PR c++/15745
[official-gcc.git] / gcc / fold-const.c
blob7a90b5e8508eed1b2baf2edb62b2e63bbb4fa0ab
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type_double.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type_double takes a constant, an overflowable flag and a
43 prior overflow indicator. It forces the value to fit the type and
44 sets TREE_OVERFLOW.
46 Note: Since the folders get called on non-gimple code as well as
47 gimple code, we need to handle GIMPLE tuples as well as their
48 corresponding tree equivalents. */
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "flags.h"
55 #include "tree.h"
56 #include "real.h"
57 #include "fixed-value.h"
58 #include "rtl.h"
59 #include "expr.h"
60 #include "tm_p.h"
61 #include "toplev.h"
62 #include "intl.h"
63 #include "ggc.h"
64 #include "hashtab.h"
65 #include "langhooks.h"
66 #include "md5.h"
68 /* Nonzero if we are folding constