sem_ch3.adb (Access_Type_Declaration): If designated type is a limited view...
[official-gcc.git] / gcc / ada / sem_ch3.adb
bloba713057db211b498a5a608d7ed3134b28c7b3175
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Elists; use Elists;
31 with Einfo; use Einfo;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Ch3; use Exp_Ch3;
35 with Exp_Ch9; use Exp_Ch9;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Dist; use Exp_Dist;
38 with Exp_Tss; use Exp_Tss;
39 with Exp_Util; use Exp_Util;
40 with Fname; use Fname;
41 with Freeze; use Freeze;
42 with Itypes; use Itypes;
43 with Layout; use Layout;
44 with Lib; use Lib;
45 with Lib.Xref; use Lib.Xref;
46 with Namet; use Namet;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Case; use Sem_Case;
55 with Sem_Cat; use Sem_Cat;
56 with Sem_Ch6; use Sem_Ch6;
57 with Sem_Ch7; use Sem_Ch7;
58 with Sem_Ch8; use Sem_Ch8;
59 with Sem_Ch10; use Sem_Ch10;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Prag; use Sem_Prag;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Analyze_Object_Contract (Obj_Id : Entity_Id);
95 -- Analyze all delayed aspects chained on the contract of object Obj_Id as
96 -- if they appeared at the end of the declarative region. The aspects to be
97 -- considered are:
98 -- Async_Readers
99 -- Async_Writers
100 -- Effective_Reads
101 -- Effective_Writes
102 -- Part_Of
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type. That is its sole purpose is the designated type of an
235 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
236 -- is built to avoid freezing T when the access subtype is frozen.
238 function Build_Scalar_Bound
239 (Bound : Node_Id;
240 Par_T : Entity_Id;
241 Der_T : Entity_Id) return Node_Id;
242 -- The bounds of a derived scalar type are conversions of the bounds of
243 -- the parent type. Optimize the representation if the bounds are literals.
244 -- Needs a more complete spec--what are the parameters exactly, and what
245 -- exactly is the returned value, and how is Bound affected???
247 procedure Build_Underlying_Full_View
248 (N : Node_Id;
249 Typ : Entity_Id;
250 Par : Entity_Id);
251 -- If the completion of a private type is itself derived from a private
252 -- type, or if the full view of a private subtype is itself private, the
253 -- back-end has no way to compute the actual size of this type. We build
254 -- an internal subtype declaration of the proper parent type to convey
255 -- this information. This extra mechanism is needed because a full
256 -- view cannot itself have a full view (it would get clobbered during
257 -- view exchanges).
259 procedure Check_Access_Discriminant_Requires_Limited
260 (D : Node_Id;
261 Loc : Node_Id);
262 -- Check the restriction that the type to which an access discriminant
263 -- belongs must be a concurrent type or a descendant of a type with
264 -- the reserved word 'limited' in its declaration.
266 procedure Check_Anonymous_Access_Components
267 (Typ_Decl : Node_Id;
268 Typ : Entity_Id;
269 Prev : Entity_Id;
270 Comp_List : Node_Id);
271 -- Ada 2005 AI-382: an access component in a record definition can refer to
272 -- the enclosing record, in which case it denotes the type itself, and not
273 -- the current instance of the type. We create an anonymous access type for
274 -- the component, and flag it as an access to a component, so accessibility
275 -- checks are properly performed on it. The declaration of the access type
276 -- is placed ahead of that of the record to prevent order-of-elaboration
277 -- circularity issues in Gigi. We create an incomplete type for the record
278 -- declaration, which is the designated type of the anonymous access.
280 procedure Check_Delta_Expression (E : Node_Id);
281 -- Check that the expression represented by E is suitable for use as a
282 -- delta expression, i.e. it is of real type and is static.
284 procedure Check_Digits_Expression (E : Node_Id);
285 -- Check that the expression represented by E is suitable for use as a
286 -- digits expression, i.e. it is of integer type, positive and static.
288 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
289 -- Validate the initialization of an object declaration. T is the required
290 -- type, and Exp is the initialization expression.
292 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
293 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If N is the full declaration of the completion T of an incomplete or
300 -- private type, check its discriminants (which are already known to be
301 -- conformant with those of the partial view, see Find_Type_Name),
302 -- otherwise process them. Prev is the entity of the partial declaration,
303 -- if any.
305 procedure Check_Real_Bound (Bound : Node_Id);
306 -- Check given bound for being of real type and static. If not, post an
307 -- appropriate message, and rewrite the bound with the real literal zero.
309 procedure Constant_Redeclaration
310 (Id : Entity_Id;
311 N : Node_Id;
312 T : out Entity_Id);
313 -- Various checks on legality of full declaration of deferred constant.
314 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
315 -- node. The caller has not yet set any attributes of this entity.
317 function Contain_Interface
318 (Iface : Entity_Id;
319 Ifaces : Elist_Id) return Boolean;
320 -- Ada 2005: Determine whether Iface is present in the list Ifaces
322 procedure Convert_Scalar_Bounds
323 (N : Node_Id;
324 Parent_Type : Entity_Id;
325 Derived_Type : Entity_Id;
326 Loc : Source_Ptr);
327 -- For derived scalar types, convert the bounds in the type definition to
328 -- the derived type, and complete their analysis. Given a constraint of the
329 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
330 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
331 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
332 -- subtype are conversions of those bounds to the derived_type, so that
333 -- their typing is consistent.
335 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
336 -- Copies attributes from array base type T2 to array base type T1. Copies
337 -- only attributes that apply to base types, but not subtypes.
339 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
340 -- Copies attributes from array subtype T2 to array subtype T1. Copies
341 -- attributes that apply to both subtypes and base types.
343 procedure Create_Constrained_Components
344 (Subt : Entity_Id;
345 Decl_Node : Node_Id;
346 Typ : Entity_Id;
347 Constraints : Elist_Id);
348 -- Build the list of entities for a constrained discriminated record
349 -- subtype. If a component depends on a discriminant, replace its subtype
350 -- using the discriminant values in the discriminant constraint. Subt
351 -- is the defining identifier for the subtype whose list of constrained
352 -- entities we will create. Decl_Node is the type declaration node where
353 -- we will attach all the itypes created. Typ is the base discriminated
354 -- type for the subtype Subt. Constraints is the list of discriminant
355 -- constraints for Typ.
357 function Constrain_Component_Type
358 (Comp : Entity_Id;
359 Constrained_Typ : Entity_Id;
360 Related_Node : Node_Id;
361 Typ : Entity_Id;
362 Constraints : Elist_Id) return Entity_Id;
363 -- Given a discriminated base type Typ, a list of discriminant constraints,
364 -- Constraints, for Typ and a component Comp of Typ, create and return the
365 -- type corresponding to Etype (Comp) where all discriminant references
366 -- are replaced with the corresponding constraint. If Etype (Comp) contains
367 -- no discriminant references then it is returned as-is. Constrained_Typ
368 -- is the final constrained subtype to which the constrained component
369 -- belongs. Related_Node is the node where we attach all created itypes.
371 procedure Constrain_Access
372 (Def_Id : in out Entity_Id;
373 S : Node_Id;
374 Related_Nod : Node_Id);
375 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
376 -- an anonymous type created for a subtype indication. In that case it is
377 -- created in the procedure and attached to Related_Nod.
379 procedure Constrain_Array
380 (Def_Id : in out Entity_Id;
381 SI : Node_Id;
382 Related_Nod : Node_Id;
383 Related_Id : Entity_Id;
384 Suffix : Character);
385 -- Apply a list of index constraints to an unconstrained array type. The
386 -- first parameter is the entity for the resulting subtype. A value of
387 -- Empty for Def_Id indicates that an implicit type must be created, but
388 -- creation is delayed (and must be done by this procedure) because other
389 -- subsidiary implicit types must be created first (which is why Def_Id
390 -- is an in/out parameter). The second parameter is a subtype indication
391 -- node for the constrained array to be created (e.g. something of the
392 -- form string (1 .. 10)). Related_Nod gives the place where this type
393 -- has to be inserted in the tree. The Related_Id and Suffix parameters
394 -- are used to build the associated Implicit type name.
396 procedure Constrain_Concurrent
397 (Def_Id : in out Entity_Id;
398 SI : Node_Id;
399 Related_Nod : Node_Id;
400 Related_Id : Entity_Id;
401 Suffix : Character);
402 -- Apply list of discriminant constraints to an unconstrained concurrent
403 -- type.
405 -- SI is the N_Subtype_Indication node containing the constraint and
406 -- the unconstrained type to constrain.
408 -- Def_Id is the entity for the resulting constrained subtype. A value
409 -- of Empty for Def_Id indicates that an implicit type must be created,
410 -- but creation is delayed (and must be done by this procedure) because
411 -- other subsidiary implicit types must be created first (which is why
412 -- Def_Id is an in/out parameter).
414 -- Related_Nod gives the place where this type has to be inserted
415 -- in the tree.
417 -- The last two arguments are used to create its external name if needed.
419 function Constrain_Corresponding_Record
420 (Prot_Subt : Entity_Id;
421 Corr_Rec : Entity_Id;
422 Related_Nod : Node_Id) return Entity_Id;
423 -- When constraining a protected type or task type with discriminants,
424 -- constrain the corresponding record with the same discriminant values.
426 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
427 -- Constrain a decimal fixed point type with a digits constraint and/or a
428 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
430 procedure Constrain_Discriminated_Type
431 (Def_Id : Entity_Id;
432 S : Node_Id;
433 Related_Nod : Node_Id;
434 For_Access : Boolean := False);
435 -- Process discriminant constraints of composite type. Verify that values
436 -- have been provided for all discriminants, that the original type is
437 -- unconstrained, and that the types of the supplied expressions match
438 -- the discriminant types. The first three parameters are like in routine
439 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
440 -- of For_Access.
442 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
443 -- Constrain an enumeration type with a range constraint. This is identical
444 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
446 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
447 -- Constrain a floating point type with either a digits constraint
448 -- and/or a range constraint, building a E_Floating_Point_Subtype.
450 procedure Constrain_Index
451 (Index : Node_Id;
452 S : Node_Id;
453 Related_Nod : Node_Id;
454 Related_Id : Entity_Id;
455 Suffix : Character;
456 Suffix_Index : Nat);
457 -- Process an index constraint S in a constrained array declaration. The
458 -- constraint can be a subtype name, or a range with or without an explicit
459 -- subtype mark. The index is the corresponding index of the unconstrained
460 -- array. The Related_Id and Suffix parameters are used to build the
461 -- associated Implicit type name.
463 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
464 -- Build subtype of a signed or modular integer type
466 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
467 -- Constrain an ordinary fixed point type with a range constraint, and
468 -- build an E_Ordinary_Fixed_Point_Subtype entity.
470 procedure Copy_And_Swap (Priv, Full : Entity_Id);
471 -- Copy the Priv entity into the entity of its full declaration then swap
472 -- the two entities in such a manner that the former private type is now
473 -- seen as a full type.
475 procedure Decimal_Fixed_Point_Type_Declaration
476 (T : Entity_Id;
477 Def : Node_Id);
478 -- Create a new decimal fixed point type, and apply the constraint to
479 -- obtain a subtype of this new type.
481 procedure Complete_Private_Subtype
482 (Priv : Entity_Id;
483 Full : Entity_Id;
484 Full_Base : Entity_Id;
485 Related_Nod : Node_Id);
486 -- Complete the implicit full view of a private subtype by setting the
487 -- appropriate semantic fields. If the full view of the parent is a record
488 -- type, build constrained components of subtype.
490 procedure Derive_Progenitor_Subprograms
491 (Parent_Type : Entity_Id;
492 Tagged_Type : Entity_Id);
493 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
494 -- operations of progenitors of Tagged_Type, and replace the subsidiary
495 -- subtypes with Tagged_Type, to build the specs of the inherited interface
496 -- primitives. The derived primitives are aliased to those of the
497 -- interface. This routine takes care also of transferring to the full view
498 -- subprograms associated with the partial view of Tagged_Type that cover
499 -- interface primitives.
501 procedure Derived_Standard_Character
502 (N : Node_Id;
503 Parent_Type : Entity_Id;
504 Derived_Type : Entity_Id);
505 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
506 -- derivations from types Standard.Character and Standard.Wide_Character.
508 procedure Derived_Type_Declaration
509 (T : Entity_Id;
510 N : Node_Id;
511 Is_Completion : Boolean);
512 -- Process a derived type declaration. Build_Derived_Type is invoked
513 -- to process the actual derived type definition. Parameters N and
514 -- Is_Completion have the same meaning as in Build_Derived_Type.
515 -- T is the N_Defining_Identifier for the entity defined in the
516 -- N_Full_Type_Declaration node N, that is T is the derived type.
518 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
519 -- Insert each literal in symbol table, as an overloadable identifier. Each
520 -- enumeration type is mapped into a sequence of integers, and each literal
521 -- is defined as a constant with integer value. If any of the literals are
522 -- character literals, the type is a character type, which means that
523 -- strings are legal aggregates for arrays of components of the type.
525 function Expand_To_Stored_Constraint
526 (Typ : Entity_Id;
527 Constraint : Elist_Id) return Elist_Id;
528 -- Given a constraint (i.e. a list of expressions) on the discriminants of
529 -- Typ, expand it into a constraint on the stored discriminants and return
530 -- the new list of expressions constraining the stored discriminants.
532 function Find_Type_Of_Object
533 (Obj_Def : Node_Id;
534 Related_Nod : Node_Id) return Entity_Id;
535 -- Get type entity for object referenced by Obj_Def, attaching the
536 -- implicit types generated to Related_Nod
538 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
539 -- Create a new float and apply the constraint to obtain subtype of it
541 function Has_Range_Constraint (N : Node_Id) return Boolean;
542 -- Given an N_Subtype_Indication node N, return True if a range constraint
543 -- is present, either directly, or as part of a digits or delta constraint.
544 -- In addition, a digits constraint in the decimal case returns True, since
545 -- it establishes a default range if no explicit range is present.
547 function Inherit_Components
548 (N : Node_Id;
549 Parent_Base : Entity_Id;
550 Derived_Base : Entity_Id;
551 Is_Tagged : Boolean;
552 Inherit_Discr : Boolean;
553 Discs : Elist_Id) return Elist_Id;
554 -- Called from Build_Derived_Record_Type to inherit the components of
555 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
556 -- For more information on derived types and component inheritance please
557 -- consult the comment above the body of Build_Derived_Record_Type.
559 -- N is the original derived type declaration
561 -- Is_Tagged is set if we are dealing with tagged types
563 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
564 -- Parent_Base, otherwise no discriminants are inherited.
566 -- Discs gives the list of constraints that apply to Parent_Base in the
567 -- derived type declaration. If Discs is set to No_Elist, then we have
568 -- the following situation:
570 -- type Parent (D1..Dn : ..) is [tagged] record ...;
571 -- type Derived is new Parent [with ...];
573 -- which gets treated as
575 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
577 -- For untagged types the returned value is an association list. The list
578 -- starts from the association (Parent_Base => Derived_Base), and then it
579 -- contains a sequence of the associations of the form
581 -- (Old_Component => New_Component),
583 -- where Old_Component is the Entity_Id of a component in Parent_Base and
584 -- New_Component is the Entity_Id of the corresponding component in
585 -- Derived_Base. For untagged records, this association list is needed when
586 -- copying the record declaration for the derived base. In the tagged case
587 -- the value returned is irrelevant.
589 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
590 -- Propagate static and dynamic predicate flags from a parent to the
591 -- subtype in a subtype declaration with and without constraints.
593 function Is_Valid_Constraint_Kind
594 (T_Kind : Type_Kind;
595 Constraint_Kind : Node_Kind) return Boolean;
596 -- Returns True if it is legal to apply the given kind of constraint to the
597 -- given kind of type (index constraint to an array type, for example).
599 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
600 -- Create new modular type. Verify that modulus is in bounds
602 procedure New_Concatenation_Op (Typ : Entity_Id);
603 -- Create an abbreviated declaration for an operator in order to
604 -- materialize concatenation on array types.
606 procedure Ordinary_Fixed_Point_Type_Declaration
607 (T : Entity_Id;
608 Def : Node_Id);
609 -- Create a new ordinary fixed point type, and apply the constraint to
610 -- obtain subtype of it.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
732 begin
733 Check_SPARK_Restriction ("access type is not allowed", N);
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
758 declare
759 Par : Node_Id;
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
837 if Present (Access_To_Subprogram_Definition (N)) then
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
863 if Ekind (Current_Scope) = E_Protected_Type then
864 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
865 end if;
867 return Anon_Type;
868 end if;
870 Find_Type (Subtype_Mark (N));
871 Desig_Type := Entity (Subtype_Mark (N));
873 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
874 Set_Etype (Anon_Type, Anon_Type);
876 -- Make sure the anonymous access type has size and alignment fields
877 -- set, as required by gigi. This is necessary in the case of the
878 -- Task_Body_Procedure.
880 if not Has_Private_Component (Desig_Type) then
881 Layout_Type (Anon_Type);
882 end if;
884 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
885 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
886 -- the null value is allowed. In Ada 95 the null value is never allowed.
888 if Ada_Version >= Ada_2005 then
889 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
890 else
891 Set_Can_Never_Be_Null (Anon_Type, True);
892 end if;
894 -- The anonymous access type is as public as the discriminated type or
895 -- subprogram that defines it. It is imported (for back-end purposes)
896 -- if the designated type is.
898 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
900 -- Ada 2005 (AI-231): Propagate the access-constant attribute
902 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
904 -- The context is either a subprogram declaration, object declaration,
905 -- or an access discriminant, in a private or a full type declaration.
906 -- In the case of a subprogram, if the designated type is incomplete,
907 -- the operation will be a primitive operation of the full type, to be
908 -- updated subsequently. If the type is imported through a limited_with
909 -- clause, the subprogram is not a primitive operation of the type
910 -- (which is declared elsewhere in some other scope).
912 if Ekind (Desig_Type) = E_Incomplete_Type
913 and then not From_Limited_With (Desig_Type)
914 and then Is_Overloadable (Current_Scope)
915 then
916 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
917 Set_Has_Delayed_Freeze (Current_Scope);
918 end if;
920 -- Ada 2005: If the designated type is an interface that may contain
921 -- tasks, create a Master entity for the declaration. This must be done
922 -- before expansion of the full declaration, because the declaration may
923 -- include an expression that is an allocator, whose expansion needs the
924 -- proper Master for the created tasks.
926 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
927 then
928 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
929 then
930 Build_Class_Wide_Master (Anon_Type);
932 -- Similarly, if the type is an anonymous access that designates
933 -- tasks, create a master entity for it in the current context.
935 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
936 then
937 Build_Master_Entity (Defining_Identifier (Related_Nod));
938 Build_Master_Renaming (Anon_Type);
939 end if;
940 end if;
942 -- For a private component of a protected type, it is imperative that
943 -- the back-end elaborate the type immediately after the protected
944 -- declaration, because this type will be used in the declarations
945 -- created for the component within each protected body, so we must
946 -- create an itype reference for it now.
948 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
949 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
951 -- Similarly, if the access definition is the return result of a
952 -- function, create an itype reference for it because it will be used
953 -- within the function body. For a regular function that is not a
954 -- compilation unit, insert reference after the declaration. For a
955 -- protected operation, insert it after the enclosing protected type
956 -- declaration. In either case, do not create a reference for a type
957 -- obtained through a limited_with clause, because this would introduce
958 -- semantic dependencies.
960 -- Similarly, do not create a reference if the designated type is a
961 -- generic formal, because no use of it will reach the backend.
963 elsif Nkind (Related_Nod) = N_Function_Specification
964 and then not From_Limited_With (Desig_Type)
965 and then not Is_Generic_Type (Desig_Type)
966 then
967 if Present (Enclosing_Prot_Type) then
968 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
970 elsif Is_List_Member (Parent (Related_Nod))
971 and then Nkind (Parent (N)) /= N_Parameter_Specification
972 then
973 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
974 end if;
976 -- Finally, create an itype reference for an object declaration of an
977 -- anonymous access type. This is strictly necessary only for deferred
978 -- constants, but in any case will avoid out-of-scope problems in the
979 -- back-end.
981 elsif Nkind (Related_Nod) = N_Object_Declaration then
982 Build_Itype_Reference (Anon_Type, Related_Nod);
983 end if;
985 return Anon_Type;
986 end Access_Definition;
988 -----------------------------------
989 -- Access_Subprogram_Declaration --
990 -----------------------------------
992 procedure Access_Subprogram_Declaration
993 (T_Name : Entity_Id;
994 T_Def : Node_Id)
996 procedure Check_For_Premature_Usage (Def : Node_Id);
997 -- Check that type T_Name is not used, directly or recursively, as a
998 -- parameter or a return type in Def. Def is either a subtype, an
999 -- access_definition, or an access_to_subprogram_definition.
1001 -------------------------------
1002 -- Check_For_Premature_Usage --
1003 -------------------------------
1005 procedure Check_For_Premature_Usage (Def : Node_Id) is
1006 Param : Node_Id;
1008 begin
1009 -- Check for a subtype mark
1011 if Nkind (Def) in N_Has_Etype then
1012 if Etype (Def) = T_Name then
1013 Error_Msg_N
1014 ("type& cannot be used before end of its declaration", Def);
1015 end if;
1017 -- If this is not a subtype, then this is an access_definition
1019 elsif Nkind (Def) = N_Access_Definition then
1020 if Present (Access_To_Subprogram_Definition (Def)) then
1021 Check_For_Premature_Usage
1022 (Access_To_Subprogram_Definition (Def));
1023 else
1024 Check_For_Premature_Usage (Subtype_Mark (Def));
1025 end if;
1027 -- The only cases left are N_Access_Function_Definition and
1028 -- N_Access_Procedure_Definition.
1030 else
1031 if Present (Parameter_Specifications (Def)) then
1032 Param := First (Parameter_Specifications (Def));
1033 while Present (Param) loop
1034 Check_For_Premature_Usage (Parameter_Type (Param));
1035 Param := Next (Param);
1036 end loop;
1037 end if;
1039 if Nkind (Def) = N_Access_Function_Definition then
1040 Check_For_Premature_Usage (Result_Definition (Def));
1041 end if;
1042 end if;
1043 end Check_For_Premature_Usage;
1045 -- Local variables
1047 Formals : constant List_Id := Parameter_Specifications (T_Def);
1048 Formal : Entity_Id;
1049 D_Ityp : Node_Id;
1050 Desig_Type : constant Entity_Id :=
1051 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1053 -- Start of processing for Access_Subprogram_Declaration
1055 begin
1056 Check_SPARK_Restriction ("access type is not allowed", T_Def);
1058 -- Associate the Itype node with the inner full-type declaration or
1059 -- subprogram spec or entry body. This is required to handle nested
1060 -- anonymous declarations. For example:
1062 -- procedure P
1063 -- (X : access procedure
1064 -- (Y : access procedure
1065 -- (Z : access T)))
1067 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1068 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1069 N_Private_Type_Declaration,
1070 N_Private_Extension_Declaration,
1071 N_Procedure_Specification,
1072 N_Function_Specification,
1073 N_Entry_Body)
1075 or else
1076 Nkind_In (D_Ityp, N_Object_Declaration,
1077 N_Object_Renaming_Declaration,
1078 N_Formal_Object_Declaration,
1079 N_Formal_Type_Declaration,
1080 N_Task_Type_Declaration,
1081 N_Protected_Type_Declaration))
1082 loop
1083 D_Ityp := Parent (D_Ityp);
1084 pragma Assert (D_Ityp /= Empty);
1085 end loop;
1087 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1089 if Nkind_In (D_Ityp, N_Procedure_Specification,
1090 N_Function_Specification)
1091 then
1092 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1094 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1095 N_Object_Declaration,
1096 N_Object_Renaming_Declaration,
1097 N_Formal_Type_Declaration)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1100 end if;
1102 if Nkind (T_Def) = N_Access_Function_Definition then
1103 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1104 declare
1105 Acc : constant Node_Id := Result_Definition (T_Def);
1107 begin
1108 if Present (Access_To_Subprogram_Definition (Acc))
1109 and then
1110 Protected_Present (Access_To_Subprogram_Definition (Acc))
1111 then
1112 Set_Etype
1113 (Desig_Type,
1114 Replace_Anonymous_Access_To_Protected_Subprogram
1115 (T_Def));
1117 else
1118 Set_Etype
1119 (Desig_Type,
1120 Access_Definition (T_Def, Result_Definition (T_Def)));
1121 end if;
1122 end;
1124 else
1125 Analyze (Result_Definition (T_Def));
1127 declare
1128 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1130 begin
1131 -- If a null exclusion is imposed on the result type, then
1132 -- create a null-excluding itype (an access subtype) and use
1133 -- it as the function's Etype.
1135 if Is_Access_Type (Typ)
1136 and then Null_Exclusion_In_Return_Present (T_Def)
1137 then
1138 Set_Etype (Desig_Type,
1139 Create_Null_Excluding_Itype
1140 (T => Typ,
1141 Related_Nod => T_Def,
1142 Scope_Id => Current_Scope));
1144 else
1145 if From_Limited_With (Typ) then
1147 -- AI05-151: Incomplete types are allowed in all basic
1148 -- declarations, including access to subprograms.
1150 if Ada_Version >= Ada_2012 then
1151 null;
1153 else
1154 Error_Msg_NE
1155 ("illegal use of incomplete type&",
1156 Result_Definition (T_Def), Typ);
1157 end if;
1159 elsif Ekind (Current_Scope) = E_Package
1160 and then In_Private_Part (Current_Scope)
1161 then
1162 if Ekind (Typ) = E_Incomplete_Type then
1163 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1165 elsif Is_Class_Wide_Type (Typ)
1166 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1167 then
1168 Append_Elmt
1169 (Desig_Type, Private_Dependents (Etype (Typ)));
1170 end if;
1171 end if;
1173 Set_Etype (Desig_Type, Typ);
1174 end if;
1175 end;
1176 end if;
1178 if not (Is_Type (Etype (Desig_Type))) then
1179 Error_Msg_N
1180 ("expect type in function specification",
1181 Result_Definition (T_Def));
1182 end if;
1184 else
1185 Set_Etype (Desig_Type, Standard_Void_Type);
1186 end if;
1188 if Present (Formals) then
1189 Push_Scope (Desig_Type);
1191 -- Some special tests here. These special tests can be removed
1192 -- if and when Itypes always have proper parent pointers to their
1193 -- declarations???
1195 -- Special test 1) Link defining_identifier of formals. Required by
1196 -- First_Formal to provide its functionality.
1198 declare
1199 F : Node_Id;
1201 begin
1202 F := First (Formals);
1204 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1205 -- when it is part of an unconstrained type and subtype expansion
1206 -- is disabled. To avoid back-end problems with shared profiles,
1207 -- use previous subprogram type as the designated type, and then
1208 -- remove scope added above.
1210 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1211 then
1212 Set_Etype (T_Name, T_Name);
1213 Init_Size_Align (T_Name);
1214 Set_Directly_Designated_Type (T_Name,
1215 Scope (Defining_Identifier (F)));
1216 End_Scope;
1217 return;
1218 end if;
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1225 Next (F);
1226 end loop;
1227 end;
1229 Process_Formals (Formals, Parent (T_Def));
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1240 -- Check for premature usage of the type being defined
1242 Check_For_Premature_Usage (T_Def);
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1276 May_Need_Actuals (Desig_Type);
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1290 Check_Delayed_Subprogram (Desig_Type);
1292 if Protected_Present (T_Def) then
1293 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1299 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1301 Set_Etype (T_Name, T_Name);
1302 Init_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1305 Generate_Reference_To_Formals (T_Name);
1307 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1309 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1311 Check_Restriction (No_Access_Subprograms, T_Def);
1312 end Access_Subprogram_Declaration;
1314 ----------------------------
1315 -- Access_Type_Declaration --
1316 ----------------------------
1318 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1319 P : constant Node_Id := Parent (Def);
1320 S : constant Node_Id := Subtype_Indication (Def);
1322 Full_Desig : Entity_Id;
1324 begin
1325 Check_SPARK_Restriction ("access type is not allowed", Def);
1327 -- Check for permissible use of incomplete type
1329 if Nkind (S) /= N_Subtype_Indication then
1330 Analyze (S);
1332 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1333 Set_Directly_Designated_Type (T, Entity (S));
1335 -- If the designated type is a limited view, we cannot tell if
1336 -- the full view contains tasks, and there is no way to handle
1337 -- that full view in a client. We create a master entity for the
1338 -- scope, which will be used when a client determines that one
1339 -- is needed.
1341 if From_Limited_With (Entity (S))
1342 and then not Is_Class_Wide_Type (Entity (S))
1343 then
1344 Set_Ekind (T, E_Access_Type);
1345 Build_Master_Entity (T);
1346 Build_Master_Renaming (T);
1347 end if;
1349 else
1350 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1351 end if;
1353 -- If the access definition is of the form: ACCESS NOT NULL ..
1354 -- the subtype indication must be of an access type. Create
1355 -- a null-excluding subtype of it.
1357 if Null_Excluding_Subtype (Def) then
1358 if not Is_Access_Type (Entity (S)) then
1359 Error_Msg_N ("null exclusion must apply to access type", Def);
1361 else
1362 declare
1363 Loc : constant Source_Ptr := Sloc (S);
1364 Decl : Node_Id;
1365 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1367 begin
1368 Decl :=
1369 Make_Subtype_Declaration (Loc,
1370 Defining_Identifier => Nam,
1371 Subtype_Indication =>
1372 New_Occurrence_Of (Entity (S), Loc));
1373 Set_Null_Exclusion_Present (Decl);
1374 Insert_Before (Parent (Def), Decl);
1375 Analyze (Decl);
1376 Set_Entity (S, Nam);
1377 end;
1378 end if;
1379 end if;
1381 else
1382 Set_Directly_Designated_Type (T,
1383 Process_Subtype (S, P, T, 'P'));
1384 end if;
1386 if All_Present (Def) or Constant_Present (Def) then
1387 Set_Ekind (T, E_General_Access_Type);
1388 else
1389 Set_Ekind (T, E_Access_Type);
1390 end if;
1392 Full_Desig := Designated_Type (T);
1394 if Base_Type (Full_Desig) = T then
1395 Error_Msg_N ("access type cannot designate itself", S);
1397 -- In Ada 2005, the type may have a limited view through some unit in
1398 -- its own context, allowing the following circularity that cannot be
1399 -- detected earlier.
1401 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1402 then
1403 Error_Msg_N
1404 ("access type cannot designate its own classwide type", S);
1406 -- Clean up indication of tagged status to prevent cascaded errors
1408 Set_Is_Tagged_Type (T, False);
1409 end if;
1411 Set_Etype (T, T);
1413 -- If the type has appeared already in a with_type clause, it is frozen
1414 -- and the pointer size is already set. Else, initialize.
1416 if not From_Limited_With (T) then
1417 Init_Size_Align (T);
1418 end if;
1420 -- Note that Has_Task is always false, since the access type itself
1421 -- is not a task type. See Einfo for more description on this point.
1422 -- Exactly the same consideration applies to Has_Controlled_Component
1423 -- and to Has_Protected.
1425 Set_Has_Task (T, False);
1426 Set_Has_Controlled_Component (T, False);
1427 Set_Has_Protected (T, False);
1429 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1430 -- problems where an incomplete view of this entity has been previously
1431 -- established by a limited with and an overlaid version of this field
1432 -- (Stored_Constraint) was initialized for the incomplete view.
1434 -- This reset is performed in most cases except where the access type
1435 -- has been created for the purposes of allocating or deallocating a
1436 -- build-in-place object. Such access types have explicitly set pools
1437 -- and finalization masters.
1439 if No (Associated_Storage_Pool (T)) then
1440 Set_Finalization_Master (T, Empty);
1441 end if;
1443 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1444 -- attributes
1446 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1447 Set_Is_Access_Constant (T, Constant_Present (Def));
1448 end Access_Type_Declaration;
1450 ----------------------------------
1451 -- Add_Interface_Tag_Components --
1452 ----------------------------------
1454 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1455 Loc : constant Source_Ptr := Sloc (N);
1456 L : List_Id;
1457 Last_Tag : Node_Id;
1459 procedure Add_Tag (Iface : Entity_Id);
1460 -- Add tag for one of the progenitor interfaces
1462 -------------
1463 -- Add_Tag --
1464 -------------
1466 procedure Add_Tag (Iface : Entity_Id) is
1467 Decl : Node_Id;
1468 Def : Node_Id;
1469 Tag : Entity_Id;
1470 Offset : Entity_Id;
1472 begin
1473 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1475 -- This is a reasonable place to propagate predicates
1477 if Has_Predicates (Iface) then
1478 Set_Has_Predicates (Typ);
1479 end if;
1481 Def :=
1482 Make_Component_Definition (Loc,
1483 Aliased_Present => True,
1484 Subtype_Indication =>
1485 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1487 Tag := Make_Temporary (Loc, 'V');
1489 Decl :=
1490 Make_Component_Declaration (Loc,
1491 Defining_Identifier => Tag,
1492 Component_Definition => Def);
1494 Analyze_Component_Declaration (Decl);
1496 Set_Analyzed (Decl);
1497 Set_Ekind (Tag, E_Component);
1498 Set_Is_Tag (Tag);
1499 Set_Is_Aliased (Tag);
1500 Set_Related_Type (Tag, Iface);
1501 Init_Component_Location (Tag);
1503 pragma Assert (Is_Frozen (Iface));
1505 Set_DT_Entry_Count (Tag,
1506 DT_Entry_Count (First_Entity (Iface)));
1508 if No (Last_Tag) then
1509 Prepend (Decl, L);
1510 else
1511 Insert_After (Last_Tag, Decl);
1512 end if;
1514 Last_Tag := Decl;
1516 -- If the ancestor has discriminants we need to give special support
1517 -- to store the offset_to_top value of the secondary dispatch tables.
1518 -- For this purpose we add a supplementary component just after the
1519 -- field that contains the tag associated with each secondary DT.
1521 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1522 Def :=
1523 Make_Component_Definition (Loc,
1524 Subtype_Indication =>
1525 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1527 Offset := Make_Temporary (Loc, 'V');
1529 Decl :=
1530 Make_Component_Declaration (Loc,
1531 Defining_Identifier => Offset,
1532 Component_Definition => Def);
1534 Analyze_Component_Declaration (Decl);
1536 Set_Analyzed (Decl);
1537 Set_Ekind (Offset, E_Component);
1538 Set_Is_Aliased (Offset);
1539 Set_Related_Type (Offset, Iface);
1540 Init_Component_Location (Offset);
1541 Insert_After (Last_Tag, Decl);
1542 Last_Tag := Decl;
1543 end if;
1544 end Add_Tag;
1546 -- Local variables
1548 Elmt : Elmt_Id;
1549 Ext : Node_Id;
1550 Comp : Node_Id;
1552 -- Start of processing for Add_Interface_Tag_Components
1554 begin
1555 if not RTE_Available (RE_Interface_Tag) then
1556 Error_Msg
1557 ("(Ada 2005) interface types not supported by this run-time!",
1558 Sloc (N));
1559 return;
1560 end if;
1562 if Ekind (Typ) /= E_Record_Type
1563 or else (Is_Concurrent_Record_Type (Typ)
1564 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1565 or else (not Is_Concurrent_Record_Type (Typ)
1566 and then No (Interfaces (Typ))
1567 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1568 then
1569 return;
1570 end if;
1572 -- Find the current last tag
1574 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1575 Ext := Record_Extension_Part (Type_Definition (N));
1576 else
1577 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1578 Ext := Type_Definition (N);
1579 end if;
1581 Last_Tag := Empty;
1583 if not (Present (Component_List (Ext))) then
1584 Set_Null_Present (Ext, False);
1585 L := New_List;
1586 Set_Component_List (Ext,
1587 Make_Component_List (Loc,
1588 Component_Items => L,
1589 Null_Present => False));
1590 else
1591 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1592 L := Component_Items
1593 (Component_List
1594 (Record_Extension_Part
1595 (Type_Definition (N))));
1596 else
1597 L := Component_Items
1598 (Component_List
1599 (Type_Definition (N)));
1600 end if;
1602 -- Find the last tag component
1604 Comp := First (L);
1605 while Present (Comp) loop
1606 if Nkind (Comp) = N_Component_Declaration
1607 and then Is_Tag (Defining_Identifier (Comp))
1608 then
1609 Last_Tag := Comp;
1610 end if;
1612 Next (Comp);
1613 end loop;
1614 end if;
1616 -- At this point L references the list of components and Last_Tag
1617 -- references the current last tag (if any). Now we add the tag
1618 -- corresponding with all the interfaces that are not implemented
1619 -- by the parent.
1621 if Present (Interfaces (Typ)) then
1622 Elmt := First_Elmt (Interfaces (Typ));
1623 while Present (Elmt) loop
1624 Add_Tag (Node (Elmt));
1625 Next_Elmt (Elmt);
1626 end loop;
1627 end if;
1628 end Add_Interface_Tag_Components;
1630 -------------------------------------
1631 -- Add_Internal_Interface_Entities --
1632 -------------------------------------
1634 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1635 Elmt : Elmt_Id;
1636 Iface : Entity_Id;
1637 Iface_Elmt : Elmt_Id;
1638 Iface_Prim : Entity_Id;
1639 Ifaces_List : Elist_Id;
1640 New_Subp : Entity_Id := Empty;
1641 Prim : Entity_Id;
1642 Restore_Scope : Boolean := False;
1644 begin
1645 pragma Assert (Ada_Version >= Ada_2005
1646 and then Is_Record_Type (Tagged_Type)
1647 and then Is_Tagged_Type (Tagged_Type)
1648 and then Has_Interfaces (Tagged_Type)
1649 and then not Is_Interface (Tagged_Type));
1651 -- Ensure that the internal entities are added to the scope of the type
1653 if Scope (Tagged_Type) /= Current_Scope then
1654 Push_Scope (Scope (Tagged_Type));
1655 Restore_Scope := True;
1656 end if;
1658 Collect_Interfaces (Tagged_Type, Ifaces_List);
1660 Iface_Elmt := First_Elmt (Ifaces_List);
1661 while Present (Iface_Elmt) loop
1662 Iface := Node (Iface_Elmt);
1664 -- Originally we excluded here from this processing interfaces that
1665 -- are parents of Tagged_Type because their primitives are located
1666 -- in the primary dispatch table (and hence no auxiliary internal
1667 -- entities are required to handle secondary dispatch tables in such
1668 -- case). However, these auxiliary entities are also required to
1669 -- handle derivations of interfaces in formals of generics (see
1670 -- Derive_Subprograms).
1672 Elmt := First_Elmt (Primitive_Operations (Iface));
1673 while Present (Elmt) loop
1674 Iface_Prim := Node (Elmt);
1676 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1677 Prim :=
1678 Find_Primitive_Covering_Interface
1679 (Tagged_Type => Tagged_Type,
1680 Iface_Prim => Iface_Prim);
1682 if No (Prim) and then Serious_Errors_Detected > 0 then
1683 goto Continue;
1684 end if;
1686 pragma Assert (Present (Prim));
1688 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1689 -- differs from the name of the interface primitive then it is
1690 -- a private primitive inherited from a parent type. In such
1691 -- case, given that Tagged_Type covers the interface, the
1692 -- inherited private primitive becomes visible. For such
1693 -- purpose we add a new entity that renames the inherited
1694 -- private primitive.
1696 if Chars (Prim) /= Chars (Iface_Prim) then
1697 pragma Assert (Has_Suffix (Prim, 'P'));
1698 Derive_Subprogram
1699 (New_Subp => New_Subp,
1700 Parent_Subp => Iface_Prim,
1701 Derived_Type => Tagged_Type,
1702 Parent_Type => Iface);
1703 Set_Alias (New_Subp, Prim);
1704 Set_Is_Abstract_Subprogram
1705 (New_Subp, Is_Abstract_Subprogram (Prim));
1706 end if;
1708 Derive_Subprogram
1709 (New_Subp => New_Subp,
1710 Parent_Subp => Iface_Prim,
1711 Derived_Type => Tagged_Type,
1712 Parent_Type => Iface);
1714 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1715 -- associated with interface types. These entities are
1716 -- only registered in the list of primitives of its
1717 -- corresponding tagged type because they are only used
1718 -- to fill the contents of the secondary dispatch tables.
1719 -- Therefore they are removed from the homonym chains.
1721 Set_Is_Hidden (New_Subp);
1722 Set_Is_Internal (New_Subp);
1723 Set_Alias (New_Subp, Prim);
1724 Set_Is_Abstract_Subprogram
1725 (New_Subp, Is_Abstract_Subprogram (Prim));
1726 Set_Interface_Alias (New_Subp, Iface_Prim);
1728 -- If the returned type is an interface then propagate it to
1729 -- the returned type. Needed by the thunk to generate the code
1730 -- which displaces "this" to reference the corresponding
1731 -- secondary dispatch table in the returned object.
1733 if Is_Interface (Etype (Iface_Prim)) then
1734 Set_Etype (New_Subp, Etype (Iface_Prim));
1735 end if;
1737 -- Internal entities associated with interface types are
1738 -- only registered in the list of primitives of the tagged
1739 -- type. They are only used to fill the contents of the
1740 -- secondary dispatch tables. Therefore they are not needed
1741 -- in the homonym chains.
1743 Remove_Homonym (New_Subp);
1745 -- Hidden entities associated with interfaces must have set
1746 -- the Has_Delay_Freeze attribute to ensure that, in case of
1747 -- locally defined tagged types (or compiling with static
1748 -- dispatch tables generation disabled) the corresponding
1749 -- entry of the secondary dispatch table is filled when
1750 -- such an entity is frozen.
1752 Set_Has_Delayed_Freeze (New_Subp);
1753 end if;
1755 <<Continue>>
1756 Next_Elmt (Elmt);
1757 end loop;
1759 Next_Elmt (Iface_Elmt);
1760 end loop;
1762 if Restore_Scope then
1763 Pop_Scope;
1764 end if;
1765 end Add_Internal_Interface_Entities;
1767 -----------------------------------
1768 -- Analyze_Component_Declaration --
1769 -----------------------------------
1771 procedure Analyze_Component_Declaration (N : Node_Id) is
1772 Id : constant Entity_Id := Defining_Identifier (N);
1773 E : constant Node_Id := Expression (N);
1774 Typ : constant Node_Id :=
1775 Subtype_Indication (Component_Definition (N));
1776 T : Entity_Id;
1777 P : Entity_Id;
1779 function Contains_POC (Constr : Node_Id) return Boolean;
1780 -- Determines whether a constraint uses the discriminant of a record
1781 -- type thus becoming a per-object constraint (POC).
1783 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1784 -- Typ is the type of the current component, check whether this type is
1785 -- a limited type. Used to validate declaration against that of
1786 -- enclosing record.
1788 ------------------
1789 -- Contains_POC --
1790 ------------------
1792 function Contains_POC (Constr : Node_Id) return Boolean is
1793 begin
1794 -- Prevent cascaded errors
1796 if Error_Posted (Constr) then
1797 return False;
1798 end if;
1800 case Nkind (Constr) is
1801 when N_Attribute_Reference =>
1802 return Attribute_Name (Constr) = Name_Access
1803 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1805 when N_Discriminant_Association =>
1806 return Denotes_Discriminant (Expression (Constr));
1808 when N_Identifier =>
1809 return Denotes_Discriminant (Constr);
1811 when N_Index_Or_Discriminant_Constraint =>
1812 declare
1813 IDC : Node_Id;
1815 begin
1816 IDC := First (Constraints (Constr));
1817 while Present (IDC) loop
1819 -- One per-object constraint is sufficient
1821 if Contains_POC (IDC) then
1822 return True;
1823 end if;
1825 Next (IDC);
1826 end loop;
1828 return False;
1829 end;
1831 when N_Range =>
1832 return Denotes_Discriminant (Low_Bound (Constr))
1833 or else
1834 Denotes_Discriminant (High_Bound (Constr));
1836 when N_Range_Constraint =>
1837 return Denotes_Discriminant (Range_Expression (Constr));
1839 when others =>
1840 return False;
1842 end case;
1843 end Contains_POC;
1845 ----------------------
1846 -- Is_Known_Limited --
1847 ----------------------
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1850 P : constant Entity_Id := Etype (Typ);
1851 R : constant Entity_Id := Root_Type (Typ);
1853 begin
1854 if Is_Limited_Record (Typ) then
1855 return True;
1857 -- If the root type is limited (and not a limited interface)
1858 -- so is the current type
1860 elsif Is_Limited_Record (R)
1861 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1862 then
1863 return True;
1865 -- Else the type may have a limited interface progenitor, but a
1866 -- limited record parent.
1868 elsif R /= P and then Is_Limited_Record (P) then
1869 return True;
1871 else
1872 return False;
1873 end if;
1874 end Is_Known_Limited;
1876 -- Start of processing for Analyze_Component_Declaration
1878 begin
1879 Generate_Definition (Id);
1880 Enter_Name (Id);
1882 if Present (Typ) then
1883 T := Find_Type_Of_Object
1884 (Subtype_Indication (Component_Definition (N)), N);
1886 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1887 Check_SPARK_Restriction ("subtype mark required", Typ);
1888 end if;
1890 -- Ada 2005 (AI-230): Access Definition case
1892 else
1893 pragma Assert (Present
1894 (Access_Definition (Component_Definition (N))));
1896 T := Access_Definition
1897 (Related_Nod => N,
1898 N => Access_Definition (Component_Definition (N)));
1899 Set_Is_Local_Anonymous_Access (T);
1901 -- Ada 2005 (AI-254)
1903 if Present (Access_To_Subprogram_Definition
1904 (Access_Definition (Component_Definition (N))))
1905 and then Protected_Present (Access_To_Subprogram_Definition
1906 (Access_Definition
1907 (Component_Definition (N))))
1908 then
1909 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1910 end if;
1911 end if;
1913 -- If the subtype is a constrained subtype of the enclosing record,
1914 -- (which must have a partial view) the back-end does not properly
1915 -- handle the recursion. Rewrite the component declaration with an
1916 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1917 -- the tree directly because side effects have already been removed from
1918 -- discriminant constraints.
1920 if Ekind (T) = E_Access_Subtype
1921 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1922 and then Comes_From_Source (T)
1923 and then Nkind (Parent (T)) = N_Subtype_Declaration
1924 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1925 then
1926 Rewrite
1927 (Subtype_Indication (Component_Definition (N)),
1928 New_Copy_Tree (Subtype_Indication (Parent (T))));
1929 T := Find_Type_Of_Object
1930 (Subtype_Indication (Component_Definition (N)), N);
1931 end if;
1933 -- If the component declaration includes a default expression, then we
1934 -- check that the component is not of a limited type (RM 3.7(5)),
1935 -- and do the special preanalysis of the expression (see section on
1936 -- "Handling of Default and Per-Object Expressions" in the spec of
1937 -- package Sem).
1939 if Present (E) then
1940 Check_SPARK_Restriction ("default expression is not allowed", E);
1941 Preanalyze_Spec_Expression (E, T);
1942 Check_Initialization (T, E);
1944 if Ada_Version >= Ada_2005
1945 and then Ekind (T) = E_Anonymous_Access_Type
1946 and then Etype (E) /= Any_Type
1947 then
1948 -- Check RM 3.9.2(9): "if the expected type for an expression is
1949 -- an anonymous access-to-specific tagged type, then the object
1950 -- designated by the expression shall not be dynamically tagged
1951 -- unless it is a controlling operand in a call on a dispatching
1952 -- operation"
1954 if Is_Tagged_Type (Directly_Designated_Type (T))
1955 and then
1956 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1957 and then
1958 Ekind (Directly_Designated_Type (Etype (E))) =
1959 E_Class_Wide_Type
1960 then
1961 Error_Msg_N
1962 ("access to specific tagged type required (RM 3.9.2(9))", E);
1963 end if;
1965 -- (Ada 2005: AI-230): Accessibility check for anonymous
1966 -- components
1968 if Type_Access_Level (Etype (E)) >
1969 Deepest_Type_Access_Level (T)
1970 then
1971 Error_Msg_N
1972 ("expression has deeper access level than component " &
1973 "(RM 3.10.2 (12.2))", E);
1974 end if;
1976 -- The initialization expression is a reference to an access
1977 -- discriminant. The type of the discriminant is always deeper
1978 -- than any access type.
1980 if Ekind (Etype (E)) = E_Anonymous_Access_Type
1981 and then Is_Entity_Name (E)
1982 and then Ekind (Entity (E)) = E_In_Parameter
1983 and then Present (Discriminal_Link (Entity (E)))
1984 then
1985 Error_Msg_N
1986 ("discriminant has deeper accessibility level than target",
1988 end if;
1989 end if;
1990 end if;
1992 -- The parent type may be a private view with unknown discriminants,
1993 -- and thus unconstrained. Regular components must be constrained.
1995 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1996 if Is_Class_Wide_Type (T) then
1997 Error_Msg_N
1998 ("class-wide subtype with unknown discriminants" &
1999 " in component declaration",
2000 Subtype_Indication (Component_Definition (N)));
2001 else
2002 Error_Msg_N
2003 ("unconstrained subtype in component declaration",
2004 Subtype_Indication (Component_Definition (N)));
2005 end if;
2007 -- Components cannot be abstract, except for the special case of
2008 -- the _Parent field (case of extending an abstract tagged type)
2010 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2011 Error_Msg_N ("type of a component cannot be abstract", N);
2012 end if;
2014 Set_Etype (Id, T);
2015 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2017 -- The component declaration may have a per-object constraint, set
2018 -- the appropriate flag in the defining identifier of the subtype.
2020 if Present (Subtype_Indication (Component_Definition (N))) then
2021 declare
2022 Sindic : constant Node_Id :=
2023 Subtype_Indication (Component_Definition (N));
2024 begin
2025 if Nkind (Sindic) = N_Subtype_Indication
2026 and then Present (Constraint (Sindic))
2027 and then Contains_POC (Constraint (Sindic))
2028 then
2029 Set_Has_Per_Object_Constraint (Id);
2030 end if;
2031 end;
2032 end if;
2034 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2035 -- out some static checks.
2037 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2038 Null_Exclusion_Static_Checks (N);
2039 end if;
2041 -- If this component is private (or depends on a private type), flag the
2042 -- record type to indicate that some operations are not available.
2044 P := Private_Component (T);
2046 if Present (P) then
2048 -- Check for circular definitions
2050 if P = Any_Type then
2051 Set_Etype (Id, Any_Type);
2053 -- There is a gap in the visibility of operations only if the
2054 -- component type is not defined in the scope of the record type.
2056 elsif Scope (P) = Scope (Current_Scope) then
2057 null;
2059 elsif Is_Limited_Type (P) then
2060 Set_Is_Limited_Composite (Current_Scope);
2062 else
2063 Set_Is_Private_Composite (Current_Scope);
2064 end if;
2065 end if;
2067 if P /= Any_Type
2068 and then Is_Limited_Type (T)
2069 and then Chars (Id) /= Name_uParent
2070 and then Is_Tagged_Type (Current_Scope)
2071 then
2072 if Is_Derived_Type (Current_Scope)
2073 and then not Is_Known_Limited (Current_Scope)
2074 then
2075 Error_Msg_N
2076 ("extension of nonlimited type cannot have limited components",
2079 if Is_Interface (Root_Type (Current_Scope)) then
2080 Error_Msg_N
2081 ("\limitedness is not inherited from limited interface", N);
2082 Error_Msg_N ("\add LIMITED to type indication", N);
2083 end if;
2085 Explain_Limited_Type (T, N);
2086 Set_Etype (Id, Any_Type);
2087 Set_Is_Limited_Composite (Current_Scope, False);
2089 elsif not Is_Derived_Type (Current_Scope)
2090 and then not Is_Limited_Record (Current_Scope)
2091 and then not Is_Concurrent_Type (Current_Scope)
2092 then
2093 Error_Msg_N
2094 ("nonlimited tagged type cannot have limited components", N);
2095 Explain_Limited_Type (T, N);
2096 Set_Etype (Id, Any_Type);
2097 Set_Is_Limited_Composite (Current_Scope, False);
2098 end if;
2099 end if;
2101 Set_Original_Record_Component (Id, Id);
2103 if Has_Aspects (N) then
2104 Analyze_Aspect_Specifications (N, Id);
2105 end if;
2107 Analyze_Dimension (N);
2108 end Analyze_Component_Declaration;
2110 --------------------------
2111 -- Analyze_Declarations --
2112 --------------------------
2114 procedure Analyze_Declarations (L : List_Id) is
2115 Decl : Node_Id;
2117 procedure Adjust_Decl;
2118 -- Adjust Decl not to include implicit label declarations, since these
2119 -- have strange Sloc values that result in elaboration check problems.
2120 -- (They have the sloc of the label as found in the source, and that
2121 -- is ahead of the current declarative part).
2123 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2124 -- Determine whether Body_Decl denotes the body of a late controlled
2125 -- primitive (either Initialize, Adjust or Finalize). If this is the
2126 -- case, add a proper spec if the body lacks one. The spec is inserted
2127 -- before Body_Decl and immedately analyzed.
2129 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2130 -- Spec_Id is the entity of a package that may define abstract states.
2131 -- If the states have visible refinement, remove the visibility of each
2132 -- constituent at the end of the package body declarations.
2134 -----------------
2135 -- Adjust_Decl --
2136 -----------------
2138 procedure Adjust_Decl is
2139 begin
2140 while Present (Prev (Decl))
2141 and then Nkind (Decl) = N_Implicit_Label_Declaration
2142 loop
2143 Prev (Decl);
2144 end loop;
2145 end Adjust_Decl;
2147 --------------------------------------
2148 -- Handle_Late_Controlled_Primitive --
2149 --------------------------------------
2151 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2152 Body_Spec : constant Node_Id := Specification (Body_Decl);
2153 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2154 Loc : constant Source_Ptr := Sloc (Body_Id);
2155 Params : constant List_Id :=
2156 Parameter_Specifications (Body_Spec);
2157 Spec : Node_Id;
2158 Spec_Id : Entity_Id;
2160 Dummy : Entity_Id;
2161 -- A dummy variable used to capture the unused result of subprogram
2162 -- spec analysis.
2164 begin
2165 -- Consider only procedure bodies whose name matches one of the three
2166 -- controlled primitives.
2168 if Nkind (Body_Spec) /= N_Procedure_Specification
2169 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2170 Name_Finalize,
2171 Name_Initialize)
2172 then
2173 return;
2175 -- A controlled primitive must have exactly one formal
2177 elsif List_Length (Params) /= 1 then
2178 return;
2179 end if;
2181 Dummy := Analyze_Subprogram_Specification (Body_Spec);
2183 -- The type of the formal must be derived from [Limited_]Controlled
2185 if not Is_Controlled (Etype (Defining_Entity (First (Params)))) then
2186 return;
2187 end if;
2189 Spec_Id := Find_Corresponding_Spec (Body_Decl, Post_Error => False);
2191 -- The body has a matching spec, therefore it cannot be a late
2192 -- primitive.
2194 if Present (Spec_Id) then
2195 return;
2196 end if;
2198 -- At this point the body is known to be a late controlled primitive.
2199 -- Generate a matching spec and insert it before the body. Note the
2200 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2201 -- tree in this case.
2203 Spec := Copy_Separate_Tree (Body_Spec);
2205 -- Ensure that the subprogram declaration does not inherit the null
2206 -- indicator from the body as we now have a proper spec/body pair.
2208 Set_Null_Present (Spec, False);
2210 Insert_Before_And_Analyze (Body_Decl,
2211 Make_Subprogram_Declaration (Loc,
2212 Specification => Spec));
2213 end Handle_Late_Controlled_Primitive;
2215 --------------------------------
2216 -- Remove_Visible_Refinements --
2217 --------------------------------
2219 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2220 State_Elmt : Elmt_Id;
2221 begin
2222 if Present (Abstract_States (Spec_Id)) then
2223 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2224 while Present (State_Elmt) loop
2225 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2226 Next_Elmt (State_Elmt);
2227 end loop;
2228 end if;
2229 end Remove_Visible_Refinements;
2231 -- Local variables
2233 Context : Node_Id;
2234 Freeze_From : Entity_Id := Empty;
2235 Next_Decl : Node_Id;
2236 Spec_Id : Entity_Id;
2238 Body_Seen : Boolean := False;
2239 -- Flag set when the first body [stub] is encountered
2241 In_Package_Body : Boolean := False;
2242 -- Flag set when the current declaration list belongs to a package body
2244 -- Start of processing for Analyze_Declarations
2246 begin
2247 if Restriction_Check_Required (SPARK_05) then
2248 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2249 end if;
2251 Decl := First (L);
2252 while Present (Decl) loop
2254 -- Package spec cannot contain a package declaration in SPARK
2256 if Nkind (Decl) = N_Package_Declaration
2257 and then Nkind (Parent (L)) = N_Package_Specification
2258 then
2259 Check_SPARK_Restriction
2260 ("package specification cannot contain a package declaration",
2261 Decl);
2262 end if;
2264 -- Complete analysis of declaration
2266 Analyze (Decl);
2267 Next_Decl := Next (Decl);
2269 if No (Freeze_From) then
2270 Freeze_From := First_Entity (Current_Scope);
2271 end if;
2273 -- At the end of a declarative part, freeze remaining entities
2274 -- declared in it. The end of the visible declarations of package
2275 -- specification is not the end of a declarative part if private
2276 -- declarations are present. The end of a package declaration is a
2277 -- freezing point only if it a library package. A task definition or
2278 -- protected type definition is not a freeze point either. Finally,
2279 -- we do not freeze entities in generic scopes, because there is no
2280 -- code generated for them and freeze nodes will be generated for
2281 -- the instance.
2283 -- The end of a package instantiation is not a freeze point, but
2284 -- for now we make it one, because the generic body is inserted
2285 -- (currently) immediately after. Generic instantiations will not
2286 -- be a freeze point once delayed freezing of bodies is implemented.
2287 -- (This is needed in any case for early instantiations ???).
2289 if No (Next_Decl) then
2290 if Nkind_In (Parent (L), N_Component_List,
2291 N_Task_Definition,
2292 N_Protected_Definition)
2293 then
2294 null;
2296 elsif Nkind (Parent (L)) /= N_Package_Specification then
2297 if Nkind (Parent (L)) = N_Package_Body then
2298 Freeze_From := First_Entity (Current_Scope);
2299 end if;
2301 -- There may have been several freezing points previously,
2302 -- for example object declarations or subprogram bodies, but
2303 -- at the end of a declarative part we check freezing from
2304 -- the beginning, even though entities may already be frozen,
2305 -- in order to perform visibility checks on delayed aspects.
2307 Adjust_Decl;
2308 Freeze_All (First_Entity (Current_Scope), Decl);
2309 Freeze_From := Last_Entity (Current_Scope);
2311 elsif Scope (Current_Scope) /= Standard_Standard
2312 and then not Is_Child_Unit (Current_Scope)
2313 and then No (Generic_Parent (Parent (L)))
2314 then
2315 null;
2317 elsif L /= Visible_Declarations (Parent (L))
2318 or else No (Private_Declarations (Parent (L)))
2319 or else Is_Empty_List (Private_Declarations (Parent (L)))
2320 then
2321 Adjust_Decl;
2322 Freeze_All (First_Entity (Current_Scope), Decl);
2323 Freeze_From := Last_Entity (Current_Scope);
2324 end if;
2326 -- If next node is a body then freeze all types before the body.
2327 -- An exception occurs for some expander-generated bodies. If these
2328 -- are generated at places where in general language rules would not
2329 -- allow a freeze point, then we assume that the expander has
2330 -- explicitly checked that all required types are properly frozen,
2331 -- and we do not cause general freezing here. This special circuit
2332 -- is used when the encountered body is marked as having already
2333 -- been analyzed.
2335 -- In all other cases (bodies that come from source, and expander
2336 -- generated bodies that have not been analyzed yet), freeze all
2337 -- types now. Note that in the latter case, the expander must take
2338 -- care to attach the bodies at a proper place in the tree so as to
2339 -- not cause unwanted freezing at that point.
2341 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2343 -- When a controlled type is frozen, the expander generates stream
2344 -- and controlled type support routines. If the freeze is caused
2345 -- by the stand alone body of Initialize, Adjust and Finalize, the
2346 -- expander will end up using the wrong version of these routines
2347 -- as the body has not been processed yet. To remedy this, detect
2348 -- a late controlled primitive and create a proper spec for it.
2349 -- This ensures that the primitive will override its inherited
2350 -- counterpart before the freeze takes place.
2352 -- If the declaration we just processed is a body, do not attempt
2353 -- to examine Next_Decl as the late primitive idiom can only apply
2354 -- to the first encountered body.
2356 -- The spec of the late primitive is not generated in ASIS mode to
2357 -- ensure a consistent list of primitives that indicates the true
2358 -- semantic structure of the program (which is not relevant when
2359 -- generating executable code.
2361 -- ??? a cleaner approach may be possible and/or this solution
2362 -- could be extended to general-purpose late primitives, TBD.
2364 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2365 then
2366 Body_Seen := True;
2368 if Nkind (Next_Decl) = N_Subprogram_Body then
2369 Handle_Late_Controlled_Primitive (Next_Decl);
2370 end if;
2371 end if;
2373 Adjust_Decl;
2374 Freeze_All (Freeze_From, Decl);
2375 Freeze_From := Last_Entity (Current_Scope);
2376 end if;
2378 Decl := Next_Decl;
2379 end loop;
2381 -- Analyze the contracts of packages and their bodies
2383 if Present (L) then
2384 Context := Parent (L);
2386 if Nkind (Context) = N_Package_Specification then
2388 -- When a package has private declarations, its contract must be
2389 -- analyzed at the end of the said declarations. This way both the
2390 -- analysis and freeze actions are properly synchronized in case
2391 -- of private type use within the contract.
2393 if L = Private_Declarations (Context) then
2394 Analyze_Package_Contract (Defining_Entity (Context));
2396 -- Otherwise the contract is analyzed at the end of the visible
2397 -- declarations.
2399 elsif L = Visible_Declarations (Context)
2400 and then No (Private_Declarations (Context))
2401 then
2402 Analyze_Package_Contract (Defining_Entity (Context));
2403 end if;
2405 elsif Nkind (Context) = N_Package_Body then
2406 In_Package_Body := True;
2407 Spec_Id := Corresponding_Spec (Context);
2409 Analyze_Package_Body_Contract (Defining_Entity (Context));
2410 end if;
2411 end if;
2413 -- Analyze the contracts of subprogram declarations, subprogram bodies
2414 -- and variables now due to the delayed visibility requirements of their
2415 -- aspects.
2417 Decl := First (L);
2418 while Present (Decl) loop
2419 if Nkind (Decl) = N_Object_Declaration then
2420 Analyze_Object_Contract (Defining_Entity (Decl));
2422 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2423 N_Subprogram_Declaration)
2424 then
2425 Analyze_Subprogram_Contract (Defining_Entity (Decl));
2427 elsif Nkind (Decl) = N_Subprogram_Body then
2428 Analyze_Subprogram_Body_Contract (Defining_Entity (Decl));
2430 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2431 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2432 end if;
2434 Next (Decl);
2435 end loop;
2437 -- State refinements are visible upto the end the of the package body
2438 -- declarations. Hide the refinements from visibility to restore the
2439 -- original state conditions.
2441 if In_Package_Body then
2442 Remove_Visible_Refinements (Spec_Id);
2443 end if;
2444 end Analyze_Declarations;
2446 -----------------------------------
2447 -- Analyze_Full_Type_Declaration --
2448 -----------------------------------
2450 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2451 Def : constant Node_Id := Type_Definition (N);
2452 Def_Id : constant Entity_Id := Defining_Identifier (N);
2453 T : Entity_Id;
2454 Prev : Entity_Id;
2456 Is_Remote : constant Boolean :=
2457 (Is_Remote_Types (Current_Scope)
2458 or else Is_Remote_Call_Interface (Current_Scope))
2459 and then not (In_Private_Part (Current_Scope)
2460 or else In_Package_Body (Current_Scope));
2462 procedure Check_Ops_From_Incomplete_Type;
2463 -- If there is a tagged incomplete partial view of the type, traverse
2464 -- the primitives of the incomplete view and change the type of any
2465 -- controlling formals and result to indicate the full view. The
2466 -- primitives will be added to the full type's primitive operations
2467 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2468 -- is called from Process_Incomplete_Dependents).
2470 ------------------------------------
2471 -- Check_Ops_From_Incomplete_Type --
2472 ------------------------------------
2474 procedure Check_Ops_From_Incomplete_Type is
2475 Elmt : Elmt_Id;
2476 Formal : Entity_Id;
2477 Op : Entity_Id;
2479 begin
2480 if Prev /= T
2481 and then Ekind (Prev) = E_Incomplete_Type
2482 and then Is_Tagged_Type (Prev)
2483 and then Is_Tagged_Type (T)
2484 then
2485 Elmt := First_Elmt (Primitive_Operations (Prev));
2486 while Present (Elmt) loop
2487 Op := Node (Elmt);
2489 Formal := First_Formal (Op);
2490 while Present (Formal) loop
2491 if Etype (Formal) = Prev then
2492 Set_Etype (Formal, T);
2493 end if;
2495 Next_Formal (Formal);
2496 end loop;
2498 if Etype (Op) = Prev then
2499 Set_Etype (Op, T);
2500 end if;
2502 Next_Elmt (Elmt);
2503 end loop;
2504 end if;
2505 end Check_Ops_From_Incomplete_Type;
2507 -- Start of processing for Analyze_Full_Type_Declaration
2509 begin
2510 Prev := Find_Type_Name (N);
2512 -- The full view, if present, now points to the current type
2513 -- If there is an incomplete partial view, set a link to it, to
2514 -- simplify the retrieval of primitive operations of the type.
2516 -- Ada 2005 (AI-50217): If the type was previously decorated when
2517 -- imported through a LIMITED WITH clause, it appears as incomplete
2518 -- but has no full view.
2520 if Ekind (Prev) = E_Incomplete_Type and then Present (Full_View (Prev))
2521 then
2522 T := Full_View (Prev);
2523 Set_Incomplete_View (N, Parent (Prev));
2524 else
2525 T := Prev;
2526 end if;
2528 Set_Is_Pure (T, Is_Pure (Current_Scope));
2530 -- We set the flag Is_First_Subtype here. It is needed to set the
2531 -- corresponding flag for the Implicit class-wide-type created
2532 -- during tagged types processing.
2534 Set_Is_First_Subtype (T, True);
2536 -- Only composite types other than array types are allowed to have
2537 -- discriminants.
2539 case Nkind (Def) is
2541 -- For derived types, the rule will be checked once we've figured
2542 -- out the parent type.
2544 when N_Derived_Type_Definition =>
2545 null;
2547 -- For record types, discriminants are allowed, unless we are in
2548 -- SPARK.
2550 when N_Record_Definition =>
2551 if Present (Discriminant_Specifications (N)) then
2552 Check_SPARK_Restriction
2553 ("discriminant type is not allowed",
2554 Defining_Identifier
2555 (First (Discriminant_Specifications (N))));
2556 end if;
2558 when others =>
2559 if Present (Discriminant_Specifications (N)) then
2560 Error_Msg_N
2561 ("elementary or array type cannot have discriminants",
2562 Defining_Identifier
2563 (First (Discriminant_Specifications (N))));
2564 end if;
2565 end case;
2567 -- Elaborate the type definition according to kind, and generate
2568 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2569 -- already done (this happens during the reanalysis that follows a call
2570 -- to the high level optimizer).
2572 if not Analyzed (T) then
2573 Set_Analyzed (T);
2575 case Nkind (Def) is
2577 when N_Access_To_Subprogram_Definition =>
2578 Access_Subprogram_Declaration (T, Def);
2580 -- If this is a remote access to subprogram, we must create the
2581 -- equivalent fat pointer type, and related subprograms.
2583 if Is_Remote then
2584 Process_Remote_AST_Declaration (N);
2585 end if;
2587 -- Validate categorization rule against access type declaration
2588 -- usually a violation in Pure unit, Shared_Passive unit.
2590 Validate_Access_Type_Declaration (T, N);
2592 when N_Access_To_Object_Definition =>
2593 Access_Type_Declaration (T, Def);
2595 -- Validate categorization rule against access type declaration
2596 -- usually a violation in Pure unit, Shared_Passive unit.
2598 Validate_Access_Type_Declaration (T, N);
2600 -- If we are in a Remote_Call_Interface package and define a
2601 -- RACW, then calling stubs and specific stream attributes
2602 -- must be added.
2604 if Is_Remote
2605 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2606 then
2607 Add_RACW_Features (Def_Id);
2608 end if;
2610 -- Set no strict aliasing flag if config pragma seen
2612 if Opt.No_Strict_Aliasing then
2613 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2614 end if;
2616 when N_Array_Type_Definition =>
2617 Array_Type_Declaration (T, Def);
2619 when N_Derived_Type_Definition =>
2620 Derived_Type_Declaration (T, N, T /= Def_Id);
2622 when N_Enumeration_Type_Definition =>
2623 Enumeration_Type_Declaration (T, Def);
2625 when N_Floating_Point_Definition =>
2626 Floating_Point_Type_Declaration (T, Def);
2628 when N_Decimal_Fixed_Point_Definition =>
2629 Decimal_Fixed_Point_Type_Declaration (T, Def);
2631 when N_Ordinary_Fixed_Point_Definition =>
2632 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2634 when N_Signed_Integer_Type_Definition =>
2635 Signed_Integer_Type_Declaration (T, Def);
2637 when N_Modular_Type_Definition =>
2638 Modular_Type_Declaration (T, Def);
2640 when N_Record_Definition =>
2641 Record_Type_Declaration (T, N, Prev);
2643 -- If declaration has a parse error, nothing to elaborate.
2645 when N_Error =>
2646 null;
2648 when others =>
2649 raise Program_Error;
2651 end case;
2652 end if;
2654 if Etype (T) = Any_Type then
2655 return;
2656 end if;
2658 -- Controlled type is not allowed in SPARK
2660 if Is_Visibly_Controlled (T) then
2661 Check_SPARK_Restriction ("controlled type is not allowed", N);
2662 end if;
2664 -- Some common processing for all types
2666 Set_Depends_On_Private (T, Has_Private_Component (T));
2667 Check_Ops_From_Incomplete_Type;
2669 -- Both the declared entity, and its anonymous base type if one
2670 -- was created, need freeze nodes allocated.
2672 declare
2673 B : constant Entity_Id := Base_Type (T);
2675 begin
2676 -- In the case where the base type differs from the first subtype, we
2677 -- pre-allocate a freeze node, and set the proper link to the first
2678 -- subtype. Freeze_Entity will use this preallocated freeze node when
2679 -- it freezes the entity.
2681 -- This does not apply if the base type is a generic type, whose
2682 -- declaration is independent of the current derived definition.
2684 if B /= T and then not Is_Generic_Type (B) then
2685 Ensure_Freeze_Node (B);
2686 Set_First_Subtype_Link (Freeze_Node (B), T);
2687 end if;
2689 -- A type that is imported through a limited_with clause cannot
2690 -- generate any code, and thus need not be frozen. However, an access
2691 -- type with an imported designated type needs a finalization list,
2692 -- which may be referenced in some other package that has non-limited
2693 -- visibility on the designated type. Thus we must create the
2694 -- finalization list at the point the access type is frozen, to
2695 -- prevent unsatisfied references at link time.
2697 if not From_Limited_With (T) or else Is_Access_Type (T) then
2698 Set_Has_Delayed_Freeze (T);
2699 end if;
2700 end;
2702 -- Case where T is the full declaration of some private type which has
2703 -- been swapped in Defining_Identifier (N).
2705 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2706 Process_Full_View (N, T, Def_Id);
2708 -- Record the reference. The form of this is a little strange, since
2709 -- the full declaration has been swapped in. So the first parameter
2710 -- here represents the entity to which a reference is made which is
2711 -- the "real" entity, i.e. the one swapped in, and the second
2712 -- parameter provides the reference location.
2714 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2715 -- since we don't want a complaint about the full type being an
2716 -- unwanted reference to the private type
2718 declare
2719 B : constant Boolean := Has_Pragma_Unreferenced (T);
2720 begin
2721 Set_Has_Pragma_Unreferenced (T, False);
2722 Generate_Reference (T, T, 'c');
2723 Set_Has_Pragma_Unreferenced (T, B);
2724 end;
2726 Set_Completion_Referenced (Def_Id);
2728 -- For completion of incomplete type, process incomplete dependents
2729 -- and always mark the full type as referenced (it is the incomplete
2730 -- type that we get for any real reference).
2732 elsif Ekind (Prev) = E_Incomplete_Type then
2733 Process_Incomplete_Dependents (N, T, Prev);
2734 Generate_Reference (Prev, Def_Id, 'c');
2735 Set_Completion_Referenced (Def_Id);
2737 -- If not private type or incomplete type completion, this is a real
2738 -- definition of a new entity, so record it.
2740 else
2741 Generate_Definition (Def_Id);
2742 end if;
2744 if Chars (Scope (Def_Id)) = Name_System
2745 and then Chars (Def_Id) = Name_Address
2746 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2747 then
2748 Set_Is_Descendent_Of_Address (Def_Id);
2749 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2750 Set_Is_Descendent_Of_Address (Prev);
2751 end if;
2753 Set_Optimize_Alignment_Flags (Def_Id);
2754 Check_Eliminated (Def_Id);
2756 -- If the declaration is a completion and aspects are present, apply
2757 -- them to the entity for the type which is currently the partial
2758 -- view, but which is the one that will be frozen.
2760 if Has_Aspects (N) then
2761 if Prev /= Def_Id then
2762 Analyze_Aspect_Specifications (N, Prev);
2763 else
2764 Analyze_Aspect_Specifications (N, Def_Id);
2765 end if;
2766 end if;
2767 end Analyze_Full_Type_Declaration;
2769 ----------------------------------
2770 -- Analyze_Incomplete_Type_Decl --
2771 ----------------------------------
2773 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2774 F : constant Boolean := Is_Pure (Current_Scope);
2775 T : Entity_Id;
2777 begin
2778 Check_SPARK_Restriction ("incomplete type is not allowed", N);
2780 Generate_Definition (Defining_Identifier (N));
2782 -- Process an incomplete declaration. The identifier must not have been
2783 -- declared already in the scope. However, an incomplete declaration may
2784 -- appear in the private part of a package, for a private type that has
2785 -- already been declared.
2787 -- In this case, the discriminants (if any) must match
2789 T := Find_Type_Name (N);
2791 Set_Ekind (T, E_Incomplete_Type);
2792 Init_Size_Align (T);
2793 Set_Is_First_Subtype (T, True);
2794 Set_Etype (T, T);
2796 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
2797 -- incomplete types.
2799 if Tagged_Present (N) then
2800 Set_Is_Tagged_Type (T);
2801 Make_Class_Wide_Type (T);
2802 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2803 end if;
2805 Push_Scope (T);
2807 Set_Stored_Constraint (T, No_Elist);
2809 if Present (Discriminant_Specifications (N)) then
2810 Process_Discriminants (N);
2811 end if;
2813 End_Scope;
2815 -- If the type has discriminants, non-trivial subtypes may be
2816 -- declared before the full view of the type. The full views of those
2817 -- subtypes will be built after the full view of the type.
2819 Set_Private_Dependents (T, New_Elmt_List);
2820 Set_Is_Pure (T, F);
2821 end Analyze_Incomplete_Type_Decl;
2823 -----------------------------------
2824 -- Analyze_Interface_Declaration --
2825 -----------------------------------
2827 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
2828 CW : constant Entity_Id := Class_Wide_Type (T);
2830 begin
2831 Set_Is_Tagged_Type (T);
2833 Set_Is_Limited_Record (T, Limited_Present (Def)
2834 or else Task_Present (Def)
2835 or else Protected_Present (Def)
2836 or else Synchronized_Present (Def));
2838 -- Type is abstract if full declaration carries keyword, or if previous
2839 -- partial view did.
2841 Set_Is_Abstract_Type (T);
2842 Set_Is_Interface (T);
2844 -- Type is a limited interface if it includes the keyword limited, task,
2845 -- protected, or synchronized.
2847 Set_Is_Limited_Interface
2848 (T, Limited_Present (Def)
2849 or else Protected_Present (Def)
2850 or else Synchronized_Present (Def)
2851 or else Task_Present (Def));
2853 Set_Interfaces (T, New_Elmt_List);
2854 Set_Direct_Primitive_Operations (T, New_Elmt_List);
2856 -- Complete the decoration of the class-wide entity if it was already
2857 -- built (i.e. during the creation of the limited view)
2859 if Present (CW) then
2860 Set_Is_Interface (CW);
2861 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
2862 end if;
2864 -- Check runtime support for synchronized interfaces
2866 if VM_Target = No_VM
2867 and then (Is_Task_Interface (T)
2868 or else Is_Protected_Interface (T)
2869 or else Is_Synchronized_Interface (T))
2870 and then not RTE_Available (RE_Select_Specific_Data)
2871 then
2872 Error_Msg_CRT ("synchronized interfaces", T);
2873 end if;
2874 end Analyze_Interface_Declaration;
2876 -----------------------------
2877 -- Analyze_Itype_Reference --
2878 -----------------------------
2880 -- Nothing to do. This node is placed in the tree only for the benefit of
2881 -- back end processing, and has no effect on the semantic processing.
2883 procedure Analyze_Itype_Reference (N : Node_Id) is
2884 begin
2885 pragma Assert (Is_Itype (Itype (N)));
2886 null;
2887 end Analyze_Itype_Reference;
2889 --------------------------------
2890 -- Analyze_Number_Declaration --
2891 --------------------------------
2893 procedure Analyze_Number_Declaration (N : Node_Id) is
2894 Id : constant Entity_Id := Defining_Identifier (N);
2895 E : constant Node_Id := Expression (N);
2896 T : Entity_Id;
2897 Index : Interp_Index;
2898 It : Interp;
2900 begin
2901 Generate_Definition (Id);
2902 Enter_Name (Id);
2904 -- This is an optimization of a common case of an integer literal
2906 if Nkind (E) = N_Integer_Literal then
2907 Set_Is_Static_Expression (E, True);
2908 Set_Etype (E, Universal_Integer);
2910 Set_Etype (Id, Universal_Integer);
2911 Set_Ekind (Id, E_Named_Integer);
2912 Set_Is_Frozen (Id, True);
2913 return;
2914 end if;
2916 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2918 -- Process expression, replacing error by integer zero, to avoid
2919 -- cascaded errors or aborts further along in the processing
2921 -- Replace Error by integer zero, which seems least likely to cause
2922 -- cascaded errors.
2924 if E = Error then
2925 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
2926 Set_Error_Posted (E);
2927 end if;
2929 Analyze (E);
2931 -- Verify that the expression is static and numeric. If
2932 -- the expression is overloaded, we apply the preference
2933 -- rule that favors root numeric types.
2935 if not Is_Overloaded (E) then
2936 T := Etype (E);
2937 if Has_Dynamic_Predicate_Aspect (T) then
2938 Error_Msg_N
2939 ("subtype has dynamic predicate, "
2940 & "not allowed in number declaration", N);
2941 end if;
2943 else
2944 T := Any_Type;
2946 Get_First_Interp (E, Index, It);
2947 while Present (It.Typ) loop
2948 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
2949 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
2950 then
2951 if T = Any_Type then
2952 T := It.Typ;
2954 elsif It.Typ = Universal_Real
2955 or else It.Typ = Universal_Integer
2956 then
2957 -- Choose universal interpretation over any other
2959 T := It.Typ;
2960 exit;
2961 end if;
2962 end if;
2964 Get_Next_Interp (Index, It);
2965 end loop;
2966 end if;
2968 if Is_Integer_Type (T) then
2969 Resolve (E, T);
2970 Set_Etype (Id, Universal_Integer);
2971 Set_Ekind (Id, E_Named_Integer);
2973 elsif Is_Real_Type (T) then
2975 -- Because the real value is converted to universal_real, this is a
2976 -- legal context for a universal fixed expression.
2978 if T = Universal_Fixed then
2979 declare
2980 Loc : constant Source_Ptr := Sloc (N);
2981 Conv : constant Node_Id := Make_Type_Conversion (Loc,
2982 Subtype_Mark =>
2983 New_Occurrence_Of (Universal_Real, Loc),
2984 Expression => Relocate_Node (E));
2986 begin
2987 Rewrite (E, Conv);
2988 Analyze (E);
2989 end;
2991 elsif T = Any_Fixed then
2992 Error_Msg_N ("illegal context for mixed mode operation", E);
2994 -- Expression is of the form : universal_fixed * integer. Try to
2995 -- resolve as universal_real.
2997 T := Universal_Real;
2998 Set_Etype (E, T);
2999 end if;
3001 Resolve (E, T);
3002 Set_Etype (Id, Universal_Real);
3003 Set_Ekind (Id, E_Named_Real);
3005 else
3006 Wrong_Type (E, Any_Numeric);
3007 Resolve (E, T);
3009 Set_Etype (Id, T);
3010 Set_Ekind (Id, E_Constant);
3011 Set_Never_Set_In_Source (Id, True);
3012 Set_Is_True_Constant (Id, True);
3013 return;
3014 end if;
3016 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3017 Set_Etype (E, Etype (Id));
3018 end if;
3020 if not Is_OK_Static_Expression (E) then
3021 Flag_Non_Static_Expr
3022 ("non-static expression used in number declaration!", E);
3023 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3024 Set_Etype (E, Any_Type);
3025 end if;
3026 end Analyze_Number_Declaration;
3028 -----------------------------
3029 -- Analyze_Object_Contract --
3030 -----------------------------
3032 procedure Analyze_Object_Contract (Obj_Id : Entity_Id) is
3033 Obj_Typ : constant Entity_Id := Etype (Obj_Id);
3034 AR_Val : Boolean := False;
3035 AW_Val : Boolean := False;
3036 ER_Val : Boolean := False;
3037 EW_Val : Boolean := False;
3038 Prag : Node_Id;
3039 Seen : Boolean := False;
3041 begin
3042 if Ekind (Obj_Id) = E_Constant then
3044 -- A constant cannot be effectively volatile. This check is only
3045 -- relevant with SPARK_Mode on as it is not a standard Ada legality
3046 -- rule. Do not flag internally-generated constants that map generic
3047 -- formals to actuals in instantiations (SPARK RM 7.1.3(6)).
3049 if SPARK_Mode = On
3050 and then Is_Effectively_Volatile (Obj_Id)
3051 and then No (Corresponding_Generic_Association (Parent (Obj_Id)))
3052 then
3053 Error_Msg_N ("constant cannot be volatile", Obj_Id);
3054 end if;
3056 else pragma Assert (Ekind (Obj_Id) = E_Variable);
3058 -- The following checks are only relevant when SPARK_Mode is on as
3059 -- they are not standard Ada legality rules. Internally generated
3060 -- temporaries are ignored.
3062 if SPARK_Mode = On and then Comes_From_Source (Obj_Id) then
3063 if Is_Effectively_Volatile (Obj_Id) then
3065 -- The declaration of an effectively volatile object must
3066 -- appear at the library level (SPARK RM 7.1.3(7), C.6(6)).
3068 if not Is_Library_Level_Entity (Obj_Id) then
3069 Error_Msg_N
3070 ("volatile variable & must be declared at library level",
3071 Obj_Id);
3073 -- An object of a discriminated type cannot be effectively
3074 -- volatile (SPARK RM C.6(4)).
3076 elsif Has_Discriminants (Obj_Typ) then
3077 Error_Msg_N
3078 ("discriminated object & cannot be volatile", Obj_Id);
3080 -- An object of a tagged type cannot be effectively volatile
3081 -- (SPARK RM C.6(5)).
3083 elsif Is_Tagged_Type (Obj_Typ) then
3084 Error_Msg_N ("tagged object & cannot be volatile", Obj_Id);
3085 end if;
3087 -- The object is not effectively volatile
3089 else
3090 -- A non-effectively volatile object cannot have effectively
3091 -- volatile components (SPARK RM 7.1.3(7)).
3093 if not Is_Effectively_Volatile (Obj_Id)
3094 and then Has_Volatile_Component (Obj_Typ)
3095 then
3096 Error_Msg_N
3097 ("non-volatile object & cannot have volatile components",
3098 Obj_Id);
3099 end if;
3100 end if;
3101 end if;
3103 -- Analyze all external properties
3105 Prag := Get_Pragma (Obj_Id, Pragma_Async_Readers);
3107 if Present (Prag) then
3108 Analyze_External_Property_In_Decl_Part (Prag, AR_Val);
3109 Seen := True;
3110 end if;
3112 Prag := Get_Pragma (Obj_Id, Pragma_Async_Writers);
3114 if Present (Prag) then
3115 Analyze_External_Property_In_Decl_Part (Prag, AW_Val);
3116 Seen := True;
3117 end if;
3119 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Reads);
3121 if Present (Prag) then
3122 Analyze_External_Property_In_Decl_Part (Prag, ER_Val);
3123 Seen := True;
3124 end if;
3126 Prag := Get_Pragma (Obj_Id, Pragma_Effective_Writes);
3128 if Present (Prag) then
3129 Analyze_External_Property_In_Decl_Part (Prag, EW_Val);
3130 Seen := True;
3131 end if;
3133 -- Verify the mutual interaction of the various external properties
3135 if Seen then
3136 Check_External_Properties (Obj_Id, AR_Val, AW_Val, ER_Val, EW_Val);
3137 end if;
3139 -- Check whether the lack of indicator Part_Of agrees with the
3140 -- placement of the variable with respect to the state space.
3142 Prag := Get_Pragma (Obj_Id, Pragma_Part_Of);
3144 if No (Prag) then
3145 Check_Missing_Part_Of (Obj_Id);
3146 end if;
3147 end if;
3148 end Analyze_Object_Contract;
3150 --------------------------------
3151 -- Analyze_Object_Declaration --
3152 --------------------------------
3154 procedure Analyze_Object_Declaration (N : Node_Id) is
3155 Loc : constant Source_Ptr := Sloc (N);
3156 Id : constant Entity_Id := Defining_Identifier (N);
3157 T : Entity_Id;
3158 Act_T : Entity_Id;
3160 E : Node_Id := Expression (N);
3161 -- E is set to Expression (N) throughout this routine. When
3162 -- Expression (N) is modified, E is changed accordingly.
3164 Prev_Entity : Entity_Id := Empty;
3166 function Count_Tasks (T : Entity_Id) return Uint;
3167 -- This function is called when a non-generic library level object of a
3168 -- task type is declared. Its function is to count the static number of
3169 -- tasks declared within the type (it is only called if Has_Tasks is set
3170 -- for T). As a side effect, if an array of tasks with non-static bounds
3171 -- or a variant record type is encountered, Check_Restrictions is called
3172 -- indicating the count is unknown.
3174 -----------------
3175 -- Count_Tasks --
3176 -----------------
3178 function Count_Tasks (T : Entity_Id) return Uint is
3179 C : Entity_Id;
3180 X : Node_Id;
3181 V : Uint;
3183 begin
3184 if Is_Task_Type (T) then
3185 return Uint_1;
3187 elsif Is_Record_Type (T) then
3188 if Has_Discriminants (T) then
3189 Check_Restriction (Max_Tasks, N);
3190 return Uint_0;
3192 else
3193 V := Uint_0;
3194 C := First_Component (T);
3195 while Present (C) loop
3196 V := V + Count_Tasks (Etype (C));
3197 Next_Component (C);
3198 end loop;
3200 return V;
3201 end if;
3203 elsif Is_Array_Type (T) then
3204 X := First_Index (T);
3205 V := Count_Tasks (Component_Type (T));
3206 while Present (X) loop
3207 C := Etype (X);
3209 if not Is_OK_Static_Subtype (C) then
3210 Check_Restriction (Max_Tasks, N);
3211 return Uint_0;
3212 else
3213 V := V * (UI_Max (Uint_0,
3214 Expr_Value (Type_High_Bound (C)) -
3215 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3216 end if;
3218 Next_Index (X);
3219 end loop;
3221 return V;
3223 else
3224 return Uint_0;
3225 end if;
3226 end Count_Tasks;
3228 -- Start of processing for Analyze_Object_Declaration
3230 begin
3231 -- There are three kinds of implicit types generated by an
3232 -- object declaration:
3234 -- 1. Those generated by the original Object Definition
3236 -- 2. Those generated by the Expression
3238 -- 3. Those used to constrain the Object Definition with the
3239 -- expression constraints when the definition is unconstrained.
3241 -- They must be generated in this order to avoid order of elaboration
3242 -- issues. Thus the first step (after entering the name) is to analyze
3243 -- the object definition.
3245 if Constant_Present (N) then
3246 Prev_Entity := Current_Entity_In_Scope (Id);
3248 if Present (Prev_Entity)
3249 and then
3250 -- If the homograph is an implicit subprogram, it is overridden
3251 -- by the current declaration.
3253 ((Is_Overloadable (Prev_Entity)
3254 and then Is_Inherited_Operation (Prev_Entity))
3256 -- The current object is a discriminal generated for an entry
3257 -- family index. Even though the index is a constant, in this
3258 -- particular context there is no true constant redeclaration.
3259 -- Enter_Name will handle the visibility.
3261 or else
3262 (Is_Discriminal (Id)
3263 and then Ekind (Discriminal_Link (Id)) =
3264 E_Entry_Index_Parameter)
3266 -- The current object is the renaming for a generic declared
3267 -- within the instance.
3269 or else
3270 (Ekind (Prev_Entity) = E_Package
3271 and then Nkind (Parent (Prev_Entity)) =
3272 N_Package_Renaming_Declaration
3273 and then not Comes_From_Source (Prev_Entity)
3274 and then Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3275 then
3276 Prev_Entity := Empty;
3277 end if;
3278 end if;
3280 if Present (Prev_Entity) then
3281 Constant_Redeclaration (Id, N, T);
3283 Generate_Reference (Prev_Entity, Id, 'c');
3284 Set_Completion_Referenced (Id);
3286 if Error_Posted (N) then
3288 -- Type mismatch or illegal redeclaration, Do not analyze
3289 -- expression to avoid cascaded errors.
3291 T := Find_Type_Of_Object (Object_Definition (N), N);
3292 Set_Etype (Id, T);
3293 Set_Ekind (Id, E_Variable);
3294 goto Leave;
3295 end if;
3297 -- In the normal case, enter identifier at the start to catch premature
3298 -- usage in the initialization expression.
3300 else
3301 Generate_Definition (Id);
3302 Enter_Name (Id);
3304 Mark_Coextensions (N, Object_Definition (N));
3306 T := Find_Type_Of_Object (Object_Definition (N), N);
3308 if Nkind (Object_Definition (N)) = N_Access_Definition
3309 and then Present
3310 (Access_To_Subprogram_Definition (Object_Definition (N)))
3311 and then Protected_Present
3312 (Access_To_Subprogram_Definition (Object_Definition (N)))
3313 then
3314 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3315 end if;
3317 if Error_Posted (Id) then
3318 Set_Etype (Id, T);
3319 Set_Ekind (Id, E_Variable);
3320 goto Leave;
3321 end if;
3322 end if;
3324 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3325 -- out some static checks
3327 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3329 -- In case of aggregates we must also take care of the correct
3330 -- initialization of nested aggregates bug this is done at the
3331 -- point of the analysis of the aggregate (see sem_aggr.adb).
3333 if Present (Expression (N))
3334 and then Nkind (Expression (N)) = N_Aggregate
3335 then
3336 null;
3338 else
3339 declare
3340 Save_Typ : constant Entity_Id := Etype (Id);
3341 begin
3342 Set_Etype (Id, T); -- Temp. decoration for static checks
3343 Null_Exclusion_Static_Checks (N);
3344 Set_Etype (Id, Save_Typ);
3345 end;
3346 end if;
3347 end if;
3349 -- Object is marked pure if it is in a pure scope
3351 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3353 -- If deferred constant, make sure context is appropriate. We detect
3354 -- a deferred constant as a constant declaration with no expression.
3355 -- A deferred constant can appear in a package body if its completion
3356 -- is by means of an interface pragma.
3358 if Constant_Present (N) and then No (E) then
3360 -- A deferred constant may appear in the declarative part of the
3361 -- following constructs:
3363 -- blocks
3364 -- entry bodies
3365 -- extended return statements
3366 -- package specs
3367 -- package bodies
3368 -- subprogram bodies
3369 -- task bodies
3371 -- When declared inside a package spec, a deferred constant must be
3372 -- completed by a full constant declaration or pragma Import. In all
3373 -- other cases, the only proper completion is pragma Import. Extended
3374 -- return statements are flagged as invalid contexts because they do
3375 -- not have a declarative part and so cannot accommodate the pragma.
3377 if Ekind (Current_Scope) = E_Return_Statement then
3378 Error_Msg_N
3379 ("invalid context for deferred constant declaration (RM 7.4)",
3381 Error_Msg_N
3382 ("\declaration requires an initialization expression",
3384 Set_Constant_Present (N, False);
3386 -- In Ada 83, deferred constant must be of private type
3388 elsif not Is_Private_Type (T) then
3389 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3390 Error_Msg_N
3391 ("(Ada 83) deferred constant must be private type", N);
3392 end if;
3393 end if;
3395 -- If not a deferred constant, then object declaration freezes its type
3397 else
3398 Check_Fully_Declared (T, N);
3399 Freeze_Before (N, T);
3400 end if;
3402 -- If the object was created by a constrained array definition, then
3403 -- set the link in both the anonymous base type and anonymous subtype
3404 -- that are built to represent the array type to point to the object.
3406 if Nkind (Object_Definition (Declaration_Node (Id))) =
3407 N_Constrained_Array_Definition
3408 then
3409 Set_Related_Array_Object (T, Id);
3410 Set_Related_Array_Object (Base_Type (T), Id);
3411 end if;
3413 -- Special checks for protected objects not at library level
3415 if Is_Protected_Type (T)
3416 and then not Is_Library_Level_Entity (Id)
3417 then
3418 Check_Restriction (No_Local_Protected_Objects, Id);
3420 -- Protected objects with interrupt handlers must be at library level
3422 -- Ada 2005: This test is not needed (and the corresponding clause
3423 -- in the RM is removed) because accessibility checks are sufficient
3424 -- to make handlers not at the library level illegal.
3426 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3427 -- applies to the '95 version of the language as well.
3429 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3430 Error_Msg_N
3431 ("interrupt object can only be declared at library level", Id);
3432 end if;
3433 end if;
3435 -- The actual subtype of the object is the nominal subtype, unless
3436 -- the nominal one is unconstrained and obtained from the expression.
3438 Act_T := T;
3440 -- These checks should be performed before the initialization expression
3441 -- is considered, so that the Object_Definition node is still the same
3442 -- as in source code.
3444 -- In SPARK, the nominal subtype is always given by a subtype mark
3445 -- and must not be unconstrained. (The only exception to this is the
3446 -- acceptance of declarations of constants of type String.)
3448 if not
3449 Nkind_In (Object_Definition (N), N_Identifier, N_Expanded_Name)
3450 then
3451 Check_SPARK_Restriction
3452 ("subtype mark required", Object_Definition (N));
3454 elsif Is_Array_Type (T)
3455 and then not Is_Constrained (T)
3456 and then T /= Standard_String
3457 then
3458 Check_SPARK_Restriction
3459 ("subtype mark of constrained type expected",
3460 Object_Definition (N));
3461 end if;
3463 -- There are no aliased objects in SPARK
3465 if Aliased_Present (N) then
3466 Check_SPARK_Restriction ("aliased object is not allowed", N);
3467 end if;
3469 -- Process initialization expression if present and not in error
3471 if Present (E) and then E /= Error then
3473 -- Generate an error in case of CPP class-wide object initialization.
3474 -- Required because otherwise the expansion of the class-wide
3475 -- assignment would try to use 'size to initialize the object
3476 -- (primitive that is not available in CPP tagged types).
3478 if Is_Class_Wide_Type (Act_T)
3479 and then
3480 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3481 or else
3482 (Present (Full_View (Root_Type (Etype (Act_T))))
3483 and then
3484 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3485 then
3486 Error_Msg_N
3487 ("predefined assignment not available for 'C'P'P tagged types",
3489 end if;
3491 Mark_Coextensions (N, E);
3492 Analyze (E);
3494 -- In case of errors detected in the analysis of the expression,
3495 -- decorate it with the expected type to avoid cascaded errors
3497 if No (Etype (E)) then
3498 Set_Etype (E, T);
3499 end if;
3501 -- If an initialization expression is present, then we set the
3502 -- Is_True_Constant flag. It will be reset if this is a variable
3503 -- and it is indeed modified.
3505 Set_Is_True_Constant (Id, True);
3507 -- If we are analyzing a constant declaration, set its completion
3508 -- flag after analyzing and resolving the expression.
3510 if Constant_Present (N) then
3511 Set_Has_Completion (Id);
3512 end if;
3514 -- Set type and resolve (type may be overridden later on). Note:
3515 -- Ekind (Id) must still be E_Void at this point so that incorrect
3516 -- early usage within E is properly diagnosed.
3518 Set_Etype (Id, T);
3520 -- If the expression is an aggregate we must look ahead to detect
3521 -- the possible presence of an address clause, and defer resolution
3522 -- and expansion of the aggregate to the freeze point of the entity.
3524 if Comes_From_Source (N)
3525 and then Expander_Active
3526 and then Has_Following_Address_Clause (N)
3527 and then Nkind (E) = N_Aggregate
3528 then
3529 Set_Etype (E, T);
3531 else
3532 Resolve (E, T);
3533 end if;
3535 -- No further action needed if E is a call to an inlined function
3536 -- which returns an unconstrained type and it has been expanded into
3537 -- a procedure call. In that case N has been replaced by an object
3538 -- declaration without initializing expression and it has been
3539 -- analyzed (see Expand_Inlined_Call).
3541 if Back_End_Inlining
3542 and then Expander_Active
3543 and then Nkind (E) = N_Function_Call
3544 and then Nkind (Name (E)) in N_Has_Entity
3545 and then Is_Inlined (Entity (Name (E)))
3546 and then not Is_Constrained (Etype (E))
3547 and then Analyzed (N)
3548 and then No (Expression (N))
3549 then
3550 return;
3551 end if;
3553 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3554 -- node (which was marked already-analyzed), we need to set the type
3555 -- to something other than Any_Access in order to keep gigi happy.
3557 if Etype (E) = Any_Access then
3558 Set_Etype (E, T);
3559 end if;
3561 -- If the object is an access to variable, the initialization
3562 -- expression cannot be an access to constant.
3564 if Is_Access_Type (T)
3565 and then not Is_Access_Constant (T)
3566 and then Is_Access_Type (Etype (E))
3567 and then Is_Access_Constant (Etype (E))
3568 then
3569 Error_Msg_N
3570 ("access to variable cannot be initialized "
3571 & "with an access-to-constant expression", E);
3572 end if;
3574 if not Assignment_OK (N) then
3575 Check_Initialization (T, E);
3576 end if;
3578 Check_Unset_Reference (E);
3580 -- If this is a variable, then set current value. If this is a
3581 -- declared constant of a scalar type with a static expression,
3582 -- indicate that it is always valid.
3584 if not Constant_Present (N) then
3585 if Compile_Time_Known_Value (E) then
3586 Set_Current_Value (Id, E);
3587 end if;
3589 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3590 Set_Is_Known_Valid (Id);
3591 end if;
3593 -- Deal with setting of null flags
3595 if Is_Access_Type (T) then
3596 if Known_Non_Null (E) then
3597 Set_Is_Known_Non_Null (Id, True);
3598 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3599 Set_Is_Known_Null (Id, True);
3600 end if;
3601 end if;
3603 -- Check incorrect use of dynamically tagged expressions
3605 if Is_Tagged_Type (T) then
3606 Check_Dynamically_Tagged_Expression
3607 (Expr => E,
3608 Typ => T,
3609 Related_Nod => N);
3610 end if;
3612 Apply_Scalar_Range_Check (E, T);
3613 Apply_Static_Length_Check (E, T);
3615 if Nkind (Original_Node (N)) = N_Object_Declaration
3616 and then Comes_From_Source (Original_Node (N))
3618 -- Only call test if needed
3620 and then Restriction_Check_Required (SPARK_05)
3621 and then not Is_SPARK_Initialization_Expr (Original_Node (E))
3622 then
3623 Check_SPARK_Restriction
3624 ("initialization expression is not appropriate", E);
3625 end if;
3626 end if;
3628 -- If the No_Streams restriction is set, check that the type of the
3629 -- object is not, and does not contain, any subtype derived from
3630 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3631 -- Has_Stream just for efficiency reasons. There is no point in
3632 -- spending time on a Has_Stream check if the restriction is not set.
3634 if Restriction_Check_Required (No_Streams) then
3635 if Has_Stream (T) then
3636 Check_Restriction (No_Streams, N);
3637 end if;
3638 end if;
3640 -- Deal with predicate check before we start to do major rewriting. It
3641 -- is OK to initialize and then check the initialized value, since the
3642 -- object goes out of scope if we get a predicate failure. Note that we
3643 -- do this in the analyzer and not the expander because the analyzer
3644 -- does some substantial rewriting in some cases.
3646 -- We need a predicate check if the type has predicates, and if either
3647 -- there is an initializing expression, or for default initialization
3648 -- when we have at least one case of an explicit default initial value
3649 -- and then this is not an internal declaration whose initialization
3650 -- comes later (as for an aggregate expansion).
3652 if not Suppress_Assignment_Checks (N)
3653 and then Present (Predicate_Function (T))
3654 and then not No_Initialization (N)
3655 and then
3656 (Present (E)
3657 or else
3658 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3659 then
3660 -- If the type has a static predicate and the expression is known at
3661 -- compile time, see if the expression satisfies the predicate.
3663 if Present (E) then
3664 Check_Expression_Against_Static_Predicate (E, T);
3665 end if;
3667 Insert_After (N,
3668 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3669 end if;
3671 -- Case of unconstrained type
3673 if Is_Indefinite_Subtype (T) then
3675 -- In SPARK, a declaration of unconstrained type is allowed
3676 -- only for constants of type string.
3678 if Is_String_Type (T) and then not Constant_Present (N) then
3679 Check_SPARK_Restriction
3680 ("declaration of object of unconstrained type not allowed", N);
3681 end if;
3683 -- Nothing to do in deferred constant case
3685 if Constant_Present (N) and then No (E) then
3686 null;
3688 -- Case of no initialization present
3690 elsif No (E) then
3691 if No_Initialization (N) then
3692 null;
3694 elsif Is_Class_Wide_Type (T) then
3695 Error_Msg_N
3696 ("initialization required in class-wide declaration ", N);
3698 else
3699 Error_Msg_N
3700 ("unconstrained subtype not allowed (need initialization)",
3701 Object_Definition (N));
3703 if Is_Record_Type (T) and then Has_Discriminants (T) then
3704 Error_Msg_N
3705 ("\provide initial value or explicit discriminant values",
3706 Object_Definition (N));
3708 Error_Msg_NE
3709 ("\or give default discriminant values for type&",
3710 Object_Definition (N), T);
3712 elsif Is_Array_Type (T) then
3713 Error_Msg_N
3714 ("\provide initial value or explicit array bounds",
3715 Object_Definition (N));
3716 end if;
3717 end if;
3719 -- Case of initialization present but in error. Set initial
3720 -- expression as absent (but do not make above complaints)
3722 elsif E = Error then
3723 Set_Expression (N, Empty);
3724 E := Empty;
3726 -- Case of initialization present
3728 else
3729 -- Check restrictions in Ada 83
3731 if not Constant_Present (N) then
3733 -- Unconstrained variables not allowed in Ada 83 mode
3735 if Ada_Version = Ada_83
3736 and then Comes_From_Source (Object_Definition (N))
3737 then
3738 Error_Msg_N
3739 ("(Ada 83) unconstrained variable not allowed",
3740 Object_Definition (N));
3741 end if;
3742 end if;
3744 -- Now we constrain the variable from the initializing expression
3746 -- If the expression is an aggregate, it has been expanded into
3747 -- individual assignments. Retrieve the actual type from the
3748 -- expanded construct.
3750 if Is_Array_Type (T)
3751 and then No_Initialization (N)
3752 and then Nkind (Original_Node (E)) = N_Aggregate
3753 then
3754 Act_T := Etype (E);
3756 -- In case of class-wide interface object declarations we delay
3757 -- the generation of the equivalent record type declarations until
3758 -- its expansion because there are cases in they are not required.
3760 elsif Is_Interface (T) then
3761 null;
3763 else
3764 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
3765 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
3766 end if;
3768 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
3770 if Aliased_Present (N) then
3771 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3772 end if;
3774 Freeze_Before (N, Act_T);
3775 Freeze_Before (N, T);
3776 end if;
3778 elsif Is_Array_Type (T)
3779 and then No_Initialization (N)
3780 and then Nkind (Original_Node (E)) = N_Aggregate
3781 then
3782 if not Is_Entity_Name (Object_Definition (N)) then
3783 Act_T := Etype (E);
3784 Check_Compile_Time_Size (Act_T);
3786 if Aliased_Present (N) then
3787 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
3788 end if;
3789 end if;
3791 -- When the given object definition and the aggregate are specified
3792 -- independently, and their lengths might differ do a length check.
3793 -- This cannot happen if the aggregate is of the form (others =>...)
3795 if not Is_Constrained (T) then
3796 null;
3798 elsif Nkind (E) = N_Raise_Constraint_Error then
3800 -- Aggregate is statically illegal. Place back in declaration
3802 Set_Expression (N, E);
3803 Set_No_Initialization (N, False);
3805 elsif T = Etype (E) then
3806 null;
3808 elsif Nkind (E) = N_Aggregate
3809 and then Present (Component_Associations (E))
3810 and then Present (Choices (First (Component_Associations (E))))
3811 and then Nkind (First
3812 (Choices (First (Component_Associations (E))))) = N_Others_Choice
3813 then
3814 null;
3816 else
3817 Apply_Length_Check (E, T);
3818 end if;
3820 -- If the type is limited unconstrained with defaulted discriminants and
3821 -- there is no expression, then the object is constrained by the
3822 -- defaults, so it is worthwhile building the corresponding subtype.
3824 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
3825 and then not Is_Constrained (T)
3826 and then Has_Discriminants (T)
3827 then
3828 if No (E) then
3829 Act_T := Build_Default_Subtype (T, N);
3830 else
3831 -- Ada 2005: A limited object may be initialized by means of an
3832 -- aggregate. If the type has default discriminants it has an
3833 -- unconstrained nominal type, Its actual subtype will be obtained
3834 -- from the aggregate, and not from the default discriminants.
3836 Act_T := Etype (E);
3837 end if;
3839 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
3841 elsif Nkind (E) = N_Function_Call
3842 and then Constant_Present (N)
3843 and then Has_Unconstrained_Elements (Etype (E))
3844 then
3845 -- The back-end has problems with constants of a discriminated type
3846 -- with defaults, if the initial value is a function call. We
3847 -- generate an intermediate temporary that will receive a reference
3848 -- to the result of the call. The initialization expression then
3849 -- becomes a dereference of that temporary.
3851 Remove_Side_Effects (E);
3853 -- If this is a constant declaration of an unconstrained type and
3854 -- the initialization is an aggregate, we can use the subtype of the
3855 -- aggregate for the declared entity because it is immutable.
3857 elsif not Is_Constrained (T)
3858 and then Has_Discriminants (T)
3859 and then Constant_Present (N)
3860 and then not Has_Unchecked_Union (T)
3861 and then Nkind (E) = N_Aggregate
3862 then
3863 Act_T := Etype (E);
3864 end if;
3866 -- Check No_Wide_Characters restriction
3868 Check_Wide_Character_Restriction (T, Object_Definition (N));
3870 -- Indicate this is not set in source. Certainly true for constants, and
3871 -- true for variables so far (will be reset for a variable if and when
3872 -- we encounter a modification in the source).
3874 Set_Never_Set_In_Source (Id, True);
3876 -- Now establish the proper kind and type of the object
3878 if Constant_Present (N) then
3879 Set_Ekind (Id, E_Constant);
3880 Set_Is_True_Constant (Id);
3882 else
3883 Set_Ekind (Id, E_Variable);
3885 -- A variable is set as shared passive if it appears in a shared
3886 -- passive package, and is at the outer level. This is not done for
3887 -- entities generated during expansion, because those are always
3888 -- manipulated locally.
3890 if Is_Shared_Passive (Current_Scope)
3891 and then Is_Library_Level_Entity (Id)
3892 and then Comes_From_Source (Id)
3893 then
3894 Set_Is_Shared_Passive (Id);
3895 Check_Shared_Var (Id, T, N);
3896 end if;
3898 -- Set Has_Initial_Value if initializing expression present. Note
3899 -- that if there is no initializing expression, we leave the state
3900 -- of this flag unchanged (usually it will be False, but notably in
3901 -- the case of exception choice variables, it will already be true).
3903 if Present (E) then
3904 Set_Has_Initial_Value (Id, True);
3905 end if;
3907 Set_Contract (Id, Make_Contract (Sloc (Id)));
3908 end if;
3910 -- Initialize alignment and size and capture alignment setting
3912 Init_Alignment (Id);
3913 Init_Esize (Id);
3914 Set_Optimize_Alignment_Flags (Id);
3916 -- Deal with aliased case
3918 if Aliased_Present (N) then
3919 Set_Is_Aliased (Id);
3921 -- If the object is aliased and the type is unconstrained with
3922 -- defaulted discriminants and there is no expression, then the
3923 -- object is constrained by the defaults, so it is worthwhile
3924 -- building the corresponding subtype.
3926 -- Ada 2005 (AI-363): If the aliased object is discriminated and
3927 -- unconstrained, then only establish an actual subtype if the
3928 -- nominal subtype is indefinite. In definite cases the object is
3929 -- unconstrained in Ada 2005.
3931 if No (E)
3932 and then Is_Record_Type (T)
3933 and then not Is_Constrained (T)
3934 and then Has_Discriminants (T)
3935 and then (Ada_Version < Ada_2005 or else Is_Indefinite_Subtype (T))
3936 then
3937 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
3938 end if;
3939 end if;
3941 -- Now we can set the type of the object
3943 Set_Etype (Id, Act_T);
3945 -- Non-constant object is marked to be treated as volatile if type is
3946 -- volatile and we clear the Current_Value setting that may have been
3947 -- set above. Doing so for constants isn't required and might interfere
3948 -- with possible uses of the object as a static expression in contexts
3949 -- incompatible with volatility (e.g. as a case-statement alternative).
3951 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
3952 Set_Treat_As_Volatile (Id);
3953 Set_Current_Value (Id, Empty);
3954 end if;
3956 -- Deal with controlled types
3958 if Has_Controlled_Component (Etype (Id))
3959 or else Is_Controlled (Etype (Id))
3960 then
3961 if not Is_Library_Level_Entity (Id) then
3962 Check_Restriction (No_Nested_Finalization, N);
3963 else
3964 Validate_Controlled_Object (Id);
3965 end if;
3966 end if;
3968 if Has_Task (Etype (Id)) then
3969 Check_Restriction (No_Tasking, N);
3971 -- Deal with counting max tasks
3973 -- Nothing to do if inside a generic
3975 if Inside_A_Generic then
3976 null;
3978 -- If library level entity, then count tasks
3980 elsif Is_Library_Level_Entity (Id) then
3981 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
3983 -- If not library level entity, then indicate we don't know max
3984 -- tasks and also check task hierarchy restriction and blocking
3985 -- operation (since starting a task is definitely blocking).
3987 else
3988 Check_Restriction (Max_Tasks, N);
3989 Check_Restriction (No_Task_Hierarchy, N);
3990 Check_Potentially_Blocking_Operation (N);
3991 end if;
3993 -- A rather specialized test. If we see two tasks being declared
3994 -- of the same type in the same object declaration, and the task
3995 -- has an entry with an address clause, we know that program error
3996 -- will be raised at run time since we can't have two tasks with
3997 -- entries at the same address.
3999 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4000 declare
4001 E : Entity_Id;
4003 begin
4004 E := First_Entity (Etype (Id));
4005 while Present (E) loop
4006 if Ekind (E) = E_Entry
4007 and then Present (Get_Attribute_Definition_Clause
4008 (E, Attribute_Address))
4009 then
4010 Error_Msg_Warn := SPARK_Mode /= On;
4011 Error_Msg_N
4012 ("more than one task with same entry address<<", N);
4013 Error_Msg_N ("\Program_Error [<<", N);
4014 Insert_Action (N,
4015 Make_Raise_Program_Error (Loc,
4016 Reason => PE_Duplicated_Entry_Address));
4017 exit;
4018 end if;
4020 Next_Entity (E);
4021 end loop;
4022 end;
4023 end if;
4024 end if;
4026 -- Some simple constant-propagation: if the expression is a constant
4027 -- string initialized with a literal, share the literal. This avoids
4028 -- a run-time copy.
4030 if Present (E)
4031 and then Is_Entity_Name (E)
4032 and then Ekind (Entity (E)) = E_Constant
4033 and then Base_Type (Etype (E)) = Standard_String
4034 then
4035 declare
4036 Val : constant Node_Id := Constant_Value (Entity (E));
4037 begin
4038 if Present (Val) and then Nkind (Val) = N_String_Literal then
4039 Rewrite (E, New_Copy (Val));
4040 end if;
4041 end;
4042 end if;
4044 -- Another optimization: if the nominal subtype is unconstrained and
4045 -- the expression is a function call that returns an unconstrained
4046 -- type, rewrite the declaration as a renaming of the result of the
4047 -- call. The exceptions below are cases where the copy is expected,
4048 -- either by the back end (Aliased case) or by the semantics, as for
4049 -- initializing controlled types or copying tags for classwide types.
4051 if Present (E)
4052 and then Nkind (E) = N_Explicit_Dereference
4053 and then Nkind (Original_Node (E)) = N_Function_Call
4054 and then not Is_Library_Level_Entity (Id)
4055 and then not Is_Constrained (Underlying_Type (T))
4056 and then not Is_Aliased (Id)
4057 and then not Is_Class_Wide_Type (T)
4058 and then not Is_Controlled (T)
4059 and then not Has_Controlled_Component (Base_Type (T))
4060 and then Expander_Active
4061 then
4062 Rewrite (N,
4063 Make_Object_Renaming_Declaration (Loc,
4064 Defining_Identifier => Id,
4065 Access_Definition => Empty,
4066 Subtype_Mark => New_Occurrence_Of
4067 (Base_Type (Etype (Id)), Loc),
4068 Name => E));
4070 Set_Renamed_Object (Id, E);
4072 -- Force generation of debugging information for the constant and for
4073 -- the renamed function call.
4075 Set_Debug_Info_Needed (Id);
4076 Set_Debug_Info_Needed (Entity (Prefix (E)));
4077 end if;
4079 if Present (Prev_Entity)
4080 and then Is_Frozen (Prev_Entity)
4081 and then not Error_Posted (Id)
4082 then
4083 Error_Msg_N ("full constant declaration appears too late", N);
4084 end if;
4086 Check_Eliminated (Id);
4088 -- Deal with setting In_Private_Part flag if in private part
4090 if Ekind (Scope (Id)) = E_Package and then In_Private_Part (Scope (Id))
4091 then
4092 Set_In_Private_Part (Id);
4093 end if;
4095 -- Check for violation of No_Local_Timing_Events
4097 if Restriction_Check_Required (No_Local_Timing_Events)
4098 and then not Is_Library_Level_Entity (Id)
4099 and then Is_RTE (Etype (Id), RE_Timing_Event)
4100 then
4101 Check_Restriction (No_Local_Timing_Events, N);
4102 end if;
4104 <<Leave>>
4105 -- Initialize the refined state of a variable here because this is a
4106 -- common destination for legal and illegal object declarations.
4108 if Ekind (Id) = E_Variable then
4109 Set_Encapsulating_State (Id, Empty);
4110 end if;
4112 if Has_Aspects (N) then
4113 Analyze_Aspect_Specifications (N, Id);
4114 end if;
4116 Analyze_Dimension (N);
4118 -- Verify whether the object declaration introduces an illegal hidden
4119 -- state within a package subject to a null abstract state.
4121 if Ekind (Id) = E_Variable then
4122 Check_No_Hidden_State (Id);
4123 end if;
4124 end Analyze_Object_Declaration;
4126 ---------------------------
4127 -- Analyze_Others_Choice --
4128 ---------------------------
4130 -- Nothing to do for the others choice node itself, the semantic analysis
4131 -- of the others choice will occur as part of the processing of the parent
4133 procedure Analyze_Others_Choice (N : Node_Id) is
4134 pragma Warnings (Off, N);
4135 begin
4136 null;
4137 end Analyze_Others_Choice;
4139 -------------------------------------------
4140 -- Analyze_Private_Extension_Declaration --
4141 -------------------------------------------
4143 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4144 T : constant Entity_Id := Defining_Identifier (N);
4145 Indic : constant Node_Id := Subtype_Indication (N);
4146 Parent_Type : Entity_Id;
4147 Parent_Base : Entity_Id;
4149 begin
4150 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4152 if Is_Non_Empty_List (Interface_List (N)) then
4153 declare
4154 Intf : Node_Id;
4155 T : Entity_Id;
4157 begin
4158 Intf := First (Interface_List (N));
4159 while Present (Intf) loop
4160 T := Find_Type_Of_Subtype_Indic (Intf);
4162 Diagnose_Interface (Intf, T);
4163 Next (Intf);
4164 end loop;
4165 end;
4166 end if;
4168 Generate_Definition (T);
4170 -- For other than Ada 2012, just enter the name in the current scope
4172 if Ada_Version < Ada_2012 then
4173 Enter_Name (T);
4175 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4176 -- case of private type that completes an incomplete type.
4178 else
4179 declare
4180 Prev : Entity_Id;
4182 begin
4183 Prev := Find_Type_Name (N);
4185 pragma Assert (Prev = T
4186 or else (Ekind (Prev) = E_Incomplete_Type
4187 and then Present (Full_View (Prev))
4188 and then Full_View (Prev) = T));
4189 end;
4190 end if;
4192 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4193 Parent_Base := Base_Type (Parent_Type);
4195 if Parent_Type = Any_Type
4196 or else Etype (Parent_Type) = Any_Type
4197 then
4198 Set_Ekind (T, Ekind (Parent_Type));
4199 Set_Etype (T, Any_Type);
4200 goto Leave;
4202 elsif not Is_Tagged_Type (Parent_Type) then
4203 Error_Msg_N
4204 ("parent of type extension must be a tagged type ", Indic);
4205 goto Leave;
4207 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4208 Error_Msg_N ("premature derivation of incomplete type", Indic);
4209 goto Leave;
4211 elsif Is_Concurrent_Type (Parent_Type) then
4212 Error_Msg_N
4213 ("parent type of a private extension cannot be "
4214 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4216 Set_Etype (T, Any_Type);
4217 Set_Ekind (T, E_Limited_Private_Type);
4218 Set_Private_Dependents (T, New_Elmt_List);
4219 Set_Error_Posted (T);
4220 goto Leave;
4221 end if;
4223 -- Perhaps the parent type should be changed to the class-wide type's
4224 -- specific type in this case to prevent cascading errors ???
4226 if Is_Class_Wide_Type (Parent_Type) then
4227 Error_Msg_N
4228 ("parent of type extension must not be a class-wide type", Indic);
4229 goto Leave;
4230 end if;
4232 if (not Is_Package_Or_Generic_Package (Current_Scope)
4233 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4234 or else In_Private_Part (Current_Scope)
4236 then
4237 Error_Msg_N ("invalid context for private extension", N);
4238 end if;
4240 -- Set common attributes
4242 Set_Is_Pure (T, Is_Pure (Current_Scope));
4243 Set_Scope (T, Current_Scope);
4244 Set_Ekind (T, E_Record_Type_With_Private);
4245 Init_Size_Align (T);
4246 Set_Default_SSO (T);
4248 Set_Etype (T, Parent_Base);
4249 Set_Has_Task (T, Has_Task (Parent_Base));
4250 Set_Has_Protected (T, Has_Task (Parent_Base));
4252 Set_Convention (T, Convention (Parent_Type));
4253 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4254 Set_Is_First_Subtype (T);
4255 Make_Class_Wide_Type (T);
4257 if Unknown_Discriminants_Present (N) then
4258 Set_Discriminant_Constraint (T, No_Elist);
4259 end if;
4261 Build_Derived_Record_Type (N, Parent_Type, T);
4263 -- Propagate inherited invariant information. The new type has
4264 -- invariants, if the parent type has inheritable invariants,
4265 -- and these invariants can in turn be inherited.
4267 if Has_Inheritable_Invariants (Parent_Type) then
4268 Set_Has_Inheritable_Invariants (T);
4269 Set_Has_Invariants (T);
4270 end if;
4272 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4273 -- synchronized formal derived type.
4275 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4276 Set_Is_Limited_Record (T);
4278 -- Formal derived type case
4280 if Is_Generic_Type (T) then
4282 -- The parent must be a tagged limited type or a synchronized
4283 -- interface.
4285 if (not Is_Tagged_Type (Parent_Type)
4286 or else not Is_Limited_Type (Parent_Type))
4287 and then
4288 (not Is_Interface (Parent_Type)
4289 or else not Is_Synchronized_Interface (Parent_Type))
4290 then
4291 Error_Msg_NE ("parent type of & must be tagged limited " &
4292 "or synchronized", N, T);
4293 end if;
4295 -- The progenitors (if any) must be limited or synchronized
4296 -- interfaces.
4298 if Present (Interfaces (T)) then
4299 declare
4300 Iface : Entity_Id;
4301 Iface_Elmt : Elmt_Id;
4303 begin
4304 Iface_Elmt := First_Elmt (Interfaces (T));
4305 while Present (Iface_Elmt) loop
4306 Iface := Node (Iface_Elmt);
4308 if not Is_Limited_Interface (Iface)
4309 and then not Is_Synchronized_Interface (Iface)
4310 then
4311 Error_Msg_NE ("progenitor & must be limited " &
4312 "or synchronized", N, Iface);
4313 end if;
4315 Next_Elmt (Iface_Elmt);
4316 end loop;
4317 end;
4318 end if;
4320 -- Regular derived extension, the parent must be a limited or
4321 -- synchronized interface.
4323 else
4324 if not Is_Interface (Parent_Type)
4325 or else (not Is_Limited_Interface (Parent_Type)
4326 and then not Is_Synchronized_Interface (Parent_Type))
4327 then
4328 Error_Msg_NE
4329 ("parent type of & must be limited interface", N, T);
4330 end if;
4331 end if;
4333 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4334 -- extension with a synchronized parent must be explicitly declared
4335 -- synchronized, because the full view will be a synchronized type.
4336 -- This must be checked before the check for limited types below,
4337 -- to ensure that types declared limited are not allowed to extend
4338 -- synchronized interfaces.
4340 elsif Is_Interface (Parent_Type)
4341 and then Is_Synchronized_Interface (Parent_Type)
4342 and then not Synchronized_Present (N)
4343 then
4344 Error_Msg_NE
4345 ("private extension of& must be explicitly synchronized",
4346 N, Parent_Type);
4348 elsif Limited_Present (N) then
4349 Set_Is_Limited_Record (T);
4351 if not Is_Limited_Type (Parent_Type)
4352 and then
4353 (not Is_Interface (Parent_Type)
4354 or else not Is_Limited_Interface (Parent_Type))
4355 then
4356 Error_Msg_NE ("parent type& of limited extension must be limited",
4357 N, Parent_Type);
4358 end if;
4359 end if;
4361 <<Leave>>
4362 if Has_Aspects (N) then
4363 Analyze_Aspect_Specifications (N, T);
4364 end if;
4365 end Analyze_Private_Extension_Declaration;
4367 ---------------------------------
4368 -- Analyze_Subtype_Declaration --
4369 ---------------------------------
4371 procedure Analyze_Subtype_Declaration
4372 (N : Node_Id;
4373 Skip : Boolean := False)
4375 Id : constant Entity_Id := Defining_Identifier (N);
4376 T : Entity_Id;
4377 R_Checks : Check_Result;
4379 begin
4380 Generate_Definition (Id);
4381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4382 Init_Size_Align (Id);
4384 -- The following guard condition on Enter_Name is to handle cases where
4385 -- the defining identifier has already been entered into the scope but
4386 -- the declaration as a whole needs to be analyzed.
4388 -- This case in particular happens for derived enumeration types. The
4389 -- derived enumeration type is processed as an inserted enumeration type
4390 -- declaration followed by a rewritten subtype declaration. The defining
4391 -- identifier, however, is entered into the name scope very early in the
4392 -- processing of the original type declaration and therefore needs to be
4393 -- avoided here, when the created subtype declaration is analyzed. (See
4394 -- Build_Derived_Types)
4396 -- This also happens when the full view of a private type is derived
4397 -- type with constraints. In this case the entity has been introduced
4398 -- in the private declaration.
4400 -- Finally this happens in some complex cases when validity checks are
4401 -- enabled, where the same subtype declaration may be analyzed twice.
4402 -- This can happen if the subtype is created by the pre-analysis of
4403 -- an attribute tht gives the range of a loop statement, and the loop
4404 -- itself appears within an if_statement that will be rewritten during
4405 -- expansion.
4407 if Skip
4408 or else (Present (Etype (Id))
4409 and then (Is_Private_Type (Etype (Id))
4410 or else Is_Task_Type (Etype (Id))
4411 or else Is_Rewrite_Substitution (N)))
4412 then
4413 null;
4415 elsif Current_Entity (Id) = Id then
4416 null;
4418 else
4419 Enter_Name (Id);
4420 end if;
4422 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4424 -- Class-wide equivalent types of records with unknown discriminants
4425 -- involve the generation of an itype which serves as the private view
4426 -- of a constrained record subtype. In such cases the base type of the
4427 -- current subtype we are processing is the private itype. Use the full
4428 -- of the private itype when decorating various attributes.
4430 if Is_Itype (T)
4431 and then Is_Private_Type (T)
4432 and then Present (Full_View (T))
4433 then
4434 T := Full_View (T);
4435 end if;
4437 -- Inherit common attributes
4439 Set_Is_Volatile (Id, Is_Volatile (T));
4440 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4441 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4442 Set_Convention (Id, Convention (T));
4444 -- If ancestor has predicates then so does the subtype, and in addition
4445 -- we must delay the freeze to properly arrange predicate inheritance.
4447 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4448 -- in which T = ID, so the above tests and assignments do nothing???
4450 if Has_Predicates (T)
4451 or else (Present (Ancestor_Subtype (T))
4452 and then Has_Predicates (Ancestor_Subtype (T)))
4453 then
4454 Set_Has_Predicates (Id);
4455 Set_Has_Delayed_Freeze (Id);
4456 end if;
4458 -- Subtype of Boolean cannot have a constraint in SPARK
4460 if Is_Boolean_Type (T)
4461 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4462 then
4463 Check_SPARK_Restriction
4464 ("subtype of Boolean cannot have constraint", N);
4465 end if;
4467 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4468 declare
4469 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4470 One_Cstr : Node_Id;
4471 Low : Node_Id;
4472 High : Node_Id;
4474 begin
4475 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4476 One_Cstr := First (Constraints (Cstr));
4477 while Present (One_Cstr) loop
4479 -- Index or discriminant constraint in SPARK must be a
4480 -- subtype mark.
4482 if not
4483 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4484 then
4485 Check_SPARK_Restriction
4486 ("subtype mark required", One_Cstr);
4488 -- String subtype must have a lower bound of 1 in SPARK.
4489 -- Note that we do not need to test for the non-static case
4490 -- here, since that was already taken care of in
4491 -- Process_Range_Expr_In_Decl.
4493 elsif Base_Type (T) = Standard_String then
4494 Get_Index_Bounds (One_Cstr, Low, High);
4496 if Is_OK_Static_Expression (Low)
4497 and then Expr_Value (Low) /= 1
4498 then
4499 Check_SPARK_Restriction
4500 ("String subtype must have lower bound of 1", N);
4501 end if;
4502 end if;
4504 Next (One_Cstr);
4505 end loop;
4506 end if;
4507 end;
4508 end if;
4510 -- In the case where there is no constraint given in the subtype
4511 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4512 -- semantic attributes must be established here.
4514 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4515 Set_Etype (Id, Base_Type (T));
4517 -- Subtype of unconstrained array without constraint is not allowed
4518 -- in SPARK.
4520 if Is_Array_Type (T) and then not Is_Constrained (T) then
4521 Check_SPARK_Restriction
4522 ("subtype of unconstrained array must have constraint", N);
4523 end if;
4525 case Ekind (T) is
4526 when Array_Kind =>
4527 Set_Ekind (Id, E_Array_Subtype);
4528 Copy_Array_Subtype_Attributes (Id, T);
4530 when Decimal_Fixed_Point_Kind =>
4531 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4532 Set_Digits_Value (Id, Digits_Value (T));
4533 Set_Delta_Value (Id, Delta_Value (T));
4534 Set_Scale_Value (Id, Scale_Value (T));
4535 Set_Small_Value (Id, Small_Value (T));
4536 Set_Scalar_Range (Id, Scalar_Range (T));
4537 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4538 Set_Is_Constrained (Id, Is_Constrained (T));
4539 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4540 Set_RM_Size (Id, RM_Size (T));
4542 when Enumeration_Kind =>
4543 Set_Ekind (Id, E_Enumeration_Subtype);
4544 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4545 Set_Scalar_Range (Id, Scalar_Range (T));
4546 Set_Is_Character_Type (Id, Is_Character_Type (T));
4547 Set_Is_Constrained (Id, Is_Constrained (T));
4548 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4549 Set_RM_Size (Id, RM_Size (T));
4550 Inherit_Predicate_Flags (Id, T);
4552 when Ordinary_Fixed_Point_Kind =>
4553 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4554 Set_Scalar_Range (Id, Scalar_Range (T));
4555 Set_Small_Value (Id, Small_Value (T));
4556 Set_Delta_Value (Id, Delta_Value (T));
4557 Set_Is_Constrained (Id, Is_Constrained (T));
4558 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4559 Set_RM_Size (Id, RM_Size (T));
4561 when Float_Kind =>
4562 Set_Ekind (Id, E_Floating_Point_Subtype);
4563 Set_Scalar_Range (Id, Scalar_Range (T));
4564 Set_Digits_Value (Id, Digits_Value (T));
4565 Set_Is_Constrained (Id, Is_Constrained (T));
4567 when Signed_Integer_Kind =>
4568 Set_Ekind (Id, E_Signed_Integer_Subtype);
4569 Set_Scalar_Range (Id, Scalar_Range (T));
4570 Set_Is_Constrained (Id, Is_Constrained (T));
4571 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4572 Set_RM_Size (Id, RM_Size (T));
4573 Inherit_Predicate_Flags (Id, T);
4575 when Modular_Integer_Kind =>
4576 Set_Ekind (Id, E_Modular_Integer_Subtype);
4577 Set_Scalar_Range (Id, Scalar_Range (T));
4578 Set_Is_Constrained (Id, Is_Constrained (T));
4579 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4580 Set_RM_Size (Id, RM_Size (T));
4581 Inherit_Predicate_Flags (Id, T);
4583 when Class_Wide_Kind =>
4584 Set_Ekind (Id, E_Class_Wide_Subtype);
4585 Set_First_Entity (Id, First_Entity (T));
4586 Set_Last_Entity (Id, Last_Entity (T));
4587 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4588 Set_Cloned_Subtype (Id, T);
4589 Set_Is_Tagged_Type (Id, True);
4590 Set_Has_Unknown_Discriminants
4591 (Id, True);
4593 if Ekind (T) = E_Class_Wide_Subtype then
4594 Set_Equivalent_Type (Id, Equivalent_Type (T));
4595 end if;
4597 when E_Record_Type | E_Record_Subtype =>
4598 Set_Ekind (Id, E_Record_Subtype);
4600 if Ekind (T) = E_Record_Subtype
4601 and then Present (Cloned_Subtype (T))
4602 then
4603 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4604 else
4605 Set_Cloned_Subtype (Id, T);
4606 end if;
4608 Set_First_Entity (Id, First_Entity (T));
4609 Set_Last_Entity (Id, Last_Entity (T));
4610 Set_Has_Discriminants (Id, Has_Discriminants (T));
4611 Set_Is_Constrained (Id, Is_Constrained (T));
4612 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4613 Set_Has_Implicit_Dereference
4614 (Id, Has_Implicit_Dereference (T));
4615 Set_Has_Unknown_Discriminants
4616 (Id, Has_Unknown_Discriminants (T));
4618 if Has_Discriminants (T) then
4619 Set_Discriminant_Constraint
4620 (Id, Discriminant_Constraint (T));
4621 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4623 elsif Has_Unknown_Discriminants (Id) then
4624 Set_Discriminant_Constraint (Id, No_Elist);
4625 end if;
4627 if Is_Tagged_Type (T) then
4628 Set_Is_Tagged_Type (Id);
4629 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4630 Set_Direct_Primitive_Operations
4631 (Id, Direct_Primitive_Operations (T));
4632 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4634 if Is_Interface (T) then
4635 Set_Is_Interface (Id);
4636 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4637 end if;
4638 end if;
4640 when Private_Kind =>
4641 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4642 Set_Has_Discriminants (Id, Has_Discriminants (T));
4643 Set_Is_Constrained (Id, Is_Constrained (T));
4644 Set_First_Entity (Id, First_Entity (T));
4645 Set_Last_Entity (Id, Last_Entity (T));
4646 Set_Private_Dependents (Id, New_Elmt_List);
4647 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4648 Set_Has_Implicit_Dereference
4649 (Id, Has_Implicit_Dereference (T));
4650 Set_Has_Unknown_Discriminants
4651 (Id, Has_Unknown_Discriminants (T));
4652 Set_Known_To_Have_Preelab_Init
4653 (Id, Known_To_Have_Preelab_Init (T));
4655 if Is_Tagged_Type (T) then
4656 Set_Is_Tagged_Type (Id);
4657 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4658 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4659 Set_Direct_Primitive_Operations (Id,
4660 Direct_Primitive_Operations (T));
4661 end if;
4663 -- In general the attributes of the subtype of a private type
4664 -- are the attributes of the partial view of parent. However,
4665 -- the full view may be a discriminated type, and the subtype
4666 -- must share the discriminant constraint to generate correct
4667 -- calls to initialization procedures.
4669 if Has_Discriminants (T) then
4670 Set_Discriminant_Constraint
4671 (Id, Discriminant_Constraint (T));
4672 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4674 elsif Present (Full_View (T))
4675 and then Has_Discriminants (Full_View (T))
4676 then
4677 Set_Discriminant_Constraint
4678 (Id, Discriminant_Constraint (Full_View (T)));
4679 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4681 -- This would seem semantically correct, but apparently
4682 -- generates spurious errors about missing components ???
4684 -- Set_Has_Discriminants (Id);
4685 end if;
4687 Prepare_Private_Subtype_Completion (Id, N);
4689 -- If this is the subtype of a constrained private type with
4690 -- discriminants that has got a full view and we also have
4691 -- built a completion just above, show that the completion
4692 -- is a clone of the full view to the back-end.
4694 if Has_Discriminants (T)
4695 and then not Has_Unknown_Discriminants (T)
4696 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4697 and then Present (Full_View (T))
4698 and then Present (Full_View (Id))
4699 then
4700 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4701 end if;
4703 when Access_Kind =>
4704 Set_Ekind (Id, E_Access_Subtype);
4705 Set_Is_Constrained (Id, Is_Constrained (T));
4706 Set_Is_Access_Constant
4707 (Id, Is_Access_Constant (T));
4708 Set_Directly_Designated_Type
4709 (Id, Designated_Type (T));
4710 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4712 -- A Pure library_item must not contain the declaration of a
4713 -- named access type, except within a subprogram, generic
4714 -- subprogram, task unit, or protected unit, or if it has
4715 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4717 if Comes_From_Source (Id)
4718 and then In_Pure_Unit
4719 and then not In_Subprogram_Task_Protected_Unit
4720 and then not No_Pool_Assigned (Id)
4721 then
4722 Error_Msg_N
4723 ("named access types not allowed in pure unit", N);
4724 end if;
4726 when Concurrent_Kind =>
4727 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4728 Set_Corresponding_Record_Type (Id,
4729 Corresponding_Record_Type (T));
4730 Set_First_Entity (Id, First_Entity (T));
4731 Set_First_Private_Entity (Id, First_Private_Entity (T));
4732 Set_Has_Discriminants (Id, Has_Discriminants (T));
4733 Set_Is_Constrained (Id, Is_Constrained (T));
4734 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4735 Set_Last_Entity (Id, Last_Entity (T));
4737 if Has_Discriminants (T) then
4738 Set_Discriminant_Constraint (Id,
4739 Discriminant_Constraint (T));
4740 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4741 end if;
4743 when E_Incomplete_Type =>
4744 if Ada_Version >= Ada_2005 then
4746 -- In Ada 2005 an incomplete type can be explicitly tagged:
4747 -- propagate indication.
4749 Set_Ekind (Id, E_Incomplete_Subtype);
4750 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4751 Set_Private_Dependents (Id, New_Elmt_List);
4753 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
4754 -- incomplete type visible through a limited with clause.
4756 if From_Limited_With (T)
4757 and then Present (Non_Limited_View (T))
4758 then
4759 Set_From_Limited_With (Id);
4760 Set_Non_Limited_View (Id, Non_Limited_View (T));
4762 -- Ada 2005 (AI-412): Add the regular incomplete subtype
4763 -- to the private dependents of the original incomplete
4764 -- type for future transformation.
4766 else
4767 Append_Elmt (Id, Private_Dependents (T));
4768 end if;
4770 -- If the subtype name denotes an incomplete type an error
4771 -- was already reported by Process_Subtype.
4773 else
4774 Set_Etype (Id, Any_Type);
4775 end if;
4777 when others =>
4778 raise Program_Error;
4779 end case;
4780 end if;
4782 if Etype (Id) = Any_Type then
4783 goto Leave;
4784 end if;
4786 -- Some common processing on all types
4788 Set_Size_Info (Id, T);
4789 Set_First_Rep_Item (Id, First_Rep_Item (T));
4791 -- If the parent type is a generic actual, so is the subtype. This may
4792 -- happen in a nested instance. Why Comes_From_Source test???
4794 if not Comes_From_Source (N) then
4795 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
4796 end if;
4798 T := Etype (Id);
4800 Set_Is_Immediately_Visible (Id, True);
4801 Set_Depends_On_Private (Id, Has_Private_Component (T));
4802 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
4804 if Is_Interface (T) then
4805 Set_Is_Interface (Id);
4806 end if;
4808 if Present (Generic_Parent_Type (N))
4809 and then
4810 (Nkind (Parent (Generic_Parent_Type (N))) /=
4811 N_Formal_Type_Declaration
4812 or else Nkind
4813 (Formal_Type_Definition (Parent (Generic_Parent_Type (N)))) /=
4814 N_Formal_Private_Type_Definition)
4815 then
4816 if Is_Tagged_Type (Id) then
4818 -- If this is a generic actual subtype for a synchronized type,
4819 -- the primitive operations are those of the corresponding record
4820 -- for which there is a separate subtype declaration.
4822 if Is_Concurrent_Type (Id) then
4823 null;
4824 elsif Is_Class_Wide_Type (Id) then
4825 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
4826 else
4827 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
4828 end if;
4830 elsif Scope (Etype (Id)) /= Standard_Standard then
4831 Derive_Subprograms (Generic_Parent_Type (N), Id);
4832 end if;
4833 end if;
4835 if Is_Private_Type (T) and then Present (Full_View (T)) then
4836 Conditional_Delay (Id, Full_View (T));
4838 -- The subtypes of components or subcomponents of protected types
4839 -- do not need freeze nodes, which would otherwise appear in the
4840 -- wrong scope (before the freeze node for the protected type). The
4841 -- proper subtypes are those of the subcomponents of the corresponding
4842 -- record.
4844 elsif Ekind (Scope (Id)) /= E_Protected_Type
4845 and then Present (Scope (Scope (Id))) -- error defense
4846 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
4847 then
4848 Conditional_Delay (Id, T);
4849 end if;
4851 -- Check that Constraint_Error is raised for a scalar subtype indication
4852 -- when the lower or upper bound of a non-null range lies outside the
4853 -- range of the type mark.
4855 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4856 if Is_Scalar_Type (Etype (Id))
4857 and then Scalar_Range (Id) /=
4858 Scalar_Range (Etype (Subtype_Mark
4859 (Subtype_Indication (N))))
4860 then
4861 Apply_Range_Check
4862 (Scalar_Range (Id),
4863 Etype (Subtype_Mark (Subtype_Indication (N))));
4865 -- In the array case, check compatibility for each index
4867 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
4868 then
4869 -- This really should be a subprogram that finds the indications
4870 -- to check???
4872 declare
4873 Subt_Index : Node_Id := First_Index (Id);
4874 Target_Index : Node_Id :=
4875 First_Index (Etype
4876 (Subtype_Mark (Subtype_Indication (N))));
4877 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
4879 begin
4880 while Present (Subt_Index) loop
4881 if ((Nkind (Subt_Index) = N_Identifier
4882 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
4883 or else Nkind (Subt_Index) = N_Subtype_Indication)
4884 and then
4885 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
4886 then
4887 declare
4888 Target_Typ : constant Entity_Id :=
4889 Etype (Target_Index);
4890 begin
4891 R_Checks :=
4892 Get_Range_Checks
4893 (Scalar_Range (Etype (Subt_Index)),
4894 Target_Typ,
4895 Etype (Subt_Index),
4896 Defining_Identifier (N));
4898 -- Reset Has_Dynamic_Range_Check on the subtype to
4899 -- prevent elision of the index check due to a dynamic
4900 -- check generated for a preceding index (needed since
4901 -- Insert_Range_Checks tries to avoid generating
4902 -- redundant checks on a given declaration).
4904 Set_Has_Dynamic_Range_Check (N, False);
4906 Insert_Range_Checks
4907 (R_Checks,
4909 Target_Typ,
4910 Sloc (Defining_Identifier (N)));
4912 -- Record whether this index involved a dynamic check
4914 Has_Dyn_Chk :=
4915 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
4916 end;
4917 end if;
4919 Next_Index (Subt_Index);
4920 Next_Index (Target_Index);
4921 end loop;
4923 -- Finally, mark whether the subtype involves dynamic checks
4925 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
4926 end;
4927 end if;
4928 end if;
4930 -- Make sure that generic actual types are properly frozen. The subtype
4931 -- is marked as a generic actual type when the enclosing instance is
4932 -- analyzed, so here we identify the subtype from the tree structure.
4934 if Expander_Active
4935 and then Is_Generic_Actual_Type (Id)
4936 and then In_Instance
4937 and then not Comes_From_Source (N)
4938 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
4939 and then Is_Frozen (T)
4940 then
4941 Freeze_Before (N, Id);
4942 end if;
4944 Set_Optimize_Alignment_Flags (Id);
4945 Check_Eliminated (Id);
4947 <<Leave>>
4948 if Has_Aspects (N) then
4949 Analyze_Aspect_Specifications (N, Id);
4950 end if;
4952 Analyze_Dimension (N);
4953 end Analyze_Subtype_Declaration;
4955 --------------------------------
4956 -- Analyze_Subtype_Indication --
4957 --------------------------------
4959 procedure Analyze_Subtype_Indication (N : Node_Id) is
4960 T : constant Entity_Id := Subtype_Mark (N);
4961 R : constant Node_Id := Range_Expression (Constraint (N));
4963 begin
4964 Analyze (T);
4966 if R /= Error then
4967 Analyze (R);
4968 Set_Etype (N, Etype (R));
4969 Resolve (R, Entity (T));
4970 else
4971 Set_Error_Posted (R);
4972 Set_Error_Posted (T);
4973 end if;
4974 end Analyze_Subtype_Indication;
4976 --------------------------
4977 -- Analyze_Variant_Part --
4978 --------------------------
4980 procedure Analyze_Variant_Part (N : Node_Id) is
4981 Discr_Name : Node_Id;
4982 Discr_Type : Entity_Id;
4984 procedure Process_Variant (A : Node_Id);
4985 -- Analyze declarations for a single variant
4987 package Analyze_Variant_Choices is
4988 new Generic_Analyze_Choices (Process_Variant);
4989 use Analyze_Variant_Choices;
4991 ---------------------
4992 -- Process_Variant --
4993 ---------------------
4995 procedure Process_Variant (A : Node_Id) is
4996 CL : constant Node_Id := Component_List (A);
4997 begin
4998 if not Null_Present (CL) then
4999 Analyze_Declarations (Component_Items (CL));
5001 if Present (Variant_Part (CL)) then
5002 Analyze (Variant_Part (CL));
5003 end if;
5004 end if;
5005 end Process_Variant;
5007 -- Start of processing for Analyze_Variant_Part
5009 begin
5010 Discr_Name := Name (N);
5011 Analyze (Discr_Name);
5013 -- If Discr_Name bad, get out (prevent cascaded errors)
5015 if Etype (Discr_Name) = Any_Type then
5016 return;
5017 end if;
5019 -- Check invalid discriminant in variant part
5021 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5022 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5023 end if;
5025 Discr_Type := Etype (Entity (Discr_Name));
5027 if not Is_Discrete_Type (Discr_Type) then
5028 Error_Msg_N
5029 ("discriminant in a variant part must be of a discrete type",
5030 Name (N));
5031 return;
5032 end if;
5034 -- Now analyze the choices, which also analyzes the declarations that
5035 -- are associated with each choice.
5037 Analyze_Choices (Variants (N), Discr_Type);
5039 -- Note: we used to instantiate and call Check_Choices here to check
5040 -- that the choices covered the discriminant, but it's too early to do
5041 -- that because of statically predicated subtypes, whose analysis may
5042 -- be deferred to their freeze point which may be as late as the freeze
5043 -- point of the containing record. So this call is now to be found in
5044 -- Freeze_Record_Declaration.
5046 end Analyze_Variant_Part;
5048 ----------------------------
5049 -- Array_Type_Declaration --
5050 ----------------------------
5052 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5053 Component_Def : constant Node_Id := Component_Definition (Def);
5054 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5055 Element_Type : Entity_Id;
5056 Implicit_Base : Entity_Id;
5057 Index : Node_Id;
5058 Related_Id : Entity_Id := Empty;
5059 Nb_Index : Nat;
5060 P : constant Node_Id := Parent (Def);
5061 Priv : Entity_Id;
5063 begin
5064 if Nkind (Def) = N_Constrained_Array_Definition then
5065 Index := First (Discrete_Subtype_Definitions (Def));
5066 else
5067 Index := First (Subtype_Marks (Def));
5068 end if;
5070 -- Find proper names for the implicit types which may be public. In case
5071 -- of anonymous arrays we use the name of the first object of that type
5072 -- as prefix.
5074 if No (T) then
5075 Related_Id := Defining_Identifier (P);
5076 else
5077 Related_Id := T;
5078 end if;
5080 Nb_Index := 1;
5081 while Present (Index) loop
5082 Analyze (Index);
5084 -- Test for odd case of trying to index a type by the type itself
5086 if Is_Entity_Name (Index) and then Entity (Index) = T then
5087 Error_Msg_N ("type& cannot be indexed by itself", Index);
5088 Set_Entity (Index, Standard_Boolean);
5089 Set_Etype (Index, Standard_Boolean);
5090 end if;
5092 -- Check SPARK restriction requiring a subtype mark
5094 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5095 Check_SPARK_Restriction ("subtype mark required", Index);
5096 end if;
5098 -- Add a subtype declaration for each index of private array type
5099 -- declaration whose etype is also private. For example:
5101 -- package Pkg is
5102 -- type Index is private;
5103 -- private
5104 -- type Table is array (Index) of ...
5105 -- end;
5107 -- This is currently required by the expander for the internally
5108 -- generated equality subprogram of records with variant parts in
5109 -- which the etype of some component is such private type.
5111 if Ekind (Current_Scope) = E_Package
5112 and then In_Private_Part (Current_Scope)
5113 and then Has_Private_Declaration (Etype (Index))
5114 then
5115 declare
5116 Loc : constant Source_Ptr := Sloc (Def);
5117 New_E : Entity_Id;
5118 Decl : Entity_Id;
5120 begin
5121 New_E := Make_Temporary (Loc, 'T');
5122 Set_Is_Internal (New_E);
5124 Decl :=
5125 Make_Subtype_Declaration (Loc,
5126 Defining_Identifier => New_E,
5127 Subtype_Indication =>
5128 New_Occurrence_Of (Etype (Index), Loc));
5130 Insert_Before (Parent (Def), Decl);
5131 Analyze (Decl);
5132 Set_Etype (Index, New_E);
5134 -- If the index is a range the Entity attribute is not
5135 -- available. Example:
5137 -- package Pkg is
5138 -- type T is private;
5139 -- private
5140 -- type T is new Natural;
5141 -- Table : array (T(1) .. T(10)) of Boolean;
5142 -- end Pkg;
5144 if Nkind (Index) /= N_Range then
5145 Set_Entity (Index, New_E);
5146 end if;
5147 end;
5148 end if;
5150 Make_Index (Index, P, Related_Id, Nb_Index);
5152 -- Check error of subtype with predicate for index type
5154 Bad_Predicated_Subtype_Use
5155 ("subtype& has predicate, not allowed as index subtype",
5156 Index, Etype (Index));
5158 -- Move to next index
5160 Next_Index (Index);
5161 Nb_Index := Nb_Index + 1;
5162 end loop;
5164 -- Process subtype indication if one is present
5166 if Present (Component_Typ) then
5167 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5169 Set_Etype (Component_Typ, Element_Type);
5171 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5172 Check_SPARK_Restriction ("subtype mark required", Component_Typ);
5173 end if;
5175 -- Ada 2005 (AI-230): Access Definition case
5177 else pragma Assert (Present (Access_Definition (Component_Def)));
5179 -- Indicate that the anonymous access type is created by the
5180 -- array type declaration.
5182 Element_Type := Access_Definition
5183 (Related_Nod => P,
5184 N => Access_Definition (Component_Def));
5185 Set_Is_Local_Anonymous_Access (Element_Type);
5187 -- Propagate the parent. This field is needed if we have to generate
5188 -- the master_id associated with an anonymous access to task type
5189 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5191 Set_Parent (Element_Type, Parent (T));
5193 -- Ada 2005 (AI-230): In case of components that are anonymous access
5194 -- types the level of accessibility depends on the enclosing type
5195 -- declaration
5197 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5199 -- Ada 2005 (AI-254)
5201 declare
5202 CD : constant Node_Id :=
5203 Access_To_Subprogram_Definition
5204 (Access_Definition (Component_Def));
5205 begin
5206 if Present (CD) and then Protected_Present (CD) then
5207 Element_Type :=
5208 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5209 end if;
5210 end;
5211 end if;
5213 -- Constrained array case
5215 if No (T) then
5216 T := Create_Itype (E_Void, P, Related_Id, 'T');
5217 end if;
5219 if Nkind (Def) = N_Constrained_Array_Definition then
5221 -- Establish Implicit_Base as unconstrained base type
5223 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5225 Set_Etype (Implicit_Base, Implicit_Base);
5226 Set_Scope (Implicit_Base, Current_Scope);
5227 Set_Has_Delayed_Freeze (Implicit_Base);
5228 Set_Default_SSO (Implicit_Base);
5230 -- The constrained array type is a subtype of the unconstrained one
5232 Set_Ekind (T, E_Array_Subtype);
5233 Init_Size_Align (T);
5234 Set_Etype (T, Implicit_Base);
5235 Set_Scope (T, Current_Scope);
5236 Set_Is_Constrained (T, True);
5237 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
5238 Set_Has_Delayed_Freeze (T);
5240 -- Complete setup of implicit base type
5242 Set_First_Index (Implicit_Base, First_Index (T));
5243 Set_Component_Type (Implicit_Base, Element_Type);
5244 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5245 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5246 Set_Component_Size (Implicit_Base, Uint_0);
5247 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5248 Set_Has_Controlled_Component
5249 (Implicit_Base, Has_Controlled_Component
5250 (Element_Type)
5251 or else Is_Controlled
5252 (Element_Type));
5253 Set_Finalize_Storage_Only
5254 (Implicit_Base, Finalize_Storage_Only
5255 (Element_Type));
5257 -- Unconstrained array case
5259 else
5260 Set_Ekind (T, E_Array_Type);
5261 Init_Size_Align (T);
5262 Set_Etype (T, T);
5263 Set_Scope (T, Current_Scope);
5264 Set_Component_Size (T, Uint_0);
5265 Set_Is_Constrained (T, False);
5266 Set_First_Index (T, First (Subtype_Marks (Def)));
5267 Set_Has_Delayed_Freeze (T, True);
5268 Set_Has_Task (T, Has_Task (Element_Type));
5269 Set_Has_Protected (T, Has_Protected (Element_Type));
5270 Set_Has_Controlled_Component (T, Has_Controlled_Component
5271 (Element_Type)
5272 or else
5273 Is_Controlled (Element_Type));
5274 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5275 (Element_Type));
5276 Set_Default_SSO (T);
5277 end if;
5279 -- Common attributes for both cases
5281 Set_Component_Type (Base_Type (T), Element_Type);
5282 Set_Packed_Array_Impl_Type (T, Empty);
5284 if Aliased_Present (Component_Definition (Def)) then
5285 Check_SPARK_Restriction
5286 ("aliased is not allowed", Component_Definition (Def));
5287 Set_Has_Aliased_Components (Etype (T));
5288 end if;
5290 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5291 -- array type to ensure that objects of this type are initialized.
5293 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5294 Set_Can_Never_Be_Null (T);
5296 if Null_Exclusion_Present (Component_Definition (Def))
5298 -- No need to check itypes because in their case this check was
5299 -- done at their point of creation
5301 and then not Is_Itype (Element_Type)
5302 then
5303 Error_Msg_N
5304 ("`NOT NULL` not allowed (null already excluded)",
5305 Subtype_Indication (Component_Definition (Def)));
5306 end if;
5307 end if;
5309 Priv := Private_Component (Element_Type);
5311 if Present (Priv) then
5313 -- Check for circular definitions
5315 if Priv = Any_Type then
5316 Set_Component_Type (Etype (T), Any_Type);
5318 -- There is a gap in the visibility of operations on the composite
5319 -- type only if the component type is defined in a different scope.
5321 elsif Scope (Priv) = Current_Scope then
5322 null;
5324 elsif Is_Limited_Type (Priv) then
5325 Set_Is_Limited_Composite (Etype (T));
5326 Set_Is_Limited_Composite (T);
5327 else
5328 Set_Is_Private_Composite (Etype (T));
5329 Set_Is_Private_Composite (T);
5330 end if;
5331 end if;
5333 -- A syntax error in the declaration itself may lead to an empty index
5334 -- list, in which case do a minimal patch.
5336 if No (First_Index (T)) then
5337 Error_Msg_N ("missing index definition in array type declaration", T);
5339 declare
5340 Indexes : constant List_Id :=
5341 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5342 begin
5343 Set_Discrete_Subtype_Definitions (Def, Indexes);
5344 Set_First_Index (T, First (Indexes));
5345 return;
5346 end;
5347 end if;
5349 -- Create a concatenation operator for the new type. Internal array
5350 -- types created for packed entities do not need such, they are
5351 -- compatible with the user-defined type.
5353 if Number_Dimensions (T) = 1
5354 and then not Is_Packed_Array_Impl_Type (T)
5355 then
5356 New_Concatenation_Op (T);
5357 end if;
5359 -- In the case of an unconstrained array the parser has already verified
5360 -- that all the indexes are unconstrained but we still need to make sure
5361 -- that the element type is constrained.
5363 if Is_Indefinite_Subtype (Element_Type) then
5364 Error_Msg_N
5365 ("unconstrained element type in array declaration",
5366 Subtype_Indication (Component_Def));
5368 elsif Is_Abstract_Type (Element_Type) then
5369 Error_Msg_N
5370 ("the type of a component cannot be abstract",
5371 Subtype_Indication (Component_Def));
5372 end if;
5374 -- There may be an invariant declared for the component type, but
5375 -- the construction of the component invariant checking procedure
5376 -- takes place during expansion.
5377 end Array_Type_Declaration;
5379 ------------------------------------------------------
5380 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5381 ------------------------------------------------------
5383 function Replace_Anonymous_Access_To_Protected_Subprogram
5384 (N : Node_Id) return Entity_Id
5386 Loc : constant Source_Ptr := Sloc (N);
5388 Curr_Scope : constant Scope_Stack_Entry :=
5389 Scope_Stack.Table (Scope_Stack.Last);
5391 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5393 Acc : Node_Id;
5394 -- Access definition in declaration
5396 Comp : Node_Id;
5397 -- Object definition or formal definition with an access definition
5399 Decl : Node_Id;
5400 -- Declaration of anonymous access to subprogram type
5402 Spec : Node_Id;
5403 -- Original specification in access to subprogram
5405 P : Node_Id;
5407 begin
5408 Set_Is_Internal (Anon);
5410 case Nkind (N) is
5411 when N_Component_Declaration |
5412 N_Unconstrained_Array_Definition |
5413 N_Constrained_Array_Definition =>
5414 Comp := Component_Definition (N);
5415 Acc := Access_Definition (Comp);
5417 when N_Discriminant_Specification =>
5418 Comp := Discriminant_Type (N);
5419 Acc := Comp;
5421 when N_Parameter_Specification =>
5422 Comp := Parameter_Type (N);
5423 Acc := Comp;
5425 when N_Access_Function_Definition =>
5426 Comp := Result_Definition (N);
5427 Acc := Comp;
5429 when N_Object_Declaration =>
5430 Comp := Object_Definition (N);
5431 Acc := Comp;
5433 when N_Function_Specification =>
5434 Comp := Result_Definition (N);
5435 Acc := Comp;
5437 when others =>
5438 raise Program_Error;
5439 end case;
5441 Spec := Access_To_Subprogram_Definition (Acc);
5443 Decl :=
5444 Make_Full_Type_Declaration (Loc,
5445 Defining_Identifier => Anon,
5446 Type_Definition => Copy_Separate_Tree (Spec));
5448 Mark_Rewrite_Insertion (Decl);
5450 -- In ASIS mode, analyze the profile on the original node, because
5451 -- the separate copy does not provide enough links to recover the
5452 -- original tree. Analysis is limited to type annotations, within
5453 -- a temporary scope that serves as an anonymous subprogram to collect
5454 -- otherwise useless temporaries and itypes.
5456 if ASIS_Mode then
5457 declare
5458 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5460 begin
5461 if Nkind (Spec) = N_Access_Function_Definition then
5462 Set_Ekind (Typ, E_Function);
5463 else
5464 Set_Ekind (Typ, E_Procedure);
5465 end if;
5467 Set_Parent (Typ, N);
5468 Set_Scope (Typ, Current_Scope);
5469 Push_Scope (Typ);
5471 Process_Formals (Parameter_Specifications (Spec), Spec);
5473 if Nkind (Spec) = N_Access_Function_Definition then
5474 declare
5475 Def : constant Node_Id := Result_Definition (Spec);
5477 begin
5478 -- The result might itself be an anonymous access type, so
5479 -- have to recurse.
5481 if Nkind (Def) = N_Access_Definition then
5482 if Present (Access_To_Subprogram_Definition (Def)) then
5483 Set_Etype
5484 (Def,
5485 Replace_Anonymous_Access_To_Protected_Subprogram
5486 (Spec));
5487 else
5488 Find_Type (Subtype_Mark (Def));
5489 end if;
5491 else
5492 Find_Type (Def);
5493 end if;
5494 end;
5495 end if;
5497 End_Scope;
5498 end;
5499 end if;
5501 -- Insert the new declaration in the nearest enclosing scope. If the
5502 -- node is a body and N is its return type, the declaration belongs in
5503 -- the enclosing scope.
5505 P := Parent (N);
5507 if Nkind (P) = N_Subprogram_Body
5508 and then Nkind (N) = N_Function_Specification
5509 then
5510 P := Parent (P);
5511 end if;
5513 while Present (P) and then not Has_Declarations (P) loop
5514 P := Parent (P);
5515 end loop;
5517 pragma Assert (Present (P));
5519 if Nkind (P) = N_Package_Specification then
5520 Prepend (Decl, Visible_Declarations (P));
5521 else
5522 Prepend (Decl, Declarations (P));
5523 end if;
5525 -- Replace the anonymous type with an occurrence of the new declaration.
5526 -- In all cases the rewritten node does not have the null-exclusion
5527 -- attribute because (if present) it was already inherited by the
5528 -- anonymous entity (Anon). Thus, in case of components we do not
5529 -- inherit this attribute.
5531 if Nkind (N) = N_Parameter_Specification then
5532 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5533 Set_Etype (Defining_Identifier (N), Anon);
5534 Set_Null_Exclusion_Present (N, False);
5536 elsif Nkind (N) = N_Object_Declaration then
5537 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5538 Set_Etype (Defining_Identifier (N), Anon);
5540 elsif Nkind (N) = N_Access_Function_Definition then
5541 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5543 elsif Nkind (N) = N_Function_Specification then
5544 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5545 Set_Etype (Defining_Unit_Name (N), Anon);
5547 else
5548 Rewrite (Comp,
5549 Make_Component_Definition (Loc,
5550 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5551 end if;
5553 Mark_Rewrite_Insertion (Comp);
5555 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition) then
5556 Analyze (Decl);
5558 else
5559 -- Temporarily remove the current scope (record or subprogram) from
5560 -- the stack to add the new declarations to the enclosing scope.
5562 Scope_Stack.Decrement_Last;
5563 Analyze (Decl);
5564 Set_Is_Itype (Anon);
5565 Scope_Stack.Append (Curr_Scope);
5566 end if;
5568 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5569 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5570 return Anon;
5571 end Replace_Anonymous_Access_To_Protected_Subprogram;
5573 -------------------------------
5574 -- Build_Derived_Access_Type --
5575 -------------------------------
5577 procedure Build_Derived_Access_Type
5578 (N : Node_Id;
5579 Parent_Type : Entity_Id;
5580 Derived_Type : Entity_Id)
5582 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5584 Desig_Type : Entity_Id;
5585 Discr : Entity_Id;
5586 Discr_Con_Elist : Elist_Id;
5587 Discr_Con_El : Elmt_Id;
5588 Subt : Entity_Id;
5590 begin
5591 -- Set the designated type so it is available in case this is an access
5592 -- to a self-referential type, e.g. a standard list type with a next
5593 -- pointer. Will be reset after subtype is built.
5595 Set_Directly_Designated_Type
5596 (Derived_Type, Designated_Type (Parent_Type));
5598 Subt := Process_Subtype (S, N);
5600 if Nkind (S) /= N_Subtype_Indication
5601 and then Subt /= Base_Type (Subt)
5602 then
5603 Set_Ekind (Derived_Type, E_Access_Subtype);
5604 end if;
5606 if Ekind (Derived_Type) = E_Access_Subtype then
5607 declare
5608 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5609 Ibase : constant Entity_Id :=
5610 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5611 Svg_Chars : constant Name_Id := Chars (Ibase);
5612 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5614 begin
5615 Copy_Node (Pbase, Ibase);
5617 Set_Chars (Ibase, Svg_Chars);
5618 Set_Next_Entity (Ibase, Svg_Next_E);
5619 Set_Sloc (Ibase, Sloc (Derived_Type));
5620 Set_Scope (Ibase, Scope (Derived_Type));
5621 Set_Freeze_Node (Ibase, Empty);
5622 Set_Is_Frozen (Ibase, False);
5623 Set_Comes_From_Source (Ibase, False);
5624 Set_Is_First_Subtype (Ibase, False);
5626 Set_Etype (Ibase, Pbase);
5627 Set_Etype (Derived_Type, Ibase);
5628 end;
5629 end if;
5631 Set_Directly_Designated_Type
5632 (Derived_Type, Designated_Type (Subt));
5634 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5635 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5636 Set_Size_Info (Derived_Type, Parent_Type);
5637 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5638 Set_Depends_On_Private (Derived_Type,
5639 Has_Private_Component (Derived_Type));
5640 Conditional_Delay (Derived_Type, Subt);
5642 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5643 -- that it is not redundant.
5645 if Null_Exclusion_Present (Type_Definition (N)) then
5646 Set_Can_Never_Be_Null (Derived_Type);
5648 -- What is with the "AND THEN FALSE" here ???
5650 if Can_Never_Be_Null (Parent_Type)
5651 and then False
5652 then
5653 Error_Msg_NE
5654 ("`NOT NULL` not allowed (& already excludes null)",
5655 N, Parent_Type);
5656 end if;
5658 elsif Can_Never_Be_Null (Parent_Type) then
5659 Set_Can_Never_Be_Null (Derived_Type);
5660 end if;
5662 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5663 -- the root type for this information.
5665 -- Apply range checks to discriminants for derived record case
5666 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5668 Desig_Type := Designated_Type (Derived_Type);
5669 if Is_Composite_Type (Desig_Type)
5670 and then (not Is_Array_Type (Desig_Type))
5671 and then Has_Discriminants (Desig_Type)
5672 and then Base_Type (Desig_Type) /= Desig_Type
5673 then
5674 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5675 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5677 Discr := First_Discriminant (Base_Type (Desig_Type));
5678 while Present (Discr_Con_El) loop
5679 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5680 Next_Elmt (Discr_Con_El);
5681 Next_Discriminant (Discr);
5682 end loop;
5683 end if;
5684 end Build_Derived_Access_Type;
5686 ------------------------------
5687 -- Build_Derived_Array_Type --
5688 ------------------------------
5690 procedure Build_Derived_Array_Type
5691 (N : Node_Id;
5692 Parent_Type : Entity_Id;
5693 Derived_Type : Entity_Id)
5695 Loc : constant Source_Ptr := Sloc (N);
5696 Tdef : constant Node_Id := Type_Definition (N);
5697 Indic : constant Node_Id := Subtype_Indication (Tdef);
5698 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5699 Implicit_Base : Entity_Id;
5700 New_Indic : Node_Id;
5702 procedure Make_Implicit_Base;
5703 -- If the parent subtype is constrained, the derived type is a subtype
5704 -- of an implicit base type derived from the parent base.
5706 ------------------------
5707 -- Make_Implicit_Base --
5708 ------------------------
5710 procedure Make_Implicit_Base is
5711 begin
5712 Implicit_Base :=
5713 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
5715 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
5716 Set_Etype (Implicit_Base, Parent_Base);
5718 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
5719 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
5721 Set_Has_Delayed_Freeze (Implicit_Base, True);
5722 end Make_Implicit_Base;
5724 -- Start of processing for Build_Derived_Array_Type
5726 begin
5727 if not Is_Constrained (Parent_Type) then
5728 if Nkind (Indic) /= N_Subtype_Indication then
5729 Set_Ekind (Derived_Type, E_Array_Type);
5731 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5732 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
5734 Set_Has_Delayed_Freeze (Derived_Type, True);
5736 else
5737 Make_Implicit_Base;
5738 Set_Etype (Derived_Type, Implicit_Base);
5740 New_Indic :=
5741 Make_Subtype_Declaration (Loc,
5742 Defining_Identifier => Derived_Type,
5743 Subtype_Indication =>
5744 Make_Subtype_Indication (Loc,
5745 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
5746 Constraint => Constraint (Indic)));
5748 Rewrite (N, New_Indic);
5749 Analyze (N);
5750 end if;
5752 else
5753 if Nkind (Indic) /= N_Subtype_Indication then
5754 Make_Implicit_Base;
5756 Set_Ekind (Derived_Type, Ekind (Parent_Type));
5757 Set_Etype (Derived_Type, Implicit_Base);
5758 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
5760 else
5761 Error_Msg_N ("illegal constraint on constrained type", Indic);
5762 end if;
5763 end if;
5765 -- If parent type is not a derived type itself, and is declared in
5766 -- closed scope (e.g. a subprogram), then we must explicitly introduce
5767 -- the new type's concatenation operator since Derive_Subprograms
5768 -- will not inherit the parent's operator. If the parent type is
5769 -- unconstrained, the operator is of the unconstrained base type.
5771 if Number_Dimensions (Parent_Type) = 1
5772 and then not Is_Limited_Type (Parent_Type)
5773 and then not Is_Derived_Type (Parent_Type)
5774 and then not Is_Package_Or_Generic_Package
5775 (Scope (Base_Type (Parent_Type)))
5776 then
5777 if not Is_Constrained (Parent_Type)
5778 and then Is_Constrained (Derived_Type)
5779 then
5780 New_Concatenation_Op (Implicit_Base);
5781 else
5782 New_Concatenation_Op (Derived_Type);
5783 end if;
5784 end if;
5785 end Build_Derived_Array_Type;
5787 -----------------------------------
5788 -- Build_Derived_Concurrent_Type --
5789 -----------------------------------
5791 procedure Build_Derived_Concurrent_Type
5792 (N : Node_Id;
5793 Parent_Type : Entity_Id;
5794 Derived_Type : Entity_Id)
5796 Loc : constant Source_Ptr := Sloc (N);
5798 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
5799 Corr_Decl : Node_Id;
5800 Corr_Decl_Needed : Boolean;
5801 -- If the derived type has fewer discriminants than its parent, the
5802 -- corresponding record is also a derived type, in order to account for
5803 -- the bound discriminants. We create a full type declaration for it in
5804 -- this case.
5806 Constraint_Present : constant Boolean :=
5807 Nkind (Subtype_Indication (Type_Definition (N))) =
5808 N_Subtype_Indication;
5810 D_Constraint : Node_Id;
5811 New_Constraint : Elist_Id;
5812 Old_Disc : Entity_Id;
5813 New_Disc : Entity_Id;
5814 New_N : Node_Id;
5816 begin
5817 Set_Stored_Constraint (Derived_Type, No_Elist);
5818 Corr_Decl_Needed := False;
5819 Old_Disc := Empty;
5821 if Present (Discriminant_Specifications (N))
5822 and then Constraint_Present
5823 then
5824 Old_Disc := First_Discriminant (Parent_Type);
5825 New_Disc := First (Discriminant_Specifications (N));
5826 while Present (New_Disc) and then Present (Old_Disc) loop
5827 Next_Discriminant (Old_Disc);
5828 Next (New_Disc);
5829 end loop;
5830 end if;
5832 if Present (Old_Disc) and then Expander_Active then
5834 -- The new type has fewer discriminants, so we need to create a new
5835 -- corresponding record, which is derived from the corresponding
5836 -- record of the parent, and has a stored constraint that captures
5837 -- the values of the discriminant constraints. The corresponding
5838 -- record is needed only if expander is active and code generation is
5839 -- enabled.
5841 -- The type declaration for the derived corresponding record has the
5842 -- same discriminant part and constraints as the current declaration.
5843 -- Copy the unanalyzed tree to build declaration.
5845 Corr_Decl_Needed := True;
5846 New_N := Copy_Separate_Tree (N);
5848 Corr_Decl :=
5849 Make_Full_Type_Declaration (Loc,
5850 Defining_Identifier => Corr_Record,
5851 Discriminant_Specifications =>
5852 Discriminant_Specifications (New_N),
5853 Type_Definition =>
5854 Make_Derived_Type_Definition (Loc,
5855 Subtype_Indication =>
5856 Make_Subtype_Indication (Loc,
5857 Subtype_Mark =>
5858 New_Occurrence_Of
5859 (Corresponding_Record_Type (Parent_Type), Loc),
5860 Constraint =>
5861 Constraint
5862 (Subtype_Indication (Type_Definition (New_N))))));
5863 end if;
5865 -- Copy Storage_Size and Relative_Deadline variables if task case
5867 if Is_Task_Type (Parent_Type) then
5868 Set_Storage_Size_Variable (Derived_Type,
5869 Storage_Size_Variable (Parent_Type));
5870 Set_Relative_Deadline_Variable (Derived_Type,
5871 Relative_Deadline_Variable (Parent_Type));
5872 end if;
5874 if Present (Discriminant_Specifications (N)) then
5875 Push_Scope (Derived_Type);
5876 Check_Or_Process_Discriminants (N, Derived_Type);
5878 if Constraint_Present then
5879 New_Constraint :=
5880 Expand_To_Stored_Constraint
5881 (Parent_Type,
5882 Build_Discriminant_Constraints
5883 (Parent_Type,
5884 Subtype_Indication (Type_Definition (N)), True));
5885 end if;
5887 End_Scope;
5889 elsif Constraint_Present then
5891 -- Build constrained subtype, copying the constraint, and derive
5892 -- from it to create a derived constrained type.
5894 declare
5895 Loc : constant Source_Ptr := Sloc (N);
5896 Anon : constant Entity_Id :=
5897 Make_Defining_Identifier (Loc,
5898 Chars => New_External_Name (Chars (Derived_Type), 'T'));
5899 Decl : Node_Id;
5901 begin
5902 Decl :=
5903 Make_Subtype_Declaration (Loc,
5904 Defining_Identifier => Anon,
5905 Subtype_Indication =>
5906 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
5907 Insert_Before (N, Decl);
5908 Analyze (Decl);
5910 Rewrite (Subtype_Indication (Type_Definition (N)),
5911 New_Occurrence_Of (Anon, Loc));
5912 Set_Analyzed (Derived_Type, False);
5913 Analyze (N);
5914 return;
5915 end;
5916 end if;
5918 -- By default, operations and private data are inherited from parent.
5919 -- However, in the presence of bound discriminants, a new corresponding
5920 -- record will be created, see below.
5922 Set_Has_Discriminants
5923 (Derived_Type, Has_Discriminants (Parent_Type));
5924 Set_Corresponding_Record_Type
5925 (Derived_Type, Corresponding_Record_Type (Parent_Type));
5927 -- Is_Constrained is set according the parent subtype, but is set to
5928 -- False if the derived type is declared with new discriminants.
5930 Set_Is_Constrained
5931 (Derived_Type,
5932 (Is_Constrained (Parent_Type) or else Constraint_Present)
5933 and then not Present (Discriminant_Specifications (N)));
5935 if Constraint_Present then
5936 if not Has_Discriminants (Parent_Type) then
5937 Error_Msg_N ("untagged parent must have discriminants", N);
5939 elsif Present (Discriminant_Specifications (N)) then
5941 -- Verify that new discriminants are used to constrain old ones
5943 D_Constraint :=
5944 First
5945 (Constraints
5946 (Constraint (Subtype_Indication (Type_Definition (N)))));
5948 Old_Disc := First_Discriminant (Parent_Type);
5950 while Present (D_Constraint) loop
5951 if Nkind (D_Constraint) /= N_Discriminant_Association then
5953 -- Positional constraint. If it is a reference to a new
5954 -- discriminant, it constrains the corresponding old one.
5956 if Nkind (D_Constraint) = N_Identifier then
5957 New_Disc := First_Discriminant (Derived_Type);
5958 while Present (New_Disc) loop
5959 exit when Chars (New_Disc) = Chars (D_Constraint);
5960 Next_Discriminant (New_Disc);
5961 end loop;
5963 if Present (New_Disc) then
5964 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
5965 end if;
5966 end if;
5968 Next_Discriminant (Old_Disc);
5970 -- if this is a named constraint, search by name for the old
5971 -- discriminants constrained by the new one.
5973 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
5975 -- Find new discriminant with that name
5977 New_Disc := First_Discriminant (Derived_Type);
5978 while Present (New_Disc) loop
5979 exit when
5980 Chars (New_Disc) = Chars (Expression (D_Constraint));
5981 Next_Discriminant (New_Disc);
5982 end loop;
5984 if Present (New_Disc) then
5986 -- Verify that new discriminant renames some discriminant
5987 -- of the parent type, and associate the new discriminant
5988 -- with one or more old ones that it renames.
5990 declare
5991 Selector : Node_Id;
5993 begin
5994 Selector := First (Selector_Names (D_Constraint));
5995 while Present (Selector) loop
5996 Old_Disc := First_Discriminant (Parent_Type);
5997 while Present (Old_Disc) loop
5998 exit when Chars (Old_Disc) = Chars (Selector);
5999 Next_Discriminant (Old_Disc);
6000 end loop;
6002 if Present (Old_Disc) then
6003 Set_Corresponding_Discriminant
6004 (New_Disc, Old_Disc);
6005 end if;
6007 Next (Selector);
6008 end loop;
6009 end;
6010 end if;
6011 end if;
6013 Next (D_Constraint);
6014 end loop;
6016 New_Disc := First_Discriminant (Derived_Type);
6017 while Present (New_Disc) loop
6018 if No (Corresponding_Discriminant (New_Disc)) then
6019 Error_Msg_NE
6020 ("new discriminant& must constrain old one", N, New_Disc);
6022 elsif not
6023 Subtypes_Statically_Compatible
6024 (Etype (New_Disc),
6025 Etype (Corresponding_Discriminant (New_Disc)))
6026 then
6027 Error_Msg_NE
6028 ("& not statically compatible with parent discriminant",
6029 N, New_Disc);
6030 end if;
6032 Next_Discriminant (New_Disc);
6033 end loop;
6034 end if;
6036 elsif Present (Discriminant_Specifications (N)) then
6037 Error_Msg_N
6038 ("missing discriminant constraint in untagged derivation", N);
6039 end if;
6041 -- The entity chain of the derived type includes the new discriminants
6042 -- but shares operations with the parent.
6044 if Present (Discriminant_Specifications (N)) then
6045 Old_Disc := First_Discriminant (Parent_Type);
6046 while Present (Old_Disc) loop
6047 if No (Next_Entity (Old_Disc))
6048 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6049 then
6050 Set_Next_Entity
6051 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6052 exit;
6053 end if;
6055 Next_Discriminant (Old_Disc);
6056 end loop;
6058 else
6059 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6060 if Has_Discriminants (Parent_Type) then
6061 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6062 Set_Discriminant_Constraint (
6063 Derived_Type, Discriminant_Constraint (Parent_Type));
6064 end if;
6065 end if;
6067 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6069 Set_Has_Completion (Derived_Type);
6071 if Corr_Decl_Needed then
6072 Set_Stored_Constraint (Derived_Type, New_Constraint);
6073 Insert_After (N, Corr_Decl);
6074 Analyze (Corr_Decl);
6075 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6076 end if;
6077 end Build_Derived_Concurrent_Type;
6079 ------------------------------------
6080 -- Build_Derived_Enumeration_Type --
6081 ------------------------------------
6083 procedure Build_Derived_Enumeration_Type
6084 (N : Node_Id;
6085 Parent_Type : Entity_Id;
6086 Derived_Type : Entity_Id)
6088 Loc : constant Source_Ptr := Sloc (N);
6089 Def : constant Node_Id := Type_Definition (N);
6090 Indic : constant Node_Id := Subtype_Indication (Def);
6091 Implicit_Base : Entity_Id;
6092 Literal : Entity_Id;
6093 New_Lit : Entity_Id;
6094 Literals_List : List_Id;
6095 Type_Decl : Node_Id;
6096 Hi, Lo : Node_Id;
6097 Rang_Expr : Node_Id;
6099 begin
6100 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6101 -- not have explicit literals lists we need to process types derived
6102 -- from them specially. This is handled by Derived_Standard_Character.
6103 -- If the parent type is a generic type, there are no literals either,
6104 -- and we construct the same skeletal representation as for the generic
6105 -- parent type.
6107 if Is_Standard_Character_Type (Parent_Type) then
6108 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6110 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6111 declare
6112 Lo : Node_Id;
6113 Hi : Node_Id;
6115 begin
6116 if Nkind (Indic) /= N_Subtype_Indication then
6117 Lo :=
6118 Make_Attribute_Reference (Loc,
6119 Attribute_Name => Name_First,
6120 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6121 Set_Etype (Lo, Derived_Type);
6123 Hi :=
6124 Make_Attribute_Reference (Loc,
6125 Attribute_Name => Name_Last,
6126 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6127 Set_Etype (Hi, Derived_Type);
6129 Set_Scalar_Range (Derived_Type,
6130 Make_Range (Loc,
6131 Low_Bound => Lo,
6132 High_Bound => Hi));
6133 else
6135 -- Analyze subtype indication and verify compatibility
6136 -- with parent type.
6138 if Base_Type (Process_Subtype (Indic, N)) /=
6139 Base_Type (Parent_Type)
6140 then
6141 Error_Msg_N
6142 ("illegal constraint for formal discrete type", N);
6143 end if;
6144 end if;
6145 end;
6147 else
6148 -- If a constraint is present, analyze the bounds to catch
6149 -- premature usage of the derived literals.
6151 if Nkind (Indic) = N_Subtype_Indication
6152 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6153 then
6154 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6155 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6156 end if;
6158 -- Introduce an implicit base type for the derived type even if there
6159 -- is no constraint attached to it, since this seems closer to the
6160 -- Ada semantics. Build a full type declaration tree for the derived
6161 -- type using the implicit base type as the defining identifier. The
6162 -- build a subtype declaration tree which applies the constraint (if
6163 -- any) have it replace the derived type declaration.
6165 Literal := First_Literal (Parent_Type);
6166 Literals_List := New_List;
6167 while Present (Literal)
6168 and then Ekind (Literal) = E_Enumeration_Literal
6169 loop
6170 -- Literals of the derived type have the same representation as
6171 -- those of the parent type, but this representation can be
6172 -- overridden by an explicit representation clause. Indicate
6173 -- that there is no explicit representation given yet. These
6174 -- derived literals are implicit operations of the new type,
6175 -- and can be overridden by explicit ones.
6177 if Nkind (Literal) = N_Defining_Character_Literal then
6178 New_Lit :=
6179 Make_Defining_Character_Literal (Loc, Chars (Literal));
6180 else
6181 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6182 end if;
6184 Set_Ekind (New_Lit, E_Enumeration_Literal);
6185 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6186 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6187 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6188 Set_Alias (New_Lit, Literal);
6189 Set_Is_Known_Valid (New_Lit, True);
6191 Append (New_Lit, Literals_List);
6192 Next_Literal (Literal);
6193 end loop;
6195 Implicit_Base :=
6196 Make_Defining_Identifier (Sloc (Derived_Type),
6197 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6199 -- Indicate the proper nature of the derived type. This must be done
6200 -- before analysis of the literals, to recognize cases when a literal
6201 -- may be hidden by a previous explicit function definition (cf.
6202 -- c83031a).
6204 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6205 Set_Etype (Derived_Type, Implicit_Base);
6207 Type_Decl :=
6208 Make_Full_Type_Declaration (Loc,
6209 Defining_Identifier => Implicit_Base,
6210 Discriminant_Specifications => No_List,
6211 Type_Definition =>
6212 Make_Enumeration_Type_Definition (Loc, Literals_List));
6214 Mark_Rewrite_Insertion (Type_Decl);
6215 Insert_Before (N, Type_Decl);
6216 Analyze (Type_Decl);
6218 -- After the implicit base is analyzed its Etype needs to be changed
6219 -- to reflect the fact that it is derived from the parent type which
6220 -- was ignored during analysis. We also set the size at this point.
6222 Set_Etype (Implicit_Base, Parent_Type);
6224 Set_Size_Info (Implicit_Base, Parent_Type);
6225 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6226 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6228 -- Copy other flags from parent type
6230 Set_Has_Non_Standard_Rep
6231 (Implicit_Base, Has_Non_Standard_Rep
6232 (Parent_Type));
6233 Set_Has_Pragma_Ordered
6234 (Implicit_Base, Has_Pragma_Ordered
6235 (Parent_Type));
6236 Set_Has_Delayed_Freeze (Implicit_Base);
6238 -- Process the subtype indication including a validation check on the
6239 -- constraint, if any. If a constraint is given, its bounds must be
6240 -- implicitly converted to the new type.
6242 if Nkind (Indic) = N_Subtype_Indication then
6243 declare
6244 R : constant Node_Id :=
6245 Range_Expression (Constraint (Indic));
6247 begin
6248 if Nkind (R) = N_Range then
6249 Hi := Build_Scalar_Bound
6250 (High_Bound (R), Parent_Type, Implicit_Base);
6251 Lo := Build_Scalar_Bound
6252 (Low_Bound (R), Parent_Type, Implicit_Base);
6254 else
6255 -- Constraint is a Range attribute. Replace with explicit
6256 -- mention of the bounds of the prefix, which must be a
6257 -- subtype.
6259 Analyze (Prefix (R));
6260 Hi :=
6261 Convert_To (Implicit_Base,
6262 Make_Attribute_Reference (Loc,
6263 Attribute_Name => Name_Last,
6264 Prefix =>
6265 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6267 Lo :=
6268 Convert_To (Implicit_Base,
6269 Make_Attribute_Reference (Loc,
6270 Attribute_Name => Name_First,
6271 Prefix =>
6272 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6273 end if;
6274 end;
6276 else
6277 Hi :=
6278 Build_Scalar_Bound
6279 (Type_High_Bound (Parent_Type),
6280 Parent_Type, Implicit_Base);
6281 Lo :=
6282 Build_Scalar_Bound
6283 (Type_Low_Bound (Parent_Type),
6284 Parent_Type, Implicit_Base);
6285 end if;
6287 Rang_Expr :=
6288 Make_Range (Loc,
6289 Low_Bound => Lo,
6290 High_Bound => Hi);
6292 -- If we constructed a default range for the case where no range
6293 -- was given, then the expressions in the range must not freeze
6294 -- since they do not correspond to expressions in the source.
6296 if Nkind (Indic) /= N_Subtype_Indication then
6297 Set_Must_Not_Freeze (Lo);
6298 Set_Must_Not_Freeze (Hi);
6299 Set_Must_Not_Freeze (Rang_Expr);
6300 end if;
6302 Rewrite (N,
6303 Make_Subtype_Declaration (Loc,
6304 Defining_Identifier => Derived_Type,
6305 Subtype_Indication =>
6306 Make_Subtype_Indication (Loc,
6307 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6308 Constraint =>
6309 Make_Range_Constraint (Loc,
6310 Range_Expression => Rang_Expr))));
6312 Analyze (N);
6314 -- Apply a range check. Since this range expression doesn't have an
6315 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6316 -- this right???
6318 if Nkind (Indic) = N_Subtype_Indication then
6319 Apply_Range_Check (Range_Expression (Constraint (Indic)),
6320 Parent_Type,
6321 Source_Typ => Entity (Subtype_Mark (Indic)));
6322 end if;
6323 end if;
6324 end Build_Derived_Enumeration_Type;
6326 --------------------------------
6327 -- Build_Derived_Numeric_Type --
6328 --------------------------------
6330 procedure Build_Derived_Numeric_Type
6331 (N : Node_Id;
6332 Parent_Type : Entity_Id;
6333 Derived_Type : Entity_Id)
6335 Loc : constant Source_Ptr := Sloc (N);
6336 Tdef : constant Node_Id := Type_Definition (N);
6337 Indic : constant Node_Id := Subtype_Indication (Tdef);
6338 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6339 No_Constraint : constant Boolean := Nkind (Indic) /=
6340 N_Subtype_Indication;
6341 Implicit_Base : Entity_Id;
6343 Lo : Node_Id;
6344 Hi : Node_Id;
6346 begin
6347 -- Process the subtype indication including a validation check on
6348 -- the constraint if any.
6350 Discard_Node (Process_Subtype (Indic, N));
6352 -- Introduce an implicit base type for the derived type even if there
6353 -- is no constraint attached to it, since this seems closer to the Ada
6354 -- semantics.
6356 Implicit_Base :=
6357 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6359 Set_Etype (Implicit_Base, Parent_Base);
6360 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6361 Set_Size_Info (Implicit_Base, Parent_Base);
6362 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6363 Set_Parent (Implicit_Base, Parent (Derived_Type));
6364 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6366 -- Set RM Size for discrete type or decimal fixed-point type
6367 -- Ordinary fixed-point is excluded, why???
6369 if Is_Discrete_Type (Parent_Base)
6370 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6371 then
6372 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6373 end if;
6375 Set_Has_Delayed_Freeze (Implicit_Base);
6377 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6378 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6380 Set_Scalar_Range (Implicit_Base,
6381 Make_Range (Loc,
6382 Low_Bound => Lo,
6383 High_Bound => Hi));
6385 if Has_Infinities (Parent_Base) then
6386 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6387 end if;
6389 -- The Derived_Type, which is the entity of the declaration, is a
6390 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6391 -- absence of an explicit constraint.
6393 Set_Etype (Derived_Type, Implicit_Base);
6395 -- If we did not have a constraint, then the Ekind is set from the
6396 -- parent type (otherwise Process_Subtype has set the bounds)
6398 if No_Constraint then
6399 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6400 end if;
6402 -- If we did not have a range constraint, then set the range from the
6403 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6405 if No_Constraint
6406 or else not Has_Range_Constraint (Indic)
6407 then
6408 Set_Scalar_Range (Derived_Type,
6409 Make_Range (Loc,
6410 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6411 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6412 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6414 if Has_Infinities (Parent_Type) then
6415 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6416 end if;
6418 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6419 end if;
6421 Set_Is_Descendent_Of_Address (Derived_Type,
6422 Is_Descendent_Of_Address (Parent_Type));
6423 Set_Is_Descendent_Of_Address (Implicit_Base,
6424 Is_Descendent_Of_Address (Parent_Type));
6426 -- Set remaining type-specific fields, depending on numeric type
6428 if Is_Modular_Integer_Type (Parent_Type) then
6429 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6431 Set_Non_Binary_Modulus
6432 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6434 Set_Is_Known_Valid
6435 (Implicit_Base, Is_Known_Valid (Parent_Base));
6437 elsif Is_Floating_Point_Type (Parent_Type) then
6439 -- Digits of base type is always copied from the digits value of
6440 -- the parent base type, but the digits of the derived type will
6441 -- already have been set if there was a constraint present.
6443 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6444 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6446 if No_Constraint then
6447 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6448 end if;
6450 elsif Is_Fixed_Point_Type (Parent_Type) then
6452 -- Small of base type and derived type are always copied from the
6453 -- parent base type, since smalls never change. The delta of the
6454 -- base type is also copied from the parent base type. However the
6455 -- delta of the derived type will have been set already if a
6456 -- constraint was present.
6458 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6459 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6460 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6462 if No_Constraint then
6463 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6464 end if;
6466 -- The scale and machine radix in the decimal case are always
6467 -- copied from the parent base type.
6469 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6470 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6471 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6473 Set_Machine_Radix_10
6474 (Derived_Type, Machine_Radix_10 (Parent_Base));
6475 Set_Machine_Radix_10
6476 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6478 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6480 if No_Constraint then
6481 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6483 else
6484 -- the analysis of the subtype_indication sets the
6485 -- digits value of the derived type.
6487 null;
6488 end if;
6489 end if;
6490 end if;
6492 if Is_Integer_Type (Parent_Type) then
6493 Set_Has_Shift_Operator
6494 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6495 end if;
6497 -- The type of the bounds is that of the parent type, and they
6498 -- must be converted to the derived type.
6500 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6502 -- The implicit_base should be frozen when the derived type is frozen,
6503 -- but note that it is used in the conversions of the bounds. For fixed
6504 -- types we delay the determination of the bounds until the proper
6505 -- freezing point. For other numeric types this is rejected by GCC, for
6506 -- reasons that are currently unclear (???), so we choose to freeze the
6507 -- implicit base now. In the case of integers and floating point types
6508 -- this is harmless because subsequent representation clauses cannot
6509 -- affect anything, but it is still baffling that we cannot use the
6510 -- same mechanism for all derived numeric types.
6512 -- There is a further complication: actually some representation
6513 -- clauses can affect the implicit base type. For example, attribute
6514 -- definition clauses for stream-oriented attributes need to set the
6515 -- corresponding TSS entries on the base type, and this normally
6516 -- cannot be done after the base type is frozen, so the circuitry in
6517 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6518 -- and not use Set_TSS in this case.
6520 -- There are also consequences for the case of delayed representation
6521 -- aspects for some cases. For example, a Size aspect is delayed and
6522 -- should not be evaluated to the freeze point. This early freezing
6523 -- means that the size attribute evaluation happens too early???
6525 if Is_Fixed_Point_Type (Parent_Type) then
6526 Conditional_Delay (Implicit_Base, Parent_Type);
6527 else
6528 Freeze_Before (N, Implicit_Base);
6529 end if;
6530 end Build_Derived_Numeric_Type;
6532 --------------------------------
6533 -- Build_Derived_Private_Type --
6534 --------------------------------
6536 procedure Build_Derived_Private_Type
6537 (N : Node_Id;
6538 Parent_Type : Entity_Id;
6539 Derived_Type : Entity_Id;
6540 Is_Completion : Boolean;
6541 Derive_Subps : Boolean := True)
6543 Loc : constant Source_Ptr := Sloc (N);
6544 Der_Base : Entity_Id;
6545 Discr : Entity_Id;
6546 Full_Decl : Node_Id := Empty;
6547 Full_Der : Entity_Id;
6548 Full_P : Entity_Id;
6549 Last_Discr : Entity_Id;
6550 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
6551 Swapped : Boolean := False;
6553 procedure Copy_And_Build;
6554 -- Copy derived type declaration, replace parent with its full view,
6555 -- and analyze new declaration.
6557 --------------------
6558 -- Copy_And_Build --
6559 --------------------
6561 procedure Copy_And_Build is
6562 Full_N : Node_Id;
6564 begin
6565 if Ekind (Parent_Type) in Record_Kind
6566 or else
6567 (Ekind (Parent_Type) in Enumeration_Kind
6568 and then not Is_Standard_Character_Type (Parent_Type)
6569 and then not Is_Generic_Type (Root_Type (Parent_Type)))
6570 then
6571 Full_N := New_Copy_Tree (N);
6572 Insert_After (N, Full_N);
6573 Build_Derived_Type (
6574 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
6576 else
6577 Build_Derived_Type (
6578 N, Parent_Type, Full_Der, True, Derive_Subps => False);
6579 end if;
6580 end Copy_And_Build;
6582 -- Start of processing for Build_Derived_Private_Type
6584 begin
6585 if Is_Tagged_Type (Parent_Type) then
6586 Full_P := Full_View (Parent_Type);
6588 -- A type extension of a type with unknown discriminants is an
6589 -- indefinite type that the back-end cannot handle directly.
6590 -- We treat it as a private type, and build a completion that is
6591 -- derived from the full view of the parent, and hopefully has
6592 -- known discriminants.
6594 -- If the full view of the parent type has an underlying record view,
6595 -- use it to generate the underlying record view of this derived type
6596 -- (required for chains of derivations with unknown discriminants).
6598 -- Minor optimization: we avoid the generation of useless underlying
6599 -- record view entities if the private type declaration has unknown
6600 -- discriminants but its corresponding full view has no
6601 -- discriminants.
6603 if Has_Unknown_Discriminants (Parent_Type)
6604 and then Present (Full_P)
6605 and then (Has_Discriminants (Full_P)
6606 or else Present (Underlying_Record_View (Full_P)))
6607 and then not In_Open_Scopes (Par_Scope)
6608 and then Expander_Active
6609 then
6610 declare
6611 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
6612 New_Ext : constant Node_Id :=
6613 Copy_Separate_Tree
6614 (Record_Extension_Part (Type_Definition (N)));
6615 Decl : Node_Id;
6617 begin
6618 Build_Derived_Record_Type
6619 (N, Parent_Type, Derived_Type, Derive_Subps);
6621 -- Build anonymous completion, as a derivation from the full
6622 -- view of the parent. This is not a completion in the usual
6623 -- sense, because the current type is not private.
6625 Decl :=
6626 Make_Full_Type_Declaration (Loc,
6627 Defining_Identifier => Full_Der,
6628 Type_Definition =>
6629 Make_Derived_Type_Definition (Loc,
6630 Subtype_Indication =>
6631 New_Copy_Tree
6632 (Subtype_Indication (Type_Definition (N))),
6633 Record_Extension_Part => New_Ext));
6635 -- If the parent type has an underlying record view, use it
6636 -- here to build the new underlying record view.
6638 if Present (Underlying_Record_View (Full_P)) then
6639 pragma Assert
6640 (Nkind (Subtype_Indication (Type_Definition (Decl)))
6641 = N_Identifier);
6642 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
6643 Underlying_Record_View (Full_P));
6644 end if;
6646 Install_Private_Declarations (Par_Scope);
6647 Install_Visible_Declarations (Par_Scope);
6648 Insert_Before (N, Decl);
6650 -- Mark entity as an underlying record view before analysis,
6651 -- to avoid generating the list of its primitive operations
6652 -- (which is not really required for this entity) and thus
6653 -- prevent spurious errors associated with missing overriding
6654 -- of abstract primitives (overridden only for Derived_Type).
6656 Set_Ekind (Full_Der, E_Record_Type);
6657 Set_Is_Underlying_Record_View (Full_Der);
6658 Set_Default_SSO (Full_Der);
6660 Analyze (Decl);
6662 pragma Assert (Has_Discriminants (Full_Der)
6663 and then not Has_Unknown_Discriminants (Full_Der));
6665 Uninstall_Declarations (Par_Scope);
6667 -- Freeze the underlying record view, to prevent generation of
6668 -- useless dispatching information, which is simply shared with
6669 -- the real derived type.
6671 Set_Is_Frozen (Full_Der);
6673 -- Set up links between real entity and underlying record view
6675 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
6676 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
6677 end;
6679 -- If discriminants are known, build derived record
6681 else
6682 Build_Derived_Record_Type
6683 (N, Parent_Type, Derived_Type, Derive_Subps);
6684 end if;
6686 return;
6688 elsif Has_Discriminants (Parent_Type) then
6689 if Present (Full_View (Parent_Type)) then
6690 if not Is_Completion then
6692 -- Copy declaration for subsequent analysis, to provide a
6693 -- completion for what is a private declaration. Indicate that
6694 -- the full type is internally generated.
6696 Full_Decl := New_Copy_Tree (N);
6697 Full_Der := New_Copy (Derived_Type);
6698 Set_Comes_From_Source (Full_Decl, False);
6699 Set_Comes_From_Source (Full_Der, False);
6700 Set_Parent (Full_Der, Full_Decl);
6702 Insert_After (N, Full_Decl);
6704 else
6705 -- If this is a completion, the full view being built is itself
6706 -- private. We build a subtype of the parent with the same
6707 -- constraints as this full view, to convey to the back end the
6708 -- constrained components and the size of this subtype. If the
6709 -- parent is constrained, its full view can serve as the
6710 -- underlying full view of the derived type.
6712 if No (Discriminant_Specifications (N)) then
6713 if Nkind (Subtype_Indication (Type_Definition (N))) =
6714 N_Subtype_Indication
6715 then
6716 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
6718 elsif Is_Constrained (Full_View (Parent_Type)) then
6719 Set_Underlying_Full_View
6720 (Derived_Type, Full_View (Parent_Type));
6721 end if;
6723 else
6724 -- If there are new discriminants, the parent subtype is
6725 -- constrained by them, but it is not clear how to build
6726 -- the Underlying_Full_View in this case???
6728 null;
6729 end if;
6730 end if;
6731 end if;
6733 -- Build partial view of derived type from partial view of parent
6735 Build_Derived_Record_Type
6736 (N, Parent_Type, Derived_Type, Derive_Subps);
6738 if Present (Full_View (Parent_Type)) and then not Is_Completion then
6739 if not In_Open_Scopes (Par_Scope)
6740 or else not In_Same_Source_Unit (N, Parent_Type)
6741 then
6742 -- Swap partial and full views temporarily
6744 Install_Private_Declarations (Par_Scope);
6745 Install_Visible_Declarations (Par_Scope);
6746 Swapped := True;
6747 end if;
6749 -- Build full view of derived type from full view of parent which
6750 -- is now installed. Subprograms have been derived on the partial
6751 -- view, the completion does not derive them anew.
6753 if not Is_Tagged_Type (Parent_Type) then
6755 -- If the parent is itself derived from another private type,
6756 -- installing the private declarations has not affected its
6757 -- privacy status, so use its own full view explicitly.
6759 if Is_Private_Type (Parent_Type) then
6760 Build_Derived_Record_Type
6761 (Full_Decl, Full_View (Parent_Type), Full_Der, False);
6762 else
6763 Build_Derived_Record_Type
6764 (Full_Decl, Parent_Type, Full_Der, False);
6765 end if;
6767 else
6768 -- If full view of parent is tagged, the completion inherits
6769 -- the proper primitive operations.
6771 Set_Defining_Identifier (Full_Decl, Full_Der);
6772 Build_Derived_Record_Type
6773 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
6774 end if;
6776 -- The full declaration has been introduced into the tree and
6777 -- processed in the step above. It should not be analyzed again
6778 -- (when encountered later in the current list of declarations)
6779 -- to prevent spurious name conflicts. The full entity remains
6780 -- invisible.
6782 Set_Analyzed (Full_Decl);
6784 if Swapped then
6785 Uninstall_Declarations (Par_Scope);
6787 if In_Open_Scopes (Par_Scope) then
6788 Install_Visible_Declarations (Par_Scope);
6789 end if;
6790 end if;
6792 Der_Base := Base_Type (Derived_Type);
6793 Set_Full_View (Derived_Type, Full_Der);
6794 Set_Full_View (Der_Base, Base_Type (Full_Der));
6796 -- Copy the discriminant list from full view to the partial views
6797 -- (base type and its subtype). Gigi requires that the partial and
6798 -- full views have the same discriminants.
6800 -- Note that since the partial view is pointing to discriminants
6801 -- in the full view, their scope will be that of the full view.
6802 -- This might cause some front end problems and need adjustment???
6804 Discr := First_Discriminant (Base_Type (Full_Der));
6805 Set_First_Entity (Der_Base, Discr);
6807 loop
6808 Last_Discr := Discr;
6809 Next_Discriminant (Discr);
6810 exit when No (Discr);
6811 end loop;
6813 Set_Last_Entity (Der_Base, Last_Discr);
6815 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
6816 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
6817 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
6819 else
6820 -- If this is a completion, the derived type stays private and
6821 -- there is no need to create a further full view, except in the
6822 -- unusual case when the derivation is nested within a child unit,
6823 -- see below.
6825 null;
6826 end if;
6828 elsif Present (Full_View (Parent_Type))
6829 and then Has_Discriminants (Full_View (Parent_Type))
6830 then
6831 if Has_Unknown_Discriminants (Parent_Type)
6832 and then Nkind (Subtype_Indication (Type_Definition (N))) =
6833 N_Subtype_Indication
6834 then
6835 Error_Msg_N
6836 ("cannot constrain type with unknown discriminants",
6837 Subtype_Indication (Type_Definition (N)));
6838 return;
6839 end if;
6841 -- If full view of parent is a record type, build full view as a
6842 -- derivation from the parent's full view. Partial view remains
6843 -- private. For code generation and linking, the full view must have
6844 -- the same public status as the partial one. This full view is only
6845 -- needed if the parent type is in an enclosing scope, so that the
6846 -- full view may actually become visible, e.g. in a child unit. This
6847 -- is both more efficient, and avoids order of freezing problems with
6848 -- the added entities.
6850 if not Is_Private_Type (Full_View (Parent_Type))
6851 and then (In_Open_Scopes (Scope (Parent_Type)))
6852 then
6853 Full_Der :=
6854 Make_Defining_Identifier (Sloc (Derived_Type),
6855 Chars => Chars (Derived_Type));
6857 Set_Is_Itype (Full_Der);
6858 Set_Has_Private_Declaration (Full_Der);
6859 Set_Has_Private_Declaration (Derived_Type);
6860 Set_Associated_Node_For_Itype (Full_Der, N);
6861 Set_Parent (Full_Der, Parent (Derived_Type));
6862 Set_Full_View (Derived_Type, Full_Der);
6863 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
6864 Full_P := Full_View (Parent_Type);
6865 Exchange_Declarations (Parent_Type);
6866 Copy_And_Build;
6867 Exchange_Declarations (Full_P);
6869 else
6870 Build_Derived_Record_Type
6871 (N, Full_View (Parent_Type), Derived_Type,
6872 Derive_Subps => False);
6874 -- Except in the context of the full view of the parent, there
6875 -- are no non-extension aggregates for the derived type.
6877 Set_Has_Private_Ancestor (Derived_Type);
6878 end if;
6880 -- In any case, the primitive operations are inherited from the
6881 -- parent type, not from the internal full view.
6883 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
6885 if Derive_Subps then
6886 Derive_Subprograms (Parent_Type, Derived_Type);
6887 end if;
6889 else
6890 -- Untagged type, No discriminants on either view
6892 if Nkind (Subtype_Indication (Type_Definition (N))) =
6893 N_Subtype_Indication
6894 then
6895 Error_Msg_N
6896 ("illegal constraint on type without discriminants", N);
6897 end if;
6899 if Present (Discriminant_Specifications (N))
6900 and then Present (Full_View (Parent_Type))
6901 and then not Is_Tagged_Type (Full_View (Parent_Type))
6902 then
6903 Error_Msg_N ("cannot add discriminants to untagged type", N);
6904 end if;
6906 Set_Stored_Constraint (Derived_Type, No_Elist);
6907 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6908 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
6909 Set_Has_Controlled_Component
6910 (Derived_Type, Has_Controlled_Component
6911 (Parent_Type));
6913 -- Direct controlled types do not inherit Finalize_Storage_Only flag
6915 if not Is_Controlled (Parent_Type) then
6916 Set_Finalize_Storage_Only
6917 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
6918 end if;
6920 -- Construct the implicit full view by deriving from full view of the
6921 -- parent type. In order to get proper visibility, we install the
6922 -- parent scope and its declarations.
6924 -- ??? If the parent is untagged private and its completion is
6925 -- tagged, this mechanism will not work because we cannot derive from
6926 -- the tagged full view unless we have an extension.
6928 if Present (Full_View (Parent_Type))
6929 and then not Is_Tagged_Type (Full_View (Parent_Type))
6930 and then not Is_Completion
6931 then
6932 Full_Der :=
6933 Make_Defining_Identifier
6934 (Sloc (Derived_Type), Chars (Derived_Type));
6935 Set_Is_Itype (Full_Der);
6936 Set_Has_Private_Declaration (Full_Der);
6937 Set_Has_Private_Declaration (Derived_Type);
6938 Set_Associated_Node_For_Itype (Full_Der, N);
6939 Set_Parent (Full_Der, Parent (Derived_Type));
6940 Set_Full_View (Derived_Type, Full_Der);
6942 if not In_Open_Scopes (Par_Scope) then
6943 Install_Private_Declarations (Par_Scope);
6944 Install_Visible_Declarations (Par_Scope);
6945 Copy_And_Build;
6946 Uninstall_Declarations (Par_Scope);
6948 -- If parent scope is open and in another unit, and parent has a
6949 -- completion, then the derivation is taking place in the visible
6950 -- part of a child unit. In that case retrieve the full view of
6951 -- the parent momentarily.
6953 elsif not In_Same_Source_Unit (N, Parent_Type) then
6954 Full_P := Full_View (Parent_Type);
6955 Exchange_Declarations (Parent_Type);
6956 Copy_And_Build;
6957 Exchange_Declarations (Full_P);
6959 -- Otherwise it is a local derivation
6961 else
6962 Copy_And_Build;
6963 end if;
6965 Set_Scope (Full_Der, Current_Scope);
6966 Set_Is_First_Subtype (Full_Der,
6967 Is_First_Subtype (Derived_Type));
6968 Set_Has_Size_Clause (Full_Der, False);
6969 Set_Has_Alignment_Clause (Full_Der, False);
6970 Set_Next_Entity (Full_Der, Empty);
6971 Set_Has_Delayed_Freeze (Full_Der);
6972 Set_Is_Frozen (Full_Der, False);
6973 Set_Freeze_Node (Full_Der, Empty);
6974 Set_Depends_On_Private (Full_Der,
6975 Has_Private_Component (Full_Der));
6976 Set_Public_Status (Full_Der);
6977 end if;
6978 end if;
6980 Set_Has_Unknown_Discriminants (Derived_Type,
6981 Has_Unknown_Discriminants (Parent_Type));
6983 if Is_Private_Type (Derived_Type) then
6984 Set_Private_Dependents (Derived_Type, New_Elmt_List);
6985 end if;
6987 if Is_Private_Type (Parent_Type)
6988 and then Base_Type (Parent_Type) = Parent_Type
6989 and then In_Open_Scopes (Scope (Parent_Type))
6990 then
6991 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
6993 -- Check for unusual case where a type completed by a private
6994 -- derivation occurs within a package nested in a child unit, and
6995 -- the parent is declared in an ancestor.
6997 if Is_Child_Unit (Scope (Current_Scope))
6998 and then Is_Completion
6999 and then In_Private_Part (Current_Scope)
7000 and then Scope (Parent_Type) /= Current_Scope
7002 -- Note that if the parent has a completion in the private part,
7003 -- (which is itself a derivation from some other private type)
7004 -- it is that completion that is visible, there is no full view
7005 -- available, and no special processing is needed.
7007 and then Present (Full_View (Parent_Type))
7008 then
7009 -- In this case, the full view of the parent type will become
7010 -- visible in the body of the enclosing child, and only then will
7011 -- the current type be possibly non-private. We build an
7012 -- underlying full view that will be installed when the enclosing
7013 -- child body is compiled.
7015 Full_Der :=
7016 Make_Defining_Identifier
7017 (Sloc (Derived_Type), Chars (Derived_Type));
7018 Set_Is_Itype (Full_Der);
7019 Build_Itype_Reference (Full_Der, N);
7021 -- The full view will be used to swap entities on entry/exit to
7022 -- the body, and must appear in the entity list for the package.
7024 Append_Entity (Full_Der, Scope (Derived_Type));
7025 Set_Has_Private_Declaration (Full_Der);
7026 Set_Has_Private_Declaration (Derived_Type);
7027 Set_Associated_Node_For_Itype (Full_Der, N);
7028 Set_Parent (Full_Der, Parent (Derived_Type));
7029 Full_P := Full_View (Parent_Type);
7030 Exchange_Declarations (Parent_Type);
7031 Copy_And_Build;
7032 Exchange_Declarations (Full_P);
7033 Set_Underlying_Full_View (Derived_Type, Full_Der);
7034 end if;
7035 end if;
7036 end Build_Derived_Private_Type;
7038 -------------------------------
7039 -- Build_Derived_Record_Type --
7040 -------------------------------
7042 -- 1. INTRODUCTION
7044 -- Ideally we would like to use the same model of type derivation for
7045 -- tagged and untagged record types. Unfortunately this is not quite
7046 -- possible because the semantics of representation clauses is different
7047 -- for tagged and untagged records under inheritance. Consider the
7048 -- following:
7050 -- type R (...) is [tagged] record ... end record;
7051 -- type T (...) is new R (...) [with ...];
7053 -- The representation clauses for T can specify a completely different
7054 -- record layout from R's. Hence the same component can be placed in two
7055 -- very different positions in objects of type T and R. If R and T are
7056 -- tagged types, representation clauses for T can only specify the layout
7057 -- of non inherited components, thus components that are common in R and T
7058 -- have the same position in objects of type R and T.
7060 -- This has two implications. The first is that the entire tree for R's
7061 -- declaration needs to be copied for T in the untagged case, so that T
7062 -- can be viewed as a record type of its own with its own representation
7063 -- clauses. The second implication is the way we handle discriminants.
7064 -- Specifically, in the untagged case we need a way to communicate to Gigi
7065 -- what are the real discriminants in the record, while for the semantics
7066 -- we need to consider those introduced by the user to rename the
7067 -- discriminants in the parent type. This is handled by introducing the
7068 -- notion of stored discriminants. See below for more.
7070 -- Fortunately the way regular components are inherited can be handled in
7071 -- the same way in tagged and untagged types.
7073 -- To complicate things a bit more the private view of a private extension
7074 -- cannot be handled in the same way as the full view (for one thing the
7075 -- semantic rules are somewhat different). We will explain what differs
7076 -- below.
7078 -- 2. DISCRIMINANTS UNDER INHERITANCE
7080 -- The semantic rules governing the discriminants of derived types are
7081 -- quite subtle.
7083 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7084 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7086 -- If parent type has discriminants, then the discriminants that are
7087 -- declared in the derived type are [3.4 (11)]:
7089 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7090 -- there is one;
7092 -- o Otherwise, each discriminant of the parent type (implicitly declared
7093 -- in the same order with the same specifications). In this case, the
7094 -- discriminants are said to be "inherited", or if unknown in the parent
7095 -- are also unknown in the derived type.
7097 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7099 -- o The parent subtype must be constrained;
7101 -- o If the parent type is not a tagged type, then each discriminant of
7102 -- the derived type must be used in the constraint defining a parent
7103 -- subtype. [Implementation note: This ensures that the new discriminant
7104 -- can share storage with an existing discriminant.]
7106 -- For the derived type each discriminant of the parent type is either
7107 -- inherited, constrained to equal some new discriminant of the derived
7108 -- type, or constrained to the value of an expression.
7110 -- When inherited or constrained to equal some new discriminant, the
7111 -- parent discriminant and the discriminant of the derived type are said
7112 -- to "correspond".
7114 -- If a discriminant of the parent type is constrained to a specific value
7115 -- in the derived type definition, then the discriminant is said to be
7116 -- "specified" by that derived type definition.
7118 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7120 -- We have spoken about stored discriminants in point 1 (introduction)
7121 -- above. There are two sort of stored discriminants: implicit and
7122 -- explicit. As long as the derived type inherits the same discriminants as
7123 -- the root record type, stored discriminants are the same as regular
7124 -- discriminants, and are said to be implicit. However, if any discriminant
7125 -- in the root type was renamed in the derived type, then the derived
7126 -- type will contain explicit stored discriminants. Explicit stored
7127 -- discriminants are discriminants in addition to the semantically visible
7128 -- discriminants defined for the derived type. Stored discriminants are
7129 -- used by Gigi to figure out what are the physical discriminants in
7130 -- objects of the derived type (see precise definition in einfo.ads).
7131 -- As an example, consider the following:
7133 -- type R (D1, D2, D3 : Int) is record ... end record;
7134 -- type T1 is new R;
7135 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7136 -- type T3 is new T2;
7137 -- type T4 (Y : Int) is new T3 (Y, 99);
7139 -- The following table summarizes the discriminants and stored
7140 -- discriminants in R and T1 through T4.
7142 -- Type Discrim Stored Discrim Comment
7143 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7144 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7145 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7146 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7147 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7149 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7150 -- find the corresponding discriminant in the parent type, while
7151 -- Original_Record_Component (abbreviated ORC below), the actual physical
7152 -- component that is renamed. Finally the field Is_Completely_Hidden
7153 -- (abbreviated ICH below) is set for all explicit stored discriminants
7154 -- (see einfo.ads for more info). For the above example this gives:
7156 -- Discrim CD ORC ICH
7157 -- ^^^^^^^ ^^ ^^^ ^^^
7158 -- D1 in R empty itself no
7159 -- D2 in R empty itself no
7160 -- D3 in R empty itself no
7162 -- D1 in T1 D1 in R itself no
7163 -- D2 in T1 D2 in R itself no
7164 -- D3 in T1 D3 in R itself no
7166 -- X1 in T2 D3 in T1 D3 in T2 no
7167 -- X2 in T2 D1 in T1 D1 in T2 no
7168 -- D1 in T2 empty itself yes
7169 -- D2 in T2 empty itself yes
7170 -- D3 in T2 empty itself yes
7172 -- X1 in T3 X1 in T2 D3 in T3 no
7173 -- X2 in T3 X2 in T2 D1 in T3 no
7174 -- D1 in T3 empty itself yes
7175 -- D2 in T3 empty itself yes
7176 -- D3 in T3 empty itself yes
7178 -- Y in T4 X1 in T3 D3 in T3 no
7179 -- D1 in T3 empty itself yes
7180 -- D2 in T3 empty itself yes
7181 -- D3 in T3 empty itself yes
7183 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7185 -- Type derivation for tagged types is fairly straightforward. If no
7186 -- discriminants are specified by the derived type, these are inherited
7187 -- from the parent. No explicit stored discriminants are ever necessary.
7188 -- The only manipulation that is done to the tree is that of adding a
7189 -- _parent field with parent type and constrained to the same constraint
7190 -- specified for the parent in the derived type definition. For instance:
7192 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7193 -- type T1 is new R with null record;
7194 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7196 -- are changed into:
7198 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7199 -- _parent : R (D1, D2, D3);
7200 -- end record;
7202 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7203 -- _parent : T1 (X2, 88, X1);
7204 -- end record;
7206 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7207 -- ORC and ICH fields are:
7209 -- Discrim CD ORC ICH
7210 -- ^^^^^^^ ^^ ^^^ ^^^
7211 -- D1 in R empty itself no
7212 -- D2 in R empty itself no
7213 -- D3 in R empty itself no
7215 -- D1 in T1 D1 in R D1 in R no
7216 -- D2 in T1 D2 in R D2 in R no
7217 -- D3 in T1 D3 in R D3 in R no
7219 -- X1 in T2 D3 in T1 D3 in R no
7220 -- X2 in T2 D1 in T1 D1 in R no
7222 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7224 -- Regardless of whether we dealing with a tagged or untagged type
7225 -- we will transform all derived type declarations of the form
7227 -- type T is new R (...) [with ...];
7228 -- or
7229 -- subtype S is R (...);
7230 -- type T is new S [with ...];
7231 -- into
7232 -- type BT is new R [with ...];
7233 -- subtype T is BT (...);
7235 -- That is, the base derived type is constrained only if it has no
7236 -- discriminants. The reason for doing this is that GNAT's semantic model
7237 -- assumes that a base type with discriminants is unconstrained.
7239 -- Note that, strictly speaking, the above transformation is not always
7240 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7242 -- procedure B34011A is
7243 -- type REC (D : integer := 0) is record
7244 -- I : Integer;
7245 -- end record;
7247 -- package P is
7248 -- type T6 is new Rec;
7249 -- function F return T6;
7250 -- end P;
7252 -- use P;
7253 -- package Q6 is
7254 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7255 -- end Q6;
7257 -- The definition of Q6.U is illegal. However transforming Q6.U into
7259 -- type BaseU is new T6;
7260 -- subtype U is BaseU (Q6.F.I)
7262 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7263 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7264 -- the transformation described above.
7266 -- There is another instance where the above transformation is incorrect.
7267 -- Consider:
7269 -- package Pack is
7270 -- type Base (D : Integer) is tagged null record;
7271 -- procedure P (X : Base);
7273 -- type Der is new Base (2) with null record;
7274 -- procedure P (X : Der);
7275 -- end Pack;
7277 -- Then the above transformation turns this into
7279 -- type Der_Base is new Base with null record;
7280 -- -- procedure P (X : Base) is implicitly inherited here
7281 -- -- as procedure P (X : Der_Base).
7283 -- subtype Der is Der_Base (2);
7284 -- procedure P (X : Der);
7285 -- -- The overriding of P (X : Der_Base) is illegal since we
7286 -- -- have a parameter conformance problem.
7288 -- To get around this problem, after having semantically processed Der_Base
7289 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7290 -- Discriminant_Constraint from Der so that when parameter conformance is
7291 -- checked when P is overridden, no semantic errors are flagged.
7293 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7295 -- Regardless of whether we are dealing with a tagged or untagged type
7296 -- we will transform all derived type declarations of the form
7298 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7299 -- type T is new R [with ...];
7300 -- into
7301 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7303 -- The reason for such transformation is that it allows us to implement a
7304 -- very clean form of component inheritance as explained below.
7306 -- Note that this transformation is not achieved by direct tree rewriting
7307 -- and manipulation, but rather by redoing the semantic actions that the
7308 -- above transformation will entail. This is done directly in routine
7309 -- Inherit_Components.
7311 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7313 -- In both tagged and untagged derived types, regular non discriminant
7314 -- components are inherited in the derived type from the parent type. In
7315 -- the absence of discriminants component, inheritance is straightforward
7316 -- as components can simply be copied from the parent.
7318 -- If the parent has discriminants, inheriting components constrained with
7319 -- these discriminants requires caution. Consider the following example:
7321 -- type R (D1, D2 : Positive) is [tagged] record
7322 -- S : String (D1 .. D2);
7323 -- end record;
7325 -- type T1 is new R [with null record];
7326 -- type T2 (X : positive) is new R (1, X) [with null record];
7328 -- As explained in 6. above, T1 is rewritten as
7329 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7330 -- which makes the treatment for T1 and T2 identical.
7332 -- What we want when inheriting S, is that references to D1 and D2 in R are
7333 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7334 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7335 -- with either discriminant references in the derived type or expressions.
7336 -- This replacement is achieved as follows: before inheriting R's
7337 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7338 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7339 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7340 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7341 -- by String (1 .. X).
7343 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7345 -- We explain here the rules governing private type extensions relevant to
7346 -- type derivation. These rules are explained on the following example:
7348 -- type D [(...)] is new A [(...)] with private; <-- partial view
7349 -- type D [(...)] is new P [(...)] with null record; <-- full view
7351 -- Type A is called the ancestor subtype of the private extension.
7352 -- Type P is the parent type of the full view of the private extension. It
7353 -- must be A or a type derived from A.
7355 -- The rules concerning the discriminants of private type extensions are
7356 -- [7.3(10-13)]:
7358 -- o If a private extension inherits known discriminants from the ancestor
7359 -- subtype, then the full view must also inherit its discriminants from
7360 -- the ancestor subtype and the parent subtype of the full view must be
7361 -- constrained if and only if the ancestor subtype is constrained.
7363 -- o If a partial view has unknown discriminants, then the full view may
7364 -- define a definite or an indefinite subtype, with or without
7365 -- discriminants.
7367 -- o If a partial view has neither known nor unknown discriminants, then
7368 -- the full view must define a definite subtype.
7370 -- o If the ancestor subtype of a private extension has constrained
7371 -- discriminants, then the parent subtype of the full view must impose a
7372 -- statically matching constraint on those discriminants.
7374 -- This means that only the following forms of private extensions are
7375 -- allowed:
7377 -- type D is new A with private; <-- partial view
7378 -- type D is new P with null record; <-- full view
7380 -- If A has no discriminants than P has no discriminants, otherwise P must
7381 -- inherit A's discriminants.
7383 -- type D is new A (...) with private; <-- partial view
7384 -- type D is new P (:::) with null record; <-- full view
7386 -- P must inherit A's discriminants and (...) and (:::) must statically
7387 -- match.
7389 -- subtype A is R (...);
7390 -- type D is new A with private; <-- partial view
7391 -- type D is new P with null record; <-- full view
7393 -- P must have inherited R's discriminants and must be derived from A or
7394 -- any of its subtypes.
7396 -- type D (..) is new A with private; <-- partial view
7397 -- type D (..) is new P [(:::)] with null record; <-- full view
7399 -- No specific constraints on P's discriminants or constraint (:::).
7400 -- Note that A can be unconstrained, but the parent subtype P must either
7401 -- be constrained or (:::) must be present.
7403 -- type D (..) is new A [(...)] with private; <-- partial view
7404 -- type D (..) is new P [(:::)] with null record; <-- full view
7406 -- P's constraints on A's discriminants must statically match those
7407 -- imposed by (...).
7409 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7411 -- The full view of a private extension is handled exactly as described
7412 -- above. The model chose for the private view of a private extension is
7413 -- the same for what concerns discriminants (i.e. they receive the same
7414 -- treatment as in the tagged case). However, the private view of the
7415 -- private extension always inherits the components of the parent base,
7416 -- without replacing any discriminant reference. Strictly speaking this is
7417 -- incorrect. However, Gigi never uses this view to generate code so this
7418 -- is a purely semantic issue. In theory, a set of transformations similar
7419 -- to those given in 5. and 6. above could be applied to private views of
7420 -- private extensions to have the same model of component inheritance as
7421 -- for non private extensions. However, this is not done because it would
7422 -- further complicate private type processing. Semantically speaking, this
7423 -- leaves us in an uncomfortable situation. As an example consider:
7425 -- package Pack is
7426 -- type R (D : integer) is tagged record
7427 -- S : String (1 .. D);
7428 -- end record;
7429 -- procedure P (X : R);
7430 -- type T is new R (1) with private;
7431 -- private
7432 -- type T is new R (1) with null record;
7433 -- end;
7435 -- This is transformed into:
7437 -- package Pack is
7438 -- type R (D : integer) is tagged record
7439 -- S : String (1 .. D);
7440 -- end record;
7441 -- procedure P (X : R);
7442 -- type T is new R (1) with private;
7443 -- private
7444 -- type BaseT is new R with null record;
7445 -- subtype T is BaseT (1);
7446 -- end;
7448 -- (strictly speaking the above is incorrect Ada)
7450 -- From the semantic standpoint the private view of private extension T
7451 -- should be flagged as constrained since one can clearly have
7453 -- Obj : T;
7455 -- in a unit withing Pack. However, when deriving subprograms for the
7456 -- private view of private extension T, T must be seen as unconstrained
7457 -- since T has discriminants (this is a constraint of the current
7458 -- subprogram derivation model). Thus, when processing the private view of
7459 -- a private extension such as T, we first mark T as unconstrained, we
7460 -- process it, we perform program derivation and just before returning from
7461 -- Build_Derived_Record_Type we mark T as constrained.
7463 -- ??? Are there are other uncomfortable cases that we will have to
7464 -- deal with.
7466 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7468 -- Types that are derived from a visible record type and have a private
7469 -- extension present other peculiarities. They behave mostly like private
7470 -- types, but if they have primitive operations defined, these will not
7471 -- have the proper signatures for further inheritance, because other
7472 -- primitive operations will use the implicit base that we define for
7473 -- private derivations below. This affect subprogram inheritance (see
7474 -- Derive_Subprograms for details). We also derive the implicit base from
7475 -- the base type of the full view, so that the implicit base is a record
7476 -- type and not another private type, This avoids infinite loops.
7478 procedure Build_Derived_Record_Type
7479 (N : Node_Id;
7480 Parent_Type : Entity_Id;
7481 Derived_Type : Entity_Id;
7482 Derive_Subps : Boolean := True)
7484 Discriminant_Specs : constant Boolean :=
7485 Present (Discriminant_Specifications (N));
7486 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7487 Loc : constant Source_Ptr := Sloc (N);
7488 Private_Extension : constant Boolean :=
7489 Nkind (N) = N_Private_Extension_Declaration;
7490 Assoc_List : Elist_Id;
7491 Constraint_Present : Boolean;
7492 Constrs : Elist_Id;
7493 Discrim : Entity_Id;
7494 Indic : Node_Id;
7495 Inherit_Discrims : Boolean := False;
7496 Last_Discrim : Entity_Id;
7497 New_Base : Entity_Id;
7498 New_Decl : Node_Id;
7499 New_Discrs : Elist_Id;
7500 New_Indic : Node_Id;
7501 Parent_Base : Entity_Id;
7502 Save_Etype : Entity_Id;
7503 Save_Discr_Constr : Elist_Id;
7504 Save_Next_Entity : Entity_Id;
7505 Type_Def : Node_Id;
7507 Discs : Elist_Id := New_Elmt_List;
7508 -- An empty Discs list means that there were no constraints in the
7509 -- subtype indication or that there was an error processing it.
7511 begin
7512 if Ekind (Parent_Type) = E_Record_Type_With_Private
7513 and then Present (Full_View (Parent_Type))
7514 and then Has_Discriminants (Parent_Type)
7515 then
7516 Parent_Base := Base_Type (Full_View (Parent_Type));
7517 else
7518 Parent_Base := Base_Type (Parent_Type);
7519 end if;
7521 -- AI05-0115 : if this is a derivation from a private type in some
7522 -- other scope that may lead to invisible components for the derived
7523 -- type, mark it accordingly.
7525 if Is_Private_Type (Parent_Type) then
7526 if Scope (Parent_Type) = Scope (Derived_Type) then
7527 null;
7529 elsif In_Open_Scopes (Scope (Parent_Type))
7530 and then In_Private_Part (Scope (Parent_Type))
7531 then
7532 null;
7534 else
7535 Set_Has_Private_Ancestor (Derived_Type);
7536 end if;
7538 else
7539 Set_Has_Private_Ancestor
7540 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7541 end if;
7543 -- Before we start the previously documented transformations, here is
7544 -- little fix for size and alignment of tagged types. Normally when we
7545 -- derive type D from type P, we copy the size and alignment of P as the
7546 -- default for D, and in the absence of explicit representation clauses
7547 -- for D, the size and alignment are indeed the same as the parent.
7549 -- But this is wrong for tagged types, since fields may be added, and
7550 -- the default size may need to be larger, and the default alignment may
7551 -- need to be larger.
7553 -- We therefore reset the size and alignment fields in the tagged case.
7554 -- Note that the size and alignment will in any case be at least as
7555 -- large as the parent type (since the derived type has a copy of the
7556 -- parent type in the _parent field)
7558 -- The type is also marked as being tagged here, which is needed when
7559 -- processing components with a self-referential anonymous access type
7560 -- in the call to Check_Anonymous_Access_Components below. Note that
7561 -- this flag is also set later on for completeness.
7563 if Is_Tagged then
7564 Set_Is_Tagged_Type (Derived_Type);
7565 Init_Size_Align (Derived_Type);
7566 end if;
7568 -- STEP 0a: figure out what kind of derived type declaration we have
7570 if Private_Extension then
7571 Type_Def := N;
7572 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7573 Set_Default_SSO (Derived_Type);
7575 else
7576 Type_Def := Type_Definition (N);
7578 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7579 -- Parent_Base can be a private type or private extension. However,
7580 -- for tagged types with an extension the newly added fields are
7581 -- visible and hence the Derived_Type is always an E_Record_Type.
7582 -- (except that the parent may have its own private fields).
7583 -- For untagged types we preserve the Ekind of the Parent_Base.
7585 if Present (Record_Extension_Part (Type_Def)) then
7586 Set_Ekind (Derived_Type, E_Record_Type);
7587 Set_Default_SSO (Derived_Type);
7589 -- Create internal access types for components with anonymous
7590 -- access types.
7592 if Ada_Version >= Ada_2005 then
7593 Check_Anonymous_Access_Components
7594 (N, Derived_Type, Derived_Type,
7595 Component_List (Record_Extension_Part (Type_Def)));
7596 end if;
7598 else
7599 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7600 end if;
7601 end if;
7603 -- Indic can either be an N_Identifier if the subtype indication
7604 -- contains no constraint or an N_Subtype_Indication if the subtype
7605 -- indication has a constraint.
7607 Indic := Subtype_Indication (Type_Def);
7608 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7610 -- Check that the type has visible discriminants. The type may be
7611 -- a private type with unknown discriminants whose full view has
7612 -- discriminants which are invisible.
7614 if Constraint_Present then
7615 if not Has_Discriminants (Parent_Base)
7616 or else
7617 (Has_Unknown_Discriminants (Parent_Base)
7618 and then Is_Private_Type (Parent_Base))
7619 then
7620 Error_Msg_N
7621 ("invalid constraint: type has no discriminant",
7622 Constraint (Indic));
7624 Constraint_Present := False;
7625 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7627 elsif Is_Constrained (Parent_Type) then
7628 Error_Msg_N
7629 ("invalid constraint: parent type is already constrained",
7630 Constraint (Indic));
7632 Constraint_Present := False;
7633 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7634 end if;
7635 end if;
7637 -- STEP 0b: If needed, apply transformation given in point 5. above
7639 if not Private_Extension
7640 and then Has_Discriminants (Parent_Type)
7641 and then not Discriminant_Specs
7642 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7643 then
7644 -- First, we must analyze the constraint (see comment in point 5.)
7645 -- The constraint may come from the subtype indication of the full
7646 -- declaration.
7648 if Constraint_Present then
7649 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7651 -- If there is no explicit constraint, there might be one that is
7652 -- inherited from a constrained parent type. In that case verify that
7653 -- it conforms to the constraint in the partial view. In perverse
7654 -- cases the parent subtypes of the partial and full view can have
7655 -- different constraints.
7657 elsif Present (Stored_Constraint (Parent_Type)) then
7658 New_Discrs := Stored_Constraint (Parent_Type);
7660 else
7661 New_Discrs := No_Elist;
7662 end if;
7664 if Has_Discriminants (Derived_Type)
7665 and then Has_Private_Declaration (Derived_Type)
7666 and then Present (Discriminant_Constraint (Derived_Type))
7667 and then Present (New_Discrs)
7668 then
7669 -- Verify that constraints of the full view statically match
7670 -- those given in the partial view.
7672 declare
7673 C1, C2 : Elmt_Id;
7675 begin
7676 C1 := First_Elmt (New_Discrs);
7677 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
7678 while Present (C1) and then Present (C2) loop
7679 if Fully_Conformant_Expressions (Node (C1), Node (C2))
7680 or else
7681 (Is_OK_Static_Expression (Node (C1))
7682 and then Is_OK_Static_Expression (Node (C2))
7683 and then
7684 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
7685 then
7686 null;
7688 else
7689 if Constraint_Present then
7690 Error_Msg_N
7691 ("constraint not conformant to previous declaration",
7692 Node (C1));
7693 else
7694 Error_Msg_N
7695 ("constraint of full view is incompatible "
7696 & "with partial view", N);
7697 end if;
7698 end if;
7700 Next_Elmt (C1);
7701 Next_Elmt (C2);
7702 end loop;
7703 end;
7704 end if;
7706 -- Insert and analyze the declaration for the unconstrained base type
7708 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7710 New_Decl :=
7711 Make_Full_Type_Declaration (Loc,
7712 Defining_Identifier => New_Base,
7713 Type_Definition =>
7714 Make_Derived_Type_Definition (Loc,
7715 Abstract_Present => Abstract_Present (Type_Def),
7716 Limited_Present => Limited_Present (Type_Def),
7717 Subtype_Indication =>
7718 New_Occurrence_Of (Parent_Base, Loc),
7719 Record_Extension_Part =>
7720 Relocate_Node (Record_Extension_Part (Type_Def)),
7721 Interface_List => Interface_List (Type_Def)));
7723 Set_Parent (New_Decl, Parent (N));
7724 Mark_Rewrite_Insertion (New_Decl);
7725 Insert_Before (N, New_Decl);
7727 -- In the extension case, make sure ancestor is frozen appropriately
7728 -- (see also non-discriminated case below).
7730 if Present (Record_Extension_Part (Type_Def))
7731 or else Is_Interface (Parent_Base)
7732 then
7733 Freeze_Before (New_Decl, Parent_Type);
7734 end if;
7736 -- Note that this call passes False for the Derive_Subps parameter
7737 -- because subprogram derivation is deferred until after creating
7738 -- the subtype (see below).
7740 Build_Derived_Type
7741 (New_Decl, Parent_Base, New_Base,
7742 Is_Completion => True, Derive_Subps => False);
7744 -- ??? This needs re-examination to determine whether the
7745 -- above call can simply be replaced by a call to Analyze.
7747 Set_Analyzed (New_Decl);
7749 -- Insert and analyze the declaration for the constrained subtype
7751 if Constraint_Present then
7752 New_Indic :=
7753 Make_Subtype_Indication (Loc,
7754 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7755 Constraint => Relocate_Node (Constraint (Indic)));
7757 else
7758 declare
7759 Constr_List : constant List_Id := New_List;
7760 C : Elmt_Id;
7761 Expr : Node_Id;
7763 begin
7764 C := First_Elmt (Discriminant_Constraint (Parent_Type));
7765 while Present (C) loop
7766 Expr := Node (C);
7768 -- It is safe here to call New_Copy_Tree since
7769 -- Force_Evaluation was called on each constraint in
7770 -- Build_Discriminant_Constraints.
7772 Append (New_Copy_Tree (Expr), To => Constr_List);
7774 Next_Elmt (C);
7775 end loop;
7777 New_Indic :=
7778 Make_Subtype_Indication (Loc,
7779 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7780 Constraint =>
7781 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
7782 end;
7783 end if;
7785 Rewrite (N,
7786 Make_Subtype_Declaration (Loc,
7787 Defining_Identifier => Derived_Type,
7788 Subtype_Indication => New_Indic));
7790 Analyze (N);
7792 -- Derivation of subprograms must be delayed until the full subtype
7793 -- has been established, to ensure proper overriding of subprograms
7794 -- inherited by full types. If the derivations occurred as part of
7795 -- the call to Build_Derived_Type above, then the check for type
7796 -- conformance would fail because earlier primitive subprograms
7797 -- could still refer to the full type prior the change to the new
7798 -- subtype and hence would not match the new base type created here.
7799 -- Subprograms are not derived, however, when Derive_Subps is False
7800 -- (since otherwise there could be redundant derivations).
7802 if Derive_Subps then
7803 Derive_Subprograms (Parent_Type, Derived_Type);
7804 end if;
7806 -- For tagged types the Discriminant_Constraint of the new base itype
7807 -- is inherited from the first subtype so that no subtype conformance
7808 -- problem arise when the first subtype overrides primitive
7809 -- operations inherited by the implicit base type.
7811 if Is_Tagged then
7812 Set_Discriminant_Constraint
7813 (New_Base, Discriminant_Constraint (Derived_Type));
7814 end if;
7816 return;
7817 end if;
7819 -- If we get here Derived_Type will have no discriminants or it will be
7820 -- a discriminated unconstrained base type.
7822 -- STEP 1a: perform preliminary actions/checks for derived tagged types
7824 if Is_Tagged then
7826 -- The parent type is frozen for non-private extensions (RM 13.14(7))
7827 -- The declaration of a specific descendant of an interface type
7828 -- freezes the interface type (RM 13.14).
7830 if not Private_Extension or else Is_Interface (Parent_Base) then
7831 Freeze_Before (N, Parent_Type);
7832 end if;
7834 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
7835 -- cannot be declared at a deeper level than its parent type is
7836 -- removed. The check on derivation within a generic body is also
7837 -- relaxed, but there's a restriction that a derived tagged type
7838 -- cannot be declared in a generic body if it's derived directly
7839 -- or indirectly from a formal type of that generic.
7841 if Ada_Version >= Ada_2005 then
7842 if Present (Enclosing_Generic_Body (Derived_Type)) then
7843 declare
7844 Ancestor_Type : Entity_Id;
7846 begin
7847 -- Check to see if any ancestor of the derived type is a
7848 -- formal type.
7850 Ancestor_Type := Parent_Type;
7851 while not Is_Generic_Type (Ancestor_Type)
7852 and then Etype (Ancestor_Type) /= Ancestor_Type
7853 loop
7854 Ancestor_Type := Etype (Ancestor_Type);
7855 end loop;
7857 -- If the derived type does have a formal type as an
7858 -- ancestor, then it's an error if the derived type is
7859 -- declared within the body of the generic unit that
7860 -- declares the formal type in its generic formal part. It's
7861 -- sufficient to check whether the ancestor type is declared
7862 -- inside the same generic body as the derived type (such as
7863 -- within a nested generic spec), in which case the
7864 -- derivation is legal. If the formal type is declared
7865 -- outside of that generic body, then it's guaranteed that
7866 -- the derived type is declared within the generic body of
7867 -- the generic unit declaring the formal type.
7869 if Is_Generic_Type (Ancestor_Type)
7870 and then Enclosing_Generic_Body (Ancestor_Type) /=
7871 Enclosing_Generic_Body (Derived_Type)
7872 then
7873 Error_Msg_NE
7874 ("parent type of& must not be descendant of formal type"
7875 & " of an enclosing generic body",
7876 Indic, Derived_Type);
7877 end if;
7878 end;
7879 end if;
7881 elsif Type_Access_Level (Derived_Type) /=
7882 Type_Access_Level (Parent_Type)
7883 and then not Is_Generic_Type (Derived_Type)
7884 then
7885 if Is_Controlled (Parent_Type) then
7886 Error_Msg_N
7887 ("controlled type must be declared at the library level",
7888 Indic);
7889 else
7890 Error_Msg_N
7891 ("type extension at deeper accessibility level than parent",
7892 Indic);
7893 end if;
7895 else
7896 declare
7897 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
7898 begin
7899 if Present (GB)
7900 and then GB /= Enclosing_Generic_Body (Parent_Base)
7901 then
7902 Error_Msg_NE
7903 ("parent type of& must not be outside generic body"
7904 & " (RM 3.9.1(4))",
7905 Indic, Derived_Type);
7906 end if;
7907 end;
7908 end if;
7909 end if;
7911 -- Ada 2005 (AI-251)
7913 if Ada_Version >= Ada_2005 and then Is_Tagged then
7915 -- "The declaration of a specific descendant of an interface type
7916 -- freezes the interface type" (RM 13.14).
7918 declare
7919 Iface : Node_Id;
7920 begin
7921 if Is_Non_Empty_List (Interface_List (Type_Def)) then
7922 Iface := First (Interface_List (Type_Def));
7923 while Present (Iface) loop
7924 Freeze_Before (N, Etype (Iface));
7925 Next (Iface);
7926 end loop;
7927 end if;
7928 end;
7929 end if;
7931 -- STEP 1b : preliminary cleanup of the full view of private types
7933 -- If the type is already marked as having discriminants, then it's the
7934 -- completion of a private type or private extension and we need to
7935 -- retain the discriminants from the partial view if the current
7936 -- declaration has Discriminant_Specifications so that we can verify
7937 -- conformance. However, we must remove any existing components that
7938 -- were inherited from the parent (and attached in Copy_And_Swap)
7939 -- because the full type inherits all appropriate components anyway, and
7940 -- we do not want the partial view's components interfering.
7942 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
7943 Discrim := First_Discriminant (Derived_Type);
7944 loop
7945 Last_Discrim := Discrim;
7946 Next_Discriminant (Discrim);
7947 exit when No (Discrim);
7948 end loop;
7950 Set_Last_Entity (Derived_Type, Last_Discrim);
7952 -- In all other cases wipe out the list of inherited components (even
7953 -- inherited discriminants), it will be properly rebuilt here.
7955 else
7956 Set_First_Entity (Derived_Type, Empty);
7957 Set_Last_Entity (Derived_Type, Empty);
7958 end if;
7960 -- STEP 1c: Initialize some flags for the Derived_Type
7962 -- The following flags must be initialized here so that
7963 -- Process_Discriminants can check that discriminants of tagged types do
7964 -- not have a default initial value and that access discriminants are
7965 -- only specified for limited records. For completeness, these flags are
7966 -- also initialized along with all the other flags below.
7968 -- AI-419: Limitedness is not inherited from an interface parent, so to
7969 -- be limited in that case the type must be explicitly declared as
7970 -- limited. However, task and protected interfaces are always limited.
7972 if Limited_Present (Type_Def) then
7973 Set_Is_Limited_Record (Derived_Type);
7975 elsif Is_Limited_Record (Parent_Type)
7976 or else (Present (Full_View (Parent_Type))
7977 and then Is_Limited_Record (Full_View (Parent_Type)))
7978 then
7979 if not Is_Interface (Parent_Type)
7980 or else Is_Synchronized_Interface (Parent_Type)
7981 or else Is_Protected_Interface (Parent_Type)
7982 or else Is_Task_Interface (Parent_Type)
7983 then
7984 Set_Is_Limited_Record (Derived_Type);
7985 end if;
7986 end if;
7988 -- STEP 2a: process discriminants of derived type if any
7990 Push_Scope (Derived_Type);
7992 if Discriminant_Specs then
7993 Set_Has_Unknown_Discriminants (Derived_Type, False);
7995 -- The following call initializes fields Has_Discriminants and
7996 -- Discriminant_Constraint, unless we are processing the completion
7997 -- of a private type declaration.
7999 Check_Or_Process_Discriminants (N, Derived_Type);
8001 -- For untagged types, the constraint on the Parent_Type must be
8002 -- present and is used to rename the discriminants.
8004 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8005 Error_Msg_N ("untagged parent must have discriminants", Indic);
8007 elsif not Is_Tagged and then not Constraint_Present then
8008 Error_Msg_N
8009 ("discriminant constraint needed for derived untagged records",
8010 Indic);
8012 -- Otherwise the parent subtype must be constrained unless we have a
8013 -- private extension.
8015 elsif not Constraint_Present
8016 and then not Private_Extension
8017 and then not Is_Constrained (Parent_Type)
8018 then
8019 Error_Msg_N
8020 ("unconstrained type not allowed in this context", Indic);
8022 elsif Constraint_Present then
8023 -- The following call sets the field Corresponding_Discriminant
8024 -- for the discriminants in the Derived_Type.
8026 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8028 -- For untagged types all new discriminants must rename
8029 -- discriminants in the parent. For private extensions new
8030 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8032 Discrim := First_Discriminant (Derived_Type);
8033 while Present (Discrim) loop
8034 if not Is_Tagged
8035 and then No (Corresponding_Discriminant (Discrim))
8036 then
8037 Error_Msg_N
8038 ("new discriminants must constrain old ones", Discrim);
8040 elsif Private_Extension
8041 and then Present (Corresponding_Discriminant (Discrim))
8042 then
8043 Error_Msg_N
8044 ("only static constraints allowed for parent"
8045 & " discriminants in the partial view", Indic);
8046 exit;
8047 end if;
8049 -- If a new discriminant is used in the constraint, then its
8050 -- subtype must be statically compatible with the parent
8051 -- discriminant's subtype (3.7(15)).
8053 -- However, if the record contains an array constrained by
8054 -- the discriminant but with some different bound, the compiler
8055 -- attemps to create a smaller range for the discriminant type.
8056 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8057 -- the discriminant type is a scalar type, the check must use
8058 -- the original discriminant type in the parent declaration.
8060 declare
8061 Corr_Disc : constant Entity_Id :=
8062 Corresponding_Discriminant (Discrim);
8063 Disc_Type : constant Entity_Id := Etype (Discrim);
8064 Corr_Type : Entity_Id;
8066 begin
8067 if Present (Corr_Disc) then
8068 if Is_Scalar_Type (Disc_Type) then
8069 Corr_Type :=
8070 Entity (Discriminant_Type (Parent (Corr_Disc)));
8071 else
8072 Corr_Type := Etype (Corr_Disc);
8073 end if;
8075 if not
8076 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8077 then
8078 Error_Msg_N
8079 ("subtype must be compatible "
8080 & "with parent discriminant",
8081 Discrim);
8082 end if;
8083 end if;
8084 end;
8086 Next_Discriminant (Discrim);
8087 end loop;
8089 -- Check whether the constraints of the full view statically
8090 -- match those imposed by the parent subtype [7.3(13)].
8092 if Present (Stored_Constraint (Derived_Type)) then
8093 declare
8094 C1, C2 : Elmt_Id;
8096 begin
8097 C1 := First_Elmt (Discs);
8098 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8099 while Present (C1) and then Present (C2) loop
8100 if not
8101 Fully_Conformant_Expressions (Node (C1), Node (C2))
8102 then
8103 Error_Msg_N
8104 ("not conformant with previous declaration",
8105 Node (C1));
8106 end if;
8108 Next_Elmt (C1);
8109 Next_Elmt (C2);
8110 end loop;
8111 end;
8112 end if;
8113 end if;
8115 -- STEP 2b: No new discriminants, inherit discriminants if any
8117 else
8118 if Private_Extension then
8119 Set_Has_Unknown_Discriminants
8120 (Derived_Type,
8121 Has_Unknown_Discriminants (Parent_Type)
8122 or else Unknown_Discriminants_Present (N));
8124 -- The partial view of the parent may have unknown discriminants,
8125 -- but if the full view has discriminants and the parent type is
8126 -- in scope they must be inherited.
8128 elsif Has_Unknown_Discriminants (Parent_Type)
8129 and then
8130 (not Has_Discriminants (Parent_Type)
8131 or else not In_Open_Scopes (Scope (Parent_Type)))
8132 then
8133 Set_Has_Unknown_Discriminants (Derived_Type);
8134 end if;
8136 if not Has_Unknown_Discriminants (Derived_Type)
8137 and then not Has_Unknown_Discriminants (Parent_Base)
8138 and then Has_Discriminants (Parent_Type)
8139 then
8140 Inherit_Discrims := True;
8141 Set_Has_Discriminants
8142 (Derived_Type, True);
8143 Set_Discriminant_Constraint
8144 (Derived_Type, Discriminant_Constraint (Parent_Base));
8145 end if;
8147 -- The following test is true for private types (remember
8148 -- transformation 5. is not applied to those) and in an error
8149 -- situation.
8151 if Constraint_Present then
8152 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8153 end if;
8155 -- For now mark a new derived type as constrained only if it has no
8156 -- discriminants. At the end of Build_Derived_Record_Type we properly
8157 -- set this flag in the case of private extensions. See comments in
8158 -- point 9. just before body of Build_Derived_Record_Type.
8160 Set_Is_Constrained
8161 (Derived_Type,
8162 not (Inherit_Discrims
8163 or else Has_Unknown_Discriminants (Derived_Type)));
8164 end if;
8166 -- STEP 3: initialize fields of derived type
8168 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8169 Set_Stored_Constraint (Derived_Type, No_Elist);
8171 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8172 -- but cannot be interfaces
8174 if not Private_Extension
8175 and then Ekind (Derived_Type) /= E_Private_Type
8176 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8177 then
8178 if Interface_Present (Type_Def) then
8179 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8180 end if;
8182 Set_Interfaces (Derived_Type, No_Elist);
8183 end if;
8185 -- Fields inherited from the Parent_Type
8187 Set_Has_Specified_Layout
8188 (Derived_Type, Has_Specified_Layout (Parent_Type));
8189 Set_Is_Limited_Composite
8190 (Derived_Type, Is_Limited_Composite (Parent_Type));
8191 Set_Is_Private_Composite
8192 (Derived_Type, Is_Private_Composite (Parent_Type));
8194 -- Fields inherited from the Parent_Base
8196 Set_Has_Controlled_Component
8197 (Derived_Type, Has_Controlled_Component (Parent_Base));
8198 Set_Has_Non_Standard_Rep
8199 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8200 Set_Has_Primitive_Operations
8201 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8203 -- Fields inherited from the Parent_Base in the non-private case
8205 if Ekind (Derived_Type) = E_Record_Type then
8206 Set_Has_Complex_Representation
8207 (Derived_Type, Has_Complex_Representation (Parent_Base));
8208 end if;
8210 -- Fields inherited from the Parent_Base for record types
8212 if Is_Record_Type (Derived_Type) then
8214 declare
8215 Parent_Full : Entity_Id;
8217 begin
8218 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8219 -- Parent_Base can be a private type or private extension. Go
8220 -- to the full view here to get the E_Record_Type specific flags.
8222 if Present (Full_View (Parent_Base)) then
8223 Parent_Full := Full_View (Parent_Base);
8224 else
8225 Parent_Full := Parent_Base;
8226 end if;
8228 Set_OK_To_Reorder_Components
8229 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8230 end;
8231 end if;
8233 -- Set fields for private derived types
8235 if Is_Private_Type (Derived_Type) then
8236 Set_Depends_On_Private (Derived_Type, True);
8237 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8239 -- Inherit fields from non private record types. If this is the
8240 -- completion of a derivation from a private type, the parent itself
8241 -- is private, and the attributes come from its full view, which must
8242 -- be present.
8244 else
8245 if Is_Private_Type (Parent_Base)
8246 and then not Is_Record_Type (Parent_Base)
8247 then
8248 Set_Component_Alignment
8249 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8250 Set_C_Pass_By_Copy
8251 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8252 else
8253 Set_Component_Alignment
8254 (Derived_Type, Component_Alignment (Parent_Base));
8255 Set_C_Pass_By_Copy
8256 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8257 end if;
8258 end if;
8260 -- Set fields for tagged types
8262 if Is_Tagged then
8263 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8265 -- All tagged types defined in Ada.Finalization are controlled
8267 if Chars (Scope (Derived_Type)) = Name_Finalization
8268 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8269 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8270 then
8271 Set_Is_Controlled (Derived_Type);
8272 else
8273 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8274 end if;
8276 -- Minor optimization: there is no need to generate the class-wide
8277 -- entity associated with an underlying record view.
8279 if not Is_Underlying_Record_View (Derived_Type) then
8280 Make_Class_Wide_Type (Derived_Type);
8281 end if;
8283 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8285 if Has_Discriminants (Derived_Type)
8286 and then Constraint_Present
8287 then
8288 Set_Stored_Constraint
8289 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8290 end if;
8292 if Ada_Version >= Ada_2005 then
8293 declare
8294 Ifaces_List : Elist_Id;
8296 begin
8297 -- Checks rules 3.9.4 (13/2 and 14/2)
8299 if Comes_From_Source (Derived_Type)
8300 and then not Is_Private_Type (Derived_Type)
8301 and then Is_Interface (Parent_Type)
8302 and then not Is_Interface (Derived_Type)
8303 then
8304 if Is_Task_Interface (Parent_Type) then
8305 Error_Msg_N
8306 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8307 Derived_Type);
8309 elsif Is_Protected_Interface (Parent_Type) then
8310 Error_Msg_N
8311 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8312 Derived_Type);
8313 end if;
8314 end if;
8316 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8318 Check_Interfaces (N, Type_Def);
8320 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8321 -- not already in the parents.
8323 Collect_Interfaces
8324 (T => Derived_Type,
8325 Ifaces_List => Ifaces_List,
8326 Exclude_Parents => True);
8328 Set_Interfaces (Derived_Type, Ifaces_List);
8330 -- If the derived type is the anonymous type created for
8331 -- a declaration whose parent has a constraint, propagate
8332 -- the interface list to the source type. This must be done
8333 -- prior to the completion of the analysis of the source type
8334 -- because the components in the extension may contain current
8335 -- instances whose legality depends on some ancestor.
8337 if Is_Itype (Derived_Type) then
8338 declare
8339 Def : constant Node_Id :=
8340 Associated_Node_For_Itype (Derived_Type);
8341 begin
8342 if Present (Def)
8343 and then Nkind (Def) = N_Full_Type_Declaration
8344 then
8345 Set_Interfaces
8346 (Defining_Identifier (Def), Ifaces_List);
8347 end if;
8348 end;
8349 end if;
8350 end;
8351 end if;
8353 else
8354 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8355 Set_Has_Non_Standard_Rep
8356 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8357 end if;
8359 -- STEP 4: Inherit components from the parent base and constrain them.
8360 -- Apply the second transformation described in point 6. above.
8362 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8363 or else not Has_Discriminants (Parent_Type)
8364 or else not Is_Constrained (Parent_Type)
8365 then
8366 Constrs := Discs;
8367 else
8368 Constrs := Discriminant_Constraint (Parent_Type);
8369 end if;
8371 Assoc_List :=
8372 Inherit_Components
8373 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8375 -- STEP 5a: Copy the parent record declaration for untagged types
8377 if not Is_Tagged then
8379 -- Discriminant_Constraint (Derived_Type) has been properly
8380 -- constructed. Save it and temporarily set it to Empty because we
8381 -- do not want the call to New_Copy_Tree below to mess this list.
8383 if Has_Discriminants (Derived_Type) then
8384 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8385 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8386 else
8387 Save_Discr_Constr := No_Elist;
8388 end if;
8390 -- Save the Etype field of Derived_Type. It is correctly set now,
8391 -- but the call to New_Copy tree may remap it to point to itself,
8392 -- which is not what we want. Ditto for the Next_Entity field.
8394 Save_Etype := Etype (Derived_Type);
8395 Save_Next_Entity := Next_Entity (Derived_Type);
8397 -- Assoc_List maps all stored discriminants in the Parent_Base to
8398 -- stored discriminants in the Derived_Type. It is fundamental that
8399 -- no types or itypes with discriminants other than the stored
8400 -- discriminants appear in the entities declared inside
8401 -- Derived_Type, since the back end cannot deal with it.
8403 New_Decl :=
8404 New_Copy_Tree
8405 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8407 -- Restore the fields saved prior to the New_Copy_Tree call
8408 -- and compute the stored constraint.
8410 Set_Etype (Derived_Type, Save_Etype);
8411 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8413 if Has_Discriminants (Derived_Type) then
8414 Set_Discriminant_Constraint
8415 (Derived_Type, Save_Discr_Constr);
8416 Set_Stored_Constraint
8417 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8418 Replace_Components (Derived_Type, New_Decl);
8419 Set_Has_Implicit_Dereference
8420 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8421 end if;
8423 -- Insert the new derived type declaration
8425 Rewrite (N, New_Decl);
8427 -- STEP 5b: Complete the processing for record extensions in generics
8429 -- There is no completion for record extensions declared in the
8430 -- parameter part of a generic, so we need to complete processing for
8431 -- these generic record extensions here. The Record_Type_Definition call
8432 -- will change the Ekind of the components from E_Void to E_Component.
8434 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8435 Record_Type_Definition (Empty, Derived_Type);
8437 -- STEP 5c: Process the record extension for non private tagged types
8439 elsif not Private_Extension then
8440 Expand_Record_Extension (Derived_Type, Type_Def);
8442 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8443 -- derived type to propagate some semantic information. This led
8444 -- to other ASIS failures and has been removed.
8446 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8447 -- implemented interfaces if we are in expansion mode
8449 if Expander_Active
8450 and then Has_Interfaces (Derived_Type)
8451 then
8452 Add_Interface_Tag_Components (N, Derived_Type);
8453 end if;
8455 -- Analyze the record extension
8457 Record_Type_Definition
8458 (Record_Extension_Part (Type_Def), Derived_Type);
8459 end if;
8461 End_Scope;
8463 -- Nothing else to do if there is an error in the derivation.
8464 -- An unusual case: the full view may be derived from a type in an
8465 -- instance, when the partial view was used illegally as an actual
8466 -- in that instance, leading to a circular definition.
8468 if Etype (Derived_Type) = Any_Type
8469 or else Etype (Parent_Type) = Derived_Type
8470 then
8471 return;
8472 end if;
8474 -- Set delayed freeze and then derive subprograms, we need to do
8475 -- this in this order so that derived subprograms inherit the
8476 -- derived freeze if necessary.
8478 Set_Has_Delayed_Freeze (Derived_Type);
8480 if Derive_Subps then
8481 Derive_Subprograms (Parent_Type, Derived_Type);
8482 end if;
8484 -- If we have a private extension which defines a constrained derived
8485 -- type mark as constrained here after we have derived subprograms. See
8486 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8488 if Private_Extension and then Inherit_Discrims then
8489 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8490 Set_Is_Constrained (Derived_Type, True);
8491 Set_Discriminant_Constraint (Derived_Type, Discs);
8493 elsif Is_Constrained (Parent_Type) then
8494 Set_Is_Constrained
8495 (Derived_Type, True);
8496 Set_Discriminant_Constraint
8497 (Derived_Type, Discriminant_Constraint (Parent_Type));
8498 end if;
8499 end if;
8501 -- Update the class-wide type, which shares the now-completed entity
8502 -- list with its specific type. In case of underlying record views,
8503 -- we do not generate the corresponding class wide entity.
8505 if Is_Tagged
8506 and then not Is_Underlying_Record_View (Derived_Type)
8507 then
8508 Set_First_Entity
8509 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8510 Set_Last_Entity
8511 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8512 end if;
8514 Check_Function_Writable_Actuals (N);
8515 end Build_Derived_Record_Type;
8517 ------------------------
8518 -- Build_Derived_Type --
8519 ------------------------
8521 procedure Build_Derived_Type
8522 (N : Node_Id;
8523 Parent_Type : Entity_Id;
8524 Derived_Type : Entity_Id;
8525 Is_Completion : Boolean;
8526 Derive_Subps : Boolean := True)
8528 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8530 begin
8531 -- Set common attributes
8533 Set_Scope (Derived_Type, Current_Scope);
8535 Set_Etype (Derived_Type, Parent_Base);
8536 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8537 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8538 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8540 Set_Size_Info (Derived_Type, Parent_Type);
8541 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8542 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8543 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8545 -- If the parent has primitive routines, set the derived type link
8547 if Has_Primitive_Operations (Parent_Type) then
8548 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8549 end if;
8551 -- If the parent type is a private subtype, the convention on the base
8552 -- type may be set in the private part, and not propagated to the
8553 -- subtype until later, so we obtain the convention from the base type.
8555 Set_Convention (Derived_Type, Convention (Parent_Base));
8557 -- Set SSO default for record or array type
8559 if (Is_Array_Type (Derived_Type)
8560 or else Is_Record_Type (Derived_Type))
8561 and then Is_Base_Type (Derived_Type)
8562 then
8563 Set_Default_SSO (Derived_Type);
8564 end if;
8566 -- Propagate invariant information. The new type has invariants if
8567 -- they are inherited from the parent type, and these invariants can
8568 -- be further inherited, so both flags are set.
8570 -- We similarly inherit predicates
8572 if Has_Predicates (Parent_Type) then
8573 Set_Has_Predicates (Derived_Type);
8574 end if;
8576 -- The derived type inherits the representation clauses of the parent.
8577 -- However, for a private type that is completed by a derivation, there
8578 -- may be operation attributes that have been specified already (stream
8579 -- attributes and External_Tag) and those must be provided. Finally,
8580 -- if the partial view is a private extension, the representation items
8581 -- of the parent have been inherited already, and should not be chained
8582 -- twice to the derived type.
8584 if Is_Tagged_Type (Parent_Type)
8585 and then Present (First_Rep_Item (Derived_Type))
8586 then
8587 -- The existing items are either operational items or items inherited
8588 -- from a private extension declaration.
8590 declare
8591 Rep : Node_Id;
8592 -- Used to iterate over representation items of the derived type
8594 Last_Rep : Node_Id;
8595 -- Last representation item of the (non-empty) representation
8596 -- item list of the derived type.
8598 Found : Boolean := False;
8600 begin
8601 Rep := First_Rep_Item (Derived_Type);
8602 Last_Rep := Rep;
8603 while Present (Rep) loop
8604 if Rep = First_Rep_Item (Parent_Type) then
8605 Found := True;
8606 exit;
8608 else
8609 Rep := Next_Rep_Item (Rep);
8611 if Present (Rep) then
8612 Last_Rep := Rep;
8613 end if;
8614 end if;
8615 end loop;
8617 -- Here if we either encountered the parent type's first rep
8618 -- item on the derived type's rep item list (in which case
8619 -- Found is True, and we have nothing else to do), or if we
8620 -- reached the last rep item of the derived type, which is
8621 -- Last_Rep, in which case we further chain the parent type's
8622 -- rep items to those of the derived type.
8624 if not Found then
8625 Set_Next_Rep_Item (Last_Rep, First_Rep_Item (Parent_Type));
8626 end if;
8627 end;
8629 else
8630 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
8631 end if;
8633 -- If the parent type has delayed rep aspects, then mark the derived
8634 -- type as possibly inheriting a delayed rep aspect.
8636 if Has_Delayed_Rep_Aspects (Parent_Type) then
8637 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8638 end if;
8640 -- Type dependent processing
8642 case Ekind (Parent_Type) is
8643 when Numeric_Kind =>
8644 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
8646 when Array_Kind =>
8647 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
8649 when E_Record_Type
8650 | E_Record_Subtype
8651 | Class_Wide_Kind =>
8652 Build_Derived_Record_Type
8653 (N, Parent_Type, Derived_Type, Derive_Subps);
8654 return;
8656 when Enumeration_Kind =>
8657 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
8659 when Access_Kind =>
8660 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
8662 when Incomplete_Or_Private_Kind =>
8663 Build_Derived_Private_Type
8664 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
8666 -- For discriminated types, the derivation includes deriving
8667 -- primitive operations. For others it is done below.
8669 if Is_Tagged_Type (Parent_Type)
8670 or else Has_Discriminants (Parent_Type)
8671 or else (Present (Full_View (Parent_Type))
8672 and then Has_Discriminants (Full_View (Parent_Type)))
8673 then
8674 return;
8675 end if;
8677 when Concurrent_Kind =>
8678 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
8680 when others =>
8681 raise Program_Error;
8682 end case;
8684 -- Nothing more to do if some error occurred
8686 if Etype (Derived_Type) = Any_Type then
8687 return;
8688 end if;
8690 -- Set delayed freeze and then derive subprograms, we need to do this
8691 -- in this order so that derived subprograms inherit the derived freeze
8692 -- if necessary.
8694 Set_Has_Delayed_Freeze (Derived_Type);
8696 if Derive_Subps then
8697 Derive_Subprograms (Parent_Type, Derived_Type);
8698 end if;
8700 Set_Has_Primitive_Operations
8701 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
8702 end Build_Derived_Type;
8704 -----------------------
8705 -- Build_Discriminal --
8706 -----------------------
8708 procedure Build_Discriminal (Discrim : Entity_Id) is
8709 D_Minal : Entity_Id;
8710 CR_Disc : Entity_Id;
8712 begin
8713 -- A discriminal has the same name as the discriminant
8715 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8717 Set_Ekind (D_Minal, E_In_Parameter);
8718 Set_Mechanism (D_Minal, Default_Mechanism);
8719 Set_Etype (D_Minal, Etype (Discrim));
8720 Set_Scope (D_Minal, Current_Scope);
8722 Set_Discriminal (Discrim, D_Minal);
8723 Set_Discriminal_Link (D_Minal, Discrim);
8725 -- For task types, build at once the discriminants of the corresponding
8726 -- record, which are needed if discriminants are used in entry defaults
8727 -- and in family bounds.
8729 if Is_Concurrent_Type (Current_Scope)
8730 or else Is_Limited_Type (Current_Scope)
8731 then
8732 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
8734 Set_Ekind (CR_Disc, E_In_Parameter);
8735 Set_Mechanism (CR_Disc, Default_Mechanism);
8736 Set_Etype (CR_Disc, Etype (Discrim));
8737 Set_Scope (CR_Disc, Current_Scope);
8738 Set_Discriminal_Link (CR_Disc, Discrim);
8739 Set_CR_Discriminant (Discrim, CR_Disc);
8740 end if;
8741 end Build_Discriminal;
8743 ------------------------------------
8744 -- Build_Discriminant_Constraints --
8745 ------------------------------------
8747 function Build_Discriminant_Constraints
8748 (T : Entity_Id;
8749 Def : Node_Id;
8750 Derived_Def : Boolean := False) return Elist_Id
8752 C : constant Node_Id := Constraint (Def);
8753 Nb_Discr : constant Nat := Number_Discriminants (T);
8755 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
8756 -- Saves the expression corresponding to a given discriminant in T
8758 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
8759 -- Return the Position number within array Discr_Expr of a discriminant
8760 -- D within the discriminant list of the discriminated type T.
8762 procedure Process_Discriminant_Expression
8763 (Expr : Node_Id;
8764 D : Entity_Id);
8765 -- If this is a discriminant constraint on a partial view, do not
8766 -- generate an overflow check on the discriminant expression. The check
8767 -- will be generated when constraining the full view. Otherwise the
8768 -- backend creates duplicate symbols for the temporaries corresponding
8769 -- to the expressions to be checked, causing spurious assembler errors.
8771 ------------------
8772 -- Pos_Of_Discr --
8773 ------------------
8775 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
8776 Disc : Entity_Id;
8778 begin
8779 Disc := First_Discriminant (T);
8780 for J in Discr_Expr'Range loop
8781 if Disc = D then
8782 return J;
8783 end if;
8785 Next_Discriminant (Disc);
8786 end loop;
8788 -- Note: Since this function is called on discriminants that are
8789 -- known to belong to the discriminated type, falling through the
8790 -- loop with no match signals an internal compiler error.
8792 raise Program_Error;
8793 end Pos_Of_Discr;
8795 -------------------------------------
8796 -- Process_Discriminant_Expression --
8797 -------------------------------------
8799 procedure Process_Discriminant_Expression
8800 (Expr : Node_Id;
8801 D : Entity_Id)
8803 BDT : constant Entity_Id := Base_Type (Etype (D));
8805 begin
8806 -- If this is a discriminant constraint on a partial view, do
8807 -- not generate an overflow on the discriminant expression. The
8808 -- check will be generated when constraining the full view.
8810 if Is_Private_Type (T)
8811 and then Present (Full_View (T))
8812 then
8813 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
8814 else
8815 Analyze_And_Resolve (Expr, BDT);
8816 end if;
8817 end Process_Discriminant_Expression;
8819 -- Declarations local to Build_Discriminant_Constraints
8821 Discr : Entity_Id;
8822 E : Entity_Id;
8823 Elist : constant Elist_Id := New_Elmt_List;
8825 Constr : Node_Id;
8826 Expr : Node_Id;
8827 Id : Node_Id;
8828 Position : Nat;
8829 Found : Boolean;
8831 Discrim_Present : Boolean := False;
8833 -- Start of processing for Build_Discriminant_Constraints
8835 begin
8836 -- The following loop will process positional associations only.
8837 -- For a positional association, the (single) discriminant is
8838 -- implicitly specified by position, in textual order (RM 3.7.2).
8840 Discr := First_Discriminant (T);
8841 Constr := First (Constraints (C));
8842 for D in Discr_Expr'Range loop
8843 exit when Nkind (Constr) = N_Discriminant_Association;
8845 if No (Constr) then
8846 Error_Msg_N ("too few discriminants given in constraint", C);
8847 return New_Elmt_List;
8849 elsif Nkind (Constr) = N_Range
8850 or else (Nkind (Constr) = N_Attribute_Reference
8851 and then
8852 Attribute_Name (Constr) = Name_Range)
8853 then
8854 Error_Msg_N
8855 ("a range is not a valid discriminant constraint", Constr);
8856 Discr_Expr (D) := Error;
8858 else
8859 Process_Discriminant_Expression (Constr, Discr);
8860 Discr_Expr (D) := Constr;
8861 end if;
8863 Next_Discriminant (Discr);
8864 Next (Constr);
8865 end loop;
8867 if No (Discr) and then Present (Constr) then
8868 Error_Msg_N ("too many discriminants given in constraint", Constr);
8869 return New_Elmt_List;
8870 end if;
8872 -- Named associations can be given in any order, but if both positional
8873 -- and named associations are used in the same discriminant constraint,
8874 -- then positional associations must occur first, at their normal
8875 -- position. Hence once a named association is used, the rest of the
8876 -- discriminant constraint must use only named associations.
8878 while Present (Constr) loop
8880 -- Positional association forbidden after a named association
8882 if Nkind (Constr) /= N_Discriminant_Association then
8883 Error_Msg_N ("positional association follows named one", Constr);
8884 return New_Elmt_List;
8886 -- Otherwise it is a named association
8888 else
8889 -- E records the type of the discriminants in the named
8890 -- association. All the discriminants specified in the same name
8891 -- association must have the same type.
8893 E := Empty;
8895 -- Search the list of discriminants in T to see if the simple name
8896 -- given in the constraint matches any of them.
8898 Id := First (Selector_Names (Constr));
8899 while Present (Id) loop
8900 Found := False;
8902 -- If Original_Discriminant is present, we are processing a
8903 -- generic instantiation and this is an instance node. We need
8904 -- to find the name of the corresponding discriminant in the
8905 -- actual record type T and not the name of the discriminant in
8906 -- the generic formal. Example:
8908 -- generic
8909 -- type G (D : int) is private;
8910 -- package P is
8911 -- subtype W is G (D => 1);
8912 -- end package;
8913 -- type Rec (X : int) is record ... end record;
8914 -- package Q is new P (G => Rec);
8916 -- At the point of the instantiation, formal type G is Rec
8917 -- and therefore when reanalyzing "subtype W is G (D => 1);"
8918 -- which really looks like "subtype W is Rec (D => 1);" at
8919 -- the point of instantiation, we want to find the discriminant
8920 -- that corresponds to D in Rec, i.e. X.
8922 if Present (Original_Discriminant (Id))
8923 and then In_Instance
8924 then
8925 Discr := Find_Corresponding_Discriminant (Id, T);
8926 Found := True;
8928 else
8929 Discr := First_Discriminant (T);
8930 while Present (Discr) loop
8931 if Chars (Discr) = Chars (Id) then
8932 Found := True;
8933 exit;
8934 end if;
8936 Next_Discriminant (Discr);
8937 end loop;
8939 if not Found then
8940 Error_Msg_N ("& does not match any discriminant", Id);
8941 return New_Elmt_List;
8943 -- If the parent type is a generic formal, preserve the
8944 -- name of the discriminant for subsequent instances.
8945 -- see comment at the beginning of this if statement.
8947 elsif Is_Generic_Type (Root_Type (T)) then
8948 Set_Original_Discriminant (Id, Discr);
8949 end if;
8950 end if;
8952 Position := Pos_Of_Discr (T, Discr);
8954 if Present (Discr_Expr (Position)) then
8955 Error_Msg_N ("duplicate constraint for discriminant&", Id);
8957 else
8958 -- Each discriminant specified in the same named association
8959 -- must be associated with a separate copy of the
8960 -- corresponding expression.
8962 if Present (Next (Id)) then
8963 Expr := New_Copy_Tree (Expression (Constr));
8964 Set_Parent (Expr, Parent (Expression (Constr)));
8965 else
8966 Expr := Expression (Constr);
8967 end if;
8969 Discr_Expr (Position) := Expr;
8970 Process_Discriminant_Expression (Expr, Discr);
8971 end if;
8973 -- A discriminant association with more than one discriminant
8974 -- name is only allowed if the named discriminants are all of
8975 -- the same type (RM 3.7.1(8)).
8977 if E = Empty then
8978 E := Base_Type (Etype (Discr));
8980 elsif Base_Type (Etype (Discr)) /= E then
8981 Error_Msg_N
8982 ("all discriminants in an association " &
8983 "must have the same type", Id);
8984 end if;
8986 Next (Id);
8987 end loop;
8988 end if;
8990 Next (Constr);
8991 end loop;
8993 -- A discriminant constraint must provide exactly one value for each
8994 -- discriminant of the type (RM 3.7.1(8)).
8996 for J in Discr_Expr'Range loop
8997 if No (Discr_Expr (J)) then
8998 Error_Msg_N ("too few discriminants given in constraint", C);
8999 return New_Elmt_List;
9000 end if;
9001 end loop;
9003 -- Determine if there are discriminant expressions in the constraint
9005 for J in Discr_Expr'Range loop
9006 if Denotes_Discriminant
9007 (Discr_Expr (J), Check_Concurrent => True)
9008 then
9009 Discrim_Present := True;
9010 end if;
9011 end loop;
9013 -- Build an element list consisting of the expressions given in the
9014 -- discriminant constraint and apply the appropriate checks. The list
9015 -- is constructed after resolving any named discriminant associations
9016 -- and therefore the expressions appear in the textual order of the
9017 -- discriminants.
9019 Discr := First_Discriminant (T);
9020 for J in Discr_Expr'Range loop
9021 if Discr_Expr (J) /= Error then
9022 Append_Elmt (Discr_Expr (J), Elist);
9024 -- If any of the discriminant constraints is given by a
9025 -- discriminant and we are in a derived type declaration we
9026 -- have a discriminant renaming. Establish link between new
9027 -- and old discriminant.
9029 if Denotes_Discriminant (Discr_Expr (J)) then
9030 if Derived_Def then
9031 Set_Corresponding_Discriminant
9032 (Entity (Discr_Expr (J)), Discr);
9033 end if;
9035 -- Force the evaluation of non-discriminant expressions.
9036 -- If we have found a discriminant in the constraint 3.4(26)
9037 -- and 3.8(18) demand that no range checks are performed are
9038 -- after evaluation. If the constraint is for a component
9039 -- definition that has a per-object constraint, expressions are
9040 -- evaluated but not checked either. In all other cases perform
9041 -- a range check.
9043 else
9044 if Discrim_Present then
9045 null;
9047 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9048 and then
9049 Has_Per_Object_Constraint
9050 (Defining_Identifier (Parent (Parent (Def))))
9051 then
9052 null;
9054 elsif Is_Access_Type (Etype (Discr)) then
9055 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9057 else
9058 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9059 end if;
9061 Force_Evaluation (Discr_Expr (J));
9062 end if;
9064 -- Check that the designated type of an access discriminant's
9065 -- expression is not a class-wide type unless the discriminant's
9066 -- designated type is also class-wide.
9068 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9069 and then not Is_Class_Wide_Type
9070 (Designated_Type (Etype (Discr)))
9071 and then Etype (Discr_Expr (J)) /= Any_Type
9072 and then Is_Class_Wide_Type
9073 (Designated_Type (Etype (Discr_Expr (J))))
9074 then
9075 Wrong_Type (Discr_Expr (J), Etype (Discr));
9077 elsif Is_Access_Type (Etype (Discr))
9078 and then not Is_Access_Constant (Etype (Discr))
9079 and then Is_Access_Type (Etype (Discr_Expr (J)))
9080 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9081 then
9082 Error_Msg_NE
9083 ("constraint for discriminant& must be access to variable",
9084 Def, Discr);
9085 end if;
9086 end if;
9088 Next_Discriminant (Discr);
9089 end loop;
9091 return Elist;
9092 end Build_Discriminant_Constraints;
9094 ---------------------------------
9095 -- Build_Discriminated_Subtype --
9096 ---------------------------------
9098 procedure Build_Discriminated_Subtype
9099 (T : Entity_Id;
9100 Def_Id : Entity_Id;
9101 Elist : Elist_Id;
9102 Related_Nod : Node_Id;
9103 For_Access : Boolean := False)
9105 Has_Discrs : constant Boolean := Has_Discriminants (T);
9106 Constrained : constant Boolean :=
9107 (Has_Discrs
9108 and then not Is_Empty_Elmt_List (Elist)
9109 and then not Is_Class_Wide_Type (T))
9110 or else Is_Constrained (T);
9112 begin
9113 if Ekind (T) = E_Record_Type then
9114 if For_Access then
9115 Set_Ekind (Def_Id, E_Private_Subtype);
9116 Set_Is_For_Access_Subtype (Def_Id, True);
9117 else
9118 Set_Ekind (Def_Id, E_Record_Subtype);
9119 end if;
9121 -- Inherit preelaboration flag from base, for types for which it
9122 -- may have been set: records, private types, protected types.
9124 Set_Known_To_Have_Preelab_Init
9125 (Def_Id, Known_To_Have_Preelab_Init (T));
9127 elsif Ekind (T) = E_Task_Type then
9128 Set_Ekind (Def_Id, E_Task_Subtype);
9130 elsif Ekind (T) = E_Protected_Type then
9131 Set_Ekind (Def_Id, E_Protected_Subtype);
9132 Set_Known_To_Have_Preelab_Init
9133 (Def_Id, Known_To_Have_Preelab_Init (T));
9135 elsif Is_Private_Type (T) then
9136 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9137 Set_Known_To_Have_Preelab_Init
9138 (Def_Id, Known_To_Have_Preelab_Init (T));
9140 -- Private subtypes may have private dependents
9142 Set_Private_Dependents (Def_Id, New_Elmt_List);
9144 elsif Is_Class_Wide_Type (T) then
9145 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9147 else
9148 -- Incomplete type. Attach subtype to list of dependents, to be
9149 -- completed with full view of parent type, unless is it the
9150 -- designated subtype of a record component within an init_proc.
9151 -- This last case arises for a component of an access type whose
9152 -- designated type is incomplete (e.g. a Taft Amendment type).
9153 -- The designated subtype is within an inner scope, and needs no
9154 -- elaboration, because only the access type is needed in the
9155 -- initialization procedure.
9157 Set_Ekind (Def_Id, Ekind (T));
9159 if For_Access and then Within_Init_Proc then
9160 null;
9161 else
9162 Append_Elmt (Def_Id, Private_Dependents (T));
9163 end if;
9164 end if;
9166 Set_Etype (Def_Id, T);
9167 Init_Size_Align (Def_Id);
9168 Set_Has_Discriminants (Def_Id, Has_Discrs);
9169 Set_Is_Constrained (Def_Id, Constrained);
9171 Set_First_Entity (Def_Id, First_Entity (T));
9172 Set_Last_Entity (Def_Id, Last_Entity (T));
9173 Set_Has_Implicit_Dereference
9174 (Def_Id, Has_Implicit_Dereference (T));
9176 -- If the subtype is the completion of a private declaration, there may
9177 -- have been representation clauses for the partial view, and they must
9178 -- be preserved. Build_Derived_Type chains the inherited clauses with
9179 -- the ones appearing on the extension. If this comes from a subtype
9180 -- declaration, all clauses are inherited.
9182 if No (First_Rep_Item (Def_Id)) then
9183 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9184 end if;
9186 if Is_Tagged_Type (T) then
9187 Set_Is_Tagged_Type (Def_Id);
9188 Make_Class_Wide_Type (Def_Id);
9189 end if;
9191 Set_Stored_Constraint (Def_Id, No_Elist);
9193 if Has_Discrs then
9194 Set_Discriminant_Constraint (Def_Id, Elist);
9195 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9196 end if;
9198 if Is_Tagged_Type (T) then
9200 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9201 -- concurrent record type (which has the list of primitive
9202 -- operations).
9204 if Ada_Version >= Ada_2005
9205 and then Is_Concurrent_Type (T)
9206 then
9207 Set_Corresponding_Record_Type (Def_Id,
9208 Corresponding_Record_Type (T));
9209 else
9210 Set_Direct_Primitive_Operations (Def_Id,
9211 Direct_Primitive_Operations (T));
9212 end if;
9214 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9215 end if;
9217 -- Subtypes introduced by component declarations do not need to be
9218 -- marked as delayed, and do not get freeze nodes, because the semantics
9219 -- verifies that the parents of the subtypes are frozen before the
9220 -- enclosing record is frozen.
9222 if not Is_Type (Scope (Def_Id)) then
9223 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9225 if Is_Private_Type (T)
9226 and then Present (Full_View (T))
9227 then
9228 Conditional_Delay (Def_Id, Full_View (T));
9229 else
9230 Conditional_Delay (Def_Id, T);
9231 end if;
9232 end if;
9234 if Is_Record_Type (T) then
9235 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9237 if Has_Discrs
9238 and then not Is_Empty_Elmt_List (Elist)
9239 and then not For_Access
9240 then
9241 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9242 elsif not For_Access then
9243 Set_Cloned_Subtype (Def_Id, T);
9244 end if;
9245 end if;
9246 end Build_Discriminated_Subtype;
9248 ---------------------------
9249 -- Build_Itype_Reference --
9250 ---------------------------
9252 procedure Build_Itype_Reference
9253 (Ityp : Entity_Id;
9254 Nod : Node_Id)
9256 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9257 begin
9259 -- Itype references are only created for use by the back-end
9261 if Inside_A_Generic then
9262 return;
9263 else
9264 Set_Itype (IR, Ityp);
9265 Insert_After (Nod, IR);
9266 end if;
9267 end Build_Itype_Reference;
9269 ------------------------
9270 -- Build_Scalar_Bound --
9271 ------------------------
9273 function Build_Scalar_Bound
9274 (Bound : Node_Id;
9275 Par_T : Entity_Id;
9276 Der_T : Entity_Id) return Node_Id
9278 New_Bound : Entity_Id;
9280 begin
9281 -- Note: not clear why this is needed, how can the original bound
9282 -- be unanalyzed at this point? and if it is, what business do we
9283 -- have messing around with it? and why is the base type of the
9284 -- parent type the right type for the resolution. It probably is
9285 -- not. It is OK for the new bound we are creating, but not for
9286 -- the old one??? Still if it never happens, no problem.
9288 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9290 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9291 New_Bound := New_Copy (Bound);
9292 Set_Etype (New_Bound, Der_T);
9293 Set_Analyzed (New_Bound);
9295 elsif Is_Entity_Name (Bound) then
9296 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9298 -- The following is almost certainly wrong. What business do we have
9299 -- relocating a node (Bound) that is presumably still attached to
9300 -- the tree elsewhere???
9302 else
9303 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9304 end if;
9306 Set_Etype (New_Bound, Der_T);
9307 return New_Bound;
9308 end Build_Scalar_Bound;
9310 --------------------------------
9311 -- Build_Underlying_Full_View --
9312 --------------------------------
9314 procedure Build_Underlying_Full_View
9315 (N : Node_Id;
9316 Typ : Entity_Id;
9317 Par : Entity_Id)
9319 Loc : constant Source_Ptr := Sloc (N);
9320 Subt : constant Entity_Id :=
9321 Make_Defining_Identifier
9322 (Loc, New_External_Name (Chars (Typ), 'S'));
9324 Constr : Node_Id;
9325 Indic : Node_Id;
9326 C : Node_Id;
9327 Id : Node_Id;
9329 procedure Set_Discriminant_Name (Id : Node_Id);
9330 -- If the derived type has discriminants, they may rename discriminants
9331 -- of the parent. When building the full view of the parent, we need to
9332 -- recover the names of the original discriminants if the constraint is
9333 -- given by named associations.
9335 ---------------------------
9336 -- Set_Discriminant_Name --
9337 ---------------------------
9339 procedure Set_Discriminant_Name (Id : Node_Id) is
9340 Disc : Entity_Id;
9342 begin
9343 Set_Original_Discriminant (Id, Empty);
9345 if Has_Discriminants (Typ) then
9346 Disc := First_Discriminant (Typ);
9347 while Present (Disc) loop
9348 if Chars (Disc) = Chars (Id)
9349 and then Present (Corresponding_Discriminant (Disc))
9350 then
9351 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9352 end if;
9353 Next_Discriminant (Disc);
9354 end loop;
9355 end if;
9356 end Set_Discriminant_Name;
9358 -- Start of processing for Build_Underlying_Full_View
9360 begin
9361 if Nkind (N) = N_Full_Type_Declaration then
9362 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9364 elsif Nkind (N) = N_Subtype_Declaration then
9365 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9367 elsif Nkind (N) = N_Component_Declaration then
9368 Constr :=
9369 New_Copy_Tree
9370 (Constraint (Subtype_Indication (Component_Definition (N))));
9372 else
9373 raise Program_Error;
9374 end if;
9376 C := First (Constraints (Constr));
9377 while Present (C) loop
9378 if Nkind (C) = N_Discriminant_Association then
9379 Id := First (Selector_Names (C));
9380 while Present (Id) loop
9381 Set_Discriminant_Name (Id);
9382 Next (Id);
9383 end loop;
9384 end if;
9386 Next (C);
9387 end loop;
9389 Indic :=
9390 Make_Subtype_Declaration (Loc,
9391 Defining_Identifier => Subt,
9392 Subtype_Indication =>
9393 Make_Subtype_Indication (Loc,
9394 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9395 Constraint => New_Copy_Tree (Constr)));
9397 -- If this is a component subtype for an outer itype, it is not
9398 -- a list member, so simply set the parent link for analysis: if
9399 -- the enclosing type does not need to be in a declarative list,
9400 -- neither do the components.
9402 if Is_List_Member (N)
9403 and then Nkind (N) /= N_Component_Declaration
9404 then
9405 Insert_Before (N, Indic);
9406 else
9407 Set_Parent (Indic, Parent (N));
9408 end if;
9410 Analyze (Indic);
9411 Set_Underlying_Full_View (Typ, Full_View (Subt));
9412 end Build_Underlying_Full_View;
9414 -------------------------------
9415 -- Check_Abstract_Overriding --
9416 -------------------------------
9418 procedure Check_Abstract_Overriding (T : Entity_Id) is
9419 Alias_Subp : Entity_Id;
9420 Elmt : Elmt_Id;
9421 Op_List : Elist_Id;
9422 Subp : Entity_Id;
9423 Type_Def : Node_Id;
9425 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9426 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9427 -- which has pragma Implemented already set. Check whether Subp's entity
9428 -- kind conforms to the implementation kind of the overridden routine.
9430 procedure Check_Pragma_Implemented
9431 (Subp : Entity_Id;
9432 Iface_Subp : Entity_Id);
9433 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9434 -- Iface_Subp and both entities have pragma Implemented already set on
9435 -- them. Check whether the two implementation kinds are conforming.
9437 procedure Inherit_Pragma_Implemented
9438 (Subp : Entity_Id;
9439 Iface_Subp : Entity_Id);
9440 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9441 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9442 -- Propagate the implementation kind of Iface_Subp to Subp.
9444 ------------------------------
9445 -- Check_Pragma_Implemented --
9446 ------------------------------
9448 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9449 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9450 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9451 Subp_Alias : constant Entity_Id := Alias (Subp);
9452 Contr_Typ : Entity_Id;
9453 Impl_Subp : Entity_Id;
9455 begin
9456 -- Subp must have an alias since it is a hidden entity used to link
9457 -- an interface subprogram to its overriding counterpart.
9459 pragma Assert (Present (Subp_Alias));
9461 -- Handle aliases to synchronized wrappers
9463 Impl_Subp := Subp_Alias;
9465 if Is_Primitive_Wrapper (Impl_Subp) then
9466 Impl_Subp := Wrapped_Entity (Impl_Subp);
9467 end if;
9469 -- Extract the type of the controlling formal
9471 Contr_Typ := Etype (First_Formal (Subp_Alias));
9473 if Is_Concurrent_Record_Type (Contr_Typ) then
9474 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9475 end if;
9477 -- An interface subprogram whose implementation kind is By_Entry must
9478 -- be implemented by an entry.
9480 if Impl_Kind = Name_By_Entry
9481 and then Ekind (Impl_Subp) /= E_Entry
9482 then
9483 Error_Msg_Node_2 := Iface_Alias;
9484 Error_Msg_NE
9485 ("type & must implement abstract subprogram & with an entry",
9486 Subp_Alias, Contr_Typ);
9488 elsif Impl_Kind = Name_By_Protected_Procedure then
9490 -- An interface subprogram whose implementation kind is By_
9491 -- Protected_Procedure cannot be implemented by a primitive
9492 -- procedure of a task type.
9494 if Ekind (Contr_Typ) /= E_Protected_Type then
9495 Error_Msg_Node_2 := Contr_Typ;
9496 Error_Msg_NE
9497 ("interface subprogram & cannot be implemented by a " &
9498 "primitive procedure of task type &", Subp_Alias,
9499 Iface_Alias);
9501 -- An interface subprogram whose implementation kind is By_
9502 -- Protected_Procedure must be implemented by a procedure.
9504 elsif Ekind (Impl_Subp) /= E_Procedure then
9505 Error_Msg_Node_2 := Iface_Alias;
9506 Error_Msg_NE
9507 ("type & must implement abstract subprogram & with a " &
9508 "procedure", Subp_Alias, Contr_Typ);
9510 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9511 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9512 then
9513 Error_Msg_Name_1 := Impl_Kind;
9514 Error_Msg_N
9515 ("overriding operation& must have synchronization%",
9516 Subp_Alias);
9517 end if;
9519 -- If primitive has Optional synchronization, overriding operation
9520 -- must match if it has an explicit synchronization..
9522 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9523 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9524 then
9525 Error_Msg_Name_1 := Impl_Kind;
9526 Error_Msg_N
9527 ("overriding operation& must have syncrhonization%",
9528 Subp_Alias);
9529 end if;
9530 end Check_Pragma_Implemented;
9532 ------------------------------
9533 -- Check_Pragma_Implemented --
9534 ------------------------------
9536 procedure Check_Pragma_Implemented
9537 (Subp : Entity_Id;
9538 Iface_Subp : Entity_Id)
9540 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9541 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9543 begin
9544 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9545 -- and overriding subprogram are different. In general this is an
9546 -- error except when the implementation kind of the overridden
9547 -- subprograms is By_Any or Optional.
9549 if Iface_Kind /= Subp_Kind
9550 and then Iface_Kind /= Name_By_Any
9551 and then Iface_Kind /= Name_Optional
9552 then
9553 if Iface_Kind = Name_By_Entry then
9554 Error_Msg_N
9555 ("incompatible implementation kind, overridden subprogram " &
9556 "is marked By_Entry", Subp);
9557 else
9558 Error_Msg_N
9559 ("incompatible implementation kind, overridden subprogram " &
9560 "is marked By_Protected_Procedure", Subp);
9561 end if;
9562 end if;
9563 end Check_Pragma_Implemented;
9565 --------------------------------
9566 -- Inherit_Pragma_Implemented --
9567 --------------------------------
9569 procedure Inherit_Pragma_Implemented
9570 (Subp : Entity_Id;
9571 Iface_Subp : Entity_Id)
9573 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9574 Loc : constant Source_Ptr := Sloc (Subp);
9575 Impl_Prag : Node_Id;
9577 begin
9578 -- Since the implementation kind is stored as a representation item
9579 -- rather than a flag, create a pragma node.
9581 Impl_Prag :=
9582 Make_Pragma (Loc,
9583 Chars => Name_Implemented,
9584 Pragma_Argument_Associations => New_List (
9585 Make_Pragma_Argument_Association (Loc,
9586 Expression => New_Occurrence_Of (Subp, Loc)),
9588 Make_Pragma_Argument_Association (Loc,
9589 Expression => Make_Identifier (Loc, Iface_Kind))));
9591 -- The pragma doesn't need to be analyzed because it is internally
9592 -- built. It is safe to directly register it as a rep item since we
9593 -- are only interested in the characters of the implementation kind.
9595 Record_Rep_Item (Subp, Impl_Prag);
9596 end Inherit_Pragma_Implemented;
9598 -- Start of processing for Check_Abstract_Overriding
9600 begin
9601 Op_List := Primitive_Operations (T);
9603 -- Loop to check primitive operations
9605 Elmt := First_Elmt (Op_List);
9606 while Present (Elmt) loop
9607 Subp := Node (Elmt);
9608 Alias_Subp := Alias (Subp);
9610 -- Inherited subprograms are identified by the fact that they do not
9611 -- come from source, and the associated source location is the
9612 -- location of the first subtype of the derived type.
9614 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9615 -- subprograms that "require overriding".
9617 -- Special exception, do not complain about failure to override the
9618 -- stream routines _Input and _Output, as well as the primitive
9619 -- operations used in dispatching selects since we always provide
9620 -- automatic overridings for these subprograms.
9622 -- Also ignore this rule for convention CIL since .NET libraries
9623 -- do bizarre things with interfaces???
9625 -- The partial view of T may have been a private extension, for
9626 -- which inherited functions dispatching on result are abstract.
9627 -- If the full view is a null extension, there is no need for
9628 -- overriding in Ada 2005, but wrappers need to be built for them
9629 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9631 if Is_Null_Extension (T)
9632 and then Has_Controlling_Result (Subp)
9633 and then Ada_Version >= Ada_2005
9634 and then Present (Alias_Subp)
9635 and then not Comes_From_Source (Subp)
9636 and then not Is_Abstract_Subprogram (Alias_Subp)
9637 and then not Is_Access_Type (Etype (Subp))
9638 then
9639 null;
9641 -- Ada 2005 (AI-251): Internal entities of interfaces need no
9642 -- processing because this check is done with the aliased
9643 -- entity
9645 elsif Present (Interface_Alias (Subp)) then
9646 null;
9648 elsif (Is_Abstract_Subprogram (Subp)
9649 or else Requires_Overriding (Subp)
9650 or else
9651 (Has_Controlling_Result (Subp)
9652 and then Present (Alias_Subp)
9653 and then not Comes_From_Source (Subp)
9654 and then Sloc (Subp) = Sloc (First_Subtype (T))))
9655 and then not Is_TSS (Subp, TSS_Stream_Input)
9656 and then not Is_TSS (Subp, TSS_Stream_Output)
9657 and then not Is_Abstract_Type (T)
9658 and then Convention (T) /= Convention_CIL
9659 and then not Is_Predefined_Interface_Primitive (Subp)
9661 -- Ada 2005 (AI-251): Do not consider hidden entities associated
9662 -- with abstract interface types because the check will be done
9663 -- with the aliased entity (otherwise we generate a duplicated
9664 -- error message).
9666 and then not Present (Interface_Alias (Subp))
9667 then
9668 if Present (Alias_Subp) then
9670 -- Only perform the check for a derived subprogram when the
9671 -- type has an explicit record extension. This avoids incorrect
9672 -- flagging of abstract subprograms for the case of a type
9673 -- without an extension that is derived from a formal type
9674 -- with a tagged actual (can occur within a private part).
9676 -- Ada 2005 (AI-391): In the case of an inherited function with
9677 -- a controlling result of the type, the rule does not apply if
9678 -- the type is a null extension (unless the parent function
9679 -- itself is abstract, in which case the function must still be
9680 -- be overridden). The expander will generate an overriding
9681 -- wrapper function calling the parent subprogram (see
9682 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
9684 Type_Def := Type_Definition (Parent (T));
9686 if Nkind (Type_Def) = N_Derived_Type_Definition
9687 and then Present (Record_Extension_Part (Type_Def))
9688 and then
9689 (Ada_Version < Ada_2005
9690 or else not Is_Null_Extension (T)
9691 or else Ekind (Subp) = E_Procedure
9692 or else not Has_Controlling_Result (Subp)
9693 or else Is_Abstract_Subprogram (Alias_Subp)
9694 or else Requires_Overriding (Subp)
9695 or else Is_Access_Type (Etype (Subp)))
9696 then
9697 -- Avoid reporting error in case of abstract predefined
9698 -- primitive inherited from interface type because the
9699 -- body of internally generated predefined primitives
9700 -- of tagged types are generated later by Freeze_Type
9702 if Is_Interface (Root_Type (T))
9703 and then Is_Abstract_Subprogram (Subp)
9704 and then Is_Predefined_Dispatching_Operation (Subp)
9705 and then not Comes_From_Source (Ultimate_Alias (Subp))
9706 then
9707 null;
9709 else
9710 Error_Msg_NE
9711 ("type must be declared abstract or & overridden",
9712 T, Subp);
9714 -- Traverse the whole chain of aliased subprograms to
9715 -- complete the error notification. This is especially
9716 -- useful for traceability of the chain of entities when
9717 -- the subprogram corresponds with an interface
9718 -- subprogram (which may be defined in another package).
9720 if Present (Alias_Subp) then
9721 declare
9722 E : Entity_Id;
9724 begin
9725 E := Subp;
9726 while Present (Alias (E)) loop
9728 -- Avoid reporting redundant errors on entities
9729 -- inherited from interfaces
9731 if Sloc (E) /= Sloc (T) then
9732 Error_Msg_Sloc := Sloc (E);
9733 Error_Msg_NE
9734 ("\& has been inherited #", T, Subp);
9735 end if;
9737 E := Alias (E);
9738 end loop;
9740 Error_Msg_Sloc := Sloc (E);
9742 -- AI05-0068: report if there is an overriding
9743 -- non-abstract subprogram that is invisible.
9745 if Is_Hidden (E)
9746 and then not Is_Abstract_Subprogram (E)
9747 then
9748 Error_Msg_NE
9749 ("\& subprogram# is not visible",
9750 T, Subp);
9752 else
9753 Error_Msg_NE
9754 ("\& has been inherited from subprogram #",
9755 T, Subp);
9756 end if;
9757 end;
9758 end if;
9759 end if;
9761 -- Ada 2005 (AI-345): Protected or task type implementing
9762 -- abstract interfaces.
9764 elsif Is_Concurrent_Record_Type (T)
9765 and then Present (Interfaces (T))
9766 then
9767 -- If an inherited subprogram is implemented by a protected
9768 -- procedure or an entry, then the first parameter of the
9769 -- inherited subprogram shall be of mode OUT or IN OUT, or
9770 -- an access-to-variable parameter (RM 9.4(11.9/3))
9772 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
9773 and then Ekind (First_Formal (Subp)) = E_In_Parameter
9774 and then Ekind (Subp) /= E_Function
9775 and then not Is_Predefined_Dispatching_Operation (Subp)
9776 then
9777 Error_Msg_PT (T, Subp);
9779 -- Some other kind of overriding failure
9781 else
9782 Error_Msg_NE
9783 ("interface subprogram & must be overridden",
9784 T, Subp);
9786 -- Examine primitive operations of synchronized type,
9787 -- to find homonyms that have the wrong profile.
9789 declare
9790 Prim : Entity_Id;
9792 begin
9793 Prim :=
9794 First_Entity (Corresponding_Concurrent_Type (T));
9795 while Present (Prim) loop
9796 if Chars (Prim) = Chars (Subp) then
9797 Error_Msg_NE
9798 ("profile is not type conformant with "
9799 & "prefixed view profile of "
9800 & "inherited operation&", Prim, Subp);
9801 end if;
9803 Next_Entity (Prim);
9804 end loop;
9805 end;
9806 end if;
9807 end if;
9809 else
9810 Error_Msg_Node_2 := T;
9811 Error_Msg_N
9812 ("abstract subprogram& not allowed for type&", Subp);
9814 -- Also post unconditional warning on the type (unconditional
9815 -- so that if there are more than one of these cases, we get
9816 -- them all, and not just the first one).
9818 Error_Msg_Node_2 := Subp;
9819 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
9820 end if;
9821 end if;
9823 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
9825 -- Subp is an expander-generated procedure which maps an interface
9826 -- alias to a protected wrapper. The interface alias is flagged by
9827 -- pragma Implemented. Ensure that Subp is a procedure when the
9828 -- implementation kind is By_Protected_Procedure or an entry when
9829 -- By_Entry.
9831 if Ada_Version >= Ada_2012
9832 and then Is_Hidden (Subp)
9833 and then Present (Interface_Alias (Subp))
9834 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
9835 then
9836 Check_Pragma_Implemented (Subp);
9837 end if;
9839 -- Subp is an interface primitive which overrides another interface
9840 -- primitive marked with pragma Implemented.
9842 if Ada_Version >= Ada_2012
9843 and then Present (Overridden_Operation (Subp))
9844 and then Has_Rep_Pragma
9845 (Overridden_Operation (Subp), Name_Implemented)
9846 then
9847 -- If the overriding routine is also marked by Implemented, check
9848 -- that the two implementation kinds are conforming.
9850 if Has_Rep_Pragma (Subp, Name_Implemented) then
9851 Check_Pragma_Implemented
9852 (Subp => Subp,
9853 Iface_Subp => Overridden_Operation (Subp));
9855 -- Otherwise the overriding routine inherits the implementation
9856 -- kind from the overridden subprogram.
9858 else
9859 Inherit_Pragma_Implemented
9860 (Subp => Subp,
9861 Iface_Subp => Overridden_Operation (Subp));
9862 end if;
9863 end if;
9865 -- If the operation is a wrapper for a synchronized primitive, it
9866 -- may be called indirectly through a dispatching select. We assume
9867 -- that it will be referenced elsewhere indirectly, and suppress
9868 -- warnings about an unused entity.
9870 if Is_Primitive_Wrapper (Subp)
9871 and then Present (Wrapped_Entity (Subp))
9872 then
9873 Set_Referenced (Wrapped_Entity (Subp));
9874 end if;
9876 Next_Elmt (Elmt);
9877 end loop;
9878 end Check_Abstract_Overriding;
9880 ------------------------------------------------
9881 -- Check_Access_Discriminant_Requires_Limited --
9882 ------------------------------------------------
9884 procedure Check_Access_Discriminant_Requires_Limited
9885 (D : Node_Id;
9886 Loc : Node_Id)
9888 begin
9889 -- A discriminant_specification for an access discriminant shall appear
9890 -- only in the declaration for a task or protected type, or for a type
9891 -- with the reserved word 'limited' in its definition or in one of its
9892 -- ancestors (RM 3.7(10)).
9894 -- AI-0063: The proper condition is that type must be immutably limited,
9895 -- or else be a partial view.
9897 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
9898 if Is_Limited_View (Current_Scope)
9899 or else
9900 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
9901 and then Limited_Present (Parent (Current_Scope)))
9902 then
9903 null;
9905 else
9906 Error_Msg_N
9907 ("access discriminants allowed only for limited types", Loc);
9908 end if;
9909 end if;
9910 end Check_Access_Discriminant_Requires_Limited;
9912 -----------------------------------
9913 -- Check_Aliased_Component_Types --
9914 -----------------------------------
9916 procedure Check_Aliased_Component_Types (T : Entity_Id) is
9917 C : Entity_Id;
9919 begin
9920 -- ??? Also need to check components of record extensions, but not
9921 -- components of protected types (which are always limited).
9923 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
9924 -- types to be unconstrained. This is safe because it is illegal to
9925 -- create access subtypes to such types with explicit discriminant
9926 -- constraints.
9928 if not Is_Limited_Type (T) then
9929 if Ekind (T) = E_Record_Type then
9930 C := First_Component (T);
9931 while Present (C) loop
9932 if Is_Aliased (C)
9933 and then Has_Discriminants (Etype (C))
9934 and then not Is_Constrained (Etype (C))
9935 and then not In_Instance_Body
9936 and then Ada_Version < Ada_2005
9937 then
9938 Error_Msg_N
9939 ("aliased component must be constrained (RM 3.6(11))",
9941 end if;
9943 Next_Component (C);
9944 end loop;
9946 elsif Ekind (T) = E_Array_Type then
9947 if Has_Aliased_Components (T)
9948 and then Has_Discriminants (Component_Type (T))
9949 and then not Is_Constrained (Component_Type (T))
9950 and then not In_Instance_Body
9951 and then Ada_Version < Ada_2005
9952 then
9953 Error_Msg_N
9954 ("aliased component type must be constrained (RM 3.6(11))",
9956 end if;
9957 end if;
9958 end if;
9959 end Check_Aliased_Component_Types;
9961 ----------------------
9962 -- Check_Completion --
9963 ----------------------
9965 procedure Check_Completion (Body_Id : Node_Id := Empty) is
9966 E : Entity_Id;
9968 procedure Post_Error;
9969 -- Post error message for lack of completion for entity E
9971 ----------------
9972 -- Post_Error --
9973 ----------------
9975 procedure Post_Error is
9977 procedure Missing_Body;
9978 -- Output missing body message
9980 ------------------
9981 -- Missing_Body --
9982 ------------------
9984 procedure Missing_Body is
9985 begin
9986 -- Spec is in same unit, so we can post on spec
9988 if In_Same_Source_Unit (Body_Id, E) then
9989 Error_Msg_N ("missing body for &", E);
9991 -- Spec is in a separate unit, so we have to post on the body
9993 else
9994 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
9995 end if;
9996 end Missing_Body;
9998 -- Start of processing for Post_Error
10000 begin
10001 if not Comes_From_Source (E) then
10003 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10004 -- It may be an anonymous protected type created for a
10005 -- single variable. Post error on variable, if present.
10007 declare
10008 Var : Entity_Id;
10010 begin
10011 Var := First_Entity (Current_Scope);
10012 while Present (Var) loop
10013 exit when Etype (Var) = E
10014 and then Comes_From_Source (Var);
10016 Next_Entity (Var);
10017 end loop;
10019 if Present (Var) then
10020 E := Var;
10021 end if;
10022 end;
10023 end if;
10024 end if;
10026 -- If a generated entity has no completion, then either previous
10027 -- semantic errors have disabled the expansion phase, or else we had
10028 -- missing subunits, or else we are compiling without expansion,
10029 -- or else something is very wrong.
10031 if not Comes_From_Source (E) then
10032 pragma Assert
10033 (Serious_Errors_Detected > 0
10034 or else Configurable_Run_Time_Violations > 0
10035 or else Subunits_Missing
10036 or else not Expander_Active);
10037 return;
10039 -- Here for source entity
10041 else
10042 -- Here if no body to post the error message, so we post the error
10043 -- on the declaration that has no completion. This is not really
10044 -- the right place to post it, think about this later ???
10046 if No (Body_Id) then
10047 if Is_Type (E) then
10048 Error_Msg_NE
10049 ("missing full declaration for }", Parent (E), E);
10050 else
10051 Error_Msg_NE ("missing body for &", Parent (E), E);
10052 end if;
10054 -- Package body has no completion for a declaration that appears
10055 -- in the corresponding spec. Post error on the body, with a
10056 -- reference to the non-completed declaration.
10058 else
10059 Error_Msg_Sloc := Sloc (E);
10061 if Is_Type (E) then
10062 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10064 elsif Is_Overloadable (E)
10065 and then Current_Entity_In_Scope (E) /= E
10066 then
10067 -- It may be that the completion is mistyped and appears as
10068 -- a distinct overloading of the entity.
10070 declare
10071 Candidate : constant Entity_Id :=
10072 Current_Entity_In_Scope (E);
10073 Decl : constant Node_Id :=
10074 Unit_Declaration_Node (Candidate);
10076 begin
10077 if Is_Overloadable (Candidate)
10078 and then Ekind (Candidate) = Ekind (E)
10079 and then Nkind (Decl) = N_Subprogram_Body
10080 and then Acts_As_Spec (Decl)
10081 then
10082 Check_Type_Conformant (Candidate, E);
10084 else
10085 Missing_Body;
10086 end if;
10087 end;
10089 else
10090 Missing_Body;
10091 end if;
10092 end if;
10093 end if;
10094 end Post_Error;
10096 -- Start of processing for Check_Completion
10098 begin
10099 E := First_Entity (Current_Scope);
10100 while Present (E) loop
10101 if Is_Intrinsic_Subprogram (E) then
10102 null;
10104 -- The following situation requires special handling: a child unit
10105 -- that appears in the context clause of the body of its parent:
10107 -- procedure Parent.Child (...);
10109 -- with Parent.Child;
10110 -- package body Parent is
10112 -- Here Parent.Child appears as a local entity, but should not be
10113 -- flagged as requiring completion, because it is a compilation
10114 -- unit.
10116 -- Ignore missing completion for a subprogram that does not come from
10117 -- source (including the _Call primitive operation of RAS types,
10118 -- which has to have the flag Comes_From_Source for other purposes):
10119 -- we assume that the expander will provide the missing completion.
10120 -- In case of previous errors, other expansion actions that provide
10121 -- bodies for null procedures with not be invoked, so inhibit message
10122 -- in those cases.
10124 -- Note that E_Operator is not in the list that follows, because
10125 -- this kind is reserved for predefined operators, that are
10126 -- intrinsic and do not need completion.
10128 elsif Ekind (E) = E_Function
10129 or else Ekind (E) = E_Procedure
10130 or else Ekind (E) = E_Generic_Function
10131 or else Ekind (E) = E_Generic_Procedure
10132 then
10133 if Has_Completion (E) then
10134 null;
10136 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10137 null;
10139 elsif Is_Subprogram (E)
10140 and then (not Comes_From_Source (E)
10141 or else Chars (E) = Name_uCall)
10142 then
10143 null;
10145 elsif
10146 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10147 then
10148 null;
10150 elsif Nkind (Parent (E)) = N_Procedure_Specification
10151 and then Null_Present (Parent (E))
10152 and then Serious_Errors_Detected > 0
10153 then
10154 null;
10156 else
10157 Post_Error;
10158 end if;
10160 elsif Is_Entry (E) then
10161 if not Has_Completion (E) and then
10162 (Ekind (Scope (E)) = E_Protected_Object
10163 or else Ekind (Scope (E)) = E_Protected_Type)
10164 then
10165 Post_Error;
10166 end if;
10168 elsif Is_Package_Or_Generic_Package (E) then
10169 if Unit_Requires_Body (E) then
10170 if not Has_Completion (E)
10171 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10172 N_Compilation_Unit
10173 then
10174 Post_Error;
10175 end if;
10177 elsif not Is_Child_Unit (E) then
10178 May_Need_Implicit_Body (E);
10179 end if;
10181 -- A formal incomplete type (Ada 2012) does not require a completion;
10182 -- other incomplete type declarations do.
10184 elsif Ekind (E) = E_Incomplete_Type
10185 and then No (Underlying_Type (E))
10186 and then not Is_Generic_Type (E)
10187 then
10188 Post_Error;
10190 elsif (Ekind (E) = E_Task_Type or else
10191 Ekind (E) = E_Protected_Type)
10192 and then not Has_Completion (E)
10193 then
10194 Post_Error;
10196 -- A single task declared in the current scope is a constant, verify
10197 -- that the body of its anonymous type is in the same scope. If the
10198 -- task is defined elsewhere, this may be a renaming declaration for
10199 -- which no completion is needed.
10201 elsif Ekind (E) = E_Constant
10202 and then Ekind (Etype (E)) = E_Task_Type
10203 and then not Has_Completion (Etype (E))
10204 and then Scope (Etype (E)) = Current_Scope
10205 then
10206 Post_Error;
10208 elsif Ekind (E) = E_Protected_Object
10209 and then not Has_Completion (Etype (E))
10210 then
10211 Post_Error;
10213 elsif Ekind (E) = E_Record_Type then
10214 if Is_Tagged_Type (E) then
10215 Check_Abstract_Overriding (E);
10216 Check_Conventions (E);
10217 end if;
10219 Check_Aliased_Component_Types (E);
10221 elsif Ekind (E) = E_Array_Type then
10222 Check_Aliased_Component_Types (E);
10224 end if;
10226 Next_Entity (E);
10227 end loop;
10228 end Check_Completion;
10230 ------------------------------------
10231 -- Check_CPP_Type_Has_No_Defaults --
10232 ------------------------------------
10234 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
10235 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
10236 Clist : Node_Id;
10237 Comp : Node_Id;
10239 begin
10240 -- Obtain the component list
10242 if Nkind (Tdef) = N_Record_Definition then
10243 Clist := Component_List (Tdef);
10244 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
10245 Clist := Component_List (Record_Extension_Part (Tdef));
10246 end if;
10248 -- Check all components to ensure no default expressions
10250 if Present (Clist) then
10251 Comp := First (Component_Items (Clist));
10252 while Present (Comp) loop
10253 if Present (Expression (Comp)) then
10254 Error_Msg_N
10255 ("component of imported 'C'P'P type cannot have "
10256 & "default expression", Expression (Comp));
10257 end if;
10259 Next (Comp);
10260 end loop;
10261 end if;
10262 end Check_CPP_Type_Has_No_Defaults;
10264 ----------------------------
10265 -- Check_Delta_Expression --
10266 ----------------------------
10268 procedure Check_Delta_Expression (E : Node_Id) is
10269 begin
10270 if not (Is_Real_Type (Etype (E))) then
10271 Wrong_Type (E, Any_Real);
10273 elsif not Is_OK_Static_Expression (E) then
10274 Flag_Non_Static_Expr
10275 ("non-static expression used for delta value!", E);
10277 elsif not UR_Is_Positive (Expr_Value_R (E)) then
10278 Error_Msg_N ("delta expression must be positive", E);
10280 else
10281 return;
10282 end if;
10284 -- If any of above errors occurred, then replace the incorrect
10285 -- expression by the real 0.1, which should prevent further errors.
10287 Rewrite (E,
10288 Make_Real_Literal (Sloc (E), Ureal_Tenth));
10289 Analyze_And_Resolve (E, Standard_Float);
10290 end Check_Delta_Expression;
10292 -----------------------------
10293 -- Check_Digits_Expression --
10294 -----------------------------
10296 procedure Check_Digits_Expression (E : Node_Id) is
10297 begin
10298 if not (Is_Integer_Type (Etype (E))) then
10299 Wrong_Type (E, Any_Integer);
10301 elsif not Is_OK_Static_Expression (E) then
10302 Flag_Non_Static_Expr
10303 ("non-static expression used for digits value!", E);
10305 elsif Expr_Value (E) <= 0 then
10306 Error_Msg_N ("digits value must be greater than zero", E);
10308 else
10309 return;
10310 end if;
10312 -- If any of above errors occurred, then replace the incorrect
10313 -- expression by the integer 1, which should prevent further errors.
10315 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
10316 Analyze_And_Resolve (E, Standard_Integer);
10318 end Check_Digits_Expression;
10320 --------------------------
10321 -- Check_Initialization --
10322 --------------------------
10324 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
10325 begin
10326 if Is_Limited_Type (T)
10327 and then not In_Instance
10328 and then not In_Inlined_Body
10329 then
10330 if not OK_For_Limited_Init (T, Exp) then
10332 -- In GNAT mode, this is just a warning, to allow it to be evilly
10333 -- turned off. Otherwise it is a real error.
10335 if GNAT_Mode then
10336 Error_Msg_N
10337 ("??cannot initialize entities of limited type!", Exp);
10339 elsif Ada_Version < Ada_2005 then
10341 -- The side effect removal machinery may generate illegal Ada
10342 -- code to avoid the usage of access types and 'reference in
10343 -- SPARK mode. Since this is legal code with respect to theorem
10344 -- proving, do not emit the error.
10346 if GNATprove_Mode
10347 and then Nkind (Exp) = N_Function_Call
10348 and then Nkind (Parent (Exp)) = N_Object_Declaration
10349 and then not Comes_From_Source
10350 (Defining_Identifier (Parent (Exp)))
10351 then
10352 null;
10354 else
10355 Error_Msg_N
10356 ("cannot initialize entities of limited type", Exp);
10357 Explain_Limited_Type (T, Exp);
10358 end if;
10360 else
10361 -- Specialize error message according to kind of illegal
10362 -- initial expression.
10364 if Nkind (Exp) = N_Type_Conversion
10365 and then Nkind (Expression (Exp)) = N_Function_Call
10366 then
10367 Error_Msg_N
10368 ("illegal context for call"
10369 & " to function with limited result", Exp);
10371 else
10372 Error_Msg_N
10373 ("initialization of limited object requires aggregate "
10374 & "or function call", Exp);
10375 end if;
10376 end if;
10377 end if;
10378 end if;
10379 end Check_Initialization;
10381 ----------------------
10382 -- Check_Interfaces --
10383 ----------------------
10385 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
10386 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
10388 Iface : Node_Id;
10389 Iface_Def : Node_Id;
10390 Iface_Typ : Entity_Id;
10391 Parent_Node : Node_Id;
10393 Is_Task : Boolean := False;
10394 -- Set True if parent type or any progenitor is a task interface
10396 Is_Protected : Boolean := False;
10397 -- Set True if parent type or any progenitor is a protected interface
10399 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
10400 -- Check that a progenitor is compatible with declaration.
10401 -- Error is posted on Error_Node.
10403 ------------------
10404 -- Check_Ifaces --
10405 ------------------
10407 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
10408 Iface_Id : constant Entity_Id :=
10409 Defining_Identifier (Parent (Iface_Def));
10410 Type_Def : Node_Id;
10412 begin
10413 if Nkind (N) = N_Private_Extension_Declaration then
10414 Type_Def := N;
10415 else
10416 Type_Def := Type_Definition (N);
10417 end if;
10419 if Is_Task_Interface (Iface_Id) then
10420 Is_Task := True;
10422 elsif Is_Protected_Interface (Iface_Id) then
10423 Is_Protected := True;
10424 end if;
10426 if Is_Synchronized_Interface (Iface_Id) then
10428 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
10429 -- extension derived from a synchronized interface must explicitly
10430 -- be declared synchronized, because the full view will be a
10431 -- synchronized type.
10433 if Nkind (N) = N_Private_Extension_Declaration then
10434 if not Synchronized_Present (N) then
10435 Error_Msg_NE
10436 ("private extension of& must be explicitly synchronized",
10437 N, Iface_Id);
10438 end if;
10440 -- However, by 3.9.4(16/2), a full type that is a record extension
10441 -- is never allowed to derive from a synchronized interface (note
10442 -- that interfaces must be excluded from this check, because those
10443 -- are represented by derived type definitions in some cases).
10445 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10446 and then not Interface_Present (Type_Definition (N))
10447 then
10448 Error_Msg_N ("record extension cannot derive from synchronized"
10449 & " interface", Error_Node);
10450 end if;
10451 end if;
10453 -- Check that the characteristics of the progenitor are compatible
10454 -- with the explicit qualifier in the declaration.
10455 -- The check only applies to qualifiers that come from source.
10456 -- Limited_Present also appears in the declaration of corresponding
10457 -- records, and the check does not apply to them.
10459 if Limited_Present (Type_Def)
10460 and then not
10461 Is_Concurrent_Record_Type (Defining_Identifier (N))
10462 then
10463 if Is_Limited_Interface (Parent_Type)
10464 and then not Is_Limited_Interface (Iface_Id)
10465 then
10466 Error_Msg_NE
10467 ("progenitor& must be limited interface",
10468 Error_Node, Iface_Id);
10470 elsif
10471 (Task_Present (Iface_Def)
10472 or else Protected_Present (Iface_Def)
10473 or else Synchronized_Present (Iface_Def))
10474 and then Nkind (N) /= N_Private_Extension_Declaration
10475 and then not Error_Posted (N)
10476 then
10477 Error_Msg_NE
10478 ("progenitor& must be limited interface",
10479 Error_Node, Iface_Id);
10480 end if;
10482 -- Protected interfaces can only inherit from limited, synchronized
10483 -- or protected interfaces.
10485 elsif Nkind (N) = N_Full_Type_Declaration
10486 and then Protected_Present (Type_Def)
10487 then
10488 if Limited_Present (Iface_Def)
10489 or else Synchronized_Present (Iface_Def)
10490 or else Protected_Present (Iface_Def)
10491 then
10492 null;
10494 elsif Task_Present (Iface_Def) then
10495 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10496 & " from task interface", Error_Node);
10498 else
10499 Error_Msg_N ("(Ada 2005) protected interface cannot inherit"
10500 & " from non-limited interface", Error_Node);
10501 end if;
10503 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
10504 -- limited and synchronized.
10506 elsif Synchronized_Present (Type_Def) then
10507 if Limited_Present (Iface_Def)
10508 or else Synchronized_Present (Iface_Def)
10509 then
10510 null;
10512 elsif Protected_Present (Iface_Def)
10513 and then Nkind (N) /= N_Private_Extension_Declaration
10514 then
10515 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10516 & " from protected interface", Error_Node);
10518 elsif Task_Present (Iface_Def)
10519 and then Nkind (N) /= N_Private_Extension_Declaration
10520 then
10521 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10522 & " from task interface", Error_Node);
10524 elsif not Is_Limited_Interface (Iface_Id) then
10525 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit"
10526 & " from non-limited interface", Error_Node);
10527 end if;
10529 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
10530 -- synchronized or task interfaces.
10532 elsif Nkind (N) = N_Full_Type_Declaration
10533 and then Task_Present (Type_Def)
10534 then
10535 if Limited_Present (Iface_Def)
10536 or else Synchronized_Present (Iface_Def)
10537 or else Task_Present (Iface_Def)
10538 then
10539 null;
10541 elsif Protected_Present (Iface_Def) then
10542 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10543 & " protected interface", Error_Node);
10545 else
10546 Error_Msg_N ("(Ada 2005) task interface cannot inherit from"
10547 & " non-limited interface", Error_Node);
10548 end if;
10549 end if;
10550 end Check_Ifaces;
10552 -- Start of processing for Check_Interfaces
10554 begin
10555 if Is_Interface (Parent_Type) then
10556 if Is_Task_Interface (Parent_Type) then
10557 Is_Task := True;
10559 elsif Is_Protected_Interface (Parent_Type) then
10560 Is_Protected := True;
10561 end if;
10562 end if;
10564 if Nkind (N) = N_Private_Extension_Declaration then
10566 -- Check that progenitors are compatible with declaration
10568 Iface := First (Interface_List (Def));
10569 while Present (Iface) loop
10570 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10572 Parent_Node := Parent (Base_Type (Iface_Typ));
10573 Iface_Def := Type_Definition (Parent_Node);
10575 if not Is_Interface (Iface_Typ) then
10576 Diagnose_Interface (Iface, Iface_Typ);
10578 else
10579 Check_Ifaces (Iface_Def, Iface);
10580 end if;
10582 Next (Iface);
10583 end loop;
10585 if Is_Task and Is_Protected then
10586 Error_Msg_N
10587 ("type cannot derive from task and protected interface", N);
10588 end if;
10590 return;
10591 end if;
10593 -- Full type declaration of derived type.
