simple set will have no side effects
3328 which could change the base value of any other register. */
3330 if (GET_CODE (PATTERN (insn)) == SET
3331 && REG_NOTES (insn) != 0
3332 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3333 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3334 else
3335 note_stores (PATTERN (insn), record_set, NULL);
3337 set = single_set (insn);
3339 if (set != 0
3340 && REG_P (SET_DEST (set))
3341 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3343 unsigned int regno = REGNO (SET_DEST (set));
3344 rtx src = SET_SRC (set);
3345 rtx t;
3347 note = find_reg_equal_equiv_note (insn);
3348 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3349 && DF_REG_DEF_COUNT (regno) != 1)
3350 note = NULL_RTX;
3352 if (note != NULL_RTX
3353 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3354 && ! rtx_varies_p (XEXP (note, 0), 1)
3355 && ! reg_overlap_mentioned_p (SET_DEST (set),
3356 XEXP (note, 0)))
3358 set_reg_known_value (regno, XEXP (note, 0));
3359 set_reg_known_equiv_p (regno,
3360 REG_NOTE_KIND (note) == REG_EQUIV);
3362 else if (DF_REG_DEF_COUNT (regno) == 1
3363 && GET_CODE (src) == PLUS
3364 && REG_P (XEXP (src, 0))
3365 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3366 && CONST_INT_P (XEXP (src, 1)))
3368 t = plus_constant (GET_MODE (src), t,
3369 INTVAL (XEXP (src, 1)));
3370 set_reg_known_value (regno, t);
3371 set_reg_known_equiv_p (regno, false);
3373 else if (DF_REG_DEF_COUNT (regno) == 1
3374 && ! rtx_varies_p (src, 1))
3376 set_reg_known_value (regno, src);
3377 set_reg_known_equiv_p (regno, false);
3381 else if (NOTE_P (insn)
3382 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3383 copying_arguments = false;
3387 /* Now propagate values from new_reg_base_value to reg_base_value. */
3388 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3390 for (ui = 0; ui < maxreg; ui++)
3392 if (new_reg_base_value[ui]
3393 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3394 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3396 (*reg_base_value)[ui] = new_reg_base_value[ui];
3397 changed = 1;
3401 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3402 XDELETEVEC (rpo);
3404 /* Fill in the remaining entries. */
3405 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3407 int regno = i + FIRST_PSEUDO_REGISTER;
3408 if (! val)
3409 set_reg_known_value (regno, regno_reg_rtx[regno]);
3412 /* Clean up. */
3413 free (new_reg_base_value);
3414 new_reg_base_value = 0;
3415 sbitmap_free (reg_seen);
3416 reg_seen = 0;
3417 timevar_pop (TV_ALIAS_ANALYSIS);
3420 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3421 Special API for var-tracking pass purposes. */
3423 void
3424 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3426 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3429 void
3430 end_alias_analysis (void)
3432 old_reg_base_value = reg_base_value;
3433 vec_free (reg_known_value);
3434 sbitmap_free (reg_known_equiv_p);
3437 void
3438 dump_alias_stats_in_alias_c (FILE *s)
3440 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3441 " %llu are in alias set 0\n"
3442 " %llu queries asked about the same object\n"
3443 " %llu queries asked about the same alias set\n"
3444 " %llu access volatile\n"
3445 " %llu are dependent in the DAG\n"
3446 " %llu are aritificially in conflict with void *\n",
3447 alias_stats.num_disambiguated,
3448 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3449 + alias_stats.num_same_objects + alias_stats.num_volatile
3450 + alias_stats.num_dag + alias_stats.num_disambiguated
3451 + alias_stats.num_universal,
3452 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3453 alias_stats.num_same_objects, alias_stats.num_volatile,
3454 alias_stats.num_dag, alias_stats.num_universal);
3456 #include "gt-alias.h"