10594 -- Check compatibility with parent if it is interface type
10596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
10597 and then Is_Interface (Parent_Type)
10598 then
10599 Parent_Node := Parent (Parent_Type);
10601 -- More detailed checks for interface varieties
10603 Check_Ifaces
10604 (Iface_Def => Type_Definition (Parent_Node),
10605 Error_Node => Subtype_Indication (Type_Definition (N)));
10606 end if;
10608 Iface := First (Interface_List (Def));
10609 while Present (Iface) loop
10610 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
10612 Parent_Node := Parent (Base_Type (Iface_Typ));
10613 Iface_Def := Type_Definition (Parent_Node);
10615 if not Is_Interface (Iface_Typ) then
10616 Diagnose_Interface (Iface, Iface_Typ);
10618 else
10619 -- "The declaration of a specific descendant of an interface
10620 -- type freezes the interface type" RM 13.14
10622 Freeze_Before (N, Iface_Typ);
10623 Check_Ifaces (Iface_Def, Error_Node => Iface);
10624 end if;
10626 Next (Iface);
10627 end loop;
10629 if Is_Task and Is_Protected then
10630 Error_Msg_N
10631 ("type cannot derive from task and protected interface", N);
10632 end if;
10633 end Check_Interfaces;
10635 ------------------------------------
10636 -- Check_Or_Process_Discriminants --
10637 ------------------------------------
10639 -- If an incomplete or private type declaration was already given for the
10640 -- type, the discriminants may have already been processed if they were
10641 -- present on the incomplete declaration. In this case a full conformance
10642 -- check has been performed in Find_Type_Name, and we then recheck here
10643 -- some properties that can't be checked on the partial view alone.
10644 -- Otherwise we call Process_Discriminants.
10646 procedure Check_Or_Process_Discriminants
10647 (N : Node_Id;
10648 T : Entity_Id;
10649 Prev : Entity_Id := Empty)
10651 begin
10652 if Has_Discriminants (T) then
10654 -- Discriminants are already set on T if they were already present
10655 -- on the partial view. Make them visible to component declarations.
10657 declare
10658 D : Entity_Id;
10659 -- Discriminant on T (full view) referencing expr on partial view
10661 Prev_D : Entity_Id;
10662 -- Entity of corresponding discriminant on partial view
10664 New_D : Node_Id;
10665 -- Discriminant specification for full view, expression is the
10666 -- syntactic copy on full view (which has been checked for
10667 -- conformance with partial view), only used here to post error
10668 -- message.
10670 begin
10671 D := First_Discriminant (T);
10672 New_D := First (Discriminant_Specifications (N));
10673 while Present (D) loop
10674 Prev_D := Current_Entity (D);
10675 Set_Current_Entity (D);
10676 Set_Is_Immediately_Visible (D);
10677 Set_Homonym (D, Prev_D);
10679 -- Handle the case where there is an untagged partial view and
10680 -- the full view is tagged: must disallow discriminants with
10681 -- defaults, unless compiling for Ada 2012, which allows a
10682 -- limited tagged type to have defaulted discriminants (see
10683 -- AI05-0214). However, suppress error here if it was already
10684 -- reported on the default expression of the partial view.
10686 if Is_Tagged_Type (T)
10687 and then Present (Expression (Parent (D)))
10688 and then (not Is_Limited_Type (Current_Scope)
10689 or else Ada_Version < Ada_2012)
10690 and then not Error_Posted (Expression (Parent (D)))
10691 then
10692 if Ada_Version >= Ada_2012 then
10693 Error_Msg_N
10694 ("discriminants of nonlimited tagged type cannot have"
10695 & " defaults",
10696 Expression (New_D));
10697 else
10698 Error_Msg_N
10699 ("discriminants of tagged type cannot have defaults",
10700 Expression (New_D));
10701 end if;
10702 end if;
10704 -- Ada 2005 (AI-230): Access discriminant allowed in
10705 -- non-limited record types.
10707 if Ada_Version < Ada_2005 then
10709 -- This restriction gets applied to the full type here. It
10710 -- has already been applied earlier to the partial view.
10712 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
10713 end if;
10715 Next_Discriminant (D);
10716 Next (New_D);
10717 end loop;
10718 end;
10720 elsif Present (Discriminant_Specifications (N)) then
10721 Process_Discriminants (N, Prev);
10722 end if;
10723 end Check_Or_Process_Discriminants;
10725 ----------------------
10726 -- Check_Real_Bound --
10727 ----------------------
10729 procedure Check_Real_Bound (Bound : Node_Id) is
10730 begin
10731 if not Is_Real_Type (Etype (Bound)) then
10732 Error_Msg_N
10733 ("bound in real type definition must be of real type", Bound);
10735 elsif not Is_OK_Static_Expression (Bound) then
10736 Flag_Non_Static_Expr
10737 ("non-static expression used for real type bound!", Bound);
10739 else
10740 return;
10741 end if;
10743 Rewrite
10744 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
10745 Analyze (Bound);
10746 Resolve (Bound, Standard_Float);
10747 end Check_Real_Bound;
10749 ------------------------------
10750 -- Complete_Private_Subtype --
10751 ------------------------------
10753 procedure Complete_Private_Subtype
10754 (Priv : Entity_Id;
10755 Full : Entity_Id;
10756 Full_Base : Entity_Id;
10757 Related_Nod : Node_Id)
10759 Save_Next_Entity : Entity_Id;
10760 Save_Homonym : Entity_Id;
10762 begin
10763 -- Set semantic attributes for (implicit) private subtype completion.
10764 -- If the full type has no discriminants, then it is a copy of the full
10765 -- view of the base. Otherwise, it is a subtype of the base with a
10766 -- possible discriminant constraint. Save and restore the original
10767 -- Next_Entity field of full to ensure that the calls to Copy_Node
10768 -- do not corrupt the entity chain.
10770 -- Note that the type of the full view is the same entity as the type of
10771 -- the partial view. In this fashion, the subtype has access to the
10772 -- correct view of the parent.
10774 Save_Next_Entity := Next_Entity (Full);
10775 Save_Homonym := Homonym (Priv);
10777 case Ekind (Full_Base) is
10778 when E_Record_Type |
10779 E_Record_Subtype |
10780 Class_Wide_Kind |
10781 Private_Kind |
10782 Task_Kind |
10783 Protected_Kind =>
10784 Copy_Node (Priv, Full);
10786 Set_Has_Discriminants
10787 (Full, Has_Discriminants (Full_Base));
10788 Set_Has_Unknown_Discriminants
10789 (Full, Has_Unknown_Discriminants (Full_Base));
10790 Set_First_Entity (Full, First_Entity (Full_Base));
10791 Set_Last_Entity (Full, Last_Entity (Full_Base));
10793 -- If the underlying base type is constrained, we know that the
10794 -- full view of the subtype is constrained as well (the converse
10795 -- is not necessarily true).
10797 if Is_Constrained (Full_Base) then
10798 Set_Is_Constrained (Full);
10799 end if;
10801 when others =>
10802 Copy_Node (Full_Base, Full);
10804 Set_Chars (Full, Chars (Priv));
10805 Conditional_Delay (Full, Priv);
10806 Set_Sloc (Full, Sloc (Priv));
10807 end case;
10809 Set_Next_Entity (Full, Save_Next_Entity);
10810 Set_Homonym (Full, Save_Homonym);
10811 Set_Associated_Node_For_Itype (Full, Related_Nod);
10813 -- Set common attributes for all subtypes: kind, convention, etc.
10815 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
10816 Set_Convention (Full, Convention (Full_Base));
10818 -- The Etype of the full view is inconsistent. Gigi needs to see the
10819 -- structural full view, which is what the current scheme gives:
10820 -- the Etype of the full view is the etype of the full base. However,
10821 -- if the full base is a derived type, the full view then looks like
10822 -- a subtype of the parent, not a subtype of the full base. If instead
10823 -- we write:
10825 -- Set_Etype (Full, Full_Base);
10827 -- then we get inconsistencies in the front-end (confusion between
10828 -- views). Several outstanding bugs are related to this ???
10830 Set_Is_First_Subtype (Full, False);
10831 Set_Scope (Full, Scope (Priv));
10832 Set_Size_Info (Full, Full_Base);
10833 Set_RM_Size (Full, RM_Size (Full_Base));
10834 Set_Is_Itype (Full);
10836 -- A subtype of a private-type-without-discriminants, whose full-view
10837 -- has discriminants with default expressions, is not constrained.
10839 if not Has_Discriminants (Priv) then
10840 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
10842 if Has_Discriminants (Full_Base) then
10843 Set_Discriminant_Constraint
10844 (Full, Discriminant_Constraint (Full_Base));
10846 -- The partial view may have been indefinite, the full view
10847 -- might not be.
10849 Set_Has_Unknown_Discriminants
10850 (Full, Has_Unknown_Discriminants (Full_Base));
10851 end if;
10852 end if;
10854 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
10855 Set_Depends_On_Private (Full, Has_Private_Component (Full));
10857 -- Freeze the private subtype entity if its parent is delayed, and not
10858 -- already frozen. We skip this processing if the type is an anonymous
10859 -- subtype of a record component, or is the corresponding record of a
10860 -- protected type, since ???
10862 if not Is_Type (Scope (Full)) then
10863 Set_Has_Delayed_Freeze (Full,
10864 Has_Delayed_Freeze (Full_Base)
10865 and then (not Is_Frozen (Full_Base)));
10866 end if;
10868 Set_Freeze_Node (Full, Empty);
10869 Set_Is_Frozen (Full, False);
10870 Set_Full_View (Priv, Full);
10872 if Has_Discriminants (Full) then
10873 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
10874 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
10876 if Has_Unknown_Discriminants (Full) then
10877 Set_Discriminant_Constraint (Full, No_Elist);
10878 end if;
10879 end if;
10881 if Ekind (Full_Base) = E_Record_Type
10882 and then Has_Discriminants (Full_Base)
10883 and then Has_Discriminants (Priv) -- might not, if errors
10884 and then not Has_Unknown_Discriminants (Priv)
10885 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
10886 then
10887 Create_Constrained_Components
10888 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
10890 -- If the full base is itself derived from private, build a congruent
10891 -- subtype of its underlying type, for use by the back end. For a
10892 -- constrained record component, the declaration cannot be placed on
10893 -- the component list, but it must nevertheless be built an analyzed, to
10894 -- supply enough information for Gigi to compute the size of component.
10896 elsif Ekind (Full_Base) in Private_Kind
10897 and then Is_Derived_Type (Full_Base)
10898 and then Has_Discriminants (Full_Base)
10899 and then (Ekind (Current_Scope) /= E_Record_Subtype)
10900 then
10901 if not Is_Itype (Priv)
10902 and then
10903 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
10904 then
10905 Build_Underlying_Full_View
10906 (Parent (Priv), Full, Etype (Full_Base));
10908 elsif Nkind (Related_Nod) = N_Component_Declaration then
10909 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
10910 end if;
10912 elsif Is_Record_Type (Full_Base) then
10914 -- Show Full is simply a renaming of Full_Base
10916 Set_Cloned_Subtype (Full, Full_Base);
10917 end if;
10919 -- It is unsafe to share the bounds of a scalar type, because the Itype
10920 -- is elaborated on demand, and if a bound is non-static then different
10921 -- orders of elaboration in different units will lead to different
10922 -- external symbols.
10924 if Is_Scalar_Type (Full_Base) then
10925 Set_Scalar_Range (Full,
10926 Make_Range (Sloc (Related_Nod),
10927 Low_Bound =>
10928 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
10929 High_Bound =>
10930 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
10932 -- This completion inherits the bounds of the full parent, but if
10933 -- the parent is an unconstrained floating point type, so is the
10934 -- completion.
10936 if Is_Floating_Point_Type (Full_Base) then
10937 Set_Includes_Infinities
10938 (Scalar_Range (Full), Has_Infinities (Full_Base));
10939 end if;
10940 end if;
10942 -- ??? It seems that a lot of fields are missing that should be copied
10943 -- from Full_Base to Full. Here are some that are introduced in a
10944 -- non-disruptive way but a cleanup is necessary.
10946 if Is_Tagged_Type (Full_Base) then
10947 Set_Is_Tagged_Type (Full);
10948 Set_Direct_Primitive_Operations (Full,
10949 Direct_Primitive_Operations (Full_Base));
10951 -- Inherit class_wide type of full_base in case the partial view was
10952 -- not tagged. Otherwise it has already been created when the private
10953 -- subtype was analyzed.
10955 if No (Class_Wide_Type (Full)) then
10956 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
10957 end if;
10959 -- If this is a subtype of a protected or task type, constrain its
10960 -- corresponding record, unless this is a subtype without constraints,
10961 -- i.e. a simple renaming as with an actual subtype in an instance.
10963 elsif Is_Concurrent_Type (Full_Base) then
10964 if Has_Discriminants (Full)
10965 and then Present (Corresponding_Record_Type (Full_Base))
10966 and then
10967 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
10968 then
10969 Set_Corresponding_Record_Type (Full,
10970 Constrain_Corresponding_Record
10971 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
10973 else
10974 Set_Corresponding_Record_Type (Full,
10975 Corresponding_Record_Type (Full_Base));
10976 end if;
10977 end if;
10979 -- Link rep item chain, and also setting of Has_Predicates from private
10980 -- subtype to full subtype, since we will need these on the full subtype
10981 -- to create the predicate function. Note that the full subtype may
10982 -- already have rep items, inherited from the full view of the base
10983 -- type, so we must be sure not to overwrite these entries.
10985 declare
10986 Append : Boolean;
10987 Item : Node_Id;
10988 Next_Item : Node_Id;
10990 begin
10991 Item := First_Rep_Item (Full);
10993 -- If no existing rep items on full type, we can just link directly
10994 -- to the list of items on the private type.
10996 if No (Item) then
10997 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
10999 -- Otherwise, search to the end of items currently linked to the full
11000 -- subtype and append the private items to the end. However, if Priv
11001 -- and Full already have the same list of rep items, then the append
11002 -- is not done, as that would create a circularity.
11004 elsif Item /= First_Rep_Item (Priv) then
11005 Append := True;
11007 loop
11008 Next_Item := Next_Rep_Item (Item);
11009 exit when No (Next_Item);
11010 Item := Next_Item;
11012 -- If the private view has aspect specifications, the full view
11013 -- inherits them. Since these aspects may already have been
11014 -- attached to the full view during derivation, do not append
11015 -- them if already present.
11017 if Item = First_Rep_Item (Priv) then
11018 Append := False;
11019 exit;
11020 end if;
11021 end loop;
11023 -- And link the private type items at the end of the chain
11025 if Append then
11026 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11027 end if;
11028 end if;
11029 end;
11031 -- Make sure Has_Predicates is set on full type if it is set on the
11032 -- private type. Note that it may already be set on the full type and
11033 -- if so, we don't want to unset it.
11035 if Has_Predicates (Priv) then
11036 Set_Has_Predicates (Full);
11037 end if;
11038 end Complete_Private_Subtype;
11040 ----------------------------
11041 -- Constant_Redeclaration --
11042 ----------------------------
11044 procedure Constant_Redeclaration
11045 (Id : Entity_Id;
11046 N : Node_Id;
11047 T : out Entity_Id)
11049 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11050 Obj_Def : constant Node_Id := Object_Definition (N);
11051 New_T : Entity_Id;
11053 procedure Check_Possible_Deferred_Completion
11054 (Prev_Id : Entity_Id;
11055 Prev_Obj_Def : Node_Id;
11056 Curr_Obj_Def : Node_Id);
11057 -- Determine whether the two object definitions describe the partial
11058 -- and the full view of a constrained deferred constant. Generate
11059 -- a subtype for the full view and verify that it statically matches
11060 -- the subtype of the partial view.
11062 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11063 -- If deferred constant is an access type initialized with an allocator,
11064 -- check whether there is an illegal recursion in the definition,
11065 -- through a default value of some record subcomponent. This is normally
11066 -- detected when generating init procs, but requires this additional
11067 -- mechanism when expansion is disabled.
11069 ----------------------------------------
11070 -- Check_Possible_Deferred_Completion --
11071 ----------------------------------------
11073 procedure Check_Possible_Deferred_Completion
11074 (Prev_Id : Entity_Id;
11075 Prev_Obj_Def : Node_Id;
11076 Curr_Obj_Def : Node_Id)
11078 begin
11079 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11080 and then Present (Constraint (Prev_Obj_Def))
11081 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11082 and then Present (Constraint (Curr_Obj_Def))
11083 then
11084 declare
11085 Loc : constant Source_Ptr := Sloc (N);
11086 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11087 Decl : constant Node_Id :=
11088 Make_Subtype_Declaration (Loc,
11089 Defining_Identifier => Def_Id,
11090 Subtype_Indication =>
11091 Relocate_Node (Curr_Obj_Def));
11093 begin
11094 Insert_Before_And_Analyze (N, Decl);
11095 Set_Etype (Id, Def_Id);
11097 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11098 Error_Msg_Sloc := Sloc (Prev_Id);
11099 Error_Msg_N ("subtype does not statically match deferred " &
11100 "declaration#", N);
11101 end if;
11102 end;
11103 end if;
11104 end Check_Possible_Deferred_Completion;
11106 ---------------------------------
11107 -- Check_Recursive_Declaration --
11108 ---------------------------------
11110 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11111 Comp : Entity_Id;
11113 begin
11114 if Is_Record_Type (Typ) then
11115 Comp := First_Component (Typ);
11116 while Present (Comp) loop
11117 if Comes_From_Source (Comp) then
11118 if Present (Expression (Parent (Comp)))
11119 and then Is_Entity_Name (Expression (Parent (Comp)))
11120 and then Entity (Expression (Parent (Comp))) = Prev
11121 then
11122 Error_Msg_Sloc := Sloc (Parent (Comp));
11123 Error_Msg_NE
11124 ("illegal circularity with declaration for&#",
11125 N, Comp);
11126 return;
11128 elsif Is_Record_Type (Etype (Comp)) then
11129 Check_Recursive_Declaration (Etype (Comp));
11130 end if;
11131 end if;
11133 Next_Component (Comp);
11134 end loop;
11135 end if;
11136 end Check_Recursive_Declaration;
11138 -- Start of processing for Constant_Redeclaration
11140 begin
11141 if Nkind (Parent (Prev)) = N_Object_Declaration then
11142 if Nkind (Object_Definition
11143 (Parent (Prev))) = N_Subtype_Indication
11144 then
11145 -- Find type of new declaration. The constraints of the two
11146 -- views must match statically, but there is no point in
11147 -- creating an itype for the full view.
11149 if Nkind (Obj_Def) = N_Subtype_Indication then
11150 Find_Type (Subtype_Mark (Obj_Def));
11151 New_T := Entity (Subtype_Mark (Obj_Def));
11153 else
11154 Find_Type (Obj_Def);
11155 New_T := Entity (Obj_Def);
11156 end if;
11158 T := Etype (Prev);
11160 else
11161 -- The full view may impose a constraint, even if the partial
11162 -- view does not, so construct the subtype.
11164 New_T := Find_Type_Of_Object (Obj_Def, N);
11165 T := New_T;
11166 end if;
11168 else
11169 -- Current declaration is illegal, diagnosed below in Enter_Name
11171 T := Empty;
11172 New_T := Any_Type;
11173 end if;
11175 -- If previous full declaration or a renaming declaration exists, or if
11176 -- a homograph is present, let Enter_Name handle it, either with an
11177 -- error or with the removal of an overridden implicit subprogram.
11178 -- The previous one is a full declaration if it has an expression
11179 -- (which in the case of an aggregate is indicated by the Init flag).
11181 if Ekind (Prev) /= E_Constant
11182 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11183 or else Present (Expression (Parent (Prev)))
11184 or else Has_Init_Expression (Parent (Prev))
11185 or else Present (Full_View (Prev))
11186 then
11187 Enter_Name (Id);
11189 -- Verify that types of both declarations match, or else that both types
11190 -- are anonymous access types whose designated subtypes statically match
11191 -- (as allowed in Ada 2005 by AI-385).
11193 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11194 and then
11195 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11196 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
11197 or else Is_Access_Constant (Etype (New_T)) /=
11198 Is_Access_Constant (Etype (Prev))
11199 or else Can_Never_Be_Null (Etype (New_T)) /=
11200 Can_Never_Be_Null (Etype (Prev))
11201 or else Null_Exclusion_Present (Parent (Prev)) /=
11202 Null_Exclusion_Present (Parent (Id))
11203 or else not Subtypes_Statically_Match
11204 (Designated_Type (Etype (Prev)),
11205 Designated_Type (Etype (New_T))))
11206 then
11207 Error_Msg_Sloc := Sloc (Prev);
11208 Error_Msg_N ("type does not match declaration#", N);
11209 Set_Full_View (Prev, Id);
11210 Set_Etype (Id, Any_Type);
11212 elsif
11213 Null_Exclusion_Present (Parent (Prev))
11214 and then not Null_Exclusion_Present (N)
11215 then
11216 Error_Msg_Sloc := Sloc (Prev);
11217 Error_Msg_N ("null-exclusion does not match declaration#", N);
11218 Set_Full_View (Prev, Id);
11219 Set_Etype (Id, Any_Type);
11221 -- If so, process the full constant declaration
11223 else
11224 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
11225 -- the deferred declaration is constrained, then the subtype defined
11226 -- by the subtype_indication in the full declaration shall match it
11227 -- statically.
11229 Check_Possible_Deferred_Completion
11230 (Prev_Id => Prev,
11231 Prev_Obj_Def => Object_Definition (Parent (Prev)),
11232 Curr_Obj_Def => Obj_Def);
11234 Set_Full_View (Prev, Id);
11235 Set_Is_Public (Id, Is_Public (Prev));
11236 Set_Is_Internal (Id);
11237 Append_Entity (Id, Current_Scope);
11239 -- Check ALIASED present if present before (RM 7.4(7))
11241 if Is_Aliased (Prev)
11242 and then not Aliased_Present (N)
11243 then
11244 Error_Msg_Sloc := Sloc (Prev);
11245 Error_Msg_N ("ALIASED required (see declaration#)", N);
11246 end if;
11248 -- Check that placement is in private part and that the incomplete
11249 -- declaration appeared in the visible part.
11251 if Ekind (Current_Scope) = E_Package
11252 and then not In_Private_Part (Current_Scope)
11253 then
11254 Error_Msg_Sloc := Sloc (Prev);
11255 Error_Msg_N
11256 ("full constant for declaration#"
11257 & " must be in private part", N);
11259 elsif Ekind (Current_Scope) = E_Package
11260 and then
11261 List_Containing (Parent (Prev)) /=
11262 Visible_Declarations (Package_Specification (Current_Scope))
11263 then
11264 Error_Msg_N
11265 ("deferred constant must be declared in visible part",
11266 Parent (Prev));
11267 end if;
11269 if Is_Access_Type (T)
11270 and then Nkind (Expression (N)) = N_Allocator
11271 then
11272 Check_Recursive_Declaration (Designated_Type (T));
11273 end if;
11275 -- A deferred constant is a visible entity. If type has invariants,
11276 -- verify that the initial value satisfies them.
11278 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
11279 Insert_After (N,
11280 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
11281 end if;
11282 end if;
11283 end Constant_Redeclaration;
11285 ----------------------
11286 -- Constrain_Access --
11287 ----------------------
11289 procedure Constrain_Access
11290 (Def_Id : in out Entity_Id;
11291 S : Node_Id;
11292 Related_Nod : Node_Id)
11294 T : constant Entity_Id := Entity (Subtype_Mark (S));
11295 Desig_Type : constant Entity_Id := Designated_Type (T);
11296 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
11297 Constraint_OK : Boolean := True;
11299 begin
11300 if Is_Array_Type (Desig_Type) then
11301 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
11303 elsif (Is_Record_Type (Desig_Type)
11304 or else Is_Incomplete_Or_Private_Type (Desig_Type))
11305 and then not Is_Constrained (Desig_Type)
11306 then
11307 -- ??? The following code is a temporary bypass to ignore a
11308 -- discriminant constraint on access type if it is constraining
11309 -- the current record. Avoid creating the implicit subtype of the
11310 -- record we are currently compiling since right now, we cannot
11311 -- handle these. For now, just return the access type itself.
11313 if Desig_Type = Current_Scope
11314 and then No (Def_Id)
11315 then
11316 Set_Ekind (Desig_Subtype, E_Record_Subtype);
11317 Def_Id := Entity (Subtype_Mark (S));
11319 -- This call added to ensure that the constraint is analyzed
11320 -- (needed for a B test). Note that we still return early from
11321 -- this procedure to avoid recursive processing. ???
11323 Constrain_Discriminated_Type
11324 (Desig_Subtype, S, Related_Nod, For_Access => True);
11325 return;
11326 end if;
11328 -- Enforce rule that the constraint is illegal if there is an
11329 -- unconstrained view of the designated type. This means that the
11330 -- partial view (either a private type declaration or a derivation
11331 -- from a private type) has no discriminants. (Defect Report
11332 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
11334 -- Rule updated for Ada 2005: The private type is said to have
11335 -- a constrained partial view, given that objects of the type
11336 -- can be declared. Furthermore, the rule applies to all access
11337 -- types, unlike the rule concerning default discriminants (see
11338 -- RM 3.7.1(7/3))
11340 if (Ekind (T) = E_General_Access_Type
11341 or else Ada_Version >= Ada_2005)
11342 and then Has_Private_Declaration (Desig_Type)
11343 and then In_Open_Scopes (Scope (Desig_Type))
11344 and then Has_Discriminants (Desig_Type)
11345 then
11346 declare
11347 Pack : constant Node_Id :=
11348 Unit_Declaration_Node (Scope (Desig_Type));
11349 Decls : List_Id;
11350 Decl : Node_Id;
11352 begin
11353 if Nkind (Pack) = N_Package_Declaration then
11354 Decls := Visible_Declarations (Specification (Pack));
11355 Decl := First (Decls);
11356 while Present (Decl) loop
11357 if (Nkind (Decl) = N_Private_Type_Declaration
11358 and then
11359 Chars (Defining_Identifier (Decl)) =
11360 Chars (Desig_Type))
11362 or else
11363 (Nkind (Decl) = N_Full_Type_Declaration
11364 and then
11365 Chars (Defining_Identifier (Decl)) =
11366 Chars (Desig_Type)
11367 and then Is_Derived_Type (Desig_Type)
11368 and then
11369 Has_Private_Declaration (Etype (Desig_Type)))
11370 then
11371 if No (Discriminant_Specifications (Decl)) then
11372 Error_Msg_N
11373 ("cannot constrain access type if designated " &
11374 "type has constrained partial view", S);
11375 end if;
11377 exit;
11378 end if;
11380 Next (Decl);
11381 end loop;
11382 end if;
11383 end;
11384 end if;
11386 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
11387 For_Access => True);
11389 elsif (Is_Task_Type (Desig_Type)
11390 or else Is_Protected_Type (Desig_Type))
11391 and then not Is_Constrained (Desig_Type)
11392 then
11393 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
11395 else
11396 Error_Msg_N ("invalid constraint on access type", S);
11397 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
11398 Constraint_OK := False;
11399 end if;
11401 if No (Def_Id) then
11402 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
11403 else
11404 Set_Ekind (Def_Id, E_Access_Subtype);
11405 end if;
11407 if Constraint_OK then
11408 Set_Etype (Def_Id, Base_Type (T));
11410 if Is_Private_Type (Desig_Type) then
11411 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
11412 end if;
11413 else
11414 Set_Etype (Def_Id, Any_Type);
11415 end if;
11417 Set_Size_Info (Def_Id, T);
11418 Set_Is_Constrained (Def_Id, Constraint_OK);
11419 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
11420 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11421 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
11423 Conditional_Delay (Def_Id, T);
11425 -- AI-363 : Subtypes of general access types whose designated types have
11426 -- default discriminants are disallowed. In instances, the rule has to
11427 -- be checked against the actual, of which T is the subtype. In a
11428 -- generic body, the rule is checked assuming that the actual type has
11429 -- defaulted discriminants.
11431 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
11432 if Ekind (Base_Type (T)) = E_General_Access_Type
11433 and then Has_Defaulted_Discriminants (Desig_Type)
11434 then
11435 if Ada_Version < Ada_2005 then
11436 Error_Msg_N
11437 ("access subtype of general access type would not " &
11438 "be allowed in Ada 2005?y?", S);
11439 else
11440 Error_Msg_N
11441 ("access subtype of general access type not allowed", S);
11442 end if;
11444 Error_Msg_N ("\discriminants have defaults", S);
11446 elsif Is_Access_Type (T)
11447 and then Is_Generic_Type (Desig_Type)
11448 and then Has_Discriminants (Desig_Type)
11449 and then In_Package_Body (Current_Scope)
11450 then
11451 if Ada_Version < Ada_2005 then
11452 Error_Msg_N
11453 ("access subtype would not be allowed in generic body " &
11454 "in Ada 2005?y?", S);
11455 else
11456 Error_Msg_N
11457 ("access subtype not allowed in generic body", S);
11458 end if;
11460 Error_Msg_N
11461 ("\designated type is a discriminated formal", S);
11462 end if;
11463 end if;
11464 end Constrain_Access;
11466 ---------------------
11467 -- Constrain_Array --
11468 ---------------------
11470 procedure Constrain_Array
11471 (Def_Id : in out Entity_Id;
11472 SI : Node_Id;
11473 Related_Nod : Node_Id;
11474 Related_Id : Entity_Id;
11475 Suffix : Character)
11477 C : constant Node_Id := Constraint (SI);
11478 Number_Of_Constraints : Nat := 0;
11479 Index : Node_Id;
11480 S, T : Entity_Id;
11481 Constraint_OK : Boolean := True;
11483 begin
11484 T := Entity (Subtype_Mark (SI));
11486 if Is_Access_Type (T) then
11487 T := Designated_Type (T);
11488 end if;
11490 -- If an index constraint follows a subtype mark in a subtype indication
11491 -- then the type or subtype denoted by the subtype mark must not already
11492 -- impose an index constraint. The subtype mark must denote either an
11493 -- unconstrained array type or an access type whose designated type
11494 -- is such an array type... (RM 3.6.1)
11496 if Is_Constrained (T) then
11497 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
11498 Constraint_OK := False;
11500 else
11501 S := First (Constraints (C));
11502 while Present (S) loop
11503 Number_Of_Constraints := Number_Of_Constraints + 1;
11504 Next (S);
11505 end loop;
11507 -- In either case, the index constraint must provide a discrete
11508 -- range for each index of the array type and the type of each
11509 -- discrete range must be the same as that of the corresponding
11510 -- index. (RM 3.6.1)
11512 if Number_Of_Constraints /= Number_Dimensions (T) then
11513 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
11514 Constraint_OK := False;
11516 else
11517 S := First (Constraints (C));
11518 Index := First_Index (T);
11519 Analyze (Index);
11521 -- Apply constraints to each index type
11523 for J in 1 .. Number_Of_Constraints loop
11524 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
11525 Next (Index);
11526 Next (S);
11527 end loop;
11529 end if;
11530 end if;
11532 if No (Def_Id) then
11533 Def_Id :=
11534 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
11535 Set_Parent (Def_Id, Related_Nod);
11537 else
11538 Set_Ekind (Def_Id, E_Array_Subtype);
11539 end if;
11541 Set_Size_Info (Def_Id, (T));
11542 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11543 Set_Etype (Def_Id, Base_Type (T));
11545 if Constraint_OK then
11546 Set_First_Index (Def_Id, First (Constraints (C)));
11547 else
11548 Set_First_Index (Def_Id, First_Index (T));
11549 end if;
11551 Set_Is_Constrained (Def_Id, True);
11552 Set_Is_Aliased (Def_Id, Is_Aliased (T));
11553 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
11555 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
11556 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
11558 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
11559 -- We need to initialize the attribute because if Def_Id is previously
11560 -- analyzed through a limited_with clause, it will have the attributes
11561 -- of an incomplete type, one of which is an Elist that overlaps the
11562 -- Packed_Array_Impl_Type field.
11564 Set_Packed_Array_Impl_Type (Def_Id, Empty);
11566 -- Build a freeze node if parent still needs one. Also make sure that
11567 -- the Depends_On_Private status is set because the subtype will need
11568 -- reprocessing at the time the base type does, and also we must set a
11569 -- conditional delay.
11571 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
11572 Conditional_Delay (Def_Id, T);
11573 end Constrain_Array;
11575 ------------------------------
11576 -- Constrain_Component_Type --
11577 ------------------------------
11579 function Constrain_Component_Type
11580 (Comp : Entity_Id;
11581 Constrained_Typ : Entity_Id;
11582 Related_Node : Node_Id;
11583 Typ : Entity_Id;
11584 Constraints : Elist_Id) return Entity_Id
11586 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
11587 Compon_Type : constant Entity_Id := Etype (Comp);
11589 function Build_Constrained_Array_Type
11590 (Old_Type : Entity_Id) return Entity_Id;
11591 -- If Old_Type is an array type, one of whose indexes is constrained
11592 -- by a discriminant, build an Itype whose constraint replaces the
11593 -- discriminant with its value in the constraint.
11595 function Build_Constrained_Discriminated_Type
11596 (Old_Type : Entity_Id) return Entity_Id;
11597 -- Ditto for record components
11599 function Build_Constrained_Access_Type
11600 (Old_Type : Entity_Id) return Entity_Id;
11601 -- Ditto for access types. Makes use of previous two functions, to
11602 -- constrain designated type.
11604 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
11605 -- T is an array or discriminated type, C is a list of constraints
11606 -- that apply to T. This routine builds the constrained subtype.
11608 function Is_Discriminant (Expr : Node_Id) return Boolean;
11609 -- Returns True if Expr is a discriminant
11611 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
11612 -- Find the value of discriminant Discrim in Constraint
11614 -----------------------------------
11615 -- Build_Constrained_Access_Type --
11616 -----------------------------------
11618 function Build_Constrained_Access_Type
11619 (Old_Type : Entity_Id) return Entity_Id
11621 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
11622 Itype : Entity_Id;
11623 Desig_Subtype : Entity_Id;
11624 Scop : Entity_Id;
11626 begin
11627 -- if the original access type was not embedded in the enclosing
11628 -- type definition, there is no need to produce a new access
11629 -- subtype. In fact every access type with an explicit constraint
11630 -- generates an itype whose scope is the enclosing record.
11632 if not Is_Type (Scope (Old_Type)) then
11633 return Old_Type;
11635 elsif Is_Array_Type (Desig_Type) then
11636 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
11638 elsif Has_Discriminants (Desig_Type) then
11640 -- This may be an access type to an enclosing record type for
11641 -- which we are constructing the constrained components. Return
11642 -- the enclosing record subtype. This is not always correct,
11643 -- but avoids infinite recursion. ???
11645 Desig_Subtype := Any_Type;
11647 for J in reverse 0 .. Scope_Stack.Last loop
11648 Scop := Scope_Stack.Table (J).Entity;
11650 if Is_Type (Scop)
11651 and then Base_Type (Scop) = Base_Type (Desig_Type)
11652 then
11653 Desig_Subtype := Scop;
11654 end if;
11656 exit when not Is_Type (Scop);
11657 end loop;
11659 if Desig_Subtype = Any_Type then
11660 Desig_Subtype :=
11661 Build_Constrained_Discriminated_Type (Desig_Type);
11662 end if;
11664 else
11665 return Old_Type;
11666 end if;
11668 if Desig_Subtype /= Desig_Type then
11670 -- The Related_Node better be here or else we won't be able
11671 -- to attach new itypes to a node in the tree.
11673 pragma Assert (Present (Related_Node));
11675 Itype := Create_Itype (E_Access_Subtype, Related_Node);
11677 Set_Etype (Itype, Base_Type (Old_Type));
11678 Set_Size_Info (Itype, (Old_Type));
11679 Set_Directly_Designated_Type (Itype, Desig_Subtype);
11680 Set_Depends_On_Private (Itype, Has_Private_Component
11681 (Old_Type));
11682 Set_Is_Access_Constant (Itype, Is_Access_Constant
11683 (Old_Type));
11685 -- The new itype needs freezing when it depends on a not frozen
11686 -- type and the enclosing subtype needs freezing.
11688 if Has_Delayed_Freeze (Constrained_Typ)
11689 and then not Is_Frozen (Constrained_Typ)
11690 then
11691 Conditional_Delay (Itype, Base_Type (Old_Type));
11692 end if;
11694 return Itype;
11696 else
11697 return Old_Type;
11698 end if;
11699 end Build_Constrained_Access_Type;
11701 ----------------------------------
11702 -- Build_Constrained_Array_Type --
11703 ----------------------------------
11705 function Build_Constrained_Array_Type
11706 (Old_Type : Entity_Id) return Entity_Id
11708 Lo_Expr : Node_Id;
11709 Hi_Expr : Node_Id;
11710 Old_Index : Node_Id;
11711 Range_Node : Node_Id;
11712 Constr_List : List_Id;
11714 Need_To_Create_Itype : Boolean := False;
11716 begin
11717 Old_Index := First_Index (Old_Type);
11718 while Present (Old_Index) loop
11719 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11721 if Is_Discriminant (Lo_Expr)
11722 or else Is_Discriminant (Hi_Expr)
11723 then
11724 Need_To_Create_Itype := True;
11725 end if;
11727 Next_Index (Old_Index);
11728 end loop;
11730 if Need_To_Create_Itype then
11731 Constr_List := New_List;
11733 Old_Index := First_Index (Old_Type);
11734 while Present (Old_Index) loop
11735 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
11737 if Is_Discriminant (Lo_Expr) then
11738 Lo_Expr := Get_Discr_Value (Lo_Expr);
11739 end if;
11741 if Is_Discriminant (Hi_Expr) then
11742 Hi_Expr := Get_Discr_Value (Hi_Expr);
11743 end if;
11745 Range_Node :=
11746 Make_Range
11747 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
11749 Append (Range_Node, To => Constr_List);
11751 Next_Index (Old_Index);
11752 end loop;
11754 return Build_Subtype (Old_Type, Constr_List);
11756 else
11757 return Old_Type;
11758 end if;
11759 end Build_Constrained_Array_Type;
11761 ------------------------------------------
11762 -- Build_Constrained_Discriminated_Type --
11763 ------------------------------------------
11765 function Build_Constrained_Discriminated_Type
11766 (Old_Type : Entity_Id) return Entity_Id
11768 Expr : Node_Id;
11769 Constr_List : List_Id;
11770 Old_Constraint : Elmt_Id;
11772 Need_To_Create_Itype : Boolean := False;
11774 begin
11775 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11776 while Present (Old_Constraint) loop
11777 Expr := Node (Old_Constraint);
11779 if Is_Discriminant (Expr) then
11780 Need_To_Create_Itype := True;
11781 end if;
11783 Next_Elmt (Old_Constraint);
11784 end loop;
11786 if Need_To_Create_Itype then
11787 Constr_List := New_List;
11789 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
11790 while Present (Old_Constraint) loop
11791 Expr := Node (Old_Constraint);
11793 if Is_Discriminant (Expr) then
11794 Expr := Get_Discr_Value (Expr);
11795 end if;
11797 Append (New_Copy_Tree (Expr), To => Constr_List);
11799 Next_Elmt (Old_Constraint);
11800 end loop;
11802 return Build_Subtype (Old_Type, Constr_List);
11804 else
11805 return Old_Type;
11806 end if;
11807 end Build_Constrained_Discriminated_Type;
11809 -------------------
11810 -- Build_Subtype --
11811 -------------------
11813 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
11814 Indic : Node_Id;
11815 Subtyp_Decl : Node_Id;
11816 Def_Id : Entity_Id;
11817 Btyp : Entity_Id := Base_Type (T);
11819 begin
11820 -- The Related_Node better be here or else we won't be able to
11821 -- attach new itypes to a node in the tree.
11823 pragma Assert (Present (Related_Node));
11825 -- If the view of the component's type is incomplete or private
11826 -- with unknown discriminants, then the constraint must be applied
11827 -- to the full type.
11829 if Has_Unknown_Discriminants (Btyp)
11830 and then Present (Underlying_Type (Btyp))
11831 then
11832 Btyp := Underlying_Type (Btyp);
11833 end if;
11835 Indic :=
11836 Make_Subtype_Indication (Loc,
11837 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
11838 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
11840 Def_Id := Create_Itype (Ekind (T), Related_Node);
11842 Subtyp_Decl :=
11843 Make_Subtype_Declaration (Loc,
11844 Defining_Identifier => Def_Id,
11845 Subtype_Indication => Indic);
11847 Set_Parent (Subtyp_Decl, Parent (Related_Node));
11849 -- Itypes must be analyzed with checks off (see package Itypes)
11851 Analyze (Subtyp_Decl, Suppress => All_Checks);
11853 return Def_Id;
11854 end Build_Subtype;
11856 ---------------------
11857 -- Get_Discr_Value --
11858 ---------------------
11860 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
11861 D : Entity_Id;
11862 E : Elmt_Id;
11864 begin
11865 -- The discriminant may be declared for the type, in which case we
11866 -- find it by iterating over the list of discriminants. If the
11867 -- discriminant is inherited from a parent type, it appears as the
11868 -- corresponding discriminant of the current type. This will be the
11869 -- case when constraining an inherited component whose constraint is
11870 -- given by a discriminant of the parent.
11872 D := First_Discriminant (Typ);
11873 E := First_Elmt (Constraints);
11875 while Present (D) loop
11876 if D = Entity (Discrim)
11877 or else D = CR_Discriminant (Entity (Discrim))
11878 or else Corresponding_Discriminant (D) = Entity (Discrim)
11879 then
11880 return Node (E);
11881 end if;
11883 Next_Discriminant (D);
11884 Next_Elmt (E);
11885 end loop;
11887 -- The Corresponding_Discriminant mechanism is incomplete, because
11888 -- the correspondence between new and old discriminants is not one
11889 -- to one: one new discriminant can constrain several old ones. In
11890 -- that case, scan sequentially the stored_constraint, the list of
11891 -- discriminants of the parents, and the constraints.
11893 -- Previous code checked for the present of the Stored_Constraint
11894 -- list for the derived type, but did not use it at all. Should it
11895 -- be present when the component is a discriminated task type?
11897 if Is_Derived_Type (Typ)
11898 and then Scope (Entity (Discrim)) = Etype (Typ)
11899 then
11900 D := First_Discriminant (Etype (Typ));
11901 E := First_Elmt (Constraints);
11902 while Present (D) loop
11903 if D = Entity (Discrim) then
11904 return Node (E);
11905 end if;
11907 Next_Discriminant (D);
11908 Next_Elmt (E);
11909 end loop;
11910 end if;
11912 -- Something is wrong if we did not find the value
11914 raise Program_Error;
11915 end Get_Discr_Value;
11917 ---------------------
11918 -- Is_Discriminant --
11919 ---------------------
11921 function Is_Discriminant (Expr : Node_Id) return Boolean is
11922 Discrim_Scope : Entity_Id;
11924 begin
11925 if Denotes_Discriminant (Expr) then
11926 Discrim_Scope := Scope (Entity (Expr));
11928 -- Either we have a reference to one of Typ's discriminants,
11930 pragma Assert (Discrim_Scope = Typ
11932 -- or to the discriminants of the parent type, in the case
11933 -- of a derivation of a tagged type with variants.
11935 or else Discrim_Scope = Etype (Typ)
11936 or else Full_View (Discrim_Scope) = Etype (Typ)
11938 -- or same as above for the case where the discriminants
11939 -- were declared in Typ's private view.
11941 or else (Is_Private_Type (Discrim_Scope)
11942 and then Chars (Discrim_Scope) = Chars (Typ))
11944 -- or else we are deriving from the full view and the
11945 -- discriminant is declared in the private entity.
11947 or else (Is_Private_Type (Typ)
11948 and then Chars (Discrim_Scope) = Chars (Typ))
11950 -- Or we are constrained the corresponding record of a
11951 -- synchronized type that completes a private declaration.
11953 or else (Is_Concurrent_Record_Type (Typ)
11954 and then
11955 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
11957 -- or we have a class-wide type, in which case make sure the
11958 -- discriminant found belongs to the root type.
11960 or else (Is_Class_Wide_Type (Typ)
11961 and then Etype (Typ) = Discrim_Scope));
11963 return True;
11964 end if;
11966 -- In all other cases we have something wrong
11968 return False;
11969 end Is_Discriminant;
11971 -- Start of processing for Constrain_Component_Type
11973 begin
11974 if Nkind (Parent (Comp)) = N_Component_Declaration
11975 and then Comes_From_Source (Parent (Comp))
11976 and then Comes_From_Source
11977 (Subtype_Indication (Component_Definition (Parent (Comp))))
11978 and then
11979 Is_Entity_Name
11980 (Subtype_Indication (Component_Definition (Parent (Comp))))
11981 then
11982 return Compon_Type;
11984 elsif Is_Array_Type (Compon_Type) then
11985 return Build_Constrained_Array_Type (Compon_Type);
11987 elsif Has_Discriminants (Compon_Type) then
11988 return Build_Constrained_Discriminated_Type (Compon_Type);
11990 elsif Is_Access_Type (Compon_Type) then
11991 return Build_Constrained_Access_Type (Compon_Type);
11993 else
11994 return Compon_Type;
11995 end if;
11996 end Constrain_Component_Type;
11998 --------------------------
11999 -- Constrain_Concurrent --
12000 --------------------------
12002 -- For concurrent types, the associated record value type carries the same
12003 -- discriminants, so when we constrain a concurrent type, we must constrain
12004 -- the corresponding record type as well.
12006 procedure Constrain_Concurrent
12007 (Def_Id : in out Entity_Id;
12008 SI : Node_Id;
12009 Related_Nod : Node_Id;
12010 Related_Id : Entity_Id;
12011 Suffix : Character)
12013 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12014 -- case of a private subtype (needed when only doing semantic analysis).
12016 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12017 T_Val : Entity_Id;
12019 begin
12020 if Is_Access_Type (T_Ent) then
12021 T_Ent := Designated_Type (T_Ent);
12022 end if;
12024 T_Val := Corresponding_Record_Type (T_Ent);
12026 if Present (T_Val) then
12028 if No (Def_Id) then
12029 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12030 end if;
12032 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12034 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12035 Set_Corresponding_Record_Type (Def_Id,
12036 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12038 else
12039 -- If there is no associated record, expansion is disabled and this
12040 -- is a generic context. Create a subtype in any case, so that
12041 -- semantic analysis can proceed.
12043 if No (Def_Id) then
12044 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12045 end if;
12047 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12048 end if;
12049 end Constrain_Concurrent;
12051 ------------------------------------
12052 -- Constrain_Corresponding_Record --
12053 ------------------------------------
12055 function Constrain_Corresponding_Record
12056 (Prot_Subt : Entity_Id;
12057 Corr_Rec : Entity_Id;
12058 Related_Nod : Node_Id) return Entity_Id
12060 T_Sub : constant Entity_Id :=
12061 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12063 begin
12064 Set_Etype (T_Sub, Corr_Rec);
12065 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12066 Set_Is_Constrained (T_Sub, True);
12067 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12068 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12070 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12071 Set_Discriminant_Constraint
12072 (T_Sub, Discriminant_Constraint (Prot_Subt));
12073 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12074 Create_Constrained_Components
12075 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12076 end if;
12078 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12080 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12081 Conditional_Delay (T_Sub, Corr_Rec);
12083 else
12084 -- This is a component subtype: it will be frozen in the context of
12085 -- the enclosing record's init_proc, so that discriminant references
12086 -- are resolved to discriminals. (Note: we used to skip freezing
12087 -- altogether in that case, which caused errors downstream for
12088 -- components of a bit packed array type).
12090 Set_Has_Delayed_Freeze (T_Sub);
12091 end if;
12093 return T_Sub;
12094 end Constrain_Corresponding_Record;
12096 -----------------------
12097 -- Constrain_Decimal --
12098 -----------------------
12100 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12101 T : constant Entity_Id := Entity (Subtype_Mark (S));
12102 C : constant Node_Id := Constraint (S);
12103 Loc : constant Source_Ptr := Sloc (C);
12104 Range_Expr : Node_Id;
12105 Digits_Expr : Node_Id;
12106 Digits_Val : Uint;
12107 Bound_Val : Ureal;
12109 begin
12110 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12112 if Nkind (C) = N_Range_Constraint then
12113 Range_Expr := Range_Expression (C);
12114 Digits_Val := Digits_Value (T);
12116 else
12117 pragma Assert (Nkind (C) = N_Digits_Constraint);
12119 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12121 Digits_Expr := Digits_Expression (C);
12122 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12124 Check_Digits_Expression (Digits_Expr);
12125 Digits_Val := Expr_Value (Digits_Expr);
12127 if Digits_Val > Digits_Value (T) then
12128 Error_Msg_N
12129 ("digits expression is incompatible with subtype", C);
12130 Digits_Val := Digits_Value (T);
12131 end if;
12133 if Present (Range_Constraint (C)) then
12134 Range_Expr := Range_Expression (Range_Constraint (C));
12135 else
12136 Range_Expr := Empty;
12137 end if;
12138 end if;
12140 Set_Etype (Def_Id, Base_Type (T));
12141 Set_Size_Info (Def_Id, (T));
12142 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12143 Set_Delta_Value (Def_Id, Delta_Value (T));
12144 Set_Scale_Value (Def_Id, Scale_Value (T));
12145 Set_Small_Value (Def_Id, Small_Value (T));
12146 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12147 Set_Digits_Value (Def_Id, Digits_Val);
12149 -- Manufacture range from given digits value if no range present
12151 if No (Range_Expr) then
12152 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12153 Range_Expr :=
12154 Make_Range (Loc,
12155 Low_Bound =>
12156 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12157 High_Bound =>
12158 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12159 end if;
12161 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12162 Set_Discrete_RM_Size (Def_Id);
12164 -- Unconditionally delay the freeze, since we cannot set size
12165 -- information in all cases correctly until the freeze point.
12167 Set_Has_Delayed_Freeze (Def_Id);
12168 end Constrain_Decimal;
12170 ----------------------------------
12171 -- Constrain_Discriminated_Type --
12172 ----------------------------------
12174 procedure Constrain_Discriminated_Type
12175 (Def_Id : Entity_Id;
12176 S : Node_Id;
12177 Related_Nod : Node_Id;
12178 For_Access : Boolean := False)
12180 E : constant Entity_Id := Entity (Subtype_Mark (S));
12181 T : Entity_Id;
12182 C : Node_Id;
12183 Elist : Elist_Id := New_Elmt_List;
12185 procedure Fixup_Bad_Constraint;
12186 -- This is called after finding a bad constraint, and after having
12187 -- posted an appropriate error message. The mission is to leave the
12188 -- entity T in as reasonable state as possible.
12190 --------------------------
12191 -- Fixup_Bad_Constraint --
12192 --------------------------
12194 procedure Fixup_Bad_Constraint is
12195 begin
12196 -- Set a reasonable Ekind for the entity. For an incomplete type,
12197 -- we can't do much, but for other types, we can set the proper
12198 -- corresponding subtype kind.
12200 if Ekind (T) = E_Incomplete_Type then
12201 Set_Ekind (Def_Id, Ekind (T));
12202 else
12203 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
12204 end if;
12206 -- Set Etype to the known type, to reduce chances of cascaded errors
12208 Set_Etype (Def_Id, E);
12209 Set_Error_Posted (Def_Id);
12210 end Fixup_Bad_Constraint;
12212 -- Start of processing for Constrain_Discriminated_Type
12214 begin
12215 C := Constraint (S);
12217 -- A discriminant constraint is only allowed in a subtype indication,
12218 -- after a subtype mark. This subtype mark must denote either a type
12219 -- with discriminants, or an access type whose designated type is a
12220 -- type with discriminants. A discriminant constraint specifies the
12221 -- values of these discriminants (RM 3.7.2(5)).
12223 T := Base_Type (Entity (Subtype_Mark (S)));
12225 if Is_Access_Type (T) then
12226 T := Designated_Type (T);
12227 end if;
12229 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
12230 -- Avoid generating an error for access-to-incomplete subtypes.
12232 if Ada_Version >= Ada_2005
12233 and then Ekind (T) = E_Incomplete_Type
12234 and then Nkind (Parent (S)) = N_Subtype_Declaration
12235 and then not Is_Itype (Def_Id)
12236 then
12237 -- A little sanity check, emit an error message if the type
12238 -- has discriminants to begin with. Type T may be a regular
12239 -- incomplete type or imported via a limited with clause.
12241 if Has_Discriminants (T)
12242 or else (From_Limited_With (T)
12243 and then Present (Non_Limited_View (T))
12244 and then Nkind (Parent (Non_Limited_View (T))) =
12245 N_Full_Type_Declaration
12246 and then Present (Discriminant_Specifications
12247 (Parent (Non_Limited_View (T)))))
12248 then
12249 Error_Msg_N
12250 ("(Ada 2005) incomplete subtype may not be constrained", C);
12251 else
12252 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12253 end if;
12255 Fixup_Bad_Constraint;
12256 return;
12258 -- Check that the type has visible discriminants. The type may be
12259 -- a private type with unknown discriminants whose full view has
12260 -- discriminants which are invisible.
12262 elsif not Has_Discriminants (T)
12263 or else
12264 (Has_Unknown_Discriminants (T)
12265 and then Is_Private_Type (T))
12266 then
12267 Error_Msg_N ("invalid constraint: type has no discriminant", C);
12268 Fixup_Bad_Constraint;
12269 return;
12271 elsif Is_Constrained (E)
12272 or else (Ekind (E) = E_Class_Wide_Subtype
12273 and then Present (Discriminant_Constraint (E)))
12274 then
12275 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
12276 Fixup_Bad_Constraint;
12277 return;
12278 end if;
12280 -- T may be an unconstrained subtype (e.g. a generic actual).
12281 -- Constraint applies to the base type.
12283 T := Base_Type (T);
12285 Elist := Build_Discriminant_Constraints (T, S);
12287 -- If the list returned was empty we had an error in building the
12288 -- discriminant constraint. We have also already signalled an error
12289 -- in the incomplete type case
12291 if Is_Empty_Elmt_List (Elist) then
12292 Fixup_Bad_Constraint;
12293 return;
12294 end if;
12296 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
12297 end Constrain_Discriminated_Type;
12299 ---------------------------
12300 -- Constrain_Enumeration --
12301 ---------------------------
12303 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
12304 T : constant Entity_Id := Entity (Subtype_Mark (S));
12305 C : constant Node_Id := Constraint (S);
12307 begin
12308 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12310 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
12312 Set_Etype (Def_Id, Base_Type (T));
12313 Set_Size_Info (Def_Id, (T));
12314 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12315 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12317 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12319 Set_Discrete_RM_Size (Def_Id);
12320 end Constrain_Enumeration;
12322 ----------------------
12323 -- Constrain_Float --
12324 ----------------------
12326 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
12327 T : constant Entity_Id := Entity (Subtype_Mark (S));
12328 C : Node_Id;
12329 D : Node_Id;
12330 Rais : Node_Id;
12332 begin
12333 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
12335 Set_Etype (Def_Id, Base_Type (T));
12336 Set_Size_Info (Def_Id, (T));
12337 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12339 -- Process the constraint
12341 C := Constraint (S);
12343 -- Digits constraint present
12345 if Nkind (C) = N_Digits_Constraint then
12347 Check_SPARK_Restriction ("digits constraint is not allowed", S);
12348 Check_Restriction (No_Obsolescent_Features, C);
12350 if Warn_On_Obsolescent_Feature then
12351 Error_Msg_N
12352 ("subtype digits constraint is an " &
12353 "obsolescent feature (RM J.3(8))?j?", C);
12354 end if;
12356 D := Digits_Expression (C);
12357 Analyze_And_Resolve (D, Any_Integer);
12358 Check_Digits_Expression (D);
12359 Set_Digits_Value (Def_Id, Expr_Value (D));
12361 -- Check that digits value is in range. Obviously we can do this
12362 -- at compile time, but it is strictly a runtime check, and of
12363 -- course there is an ACVC test that checks this.
12365 if Digits_Value (Def_Id) > Digits_Value (T) then
12366 Error_Msg_Uint_1 := Digits_Value (T);
12367 Error_Msg_N ("??digits value is too large, maximum is ^", D);
12368 Rais :=
12369 Make_Raise_Constraint_Error (Sloc (D),
12370 Reason => CE_Range_Check_Failed);
12371 Insert_Action (Declaration_Node (Def_Id), Rais);
12372 end if;
12374 C := Range_Constraint (C);
12376 -- No digits constraint present
12378 else
12379 Set_Digits_Value (Def_Id, Digits_Value (T));
12380 end if;
12382 -- Range constraint present
12384 if Nkind (C) = N_Range_Constraint then
12385 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12387 -- No range constraint present
12389 else
12390 pragma Assert (No (C));
12391 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12392 end if;
12394 Set_Is_Constrained (Def_Id);
12395 end Constrain_Float;
12397 ---------------------
12398 -- Constrain_Index --
12399 ---------------------
12401 procedure Constrain_Index
12402 (Index : Node_Id;
12403 S : Node_Id;
12404 Related_Nod : Node_Id;
12405 Related_Id : Entity_Id;
12406 Suffix : Character;
12407 Suffix_Index : Nat)
12409 Def_Id : Entity_Id;
12410 R : Node_Id := Empty;
12411 T : constant Entity_Id := Etype (Index);
12413 begin
12414 if Nkind (S) = N_Range
12415 or else
12416 (Nkind (S) = N_Attribute_Reference
12417 and then Attribute_Name (S) = Name_Range)
12418 then
12419 -- A Range attribute will be transformed into N_Range by Resolve
12421 Analyze (S);
12422 Set_Etype (S, T);
12423 R := S;
12425 Process_Range_Expr_In_Decl (R, T);
12427 if not Error_Posted (S)
12428 and then
12429 (Nkind (S) /= N_Range
12430 or else not Covers (T, (Etype (Low_Bound (S))))
12431 or else not Covers (T, (Etype (High_Bound (S)))))
12432 then
12433 if Base_Type (T) /= Any_Type
12434 and then Etype (Low_Bound (S)) /= Any_Type
12435 and then Etype (High_Bound (S)) /= Any_Type
12436 then
12437 Error_Msg_N ("range expected", S);
12438 end if;
12439 end if;
12441 elsif Nkind (S) = N_Subtype_Indication then
12443 -- The parser has verified that this is a discrete indication
12445 Resolve_Discrete_Subtype_Indication (S, T);
12446 Bad_Predicated_Subtype_Use
12447 ("subtype& has predicate, not allowed in index constraint",
12448 S, Entity (Subtype_Mark (S)));
12450 R := Range_Expression (Constraint (S));
12452 -- Capture values of bounds and generate temporaries for them if
12453 -- needed, since checks may cause duplication of the expressions
12454 -- which must not be reevaluated.
12456 -- The forced evaluation removes side effects from expressions, which
12457 -- should occur also in GNATprove mode. Otherwise, we end up with
12458 -- unexpected insertions of actions at places where this is not
12459 -- supposed to occur, e.g. on default parameters of a call.
12461 if Expander_Active or GNATprove_Mode then
12462 Force_Evaluation (Low_Bound (R));
12463 Force_Evaluation (High_Bound (R));
12464 end if;
12466 elsif Nkind (S) = N_Discriminant_Association then
12468 -- Syntactically valid in subtype indication
12470 Error_Msg_N ("invalid index constraint", S);
12471 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12472 return;
12474 -- Subtype_Mark case, no anonymous subtypes to construct
12476 else
12477 Analyze (S);
12479 if Is_Entity_Name (S) then
12480 if not Is_Type (Entity (S)) then
12481 Error_Msg_N ("expect subtype mark for index constraint", S);
12483 elsif Base_Type (Entity (S)) /= Base_Type (T) then
12484 Wrong_Type (S, Base_Type (T));
12486 -- Check error of subtype with predicate in index constraint
12488 else
12489 Bad_Predicated_Subtype_Use
12490 ("subtype& has predicate, not allowed in index constraint",
12491 S, Entity (S));
12492 end if;
12494 return;
12496 else
12497 Error_Msg_N ("invalid index constraint", S);
12498 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
12499 return;
12500 end if;
12501 end if;
12503 Def_Id :=
12504 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
12506 Set_Etype (Def_Id, Base_Type (T));
12508 if Is_Modular_Integer_Type (T) then
12509 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12511 elsif Is_Integer_Type (T) then
12512 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12514 else
12515 Set_Ekind (Def_Id, E_Enumeration_Subtype);
12516 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
12517 Set_First_Literal (Def_Id, First_Literal (T));
12518 end if;
12520 Set_Size_Info (Def_Id, (T));
12521 Set_RM_Size (Def_Id, RM_Size (T));
12522 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12524 Set_Scalar_Range (Def_Id, R);
12526 Set_Etype (S, Def_Id);
12527 Set_Discrete_RM_Size (Def_Id);
12528 end Constrain_Index;
12530 -----------------------
12531 -- Constrain_Integer --
12532 -----------------------
12534 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
12535 T : constant Entity_Id := Entity (Subtype_Mark (S));
12536 C : constant Node_Id := Constraint (S);
12538 begin
12539 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12541 if Is_Modular_Integer_Type (T) then
12542 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
12543 else
12544 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
12545 end if;
12547 Set_Etype (Def_Id, Base_Type (T));
12548 Set_Size_Info (Def_Id, (T));
12549 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12550 Set_Discrete_RM_Size (Def_Id);
12551 end Constrain_Integer;
12553 ------------------------------
12554 -- Constrain_Ordinary_Fixed --
12555 ------------------------------
12557 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
12558 T : constant Entity_Id := Entity (Subtype_Mark (S));
12559 C : Node_Id;
12560 D : Node_Id;
12561 Rais : Node_Id;
12563 begin
12564 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
12565 Set_Etype (Def_Id, Base_Type (T));
12566 Set_Size_Info (Def_Id, (T));
12567 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12568 Set_Small_Value (Def_Id, Small_Value (T));
12570 -- Process the constraint
12572 C := Constraint (S);
12574 -- Delta constraint present
12576 if Nkind (C) = N_Delta_Constraint then
12578 Check_SPARK_Restriction ("delta constraint is not allowed", S);
12579 Check_Restriction (No_Obsolescent_Features, C);
12581 if Warn_On_Obsolescent_Feature then
12582 Error_Msg_S
12583 ("subtype delta constraint is an " &
12584 "obsolescent feature (RM J.3(7))?j?");
12585 end if;
12587 D := Delta_Expression (C);
12588 Analyze_And_Resolve (D, Any_Real);
12589 Check_Delta_Expression (D);
12590 Set_Delta_Value (Def_Id, Expr_Value_R (D));
12592 -- Check that delta value is in range. Obviously we can do this
12593 -- at compile time, but it is strictly a runtime check, and of
12594 -- course there is an ACVC test that checks this.
12596 if Delta_Value (Def_Id) < Delta_Value (T) then
12597 Error_Msg_N ("??delta value is too small", D);
12598 Rais :=
12599 Make_Raise_Constraint_Error (Sloc (D),
12600 Reason => CE_Range_Check_Failed);
12601 Insert_Action (Declaration_Node (Def_Id), Rais);
12602 end if;
12604 C := Range_Constraint (C);
12606 -- No delta constraint present
12608 else
12609 Set_Delta_Value (Def_Id, Delta_Value (T));
12610 end if;
12612 -- Range constraint present
12614 if Nkind (C) = N_Range_Constraint then
12615 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
12617 -- No range constraint present
12619 else
12620 pragma Assert (No (C));
12621 Set_Scalar_Range (Def_Id, Scalar_Range (T));
12623 end if;
12625 Set_Discrete_RM_Size (Def_Id);
12627 -- Unconditionally delay the freeze, since we cannot set size
12628 -- information in all cases correctly until the freeze point.
12630 Set_Has_Delayed_Freeze (Def_Id);
12631 end Constrain_Ordinary_Fixed;
12633 -----------------------
12634 -- Contain_Interface --
12635 -----------------------
12637 function Contain_Interface
12638 (Iface : Entity_Id;
12639 Ifaces : Elist_Id) return Boolean
12641 Iface_Elmt : Elmt_Id;
12643 begin
12644 if Present (Ifaces) then
12645 Iface_Elmt := First_Elmt (Ifaces);
12646 while Present (Iface_Elmt) loop
12647 if Node (Iface_Elmt) = Iface then
12648 return True;
12649 end if;
12651 Next_Elmt (Iface_Elmt);
12652 end loop;
12653 end if;
12655 return False;
12656 end Contain_Interface;
12658 ---------------------------
12659 -- Convert_Scalar_Bounds --
12660 ---------------------------
12662 procedure Convert_Scalar_Bounds
12663 (N : Node_Id;
12664 Parent_Type : Entity_Id;
12665 Derived_Type : Entity_Id;
12666 Loc : Source_Ptr)
12668 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
12670 Lo : Node_Id;
12671 Hi : Node_Id;
12672 Rng : Node_Id;
12674 begin
12675 -- Defend against previous errors
12677 if No (Scalar_Range (Derived_Type)) then
12678 Check_Error_Detected;
12679 return;
12680 end if;
12682 Lo := Build_Scalar_Bound
12683 (Type_Low_Bound (Derived_Type),
12684 Parent_Type, Implicit_Base);
12686 Hi := Build_Scalar_Bound
12687 (Type_High_Bound (Derived_Type),
12688 Parent_Type, Implicit_Base);
12690 Rng :=
12691 Make_Range (Loc,
12692 Low_Bound => Lo,
12693 High_Bound => Hi);
12695 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
12697 Set_Parent (Rng, N);
12698 Set_Scalar_Range (Derived_Type, Rng);
12700 -- Analyze the bounds
12702 Analyze_And_Resolve (Lo, Implicit_Base);
12703 Analyze_And_Resolve (Hi, Implicit_Base);
12705 -- Analyze the range itself, except that we do not analyze it if
12706 -- the bounds are real literals, and we have a fixed-point type.
12707 -- The reason for this is that we delay setting the bounds in this
12708 -- case till we know the final Small and Size values (see circuit
12709 -- in Freeze.Freeze_Fixed_Point_Type for further details).
12711 if Is_Fixed_Point_Type (Parent_Type)
12712 and then Nkind (Lo) = N_Real_Literal
12713 and then Nkind (Hi) = N_Real_Literal
12714 then
12715 return;
12717 -- Here we do the analysis of the range
12719 -- Note: we do this manually, since if we do a normal Analyze and
12720 -- Resolve call, there are problems with the conversions used for
12721 -- the derived type range.
12723 else
12724 Set_Etype (Rng, Implicit_Base);
12725 Set_Analyzed (Rng, True);
12726 end if;
12727 end Convert_Scalar_Bounds;
12729 -------------------
12730 -- Copy_And_Swap --
12731 -------------------
12733 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
12734 begin
12735 -- Initialize new full declaration entity by copying the pertinent
12736 -- fields of the corresponding private declaration entity.
12738 -- We temporarily set Ekind to a value appropriate for a type to
12739 -- avoid assert failures in Einfo from checking for setting type
12740 -- attributes on something that is not a type. Ekind (Priv) is an
12741 -- appropriate choice, since it allowed the attributes to be set
12742 -- in the first place. This Ekind value will be modified later.
12744 Set_Ekind (Full, Ekind (Priv));
12746 -- Also set Etype temporarily to Any_Type, again, in the absence
12747 -- of errors, it will be properly reset, and if there are errors,
12748 -- then we want a value of Any_Type to remain.
12750 Set_Etype (Full, Any_Type);
12752 -- Now start copying attributes
12754 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
12756 if Has_Discriminants (Full) then
12757 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
12758 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
12759 end if;
12761 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
12762 Set_Homonym (Full, Homonym (Priv));
12763 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
12764 Set_Is_Public (Full, Is_Public (Priv));
12765 Set_Is_Pure (Full, Is_Pure (Priv));
12766 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
12767 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
12768 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
12769 Set_Has_Pragma_Unreferenced_Objects
12770 (Full, Has_Pragma_Unreferenced_Objects
12771 (Priv));
12773 Conditional_Delay (Full, Priv);
12775 if Is_Tagged_Type (Full) then
12776 Set_Direct_Primitive_Operations (Full,
12777 Direct_Primitive_Operations (Priv));
12779 if Is_Base_Type (Priv) then
12780 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
12781 end if;
12782 end if;
12784 Set_Is_Volatile (Full, Is_Volatile (Priv));
12785 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
12786 Set_Scope (Full, Scope (Priv));
12787 Set_Next_Entity (Full, Next_Entity (Priv));
12788 Set_First_Entity (Full, First_Entity (Priv));
12789 Set_Last_Entity (Full, Last_Entity (Priv));
12791 -- If access types have been recorded for later handling, keep them in
12792 -- the full view so that they get handled when the full view freeze
12793 -- node is expanded.
12795 if Present (Freeze_Node (Priv))
12796 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
12797 then
12798 Ensure_Freeze_Node (Full);
12799 Set_Access_Types_To_Process
12800 (Freeze_Node (Full),
12801 Access_Types_To_Process (Freeze_Node (Priv)));
12802 end if;
12804 -- Swap the two entities. Now Private is the full type entity and Full
12805 -- is the private one. They will be swapped back at the end of the
12806 -- private part. This swapping ensures that the entity that is visible
12807 -- in the private part is the full declaration.
12809 Exchange_Entities (Priv, Full);
12810 Append_Entity (Full, Scope (Full));
12811 end Copy_And_Swap;
12813 -------------------------------------
12814 -- Copy_Array_Base_Type_Attributes --
12815 -------------------------------------
12817 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
12818 begin
12819 Set_Component_Alignment (T1, Component_Alignment (T2));
12820 Set_Component_Type (T1, Component_Type (T2));
12821 Set_Component_Size (T1, Component_Size (T2));
12822 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
12823 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
12824 Set_Has_Protected (T1, Has_Protected (T2));
12825 Set_Has_Task (T1, Has_Task (T2));
12826 Set_Is_Packed (T1, Is_Packed (T2));
12827 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
12828 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
12829 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
12830 end Copy_Array_Base_Type_Attributes;
12832 -----------------------------------
12833 -- Copy_Array_Subtype_Attributes --
12834 -----------------------------------
12836 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
12837 begin
12838 Set_Size_Info (T1, T2);
12840 Set_First_Index (T1, First_Index (T2));
12841 Set_Is_Aliased (T1, Is_Aliased (T2));
12842 Set_Is_Volatile (T1, Is_Volatile (T2));
12843 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
12844 Set_Is_Constrained (T1, Is_Constrained (T2));
12845 Set_Depends_On_Private (T1, Has_Private_Component (T2));
12846 Set_First_Rep_Item (T1, First_Rep_Item (T2));
12847 Set_Convention (T1, Convention (T2));
12848 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
12849 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
12850 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
12851 end Copy_Array_Subtype_Attributes;
12853 -----------------------------------
12854 -- Create_Constrained_Components --
12855 -----------------------------------
12857 procedure Create_Constrained_Components
12858 (Subt : Entity_Id;
12859 Decl_Node : Node_Id;
12860 Typ : Entity_Id;
12861 Constraints : Elist_Id)
12863 Loc : constant Source_Ptr := Sloc (Subt);
12864 Comp_List : constant Elist_Id := New_Elmt_List;
12865 Parent_Type : constant Entity_Id := Etype (Typ);
12866 Assoc_List : constant List_Id := New_List;
12867 Discr_Val : Elmt_Id;
12868 Errors : Boolean;
12869 New_C : Entity_Id;
12870 Old_C : Entity_Id;
12871 Is_Static : Boolean := True;
12873 procedure Collect_Fixed_Components (Typ : Entity_Id);
12874 -- Collect parent type components that do not appear in a variant part
12876 procedure Create_All_Components;
12877 -- Iterate over Comp_List to create the components of the subtype
12879 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
12880 -- Creates a new component from Old_Compon, copying all the fields from
12881 -- it, including its Etype, inserts the new component in the Subt entity
12882 -- chain and returns the new component.
12884 function Is_Variant_Record (T : Entity_Id) return Boolean;
12885 -- If true, and discriminants are static, collect only components from
12886 -- variants selected by discriminant values.
12888 ------------------------------
12889 -- Collect_Fixed_Components --
12890 ------------------------------
12892 procedure Collect_Fixed_Components (Typ : Entity_Id) is
12893 begin
12894 -- Build association list for discriminants, and find components of the
12895 -- variant part selected by the values of the discriminants.
12897 Old_C := First_Discriminant (Typ);
12898 Discr_Val := First_Elmt (Constraints);
12899 while Present (Old_C) loop
12900 Append_To (Assoc_List,
12901 Make_Component_Association (Loc,
12902 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
12903 Expression => New_Copy (Node (Discr_Val))));
12905 Next_Elmt (Discr_Val);
12906 Next_Discriminant (Old_C);
12907 end loop;
12909 -- The tag and the possible parent component are unconditionally in
12910 -- the subtype.
12912 if Is_Tagged_Type (Typ)
12913 or else Has_Controlled_Component (Typ)
12914 then
12915 Old_C := First_Component (Typ);
12916 while Present (Old_C) loop
12917 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
12918 Append_Elmt (Old_C, Comp_List);
12919 end if;
12921 Next_Component (Old_C);
12922 end loop;
12923 end if;
12924 end Collect_Fixed_Components;
12926 ---------------------------
12927 -- Create_All_Components --
12928 ---------------------------
12930 procedure Create_All_Components is
12931 Comp : Elmt_Id;
12933 begin
12934 Comp := First_Elmt (Comp_List);
12935 while Present (Comp) loop
12936 Old_C := Node (Comp);
12937 New_C := Create_Component (Old_C);
12939 Set_Etype
12940 (New_C,
12941 Constrain_Component_Type
12942 (Old_C, Subt, Decl_Node, Typ, Constraints));
12943 Set_Is_Public (New_C, Is_Public (Subt));
12945 Next_Elmt (Comp);
12946 end loop;
12947 end Create_All_Components;
12949 ----------------------
12950 -- Create_Component --
12951 ----------------------
12953 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
12954 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
12956 begin
12957 if Ekind (Old_Compon) = E_Discriminant
12958 and then Is_Completely_Hidden (Old_Compon)
12959 then
12960 -- This is a shadow discriminant created for a discriminant of
12961 -- the parent type, which needs to be present in the subtype.
12962 -- Give the shadow discriminant an internal name that cannot
12963 -- conflict with that of visible components.
12965 Set_Chars (New_Compon, New_Internal_Name ('C'));
12966 end if;
12968 -- Set the parent so we have a proper link for freezing etc. This is
12969 -- not a real parent pointer, since of course our parent does not own
12970 -- up to us and reference us, we are an illegitimate child of the
12971 -- original parent.
12973 Set_Parent (New_Compon, Parent (Old_Compon));
12975 -- If the old component's Esize was already determined and is a
12976 -- static value, then the new component simply inherits it. Otherwise
12977 -- the old component's size may require run-time determination, but
12978 -- the new component's size still might be statically determinable
12979 -- (if, for example it has a static constraint). In that case we want
12980 -- Layout_Type to recompute the component's size, so we reset its
12981 -- size and positional fields.
12983 if Frontend_Layout_On_Target
12984 and then not Known_Static_Esize (Old_Compon)
12985 then
12986 Set_Esize (New_Compon, Uint_0);
12987 Init_Normalized_First_Bit (New_Compon);
12988 Init_Normalized_Position (New_Compon);
12989 Init_Normalized_Position_Max (New_Compon);
12990 end if;
12992 -- We do not want this node marked as Comes_From_Source, since
12993 -- otherwise it would get first class status and a separate cross-
12994 -- reference line would be generated. Illegitimate children do not
12995 -- rate such recognition.
12997 Set_Comes_From_Source (New_Compon, False);
12999 -- But it is a real entity, and a birth certificate must be properly
13000 -- registered by entering it into the entity list.
13002 Enter_Name (New_Compon);
13004 return New_Compon;
13005 end Create_Component;
13007 -----------------------
13008 -- Is_Variant_Record --
13009 -----------------------
13011 function Is_Variant_Record (T : Entity_Id) return Boolean is
13012 begin
13013 return Nkind (Parent (T)) = N_Full_Type_Declaration
13014 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13015 and then Present (Component_List (Type_Definition (Parent (T))))
13016 and then
13017 Present
13018 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13019 end Is_Variant_Record;
13021 -- Start of processing for Create_Constrained_Components
13023 begin
13024 pragma Assert (Subt /= Base_Type (Subt));
13025 pragma Assert (Typ = Base_Type (Typ));
13027 Set_First_Entity (Subt, Empty);
13028 Set_Last_Entity (Subt, Empty);
13030 -- Check whether constraint is fully static, in which case we can
13031 -- optimize the list of components.
13033 Discr_Val := First_Elmt (Constraints);
13034 while Present (Discr_Val) loop
13035 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13036 Is_Static := False;
13037 exit;
13038 end if;
13040 Next_Elmt (Discr_Val);
13041 end loop;
13043 Set_Has_Static_Discriminants (Subt, Is_Static);
13045 Push_Scope (Subt);
13047 -- Inherit the discriminants of the parent type
13049 Add_Discriminants : declare
13050 Num_Disc : Int;
13051 Num_Gird : Int;
13053 begin
13054 Num_Disc := 0;
13055 Old_C := First_Discriminant (Typ);
13057 while Present (Old_C) loop
13058 Num_Disc := Num_Disc + 1;
13059 New_C := Create_Component (Old_C);
13060 Set_Is_Public (New_C, Is_Public (Subt));
13061 Next_Discriminant (Old_C);
13062 end loop;
13064 -- For an untagged derived subtype, the number of discriminants may
13065 -- be smaller than the number of inherited discriminants, because
13066 -- several of them may be renamed by a single new discriminant or
13067 -- constrained. In this case, add the hidden discriminants back into
13068 -- the subtype, because they need to be present if the optimizer of
13069 -- the GCC 4.x back-end decides to break apart assignments between
13070 -- objects using the parent view into member-wise assignments.
13072 Num_Gird := 0;
13074 if Is_Derived_Type (Typ)
13075 and then not Is_Tagged_Type (Typ)
13076 then
13077 Old_C := First_Stored_Discriminant (Typ);
13079 while Present (Old_C) loop
13080 Num_Gird := Num_Gird + 1;
13081 Next_Stored_Discriminant (Old_C);
13082 end loop;
13083 end if;
13085 if Num_Gird > Num_Disc then
13087 -- Find out multiple uses of new discriminants, and add hidden
13088 -- components for the extra renamed discriminants. We recognize
13089 -- multiple uses through the Corresponding_Discriminant of a
13090 -- new discriminant: if it constrains several old discriminants,
13091 -- this field points to the last one in the parent type. The
13092 -- stored discriminants of the derived type have the same name
13093 -- as those of the parent.
13095 declare
13096 Constr : Elmt_Id;
13097 New_Discr : Entity_Id;
13098 Old_Discr : Entity_Id;
13100 begin
13101 Constr := First_Elmt (Stored_Constraint (Typ));
13102 Old_Discr := First_Stored_Discriminant (Typ);
13103 while Present (Constr) loop
13104 if Is_Entity_Name (Node (Constr))
13105 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13106 then
13107 New_Discr := Entity (Node (Constr));
13109 if Chars (Corresponding_Discriminant (New_Discr)) /=
13110 Chars (Old_Discr)
13111 then
13112 -- The new discriminant has been used to rename a
13113 -- subsequent old discriminant. Introduce a shadow
13114 -- component for the current old discriminant.
13116 New_C := Create_Component (Old_Discr);
13117 Set_Original_Record_Component (New_C, Old_Discr);
13118 end if;
13120 else
13121 -- The constraint has eliminated the old discriminant.
13122 -- Introduce a shadow component.
13124 New_C := Create_Component (Old_Discr);
13125 Set_Original_Record_Component (New_C, Old_Discr);
13126 end if;
13128 Next_Elmt (Constr);
13129 Next_Stored_Discriminant (Old_Discr);
13130 end loop;
13131 end;
13132 end if;
13133 end Add_Discriminants;
13135 if Is_Static
13136 and then Is_Variant_Record (Typ)
13137 then
13138 Collect_Fixed_Components (Typ);
13140 Gather_Components (
13141 Typ,
13142 Component_List (Type_Definition (Parent (Typ))),
13143 Governed_By => Assoc_List,
13144 Into => Comp_List,
13145 Report_Errors => Errors);
13146 pragma Assert (not Errors);
13148 Create_All_Components;
13150 -- If the subtype declaration is created for a tagged type derivation
13151 -- with constraints, we retrieve the record definition of the parent
13152 -- type to select the components of the proper variant.
13154 elsif Is_Static
13155 and then Is_Tagged_Type (Typ)
13156 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13157 and then
13158 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13159 and then Is_Variant_Record (Parent_Type)
13160 then
13161 Collect_Fixed_Components (Typ);
13163 Gather_Components (
13164 Typ,
13165 Component_List (Type_Definition (Parent (Parent_Type))),
13166 Governed_By => Assoc_List,
13167 Into => Comp_List,
13168 Report_Errors => Errors);
13169 pragma Assert (not Errors);
13171 -- If the tagged derivation has a type extension, collect all the
13172 -- new components therein.
13174 if Present
13175 (Record_Extension_Part (Type_Definition (Parent (Typ))))
13176 then
13177 Old_C := First_Component (Typ);
13178 while Present (Old_C) loop
13179 if Original_Record_Component (Old_C) = Old_C
13180 and then Chars (Old_C) /= Name_uTag
13181 and then Chars (Old_C) /= Name_uParent
13182 then
13183 Append_Elmt (Old_C, Comp_List);
13184 end if;
13186 Next_Component (Old_C);
13187 end loop;
13188 end if;
13190 Create_All_Components;
13192 else
13193 -- If discriminants are not static, or if this is a multi-level type
13194 -- extension, we have to include all components of the parent type.
13196 Old_C := First_Component (Typ);
13197 while Present (Old_C) loop
13198 New_C := Create_Component (Old_C);
13200 Set_Etype
13201 (New_C,
13202 Constrain_Component_Type
13203 (Old_C, Subt, Decl_Node, Typ, Constraints));
13204 Set_Is_Public (New_C, Is_Public (Subt));
13206 Next_Component (Old_C);
13207 end loop;
13208 end if;
13210 End_Scope;
13211 end Create_Constrained_Components;
13213 ------------------------------------------
13214 -- Decimal_Fixed_Point_Type_Declaration --
13215 ------------------------------------------
13217 procedure Decimal_Fixed_Point_Type_Declaration
13218 (T : Entity_Id;
13219 Def : Node_Id)
13221 Loc : constant Source_Ptr := Sloc (Def);
13222 Digs_Expr : constant Node_Id := Digits_Expression (Def);
13223 Delta_Expr : constant Node_Id := Delta_Expression (Def);
13224 Implicit_Base : Entity_Id;
13225 Digs_Val : Uint;
13226 Delta_Val : Ureal;
13227 Scale_Val : Uint;
13228 Bound_Val : Ureal;
13230 begin
13231 Check_SPARK_Restriction
13232 ("decimal fixed point type is not allowed", Def);
13233 Check_Restriction (No_Fixed_Point, Def);
13235 -- Create implicit base type
13237 Implicit_Base :=
13238 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
13239 Set_Etype (Implicit_Base, Implicit_Base);
13241 -- Analyze and process delta expression
13243 Analyze_And_Resolve (Delta_Expr, Universal_Real);
13245 Check_Delta_Expression (Delta_Expr);
13246 Delta_Val := Expr_Value_R (Delta_Expr);
13248 -- Check delta is power of 10, and determine scale value from it
13250 declare
13251 Val : Ureal;
13253 begin
13254 Scale_Val := Uint_0;
13255 Val := Delta_Val;
13257 if Val < Ureal_1 then
13258 while Val < Ureal_1 loop
13259 Val := Val * Ureal_10;
13260 Scale_Val := Scale_Val + 1;
13261 end loop;
13263 if Scale_Val > 18 then
13264 Error_Msg_N ("scale exceeds maximum value of 18", Def);
13265 Scale_Val := UI_From_Int (+18);
13266 end if;
13268 else
13269 while Val > Ureal_1 loop
13270 Val := Val / Ureal_10;
13271 Scale_Val := Scale_Val - 1;
13272 end loop;
13274 if Scale_Val < -18 then
13275 Error_Msg_N ("scale is less than minimum value of -18", Def);
13276 Scale_Val := UI_From_Int (-18);
13277 end if;
13278 end if;
13280 if Val /= Ureal_1 then
13281 Error_Msg_N ("delta expression must be a power of 10", Def);
13282 Delta_Val := Ureal_10 ** (-Scale_Val);
13283 end if;
13284 end;
13286 -- Set delta, scale and small (small = delta for decimal type)
13288 Set_Delta_Value (Implicit_Base, Delta_Val);
13289 Set_Scale_Value (Implicit_Base, Scale_Val);
13290 Set_Small_Value (Implicit_Base, Delta_Val);
13292 -- Analyze and process digits expression
13294 Analyze_And_Resolve (Digs_Expr, Any_Integer);
13295 Check_Digits_Expression (Digs_Expr);
13296 Digs_Val := Expr_Value (Digs_Expr);
13298 if Digs_Val > 18 then
13299 Digs_Val := UI_From_Int (+18);
13300 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
13301 end if;
13303 Set_Digits_Value (Implicit_Base, Digs_Val);
13304 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
13306 -- Set range of base type from digits value for now. This will be
13307 -- expanded to represent the true underlying base range by Freeze.
13309 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
13311 -- Note: We leave size as zero for now, size will be set at freeze
13312 -- time. We have to do this for ordinary fixed-point, because the size
13313 -- depends on the specified small, and we might as well do the same for
13314 -- decimal fixed-point.
13316 pragma Assert (Esize (Implicit_Base) = Uint_0);
13318 -- If there are bounds given in the declaration use them as the
13319 -- bounds of the first named subtype.
13321 if Present (Real_Range_Specification (Def)) then
13322 declare
13323 RRS : constant Node_Id := Real_Range_Specification (Def);
13324 Low : constant Node_Id := Low_Bound (RRS);
13325 High : constant Node_Id := High_Bound (RRS);
13326 Low_Val : Ureal;
13327 High_Val : Ureal;
13329 begin
13330 Analyze_And_Resolve (Low, Any_Real);
13331 Analyze_And_Resolve (High, Any_Real);
13332 Check_Real_Bound (Low);
13333 Check_Real_Bound (High);
13334 Low_Val := Expr_Value_R (Low);
13335 High_Val := Expr_Value_R (High);
13337 if Low_Val < (-Bound_Val) then
13338 Error_Msg_N
13339 ("range low bound too small for digits value", Low);
13340 Low_Val := -Bound_Val;
13341 end if;
13343 if High_Val > Bound_Val then
13344 Error_Msg_N
13345 ("range high bound too large for digits value", High);
13346 High_Val := Bound_Val;
13347 end if;
13349 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
13350 end;
13352 -- If no explicit range, use range that corresponds to given
13353 -- digits value. This will end up as the final range for the
13354 -- first subtype.
13356 else
13357 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
13358 end if;
13360 -- Complete entity for first subtype
13362 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
13363 Set_Etype (T, Implicit_Base);
13364 Set_Size_Info (T, Implicit_Base);
13365 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13366 Set_Digits_Value (T, Digs_Val);
13367 Set_Delta_Value (T, Delta_Val);
13368 Set_Small_Value (T, Delta_Val);
13369 Set_Scale_Value (T, Scale_Val);
13370 Set_Is_Constrained (T);
13371 end Decimal_Fixed_Point_Type_Declaration;
13373 -----------------------------------
13374 -- Derive_Progenitor_Subprograms --
13375 -----------------------------------
13377 procedure Derive_Progenitor_Subprograms
13378 (Parent_Type : Entity_Id;
13379 Tagged_Type : Entity_Id)
13381 E : Entity_Id;
13382 Elmt : Elmt_Id;
13383 Iface : Entity_Id;
13384 Iface_Elmt : Elmt_Id;
13385 Iface_Subp : Entity_Id;
13386 New_Subp : Entity_Id := Empty;
13387 Prim_Elmt : Elmt_Id;
13388 Subp : Entity_Id;
13389 Typ : Entity_Id;
13391 begin
13392 pragma Assert (Ada_Version >= Ada_2005
13393 and then Is_Record_Type (Tagged_Type)
13394 and then Is_Tagged_Type (Tagged_Type)
13395 and then Has_Interfaces (Tagged_Type));
13397 -- Step 1: Transfer to the full-view primitives associated with the
13398 -- partial-view that cover interface primitives. Conceptually this
13399 -- work should be done later by Process_Full_View; done here to
13400 -- simplify its implementation at later stages. It can be safely
13401 -- done here because interfaces must be visible in the partial and
13402 -- private view (RM 7.3(7.3/2)).
13404 -- Small optimization: This work is only required if the parent may
13405 -- have entities whose Alias attribute reference an interface primitive.
13406 -- Such a situation may occur if the parent is an abstract type and the
13407 -- primitive has not been yet overridden or if the parent is a generic
13408 -- formal type covering interfaces.
13410 -- If the tagged type is not abstract, it cannot have abstract
13411 -- primitives (the only entities in the list of primitives of
13412 -- non-abstract tagged types that can reference abstract primitives
13413 -- through its Alias attribute are the internal entities that have
13414 -- attribute Interface_Alias, and these entities are generated later
13415 -- by Add_Internal_Interface_Entities).
13417 if In_Private_Part (Current_Scope)
13418 and then (Is_Abstract_Type (Parent_Type)
13419 or else
13420 Is_Generic_Type (Parent_Type))
13421 then
13422 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
13423 while Present (Elmt) loop
13424 Subp := Node (Elmt);
13426 -- At this stage it is not possible to have entities in the list
13427 -- of primitives that have attribute Interface_Alias.
13429 pragma Assert (No (Interface_Alias (Subp)));
13431 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
13433 if Is_Interface (Typ) then
13434 E := Find_Primitive_Covering_Interface
13435 (Tagged_Type => Tagged_Type,
13436 Iface_Prim => Subp);
13438 if Present (E)
13439 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
13440 then
13441 Replace_Elmt (Elmt, E);
13442 Remove_Homonym (Subp);
13443 end if;
13444 end if;
13446 Next_Elmt (Elmt);
13447 end loop;
13448 end if;
13450 -- Step 2: Add primitives of progenitors that are not implemented by
13451 -- parents of Tagged_Type.
13453 if Present (Interfaces (Base_Type (Tagged_Type))) then
13454 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
13455 while Present (Iface_Elmt) loop
13456 Iface := Node (Iface_Elmt);
13458 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
13459 while Present (Prim_Elmt) loop
13460 Iface_Subp := Node (Prim_Elmt);
13462 -- Exclude derivation of predefined primitives except those
13463 -- that come from source, or are inherited from one that comes
13464 -- from source. Required to catch declarations of equality
13465 -- operators of interfaces. For example:
13467 -- type Iface is interface;
13468 -- function "=" (Left, Right : Iface) return Boolean;
13470 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
13471 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
13472 then
13473 E := Find_Primitive_Covering_Interface
13474 (Tagged_Type => Tagged_Type,
13475 Iface_Prim => Iface_Subp);
13477 -- If not found we derive a new primitive leaving its alias
13478 -- attribute referencing the interface primitive.
13480 if No (E) then
13481 Derive_Subprogram
13482 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13484 -- Ada 2012 (AI05-0197): If the covering primitive's name
13485 -- differs from the name of the interface primitive then it
13486 -- is a private primitive inherited from a parent type. In
13487 -- such case, given that Tagged_Type covers the interface,
13488 -- the inherited private primitive becomes visible. For such
13489 -- purpose we add a new entity that renames the inherited
13490 -- private primitive.
13492 elsif Chars (E) /= Chars (Iface_Subp) then
13493 pragma Assert (Has_Suffix (E, 'P'));
13494 Derive_Subprogram
13495 (New_Subp, Iface_Subp, Tagged_Type, Iface);
13496 Set_Alias (New_Subp, E);
13497 Set_Is_Abstract_Subprogram (New_Subp,
13498 Is_Abstract_Subprogram (E));
13500 -- Propagate to the full view interface entities associated
13501 -- with the partial view.
13503 elsif In_Private_Part (Current_Scope)
13504 and then Present (Alias (E))
13505 and then Alias (E) = Iface_Subp
13506 and then
13507 List_Containing (Parent (E)) /=
13508 Private_Declarations
13509 (Specification
13510 (Unit_Declaration_Node (Current_Scope)))
13511 then
13512 Append_Elmt (E, Primitive_Operations (Tagged_Type));
13513 end if;
13514 end if;
13516 Next_Elmt (Prim_Elmt);
13517 end loop;
13519 Next_Elmt (Iface_Elmt);
13520 end loop;
13521 end if;
13522 end Derive_Progenitor_Subprograms;
13524 -----------------------
13525 -- Derive_Subprogram --
13526 -----------------------
13528 procedure Derive_Subprogram
13529 (New_Subp : in out Entity_Id;
13530 Parent_Subp : Entity_Id;
13531 Derived_Type : Entity_Id;
13532 Parent_Type : Entity_Id;
13533 Actual_Subp : Entity_Id := Empty)
13535 Formal : Entity_Id;
13536 -- Formal parameter of parent primitive operation
13538 Formal_Of_Actual : Entity_Id;
13539 -- Formal parameter of actual operation, when the derivation is to
13540 -- create a renaming for a primitive operation of an actual in an
13541 -- instantiation.
13543 New_Formal : Entity_Id;
13544 -- Formal of inherited operation
13546 Visible_Subp : Entity_Id := Parent_Subp;
13548 function Is_Private_Overriding return Boolean;
13549 -- If Subp is a private overriding of a visible operation, the inherited
13550 -- operation derives from the overridden op (even though its body is the
13551 -- overriding one) and the inherited operation is visible now. See
13552 -- sem_disp to see the full details of the handling of the overridden
13553 -- subprogram, which is removed from the list of primitive operations of
13554 -- the type. The overridden subprogram is saved locally in Visible_Subp,
13555 -- and used to diagnose abstract operations that need overriding in the
13556 -- derived type.
13558 procedure Replace_Type (Id, New_Id : Entity_Id);
13559 -- When the type is an anonymous access type, create a new access type
13560 -- designating the derived type.
13562 procedure Set_Derived_Name;
13563 -- This procedure sets the appropriate Chars name for New_Subp. This
13564 -- is normally just a copy of the parent name. An exception arises for
13565 -- type support subprograms, where the name is changed to reflect the
13566 -- name of the derived type, e.g. if type foo is derived from type bar,
13567 -- then a procedure barDA is derived with a name fooDA.
13569 ---------------------------
13570 -- Is_Private_Overriding --
13571 ---------------------------
13573 function Is_Private_Overriding return Boolean is
13574 Prev : Entity_Id;
13576 begin
13577 -- If the parent is not a dispatching operation there is no
13578 -- need to investigate overridings
13580 if not Is_Dispatching_Operation (Parent_Subp) then
13581 return False;
13582 end if;
13584 -- The visible operation that is overridden is a homonym of the
13585 -- parent subprogram. We scan the homonym chain to find the one
13586 -- whose alias is the subprogram we are deriving.
13588 Prev := Current_Entity (Parent_Subp);
13589 while Present (Prev) loop
13590 if Ekind (Prev) = Ekind (Parent_Subp)
13591 and then Alias (Prev) = Parent_Subp
13592 and then Scope (Parent_Subp) = Scope (Prev)
13593 and then not Is_Hidden (Prev)
13594 then
13595 Visible_Subp := Prev;
13596 return True;
13597 end if;
13599 Prev := Homonym (Prev);
13600 end loop;
13602 return False;
13603 end Is_Private_Overriding;
13605 ------------------
13606 -- Replace_Type --
13607 ------------------
13609 procedure Replace_Type (Id, New_Id : Entity_Id) is
13610 Id_Type : constant Entity_Id := Etype (Id);
13611 Acc_Type : Entity_Id;
13612 Par : constant Node_Id := Parent (Derived_Type);
13614 begin
13615 -- When the type is an anonymous access type, create a new access
13616 -- type designating the derived type. This itype must be elaborated
13617 -- at the point of the derivation, not on subsequent calls that may
13618 -- be out of the proper scope for Gigi, so we insert a reference to
13619 -- it after the derivation.
13621 if Ekind (Id_Type) = E_Anonymous_Access_Type then
13622 declare
13623 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
13625 begin
13626 if Ekind (Desig_Typ) = E_Record_Type_With_Private
13627 and then Present (Full_View (Desig_Typ))
13628 and then not Is_Private_Type (Parent_Type)
13629 then
13630 Desig_Typ := Full_View (Desig_Typ);
13631 end if;
13633 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
13635 -- Ada 2005 (AI-251): Handle also derivations of abstract
13636 -- interface primitives.
13638 or else (Is_Interface (Desig_Typ)
13639 and then not Is_Class_Wide_Type (Desig_Typ))
13640 then
13641 Acc_Type := New_Copy (Id_Type);
13642 Set_Etype (Acc_Type, Acc_Type);
13643 Set_Scope (Acc_Type, New_Subp);
13645 -- Set size of anonymous access type. If we have an access
13646 -- to an unconstrained array, this is a fat pointer, so it
13647 -- is sizes at twice addtress size.
13649 if Is_Array_Type (Desig_Typ)
13650 and then not Is_Constrained (Desig_Typ)
13651 then
13652 Init_Size (Acc_Type, 2 * System_Address_Size);
13654 -- Other cases use a thin pointer
13656 else
13657 Init_Size (Acc_Type, System_Address_Size);
13658 end if;
13660 -- Set remaining characterstics of anonymous access type
13662 Init_Alignment (Acc_Type);
13663 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
13665 Set_Etype (New_Id, Acc_Type);
13666 Set_Scope (New_Id, New_Subp);
13668 -- Create a reference to it
13670 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
13672 else
13673 Set_Etype (New_Id, Id_Type);
13674 end if;
13675 end;
13677 -- In Ada2012, a formal may have an incomplete type but the type
13678 -- derivation that inherits the primitive follows the full view.
13680 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
13681 or else
13682 (Ekind (Id_Type) = E_Record_Type_With_Private
13683 and then Present (Full_View (Id_Type))
13684 and then
13685 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
13686 or else
13687 (Ada_Version >= Ada_2012
13688 and then Ekind (Id_Type) = E_Incomplete_Type
13689 and then Full_View (Id_Type) = Parent_Type)
13690 then
13691 -- Constraint checks on formals are generated during expansion,
13692 -- based on the signature of the original subprogram. The bounds
13693 -- of the derived type are not relevant, and thus we can use
13694 -- the base type for the formals. However, the return type may be
13695 -- used in a context that requires that the proper static bounds
13696 -- be used (a case statement, for example) and for those cases
13697 -- we must use the derived type (first subtype), not its base.
13699 -- If the derived_type_definition has no constraints, we know that
13700 -- the derived type has the same constraints as the first subtype
13701 -- of the parent, and we can also use it rather than its base,
13702 -- which can lead to more efficient code.
13704 if Etype (Id) = Parent_Type then
13705 if Is_Scalar_Type (Parent_Type)
13706 and then
13707 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
13708 then
13709 Set_Etype (New_Id, Derived_Type);
13711 elsif Nkind (Par) = N_Full_Type_Declaration
13712 and then
13713 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
13714 and then
13715 Is_Entity_Name
13716 (Subtype_Indication (Type_Definition (Par)))
13717 then
13718 Set_Etype (New_Id, Derived_Type);
13720 else
13721 Set_Etype (New_Id, Base_Type (Derived_Type));
13722 end if;
13724 else
13725 Set_Etype (New_Id, Base_Type (Derived_Type));
13726 end if;
13728 else
13729 Set_Etype (New_Id, Etype (Id));
13730 end if;
13731 end Replace_Type;
13733 ----------------------
13734 -- Set_Derived_Name --
13735 ----------------------
13737 procedure Set_Derived_Name is
13738 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
13739 begin
13740 if Nm = TSS_Null then
13741 Set_Chars (New_Subp, Chars (Parent_Subp));
13742 else
13743 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
13744 end if;
13745 end Set_Derived_Name;
13747 -- Start of processing for Derive_Subprogram
13749 begin
13750 New_Subp :=
13751 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
13752 Set_Ekind (New_Subp, Ekind (Parent_Subp));
13753 Set_Contract (New_Subp, Make_Contract (Sloc (New_Subp)));
13755 -- Check whether the inherited subprogram is a private operation that
13756 -- should be inherited but not yet made visible. Such subprograms can
13757 -- become visible at a later point (e.g., the private part of a public
13758 -- child unit) via Declare_Inherited_Private_Subprograms. If the
13759 -- following predicate is true, then this is not such a private
13760 -- operation and the subprogram simply inherits the name of the parent
13761 -- subprogram. Note the special check for the names of controlled
13762 -- operations, which are currently exempted from being inherited with
13763 -- a hidden name because they must be findable for generation of
13764 -- implicit run-time calls.
13766 if not Is_Hidden (Parent_Subp)
13767 or else Is_Internal (Parent_Subp)
13768 or else Is_Private_Overriding
13769 or else Is_Internal_Name (Chars (Parent_Subp))
13770 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
13771 Name_Adjust,
13772 Name_Finalize)
13773 then
13774 Set_Derived_Name;
13776 -- An inherited dispatching equality will be overridden by an internally
13777 -- generated one, or by an explicit one, so preserve its name and thus
13778 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
13779 -- private operation it may become invisible if the full view has
13780 -- progenitors, and the dispatch table will be malformed.
13781 -- We check that the type is limited to handle the anomalous declaration
13782 -- of Limited_Controlled, which is derived from a non-limited type, and
13783 -- which is handled specially elsewhere as well.
13785 elsif Chars (Parent_Subp) = Name_Op_Eq
13786 and then Is_Dispatching_Operation (Parent_Subp)
13787 and then Etype (Parent_Subp) = Standard_Boolean
13788 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
13789 and then
13790 Etype (First_Formal (Parent_Subp)) =
13791 Etype (Next_Formal (First_Formal (Parent_Subp)))
13792 then
13793 Set_Derived_Name;
13795 -- If parent is hidden, this can be a regular derivation if the
13796 -- parent is immediately visible in a non-instantiating context,
13797 -- or if we are in the private part of an instance. This test
13798 -- should still be refined ???
13800 -- The test for In_Instance_Not_Visible avoids inheriting the derived
13801 -- operation as a non-visible operation in cases where the parent
13802 -- subprogram might not be visible now, but was visible within the
13803 -- original generic, so it would be wrong to make the inherited
13804 -- subprogram non-visible now. (Not clear if this test is fully
13805 -- correct; are there any cases where we should declare the inherited
13806 -- operation as not visible to avoid it being overridden, e.g., when
13807 -- the parent type is a generic actual with private primitives ???)
13809 -- (they should be treated the same as other private inherited
13810 -- subprograms, but it's not clear how to do this cleanly). ???
13812 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
13813 and then Is_Immediately_Visible (Parent_Subp)
13814 and then not In_Instance)
13815 or else In_Instance_Not_Visible
13816 then
13817 Set_Derived_Name;
13819 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
13820 -- overrides an interface primitive because interface primitives
13821 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
13823 elsif Ada_Version >= Ada_2005
13824 and then Is_Dispatching_Operation (Parent_Subp)
13825 and then Covers_Some_Interface (Parent_Subp)
13826 then
13827 Set_Derived_Name;
13829 -- Otherwise, the type is inheriting a private operation, so enter
13830 -- it with a special name so it can't be overridden.
13832 else
13833 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
13834 end if;
13836 Set_Parent (New_Subp, Parent (Derived_Type));
13838 if Present (Actual_Subp) then
13839 Replace_Type (Actual_Subp, New_Subp);
13840 else
13841 Replace_Type (Parent_Subp, New_Subp);
13842 end if;
13844 Conditional_Delay (New_Subp, Parent_Subp);
13846 -- If we are creating a renaming for a primitive operation of an
13847 -- actual of a generic derived type, we must examine the signature
13848 -- of the actual primitive, not that of the generic formal, which for
13849 -- example may be an interface. However the name and initial value
13850 -- of the inherited operation are those of the formal primitive.
13852 Formal := First_Formal (Parent_Subp);
13854 if Present (Actual_Subp) then
13855 Formal_Of_Actual := First_Formal (Actual_Subp);
13856 else
13857 Formal_Of_Actual := Empty;
13858 end if;
13860 while Present (Formal) loop
13861 New_Formal := New_Copy (Formal);
13863 -- Normally we do not go copying parents, but in the case of
13864 -- formals, we need to link up to the declaration (which is the
13865 -- parameter specification), and it is fine to link up to the
13866 -- original formal's parameter specification in this case.
13868 Set_Parent (New_Formal, Parent (Formal));
13869 Append_Entity (New_Formal, New_Subp);
13871 if Present (Formal_Of_Actual) then
13872 Replace_Type (Formal_Of_Actual, New_Formal);
13873 Next_Formal (Formal_Of_Actual);
13874 else
13875 Replace_Type (Formal, New_Formal);
13876 end if;
13878 Next_Formal (Formal);
13879 end loop;
13881 -- If this derivation corresponds to a tagged generic actual, then
13882 -- primitive operations rename those of the actual. Otherwise the
13883 -- primitive operations rename those of the parent type, If the parent
13884 -- renames an intrinsic operator, so does the new subprogram. We except
13885 -- concatenation, which is always properly typed, and does not get
13886 -- expanded as other intrinsic operations.
13888 if No (Actual_Subp) then
13889 if Is_Intrinsic_Subprogram (Parent_Subp) then
13890 Set_Is_Intrinsic_Subprogram (New_Subp);
13892 if Present (Alias (Parent_Subp))
13893 and then Chars (Parent_Subp) /= Name_Op_Concat
13894 then
13895 Set_Alias (New_Subp, Alias (Parent_Subp));
13896 else
13897 Set_Alias (New_Subp, Parent_Subp);
13898 end if;
13900 else
13901 Set_Alias (New_Subp, Parent_Subp);
13902 end if;
13904 else
13905 Set_Alias (New_Subp, Actual_Subp);
13906 end if;
13908 -- Derived subprograms of a tagged type must inherit the convention
13909 -- of the parent subprogram (a requirement of AI-117). Derived
13910 -- subprograms of untagged types simply get convention Ada by default.
13912 -- If the derived type is a tagged generic formal type with unknown
13913 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
13915 -- However, if the type is derived from a generic formal, the further
13916 -- inherited subprogram has the convention of the non-generic ancestor.
13917 -- Otherwise there would be no way to override the operation.
13918 -- (This is subject to forthcoming ARG discussions).
13920 if Is_Tagged_Type (Derived_Type) then
13921 if Is_Generic_Type (Derived_Type)
13922 and then Has_Unknown_Discriminants (Derived_Type)
13923 then
13924 Set_Convention (New_Subp, Convention_Intrinsic);
13926 else
13927 if Is_Generic_Type (Parent_Type)
13928 and then Has_Unknown_Discriminants (Parent_Type)
13929 then
13930 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
13931 else
13932 Set_Convention (New_Subp, Convention (Parent_Subp));
13933 end if;
13934 end if;
13935 end if;
13937 -- Predefined controlled operations retain their name even if the parent
13938 -- is hidden (see above), but they are not primitive operations if the
13939 -- ancestor is not visible, for example if the parent is a private
13940 -- extension completed with a controlled extension. Note that a full
13941 -- type that is controlled can break privacy: the flag Is_Controlled is
13942 -- set on both views of the type.
13944 if Is_Controlled (Parent_Type)
13945 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
13946 Name_Adjust,
13947 Name_Finalize)
13948 and then Is_Hidden (Parent_Subp)
13949 and then not Is_Visibly_Controlled (Parent_Type)
13950 then
13951 Set_Is_Hidden (New_Subp);
13952 end if;
13954 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
13955 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
13957 if Ekind (Parent_Subp) = E_Procedure then
13958 Set_Is_Valued_Procedure
13959 (New_Subp, Is_Valued_Procedure (Parent_Subp));
13960 else
13961 Set_Has_Controlling_Result
13962 (New_Subp, Has_Controlling_Result (Parent_Subp));
13963 end if;
13965 -- No_Return must be inherited properly. If this is overridden in the
13966 -- case of a dispatching operation, then a check is made in Sem_Disp
13967 -- that the overriding operation is also No_Return (no such check is
13968 -- required for the case of non-dispatching operation.
13970 Set_No_Return (New_Subp, No_Return (Parent_Subp));
13972 -- A derived function with a controlling result is abstract. If the
13973 -- Derived_Type is a nonabstract formal generic derived type, then
13974 -- inherited operations are not abstract: the required check is done at
13975 -- instantiation time. If the derivation is for a generic actual, the
13976 -- function is not abstract unless the actual is.
13978 if Is_Generic_Type (Derived_Type)
13979 and then not Is_Abstract_Type (Derived_Type)
13980 then
13981 null;
13983 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
13984 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
13986 elsif Ada_Version >= Ada_2005
13987 and then (Is_Abstract_Subprogram (Alias (New_Subp))
13988 or else (Is_Tagged_Type (Derived_Type)
13989 and then Etype (New_Subp) = Derived_Type
13990 and then not Is_Null_Extension (Derived_Type))
13991 or else (Is_Tagged_Type (Derived_Type)
13992 and then Ekind (Etype (New_Subp)) =
13993 E_Anonymous_Access_Type
13994 and then Designated_Type (Etype (New_Subp)) =
13995 Derived_Type
13996 and then not Is_Null_Extension (Derived_Type)))
13997 and then No (Actual_Subp)
13998 then
13999 if not Is_Tagged_Type (Derived_Type)
14000 or else Is_Abstract_Type (Derived_Type)
14001 or else Is_Abstract_Subprogram (Alias (New_Subp))
14002 then
14003 Set_Is_Abstract_Subprogram (New_Subp);
14004 else
14005 Set_Requires_Overriding (New_Subp);
14006 end if;
14008 elsif Ada_Version < Ada_2005
14009 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14010 or else (Is_Tagged_Type (Derived_Type)
14011 and then Etype (New_Subp) = Derived_Type
14012 and then No (Actual_Subp)))
14013 then
14014 Set_Is_Abstract_Subprogram (New_Subp);
14016 -- AI05-0097 : an inherited operation that dispatches on result is
14017 -- abstract if the derived type is abstract, even if the parent type
14018 -- is concrete and the derived type is a null extension.
14020 elsif Has_Controlling_Result (Alias (New_Subp))
14021 and then Is_Abstract_Type (Etype (New_Subp))
14022 then
14023 Set_Is_Abstract_Subprogram (New_Subp);
14025 -- Finally, if the parent type is abstract we must verify that all
14026 -- inherited operations are either non-abstract or overridden, or that
14027 -- the derived type itself is abstract (this check is performed at the
14028 -- end of a package declaration, in Check_Abstract_Overriding). A
14029 -- private overriding in the parent type will not be visible in the
14030 -- derivation if we are not in an inner package or in a child unit of
14031 -- the parent type, in which case the abstractness of the inherited
14032 -- operation is carried to the new subprogram.
14034 elsif Is_Abstract_Type (Parent_Type)
14035 and then not In_Open_Scopes (Scope (Parent_Type))
14036 and then Is_Private_Overriding
14037 and then Is_Abstract_Subprogram (Visible_Subp)
14038 then
14039 if No (Actual_Subp) then
14040 Set_Alias (New_Subp, Visible_Subp);
14041 Set_Is_Abstract_Subprogram (New_Subp, True);
14043 else
14044 -- If this is a derivation for an instance of a formal derived
14045 -- type, abstractness comes from the primitive operation of the
14046 -- actual, not from the operation inherited from the ancestor.
14048 Set_Is_Abstract_Subprogram
14049 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14050 end if;
14051 end if;
14053 New_Overloaded_Entity (New_Subp, Derived_Type);
14055 -- Check for case of a derived subprogram for the instantiation of a
14056 -- formal derived tagged type, if so mark the subprogram as dispatching
14057 -- and inherit the dispatching attributes of the actual subprogram. The
14058 -- derived subprogram is effectively renaming of the actual subprogram,
14059 -- so it needs to have the same attributes as the actual.
14061 if Present (Actual_Subp)
14062 and then Is_Dispatching_Operation (Actual_Subp)
14063 then
14064 Set_Is_Dispatching_Operation (New_Subp);
14066 if Present (DTC_Entity (Actual_Subp)) then
14067 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14068 Set_DT_Position (New_Subp, DT_Position (Actual_Subp));
14069 end if;
14070 end if;
14072 -- Indicate that a derived subprogram does not require a body and that
14073 -- it does not require processing of default expressions.
14075 Set_Has_Completion (New_Subp);
14076 Set_Default_Expressions_Processed (New_Subp);
14078 if Ekind (New_Subp) = E_Function then
14079 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14080 end if;
14081 end Derive_Subprogram;
14083 ------------------------
14084 -- Derive_Subprograms --
14085 ------------------------
14087 procedure Derive_Subprograms
14088 (Parent_Type : Entity_Id;
14089 Derived_Type : Entity_Id;
14090 Generic_Actual : Entity_Id := Empty)
14092 Op_List : constant Elist_Id :=
14093 Collect_Primitive_Operations (Parent_Type);
14095 function Check_Derived_Type return Boolean;
14096 -- Check that all the entities derived from Parent_Type are found in
14097 -- the list of primitives of Derived_Type exactly in the same order.
14099 procedure Derive_Interface_Subprogram
14100 (New_Subp : in out Entity_Id;
14101 Subp : Entity_Id;
14102 Actual_Subp : Entity_Id);
14103 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14104 -- (which is an interface primitive). If Generic_Actual is present then
14105 -- Actual_Subp is the actual subprogram corresponding with the generic
14106 -- subprogram Subp.
14108 function Check_Derived_Type return Boolean is
14109 E : Entity_Id;
14110 Elmt : Elmt_Id;
14111 List : Elist_Id;
14112 New_Subp : Entity_Id;
14113 Op_Elmt : Elmt_Id;
14114 Subp : Entity_Id;
14116 begin
14117 -- Traverse list of entities in the current scope searching for
14118 -- an incomplete type whose full-view is derived type
14120 E := First_Entity (Scope (Derived_Type));
14121 while Present (E) and then E /= Derived_Type loop
14122 if Ekind (E) = E_Incomplete_Type
14123 and then Present (Full_View (E))
14124 and then Full_View (E) = Derived_Type
14125 then
14126 -- Disable this test if Derived_Type completes an incomplete
14127 -- type because in such case more primitives can be added
14128 -- later to the list of primitives of Derived_Type by routine
14129 -- Process_Incomplete_Dependents
14131 return True;
14132 end if;
14134 E := Next_Entity (E);
14135 end loop;
14137 List := Collect_Primitive_Operations (Derived_Type);
14138 Elmt := First_Elmt (List);
14140 Op_Elmt := First_Elmt (Op_List);
14141 while Present (Op_Elmt) loop
14142 Subp := Node (Op_Elmt);
14143 New_Subp := Node (Elmt);
14145 -- At this early stage Derived_Type has no entities with attribute
14146 -- Interface_Alias. In addition, such primitives are always
14147 -- located at the end of the list of primitives of Parent_Type.
14148 -- Therefore, if found we can safely stop processing pending
14149 -- entities.
14151 exit when Present (Interface_Alias (Subp));
14153 -- Handle hidden entities
14155 if not Is_Predefined_Dispatching_Operation (Subp)
14156 and then Is_Hidden (Subp)
14157 then
14158 if Present (New_Subp)
14159 and then Primitive_Names_Match (Subp, New_Subp)
14160 then
14161 Next_Elmt (Elmt);
14162 end if;
14164 else
14165 if not Present (New_Subp)
14166 or else Ekind (Subp) /= Ekind (New_Subp)
14167 or else not Primitive_Names_Match (Subp, New_Subp)
14168 then
14169 return False;
14170 end if;
14172 Next_Elmt (Elmt);
14173 end if;
14175 Next_Elmt (Op_Elmt);
14176 end loop;
14178 return True;
14179 end Check_Derived_Type;
14181 ---------------------------------
14182 -- Derive_Interface_Subprogram --
14183 ---------------------------------
14185 procedure Derive_Interface_Subprogram
14186 (New_Subp : in out Entity_Id;
14187 Subp : Entity_Id;
14188 Actual_Subp : Entity_Id)
14190 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
14191 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
14193 begin
14194 pragma Assert (Is_Interface (Iface_Type));
14196 Derive_Subprogram
14197 (New_Subp => New_Subp,
14198 Parent_Subp => Iface_Subp,
14199 Derived_Type => Derived_Type,
14200 Parent_Type => Iface_Type,
14201 Actual_Subp => Actual_Subp);
14203 -- Given that this new interface entity corresponds with a primitive
14204 -- of the parent that was not overridden we must leave it associated
14205 -- with its parent primitive to ensure that it will share the same
14206 -- dispatch table slot when overridden.
14208 if No (Actual_Subp) then
14209 Set_Alias (New_Subp, Subp);
14211 -- For instantiations this is not needed since the previous call to
14212 -- Derive_Subprogram leaves the entity well decorated.
14214 else
14215 pragma Assert (Alias (New_Subp) = Actual_Subp);
14216 null;
14217 end if;
14218 end Derive_Interface_Subprogram;
14220 -- Local variables
14222 Alias_Subp : Entity_Id;
14223 Act_List : Elist_Id;
14224 Act_Elmt : Elmt_Id;
14225 Act_Subp : Entity_Id := Empty;
14226 Elmt : Elmt_Id;
14227 Need_Search : Boolean := False;
14228 New_Subp : Entity_Id := Empty;
14229 Parent_Base : Entity_Id;
14230 Subp : Entity_Id;
14232 -- Start of processing for Derive_Subprograms
14234 begin
14235 if Ekind (Parent_Type) = E_Record_Type_With_Private
14236 and then Has_Discriminants (Parent_Type)
14237 and then Present (Full_View (Parent_Type))
14238 then
14239 Parent_Base := Full_View (Parent_Type);
14240 else
14241 Parent_Base := Parent_Type;
14242 end if;
14244 if Present (Generic_Actual) then
14245 Act_List := Collect_Primitive_Operations (Generic_Actual);
14246 Act_Elmt := First_Elmt (Act_List);
14247 else
14248 Act_List := No_Elist;
14249 Act_Elmt := No_Elmt;
14250 end if;
14252 -- Derive primitives inherited from the parent. Note that if the generic
14253 -- actual is present, this is not really a type derivation, it is a
14254 -- completion within an instance.
14256 -- Case 1: Derived_Type does not implement interfaces
14258 if not Is_Tagged_Type (Derived_Type)
14259 or else (not Has_Interfaces (Derived_Type)
14260 and then not (Present (Generic_Actual)
14261 and then Has_Interfaces (Generic_Actual)))
14262 then
14263 Elmt := First_Elmt (Op_List);
14264 while Present (Elmt) loop
14265 Subp := Node (Elmt);
14267 -- Literals are derived earlier in the process of building the
14268 -- derived type, and are skipped here.
14270 if Ekind (Subp) = E_Enumeration_Literal then
14271 null;
14273 -- The actual is a direct descendant and the common primitive
14274 -- operations appear in the same order.
14276 -- If the generic parent type is present, the derived type is an
14277 -- instance of a formal derived type, and within the instance its
14278 -- operations are those of the actual. We derive from the formal
14279 -- type but make the inherited operations aliases of the
14280 -- corresponding operations of the actual.
14282 else
14283 pragma Assert (No (Node (Act_Elmt))
14284 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
14285 and then
14286 Type_Conformant
14287 (Subp, Node (Act_Elmt),
14288 Skip_Controlling_Formals => True)));
14290 Derive_Subprogram
14291 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
14293 if Present (Act_Elmt) then
14294 Next_Elmt (Act_Elmt);
14295 end if;
14296 end if;
14298 Next_Elmt (Elmt);
14299 end loop;
14301 -- Case 2: Derived_Type implements interfaces
14303 else
14304 -- If the parent type has no predefined primitives we remove
14305 -- predefined primitives from the list of primitives of generic
14306 -- actual to simplify the complexity of this algorithm.
14308 if Present (Generic_Actual) then
14309 declare
14310 Has_Predefined_Primitives : Boolean := False;
14312 begin
14313 -- Check if the parent type has predefined primitives
14315 Elmt := First_Elmt (Op_List);
14316 while Present (Elmt) loop
14317 Subp := Node (Elmt);
14319 if Is_Predefined_Dispatching_Operation (Subp)
14320 and then not Comes_From_Source (Ultimate_Alias (Subp))
14321 then
14322 Has_Predefined_Primitives := True;
14323 exit;
14324 end if;
14326 Next_Elmt (Elmt);
14327 end loop;
14329 -- Remove predefined primitives of Generic_Actual. We must use
14330 -- an auxiliary list because in case of tagged types the value
14331 -- returned by Collect_Primitive_Operations is the value stored
14332 -- in its Primitive_Operations attribute (and we don't want to
14333 -- modify its current contents).
14335 if not Has_Predefined_Primitives then
14336 declare
14337 Aux_List : constant Elist_Id := New_Elmt_List;
14339 begin
14340 Elmt := First_Elmt (Act_List);
14341 while Present (Elmt) loop
14342 Subp := Node (Elmt);
14344 if not Is_Predefined_Dispatching_Operation (Subp)
14345 or else Comes_From_Source (Subp)
14346 then
14347 Append_Elmt (Subp, Aux_List);
14348 end if;
14350 Next_Elmt (Elmt);
14351 end loop;
14353 Act_List := Aux_List;
14354 end;
14355 end if;
14357 Act_Elmt := First_Elmt (Act_List);
14358 Act_Subp := Node (Act_Elmt);
14359 end;
14360 end if;
14362 -- Stage 1: If the generic actual is not present we derive the
14363 -- primitives inherited from the parent type. If the generic parent
14364 -- type is present, the derived type is an instance of a formal
14365 -- derived type, and within the instance its operations are those of
14366 -- the actual. We derive from the formal type but make the inherited
14367 -- operations aliases of the corresponding operations of the actual.
14369 Elmt := First_Elmt (Op_List);
14370 while Present (Elmt) loop
14371 Subp := Node (Elmt);
14372 Alias_Subp := Ultimate_Alias (Subp);
14374 -- Do not derive internal entities of the parent that link
14375 -- interface primitives with their covering primitive. These
14376 -- entities will be added to this type when frozen.
14378 if Present (Interface_Alias (Subp)) then
14379 goto Continue;
14380 end if;
14382 -- If the generic actual is present find the corresponding
14383 -- operation in the generic actual. If the parent type is a
14384 -- direct ancestor of the derived type then, even if it is an
14385 -- interface, the operations are inherited from the primary
14386 -- dispatch table and are in the proper order. If we detect here
14387 -- that primitives are not in the same order we traverse the list
14388 -- of primitive operations of the actual to find the one that
14389 -- implements the interface primitive.
14391 if Need_Search
14392 or else
14393 (Present (Generic_Actual)
14394 and then Present (Act_Subp)
14395 and then not
14396 (Primitive_Names_Match (Subp, Act_Subp)
14397 and then
14398 Type_Conformant (Subp, Act_Subp,
14399 Skip_Controlling_Formals => True)))
14400 then
14401 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
14402 Use_Full_View => True));
14404 -- Remember that we need searching for all pending primitives
14406 Need_Search := True;
14408 -- Handle entities associated with interface primitives
14410 if Present (Alias_Subp)
14411 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14412 and then not Is_Predefined_Dispatching_Operation (Subp)
14413 then
14414 -- Search for the primitive in the homonym chain
14416 Act_Subp :=
14417 Find_Primitive_Covering_Interface
14418 (Tagged_Type => Generic_Actual,
14419 Iface_Prim => Alias_Subp);
14421 -- Previous search may not locate primitives covering
14422 -- interfaces defined in generics units or instantiations.
14423 -- (it fails if the covering primitive has formals whose
14424 -- type is also defined in generics or instantiations).
14425 -- In such case we search in the list of primitives of the
14426 -- generic actual for the internal entity that links the
14427 -- interface primitive and the covering primitive.
14429 if No (Act_Subp)
14430 and then Is_Generic_Type (Parent_Type)
14431 then
14432 -- This code has been designed to handle only generic
14433 -- formals that implement interfaces that are defined
14434 -- in a generic unit or instantiation. If this code is
14435 -- needed for other cases we must review it because
14436 -- (given that it relies on Original_Location to locate
14437 -- the primitive of Generic_Actual that covers the
14438 -- interface) it could leave linked through attribute
14439 -- Alias entities of unrelated instantiations).
14441 pragma Assert
14442 (Is_Generic_Unit
14443 (Scope (Find_Dispatching_Type (Alias_Subp)))
14444 or else
14445 Instantiation_Depth
14446 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
14448 declare
14449 Iface_Prim_Loc : constant Source_Ptr :=
14450 Original_Location (Sloc (Alias_Subp));
14452 Elmt : Elmt_Id;
14453 Prim : Entity_Id;
14455 begin
14456 Elmt :=
14457 First_Elmt (Primitive_Operations (Generic_Actual));
14459 Search : while Present (Elmt) loop
14460 Prim := Node (Elmt);
14462 if Present (Interface_Alias (Prim))
14463 and then Original_Location
14464 (Sloc (Interface_Alias (Prim))) =
14465 Iface_Prim_Loc
14466 then
14467 Act_Subp := Alias (Prim);
14468 exit Search;
14469 end if;
14471 Next_Elmt (Elmt);
14472 end loop Search;
14473 end;
14474 end if;
14476 pragma Assert (Present (Act_Subp)
14477 or else Is_Abstract_Type (Generic_Actual)
14478 or else Serious_Errors_Detected > 0);
14480 -- Handle predefined primitives plus the rest of user-defined
14481 -- primitives
14483 else
14484 Act_Elmt := First_Elmt (Act_List);
14485 while Present (Act_Elmt) loop
14486 Act_Subp := Node (Act_Elmt);
14488 exit when Primitive_Names_Match (Subp, Act_Subp)
14489 and then Type_Conformant
14490 (Subp, Act_Subp,
14491 Skip_Controlling_Formals => True)
14492 and then No (Interface_Alias (Act_Subp));
14494 Next_Elmt (Act_Elmt);
14495 end loop;
14497 if No (Act_Elmt) then
14498 Act_Subp := Empty;
14499 end if;
14500 end if;
14501 end if;
14503 -- Case 1: If the parent is a limited interface then it has the
14504 -- predefined primitives of synchronized interfaces. However, the
14505 -- actual type may be a non-limited type and hence it does not
14506 -- have such primitives.
14508 if Present (Generic_Actual)
14509 and then not Present (Act_Subp)
14510 and then Is_Limited_Interface (Parent_Base)
14511 and then Is_Predefined_Interface_Primitive (Subp)
14512 then
14513 null;
14515 -- Case 2: Inherit entities associated with interfaces that were
14516 -- not covered by the parent type. We exclude here null interface
14517 -- primitives because they do not need special management.
14519 -- We also exclude interface operations that are renamings. If the
14520 -- subprogram is an explicit renaming of an interface primitive,
14521 -- it is a regular primitive operation, and the presence of its
14522 -- alias is not relevant: it has to be derived like any other
14523 -- primitive.
14525 elsif Present (Alias (Subp))
14526 and then Nkind (Unit_Declaration_Node (Subp)) /=
14527 N_Subprogram_Renaming_Declaration
14528 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
14529 and then not
14530 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
14531 and then Null_Present (Parent (Alias_Subp)))
14532 then
14533 -- If this is an abstract private type then we transfer the
14534 -- derivation of the interface primitive from the partial view
14535 -- to the full view. This is safe because all the interfaces
14536 -- must be visible in the partial view. Done to avoid adding
14537 -- a new interface derivation to the private part of the
14538 -- enclosing package; otherwise this new derivation would be
14539 -- decorated as hidden when the analysis of the enclosing
14540 -- package completes.
14542 if Is_Abstract_Type (Derived_Type)
14543 and then In_Private_Part (Current_Scope)
14544 and then Has_Private_Declaration (Derived_Type)
14545 then
14546 declare
14547 Partial_View : Entity_Id;
14548 Elmt : Elmt_Id;
14549 Ent : Entity_Id;
14551 begin
14552 Partial_View := First_Entity (Current_Scope);
14553 loop
14554 exit when No (Partial_View)
14555 or else (Has_Private_Declaration (Partial_View)
14556 and then
14557 Full_View (Partial_View) = Derived_Type);
14559 Next_Entity (Partial_View);
14560 end loop;
14562 -- If the partial view was not found then the source code
14563 -- has errors and the derivation is not needed.
14565 if Present (Partial_View) then
14566 Elmt :=
14567 First_Elmt (Primitive_Operations (Partial_View));
14568 while Present (Elmt) loop
14569 Ent := Node (Elmt);
14571 if Present (Alias (Ent))
14572 and then Ultimate_Alias (Ent) = Alias (Subp)
14573 then
14574 Append_Elmt
14575 (Ent, Primitive_Operations (Derived_Type));
14576 exit;
14577 end if;
14579 Next_Elmt (Elmt);
14580 end loop;
14582 -- If the interface primitive was not found in the
14583 -- partial view then this interface primitive was
14584 -- overridden. We add a derivation to activate in
14585 -- Derive_Progenitor_Subprograms the machinery to
14586 -- search for it.
14588 if No (Elmt) then
14589 Derive_Interface_Subprogram
14590 (New_Subp => New_Subp,
14591 Subp => Subp,
14592 Actual_Subp => Act_Subp);
14593 end if;
14594 end if;
14595 end;
14596 else
14597 Derive_Interface_Subprogram
14598 (New_Subp => New_Subp,
14599 Subp => Subp,
14600 Actual_Subp => Act_Subp);
14601 end if;
14603 -- Case 3: Common derivation
14605 else
14606 Derive_Subprogram
14607 (New_Subp => New_Subp,
14608 Parent_Subp => Subp,
14609 Derived_Type => Derived_Type,
14610 Parent_Type => Parent_Base,
14611 Actual_Subp => Act_Subp);
14612 end if;
14614 -- No need to update Act_Elm if we must search for the
14615 -- corresponding operation in the generic actual
14617 if not Need_Search
14618 and then Present (Act_Elmt)
14619 then
14620 Next_Elmt (Act_Elmt);
14621 Act_Subp := Node (Act_Elmt);
14622 end if;
14624 <<Continue>>
14625 Next_Elmt (Elmt);
14626 end loop;
14628 -- Inherit additional operations from progenitors. If the derived
14629 -- type is a generic actual, there are not new primitive operations
14630 -- for the type because it has those of the actual, and therefore
14631 -- nothing needs to be done. The renamings generated above are not
14632 -- primitive operations, and their purpose is simply to make the
14633 -- proper operations visible within an instantiation.
14635 if No (Generic_Actual) then
14636 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
14637 end if;
14638 end if;
14640 -- Final check: Direct descendants must have their primitives in the
14641 -- same order. We exclude from this test untagged types and instances
14642 -- of formal derived types. We skip this test if we have already
14643 -- reported serious errors in the sources.
14645 pragma Assert (not Is_Tagged_Type (Derived_Type)
14646 or else Present (Generic_Actual)
14647 or else Serious_Errors_Detected > 0
14648 or else Check_Derived_Type);
14649 end Derive_Subprograms;
14651 --------------------------------
14652 -- Derived_Standard_Character --
14653 --------------------------------
14655 procedure Derived_Standard_Character
14656 (N : Node_Id;
14657 Parent_Type : Entity_Id;
14658 Derived_Type : Entity_Id)
14660 Loc : constant Source_Ptr := Sloc (N);
14661 Def : constant Node_Id := Type_Definition (N);
14662 Indic : constant Node_Id := Subtype_Indication (Def);
14663 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
14664 Implicit_Base : constant Entity_Id :=
14665 Create_Itype
14666 (E_Enumeration_Type, N, Derived_Type, 'B');
14668 Lo : Node_Id;
14669 Hi : Node_Id;
14671 begin
14672 Discard_Node (Process_Subtype (Indic, N));
14674 Set_Etype (Implicit_Base, Parent_Base);
14675 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
14676 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
14678 Set_Is_Character_Type (Implicit_Base, True);
14679 Set_Has_Delayed_Freeze (Implicit_Base);
14681 -- The bounds of the implicit base are the bounds of the parent base.
14682 -- Note that their type is the parent base.
14684 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
14685 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
14687 Set_Scalar_Range (Implicit_Base,
14688 Make_Range (Loc,
14689 Low_Bound => Lo,
14690 High_Bound => Hi));
14692 Conditional_Delay (Derived_Type, Parent_Type);
14694 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
14695 Set_Etype (Derived_Type, Implicit_Base);
14696 Set_Size_Info (Derived_Type, Parent_Type);
14698 if Unknown_RM_Size (Derived_Type) then
14699 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
14700 end if;
14702 Set_Is_Character_Type (Derived_Type, True);
14704 if Nkind (Indic) /= N_Subtype_Indication then
14706 -- If no explicit constraint, the bounds are those
14707 -- of the parent type.
14709 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
14710 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
14711 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
14712 end if;
14714 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
14716 -- Because the implicit base is used in the conversion of the bounds, we
14717 -- have to freeze it now. This is similar to what is done for numeric
14718 -- types, and it equally suspicious, but otherwise a non-static bound
14719 -- will have a reference to an unfrozen type, which is rejected by Gigi
14720 -- (???). This requires specific care for definition of stream
14721 -- attributes. For details, see comments at the end of
14722 -- Build_Derived_Numeric_Type.
14724 Freeze_Before (N, Implicit_Base);
14725 end Derived_Standard_Character;
14727 ------------------------------
14728 -- Derived_Type_Declaration --
14729 ------------------------------
14731 procedure Derived_Type_Declaration
14732 (T : Entity_Id;
14733 N : Node_Id;
14734 Is_Completion : Boolean)
14736 Parent_Type : Entity_Id;
14738 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
14739 -- Check whether the parent type is a generic formal, or derives
14740 -- directly or indirectly from one.
14742 ------------------------
14743 -- Comes_From_Generic --
14744 ------------------------
14746 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
14747 begin
14748 if Is_Generic_Type (Typ) then
14749 return True;
14751 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
14752 return True;
14754 elsif Is_Private_Type (Typ)
14755 and then Present (Full_View (Typ))
14756 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
14757 then
14758 return True;
14760 elsif Is_Generic_Actual_Type (Typ) then
14761 return True;
14763 else
14764 return False;
14765 end if;
14766 end Comes_From_Generic;
14768 -- Local variables
14770 Def : constant Node_Id := Type_Definition (N);
14771 Iface_Def : Node_Id;
14772 Indic : constant Node_Id := Subtype_Indication (Def);
14773 Extension : constant Node_Id := Record_Extension_Part (Def);
14774 Parent_Node : Node_Id;
14775 Taggd : Boolean;
14777 -- Start of processing for Derived_Type_Declaration
14779 begin
14780 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
14782 -- Ada 2005 (AI-251): In case of interface derivation check that the
14783 -- parent is also an interface.
14785 if Interface_Present (Def) then
14786 Check_SPARK_Restriction ("interface is not allowed", Def);
14788 if not Is_Interface (Parent_Type) then
14789 Diagnose_Interface (Indic, Parent_Type);
14791 else
14792 Parent_Node := Parent (Base_Type (Parent_Type));
14793 Iface_Def := Type_Definition (Parent_Node);
14795 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
14796 -- other limited interfaces.
14798 if Limited_Present (Def) then
14799 if Limited_Present (Iface_Def) then
14800 null;
14802 elsif Protected_Present (Iface_Def) then
14803 Error_Msg_NE
14804 ("descendant of& must be declared"
14805 & " as a protected interface",
14806 N, Parent_Type);
14808 elsif Synchronized_Present (Iface_Def) then
14809 Error_Msg_NE
14810 ("descendant of& must be declared"
14811 & " as a synchronized interface",
14812 N, Parent_Type);
14814 elsif Task_Present (Iface_Def) then
14815 Error_Msg_NE
14816 ("descendant of& must be declared as a task interface",
14817 N, Parent_Type);
14819 else
14820 Error_Msg_N
14821 ("(Ada 2005) limited interface cannot "
14822 & "inherit from non-limited interface", Indic);
14823 end if;
14825 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
14826 -- from non-limited or limited interfaces.
14828 elsif not Protected_Present (Def)
14829 and then not Synchronized_Present (Def)
14830 and then not Task_Present (Def)
14831 then
14832 if Limited_Present (Iface_Def) then
14833 null;
14835 elsif Protected_Present (Iface_Def) then
14836 Error_Msg_NE
14837 ("descendant of& must be declared"
14838 & " as a protected interface",
14839 N, Parent_Type);
14841 elsif Synchronized_Present (Iface_Def) then
14842 Error_Msg_NE
14843 ("descendant of& must be declared"
14844 & " as a synchronized interface",
14845 N, Parent_Type);
14847 elsif Task_Present (Iface_Def) then
14848 Error_Msg_NE
14849 ("descendant of& must be declared as a task interface",
14850 N, Parent_Type);
14851 else
14852 null;
14853 end if;
14854 end if;
14855 end if;
14856 end if;
14858 if Is_Tagged_Type (Parent_Type)
14859 and then Is_Concurrent_Type (Parent_Type)
14860 and then not Is_Interface (Parent_Type)
14861 then
14862 Error_Msg_N
14863 ("parent type of a record extension cannot be "
14864 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
14865 Set_Etype (T, Any_Type);
14866 return;
14867 end if;
14869 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
14870 -- interfaces
14872 if Is_Tagged_Type (Parent_Type)
14873 and then Is_Non_Empty_List (Interface_List (Def))
14874 then
14875 declare
14876 Intf : Node_Id;
14877 T : Entity_Id;
14879 begin
14880 Intf := First (Interface_List (Def));
14881 while Present (Intf) loop
14882 T := Find_Type_Of_Subtype_Indic (Intf);
14884 if not Is_Interface (T) then
14885 Diagnose_Interface (Intf, T);
14887 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
14888 -- a limited type from having a nonlimited progenitor.
14890 elsif (Limited_Present (Def)
14891 or else (not Is_Interface (Parent_Type)
14892 and then Is_Limited_Type (Parent_Type)))
14893 and then not Is_Limited_Interface (T)
14894 then
14895 Error_Msg_NE
14896 ("progenitor interface& of limited type must be limited",
14897 N, T);
14898 end if;
14900 Next (Intf);
14901 end loop;
14902 end;
14903 end if;
14905 if Parent_Type = Any_Type
14906 or else Etype (Parent_Type) = Any_Type
14907 or else (Is_Class_Wide_Type (Parent_Type)
14908 and then Etype (Parent_Type) = T)
14909 then
14910 -- If Parent_Type is undefined or illegal, make new type into a
14911 -- subtype of Any_Type, and set a few attributes to prevent cascaded
14912 -- errors. If this is a self-definition, emit error now.
14914 if T = Parent_Type
14915 or else T = Etype (Parent_Type)
14916 then
14917 Error_Msg_N ("type cannot be used in its own definition", Indic);
14918 end if;
14920 Set_Ekind (T, Ekind (Parent_Type));
14921 Set_Etype (T, Any_Type);
14922 Set_Scalar_Range (T, Scalar_Range (Any_Type));
14924 if Is_Tagged_Type (T)
14925 and then Is_Record_Type (T)
14926 then
14927 Set_Direct_Primitive_Operations (T, New_Elmt_List);
14928 end if;
14930 return;
14931 end if;
14933 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
14934 -- an interface is special because the list of interfaces in the full
14935 -- view can be given in any order. For example:
14937 -- type A is interface;
14938 -- type B is interface and A;
14939 -- type D is new B with private;
14940 -- private
14941 -- type D is new A and B with null record; -- 1 --
14943 -- In this case we perform the following transformation of -1-:
14945 -- type D is new B and A with null record;
14947 -- If the parent of the full-view covers the parent of the partial-view
14948 -- we have two possible cases:
14950 -- 1) They have the same parent
14951 -- 2) The parent of the full-view implements some further interfaces
14953 -- In both cases we do not need to perform the transformation. In the
14954 -- first case the source program is correct and the transformation is
14955 -- not needed; in the second case the source program does not fulfill
14956 -- the no-hidden interfaces rule (AI-396) and the error will be reported
14957 -- later.
14959 -- This transformation not only simplifies the rest of the analysis of
14960 -- this type declaration but also simplifies the correct generation of
14961 -- the object layout to the expander.
14963 if In_Private_Part (Current_Scope)
14964 and then Is_Interface (Parent_Type)
14965 then
14966 declare
14967 Iface : Node_Id;
14968 Partial_View : Entity_Id;
14969 Partial_View_Parent : Entity_Id;
14970 New_Iface : Node_Id;
14972 begin
14973 -- Look for the associated private type declaration
14975 Partial_View := First_Entity (Current_Scope);
14976 loop
14977 exit when No (Partial_View)
14978 or else (Has_Private_Declaration (Partial_View)
14979 and then Full_View (Partial_View) = T);
14981 Next_Entity (Partial_View);
14982 end loop;
14984 -- If the partial view was not found then the source code has
14985 -- errors and the transformation is not needed.
14987 if Present (Partial_View) then
14988 Partial_View_Parent := Etype (Partial_View);
14990 -- If the parent of the full-view covers the parent of the
14991 -- partial-view we have nothing else to do.
14993 if Interface_Present_In_Ancestor
14994 (Parent_Type, Partial_View_Parent)
14995 then
14996 null;
14998 -- Traverse the list of interfaces of the full-view to look
14999 -- for the parent of the partial-view and perform the tree
15000 -- transformation.
15002 else
15003 Iface := First (Interface_List (Def));
15004 while Present (Iface) loop
15005 if Etype (Iface) = Etype (Partial_View) then
15006 Rewrite (Subtype_Indication (Def),
15007 New_Copy (Subtype_Indication
15008 (Parent (Partial_View))));
15010 New_Iface :=
15011 Make_Identifier (Sloc (N), Chars (Parent_Type));
15012 Append (New_Iface, Interface_List (Def));
15014 -- Analyze the transformed code
15016 Derived_Type_Declaration (T, N, Is_Completion);
15017 return;
15018 end if;
15020 Next (Iface);
15021 end loop;
15022 end if;
15023 end if;
15024 end;
15025 end if;
15027 -- Only composite types other than array types are allowed to have
15028 -- discriminants. In SPARK, no types are allowed to have discriminants.
15030 if Present (Discriminant_Specifications (N)) then
15031 if (Is_Elementary_Type (Parent_Type)
15032 or else Is_Array_Type (Parent_Type))
15033 and then not Error_Posted (N)
15034 then
15035 Error_Msg_N
15036 ("elementary or array type cannot have discriminants",
15037 Defining_Identifier (First (Discriminant_Specifications (N))));
15038 Set_Has_Discriminants (T, False);
15039 else
15040 Check_SPARK_Restriction ("discriminant type is not allowed", N);
15041 end if;
15042 end if;
15044 -- In Ada 83, a derived type defined in a package specification cannot
15045 -- be used for further derivation until the end of its visible part.
15046 -- Note that derivation in the private part of the package is allowed.
15048 if Ada_Version = Ada_83
15049 and then Is_Derived_Type (Parent_Type)
15050 and then In_Visible_Part (Scope (Parent_Type))
15051 then
15052 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15053 Error_Msg_N
15054 ("(Ada 83): premature use of type for derivation", Indic);
15055 end if;
15056 end if;
15058 -- Check for early use of incomplete or private type
15060 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15061 Error_Msg_N ("premature derivation of incomplete type", Indic);
15062 return;
15064 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15065 and then not Comes_From_Generic (Parent_Type))
15066 or else Has_Private_Component (Parent_Type)
15067 then
15068 -- The ancestor type of a formal type can be incomplete, in which
15069 -- case only the operations of the partial view are available in the
15070 -- generic. Subsequent checks may be required when the full view is
15071 -- analyzed to verify that a derivation from a tagged type has an
15072 -- extension.
15074 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15075 null;
15077 elsif No (Underlying_Type (Parent_Type))
15078 or else Has_Private_Component (Parent_Type)
15079 then
15080 Error_Msg_N
15081 ("premature derivation of derived or private type", Indic);
15083 -- Flag the type itself as being in error, this prevents some
15084 -- nasty problems with subsequent uses of the malformed type.
15086 Set_Error_Posted (T);
15088 -- Check that within the immediate scope of an untagged partial
15089 -- view it's illegal to derive from the partial view if the
15090 -- full view is tagged. (7.3(7))
15092 -- We verify that the Parent_Type is a partial view by checking
15093 -- that it is not a Full_Type_Declaration (i.e. a private type or
15094 -- private extension declaration), to distinguish a partial view
15095 -- from a derivation from a private type which also appears as
15096 -- E_Private_Type. If the parent base type is not declared in an
15097 -- enclosing scope there is no need to check.
15099 elsif Present (Full_View (Parent_Type))
15100 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15101 and then not Is_Tagged_Type (Parent_Type)
15102 and then Is_Tagged_Type (Full_View (Parent_Type))
15103 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15104 then
15105 Error_Msg_N
15106 ("premature derivation from type with tagged full view",
15107 Indic);
15108 end if;
15109 end if;
15111 -- Check that form of derivation is appropriate
15113 Taggd := Is_Tagged_Type (Parent_Type);
15115 -- Perhaps the parent type should be changed to the class-wide type's
15116 -- specific type in this case to prevent cascading errors ???
15118 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15119 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15120 return;
15121 end if;
15123 if Present (Extension) and then not Taggd then
15124 Error_Msg_N
15125 ("type derived from untagged type cannot have extension", Indic);
15127 elsif No (Extension) and then Taggd then
15129 -- If this declaration is within a private part (or body) of a
15130 -- generic instantiation then the derivation is allowed (the parent
15131 -- type can only appear tagged in this case if it's a generic actual
15132 -- type, since it would otherwise have been rejected in the analysis
15133 -- of the generic template).
15135 if not Is_Generic_Actual_Type (Parent_Type)
15136 or else In_Visible_Part (Scope (Parent_Type))
15137 then
15138 if Is_Class_Wide_Type (Parent_Type) then
15139 Error_Msg_N
15140 ("parent type must not be a class-wide type", Indic);
15142 -- Use specific type to prevent cascaded errors.
15144 Parent_Type := Etype (Parent_Type);
15146 else
15147 Error_Msg_N
15148 ("type derived from tagged type must have extension", Indic);
15149 end if;
15150 end if;
15151 end if;
15153 -- AI-443: Synchronized formal derived types require a private
15154 -- extension. There is no point in checking the ancestor type or
15155 -- the progenitors since the construct is wrong to begin with.
15157 if Ada_Version >= Ada_2005
15158 and then Is_Generic_Type (T)
15159 and then Present (Original_Node (N))
15160 then
15161 declare
15162 Decl : constant Node_Id := Original_Node (N);
15164 begin
15165 if Nkind (Decl) = N_Formal_Type_Declaration
15166 and then Nkind (Formal_Type_Definition (Decl)) =
15167 N_Formal_Derived_Type_Definition
15168 and then Synchronized_Present (Formal_Type_Definition (Decl))
15169 and then No (Extension)
15171 -- Avoid emitting a duplicate error message
15173 and then not Error_Posted (Indic)
15174 then
15175 Error_Msg_N
15176 ("synchronized derived type must have extension", N);
15177 end if;
15178 end;
15179 end if;
15181 if Null_Exclusion_Present (Def)
15182 and then not Is_Access_Type (Parent_Type)
15183 then
15184 Error_Msg_N ("null exclusion can only apply to an access type", N);
15185 end if;
15187 -- Avoid deriving parent primitives of underlying record views
15189 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
15190 Derive_Subps => not Is_Underlying_Record_View (T));
15192 -- AI-419: The parent type of an explicitly limited derived type must
15193 -- be a limited type or a limited interface.
15195 if Limited_Present (Def) then
15196 Set_Is_Limited_Record (T);
15198 if Is_Interface (T) then
15199 Set_Is_Limited_Interface (T);
15200 end if;
15202 if not Is_Limited_Type (Parent_Type)
15203 and then
15204 (not Is_Interface (Parent_Type)
15205 or else not Is_Limited_Interface (Parent_Type))
15206 then
15207 -- AI05-0096: a derivation in the private part of an instance is
15208 -- legal if the generic formal is untagged limited, and the actual
15209 -- is non-limited.
15211 if Is_Generic_Actual_Type (Parent_Type)
15212 and then In_Private_Part (Current_Scope)
15213 and then
15214 not Is_Tagged_Type
15215 (Generic_Parent_Type (Parent (Parent_Type)))
15216 then
15217 null;
15219 else
15220 Error_Msg_NE
15221 ("parent type& of limited type must be limited",
15222 N, Parent_Type);
15223 end if;
15224 end if;
15225 end if;
15227 -- In SPARK, there are no derived type definitions other than type
15228 -- extensions of tagged record types.
15230 if No (Extension) then
15231 Check_SPARK_Restriction
15232 ("derived type is not allowed", Original_Node (N));
15233 end if;
15234 end Derived_Type_Declaration;
15236 ------------------------
15237 -- Diagnose_Interface --
15238 ------------------------
15240 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
15241 begin
15242 if not Is_Interface (E)
15243 and then E /= Any_Type
15244 then
15245 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
15246 end if;
15247 end Diagnose_Interface;
15249 ----------------------------------
15250 -- Enumeration_Type_Declaration --
15251 ----------------------------------
15253 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
15254 Ev : Uint;
15255 L : Node_Id;
15256 R_Node : Node_Id;
15257 B_Node : Node_Id;
15259 begin
15260 -- Create identifier node representing lower bound
15262 B_Node := New_Node (N_Identifier, Sloc (Def));
15263 L := First (Literals (Def));
15264 Set_Chars (B_Node, Chars (L));
15265 Set_Entity (B_Node, L);
15266 Set_Etype (B_Node, T);
15267 Set_Is_Static_Expression (B_Node, True);
15269 R_Node := New_Node (N_Range, Sloc (Def));
15270 Set_Low_Bound (R_Node, B_Node);
15272 Set_Ekind (T, E_Enumeration_Type);
15273 Set_First_Literal (T, L);
15274 Set_Etype (T, T);
15275 Set_Is_Constrained (T);
15277 Ev := Uint_0;
15279 -- Loop through literals of enumeration type setting pos and rep values
15280 -- except that if the Ekind is already set, then it means the literal
15281 -- was already constructed (case of a derived type declaration and we
15282 -- should not disturb the Pos and Rep values.
15284 while Present (L) loop
15285 if Ekind (L) /= E_Enumeration_Literal then
15286 Set_Ekind (L, E_Enumeration_Literal);
15287 Set_Enumeration_Pos (L, Ev);
15288 Set_Enumeration_Rep (L, Ev);
15289 Set_Is_Known_Valid (L, True);
15290 end if;
15292 Set_Etype (L, T);
15293 New_Overloaded_Entity (L);
15294 Generate_Definition (L);
15295 Set_Convention (L, Convention_Intrinsic);
15297 -- Case of character literal
15299 if Nkind (L) = N_Defining_Character_Literal then
15300 Set_Is_Character_Type (T, True);
15302 -- Check violation of No_Wide_Characters
15304 if Restriction_Check_Required (No_Wide_Characters) then
15305 Get_Name_String (Chars (L));
15307 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
15308 Check_Restriction (No_Wide_Characters, L);
15309 end if;
15310 end if;
15311 end if;
15313 Ev := Ev + 1;
15314 Next (L);
15315 end loop;
15317 -- Now create a node representing upper bound
15319 B_Node := New_Node (N_Identifier, Sloc (Def));
15320 Set_Chars (B_Node, Chars (Last (Literals (Def))));
15321 Set_Entity (B_Node, Last (Literals (Def)));
15322 Set_Etype (B_Node, T);
15323 Set_Is_Static_Expression (B_Node, True);
15325 Set_High_Bound (R_Node, B_Node);
15327 -- Initialize various fields of the type. Some of this information
15328 -- may be overwritten later through rep.clauses.
15330 Set_Scalar_Range (T, R_Node);
15331 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
15332 Set_Enum_Esize (T);
15333 Set_Enum_Pos_To_Rep (T, Empty);
15335 -- Set Discard_Names if configuration pragma set, or if there is
15336 -- a parameterless pragma in the current declarative region
15338 if Global_Discard_Names or else Discard_Names (Scope (T)) then
15339 Set_Discard_Names (T);
15340 end if;
15342 -- Process end label if there is one
15344 if Present (Def) then
15345 Process_End_Label (Def, 'e', T);
15346 end if;
15347 end Enumeration_Type_Declaration;
15349 ---------------------------------
15350 -- Expand_To_Stored_Constraint --
15351 ---------------------------------
15353 function Expand_To_Stored_Constraint
15354 (Typ : Entity_Id;
15355 Constraint : Elist_Id) return Elist_Id
15357 Explicitly_Discriminated_Type : Entity_Id;
15358 Expansion : Elist_Id;
15359 Discriminant : Entity_Id;
15361 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
15362 -- Find the nearest type that actually specifies discriminants
15364 ---------------------------------
15365 -- Type_With_Explicit_Discrims --
15366 ---------------------------------
15368 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
15369 Typ : constant E := Base_Type (Id);
15371 begin
15372 if Ekind (Typ) in Incomplete_Or_Private_Kind then
15373 if Present (Full_View (Typ)) then
15374 return Type_With_Explicit_Discrims (Full_View (Typ));
15375 end if;
15377 else
15378 if Has_Discriminants (Typ) then
15379 return Typ;
15380 end if;
15381 end if;
15383 if Etype (Typ) = Typ then
15384 return Empty;
15385 elsif Has_Discriminants (Typ) then
15386 return Typ;
15387 else
15388 return Type_With_Explicit_Discrims (Etype (Typ));
15389 end if;
15391 end Type_With_Explicit_Discrims;
15393 -- Start of processing for Expand_To_Stored_Constraint
15395 begin
15396 if No (Constraint)
15397 or else Is_Empty_Elmt_List (Constraint)
15398 then
15399 return No_Elist;
15400 end if;
15402 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
15404 if No (Explicitly_Discriminated_Type) then
15405 return No_Elist;
15406 end if;
15408 Expansion := New_Elmt_List;
15410 Discriminant :=
15411 First_Stored_Discriminant (Explicitly_Discriminated_Type);
15412 while Present (Discriminant) loop
15413 Append_Elmt
15414 (Get_Discriminant_Value
15415 (Discriminant, Explicitly_Discriminated_Type, Constraint),
15416 To => Expansion);
15417 Next_Stored_Discriminant (Discriminant);
15418 end loop;
15420 return Expansion;
15421 end Expand_To_Stored_Constraint;
15423 ---------------------------
15424 -- Find_Hidden_Interface --
15425 ---------------------------
15427 function Find_Hidden_Interface
15428 (Src : Elist_Id;
15429 Dest : Elist_Id) return Entity_Id
15431 Iface : Entity_Id;
15432 Iface_Elmt : Elmt_Id;
15434 begin
15435 if Present (Src) and then Present (Dest) then
15436 Iface_Elmt := First_Elmt (Src);
15437 while Present (Iface_Elmt) loop
15438 Iface := Node (Iface_Elmt);
15440 if Is_Interface (Iface)
15441 and then not Contain_Interface (Iface, Dest)
15442 then
15443 return Iface;
15444 end if;
15446 Next_Elmt (Iface_Elmt);
15447 end loop;
15448 end if;
15450 return Empty;
15451 end Find_Hidden_Interface;
15453 --------------------
15454 -- Find_Type_Name --
15455 --------------------
15457 function Find_Type_Name (N : Node_Id) return Entity_Id is
15458 Id : constant Entity_Id := Defining_Identifier (N);
15459 Prev : Entity_Id;
15460 New_Id : Entity_Id;
15461 Prev_Par : Node_Id;
15463 procedure Check_Duplicate_Aspects;
15464 -- Check that aspects specified in a completion have not been specified
15465 -- already in the partial view. Type_Invariant and others can be
15466 -- specified on either view but never on both.
15468 procedure Tag_Mismatch;
15469 -- Diagnose a tagged partial view whose full view is untagged.
15470 -- We post the message on the full view, with a reference to
15471 -- the previous partial view. The partial view can be private
15472 -- or incomplete, and these are handled in a different manner,
15473 -- so we determine the position of the error message from the
15474 -- respective slocs of both.
15476 -----------------------------
15477 -- Check_Duplicate_Aspects --
15478 -----------------------------
15479 procedure Check_Duplicate_Aspects is
15480 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
15481 Full_Aspects : constant List_Id := Aspect_Specifications (N);
15482 F_Spec, P_Spec : Node_Id;
15484 begin
15485 if Present (Prev_Aspects) and then Present (Full_Aspects) then
15486 F_Spec := First (Full_Aspects);
15487 while Present (F_Spec) loop
15488 P_Spec := First (Prev_Aspects);
15489 while Present (P_Spec) loop
15491 Chars (Identifier (P_Spec)) = Chars (Identifier (F_Spec))
15492 then
15493 Error_Msg_N
15494 ("aspect already specified in private declaration",
15495 F_Spec);
15496 Remove (F_Spec);
15497 return;
15498 end if;
15500 Next (P_Spec);
15501 end loop;
15503 Next (F_Spec);
15504 end loop;
15505 end if;
15506 end Check_Duplicate_Aspects;
15508 ------------------
15509 -- Tag_Mismatch --
15510 ------------------
15512 procedure Tag_Mismatch is
15513 begin
15514 if Sloc (Prev) < Sloc (Id) then
15515 if Ada_Version >= Ada_2012
15516 and then Nkind (N) = N_Private_Type_Declaration
15517 then
15518 Error_Msg_NE
15519 ("declaration of private } must be a tagged type ", Id, Prev);
15520 else
15521 Error_Msg_NE
15522 ("full declaration of } must be a tagged type ", Id, Prev);
15523 end if;
15525 else
15526 if Ada_Version >= Ada_2012
15527 and then Nkind (N) = N_Private_Type_Declaration
15528 then
15529 Error_Msg_NE
15530 ("declaration of private } must be a tagged type ", Prev, Id);
15531 else
15532 Error_Msg_NE
15533 ("full declaration of } must be a tagged type ", Prev, Id);
15534 end if;
15535 end if;
15536 end Tag_Mismatch;
15538 -- Start of processing for Find_Type_Name
15540 begin
15541 -- Find incomplete declaration, if one was given
15543 Prev := Current_Entity_In_Scope (Id);
15545 -- New type declaration
15547 if No (Prev) then
15548 Enter_Name (Id);
15549 return Id;
15551 -- Previous declaration exists
15553 else
15554 Prev_Par := Parent (Prev);
15556 -- Error if not incomplete/private case except if previous
15557 -- declaration is implicit, etc. Enter_Name will emit error if
15558 -- appropriate.
15560 if not Is_Incomplete_Or_Private_Type (Prev) then
15561 Enter_Name (Id);
15562 New_Id := Id;
15564 -- Check invalid completion of private or incomplete type
15566 elsif not Nkind_In (N, N_Full_Type_Declaration,
15567 N_Task_Type_Declaration,
15568 N_Protected_Type_Declaration)
15569 and then
15570 (Ada_Version < Ada_2012
15571 or else not Is_Incomplete_Type (Prev)
15572 or else not Nkind_In (N, N_Private_Type_Declaration,
15573 N_Private_Extension_Declaration))
15574 then
15575 -- Completion must be a full type declarations (RM 7.3(4))
15577 Error_Msg_Sloc := Sloc (Prev);
15578 Error_Msg_NE ("invalid completion of }", Id, Prev);
15580 -- Set scope of Id to avoid cascaded errors. Entity is never
15581 -- examined again, except when saving globals in generics.
15583 Set_Scope (Id, Current_Scope);
15584 New_Id := Id;
15586 -- If this is a repeated incomplete declaration, no further
15587 -- checks are possible.
15589 if Nkind (N) = N_Incomplete_Type_Declaration then
15590 return Prev;
15591 end if;
15593 -- Case of full declaration of incomplete type
15595 elsif Ekind (Prev) = E_Incomplete_Type
15596 and then (Ada_Version < Ada_2012
15597 or else No (Full_View (Prev))
15598 or else not Is_Private_Type (Full_View (Prev)))
15599 then
15600 -- Indicate that the incomplete declaration has a matching full
15601 -- declaration. The defining occurrence of the incomplete
15602 -- declaration remains the visible one, and the procedure
15603 -- Get_Full_View dereferences it whenever the type is used.
15605 if Present (Full_View (Prev)) then
15606 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15607 end if;
15609 Set_Full_View (Prev, Id);
15610 Append_Entity (Id, Current_Scope);
15611 Set_Is_Public (Id, Is_Public (Prev));
15612 Set_Is_Internal (Id);
15613 New_Id := Prev;
15615 -- If the incomplete view is tagged, a class_wide type has been
15616 -- created already. Use it for the private type as well, in order
15617 -- to prevent multiple incompatible class-wide types that may be
15618 -- created for self-referential anonymous access components.
15620 if Is_Tagged_Type (Prev)
15621 and then Present (Class_Wide_Type (Prev))
15622 then
15623 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
15624 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
15626 -- If the incomplete type is completed by a private declaration
15627 -- the class-wide type remains associated with the incomplete
15628 -- type, to prevent order-of-elaboration issues in gigi, else
15629 -- we associate the class-wide type with the known full view.
15631 if Nkind (N) /= N_Private_Type_Declaration then
15632 Set_Etype (Class_Wide_Type (Id), Id);
15633 end if;
15634 end if;
15636 -- Case of full declaration of private type
15638 else
15639 -- If the private type was a completion of an incomplete type then
15640 -- update Prev to reference the private type
15642 if Ada_Version >= Ada_2012
15643 and then Ekind (Prev) = E_Incomplete_Type
15644 and then Present (Full_View (Prev))
15645 and then Is_Private_Type (Full_View (Prev))
15646 then
15647 Prev := Full_View (Prev);
15648 Prev_Par := Parent (Prev);
15649 end if;
15651 if Nkind (N) = N_Full_Type_Declaration
15652 and then Nkind_In
15653 (Type_Definition (N), N_Record_Definition,
15654 N_Derived_Type_Definition)
15655 and then Interface_Present (Type_Definition (N))
15656 then
15657 Error_Msg_N
15658 ("completion of private type cannot be an interface", N);
15659 end if;
15661 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
15662 if Etype (Prev) /= Prev then
15664 -- Prev is a private subtype or a derived type, and needs
15665 -- no completion.
15667 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
15668 New_Id := Id;
15670 elsif Ekind (Prev) = E_Private_Type
15671 and then Nkind_In (N, N_Task_Type_Declaration,
15672 N_Protected_Type_Declaration)
15673 then
15674 Error_Msg_N
15675 ("completion of nonlimited type cannot be limited", N);
15677 elsif Ekind (Prev) = E_Record_Type_With_Private
15678 and then Nkind_In (N, N_Task_Type_Declaration,
15679 N_Protected_Type_Declaration)
15680 then
15681 if not Is_Limited_Record (Prev) then
15682 Error_Msg_N
15683 ("completion of nonlimited type cannot be limited", N);
15685 elsif No (Interface_List (N)) then
15686 Error_Msg_N
15687 ("completion of tagged private type must be tagged",
15689 end if;
15690 end if;
15692 -- Ada 2005 (AI-251): Private extension declaration of a task
15693 -- type or a protected type. This case arises when covering
15694 -- interface types.
15696 elsif Nkind_In (N, N_Task_Type_Declaration,
15697 N_Protected_Type_Declaration)
15698 then
15699 null;
15701 elsif Nkind (N) /= N_Full_Type_Declaration
15702 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
15703 then
15704 Error_Msg_N
15705 ("full view of private extension must be an extension", N);
15707 elsif not (Abstract_Present (Parent (Prev)))
15708 and then Abstract_Present (Type_Definition (N))
15709 then
15710 Error_Msg_N
15711 ("full view of non-abstract extension cannot be abstract", N);
15712 end if;
15714 if not In_Private_Part (Current_Scope) then
15715 Error_Msg_N
15716 ("declaration of full view must appear in private part", N);
15717 end if;
15719 if Ada_Version >= Ada_2012 then
15720 Check_Duplicate_Aspects;
15721 end if;
15723 Copy_And_Swap (Prev, Id);
15724 Set_Has_Private_Declaration (Prev);
15725 Set_Has_Private_Declaration (Id);
15727 -- Preserve aspect and iterator flags that may have been set on
15728 -- the partial view.
15730 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
15731 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
15733 -- If no error, propagate freeze_node from private to full view.
15734 -- It may have been generated for an early operational item.
15736 if Present (Freeze_Node (Id))
15737 and then Serious_Errors_Detected = 0
15738 and then No (Full_View (Id))
15739 then
15740 Set_Freeze_Node (Prev, Freeze_Node (Id));
15741 Set_Freeze_Node (Id, Empty);
15742 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
15743 end if;
15745 Set_Full_View (Id, Prev);
15746 New_Id := Prev;
15747 end if;
15749 -- Verify that full declaration conforms to partial one
15751 if Is_Incomplete_Or_Private_Type (Prev)
15752 and then Present (Discriminant_Specifications (Prev_Par))
15753 then
15754 if Present (Discriminant_Specifications (N)) then
15755 if Ekind (Prev) = E_Incomplete_Type then
15756 Check_Discriminant_Conformance (N, Prev, Prev);
15757 else
15758 Check_Discriminant_Conformance (N, Prev, Id);
15759 end if;
15761 else
15762 Error_Msg_N
15763 ("missing discriminants in full type declaration", N);
15765 -- To avoid cascaded errors on subsequent use, share the
15766 -- discriminants of the partial view.
15768 Set_Discriminant_Specifications (N,
15769 Discriminant_Specifications (Prev_Par));
15770 end if;
15771 end if;
15773 -- A prior untagged partial view can have an associated class-wide
15774 -- type due to use of the class attribute, and in this case the full
15775 -- type must also be tagged. This Ada 95 usage is deprecated in favor
15776 -- of incomplete tagged declarations, but we check for it.
15778 if Is_Type (Prev)
15779 and then (Is_Tagged_Type (Prev)
15780 or else Present (Class_Wide_Type (Prev)))
15781 then
15782 -- Ada 2012 (AI05-0162): A private type may be the completion of
15783 -- an incomplete type.
15785 if Ada_Version >= Ada_2012
15786 and then Is_Incomplete_Type (Prev)
15787 and then Nkind_In (N, N_Private_Type_Declaration,
15788 N_Private_Extension_Declaration)
15789 then
15790 -- No need to check private extensions since they are tagged
15792 if Nkind (N) = N_Private_Type_Declaration
15793 and then not Tagged_Present (N)
15794 then
15795 Tag_Mismatch;
15796 end if;
15798 -- The full declaration is either a tagged type (including
15799 -- a synchronized type that implements interfaces) or a
15800 -- type extension, otherwise this is an error.
15802 elsif Nkind_In (N, N_Task_Type_Declaration,
15803 N_Protected_Type_Declaration)
15804 then
15805 if No (Interface_List (N))
15806 and then not Error_Posted (N)
15807 then
15808 Tag_Mismatch;
15809 end if;
15811 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
15813 -- Indicate that the previous declaration (tagged incomplete
15814 -- or private declaration) requires the same on the full one.
15816 if not Tagged_Present (Type_Definition (N)) then
15817 Tag_Mismatch;
15818 Set_Is_Tagged_Type (Id);
15819 end if;
15821 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
15822 if No (Record_Extension_Part (Type_Definition (N))) then
15823 Error_Msg_NE
15824 ("full declaration of } must be a record extension",
15825 Prev, Id);
15827 -- Set some attributes to produce a usable full view
15829 Set_Is_Tagged_Type (Id);
15830 end if;
15832 else
15833 Tag_Mismatch;
15834 end if;
15835 end if;
15837 if Present (Prev)
15838 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
15839 and then Present (Premature_Use (Parent (Prev)))
15840 then
15841 Error_Msg_Sloc := Sloc (N);
15842 Error_Msg_N
15843 ("\full declaration #", Premature_Use (Parent (Prev)));
15844 end if;
15846 return New_Id;
15847 end if;
15848 end Find_Type_Name;
15850 -------------------------
15851 -- Find_Type_Of_Object --
15852 -------------------------
15854 function Find_Type_Of_Object
15855 (Obj_Def : Node_Id;
15856 Related_Nod : Node_Id) return Entity_Id
15858 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
15859 P : Node_Id := Parent (Obj_Def);
15860 T : Entity_Id;
15861 Nam : Name_Id;
15863 begin
15864 -- If the parent is a component_definition node we climb to the
15865 -- component_declaration node
15867 if Nkind (P) = N_Component_Definition then
15868 P := Parent (P);
15869 end if;
15871 -- Case of an anonymous array subtype
15873 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
15874 N_Unconstrained_Array_Definition)
15875 then
15876 T := Empty;
15877 Array_Type_Declaration (T, Obj_Def);
15879 -- Create an explicit subtype whenever possible
15881 elsif Nkind (P) /= N_Component_Declaration
15882 and then Def_Kind = N_Subtype_Indication
15883 then
15884 -- Base name of subtype on object name, which will be unique in
15885 -- the current scope.
15887 -- If this is a duplicate declaration, return base type, to avoid
15888 -- generating duplicate anonymous types.
15890 if Error_Posted (P) then
15891 Analyze (Subtype_Mark (Obj_Def));
15892 return Entity (Subtype_Mark (Obj_Def));
15893 end if;
15895 Nam :=
15896 New_External_Name
15897 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
15899 T := Make_Defining_Identifier (Sloc (P), Nam);
15901 Insert_Action (Obj_Def,
15902 Make_Subtype_Declaration (Sloc (P),
15903 Defining_Identifier => T,
15904 Subtype_Indication => Relocate_Node (Obj_Def)));
15906 -- This subtype may need freezing, and this will not be done
15907 -- automatically if the object declaration is not in declarative
15908 -- part. Since this is an object declaration, the type cannot always
15909 -- be frozen here. Deferred constants do not freeze their type
15910 -- (which often enough will be private).
15912 if Nkind (P) = N_Object_Declaration
15913 and then Constant_Present (P)
15914 and then No (Expression (P))
15915 then
15916 null;
15918 -- Here we freeze the base type of object type to catch premature use
15919 -- of discriminated private type without a full view.
15921 else
15922 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
15923 end if;
15925 -- Ada 2005 AI-406: the object definition in an object declaration
15926 -- can be an access definition.
15928 elsif Def_Kind = N_Access_Definition then
15929 T := Access_Definition (Related_Nod, Obj_Def);
15931 Set_Is_Local_Anonymous_Access
15933 V => (Ada_Version < Ada_2012)
15934 or else (Nkind (P) /= N_Object_Declaration)
15935 or else Is_Library_Level_Entity (Defining_Identifier (P)));
15937 -- Otherwise, the object definition is just a subtype_mark
15939 else
15940 T := Process_Subtype (Obj_Def, Related_Nod);
15942 -- If expansion is disabled an object definition that is an aggregate
15943 -- will not get expanded and may lead to scoping problems in the back
15944 -- end, if the object is referenced in an inner scope. In that case
15945 -- create an itype reference for the object definition now. This
15946 -- may be redundant in some cases, but harmless.
15948 if Is_Itype (T)
15949 and then Nkind (Related_Nod) = N_Object_Declaration
15950 and then ASIS_Mode
15951 then
15952 Build_Itype_Reference (T, Related_Nod);
15953 end if;
15954 end if;
15956 return T;
15957 end Find_Type_Of_Object;
15959 --------------------------------
15960 -- Find_Type_Of_Subtype_Indic --
15961 --------------------------------
15963 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
15964 Typ : Entity_Id;
15966 begin
15967 -- Case of subtype mark with a constraint
15969 if Nkind (S) = N_Subtype_Indication then
15970 Find_Type (Subtype_Mark (S));
15971 Typ := Entity (Subtype_Mark (S));
15973 if not
15974 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
15975 then
15976 Error_Msg_N
15977 ("incorrect constraint for this kind of type", Constraint (S));
15978 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
15979 end if;
15981 -- Otherwise we have a subtype mark without a constraint
15983 elsif Error_Posted (S) then
15984 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
15985 return Any_Type;
15987 else
15988 Find_Type (S);
15989 Typ := Entity (S);
15990 end if;
15992 -- Check No_Wide_Characters restriction
15994 Check_Wide_Character_Restriction (Typ, S);
15996 return Typ;
15997 end Find_Type_Of_Subtype_Indic;
15999 -------------------------------------
16000 -- Floating_Point_Type_Declaration --
16001 -------------------------------------
16003 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16004 Digs : constant Node_Id := Digits_Expression (Def);
16005 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16006 Digs_Val : Uint;
16007 Base_Typ : Entity_Id;
16008 Implicit_Base : Entity_Id;
16009 Bound : Node_Id;
16011 function Can_Derive_From (E : Entity_Id) return Boolean;
16012 -- Find if given digits value, and possibly a specified range, allows
16013 -- derivation from specified type
16015 function Find_Base_Type return Entity_Id;
16016 -- Find a predefined base type that Def can derive from, or generate
16017 -- an error and substitute Long_Long_Float if none exists.
16019 ---------------------
16020 -- Can_Derive_From --
16021 ---------------------
16023 function Can_Derive_From (E : Entity_Id) return Boolean is
16024 Spec : constant Entity_Id := Real_Range_Specification (Def);
16026 begin
16027 -- Check specified "digits" constraint
16029 if Digs_Val > Digits_Value (E) then
16030 return False;
16031 end if;
16033 -- Check for matching range, if specified
16035 if Present (Spec) then
16036 if Expr_Value_R (Type_Low_Bound (E)) >
16037 Expr_Value_R (Low_Bound (Spec))
16038 then
16039 return False;
16040 end if;
16042 if Expr_Value_R (Type_High_Bound (E)) <
16043 Expr_Value_R (High_Bound (Spec))
16044 then
16045 return False;
16046 end if;
16047 end if;
16049 return True;
16050 end Can_Derive_From;
16052 --------------------
16053 -- Find_Base_Type --
16054 --------------------
16056 function Find_Base_Type return Entity_Id is
16057 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16059 begin
16060 -- Iterate over the predefined types in order, returning the first
16061 -- one that Def can derive from.
16063 while Present (Choice) loop
16064 if Can_Derive_From (Node (Choice)) then
16065 return Node (Choice);
16066 end if;
16068 Next_Elmt (Choice);
16069 end loop;
16071 -- If we can't derive from any existing type, use Long_Long_Float
16072 -- and give appropriate message explaining the problem.
16074 if Digs_Val > Max_Digs_Val then
16075 -- It might be the case that there is a type with the requested
16076 -- range, just not the combination of digits and range.
16078 Error_Msg_N
16079 ("no predefined type has requested range and precision",
16080 Real_Range_Specification (Def));
16082 else
16083 Error_Msg_N
16084 ("range too large for any predefined type",
16085 Real_Range_Specification (Def));
16086 end if;
16088 return Standard_Long_Long_Float;
16089 end Find_Base_Type;
16091 -- Start of processing for Floating_Point_Type_Declaration
16093 begin
16094 Check_Restriction (No_Floating_Point, Def);
16096 -- Create an implicit base type
16098 Implicit_Base :=
16099 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16101 -- Analyze and verify digits value
16103 Analyze_And_Resolve (Digs, Any_Integer);
16104 Check_Digits_Expression (Digs);
16105 Digs_Val := Expr_Value (Digs);
16107 -- Process possible range spec and find correct type to derive from
16109 Process_Real_Range_Specification (Def);
16111 -- Check that requested number of digits is not too high.
16113 if Digs_Val > Max_Digs_Val then
16114 -- The check for Max_Base_Digits may be somewhat expensive, as it
16115 -- requires reading System, so only do it when necessary.
16117 declare
16118 Max_Base_Digits : constant Uint :=
16119 Expr_Value
16120 (Expression
16121 (Parent (RTE (RE_Max_Base_Digits))));
16123 begin
16124 if Digs_Val > Max_Base_Digits then
16125 Error_Msg_Uint_1 := Max_Base_Digits;
16126 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16128 elsif No (Real_Range_Specification (Def)) then
16129 Error_Msg_Uint_1 := Max_Digs_Val;
16130 Error_Msg_N ("types with more than ^ digits need range spec "
16131 & "(RM 3.5.7(6))", Digs);
16132 end if;
16133 end;
16134 end if;
16136 -- Find a suitable type to derive from or complain and use a substitute
16138 Base_Typ := Find_Base_Type;
16140 -- If there are bounds given in the declaration use them as the bounds
16141 -- of the type, otherwise use the bounds of the predefined base type
16142 -- that was chosen based on the Digits value.
16144 if Present (Real_Range_Specification (Def)) then
16145 Set_Scalar_Range (T, Real_Range_Specification (Def));
16146 Set_Is_Constrained (T);
16148 -- The bounds of this range must be converted to machine numbers
16149 -- in accordance with RM 4.9(38).
16151 Bound := Type_Low_Bound (T);
16153 if Nkind (Bound) = N_Real_Literal then
16154 Set_Realval
16155 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16156 Set_Is_Machine_Number (Bound);
16157 end if;
16159 Bound := Type_High_Bound (T);
16161 if Nkind (Bound) = N_Real_Literal then
16162 Set_Realval
16163 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
16164 Set_Is_Machine_Number (Bound);
16165 end if;
16167 else
16168 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
16169 end if;
16171 -- Complete definition of implicit base and declared first subtype
16173 Set_Etype (Implicit_Base, Base_Typ);
16175 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
16176 Set_Size_Info (Implicit_Base, (Base_Typ));
16177 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
16178 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
16179 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
16180 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
16182 Set_Ekind (T, E_Floating_Point_Subtype);
16183 Set_Etype (T, Implicit_Base);
16185 Set_Size_Info (T, (Implicit_Base));
16186 Set_RM_Size (T, RM_Size (Implicit_Base));
16187 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
16188 Set_Digits_Value (T, Digs_Val);
16189 end Floating_Point_Type_Declaration;
16191 ----------------------------
16192 -- Get_Discriminant_Value --
16193 ----------------------------
16195 -- This is the situation:
16197 -- There is a non-derived type
16199 -- type T0 (Dx, Dy, Dz...)
16201 -- There are zero or more levels of derivation, with each derivation
16202 -- either purely inheriting the discriminants, or defining its own.
16204 -- type Ti is new Ti-1
16205 -- or
16206 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
16207 -- or
16208 -- subtype Ti is ...
16210 -- The subtype issue is avoided by the use of Original_Record_Component,
16211 -- and the fact that derived subtypes also derive the constraints.
16213 -- This chain leads back from
16215 -- Typ_For_Constraint
16217 -- Typ_For_Constraint has discriminants, and the value for each
16218 -- discriminant is given by its corresponding Elmt of Constraints.
16220 -- Discriminant is some discriminant in this hierarchy
16222 -- We need to return its value
16224 -- We do this by recursively searching each level, and looking for
16225 -- Discriminant. Once we get to the bottom, we start backing up
16226 -- returning the value for it which may in turn be a discriminant
16227 -- further up, so on the backup we continue the substitution.
16229 function Get_Discriminant_Value
16230 (Discriminant : Entity_Id;
16231 Typ_For_Constraint : Entity_Id;
16232 Constraint : Elist_Id) return Node_Id
16234 function Root_Corresponding_Discriminant
16235 (Discr : Entity_Id) return Entity_Id;
16236 -- Given a discriminant, traverse the chain of inherited discriminants
16237 -- and return the topmost discriminant.
16239 function Search_Derivation_Levels
16240 (Ti : Entity_Id;
16241 Discrim_Values : Elist_Id;
16242 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
16243 -- This is the routine that performs the recursive search of levels
16244 -- as described above.
16246 -------------------------------------
16247 -- Root_Corresponding_Discriminant --
16248 -------------------------------------
16250 function Root_Corresponding_Discriminant
16251 (Discr : Entity_Id) return Entity_Id
16253 D : Entity_Id;
16255 begin
16256 D := Discr;
16257 while Present (Corresponding_Discriminant (D)) loop
16258 D := Corresponding_Discriminant (D);
16259 end loop;
16261 return D;
16262 end Root_Corresponding_Discriminant;
16264 ------------------------------
16265 -- Search_Derivation_Levels --
16266 ------------------------------
16268 function Search_Derivation_Levels
16269 (Ti : Entity_Id;
16270 Discrim_Values : Elist_Id;
16271 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
16273 Assoc : Elmt_Id;
16274 Disc : Entity_Id;
16275 Result : Node_Or_Entity_Id;
16276 Result_Entity : Node_Id;
16278 begin
16279 -- If inappropriate type, return Error, this happens only in
16280 -- cascaded error situations, and we want to avoid a blow up.
16282 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
16283 return Error;
16284 end if;
16286 -- Look deeper if possible. Use Stored_Constraints only for
16287 -- untagged types. For tagged types use the given constraint.
16288 -- This asymmetry needs explanation???
16290 if not Stored_Discrim_Values
16291 and then Present (Stored_Constraint (Ti))
16292 and then not Is_Tagged_Type (Ti)
16293 then
16294 Result :=
16295 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
16296 else
16297 declare
16298 Td : constant Entity_Id := Etype (Ti);
16300 begin
16301 if Td = Ti then
16302 Result := Discriminant;
16304 else
16305 if Present (Stored_Constraint (Ti)) then
16306 Result :=
16307 Search_Derivation_Levels
16308 (Td, Stored_Constraint (Ti), True);
16309 else
16310 Result :=
16311 Search_Derivation_Levels
16312 (Td, Discrim_Values, Stored_Discrim_Values);
16313 end if;
16314 end if;
16315 end;
16316 end if;
16318 -- Extra underlying places to search, if not found above. For
16319 -- concurrent types, the relevant discriminant appears in the
16320 -- corresponding record. For a type derived from a private type
16321 -- without discriminant, the full view inherits the discriminants
16322 -- of the full view of the parent.
16324 if Result = Discriminant then
16325 if Is_Concurrent_Type (Ti)
16326 and then Present (Corresponding_Record_Type (Ti))
16327 then
16328 Result :=
16329 Search_Derivation_Levels (
16330 Corresponding_Record_Type (Ti),
16331 Discrim_Values,
16332 Stored_Discrim_Values);
16334 elsif Is_Private_Type (Ti)
16335 and then not Has_Discriminants (Ti)
16336 and then Present (Full_View (Ti))
16337 and then Etype (Full_View (Ti)) /= Ti
16338 then
16339 Result :=
16340 Search_Derivation_Levels (
16341 Full_View (Ti),
16342 Discrim_Values,
16343 Stored_Discrim_Values);
16344 end if;
16345 end if;
16347 -- If Result is not a (reference to a) discriminant, return it,
16348 -- otherwise set Result_Entity to the discriminant.
16350 if Nkind (Result) = N_Defining_Identifier then
16351 pragma Assert (Result = Discriminant);
16352 Result_Entity := Result;
16354 else
16355 if not Denotes_Discriminant (Result) then
16356 return Result;
16357 end if;
16359 Result_Entity := Entity (Result);
16360 end if;
16362 -- See if this level of derivation actually has discriminants
16363 -- because tagged derivations can add them, hence the lower
16364 -- levels need not have any.
16366 if not Has_Discriminants (Ti) then
16367 return Result;
16368 end if;
16370 -- Scan Ti's discriminants for Result_Entity,
16371 -- and return its corresponding value, if any.
16373 Result_Entity := Original_Record_Component (Result_Entity);
16375 Assoc := First_Elmt (Discrim_Values);
16377 if Stored_Discrim_Values then
16378 Disc := First_Stored_Discriminant (Ti);
16379 else
16380 Disc := First_Discriminant (Ti);
16381 end if;
16383 while Present (Disc) loop
16384 pragma Assert (Present (Assoc));
16386 if Original_Record_Component (Disc) = Result_Entity then
16387 return Node (Assoc);
16388 end if;
16390 Next_Elmt (Assoc);
16392 if Stored_Discrim_Values then
16393 Next_Stored_Discriminant (Disc);
16394 else
16395 Next_Discriminant (Disc);
16396 end if;
16397 end loop;
16399 -- Could not find it
16401 return Result;
16402 end Search_Derivation_Levels;
16404 -- Local Variables
16406 Result : Node_Or_Entity_Id;
16408 -- Start of processing for Get_Discriminant_Value
16410 begin
16411 -- ??? This routine is a gigantic mess and will be deleted. For the
16412 -- time being just test for the trivial case before calling recurse.
16414 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
16415 declare
16416 D : Entity_Id;
16417 E : Elmt_Id;
16419 begin
16420 D := First_Discriminant (Typ_For_Constraint);
16421 E := First_Elmt (Constraint);
16422 while Present (D) loop
16423 if Chars (D) = Chars (Discriminant) then
16424 return Node (E);
16425 end if;
16427 Next_Discriminant (D);
16428 Next_Elmt (E);
16429 end loop;
16430 end;
16431 end if;
16433 Result := Search_Derivation_Levels
16434 (Typ_For_Constraint, Constraint, False);
16436 -- ??? hack to disappear when this routine is gone
16438 if Nkind (Result) = N_Defining_Identifier then
16439 declare
16440 D : Entity_Id;
16441 E : Elmt_Id;
16443 begin
16444 D := First_Discriminant (Typ_For_Constraint);
16445 E := First_Elmt (Constraint);
16446 while Present (D) loop
16447 if Root_Corresponding_Discriminant (D) = Discriminant then
16448 return Node (E);
16449 end if;
16451 Next_Discriminant (D);
16452 Next_Elmt (E);
16453 end loop;
16454 end;
16455 end if;
16457 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
16458 return Result;
16459 end Get_Discriminant_Value;
16461 --------------------------
16462 -- Has_Range_Constraint --
16463 --------------------------
16465 function Has_Range_Constraint (N : Node_Id) return Boolean is
16466 C : constant Node_Id := Constraint (N);
16468 begin
16469 if Nkind (C) = N_Range_Constraint then
16470 return True;
16472 elsif Nkind (C) = N_Digits_Constraint then
16473 return
16474 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
16475 or else
16476 Present (Range_Constraint (C));
16478 elsif Nkind (C) = N_Delta_Constraint then
16479 return Present (Range_Constraint (C));
16481 else
16482 return False;
16483 end if;
16484 end Has_Range_Constraint;
16486 ------------------------
16487 -- Inherit_Components --
16488 ------------------------
16490 function Inherit_Components
16491 (N : Node_Id;
16492 Parent_Base : Entity_Id;
16493 Derived_Base : Entity_Id;
16494 Is_Tagged : Boolean;
16495 Inherit_Discr : Boolean;
16496 Discs : Elist_Id) return Elist_Id
16498 Assoc_List : constant Elist_Id := New_Elmt_List;
16500 procedure Inherit_Component
16501 (Old_C : Entity_Id;
16502 Plain_Discrim : Boolean := False;
16503 Stored_Discrim : Boolean := False);
16504 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
16505 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
16506 -- True, Old_C is a stored discriminant. If they are both false then
16507 -- Old_C is a regular component.
16509 -----------------------
16510 -- Inherit_Component --
16511 -----------------------
16513 procedure Inherit_Component
16514 (Old_C : Entity_Id;
16515 Plain_Discrim : Boolean := False;
16516 Stored_Discrim : Boolean := False)
16518 procedure Set_Anonymous_Type (Id : Entity_Id);
16519 -- Id denotes the entity of an access discriminant or anonymous
16520 -- access component. Set the type of Id to either the same type of
16521 -- Old_C or create a new one depending on whether the parent and
16522 -- the child types are in the same scope.
16524 ------------------------
16525 -- Set_Anonymous_Type --
16526 ------------------------
16528 procedure Set_Anonymous_Type (Id : Entity_Id) is
16529 Old_Typ : constant Entity_Id := Etype (Old_C);
16531 begin
16532 if Scope (Parent_Base) = Scope (Derived_Base) then
16533 Set_Etype (Id, Old_Typ);
16535 -- The parent and the derived type are in two different scopes.
16536 -- Reuse the type of the original discriminant / component by
16537 -- copying it in order to preserve all attributes.
16539 else
16540 declare
16541 Typ : constant Entity_Id := New_Copy (Old_Typ);
16543 begin
16544 Set_Etype (Id, Typ);
16546 -- Since we do not generate component declarations for
16547 -- inherited components, associate the itype with the
16548 -- derived type.
16550 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
16551 Set_Scope (Typ, Derived_Base);
16552 end;
16553 end if;
16554 end Set_Anonymous_Type;
16556 -- Local variables and constants
16558 New_C : constant Entity_Id := New_Copy (Old_C);
16560 Corr_Discrim : Entity_Id;
16561 Discrim : Entity_Id;
16563 -- Start of processing for Inherit_Component
16565 begin
16566 pragma Assert (not Is_Tagged or else not Stored_Discrim);
16568 Set_Parent (New_C, Parent (Old_C));
16570 -- Regular discriminants and components must be inserted in the scope
16571 -- of the Derived_Base. Do it here.
16573 if not Stored_Discrim then
16574 Enter_Name (New_C);
16575 end if;
16577 -- For tagged types the Original_Record_Component must point to
16578 -- whatever this field was pointing to in the parent type. This has
16579 -- already been achieved by the call to New_Copy above.
16581 if not Is_Tagged then
16582 Set_Original_Record_Component (New_C, New_C);
16583 end if;
16585 -- Set the proper type of an access discriminant
16587 if Ekind (New_C) = E_Discriminant
16588 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
16589 then
16590 Set_Anonymous_Type (New_C);
16591 end if;
16593 -- If we have inherited a component then see if its Etype contains
16594 -- references to Parent_Base discriminants. In this case, replace
16595 -- these references with the constraints given in Discs. We do not
16596 -- do this for the partial view of private types because this is
16597 -- not needed (only the components of the full view will be used
16598 -- for code generation) and cause problem. We also avoid this
16599 -- transformation in some error situations.
16601 if Ekind (New_C) = E_Component then
16603 -- Set the proper type of an anonymous access component
16605 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
16606 Set_Anonymous_Type (New_C);
16608 elsif (Is_Private_Type (Derived_Base)
16609 and then not Is_Generic_Type (Derived_Base))
16610 or else (Is_Empty_Elmt_List (Discs)
16611 and then not Expander_Active)
16612 then
16613 Set_Etype (New_C, Etype (Old_C));
16615 else
16616 -- The current component introduces a circularity of the
16617 -- following kind:
16619 -- limited with Pack_2;
16620 -- package Pack_1 is
16621 -- type T_1 is tagged record
16622 -- Comp : access Pack_2.T_2;
16623 -- ...
16624 -- end record;
16625 -- end Pack_1;
16627 -- with Pack_1;
16628 -- package Pack_2 is
16629 -- type T_2 is new Pack_1.T_1 with ...;
16630 -- end Pack_2;
16632 Set_Etype
16633 (New_C,
16634 Constrain_Component_Type
16635 (Old_C, Derived_Base, N, Parent_Base, Discs));
16636 end if;
16637 end if;
16639 -- In derived tagged types it is illegal to reference a non
16640 -- discriminant component in the parent type. To catch this, mark
16641 -- these components with an Ekind of E_Void. This will be reset in
16642 -- Record_Type_Definition after processing the record extension of
16643 -- the derived type.
16645 -- If the declaration is a private extension, there is no further
16646 -- record extension to process, and the components retain their
16647 -- current kind, because they are visible at this point.
16649 if Is_Tagged and then Ekind (New_C) = E_Component
16650 and then Nkind (N) /= N_Private_Extension_Declaration
16651 then
16652 Set_Ekind (New_C, E_Void);
16653 end if;
16655 if Plain_Discrim then
16656 Set_Corresponding_Discriminant (New_C, Old_C);
16657 Build_Discriminal (New_C);
16659 -- If we are explicitly inheriting a stored discriminant it will be
16660 -- completely hidden.
16662 elsif Stored_Discrim then
16663 Set_Corresponding_Discriminant (New_C, Empty);
16664 Set_Discriminal (New_C, Empty);
16665 Set_Is_Completely_Hidden (New_C);
16667 -- Set the Original_Record_Component of each discriminant in the
16668 -- derived base to point to the corresponding stored that we just
16669 -- created.
16671 Discrim := First_Discriminant (Derived_Base);
16672 while Present (Discrim) loop
16673 Corr_Discrim := Corresponding_Discriminant (Discrim);
16675 -- Corr_Discrim could be missing in an error situation
16677 if Present (Corr_Discrim)
16678 and then Original_Record_Component (Corr_Discrim) = Old_C
16679 then
16680 Set_Original_Record_Component (Discrim, New_C);
16681 end if;
16683 Next_Discriminant (Discrim);
16684 end loop;
16686 Append_Entity (New_C, Derived_Base);
16687 end if;
16689 if not Is_Tagged then
16690 Append_Elmt (Old_C, Assoc_List);
16691 Append_Elmt (New_C, Assoc_List);
16692 end if;
16693 end Inherit_Component;
16695 -- Variables local to Inherit_Component
16697 Loc : constant Source_Ptr := Sloc (N);
16699 Parent_Discrim : Entity_Id;
16700 Stored_Discrim : Entity_Id;
16701 D : Entity_Id;
16702 Component : Entity_Id;
16704 -- Start of processing for Inherit_Components
16706 begin
16707 if not Is_Tagged then
16708 Append_Elmt (Parent_Base, Assoc_List);
16709 Append_Elmt (Derived_Base, Assoc_List);
16710 end if;
16712 -- Inherit parent discriminants if needed
16714 if Inherit_Discr then
16715 Parent_Discrim := First_Discriminant (Parent_Base);
16716 while Present (Parent_Discrim) loop
16717 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
16718 Next_Discriminant (Parent_Discrim);
16719 end loop;
16720 end if;
16722 -- Create explicit stored discrims for untagged types when necessary
16724 if not Has_Unknown_Discriminants (Derived_Base)
16725 and then Has_Discriminants (Parent_Base)
16726 and then not Is_Tagged
16727 and then
16728 (not Inherit_Discr
16729 or else First_Discriminant (Parent_Base) /=
16730 First_Stored_Discriminant (Parent_Base))
16731 then
16732 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
16733 while Present (Stored_Discrim) loop
16734 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
16735 Next_Stored_Discriminant (Stored_Discrim);
16736 end loop;
16737 end if;
16739 -- See if we can apply the second transformation for derived types, as
16740 -- explained in point 6. in the comments above Build_Derived_Record_Type
16741 -- This is achieved by appending Derived_Base discriminants into Discs,
16742 -- which has the side effect of returning a non empty Discs list to the
16743 -- caller of Inherit_Components, which is what we want. This must be
16744 -- done for private derived types if there are explicit stored
16745 -- discriminants, to ensure that we can retrieve the values of the
16746 -- constraints provided in the ancestors.
16748 if Inherit_Discr
16749 and then Is_Empty_Elmt_List (Discs)
16750 and then Present (First_Discriminant (Derived_Base))
16751 and then
16752 (not Is_Private_Type (Derived_Base)
16753 or else Is_Completely_Hidden
16754 (First_Stored_Discriminant (Derived_Base))
16755 or else Is_Generic_Type (Derived_Base))
16756 then
16757 D := First_Discriminant (Derived_Base);
16758 while Present (D) loop
16759 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
16760 Next_Discriminant (D);
16761 end loop;
16762 end if;
16764 -- Finally, inherit non-discriminant components unless they are not
16765 -- visible because defined or inherited from the full view of the
16766 -- parent. Don't inherit the _parent field of the parent type.
16768 Component := First_Entity (Parent_Base);
16769 while Present (Component) loop
16771 -- Ada 2005 (AI-251): Do not inherit components associated with
16772 -- secondary tags of the parent.
16774 if Ekind (Component) = E_Component
16775 and then Present (Related_Type (Component))
16776 then
16777 null;
16779 elsif Ekind (Component) /= E_Component
16780 or else Chars (Component) = Name_uParent
16781 then
16782 null;
16784 -- If the derived type is within the parent type's declarative
16785 -- region, then the components can still be inherited even though
16786 -- they aren't visible at this point. This can occur for cases
16787 -- such as within public child units where the components must
16788 -- become visible upon entering the child unit's private part.
16790 elsif not Is_Visible_Component (Component)
16791 and then not In_Open_Scopes (Scope (Parent_Base))
16792 then
16793 null;
16795 elsif Ekind_In (Derived_Base, E_Private_Type,
16796 E_Limited_Private_Type)
16797 then
16798 null;
16800 else
16801 Inherit_Component (Component);
16802 end if;
16804 Next_Entity (Component);
16805 end loop;
16807 -- For tagged derived types, inherited discriminants cannot be used in
16808 -- component declarations of the record extension part. To achieve this
16809 -- we mark the inherited discriminants as not visible.
16811 if Is_Tagged and then Inherit_Discr then
16812 D := First_Discriminant (Derived_Base);
16813 while Present (D) loop
16814 Set_Is_Immediately_Visible (D, False);
16815 Next_Discriminant (D);
16816 end loop;
16817 end if;
16819 return Assoc_List;
16820 end Inherit_Components;
16822 -----------------------------
16823 -- Inherit_Predicate_Flags --
16824 -----------------------------
16826 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
16827 begin
16828 Set_Has_Predicates (Subt, Has_Predicates (Par));
16829 Set_Has_Static_Predicate_Aspect
16830 (Subt, Has_Static_Predicate_Aspect (Par));
16831 Set_Has_Dynamic_Predicate_Aspect
16832 (Subt, Has_Dynamic_Predicate_Aspect (Par));
16833 end Inherit_Predicate_Flags;
16835 -----------------------
16836 -- Is_Null_Extension --
16837 -----------------------
16839 function Is_Null_Extension (T : Entity_Id) return Boolean is
16840 Type_Decl : constant Node_Id := Parent (Base_Type (T));
16841 Comp_List : Node_Id;
16842 Comp : Node_Id;
16844 begin
16845 if Nkind (Type_Decl) /= N_Full_Type_Declaration
16846 or else not Is_Tagged_Type (T)
16847 or else Nkind (Type_Definition (Type_Decl)) /=
16848 N_Derived_Type_Definition
16849 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
16850 then
16851 return False;
16852 end if;
16854 Comp_List :=
16855 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
16857 if Present (Discriminant_Specifications (Type_Decl)) then
16858 return False;
16860 elsif Present (Comp_List)
16861 and then Is_Non_Empty_List (Component_Items (Comp_List))
16862 then
16863 Comp := First (Component_Items (Comp_List));
16865 -- Only user-defined components are relevant. The component list
16866 -- may also contain a parent component and internal components
16867 -- corresponding to secondary tags, but these do not determine
16868 -- whether this is a null extension.
16870 while Present (Comp) loop
16871 if Comes_From_Source (Comp) then
16872 return False;
16873 end if;
16875 Next (Comp);
16876 end loop;
16878 return True;
16879 else
16880 return True;
16881 end if;
16882 end Is_Null_Extension;
16884 ------------------------------
16885 -- Is_Valid_Constraint_Kind --
16886 ------------------------------
16888 function Is_Valid_Constraint_Kind
16889 (T_Kind : Type_Kind;
16890 Constraint_Kind : Node_Kind) return Boolean
16892 begin
16893 case T_Kind is
16894 when Enumeration_Kind |
16895 Integer_Kind =>
16896 return Constraint_Kind = N_Range_Constraint;
16898 when Decimal_Fixed_Point_Kind =>
16899 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16900 N_Range_Constraint);
16902 when Ordinary_Fixed_Point_Kind =>
16903 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
16904 N_Range_Constraint);
16906 when Float_Kind =>
16907 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
16908 N_Range_Constraint);
16910 when Access_Kind |
16911 Array_Kind |
16912 E_Record_Type |
16913 E_Record_Subtype |
16914 Class_Wide_Kind |
16915 E_Incomplete_Type |
16916 Private_Kind |
16917 Concurrent_Kind =>
16918 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
16920 when others =>
16921 return True; -- Error will be detected later
16922 end case;
16923 end Is_Valid_Constraint_Kind;
16925 --------------------------
16926 -- Is_Visible_Component --
16927 --------------------------
16929 function Is_Visible_Component
16930 (C : Entity_Id;
16931 N : Node_Id := Empty) return Boolean
16933 Original_Comp : Entity_Id := Empty;
16934 Original_Scope : Entity_Id;
16935 Type_Scope : Entity_Id;
16937 function Is_Local_Type (Typ : Entity_Id) return Boolean;
16938 -- Check whether parent type of inherited component is declared locally,
16939 -- possibly within a nested package or instance. The current scope is
16940 -- the derived record itself.
16942 -------------------
16943 -- Is_Local_Type --
16944 -------------------
16946 function Is_Local_Type (Typ : Entity_Id) return Boolean is
16947 Scop : Entity_Id;
16949 begin
16950 Scop := Scope (Typ);
16951 while Present (Scop)
16952 and then Scop /= Standard_Standard
16953 loop
16954 if Scop = Scope (Current_Scope) then
16955 return True;
16956 end if;
16958 Scop := Scope (Scop);
16959 end loop;
16961 return False;
16962 end Is_Local_Type;
16964 -- Start of processing for Is_Visible_Component
16966 begin
16967 if Ekind_In (C, E_Component, E_Discriminant) then
16968 Original_Comp := Original_Record_Component (C);
16969 end if;
16971 if No (Original_Comp) then
16973 -- Premature usage, or previous error
16975 return False;
16977 else
16978 Original_Scope := Scope (Original_Comp);
16979 Type_Scope := Scope (Base_Type (Scope (C)));
16980 end if;
16982 -- For an untagged type derived from a private type, the only visible
16983 -- components are new discriminants. In an instance all components are
16984 -- visible (see Analyze_Selected_Component).
16986 if not Is_Tagged_Type (Original_Scope) then
16987 return not Has_Private_Ancestor (Original_Scope)
16988 or else In_Open_Scopes (Scope (Original_Scope))
16989 or else In_Instance
16990 or else (Ekind (Original_Comp) = E_Discriminant
16991 and then Original_Scope = Type_Scope);
16993 -- If it is _Parent or _Tag, there is no visibility issue
16995 elsif not Comes_From_Source (Original_Comp) then
16996 return True;
16998 -- Discriminants are visible unless the (private) type has unknown
16999 -- discriminants. If the discriminant reference is inserted for a
17000 -- discriminant check on a full view it is also visible.
17002 elsif Ekind (Original_Comp) = E_Discriminant
17003 and then
17004 (not Has_Unknown_Discriminants (Original_Scope)
17005 or else (Present (N)
17006 and then Nkind (N) = N_Selected_Component
17007 and then Nkind (Prefix (N)) = N_Type_Conversion
17008 and then not Comes_From_Source (Prefix (N))))
17009 then
17010 return True;
17012 -- In the body of an instantiation, no need to check for the visibility
17013 -- of a component.
17015 elsif In_Instance_Body then
17016 return True;
17018 -- If the component has been declared in an ancestor which is currently
17019 -- a private type, then it is not visible. The same applies if the
17020 -- component's containing type is not in an open scope and the original
17021 -- component's enclosing type is a visible full view of a private type
17022 -- (which can occur in cases where an attempt is being made to reference
17023 -- a component in a sibling package that is inherited from a visible
17024 -- component of a type in an ancestor package; the component in the
17025 -- sibling package should not be visible even though the component it
17026 -- inherited from is visible). This does not apply however in the case
17027 -- where the scope of the type is a private child unit, or when the
17028 -- parent comes from a local package in which the ancestor is currently
17029 -- visible. The latter suppression of visibility is needed for cases
17030 -- that are tested in B730006.
17032 elsif Is_Private_Type (Original_Scope)
17033 or else
17034 (not Is_Private_Descendant (Type_Scope)
17035 and then not In_Open_Scopes (Type_Scope)
17036 and then Has_Private_Declaration (Original_Scope))
17037 then
17038 -- If the type derives from an entity in a formal package, there
17039 -- are no additional visible components.
17041 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17042 N_Formal_Package_Declaration
17043 then
17044 return False;
17046 -- if we are not in the private part of the current package, there
17047 -- are no additional visible components.
17049 elsif Ekind (Scope (Current_Scope)) = E_Package
17050 and then not In_Private_Part (Scope (Current_Scope))
17051 then
17052 return False;
17053 else
17054 return
17055 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17056 and then In_Open_Scopes (Scope (Original_Scope))
17057 and then Is_Local_Type (Type_Scope);
17058 end if;
17060 -- There is another weird way in which a component may be invisible when
17061 -- the private and the full view are not derived from the same ancestor.
17062 -- Here is an example :
17064 -- type A1 is tagged record F1 : integer; end record;
17065 -- type A2 is new A1 with record F2 : integer; end record;
17066 -- type T is new A1 with private;
17067 -- private
17068 -- type T is new A2 with null record;
17070 -- In this case, the full view of T inherits F1 and F2 but the private
17071 -- view inherits only F1
17073 else
17074 declare
17075 Ancestor : Entity_Id := Scope (C);
17077 begin
17078 loop
17079 if Ancestor = Original_Scope then
17080 return True;
17081 elsif Ancestor = Etype (Ancestor) then
17082 return False;
17083 end if;
17085 Ancestor := Etype (Ancestor);
17086 end loop;
17087 end;
17088 end if;
17089 end Is_Visible_Component;
17091 --------------------------
17092 -- Make_Class_Wide_Type --
17093 --------------------------
17095 procedure Make_Class_Wide_Type (T : Entity_Id) is
17096 CW_Type : Entity_Id;
17097 CW_Name : Name_Id;
17098 Next_E : Entity_Id;
17100 begin
17101 if Present (Class_Wide_Type (T)) then
17103 -- The class-wide type is a partially decorated entity created for a
17104 -- unanalyzed tagged type referenced through a limited with clause.
17105 -- When the tagged type is analyzed, its class-wide type needs to be
17106 -- redecorated. Note that we reuse the entity created by Decorate_
17107 -- Tagged_Type in order to preserve all links.
17109 if Materialize_Entity (Class_Wide_Type (T)) then
17110 CW_Type := Class_Wide_Type (T);
17111 Set_Materialize_Entity (CW_Type, False);
17113 -- The class wide type can have been defined by the partial view, in
17114 -- which case everything is already done.
17116 else
17117 return;
17118 end if;
17120 -- Default case, we need to create a new class-wide type
17122 else
17123 CW_Type :=
17124 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
17125 end if;
17127 -- Inherit root type characteristics
17129 CW_Name := Chars (CW_Type);
17130 Next_E := Next_Entity (CW_Type);
17131 Copy_Node (T, CW_Type);
17132 Set_Comes_From_Source (CW_Type, False);
17133 Set_Chars (CW_Type, CW_Name);
17134 Set_Parent (CW_Type, Parent (T));
17135 Set_Next_Entity (CW_Type, Next_E);
17137 -- Ensure we have a new freeze node for the class-wide type. The partial
17138 -- view may have freeze action of its own, requiring a proper freeze
17139 -- node, and the same freeze node cannot be shared between the two
17140 -- types.
17142 Set_Has_Delayed_Freeze (CW_Type);
17143 Set_Freeze_Node (CW_Type, Empty);
17145 -- Customize the class-wide type: It has no prim. op., it cannot be
17146 -- abstract and its Etype points back to the specific root type.
17148 Set_Ekind (CW_Type, E_Class_Wide_Type);
17149 Set_Is_Tagged_Type (CW_Type, True);
17150 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
17151 Set_Is_Abstract_Type (CW_Type, False);
17152 Set_Is_Constrained (CW_Type, False);
17153 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
17154 Set_Default_SSO (CW_Type);
17156 if Ekind (T) = E_Class_Wide_Subtype then
17157 Set_Etype (CW_Type, Etype (Base_Type (T)));
17158 else
17159 Set_Etype (CW_Type, T);
17160 end if;
17162 -- If this is the class_wide type of a constrained subtype, it does
17163 -- not have discriminants.
17165 Set_Has_Discriminants (CW_Type,
17166 Has_Discriminants (T) and then not Is_Constrained (T));
17168 Set_Has_Unknown_Discriminants (CW_Type, True);
17169 Set_Class_Wide_Type (T, CW_Type);
17170 Set_Equivalent_Type (CW_Type, Empty);
17172 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
17174 Set_Class_Wide_Type (CW_Type, CW_Type);
17175 end Make_Class_Wide_Type;
17177 ----------------
17178 -- Make_Index --
17179 ----------------
17181 procedure Make_Index
17182 (N : Node_Id;
17183 Related_Nod : Node_Id;
17184 Related_Id : Entity_Id := Empty;
17185 Suffix_Index : Nat := 1;
17186 In_Iter_Schm : Boolean := False)
17188 R : Node_Id;
17189 T : Entity_Id;
17190 Def_Id : Entity_Id := Empty;
17191 Found : Boolean := False;
17193 begin
17194 -- For a discrete range used in a constrained array definition and
17195 -- defined by a range, an implicit conversion to the predefined type
17196 -- INTEGER is assumed if each bound is either a numeric literal, a named
17197 -- number, or an attribute, and the type of both bounds (prior to the
17198 -- implicit conversion) is the type universal_integer. Otherwise, both
17199 -- bounds must be of the same discrete type, other than universal
17200 -- integer; this type must be determinable independently of the
17201 -- context, but using the fact that the type must be discrete and that
17202 -- both bounds must have the same type.
17204 -- Character literals also have a universal type in the absence of
17205 -- of additional context, and are resolved to Standard_Character.
17207 if Nkind (N) = N_Range then
17209 -- The index is given by a range constraint. The bounds are known
17210 -- to be of a consistent type.
17212 if not Is_Overloaded (N) then
17213 T := Etype (N);
17215 -- For universal bounds, choose the specific predefined type
17217 if T = Universal_Integer then
17218 T := Standard_Integer;
17220 elsif T = Any_Character then
17221 Ambiguous_Character (Low_Bound (N));
17223 T := Standard_Character;
17224 end if;
17226 -- The node may be overloaded because some user-defined operators
17227 -- are available, but if a universal interpretation exists it is
17228 -- also the selected one.
17230 elsif Universal_Interpretation (N) = Universal_Integer then
17231 T := Standard_Integer;
17233 else
17234 T := Any_Type;
17236 declare
17237 Ind : Interp_Index;
17238 It : Interp;
17240 begin
17241 Get_First_Interp (N, Ind, It);
17242 while Present (It.Typ) loop
17243 if Is_Discrete_Type (It.Typ) then
17245 if Found
17246 and then not Covers (It.Typ, T)
17247 and then not Covers (T, It.Typ)
17248 then
17249 Error_Msg_N ("ambiguous bounds in discrete range", N);
17250 exit;
17251 else
17252 T := It.Typ;
17253 Found := True;
17254 end if;
17255 end if;
17257 Get_Next_Interp (Ind, It);
17258 end loop;
17260 if T = Any_Type then
17261 Error_Msg_N ("discrete type required for range", N);
17262 Set_Etype (N, Any_Type);
17263 return;
17265 elsif T = Universal_Integer then
17266 T := Standard_Integer;
17267 end if;
17268 end;
17269 end if;
17271 if not Is_Discrete_Type (T) then
17272 Error_Msg_N ("discrete type required for range", N);
17273 Set_Etype (N, Any_Type);
17274 return;
17275 end if;
17277 if Nkind (Low_Bound (N)) = N_Attribute_Reference
17278 and then Attribute_Name (Low_Bound (N)) = Name_First
17279 and then Is_Entity_Name (Prefix (Low_Bound (N)))
17280 and then Is_Type (Entity (Prefix (Low_Bound (N))))
17281 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
17282 then
17283 -- The type of the index will be the type of the prefix, as long
17284 -- as the upper bound is 'Last of the same type.
17286 Def_Id := Entity (Prefix (Low_Bound (N)));
17288 if Nkind (High_Bound (N)) /= N_Attribute_Reference
17289 or else Attribute_Name (High_Bound (N)) /= Name_Last
17290 or else not Is_Entity_Name (Prefix (High_Bound (N)))
17291 or else Entity (Prefix (High_Bound (N))) /= Def_Id
17292 then
17293 Def_Id := Empty;
17294 end if;
17295 end if;
17297 R := N;
17298 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
17300 elsif Nkind (N) = N_Subtype_Indication then
17302 -- The index is given by a subtype with a range constraint
17304 T := Base_Type (Entity (Subtype_Mark (N)));
17306 if not Is_Discrete_Type (T) then
17307 Error_Msg_N ("discrete type required for range", N);
17308 Set_Etype (N, Any_Type);
17309 return;
17310 end if;
17312 R := Range_Expression (Constraint (N));
17314 Resolve (R, T);
17315 Process_Range_Expr_In_Decl
17316 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
17318 elsif Nkind (N) = N_Attribute_Reference then
17320 -- Catch beginner's error (use of attribute other than 'Range)
17322 if Attribute_Name (N) /= Name_Range then
17323 Error_Msg_N ("expect attribute ''Range", N);
17324 Set_Etype (N, Any_Type);
17325 return;
17326 end if;
17328 -- If the node denotes the range of a type mark, that is also the
17329 -- resulting type, and we do not need to create an Itype for it.
17331 if Is_Entity_Name (Prefix (N))
17332 and then Comes_From_Source (N)
17333 and then Is_Type (Entity (Prefix (N)))
17334 and then Is_Discrete_Type (Entity (Prefix (N)))
17335 then
17336 Def_Id := Entity (Prefix (N));
17337 end if;
17339 Analyze_And_Resolve (N);
17340 T := Etype (N);
17341 R := N;
17343 -- If none of the above, must be a subtype. We convert this to a
17344 -- range attribute reference because in the case of declared first
17345 -- named subtypes, the types in the range reference can be different
17346 -- from the type of the entity. A range attribute normalizes the
17347 -- reference and obtains the correct types for the bounds.
17349 -- This transformation is in the nature of an expansion, is only
17350 -- done if expansion is active. In particular, it is not done on
17351 -- formal generic types, because we need to retain the name of the
17352 -- original index for instantiation purposes.
17354 else
17355 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
17356 Error_Msg_N ("invalid subtype mark in discrete range ", N);
17357 Set_Etype (N, Any_Integer);
17358 return;
17360 else
17361 -- The type mark may be that of an incomplete type. It is only
17362 -- now that we can get the full view, previous analysis does
17363 -- not look specifically for a type mark.
17365 Set_Entity (N, Get_Full_View (Entity (N)));
17366 Set_Etype (N, Entity (N));
17367 Def_Id := Entity (N);
17369 if not Is_Discrete_Type (Def_Id) then
17370 Error_Msg_N ("discrete type required for index", N);
17371 Set_Etype (N, Any_Type);
17372 return;
17373 end if;
17374 end if;
17376 if Expander_Active then
17377 Rewrite (N,
17378 Make_Attribute_Reference (Sloc (N),
17379 Attribute_Name => Name_Range,
17380 Prefix => Relocate_Node (N)));
17382 -- The original was a subtype mark that does not freeze. This
17383 -- means that the rewritten version must not freeze either.
17385 Set_Must_Not_Freeze (N);
17386 Set_Must_Not_Freeze (Prefix (N));
17387 Analyze_And_Resolve (N);
17388 T := Etype (N);
17389 R := N;
17391 -- If expander is inactive, type is legal, nothing else to construct
17393 else
17394 return;
17395 end if;
17396 end if;
17398 if not Is_Discrete_Type (T) then
17399 Error_Msg_N ("discrete type required for range", N);
17400 Set_Etype (N, Any_Type);
17401 return;
17403 elsif T = Any_Type then
17404 Set_Etype (N, Any_Type);
17405 return;
17406 end if;
17408 -- We will now create the appropriate Itype to describe the range, but
17409 -- first a check. If we originally had a subtype, then we just label
17410 -- the range with this subtype. Not only is there no need to construct
17411 -- a new subtype, but it is wrong to do so for two reasons:
17413 -- 1. A legality concern, if we have a subtype, it must not freeze,
17414 -- and the Itype would cause freezing incorrectly
17416 -- 2. An efficiency concern, if we created an Itype, it would not be
17417 -- recognized as the same type for the purposes of eliminating
17418 -- checks in some circumstances.
17420 -- We signal this case by setting the subtype entity in Def_Id
17422 if No (Def_Id) then
17423 Def_Id :=
17424 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
17425 Set_Etype (Def_Id, Base_Type (T));
17427 if Is_Signed_Integer_Type (T) then
17428 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
17430 elsif Is_Modular_Integer_Type (T) then
17431 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
17433 else
17434 Set_Ekind (Def_Id, E_Enumeration_Subtype);
17435 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
17436 Set_First_Literal (Def_Id, First_Literal (T));
17437 end if;
17439 Set_Size_Info (Def_Id, (T));
17440 Set_RM_Size (Def_Id, RM_Size (T));
17441 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
17443 Set_Scalar_Range (Def_Id, R);
17444 Conditional_Delay (Def_Id, T);
17446 if Nkind (N) = N_Subtype_Indication then
17447 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
17448 end if;
17450 -- In the subtype indication case, if the immediate parent of the
17451 -- new subtype is non-static, then the subtype we create is non-
17452 -- static, even if its bounds are static.
17454 if Nkind (N) = N_Subtype_Indication
17455 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
17456 then
17457 Set_Is_Non_Static_Subtype (Def_Id);
17458 end if;
17459 end if;
17461 -- Final step is to label the index with this constructed type
17463 Set_Etype (N, Def_Id);
17464 end Make_Index;
17466 ------------------------------
17467 -- Modular_Type_Declaration --
17468 ------------------------------
17470 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17471 Mod_Expr : constant Node_Id := Expression (Def);
17472 M_Val : Uint;
17474 procedure Set_Modular_Size (Bits : Int);
17475 -- Sets RM_Size to Bits, and Esize to normal word size above this
17477 ----------------------
17478 -- Set_Modular_Size --
17479 ----------------------
17481 procedure Set_Modular_Size (Bits : Int) is
17482 begin
17483 Set_RM_Size (T, UI_From_Int (Bits));
17485 if Bits <= 8 then
17486 Init_Esize (T, 8);
17488 elsif Bits <= 16 then
17489 Init_Esize (T, 16);
17491 elsif Bits <= 32 then
17492 Init_Esize (T, 32);
17494 else
17495 Init_Esize (T, System_Max_Binary_Modulus_Power);
17496 end if;
17498 if not Non_Binary_Modulus (T)
17499 and then Esize (T) = RM_Size (T)
17500 then
17501 Set_Is_Known_Valid (T);
17502 end if;
17503 end Set_Modular_Size;
17505 -- Start of processing for Modular_Type_Declaration
17507 begin
17508 -- If the mod expression is (exactly) 2 * literal, where literal is
17509 -- 64 or less,then almost certainly the * was meant to be **. Warn.
17511 if Warn_On_Suspicious_Modulus_Value
17512 and then Nkind (Mod_Expr) = N_Op_Multiply
17513 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
17514 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
17515 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
17516 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
17517 then
17518 Error_Msg_N
17519 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
17520 end if;
17522 -- Proceed with analysis of mod expression
17524 Analyze_And_Resolve (Mod_Expr, Any_Integer);
17525 Set_Etype (T, T);
17526 Set_Ekind (T, E_Modular_Integer_Type);
17527 Init_Alignment (T);
17528 Set_Is_Constrained (T);
17530 if not Is_OK_Static_Expression (Mod_Expr) then
17531 Flag_Non_Static_Expr
17532 ("non-static expression used for modular type bound!", Mod_Expr);
17533 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17534 else
17535 M_Val := Expr_Value (Mod_Expr);
17536 end if;
17538 if M_Val < 1 then
17539 Error_Msg_N ("modulus value must be positive", Mod_Expr);
17540 M_Val := 2 ** System_Max_Binary_Modulus_Power;
17541 end if;
17543 if M_Val > 2 ** Standard_Long_Integer_Size then
17544 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
17545 end if;
17547 Set_Modulus (T, M_Val);
17549 -- Create bounds for the modular type based on the modulus given in
17550 -- the type declaration and then analyze and resolve those bounds.
17552 Set_Scalar_Range (T,
17553 Make_Range (Sloc (Mod_Expr),
17554 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
17555 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
17557 -- Properly analyze the literals for the range. We do this manually
17558 -- because we can't go calling Resolve, since we are resolving these
17559 -- bounds with the type, and this type is certainly not complete yet.
17561 Set_Etype (Low_Bound (Scalar_Range (T)), T);
17562 Set_Etype (High_Bound (Scalar_Range (T)), T);
17563 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
17564 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
17566 -- Loop through powers of two to find number of bits required
17568 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
17570 -- Binary case
17572 if M_Val = 2 ** Bits then
17573 Set_Modular_Size (Bits);
17574 return;
17576 -- Non-binary case
17578 elsif M_Val < 2 ** Bits then
17579 Check_SPARK_Restriction ("modulus should be a power of 2", T);
17580 Set_Non_Binary_Modulus (T);
17582 if Bits > System_Max_Nonbinary_Modulus_Power then
17583 Error_Msg_Uint_1 :=
17584 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
17585 Error_Msg_F
17586 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
17587 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17588 return;
17590 else
17591 -- In the non-binary case, set size as per RM 13.3(55)
17593 Set_Modular_Size (Bits);
17594 return;
17595 end if;
17596 end if;
17598 end loop;
17600 -- If we fall through, then the size exceed System.Max_Binary_Modulus
17601 -- so we just signal an error and set the maximum size.
17603 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
17604 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
17606 Set_Modular_Size (System_Max_Binary_Modulus_Power);
17607 Init_Alignment (T);
17609 end Modular_Type_Declaration;
17611 --------------------------
17612 -- New_Concatenation_Op --
17613 --------------------------
17615 procedure New_Concatenation_Op (Typ : Entity_Id) is
17616 Loc : constant Source_Ptr := Sloc (Typ);
17617 Op : Entity_Id;
17619 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
17620 -- Create abbreviated declaration for the formal of a predefined
17621 -- Operator 'Op' of type 'Typ'
17623 --------------------
17624 -- Make_Op_Formal --
17625 --------------------
17627 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
17628 Formal : Entity_Id;
17629 begin
17630 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
17631 Set_Etype (Formal, Typ);
17632 Set_Mechanism (Formal, Default_Mechanism);
17633 return Formal;
17634 end Make_Op_Formal;
17636 -- Start of processing for New_Concatenation_Op
17638 begin
17639 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
17641 Set_Ekind (Op, E_Operator);
17642 Set_Scope (Op, Current_Scope);
17643 Set_Etype (Op, Typ);
17644 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
17645 Set_Is_Immediately_Visible (Op);
17646 Set_Is_Intrinsic_Subprogram (Op);
17647 Set_Has_Completion (Op);
17648 Append_Entity (Op, Current_Scope);
17650 Set_Name_Entity_Id (Name_Op_Concat, Op);
17652 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17653 Append_Entity (Make_Op_Formal (Typ, Op), Op);
17654 end New_Concatenation_Op;
17656 -------------------------
17657 -- OK_For_Limited_Init --
17658 -------------------------
17660 -- ???Check all calls of this, and compare the conditions under which it's
17661 -- called.
17663 function OK_For_Limited_Init
17664 (Typ : Entity_Id;
17665 Exp : Node_Id) return Boolean
17667 begin
17668 return Is_CPP_Constructor_Call (Exp)
17669 or else (Ada_Version >= Ada_2005
17670 and then not Debug_Flag_Dot_L
17671 and then OK_For_Limited_Init_In_05 (Typ, Exp));
17672 end OK_For_Limited_Init;
17674 -------------------------------
17675 -- OK_For_Limited_Init_In_05 --
17676 -------------------------------
17678 function OK_For_Limited_Init_In_05
17679 (Typ : Entity_Id;
17680 Exp : Node_Id) return Boolean
17682 begin
17683 -- An object of a limited interface type can be initialized with any
17684 -- expression of a nonlimited descendant type.
17686 if Is_Class_Wide_Type (Typ)
17687 and then Is_Limited_Interface (Typ)
17688 and then not Is_Limited_Type (Etype (Exp))
17689 then
17690 return True;
17691 end if;
17693 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
17694 -- case of limited aggregates (including extension aggregates), and
17695 -- function calls. The function call may have been given in prefixed
17696 -- notation, in which case the original node is an indexed component.
17697 -- If the function is parameterless, the original node was an explicit
17698 -- dereference. The function may also be parameterless, in which case
17699 -- the source node is just an identifier.
17701 case Nkind (Original_Node (Exp)) is
17702 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
17703 return True;
17705 when N_Identifier =>
17706 return Present (Entity (Original_Node (Exp)))
17707 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
17709 when N_Qualified_Expression =>
17710 return
17711 OK_For_Limited_Init_In_05
17712 (Typ, Expression (Original_Node (Exp)));
17714 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
17715 -- with a function call, the expander has rewritten the call into an
17716 -- N_Type_Conversion node to force displacement of the pointer to
17717 -- reference the component containing the secondary dispatch table.
17718 -- Otherwise a type conversion is not a legal context.
17719 -- A return statement for a build-in-place function returning a
17720 -- synchronized type also introduces an unchecked conversion.
17722 when N_Type_Conversion |
17723 N_Unchecked_Type_Conversion =>
17724 return not Comes_From_Source (Exp)
17725 and then
17726 OK_For_Limited_Init_In_05
17727 (Typ, Expression (Original_Node (Exp)));
17729 when N_Indexed_Component |
17730 N_Selected_Component |
17731 N_Explicit_Dereference =>
17732 return Nkind (Exp) = N_Function_Call;
17734 -- A use of 'Input is a function call, hence allowed. Normally the
17735 -- attribute will be changed to a call, but the attribute by itself
17736 -- can occur with -gnatc.
17738 when N_Attribute_Reference =>
17739 return Attribute_Name (Original_Node (Exp)) = Name_Input;
17741 -- For a case expression, all dependent expressions must be legal
17743 when N_Case_Expression =>
17744 declare
17745 Alt : Node_Id;
17747 begin
17748 Alt := First (Alternatives (Original_Node (Exp)));
17749 while Present (Alt) loop
17750 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
17751 return False;
17752 end if;
17754 Next (Alt);
17755 end loop;
17757 return True;
17758 end;
17760 -- For an if expression, all dependent expressions must be legal
17762 when N_If_Expression =>
17763 declare
17764 Then_Expr : constant Node_Id :=
17765 Next (First (Expressions (Original_Node (Exp))));
17766 Else_Expr : constant Node_Id := Next (Then_Expr);
17767 begin
17768 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
17769 and then
17770 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
17771 end;
17773 when others =>
17774 return False;
17775 end case;
17776 end OK_For_Limited_Init_In_05;
17778 -------------------------------------------
17779 -- Ordinary_Fixed_Point_Type_Declaration --
17780 -------------------------------------------
17782 procedure Ordinary_Fixed_Point_Type_Declaration
17783 (T : Entity_Id;
17784 Def : Node_Id)
17786 Loc : constant Source_Ptr := Sloc (Def);
17787 Delta_Expr : constant Node_Id := Delta_Expression (Def);
17788 RRS : constant Node_Id := Real_Range_Specification (Def);
17789 Implicit_Base : Entity_Id;
17790 Delta_Val : Ureal;
17791 Small_Val : Ureal;
17792 Low_Val : Ureal;
17793 High_Val : Ureal;
17795 begin
17796 Check_Restriction (No_Fixed_Point, Def);
17798 -- Create implicit base type
17800 Implicit_Base :=
17801 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
17802 Set_Etype (Implicit_Base, Implicit_Base);
17804 -- Analyze and process delta expression
17806 Analyze_And_Resolve (Delta_Expr, Any_Real);
17808 Check_Delta_Expression (Delta_Expr);
17809 Delta_Val := Expr_Value_R (Delta_Expr);
17811 Set_Delta_Value (Implicit_Base, Delta_Val);
17813 -- Compute default small from given delta, which is the largest power
17814 -- of two that does not exceed the given delta value.
17816 declare
17817 Tmp : Ureal;
17818 Scale : Int;
17820 begin
17821 Tmp := Ureal_1;
17822 Scale := 0;
17824 if Delta_Val < Ureal_1 then
17825 while Delta_Val < Tmp loop
17826 Tmp := Tmp / Ureal_2;
17827 Scale := Scale + 1;
17828 end loop;
17830 else
17831 loop
17832 Tmp := Tmp * Ureal_2;
17833 exit when Tmp > Delta_Val;
17834 Scale := Scale - 1;
17835 end loop;
17836 end if;
17838 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
17839 end;
17841 Set_Small_Value (Implicit_Base, Small_Val);
17843 -- If no range was given, set a dummy range
17845 if RRS <= Empty_Or_Error then
17846 Low_Val := -Small_Val;
17847 High_Val := Small_Val;
17849 -- Otherwise analyze and process given range
17851 else
17852 declare
17853 Low : constant Node_Id := Low_Bound (RRS);
17854 High : constant Node_Id := High_Bound (RRS);
17856 begin
17857 Analyze_And_Resolve (Low, Any_Real);
17858 Analyze_And_Resolve (High, Any_Real);
17859 Check_Real_Bound (Low);
17860 Check_Real_Bound (High);
17862 -- Obtain and set the range
17864 Low_Val := Expr_Value_R (Low);
17865 High_Val := Expr_Value_R (High);
17867 if Low_Val > High_Val then
17868 Error_Msg_NE ("??fixed point type& has null range", Def, T);
17869 end if;
17870 end;
17871 end if;
17873 -- The range for both the implicit base and the declared first subtype
17874 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
17875 -- set a temporary range in place. Note that the bounds of the base
17876 -- type will be widened to be symmetrical and to fill the available
17877 -- bits when the type is frozen.
17879 -- We could do this with all discrete types, and probably should, but
17880 -- we absolutely have to do it for fixed-point, since the end-points
17881 -- of the range and the size are determined by the small value, which
17882 -- could be reset before the freeze point.
17884 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
17885 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
17887 -- Complete definition of first subtype
17889 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
17890 Set_Etype (T, Implicit_Base);
17891 Init_Size_Align (T);
17892 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
17893 Set_Small_Value (T, Small_Val);
17894 Set_Delta_Value (T, Delta_Val);
17895 Set_Is_Constrained (T);
17897 end Ordinary_Fixed_Point_Type_Declaration;
17899 ----------------------------------------
17900 -- Prepare_Private_Subtype_Completion --
17901 ----------------------------------------
17903 procedure Prepare_Private_Subtype_Completion
17904 (Id : Entity_Id;
17905 Related_Nod : Node_Id)
17907 Id_B : constant Entity_Id := Base_Type (Id);
17908 Full_B : constant Entity_Id := Full_View (Id_B);
17909 Full : Entity_Id;
17911 begin
17912 if Present (Full_B) then
17914 -- The Base_Type is already completed, we can complete the subtype
17915 -- now. We have to create a new entity with the same name, Thus we
17916 -- can't use Create_Itype.
17918 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
17919 Set_Is_Itype (Full);
17920 Set_Associated_Node_For_Itype (Full, Related_Nod);
17921 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
17922 end if;
17924 -- The parent subtype may be private, but the base might not, in some
17925 -- nested instances. In that case, the subtype does not need to be
17926 -- exchanged. It would still be nice to make private subtypes and their
17927 -- bases consistent at all times ???
17929 if Is_Private_Type (Id_B) then
17930 Append_Elmt (Id, Private_Dependents (Id_B));
17931 end if;
17932 end Prepare_Private_Subtype_Completion;
17934 ---------------------------
17935 -- Process_Discriminants --
17936 ---------------------------
17938 procedure Process_Discriminants
17939 (N : Node_Id;
17940 Prev : Entity_Id := Empty)
17942 Elist : constant Elist_Id := New_Elmt_List;
17943 Id : Node_Id;
17944 Discr : Node_Id;
17945 Discr_Number : Uint;
17946 Discr_Type : Entity_Id;
17947 Default_Present : Boolean := False;
17948 Default_Not_Present : Boolean := False;
17950 begin
17951 -- A composite type other than an array type can have discriminants.
17952 -- On entry, the current scope is the composite type.
17954 -- The discriminants are initially entered into the scope of the type
17955 -- via Enter_Name with the default Ekind of E_Void to prevent premature
17956 -- use, as explained at the end of this procedure.
17958 Discr := First (Discriminant_Specifications (N));
17959 while Present (Discr) loop
17960 Enter_Name (Defining_Identifier (Discr));
17962 -- For navigation purposes we add a reference to the discriminant
17963 -- in the entity for the type. If the current declaration is a
17964 -- completion, place references on the partial view. Otherwise the
17965 -- type is the current scope.
17967 if Present (Prev) then
17969 -- The references go on the partial view, if present. If the
17970 -- partial view has discriminants, the references have been
17971 -- generated already.
17973 if not Has_Discriminants (Prev) then
17974 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
17975 end if;
17976 else
17977 Generate_Reference
17978 (Current_Scope, Defining_Identifier (Discr), 'd');
17979 end if;
17981 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
17982 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
17984 -- Ada 2005 (AI-254)
17986 if Present (Access_To_Subprogram_Definition
17987 (Discriminant_Type (Discr)))
17988 and then Protected_Present (Access_To_Subprogram_Definition
17989 (Discriminant_Type (Discr)))
17990 then
17991 Discr_Type :=
17992 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
17993 end if;
17995 else
17996 Find_Type (Discriminant_Type (Discr));
17997 Discr_Type := Etype (Discriminant_Type (Discr));
17999 if Error_Posted (Discriminant_Type (Discr)) then
18000 Discr_Type := Any_Type;
18001 end if;
18002 end if;
18004 if Is_Access_Type (Discr_Type) then
18006 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
18007 -- record types
18009 if Ada_Version < Ada_2005 then
18010 Check_Access_Discriminant_Requires_Limited
18011 (Discr, Discriminant_Type (Discr));
18012 end if;
18014 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18015 Error_Msg_N
18016 ("(Ada 83) access discriminant not allowed", Discr);
18017 end if;
18019 elsif not Is_Discrete_Type (Discr_Type) then
18020 Error_Msg_N ("discriminants must have a discrete or access type",
18021 Discriminant_Type (Discr));
18022 end if;
18024 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18026 -- If a discriminant specification includes the assignment compound
18027 -- delimiter followed by an expression, the expression is the default
18028 -- expression of the discriminant; the default expression must be of
18029 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18030 -- a default expression, we do the special preanalysis, since this
18031 -- expression does not freeze (see "Handling of Default and Per-
18032 -- Object Expressions" in spec of package Sem).
18034 if Present (Expression (Discr)) then
18035 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18037 if Nkind (N) = N_Formal_Type_Declaration then
18038 Error_Msg_N
18039 ("discriminant defaults not allowed for formal type",
18040 Expression (Discr));
18042 -- Flag an error for a tagged type with defaulted discriminants,
18043 -- excluding limited tagged types when compiling for Ada 2012
18044 -- (see AI05-0214).
18046 elsif Is_Tagged_Type (Current_Scope)
18047 and then (not Is_Limited_Type (Current_Scope)
18048 or else Ada_Version < Ada_2012)
18049 and then Comes_From_Source (N)
18050 then
18051 -- Note: see similar test in Check_Or_Process_Discriminants, to
18052 -- handle the (illegal) case of the completion of an untagged
18053 -- view with discriminants with defaults by a tagged full view.
18054 -- We skip the check if Discr does not come from source, to
18055 -- account for the case of an untagged derived type providing
18056 -- defaults for a renamed discriminant from a private untagged
18057 -- ancestor with a tagged full view (ACATS B460006).
18059 if Ada_Version >= Ada_2012 then
18060 Error_Msg_N
18061 ("discriminants of nonlimited tagged type cannot have"
18062 & " defaults",
18063 Expression (Discr));
18064 else
18065 Error_Msg_N
18066 ("discriminants of tagged type cannot have defaults",
18067 Expression (Discr));
18068 end if;
18070 else
18071 Default_Present := True;
18072 Append_Elmt (Expression (Discr), Elist);
18074 -- Tag the defining identifiers for the discriminants with
18075 -- their corresponding default expressions from the tree.
18077 Set_Discriminant_Default_Value
18078 (Defining_Identifier (Discr), Expression (Discr));
18079 end if;
18081 else
18082 Default_Not_Present := True;
18083 end if;
18085 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
18086 -- Discr_Type but with the null-exclusion attribute
18088 if Ada_Version >= Ada_2005 then
18090 -- Ada 2005 (AI-231): Static checks
18092 if Can_Never_Be_Null (Discr_Type) then
18093 Null_Exclusion_Static_Checks (Discr);
18095 elsif Is_Access_Type (Discr_Type)
18096 and then Null_Exclusion_Present (Discr)
18098 -- No need to check itypes because in their case this check
18099 -- was done at their point of creation
18101 and then not Is_Itype (Discr_Type)
18102 then
18103 if Can_Never_Be_Null (Discr_Type) then
18104 Error_Msg_NE
18105 ("`NOT NULL` not allowed (& already excludes null)",
18106 Discr,
18107 Discr_Type);
18108 end if;
18110 Set_Etype (Defining_Identifier (Discr),
18111 Create_Null_Excluding_Itype
18112 (T => Discr_Type,
18113 Related_Nod => Discr));
18115 -- Check for improper null exclusion if the type is otherwise
18116 -- legal for a discriminant.
18118 elsif Null_Exclusion_Present (Discr)
18119 and then Is_Discrete_Type (Discr_Type)
18120 then
18121 Error_Msg_N
18122 ("null exclusion can only apply to an access type", Discr);
18123 end if;
18125 -- Ada 2005 (AI-402): access discriminants of nonlimited types
18126 -- can't have defaults. Synchronized types, or types that are
18127 -- explicitly limited are fine, but special tests apply to derived
18128 -- types in generics: in a generic body we have to assume the
18129 -- worst, and therefore defaults are not allowed if the parent is
18130 -- a generic formal private type (see ACATS B370001).
18132 if Is_Access_Type (Discr_Type) and then Default_Present then
18133 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
18134 or else Is_Limited_Record (Current_Scope)
18135 or else Is_Concurrent_Type (Current_Scope)
18136 or else Is_Concurrent_Record_Type (Current_Scope)
18137 or else Ekind (Current_Scope) = E_Limited_Private_Type
18138 then
18139 if not Is_Derived_Type (Current_Scope)
18140 or else not Is_Generic_Type (Etype (Current_Scope))
18141 or else not In_Package_Body (Scope (Etype (Current_Scope)))
18142 or else Limited_Present
18143 (Type_Definition (Parent (Current_Scope)))
18144 then
18145 null;
18147 else
18148 Error_Msg_N ("access discriminants of nonlimited types",
18149 Expression (Discr));
18150 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18151 end if;
18153 elsif Present (Expression (Discr)) then
18154 Error_Msg_N
18155 ("(Ada 2005) access discriminants of nonlimited types",
18156 Expression (Discr));
18157 Error_Msg_N ("\cannot have defaults", Expression (Discr));
18158 end if;
18159 end if;
18160 end if;
18162 -- A discriminant cannot be effectively volatile. This check is only
18163 -- relevant when SPARK_Mode is on as it is not standard Ada legality
18164 -- rule (SPARK RM 7.1.3(6)).
18166 if SPARK_Mode = On
18167 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
18168 then
18169 Error_Msg_N ("discriminant cannot be volatile", Discr);
18170 end if;
18172 Next (Discr);
18173 end loop;
18175 -- An element list consisting of the default expressions of the
18176 -- discriminants is constructed in the above loop and used to set
18177 -- the Discriminant_Constraint attribute for the type. If an object
18178 -- is declared of this (record or task) type without any explicit
18179 -- discriminant constraint given, this element list will form the
18180 -- actual parameters for the corresponding initialization procedure
18181 -- for the type.
18183 Set_Discriminant_Constraint (Current_Scope, Elist);
18184 Set_Stored_Constraint (Current_Scope, No_Elist);
18186 -- Default expressions must be provided either for all or for none
18187 -- of the discriminants of a discriminant part. (RM 3.7.1)
18189 if Default_Present and then Default_Not_Present then
18190 Error_Msg_N
18191 ("incomplete specification of defaults for discriminants", N);
18192 end if;
18194 -- The use of the name of a discriminant is not allowed in default
18195 -- expressions of a discriminant part if the specification of the
18196 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
18198 -- To detect this, the discriminant names are entered initially with an
18199 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
18200 -- attempt to use a void entity (for example in an expression that is
18201 -- type-checked) produces the error message: premature usage. Now after
18202 -- completing the semantic analysis of the discriminant part, we can set
18203 -- the Ekind of all the discriminants appropriately.
18205 Discr := First (Discriminant_Specifications (N));
18206 Discr_Number := Uint_1;
18207 while Present (Discr) loop
18208 Id := Defining_Identifier (Discr);
18209 Set_Ekind (Id, E_Discriminant);
18210 Init_Component_Location (Id);
18211 Init_Esize (Id);
18212 Set_Discriminant_Number (Id, Discr_Number);
18214 -- Make sure this is always set, even in illegal programs
18216 Set_Corresponding_Discriminant (Id, Empty);
18218 -- Initialize the Original_Record_Component to the entity itself.
18219 -- Inherit_Components will propagate the right value to
18220 -- discriminants in derived record types.
18222 Set_Original_Record_Component (Id, Id);
18224 -- Create the discriminal for the discriminant
18226 Build_Discriminal (Id);
18228 Next (Discr);
18229 Discr_Number := Discr_Number + 1;
18230 end loop;
18232 Set_Has_Discriminants (Current_Scope);
18233 end Process_Discriminants;
18235 -----------------------
18236 -- Process_Full_View --
18237 -----------------------
18239 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
18240 Priv_Parent : Entity_Id;
18241 Full_Parent : Entity_Id;
18242 Full_Indic : Node_Id;
18244 procedure Collect_Implemented_Interfaces
18245 (Typ : Entity_Id;
18246 Ifaces : Elist_Id);
18247 -- Ada 2005: Gather all the interfaces that Typ directly or
18248 -- inherently implements. Duplicate entries are not added to
18249 -- the list Ifaces.
18251 ------------------------------------
18252 -- Collect_Implemented_Interfaces --
18253 ------------------------------------
18255 procedure Collect_Implemented_Interfaces
18256 (Typ : Entity_Id;
18257 Ifaces : Elist_Id)
18259 Iface : Entity_Id;
18260 Iface_Elmt : Elmt_Id;
18262 begin
18263 -- Abstract interfaces are only associated with tagged record types
18265 if not Is_Tagged_Type (Typ)
18266 or else not Is_Record_Type (Typ)
18267 then
18268 return;
18269 end if;
18271 -- Recursively climb to the ancestors
18273 if Etype (Typ) /= Typ
18275 -- Protect the frontend against wrong cyclic declarations like:
18277 -- type B is new A with private;
18278 -- type C is new A with private;
18279 -- private
18280 -- type B is new C with null record;
18281 -- type C is new B with null record;
18283 and then Etype (Typ) /= Priv_T
18284 and then Etype (Typ) /= Full_T
18285 then
18286 -- Keep separate the management of private type declarations
18288 if Ekind (Typ) = E_Record_Type_With_Private then
18290 -- Handle the following illegal usage:
18291 -- type Private_Type is tagged private;
18292 -- private
18293 -- type Private_Type is new Type_Implementing_Iface;
18295 if Present (Full_View (Typ))
18296 and then Etype (Typ) /= Full_View (Typ)
18297 then
18298 if Is_Interface (Etype (Typ)) then
18299 Append_Unique_Elmt (Etype (Typ), Ifaces);
18300 end if;
18302 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18303 end if;
18305 -- Non-private types
18307 else
18308 if Is_Interface (Etype (Typ)) then
18309 Append_Unique_Elmt (Etype (Typ), Ifaces);
18310 end if;
18312 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
18313 end if;
18314 end if;
18316 -- Handle entities in the list of abstract interfaces
18318 if Present (Interfaces (Typ)) then
18319 Iface_Elmt := First_Elmt (Interfaces (Typ));
18320 while Present (Iface_Elmt) loop
18321 Iface := Node (Iface_Elmt);
18323 pragma Assert (Is_Interface (Iface));
18325 if not Contain_Interface (Iface, Ifaces) then
18326 Append_Elmt (Iface, Ifaces);
18327 Collect_Implemented_Interfaces (Iface, Ifaces);
18328 end if;
18330 Next_Elmt (Iface_Elmt);
18331 end loop;
18332 end if;
18333 end Collect_Implemented_Interfaces;
18335 -- Start of processing for Process_Full_View
18337 begin
18338 -- First some sanity checks that must be done after semantic
18339 -- decoration of the full view and thus cannot be placed with other
18340 -- similar checks in Find_Type_Name
18342 if not Is_Limited_Type (Priv_T)
18343 and then (Is_Limited_Type (Full_T)
18344 or else Is_Limited_Composite (Full_T))
18345 then
18346 if In_Instance then
18347 null;
18348 else
18349 Error_Msg_N
18350 ("completion of nonlimited type cannot be limited", Full_T);
18351 Explain_Limited_Type (Full_T, Full_T);
18352 end if;
18354 elsif Is_Abstract_Type (Full_T)
18355 and then not Is_Abstract_Type (Priv_T)
18356 then
18357 Error_Msg_N
18358 ("completion of nonabstract type cannot be abstract", Full_T);
18360 elsif Is_Tagged_Type (Priv_T)
18361 and then Is_Limited_Type (Priv_T)
18362 and then not Is_Limited_Type (Full_T)
18363 then
18364 -- If pragma CPP_Class was applied to the private declaration
18365 -- propagate the limitedness to the full-view
18367 if Is_CPP_Class (Priv_T) then
18368 Set_Is_Limited_Record (Full_T);
18370 -- GNAT allow its own definition of Limited_Controlled to disobey
18371 -- this rule in order in ease the implementation. This test is safe
18372 -- because Root_Controlled is defined in a child of System that
18373 -- normal programs are not supposed to use.
18375 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
18376 Set_Is_Limited_Composite (Full_T);
18377 else
18378 Error_Msg_N
18379 ("completion of limited tagged type must be limited", Full_T);
18380 end if;
18382 elsif Is_Generic_Type (Priv_T) then
18383 Error_Msg_N ("generic type cannot have a completion", Full_T);
18384 end if;
18386 -- Check that ancestor interfaces of private and full views are
18387 -- consistent. We omit this check for synchronized types because
18388 -- they are performed on the corresponding record type when frozen.
18390 if Ada_Version >= Ada_2005
18391 and then Is_Tagged_Type (Priv_T)
18392 and then Is_Tagged_Type (Full_T)
18393 and then not Is_Concurrent_Type (Full_T)
18394 then
18395 declare
18396 Iface : Entity_Id;
18397 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
18398 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
18400 begin
18401 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
18402 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
18404 -- Ada 2005 (AI-251): The partial view shall be a descendant of
18405 -- an interface type if and only if the full type is descendant
18406 -- of the interface type (AARM 7.3 (7.3/2)).
18408 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
18410 if Present (Iface) then
18411 Error_Msg_NE
18412 ("interface in partial view& not implemented by full type "
18413 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18414 end if;
18416 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
18418 if Present (Iface) then
18419 Error_Msg_NE
18420 ("interface & not implemented by partial view "
18421 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
18422 end if;
18423 end;
18424 end if;
18426 if Is_Tagged_Type (Priv_T)
18427 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18428 and then Is_Derived_Type (Full_T)
18429 then
18430 Priv_Parent := Etype (Priv_T);
18432 -- The full view of a private extension may have been transformed
18433 -- into an unconstrained derived type declaration and a subtype
18434 -- declaration (see build_derived_record_type for details).
18436 if Nkind (N) = N_Subtype_Declaration then
18437 Full_Indic := Subtype_Indication (N);
18438 Full_Parent := Etype (Base_Type (Full_T));
18439 else
18440 Full_Indic := Subtype_Indication (Type_Definition (N));
18441 Full_Parent := Etype (Full_T);
18442 end if;
18444 -- Check that the parent type of the full type is a descendant of
18445 -- the ancestor subtype given in the private extension. If either
18446 -- entity has an Etype equal to Any_Type then we had some previous
18447 -- error situation [7.3(8)].
18449 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
18450 return;
18452 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
18453 -- any order. Therefore we don't have to check that its parent must
18454 -- be a descendant of the parent of the private type declaration.
18456 elsif Is_Interface (Priv_Parent)
18457 and then Is_Interface (Full_Parent)
18458 then
18459 null;
18461 -- Ada 2005 (AI-251): If the parent of the private type declaration
18462 -- is an interface there is no need to check that it is an ancestor
18463 -- of the associated full type declaration. The required tests for
18464 -- this case are performed by Build_Derived_Record_Type.
18466 elsif not Is_Interface (Base_Type (Priv_Parent))
18467 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
18468 then
18469 Error_Msg_N
18470 ("parent of full type must descend from parent"
18471 & " of private extension", Full_Indic);
18473 -- First check a formal restriction, and then proceed with checking
18474 -- Ada rules. Since the formal restriction is not a serious error, we
18475 -- don't prevent further error detection for this check, hence the
18476 -- ELSE.
18478 else
18480 -- In formal mode, when completing a private extension the type
18481 -- named in the private part must be exactly the same as that
18482 -- named in the visible part.
18484 if Priv_Parent /= Full_Parent then
18485 Error_Msg_Name_1 := Chars (Priv_Parent);
18486 Check_SPARK_Restriction ("% expected", Full_Indic);
18487 end if;
18489 -- Check the rules of 7.3(10): if the private extension inherits
18490 -- known discriminants, then the full type must also inherit those
18491 -- discriminants from the same (ancestor) type, and the parent
18492 -- subtype of the full type must be constrained if and only if
18493 -- the ancestor subtype of the private extension is constrained.
18495 if No (Discriminant_Specifications (Parent (Priv_T)))
18496 and then not Has_Unknown_Discriminants (Priv_T)
18497 and then Has_Discriminants (Base_Type (Priv_Parent))
18498 then
18499 declare
18500 Priv_Indic : constant Node_Id :=
18501 Subtype_Indication (Parent (Priv_T));
18503 Priv_Constr : constant Boolean :=
18504 Is_Constrained (Priv_Parent)
18505 or else
18506 Nkind (Priv_Indic) = N_Subtype_Indication
18507 or else
18508 Is_Constrained (Entity (Priv_Indic));
18510 Full_Constr : constant Boolean :=
18511 Is_Constrained (Full_Parent)
18512 or else
18513 Nkind (Full_Indic) = N_Subtype_Indication
18514 or else
18515 Is_Constrained (Entity (Full_Indic));
18517 Priv_Discr : Entity_Id;
18518 Full_Discr : Entity_Id;
18520 begin
18521 Priv_Discr := First_Discriminant (Priv_Parent);
18522 Full_Discr := First_Discriminant (Full_Parent);
18523 while Present (Priv_Discr) and then Present (Full_Discr) loop
18524 if Original_Record_Component (Priv_Discr) =
18525 Original_Record_Component (Full_Discr)
18526 or else
18527 Corresponding_Discriminant (Priv_Discr) =
18528 Corresponding_Discriminant (Full_Discr)
18529 then
18530 null;
18531 else
18532 exit;
18533 end if;
18535 Next_Discriminant (Priv_Discr);
18536 Next_Discriminant (Full_Discr);
18537 end loop;
18539 if Present (Priv_Discr) or else Present (Full_Discr) then
18540 Error_Msg_N
18541 ("full view must inherit discriminants of the parent"
18542 & " type used in the private extension", Full_Indic);
18544 elsif Priv_Constr and then not Full_Constr then
18545 Error_Msg_N
18546 ("parent subtype of full type must be constrained",
18547 Full_Indic);
18549 elsif Full_Constr and then not Priv_Constr then
18550 Error_Msg_N
18551 ("parent subtype of full type must be unconstrained",
18552 Full_Indic);
18553 end if;
18554 end;
18556 -- Check the rules of 7.3(12): if a partial view has neither
18557 -- known or unknown discriminants, then the full type
18558 -- declaration shall define a definite subtype.
18560 elsif not Has_Unknown_Discriminants (Priv_T)
18561 and then not Has_Discriminants (Priv_T)
18562 and then not Is_Constrained (Full_T)
18563 then
18564 Error_Msg_N
18565 ("full view must define a constrained type if partial view"
18566 & " has no discriminants", Full_T);
18567 end if;
18569 -- ??????? Do we implement the following properly ?????
18570 -- If the ancestor subtype of a private extension has constrained
18571 -- discriminants, then the parent subtype of the full view shall
18572 -- impose a statically matching constraint on those discriminants
18573 -- [7.3(13)].
18574 end if;
18576 else
18577 -- For untagged types, verify that a type without discriminants is
18578 -- not completed with an unconstrained type. A separate error message
18579 -- is produced if the full type has defaulted discriminants.
18581 if not Is_Indefinite_Subtype (Priv_T)
18582 and then Is_Indefinite_Subtype (Full_T)
18583 then
18584 Error_Msg_Sloc := Sloc (Parent (Priv_T));
18585 Error_Msg_NE
18586 ("full view of& not compatible with declaration#",
18587 Full_T, Priv_T);
18589 if not Is_Tagged_Type (Full_T) then
18590 Error_Msg_N
18591 ("\one is constrained, the other unconstrained", Full_T);
18592 end if;
18593 end if;
18594 end if;
18596 -- AI-419: verify that the use of "limited" is consistent
18598 declare
18599 Orig_Decl : constant Node_Id := Original_Node (N);
18601 begin
18602 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18603 and then not Limited_Present (Parent (Priv_T))
18604 and then not Synchronized_Present (Parent (Priv_T))
18605 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
18606 and then Nkind
18607 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
18608 and then Limited_Present (Type_Definition (Orig_Decl))
18609 then
18610 Error_Msg_N
18611 ("full view of non-limited extension cannot be limited", N);
18612 end if;
18613 end;
18615 -- Ada 2005 (AI-443): A synchronized private extension must be
18616 -- completed by a task or protected type.
18618 if Ada_Version >= Ada_2005
18619 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
18620 and then Synchronized_Present (Parent (Priv_T))
18621 and then not Is_Concurrent_Type (Full_T)
18622 then
18623 Error_Msg_N ("full view of synchronized extension must " &
18624 "be synchronized type", N);
18625 end if;
18627 -- Ada 2005 AI-363: if the full view has discriminants with
18628 -- defaults, it is illegal to declare constrained access subtypes
18629 -- whose designated type is the current type. This allows objects
18630 -- of the type that are declared in the heap to be unconstrained.
18632 if not Has_Unknown_Discriminants (Priv_T)
18633 and then not Has_Discriminants (Priv_T)
18634 and then Has_Discriminants (Full_T)
18635 and then
18636 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
18637 then
18638 Set_Has_Constrained_Partial_View (Full_T);
18639 Set_Has_Constrained_Partial_View (Priv_T);
18640 end if;
18642 -- Create a full declaration for all its subtypes recorded in
18643 -- Private_Dependents and swap them similarly to the base type. These
18644 -- are subtypes that have been define before the full declaration of
18645 -- the private type. We also swap the entry in Private_Dependents list
18646 -- so we can properly restore the private view on exit from the scope.
18648 declare
18649 Priv_Elmt : Elmt_Id;
18650 Priv_Scop : Entity_Id;
18651 Priv : Entity_Id;
18652 Full : Entity_Id;
18654 begin
18655 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
18656 while Present (Priv_Elmt) loop
18657 Priv := Node (Priv_Elmt);
18658 Priv_Scop := Scope (Priv);
18660 if Ekind_In (Priv, E_Private_Subtype,
18661 E_Limited_Private_Subtype,
18662 E_Record_Subtype_With_Private)
18663 then
18664 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
18665 Set_Is_Itype (Full);
18666 Set_Parent (Full, Parent (Priv));
18667 Set_Associated_Node_For_Itype (Full, N);
18669 -- Now we need to complete the private subtype, but since the
18670 -- base type has already been swapped, we must also swap the
18671 -- subtypes (and thus, reverse the arguments in the call to
18672 -- Complete_Private_Subtype). Also note that we may need to
18673 -- re-establish the scope of the private subtype.
18675 Copy_And_Swap (Priv, Full);
18677 if not In_Open_Scopes (Priv_Scop) then
18678 Push_Scope (Priv_Scop);
18680 else
18681 -- Reset Priv_Scop to Empty to indicate no scope was pushed
18683 Priv_Scop := Empty;
18684 end if;
18686 Complete_Private_Subtype (Full, Priv, Full_T, N);
18688 if Present (Priv_Scop) then
18689 Pop_Scope;
18690 end if;
18692 Replace_Elmt (Priv_Elmt, Full);
18693 end if;
18695 Next_Elmt (Priv_Elmt);
18696 end loop;
18697 end;
18699 -- If the private view was tagged, copy the new primitive operations
18700 -- from the private view to the full view.
18702 if Is_Tagged_Type (Full_T) then
18703 declare
18704 Disp_Typ : Entity_Id;
18705 Full_List : Elist_Id;
18706 Prim : Entity_Id;
18707 Prim_Elmt : Elmt_Id;
18708 Priv_List : Elist_Id;
18710 function Contains
18711 (E : Entity_Id;
18712 L : Elist_Id) return Boolean;
18713 -- Determine whether list L contains element E
18715 --------------
18716 -- Contains --
18717 --------------
18719 function Contains
18720 (E : Entity_Id;
18721 L : Elist_Id) return Boolean
18723 List_Elmt : Elmt_Id;
18725 begin
18726 List_Elmt := First_Elmt (L);
18727 while Present (List_Elmt) loop
18728 if Node (List_Elmt) = E then
18729 return True;
18730 end if;
18732 Next_Elmt (List_Elmt);
18733 end loop;
18735 return False;
18736 end Contains;
18738 -- Start of processing
18740 begin
18741 if Is_Tagged_Type (Priv_T) then
18742 Priv_List := Primitive_Operations (Priv_T);
18743 Prim_Elmt := First_Elmt (Priv_List);
18745 -- In the case of a concurrent type completing a private tagged
18746 -- type, primitives may have been declared in between the two
18747 -- views. These subprograms need to be wrapped the same way
18748 -- entries and protected procedures are handled because they
18749 -- cannot be directly shared by the two views.
18751 if Is_Concurrent_Type (Full_T) then
18752 declare
18753 Conc_Typ : constant Entity_Id :=
18754 Corresponding_Record_Type (Full_T);
18755 Curr_Nod : Node_Id := Parent (Conc_Typ);
18756 Wrap_Spec : Node_Id;
18758 begin
18759 while Present (Prim_Elmt) loop
18760 Prim := Node (Prim_Elmt);
18762 if Comes_From_Source (Prim)
18763 and then not Is_Abstract_Subprogram (Prim)
18764 then
18765 Wrap_Spec :=
18766 Make_Subprogram_Declaration (Sloc (Prim),
18767 Specification =>
18768 Build_Wrapper_Spec
18769 (Subp_Id => Prim,
18770 Obj_Typ => Conc_Typ,
18771 Formals =>
18772 Parameter_Specifications (
18773 Parent (Prim))));
18775 Insert_After (Curr_Nod, Wrap_Spec);
18776 Curr_Nod := Wrap_Spec;
18778 Analyze (Wrap_Spec);
18779 end if;
18781 Next_Elmt (Prim_Elmt);
18782 end loop;
18784 return;
18785 end;
18787 -- For non-concurrent types, transfer explicit primitives, but
18788 -- omit those inherited from the parent of the private view
18789 -- since they will be re-inherited later on.
18791 else
18792 Full_List := Primitive_Operations (Full_T);
18794 while Present (Prim_Elmt) loop
18795 Prim := Node (Prim_Elmt);
18797 if Comes_From_Source (Prim)
18798 and then not Contains (Prim, Full_List)
18799 then
18800 Append_Elmt (Prim, Full_List);
18801 end if;
18803 Next_Elmt (Prim_Elmt);
18804 end loop;
18805 end if;
18807 -- Untagged private view
18809 else
18810 Full_List := Primitive_Operations (Full_T);
18812 -- In this case the partial view is untagged, so here we locate
18813 -- all of the earlier primitives that need to be treated as
18814 -- dispatching (those that appear between the two views). Note
18815 -- that these additional operations must all be new operations
18816 -- (any earlier operations that override inherited operations
18817 -- of the full view will already have been inserted in the
18818 -- primitives list, marked by Check_Operation_From_Private_View
18819 -- as dispatching. Note that implicit "/=" operators are
18820 -- excluded from being added to the primitives list since they
18821 -- shouldn't be treated as dispatching (tagged "/=" is handled
18822 -- specially).
18824 Prim := Next_Entity (Full_T);
18825 while Present (Prim) and then Prim /= Priv_T loop
18826 if Ekind_In (Prim, E_Procedure, E_Function) then
18827 Disp_Typ := Find_Dispatching_Type (Prim);
18829 if Disp_Typ = Full_T
18830 and then (Chars (Prim) /= Name_Op_Ne
18831 or else Comes_From_Source (Prim))
18832 then
18833 Check_Controlling_Formals (Full_T, Prim);
18835 if not Is_Dispatching_Operation (Prim) then
18836 Append_Elmt (Prim, Full_List);
18837 Set_Is_Dispatching_Operation (Prim, True);
18838 Set_DT_Position (Prim, No_Uint);
18839 end if;
18841 elsif Is_Dispatching_Operation (Prim)
18842 and then Disp_Typ /= Full_T
18843 then
18845 -- Verify that it is not otherwise controlled by a
18846 -- formal or a return value of type T.
18848 Check_Controlling_Formals (Disp_Typ, Prim);
18849 end if;
18850 end if;
18852 Next_Entity (Prim);
18853 end loop;
18854 end if;
18856 -- For the tagged case, the two views can share the same primitive
18857 -- operations list and the same class-wide type. Update attributes
18858 -- of the class-wide type which depend on the full declaration.
18860 if Is_Tagged_Type (Priv_T) then
18861 Set_Direct_Primitive_Operations (Priv_T, Full_List);
18862 Set_Class_Wide_Type
18863 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
18865 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
18866 Set_Has_Protected
18867 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
18868 end if;
18869 end;
18870 end if;
18872 -- Ada 2005 AI 161: Check preelaborable initialization consistency
18874 if Known_To_Have_Preelab_Init (Priv_T) then
18876 -- Case where there is a pragma Preelaborable_Initialization. We
18877 -- always allow this in predefined units, which is cheating a bit,
18878 -- but it means we don't have to struggle to meet the requirements in
18879 -- the RM for having Preelaborable Initialization. Otherwise we
18880 -- require that the type meets the RM rules. But we can't check that
18881 -- yet, because of the rule about overriding Initialize, so we simply
18882 -- set a flag that will be checked at freeze time.
18884 if not In_Predefined_Unit (Full_T) then
18885 Set_Must_Have_Preelab_Init (Full_T);
18886 end if;
18887 end if;
18889 -- If pragma CPP_Class was applied to the private type declaration,
18890 -- propagate it now to the full type declaration.
18892 if Is_CPP_Class (Priv_T) then
18893 Set_Is_CPP_Class (Full_T);
18894 Set_Convention (Full_T, Convention_CPP);
18896 -- Check that components of imported CPP types do not have default
18897 -- expressions.
18899 Check_CPP_Type_Has_No_Defaults (Full_T);
18900 end if;
18902 -- If the private view has user specified stream attributes, then so has
18903 -- the full view.
18905 -- Why the test, how could these flags be already set in Full_T ???
18907 if Has_Specified_Stream_Read (Priv_T) then
18908 Set_Has_Specified_Stream_Read (Full_T);
18909 end if;
18911 if Has_Specified_Stream_Write (Priv_T) then
18912 Set_Has_Specified_Stream_Write (Full_T);
18913 end if;
18915 if Has_Specified_Stream_Input (Priv_T) then
18916 Set_Has_Specified_Stream_Input (Full_T);
18917 end if;
18919 if Has_Specified_Stream_Output (Priv_T) then
18920 Set_Has_Specified_Stream_Output (Full_T);
18921 end if;
18923 -- Propagate invariants to full type
18925 if Has_Invariants (Priv_T) then
18926 Set_Has_Invariants (Full_T);
18927 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
18928 end if;
18930 if Has_Inheritable_Invariants (Priv_T) then
18931 Set_Has_Inheritable_Invariants (Full_T);
18932 end if;
18934 -- Propagate predicates to full type, and predicate function if already
18935 -- defined. It is not clear that this can actually happen? the partial
18936 -- view cannot be frozen yet, and the predicate function has not been
18937 -- built. Still it is a cheap check and seems safer to make it.
18939 if Has_Predicates (Priv_T) then
18940 if Present (Predicate_Function (Priv_T)) then
18941 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
18942 end if;
18944 Set_Has_Predicates (Full_T);
18945 end if;
18946 end Process_Full_View;
18948 -----------------------------------
18949 -- Process_Incomplete_Dependents --
18950 -----------------------------------
18952 procedure Process_Incomplete_Dependents
18953 (N : Node_Id;
18954 Full_T : Entity_Id;
18955 Inc_T : Entity_Id)
18957 Inc_Elmt : Elmt_Id;
18958 Priv_Dep : Entity_Id;
18959 New_Subt : Entity_Id;
18961 Disc_Constraint : Elist_Id;
18963 begin
18964 if No (Private_Dependents (Inc_T)) then
18965 return;
18966 end if;
18968 -- Itypes that may be generated by the completion of an incomplete
18969 -- subtype are not used by the back-end and not attached to the tree.
18970 -- They are created only for constraint-checking purposes.
18972 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
18973 while Present (Inc_Elmt) loop
18974 Priv_Dep := Node (Inc_Elmt);
18976 if Ekind (Priv_Dep) = E_Subprogram_Type then
18978 -- An Access_To_Subprogram type may have a return type or a
18979 -- parameter type that is incomplete. Replace with the full view.
18981 if Etype (Priv_Dep) = Inc_T then
18982 Set_Etype (Priv_Dep, Full_T);
18983 end if;
18985 declare
18986 Formal : Entity_Id;
18988 begin
18989 Formal := First_Formal (Priv_Dep);
18990 while Present (Formal) loop
18991 if Etype (Formal) = Inc_T then
18992 Set_Etype (Formal, Full_T);
18993 end if;
18995 Next_Formal (Formal);
18996 end loop;
18997 end;
18999 elsif Is_Overloadable (Priv_Dep) then
19001 -- If a subprogram in the incomplete dependents list is primitive
19002 -- for a tagged full type then mark it as a dispatching operation,
19003 -- check whether it overrides an inherited subprogram, and check
19004 -- restrictions on its controlling formals. Note that a protected
19005 -- operation is never dispatching: only its wrapper operation
19006 -- (which has convention Ada) is.
19008 if Is_Tagged_Type (Full_T)
19009 and then Is_Primitive (Priv_Dep)
19010 and then Convention (Priv_Dep) /= Convention_Protected
19011 then
19012 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
19013 Set_Is_Dispatching_Operation (Priv_Dep);
19014 Check_Controlling_Formals (Full_T, Priv_Dep);
19015 end if;
19017 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
19019 -- Can happen during processing of a body before the completion
19020 -- of a TA type. Ignore, because spec is also on dependent list.
19022 return;
19024 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
19025 -- corresponding subtype of the full view.
19027 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
19028 Set_Subtype_Indication
19029 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
19030 Set_Etype (Priv_Dep, Full_T);
19031 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
19032 Set_Analyzed (Parent (Priv_Dep), False);
19034 -- Reanalyze the declaration, suppressing the call to
19035 -- Enter_Name to avoid duplicate names.
19037 Analyze_Subtype_Declaration
19038 (N => Parent (Priv_Dep),
19039 Skip => True);
19041 -- Dependent is a subtype
19043 else
19044 -- We build a new subtype indication using the full view of the
19045 -- incomplete parent. The discriminant constraints have been
19046 -- elaborated already at the point of the subtype declaration.
19048 New_Subt := Create_Itype (E_Void, N);
19050 if Has_Discriminants (Full_T) then
19051 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
19052 else
19053 Disc_Constraint := No_Elist;
19054 end if;
19056 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
19057 Set_Full_View (Priv_Dep, New_Subt);
19058 end if;
19060 Next_Elmt (Inc_Elmt);
19061 end loop;
19062 end Process_Incomplete_Dependents;
19064 --------------------------------
19065 -- Process_Range_Expr_In_Decl --
19066 --------------------------------
19068 procedure Process_Range_Expr_In_Decl
19069 (R : Node_Id;
19070 T : Entity_Id;
19071 Subtyp : Entity_Id := Empty;
19072 Check_List : List_Id := Empty_List;
19073 R_Check_Off : Boolean := False;
19074 In_Iter_Schm : Boolean := False)
19076 Lo, Hi : Node_Id;
19077 R_Checks : Check_Result;
19078 Insert_Node : Node_Id;
19079 Def_Id : Entity_Id;
19081 begin
19082 Analyze_And_Resolve (R, Base_Type (T));
19084 if Nkind (R) = N_Range then
19086 -- In SPARK, all ranges should be static, with the exception of the
19087 -- discrete type definition of a loop parameter specification.
19089 if not In_Iter_Schm
19090 and then not Is_OK_Static_Range (R)
19091 then
19092 Check_SPARK_Restriction ("range should be static", R);
19093 end if;
19095 Lo := Low_Bound (R);
19096 Hi := High_Bound (R);
19098 -- We need to ensure validity of the bounds here, because if we
19099 -- go ahead and do the expansion, then the expanded code will get
19100 -- analyzed with range checks suppressed and we miss the check.
19101 -- Validity checks on the range of a quantified expression are
19102 -- delayed until the construct is transformed into a loop.
19104 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
19105 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
19106 then
19107 Validity_Check_Range (R);
19108 end if;
19110 -- If there were errors in the declaration, try and patch up some
19111 -- common mistakes in the bounds. The cases handled are literals
19112 -- which are Integer where the expected type is Real and vice versa.
19113 -- These corrections allow the compilation process to proceed further
19114 -- along since some basic assumptions of the format of the bounds
19115 -- are guaranteed.
19117 if Etype (R) = Any_Type then
19118 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
19119 Rewrite (Lo,
19120 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
19122 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
19123 Rewrite (Hi,
19124 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
19126 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
19127 Rewrite (Lo,
19128 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
19130 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
19131 Rewrite (Hi,
19132 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
19133 end if;
19135 Set_Etype (Lo, T);
19136 Set_Etype (Hi, T);
19137 end if;
19139 -- If the bounds of the range have been mistakenly given as string
19140 -- literals (perhaps in place of character literals), then an error
19141 -- has already been reported, but we rewrite the string literal as a
19142 -- bound of the range's type to avoid blowups in later processing
19143 -- that looks at static values.
19145 if Nkind (Lo) = N_String_Literal then
19146 Rewrite (Lo,
19147 Make_Attribute_Reference (Sloc (Lo),
19148 Attribute_Name => Name_First,
19149 Prefix => New_Occurrence_Of (T, Sloc (Lo))));
19150 Analyze_And_Resolve (Lo);
19151 end if;
19153 if Nkind (Hi) = N_String_Literal then
19154 Rewrite (Hi,
19155 Make_Attribute_Reference (Sloc (Hi),
19156 Attribute_Name => Name_First,
19157 Prefix => New_Occurrence_Of (T, Sloc (Hi))));
19158 Analyze_And_Resolve (Hi);
19159 end if;
19161 -- If bounds aren't scalar at this point then exit, avoiding
19162 -- problems with further processing of the range in this procedure.
19164 if not Is_Scalar_Type (Etype (Lo)) then
19165 return;
19166 end if;
19168 -- Resolve (actually Sem_Eval) has checked that the bounds are in
19169 -- then range of the base type. Here we check whether the bounds
19170 -- are in the range of the subtype itself. Note that if the bounds
19171 -- represent the null range the Constraint_Error exception should
19172 -- not be raised.
19174 -- ??? The following code should be cleaned up as follows
19176 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
19177 -- is done in the call to Range_Check (R, T); below
19179 -- 2. The use of R_Check_Off should be investigated and possibly
19180 -- removed, this would clean up things a bit.
19182 if Is_Null_Range (Lo, Hi) then
19183 null;
19185 else
19186 -- Capture values of bounds and generate temporaries for them
19187 -- if needed, before applying checks, since checks may cause
19188 -- duplication of the expression without forcing evaluation.
19190 -- The forced evaluation removes side effects from expressions,
19191 -- which should occur also in GNATprove mode. Otherwise, we end up
19192 -- with unexpected insertions of actions at places where this is
19193 -- not supposed to occur, e.g. on default parameters of a call.
19195 if Expander_Active or GNATprove_Mode then
19197 -- If no subtype name, then just call Force_Evaluation to
19198 -- create declarations as needed to deal with side effects.
19199 -- Also ignore calls from within a record type, where we
19200 -- have possible scoping issues.
19202 if No (Subtyp) or else Is_Record_Type (Current_Scope) then
19203 Force_Evaluation (Lo);
19204 Force_Evaluation (Hi);
19206 -- If a subtype is given, then we capture the bounds if they
19207 -- are not known at compile time, using constant identifiers
19208 -- xxx_FIRST and xxx_LAST where xxx is the name of the subtype.
19210 -- Note: we do this transformation even if expansion is not
19211 -- active, and in particular we do it in GNATprove_Mode since
19212 -- the transformation is in general required to ensure that the
19213 -- resulting tree has proper Ada semantics.
19215 -- Historical note: We used to just do Force_Evaluation calls
19216 -- in all cases, but it is better to capture the bounds with
19217 -- proper non-serialized names, since these will be accessed
19218 -- from other units, and hence may be public, and also we can
19219 -- then expand 'First and 'Last references to be references to
19220 -- these special names.
19222 else
19223 if not Compile_Time_Known_Value (Lo)
19225 -- No need to capture bounds if they already are
19226 -- references to constants.
19228 and then not (Is_Entity_Name (Lo)
19229 and then Is_Constant_Object (Entity (Lo)))
19230 then
19231 declare
19232 Loc : constant Source_Ptr := Sloc (Lo);
19233 Lov : constant Entity_Id :=
19234 Make_Defining_Identifier (Loc,
19235 Chars =>
19236 New_External_Name (Chars (Subtyp), "_FIRST"));
19237 begin
19238 Insert_Action (R,
19239 Make_Object_Declaration (Loc,
19240 Defining_Identifier => Lov,
19241 Object_Definition =>
19242 New_Occurrence_Of (Base_Type (T), Loc),
19243 Constant_Present => True,
19244 Expression => Relocate_Node (Lo)));
19245 Rewrite (Lo, New_Occurrence_Of (Lov, Loc));
19246 end;
19247 end if;
19249 if not Compile_Time_Known_Value (Hi)
19250 and then not (Is_Entity_Name (Hi)
19251 and then Is_Constant_Object (Entity (Hi)))
19252 then
19253 declare
19254 Loc : constant Source_Ptr := Sloc (Hi);
19255 Hiv : constant Entity_Id :=
19256 Make_Defining_Identifier (Loc,
19257 Chars =>
19258 New_External_Name (Chars (Subtyp), "_LAST"));
19259 begin
19260 Insert_Action (R,
19261 Make_Object_Declaration (Loc,
19262 Defining_Identifier => Hiv,
19263 Object_Definition =>
19264 New_Occurrence_Of (Base_Type (T), Loc),
19265 Constant_Present => True,
19266 Expression => Relocate_Node (Hi)));
19267 Rewrite (Hi, New_Occurrence_Of (Hiv, Loc));
19268 end;
19269 end if;
19270 end if;
19271 end if;
19273 -- We use a flag here instead of suppressing checks on the
19274 -- type because the type we check against isn't necessarily
19275 -- the place where we put the check.
19277 if not R_Check_Off then
19278 R_Checks := Get_Range_Checks (R, T);
19280 -- Look up tree to find an appropriate insertion point. We
19281 -- can't just use insert_actions because later processing
19282 -- depends on the insertion node. Prior to Ada 2012 the
19283 -- insertion point could only be a declaration or a loop, but
19284 -- quantified expressions can appear within any context in an
19285 -- expression, and the insertion point can be any statement,
19286 -- pragma, or declaration.
19288 Insert_Node := Parent (R);
19289 while Present (Insert_Node) loop
19290 exit when
19291 Nkind (Insert_Node) in N_Declaration
19292 and then
19293 not Nkind_In
19294 (Insert_Node, N_Component_Declaration,
19295 N_Loop_Parameter_Specification,
19296 N_Function_Specification,
19297 N_Procedure_Specification);
19299 exit when Nkind (Insert_Node) in N_Later_Decl_Item
19300 or else Nkind (Insert_Node) in
19301 N_Statement_Other_Than_Procedure_Call
19302 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
19303 N_Pragma);
19305 Insert_Node := Parent (Insert_Node);
19306 end loop;
19308 -- Why would Type_Decl not be present??? Without this test,
19309 -- short regression tests fail.
19311 if Present (Insert_Node) then
19313 -- Case of loop statement. Verify that the range is part
19314 -- of the subtype indication of the iteration scheme.
19316 if Nkind (Insert_Node) = N_Loop_Statement then
19317 declare
19318 Indic : Node_Id;
19320 begin
19321 Indic := Parent (R);
19322 while Present (Indic)
19323 and then Nkind (Indic) /= N_Subtype_Indication
19324 loop
19325 Indic := Parent (Indic);
19326 end loop;
19328 if Present (Indic) then
19329 Def_Id := Etype (Subtype_Mark (Indic));
19331 Insert_Range_Checks
19332 (R_Checks,
19333 Insert_Node,
19334 Def_Id,
19335 Sloc (Insert_Node),
19337 Do_Before => True);
19338 end if;
19339 end;
19341 -- Insertion before a declaration. If the declaration
19342 -- includes discriminants, the list of applicable checks
19343 -- is given by the caller.
19345 elsif Nkind (Insert_Node) in N_Declaration then
19346 Def_Id := Defining_Identifier (Insert_Node);
19348 if (Ekind (Def_Id) = E_Record_Type
19349 and then Depends_On_Discriminant (R))
19350 or else
19351 (Ekind (Def_Id) = E_Protected_Type
19352 and then Has_Discriminants (Def_Id))
19353 then
19354 Append_Range_Checks
19355 (R_Checks,
19356 Check_List, Def_Id, Sloc (Insert_Node), R);
19358 else
19359 Insert_Range_Checks
19360 (R_Checks,
19361 Insert_Node, Def_Id, Sloc (Insert_Node), R);
19363 end if;
19365 -- Insertion before a statement. Range appears in the
19366 -- context of a quantified expression. Insertion will
19367 -- take place when expression is expanded.
19369 else
19370 null;
19371 end if;
19372 end if;
19373 end if;
19374 end if;
19376 -- Case of other than an explicit N_Range node
19378 -- The forced evaluation removes side effects from expressions, which
19379 -- should occur also in GNATprove mode. Otherwise, we end up with
19380 -- unexpected insertions of actions at places where this is not
19381 -- supposed to occur, e.g. on default parameters of a call.
19383 elsif Expander_Active or GNATprove_Mode then
19384 Get_Index_Bounds (R, Lo, Hi);
19385 Force_Evaluation (Lo);
19386 Force_Evaluation (Hi);
19387 end if;
19388 end Process_Range_Expr_In_Decl;
19390 --------------------------------------
19391 -- Process_Real_Range_Specification --
19392 --------------------------------------
19394 procedure Process_Real_Range_Specification (Def : Node_Id) is
19395 Spec : constant Node_Id := Real_Range_Specification (Def);
19396 Lo : Node_Id;
19397 Hi : Node_Id;
19398 Err : Boolean := False;
19400 procedure Analyze_Bound (N : Node_Id);
19401 -- Analyze and check one bound
19403 -------------------
19404 -- Analyze_Bound --
19405 -------------------
19407 procedure Analyze_Bound (N : Node_Id) is
19408 begin
19409 Analyze_And_Resolve (N, Any_Real);
19411 if not Is_OK_Static_Expression (N) then
19412 Flag_Non_Static_Expr
19413 ("bound in real type definition is not static!", N);
19414 Err := True;
19415 end if;
19416 end Analyze_Bound;
19418 -- Start of processing for Process_Real_Range_Specification
19420 begin
19421 if Present (Spec) then
19422 Lo := Low_Bound (Spec);
19423 Hi := High_Bound (Spec);
19424 Analyze_Bound (Lo);
19425 Analyze_Bound (Hi);
19427 -- If error, clear away junk range specification
19429 if Err then
19430 Set_Real_Range_Specification (Def, Empty);
19431 end if;
19432 end if;
19433 end Process_Real_Range_Specification;
19435 ---------------------
19436 -- Process_Subtype --
19437 ---------------------
19439 function Process_Subtype
19440 (S : Node_Id;
19441 Related_Nod : Node_Id;
19442 Related_Id : Entity_Id := Empty;
19443 Suffix : Character := ' ') return Entity_Id
19445 P : Node_Id;
19446 Def_Id : Entity_Id;
19447 Error_Node : Node_Id;
19448 Full_View_Id : Entity_Id;
19449 Subtype_Mark_Id : Entity_Id;
19451 May_Have_Null_Exclusion : Boolean;
19453 procedure Check_Incomplete (T : Entity_Id);
19454 -- Called to verify that an incomplete type is not used prematurely
19456 ----------------------
19457 -- Check_Incomplete --
19458 ----------------------
19460 procedure Check_Incomplete (T : Entity_Id) is
19461 begin
19462 -- Ada 2005 (AI-412): Incomplete subtypes are legal
19464 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
19465 and then
19466 not (Ada_Version >= Ada_2005
19467 and then
19468 (Nkind (Parent (T)) = N_Subtype_Declaration
19469 or else
19470 (Nkind (Parent (T)) = N_Subtype_Indication
19471 and then Nkind (Parent (Parent (T))) =
19472 N_Subtype_Declaration)))
19473 then
19474 Error_Msg_N ("invalid use of type before its full declaration", T);
19475 end if;
19476 end Check_Incomplete;
19478 -- Start of processing for Process_Subtype
19480 begin
19481 -- Case of no constraints present
19483 if Nkind (S) /= N_Subtype_Indication then
19484 Find_Type (S);
19485 Check_Incomplete (S);
19486 P := Parent (S);
19488 -- Ada 2005 (AI-231): Static check
19490 if Ada_Version >= Ada_2005
19491 and then Present (P)
19492 and then Null_Exclusion_Present (P)
19493 and then Nkind (P) /= N_Access_To_Object_Definition
19494 and then not Is_Access_Type (Entity (S))
19495 then
19496 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
19497 end if;
19499 -- The following is ugly, can't we have a range or even a flag???
19501 May_Have_Null_Exclusion :=
19502 Nkind_In (P, N_Access_Definition,
19503 N_Access_Function_Definition,
19504 N_Access_Procedure_Definition,
19505 N_Access_To_Object_Definition,
19506 N_Allocator,
19507 N_Component_Definition)
19508 or else
19509 Nkind_In (P, N_Derived_Type_Definition,
19510 N_Discriminant_Specification,
19511 N_Formal_Object_Declaration,
19512 N_Object_Declaration,
19513 N_Object_Renaming_Declaration,
19514 N_Parameter_Specification,
19515 N_Subtype_Declaration);
19517 -- Create an Itype that is a duplicate of Entity (S) but with the
19518 -- null-exclusion attribute.
19520 if May_Have_Null_Exclusion
19521 and then Is_Access_Type (Entity (S))
19522 and then Null_Exclusion_Present (P)
19524 -- No need to check the case of an access to object definition.
19525 -- It is correct to define double not-null pointers.
19527 -- Example:
19528 -- type Not_Null_Int_Ptr is not null access Integer;
19529 -- type Acc is not null access Not_Null_Int_Ptr;
19531 and then Nkind (P) /= N_Access_To_Object_Definition
19532 then
19533 if Can_Never_Be_Null (Entity (S)) then
19534 case Nkind (Related_Nod) is
19535 when N_Full_Type_Declaration =>
19536 if Nkind (Type_Definition (Related_Nod))
19537 in N_Array_Type_Definition
19538 then
19539 Error_Node :=
19540 Subtype_Indication
19541 (Component_Definition
19542 (Type_Definition (Related_Nod)));
19543 else
19544 Error_Node :=
19545 Subtype_Indication (Type_Definition (Related_Nod));
19546 end if;
19548 when N_Subtype_Declaration =>
19549 Error_Node := Subtype_Indication (Related_Nod);
19551 when N_Object_Declaration =>
19552 Error_Node := Object_Definition (Related_Nod);
19554 when N_Component_Declaration =>
19555 Error_Node :=
19556 Subtype_Indication (Component_Definition (Related_Nod));
19558 when N_Allocator =>
19559 Error_Node := Expression (Related_Nod);
19561 when others =>
19562 pragma Assert (False);
19563 Error_Node := Related_Nod;
19564 end case;
19566 Error_Msg_NE
19567 ("`NOT NULL` not allowed (& already excludes null)",
19568 Error_Node,
19569 Entity (S));
19570 end if;
19572 Set_Etype (S,
19573 Create_Null_Excluding_Itype
19574 (T => Entity (S),
19575 Related_Nod => P));
19576 Set_Entity (S, Etype (S));
19577 end if;
19579 return Entity (S);
19581 -- Case of constraint present, so that we have an N_Subtype_Indication
19582 -- node (this node is created only if constraints are present).
19584 else
19585 Find_Type (Subtype_Mark (S));
19587 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
19588 and then not
19589 (Nkind (Parent (S)) = N_Subtype_Declaration
19590 and then Is_Itype (Defining_Identifier (Parent (S))))
19591 then
19592 Check_Incomplete (Subtype_Mark (S));
19593 end if;
19595 P := Parent (S);
19596 Subtype_Mark_Id := Entity (Subtype_Mark (S));
19598 -- Explicit subtype declaration case
19600 if Nkind (P) = N_Subtype_Declaration then
19601 Def_Id := Defining_Identifier (P);
19603 -- Explicit derived type definition case
19605 elsif Nkind (P) = N_Derived_Type_Definition then
19606 Def_Id := Defining_Identifier (Parent (P));
19608 -- Implicit case, the Def_Id must be created as an implicit type.
19609 -- The one exception arises in the case of concurrent types, array
19610 -- and access types, where other subsidiary implicit types may be
19611 -- created and must appear before the main implicit type. In these
19612 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
19613 -- has not yet been called to create Def_Id.
19615 else
19616 if Is_Array_Type (Subtype_Mark_Id)
19617 or else Is_Concurrent_Type (Subtype_Mark_Id)
19618 or else Is_Access_Type (Subtype_Mark_Id)
19619 then
19620 Def_Id := Empty;
19622 -- For the other cases, we create a new unattached Itype,
19623 -- and set the indication to ensure it gets attached later.
19625 else
19626 Def_Id :=
19627 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19628 end if;
19629 end if;
19631 -- If the kind of constraint is invalid for this kind of type,
19632 -- then give an error, and then pretend no constraint was given.
19634 if not Is_Valid_Constraint_Kind
19635 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
19636 then
19637 Error_Msg_N
19638 ("incorrect constraint for this kind of type", Constraint (S));
19640 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
19642 -- Set Ekind of orphan itype, to prevent cascaded errors
19644 if Present (Def_Id) then
19645 Set_Ekind (Def_Id, Ekind (Any_Type));
19646 end if;
19648 -- Make recursive call, having got rid of the bogus constraint
19650 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
19651 end if;
19653 -- Remaining processing depends on type. Select on Base_Type kind to
19654 -- ensure getting to the concrete type kind in the case of a private
19655 -- subtype (needed when only doing semantic analysis).
19657 case Ekind (Base_Type (Subtype_Mark_Id)) is
19658 when Access_Kind =>
19660 -- If this is a constraint on a class-wide type, discard it.
19661 -- There is currently no way to express a partial discriminant
19662 -- constraint on a type with unknown discriminants. This is
19663 -- a pathology that the ACATS wisely decides not to test.
19665 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
19666 if Comes_From_Source (S) then
19667 Error_Msg_N
19668 ("constraint on class-wide type ignored??",
19669 Constraint (S));
19670 end if;
19672 if Nkind (P) = N_Subtype_Declaration then
19673 Set_Subtype_Indication (P,
19674 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
19675 end if;
19677 return Subtype_Mark_Id;
19678 end if;
19680 Constrain_Access (Def_Id, S, Related_Nod);
19682 if Expander_Active
19683 and then Is_Itype (Designated_Type (Def_Id))
19684 and then Nkind (Related_Nod) = N_Subtype_Declaration
19685 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
19686 then
19687 Build_Itype_Reference
19688 (Designated_Type (Def_Id), Related_Nod);
19689 end if;
19691 when Array_Kind =>
19692 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
19694 when Decimal_Fixed_Point_Kind =>
19695 Constrain_Decimal (Def_Id, S);
19697 when Enumeration_Kind =>
19698 Constrain_Enumeration (Def_Id, S);
19699 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19701 when Ordinary_Fixed_Point_Kind =>
19702 Constrain_Ordinary_Fixed (Def_Id, S);
19704 when Float_Kind =>
19705 Constrain_Float (Def_Id, S);
19707 when Integer_Kind =>
19708 Constrain_Integer (Def_Id, S);
19709 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
19711 when E_Record_Type |
19712 E_Record_Subtype |
19713 Class_Wide_Kind |
19714 E_Incomplete_Type =>
19715 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19717 if Ekind (Def_Id) = E_Incomplete_Type then
19718 Set_Private_Dependents (Def_Id, New_Elmt_List);
19719 end if;
19721 when Private_Kind =>
19722 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
19723 Set_Private_Dependents (Def_Id, New_Elmt_List);
19725 -- In case of an invalid constraint prevent further processing
19726 -- since the type constructed is missing expected fields.
19728 if Etype (Def_Id) = Any_Type then
19729 return Def_Id;
19730 end if;
19732 -- If the full view is that of a task with discriminants,
19733 -- we must constrain both the concurrent type and its
19734 -- corresponding record type. Otherwise we will just propagate
19735 -- the constraint to the full view, if available.
19737 if Present (Full_View (Subtype_Mark_Id))
19738 and then Has_Discriminants (Subtype_Mark_Id)
19739 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
19740 then
19741 Full_View_Id :=
19742 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
19744 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
19745 Constrain_Concurrent (Full_View_Id, S,
19746 Related_Nod, Related_Id, Suffix);
19747 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
19748 Set_Full_View (Def_Id, Full_View_Id);
19750 -- Introduce an explicit reference to the private subtype,
19751 -- to prevent scope anomalies in gigi if first use appears
19752 -- in a nested context, e.g. a later function body.
19753 -- Should this be generated in other contexts than a full
19754 -- type declaration?
19756 if Is_Itype (Def_Id)
19757 and then
19758 Nkind (Parent (P)) = N_Full_Type_Declaration
19759 then
19760 Build_Itype_Reference (Def_Id, Parent (P));
19761 end if;
19763 else
19764 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
19765 end if;
19767 when Concurrent_Kind =>
19768 Constrain_Concurrent (Def_Id, S,
19769 Related_Nod, Related_Id, Suffix);
19771 when others =>
19772 Error_Msg_N ("invalid subtype mark in subtype indication", S);
19773 end case;
19775 -- Size and Convention are always inherited from the base type
19777 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
19778 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
19780 return Def_Id;
19781 end if;
19782 end Process_Subtype;
19784 ---------------------------------------
19785 -- Check_Anonymous_Access_Components --
19786 ---------------------------------------
19788 procedure Check_Anonymous_Access_Components
19789 (Typ_Decl : Node_Id;
19790 Typ : Entity_Id;
19791 Prev : Entity_Id;
19792 Comp_List : Node_Id)
19794 Loc : constant Source_Ptr := Sloc (Typ_Decl);
19795 Anon_Access : Entity_Id;
19796 Acc_Def : Node_Id;
19797 Comp : Node_Id;
19798 Comp_Def : Node_Id;
19799 Decl : Node_Id;
19800 Type_Def : Node_Id;
19802 procedure Build_Incomplete_Type_Declaration;
19803 -- If the record type contains components that include an access to the
19804 -- current record, then create an incomplete type declaration for the
19805 -- record, to be used as the designated type of the anonymous access.
19806 -- This is done only once, and only if there is no previous partial
19807 -- view of the type.
19809 function Designates_T (Subt : Node_Id) return Boolean;
19810 -- Check whether a node designates the enclosing record type, or 'Class
19811 -- of that type
19813 function Mentions_T (Acc_Def : Node_Id) return Boolean;
19814 -- Check whether an access definition includes a reference to
19815 -- the enclosing record type. The reference can be a subtype mark
19816 -- in the access definition itself, a 'Class attribute reference, or
19817 -- recursively a reference appearing in a parameter specification
19818 -- or result definition of an access_to_subprogram definition.
19820 --------------------------------------
19821 -- Build_Incomplete_Type_Declaration --
19822 --------------------------------------
19824 procedure Build_Incomplete_Type_Declaration is
19825 Decl : Node_Id;
19826 Inc_T : Entity_Id;
19827 H : Entity_Id;
19829 -- Is_Tagged indicates whether the type is tagged. It is tagged if
19830 -- it's "is new ... with record" or else "is tagged record ...".
19832 Is_Tagged : constant Boolean :=
19833 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
19834 and then
19835 Present
19836 (Record_Extension_Part (Type_Definition (Typ_Decl))))
19837 or else
19838 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
19839 and then Tagged_Present (Type_Definition (Typ_Decl)));
19841 begin
19842 -- If there is a previous partial view, no need to create a new one
19843 -- If the partial view, given by Prev, is incomplete, If Prev is
19844 -- a private declaration, full declaration is flagged accordingly.
19846 if Prev /= Typ then
19847 if Is_Tagged then
19848 Make_Class_Wide_Type (Prev);
19849 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
19850 Set_Etype (Class_Wide_Type (Typ), Typ);
19851 end if;
19853 return;
19855 elsif Has_Private_Declaration (Typ) then
19857 -- If we refer to T'Class inside T, and T is the completion of a
19858 -- private type, then we need to make sure the class-wide type
19859 -- exists.
19861 if Is_Tagged then
19862 Make_Class_Wide_Type (Typ);
19863 end if;
19865 return;
19867 -- If there was a previous anonymous access type, the incomplete
19868 -- type declaration will have been created already.
19870 elsif Present (Current_Entity (Typ))
19871 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
19872 and then Full_View (Current_Entity (Typ)) = Typ
19873 then
19874 if Is_Tagged
19875 and then Comes_From_Source (Current_Entity (Typ))
19876 and then not Is_Tagged_Type (Current_Entity (Typ))
19877 then
19878 Make_Class_Wide_Type (Typ);
19879 Error_Msg_N
19880 ("incomplete view of tagged type should be declared tagged??",
19881 Parent (Current_Entity (Typ)));
19882 end if;
19883 return;
19885 else
19886 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
19887 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
19889 -- Type has already been inserted into the current scope. Remove
19890 -- it, and add incomplete declaration for type, so that subsequent
19891 -- anonymous access types can use it. The entity is unchained from
19892 -- the homonym list and from immediate visibility. After analysis,
19893 -- the entity in the incomplete declaration becomes immediately
19894 -- visible in the record declaration that follows.
19896 H := Current_Entity (Typ);
19898 if H = Typ then
19899 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
19900 else
19901 while Present (H)
19902 and then Homonym (H) /= Typ
19903 loop
19904 H := Homonym (Typ);
19905 end loop;
19907 Set_Homonym (H, Homonym (Typ));
19908 end if;
19910 Insert_Before (Typ_Decl, Decl);
19911 Analyze (Decl);
19912 Set_Full_View (Inc_T, Typ);
19914 if Is_Tagged then
19916 -- Create a common class-wide type for both views, and set the
19917 -- Etype of the class-wide type to the full view.
19919 Make_Class_Wide_Type (Inc_T);
19920 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
19921 Set_Etype (Class_Wide_Type (Typ), Typ);
19922 end if;
19923 end if;
19924 end Build_Incomplete_Type_Declaration;
19926 ------------------
19927 -- Designates_T --
19928 ------------------
19930 function Designates_T (Subt : Node_Id) return Boolean is
19931 Type_Id : constant Name_Id := Chars (Typ);
19933 function Names_T (Nam : Node_Id) return Boolean;
19934 -- The record type has not been introduced in the current scope
19935 -- yet, so we must examine the name of the type itself, either
19936 -- an identifier T, or an expanded name of the form P.T, where
19937 -- P denotes the current scope.
19939 -------------
19940 -- Names_T --
19941 -------------
19943 function Names_T (Nam : Node_Id) return Boolean is
19944 begin
19945 if Nkind (Nam) = N_Identifier then
19946 return Chars (Nam) = Type_Id;
19948 elsif Nkind (Nam) = N_Selected_Component then
19949 if Chars (Selector_Name (Nam)) = Type_Id then
19950 if Nkind (Prefix (Nam)) = N_Identifier then
19951 return Chars (Prefix (Nam)) = Chars (Current_Scope);
19953 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
19954 return Chars (Selector_Name (Prefix (Nam))) =
19955 Chars (Current_Scope);
19956 else
19957 return False;
19958 end if;
19960 else
19961 return False;
19962 end if;
19964 else
19965 return False;
19966 end if;
19967 end Names_T;
19969 -- Start of processing for Designates_T
19971 begin
19972 if Nkind (Subt) = N_Identifier then
19973 return Chars (Subt) = Type_Id;
19975 -- Reference can be through an expanded name which has not been
19976 -- analyzed yet, and which designates enclosing scopes.
19978 elsif Nkind (Subt) = N_Selected_Component then
19979 if Names_T (Subt) then
19980 return True;
19982 -- Otherwise it must denote an entity that is already visible.
19983 -- The access definition may name a subtype of the enclosing
19984 -- type, if there is a previous incomplete declaration for it.
19986 else
19987 Find_Selected_Component (Subt);
19988 return
19989 Is_Entity_Name (Subt)
19990 and then Scope (Entity (Subt)) = Current_Scope
19991 and then
19992 (Chars (Base_Type (Entity (Subt))) = Type_Id
19993 or else
19994 (Is_Class_Wide_Type (Entity (Subt))
19995 and then
19996 Chars (Etype (Base_Type (Entity (Subt)))) =
19997 Type_Id));
19998 end if;
20000 -- A reference to the current type may appear as the prefix of
20001 -- a 'Class attribute.
20003 elsif Nkind (Subt) = N_Attribute_Reference
20004 and then Attribute_Name (Subt) = Name_Class
20005 then
20006 return Names_T (Prefix (Subt));
20008 else
20009 return False;
20010 end if;
20011 end Designates_T;
20013 ----------------
20014 -- Mentions_T --
20015 ----------------
20017 function Mentions_T (Acc_Def : Node_Id) return Boolean is
20018 Param_Spec : Node_Id;
20020 Acc_Subprg : constant Node_Id :=
20021 Access_To_Subprogram_Definition (Acc_Def);
20023 begin
20024 if No (Acc_Subprg) then
20025 return Designates_T (Subtype_Mark (Acc_Def));
20026 end if;
20028 -- Component is an access_to_subprogram: examine its formals,
20029 -- and result definition in the case of an access_to_function.
20031 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
20032 while Present (Param_Spec) loop
20033 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
20034 and then Mentions_T (Parameter_Type (Param_Spec))
20035 then
20036 return True;
20038 elsif Designates_T (Parameter_Type (Param_Spec)) then
20039 return True;
20040 end if;
20042 Next (Param_Spec);
20043 end loop;
20045 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
20046 if Nkind (Result_Definition (Acc_Subprg)) =
20047 N_Access_Definition
20048 then
20049 return Mentions_T (Result_Definition (Acc_Subprg));
20050 else
20051 return Designates_T (Result_Definition (Acc_Subprg));
20052 end if;
20053 end if;
20055 return False;
20056 end Mentions_T;
20058 -- Start of processing for Check_Anonymous_Access_Components
20060 begin
20061 if No (Comp_List) then
20062 return;
20063 end if;
20065 Comp := First (Component_Items (Comp_List));
20066 while Present (Comp) loop
20067 if Nkind (Comp) = N_Component_Declaration
20068 and then Present
20069 (Access_Definition (Component_Definition (Comp)))
20070 and then
20071 Mentions_T (Access_Definition (Component_Definition (Comp)))
20072 then
20073 Comp_Def := Component_Definition (Comp);
20074 Acc_Def :=
20075 Access_To_Subprogram_Definition
20076 (Access_Definition (Comp_Def));
20078 Build_Incomplete_Type_Declaration;
20079 Anon_Access := Make_Temporary (Loc, 'S');
20081 -- Create a declaration for the anonymous access type: either
20082 -- an access_to_object or an access_to_subprogram.
20084 if Present (Acc_Def) then
20085 if Nkind (Acc_Def) = N_Access_Function_Definition then
20086 Type_Def :=
20087 Make_Access_Function_Definition (Loc,
20088 Parameter_Specifications =>
20089 Parameter_Specifications (Acc_Def),
20090 Result_Definition => Result_Definition (Acc_Def));
20091 else
20092 Type_Def :=
20093 Make_Access_Procedure_Definition (Loc,
20094 Parameter_Specifications =>
20095 Parameter_Specifications (Acc_Def));
20096 end if;
20098 else
20099 Type_Def :=
20100 Make_Access_To_Object_Definition (Loc,
20101 Subtype_Indication =>
20102 Relocate_Node
20103 (Subtype_Mark
20104 (Access_Definition (Comp_Def))));
20106 Set_Constant_Present
20107 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
20108 Set_All_Present
20109 (Type_Def, All_Present (Access_Definition (Comp_Def)));
20110 end if;
20112 Set_Null_Exclusion_Present
20113 (Type_Def,
20114 Null_Exclusion_Present (Access_Definition (Comp_Def)));
20116 Decl :=
20117 Make_Full_Type_Declaration (Loc,
20118 Defining_Identifier => Anon_Access,
20119 Type_Definition => Type_Def);
20121 Insert_Before (Typ_Decl, Decl);
20122 Analyze (Decl);
20124 -- If an access to subprogram, create the extra formals
20126 if Present (Acc_Def) then
20127 Create_Extra_Formals (Designated_Type (Anon_Access));
20129 -- If an access to object, preserve entity of designated type,
20130 -- for ASIS use, before rewriting the component definition.
20132 else
20133 declare
20134 Desig : Entity_Id;
20136 begin
20137 Desig := Entity (Subtype_Indication (Type_Def));
20139 -- If the access definition is to the current record,
20140 -- the visible entity at this point is an incomplete
20141 -- type. Retrieve the full view to simplify ASIS queries
20143 if Ekind (Desig) = E_Incomplete_Type then
20144 Desig := Full_View (Desig);
20145 end if;
20147 Set_Entity
20148 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
20149 end;
20150 end if;
20152 Rewrite (Comp_Def,
20153 Make_Component_Definition (Loc,
20154 Subtype_Indication =>
20155 New_Occurrence_Of (Anon_Access, Loc)));
20157 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
20158 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
20159 else
20160 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
20161 end if;
20163 Set_Is_Local_Anonymous_Access (Anon_Access);
20164 end if;
20166 Next (Comp);
20167 end loop;
20169 if Present (Variant_Part (Comp_List)) then
20170 declare
20171 V : Node_Id;
20172 begin
20173 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
20174 while Present (V) loop
20175 Check_Anonymous_Access_Components
20176 (Typ_Decl, Typ, Prev, Component_List (V));
20177 Next_Non_Pragma (V);
20178 end loop;
20179 end;
20180 end if;
20181 end Check_Anonymous_Access_Components;
20183 ----------------------------------
20184 -- Preanalyze_Assert_Expression --
20185 ----------------------------------
20187 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20188 begin
20189 In_Assertion_Expr := In_Assertion_Expr + 1;
20190 Preanalyze_Spec_Expression (N, T);
20191 In_Assertion_Expr := In_Assertion_Expr - 1;
20192 end Preanalyze_Assert_Expression;
20194 --------------------------------
20195 -- Preanalyze_Spec_Expression --
20196 --------------------------------
20198 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20199 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20200 begin
20201 In_Spec_Expression := True;
20202 Preanalyze_And_Resolve (N, T);
20203 In_Spec_Expression := Save_In_Spec_Expression;
20204 end Preanalyze_Spec_Expression;
20206 -----------------------------
20207 -- Record_Type_Declaration --
20208 -----------------------------
20210 procedure Record_Type_Declaration
20211 (T : Entity_Id;
20212 N : Node_Id;
20213 Prev : Entity_Id)
20215 Def : constant Node_Id := Type_Definition (N);
20216 Is_Tagged : Boolean;
20217 Tag_Comp : Entity_Id;
20219 begin
20220 -- These flags must be initialized before calling Process_Discriminants
20221 -- because this routine makes use of them.
20223 Set_Ekind (T, E_Record_Type);
20224 Set_Etype (T, T);
20225 Init_Size_Align (T);
20226 Set_Interfaces (T, No_Elist);
20227 Set_Stored_Constraint (T, No_Elist);
20228 Set_Default_SSO (T);
20230 -- Normal case
20232 if Ada_Version < Ada_2005
20233 or else not Interface_Present (Def)
20234 then
20235 if Limited_Present (Def) then
20236 Check_SPARK_Restriction ("limited is not allowed", N);
20237 end if;
20239 if Abstract_Present (Def) then
20240 Check_SPARK_Restriction ("abstract is not allowed", N);
20241 end if;
20243 -- The flag Is_Tagged_Type might have already been set by
20244 -- Find_Type_Name if it detected an error for declaration T. This
20245 -- arises in the case of private tagged types where the full view
20246 -- omits the word tagged.
20248 Is_Tagged :=
20249 Tagged_Present (Def)
20250 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20252 Set_Is_Tagged_Type (T, Is_Tagged);
20253 Set_Is_Limited_Record (T, Limited_Present (Def));
20255 -- Type is abstract if full declaration carries keyword, or if
20256 -- previous partial view did.
20258 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20259 or else Abstract_Present (Def));
20261 else
20262 Check_SPARK_Restriction ("interface is not allowed", N);
20264 Is_Tagged := True;
20265 Analyze_Interface_Declaration (T, Def);
20267 if Present (Discriminant_Specifications (N)) then
20268 Error_Msg_N
20269 ("interface types cannot have discriminants",
20270 Defining_Identifier
20271 (First (Discriminant_Specifications (N))));
20272 end if;
20273 end if;
20275 -- First pass: if there are self-referential access components,
20276 -- create the required anonymous access type declarations, and if
20277 -- need be an incomplete type declaration for T itself.
20279 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
20281 if Ada_Version >= Ada_2005
20282 and then Present (Interface_List (Def))
20283 then
20284 Check_Interfaces (N, Def);
20286 declare
20287 Ifaces_List : Elist_Id;
20289 begin
20290 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
20291 -- already in the parents.
20293 Collect_Interfaces
20294 (T => T,
20295 Ifaces_List => Ifaces_List,
20296 Exclude_Parents => True);
20298 Set_Interfaces (T, Ifaces_List);
20299 end;
20300 end if;
20302 -- Records constitute a scope for the component declarations within.
20303 -- The scope is created prior to the processing of these declarations.
20304 -- Discriminants are processed first, so that they are visible when
20305 -- processing the other components. The Ekind of the record type itself
20306 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
20308 -- Enter record scope
20310 Push_Scope (T);
20312 -- If an incomplete or private type declaration was already given for
20313 -- the type, then this scope already exists, and the discriminants have
20314 -- been declared within. We must verify that the full declaration
20315 -- matches the incomplete one.
20317 Check_Or_Process_Discriminants (N, T, Prev);
20319 Set_Is_Constrained (T, not Has_Discriminants (T));
20320 Set_Has_Delayed_Freeze (T, True);
20322 -- For tagged types add a manually analyzed component corresponding
20323 -- to the component _tag, the corresponding piece of tree will be
20324 -- expanded as part of the freezing actions if it is not a CPP_Class.
20326 if Is_Tagged then
20328 -- Do not add the tag unless we are in expansion mode
20330 if Expander_Active then
20331 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
20332 Enter_Name (Tag_Comp);
20334 Set_Ekind (Tag_Comp, E_Component);
20335 Set_Is_Tag (Tag_Comp);
20336 Set_Is_Aliased (Tag_Comp);
20337 Set_Etype (Tag_Comp, RTE (RE_Tag));
20338 Set_DT_Entry_Count (Tag_Comp, No_Uint);
20339 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
20340 Init_Component_Location (Tag_Comp);
20342 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
20343 -- implemented interfaces.
20345 if Has_Interfaces (T) then
20346 Add_Interface_Tag_Components (N, T);
20347 end if;
20348 end if;
20350 Make_Class_Wide_Type (T);
20351 Set_Direct_Primitive_Operations (T, New_Elmt_List);
20352 end if;
20354 -- We must suppress range checks when processing record components in
20355 -- the presence of discriminants, since we don't want spurious checks to
20356 -- be generated during their analysis, but Suppress_Range_Checks flags
20357 -- must be reset the after processing the record definition.
20359 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
20360 -- couldn't we just use the normal range check suppression method here.
20361 -- That would seem cleaner ???
20363 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
20364 Set_Kill_Range_Checks (T, True);
20365 Record_Type_Definition (Def, Prev);
20366 Set_Kill_Range_Checks (T, False);
20367 else
20368 Record_Type_Definition (Def, Prev);
20369 end if;
20371 -- Exit from record scope
20373 End_Scope;
20375 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
20376 -- the implemented interfaces and associate them an aliased entity.
20378 if Is_Tagged
20379 and then not Is_Empty_List (Interface_List (Def))
20380 then
20381 Derive_Progenitor_Subprograms (T, T);
20382 end if;
20384 Check_Function_Writable_Actuals (N);
20385 end Record_Type_Declaration;
20387 ----------------------------
20388 -- Record_Type_Definition --
20389 ----------------------------
20391 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
20392 Component : Entity_Id;
20393 Ctrl_Components : Boolean := False;
20394 Final_Storage_Only : Boolean;
20395 T : Entity_Id;
20397 begin
20398 if Ekind (Prev_T) = E_Incomplete_Type then
20399 T := Full_View (Prev_T);
20400 else
20401 T := Prev_T;
20402 end if;
20404 -- In SPARK, tagged types and type extensions may only be declared in
20405 -- the specification of library unit packages.
20407 if Present (Def) and then Is_Tagged_Type (T) then
20408 declare
20409 Typ : Node_Id;
20410 Ctxt : Node_Id;
20412 begin
20413 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
20414 Typ := Parent (Def);
20415 else
20416 pragma Assert
20417 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
20418 Typ := Parent (Parent (Def));
20419 end if;
20421 Ctxt := Parent (Typ);
20423 if Nkind (Ctxt) = N_Package_Body
20424 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
20425 then
20426 Check_SPARK_Restriction
20427 ("type should be defined in package specification", Typ);
20429 elsif Nkind (Ctxt) /= N_Package_Specification
20430 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
20431 then
20432 Check_SPARK_Restriction
20433 ("type should be defined in library unit package", Typ);
20434 end if;
20435 end;
20436 end if;
20438 Final_Storage_Only := not Is_Controlled (T);
20440 -- Ada 2005: Check whether an explicit Limited is present in a derived
20441 -- type declaration.
20443 if Nkind (Parent (Def)) = N_Derived_Type_Definition
20444 and then Limited_Present (Parent (Def))
20445 then
20446 Set_Is_Limited_Record (T);
20447 end if;
20449 -- If the component list of a record type is defined by the reserved
20450 -- word null and there is no discriminant part, then the record type has
20451 -- no components and all records of the type are null records (RM 3.7)
20452 -- This procedure is also called to process the extension part of a
20453 -- record extension, in which case the current scope may have inherited
20454 -- components.
20456 if No (Def)
20457 or else No (Component_List (Def))
20458 or else Null_Present (Component_List (Def))
20459 then
20460 if not Is_Tagged_Type (T) then
20461 Check_SPARK_Restriction ("untagged record cannot be null", Def);
20462 end if;
20464 else
20465 Analyze_Declarations (Component_Items (Component_List (Def)));
20467 if Present (Variant_Part (Component_List (Def))) then
20468 Check_SPARK_Restriction ("variant part is not allowed", Def);
20469 Analyze (Variant_Part (Component_List (Def)));
20470 end if;
20471 end if;
20473 -- After completing the semantic analysis of the record definition,
20474 -- record components, both new and inherited, are accessible. Set their
20475 -- kind accordingly. Exclude malformed itypes from illegal declarations,
20476 -- whose Ekind may be void.
20478 Component := First_Entity (Current_Scope);
20479 while Present (Component) loop
20480 if Ekind (Component) = E_Void
20481 and then not Is_Itype (Component)
20482 then
20483 Set_Ekind (Component, E_Component);
20484 Init_Component_Location (Component);
20485 end if;
20487 if Has_Task (Etype (Component)) then
20488 Set_Has_Task (T);
20489 end if;
20491 if Has_Protected (Etype (Component)) then
20492 Set_Has_Protected (T);
20493 end if;
20495 if Ekind (Component) /= E_Component then
20496 null;
20498 -- Do not set Has_Controlled_Component on a class-wide equivalent
20499 -- type. See Make_CW_Equivalent_Type.
20501 elsif not Is_Class_Wide_Equivalent_Type (T)
20502 and then (Has_Controlled_Component (Etype (Component))
20503 or else (Chars (Component) /= Name_uParent
20504 and then Is_Controlled (Etype (Component))))
20505 then
20506 Set_Has_Controlled_Component (T, True);
20507 Final_Storage_Only :=
20508 Final_Storage_Only
20509 and then Finalize_Storage_Only (Etype (Component));
20510 Ctrl_Components := True;
20511 end if;
20513 Next_Entity (Component);
20514 end loop;
20516 -- A Type is Finalize_Storage_Only only if all its controlled components
20517 -- are also.
20519 if Ctrl_Components then
20520 Set_Finalize_Storage_Only (T, Final_Storage_Only);
20521 end if;
20523 -- Place reference to end record on the proper entity, which may
20524 -- be a partial view.
20526 if Present (Def) then
20527 Process_End_Label (Def, 'e', Prev_T);
20528 end if;
20529 end Record_Type_Definition;
20531 ------------------------
20532 -- Replace_Components --
20533 ------------------------
20535 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
20536 function Process (N : Node_Id) return Traverse_Result;
20538 -------------
20539 -- Process --
20540 -------------
20542 function Process (N : Node_Id) return Traverse_Result is
20543 Comp : Entity_Id;
20545 begin
20546 if Nkind (N) = N_Discriminant_Specification then
20547 Comp := First_Discriminant (Typ);
20548 while Present (Comp) loop
20549 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20550 Set_Defining_Identifier (N, Comp);
20551 exit;
20552 end if;
20554 Next_Discriminant (Comp);
20555 end loop;
20557 elsif Nkind (N) = N_Component_Declaration then
20558 Comp := First_Component (Typ);
20559 while Present (Comp) loop
20560 if Chars (Comp) = Chars (Defining_Identifier (N)) then
20561 Set_Defining_Identifier (N, Comp);
20562 exit;
20563 end if;
20565 Next_Component (Comp);
20566 end loop;
20567 end if;
20569 return OK;
20570 end Process;
20572 procedure Replace is new Traverse_Proc (Process);
20574 -- Start of processing for Replace_Components
20576 begin
20577 Replace (Decl);
20578 end Replace_Components;
20580 -------------------------------
20581 -- Set_Completion_Referenced --
20582 -------------------------------
20584 procedure Set_Completion_Referenced (E : Entity_Id) is
20585 begin
20586 -- If in main unit, mark entity that is a completion as referenced,
20587 -- warnings go on the partial view when needed.
20589 if In_Extended_Main_Source_Unit (E) then
20590 Set_Referenced (E);
20591 end if;
20592 end Set_Completion_Referenced;
20594 ---------------------
20595 -- Set_Default_SSO --
20596 ---------------------
20598 procedure Set_Default_SSO (T : Entity_Id) is
20599 begin
20600 case Opt.Default_SSO is
20601 when ' ' =>
20602 null;
20603 when 'L' =>
20604 Set_SSO_Set_Low_By_Default (T, True);
20605 when 'H' =>
20606 Set_SSO_Set_High_By_Default (T, True);
20607 when others =>
20608 raise Program_Error;
20609 end case;
20610 end Set_Default_SSO;
20612 ---------------------
20613 -- Set_Fixed_Range --
20614 ---------------------
20616 -- The range for fixed-point types is complicated by the fact that we
20617 -- do not know the exact end points at the time of the declaration. This
20618 -- is true for three reasons:
20620 -- A size clause may affect the fudging of the end-points.
20621 -- A small clause may affect the values of the end-points.
20622 -- We try to include the end-points if it does not affect the size.
20624 -- This means that the actual end-points must be established at the
20625 -- point when the type is frozen. Meanwhile, we first narrow the range
20626 -- as permitted (so that it will fit if necessary in a small specified
20627 -- size), and then build a range subtree with these narrowed bounds.
20628 -- Set_Fixed_Range constructs the range from real literal values, and
20629 -- sets the range as the Scalar_Range of the given fixed-point type entity.
20631 -- The parent of this range is set to point to the entity so that it is
20632 -- properly hooked into the tree (unlike normal Scalar_Range entries for
20633 -- other scalar types, which are just pointers to the range in the
20634 -- original tree, this would otherwise be an orphan).
20636 -- The tree is left unanalyzed. When the type is frozen, the processing
20637 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
20638 -- analyzed, and uses this as an indication that it should complete
20639 -- work on the range (it will know the final small and size values).
20641 procedure Set_Fixed_Range
20642 (E : Entity_Id;
20643 Loc : Source_Ptr;
20644 Lo : Ureal;
20645 Hi : Ureal)
20647 S : constant Node_Id :=
20648 Make_Range (Loc,
20649 Low_Bound => Make_Real_Literal (Loc, Lo),
20650 High_Bound => Make_Real_Literal (Loc, Hi));
20651 begin
20652 Set_Scalar_Range (E, S);
20653 Set_Parent (S, E);
20655 -- Before the freeze point, the bounds of a fixed point are universal
20656 -- and carry the corresponding type.
20658 Set_Etype (Low_Bound (S), Universal_Real);
20659 Set_Etype (High_Bound (S), Universal_Real);
20660 end Set_Fixed_Range;
20662 ----------------------------------
20663 -- Set_Scalar_Range_For_Subtype --
20664 ----------------------------------
20666 procedure Set_Scalar_Range_For_Subtype
20667 (Def_Id : Entity_Id;
20668 R : Node_Id;
20669 Subt : Entity_Id)
20671 Kind : constant Entity_Kind := Ekind (Def_Id);
20673 begin
20674 -- Defend against previous error
20676 if Nkind (R) = N_Error then
20677 return;
20678 end if;
20680 Set_Scalar_Range (Def_Id, R);
20682 -- We need to link the range into the tree before resolving it so
20683 -- that types that are referenced, including importantly the subtype
20684 -- itself, are properly frozen (Freeze_Expression requires that the
20685 -- expression be properly linked into the tree). Of course if it is
20686 -- already linked in, then we do not disturb the current link.
20688 if No (Parent (R)) then
20689 Set_Parent (R, Def_Id);
20690 end if;
20692 -- Reset the kind of the subtype during analysis of the range, to
20693 -- catch possible premature use in the bounds themselves.
20695 Set_Ekind (Def_Id, E_Void);
20696 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
20697 Set_Ekind (Def_Id, Kind);
20698 end Set_Scalar_Range_For_Subtype;
20700 --------------------------------------------------------
20701 -- Set_Stored_Constraint_From_Discriminant_Constraint --
20702 --------------------------------------------------------
20704 procedure Set_Stored_Constraint_From_Discriminant_Constraint
20705 (E : Entity_Id)
20707 begin
20708 -- Make sure set if encountered during Expand_To_Stored_Constraint
20710 Set_Stored_Constraint (E, No_Elist);
20712 -- Give it the right value
20714 if Is_Constrained (E) and then Has_Discriminants (E) then
20715 Set_Stored_Constraint (E,
20716 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
20717 end if;
20718 end Set_Stored_Constraint_From_Discriminant_Constraint;
20720 -------------------------------------
20721 -- Signed_Integer_Type_Declaration --
20722 -------------------------------------
20724 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
20725 Implicit_Base : Entity_Id;
20726 Base_Typ : Entity_Id;
20727 Lo_Val : Uint;
20728 Hi_Val : Uint;
20729 Errs : Boolean := False;
20730 Lo : Node_Id;
20731 Hi : Node_Id;
20733 function Can_Derive_From (E : Entity_Id) return Boolean;
20734 -- Determine whether given bounds allow derivation from specified type
20736 procedure Check_Bound (Expr : Node_Id);
20737 -- Check bound to make sure it is integral and static. If not, post
20738 -- appropriate error message and set Errs flag
20740 ---------------------
20741 -- Can_Derive_From --
20742 ---------------------
20744 -- Note we check both bounds against both end values, to deal with
20745 -- strange types like ones with a range of 0 .. -12341234.
20747 function Can_Derive_From (E : Entity_Id) return Boolean is
20748 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
20749 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
20750 begin
20751 return Lo <= Lo_Val and then Lo_Val <= Hi
20752 and then
20753 Lo <= Hi_Val and then Hi_Val <= Hi;
20754 end Can_Derive_From;
20756 -----------------
20757 -- Check_Bound --
20758 -----------------
20760 procedure Check_Bound (Expr : Node_Id) is
20761 begin
20762 -- If a range constraint is used as an integer type definition, each
20763 -- bound of the range must be defined by a static expression of some
20764 -- integer type, but the two bounds need not have the same integer
20765 -- type (Negative bounds are allowed.) (RM 3.5.4)
20767 if not Is_Integer_Type (Etype (Expr)) then
20768 Error_Msg_N
20769 ("integer type definition bounds must be of integer type", Expr);
20770 Errs := True;
20772 elsif not Is_OK_Static_Expression (Expr) then
20773 Flag_Non_Static_Expr
20774 ("non-static expression used for integer type bound!", Expr);
20775 Errs := True;
20777 -- The bounds are folded into literals, and we set their type to be
20778 -- universal, to avoid typing difficulties: we cannot set the type
20779 -- of the literal to the new type, because this would be a forward
20780 -- reference for the back end, and if the original type is user-
20781 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
20783 else
20784 if Is_Entity_Name (Expr) then
20785 Fold_Uint (Expr, Expr_Value (Expr), True);
20786 end if;
20788 Set_Etype (Expr, Universal_Integer);
20789 end if;
20790 end Check_Bound;
20792 -- Start of processing for Signed_Integer_Type_Declaration
20794 begin
20795 -- Create an anonymous base type
20797 Implicit_Base :=
20798 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
20800 -- Analyze and check the bounds, they can be of any integer type
20802 Lo := Low_Bound (Def);
20803 Hi := High_Bound (Def);
20805 -- Arbitrarily use Integer as the type if either bound had an error
20807 if Hi = Error or else Lo = Error then
20808 Base_Typ := Any_Integer;
20809 Set_Error_Posted (T, True);
20811 -- Here both bounds are OK expressions
20813 else
20814 Analyze_And_Resolve (Lo, Any_Integer);
20815 Analyze_And_Resolve (Hi, Any_Integer);
20817 Check_Bound (Lo);
20818 Check_Bound (Hi);
20820 if Errs then
20821 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20822 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20823 end if;
20825 -- Find type to derive from
20827 Lo_Val := Expr_Value (Lo);
20828 Hi_Val := Expr_Value (Hi);
20830 if Can_Derive_From (Standard_Short_Short_Integer) then
20831 Base_Typ := Base_Type (Standard_Short_Short_Integer);
20833 elsif Can_Derive_From (Standard_Short_Integer) then
20834 Base_Typ := Base_Type (Standard_Short_Integer);
20836 elsif Can_Derive_From (Standard_Integer) then
20837 Base_Typ := Base_Type (Standard_Integer);
20839 elsif Can_Derive_From (Standard_Long_Integer) then
20840 Base_Typ := Base_Type (Standard_Long_Integer);
20842 elsif Can_Derive_From (Standard_Long_Long_Integer) then
20843 Check_Restriction (No_Long_Long_Integers, Def);
20844 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20846 else
20847 Base_Typ := Base_Type (Standard_Long_Long_Integer);
20848 Error_Msg_N ("integer type definition bounds out of range", Def);
20849 Hi := Type_High_Bound (Standard_Long_Long_Integer);
20850 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
20851 end if;
20852 end if;
20854 -- Complete both implicit base and declared first subtype entities
20856 Set_Etype (Implicit_Base, Base_Typ);
20857 Set_Size_Info (Implicit_Base, (Base_Typ));
20858 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
20859 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
20861 Set_Ekind (T, E_Signed_Integer_Subtype);
20862 Set_Etype (T, Implicit_Base);
20864 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
20866 Set_Size_Info (T, (Implicit_Base));
20867 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
20868 Set_Scalar_Range (T, Def);
20869 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
20870 Set_Is_Constrained (T);
20871 end Signed_Integer_Type_Declaration;
20873 end Sem_Ch3;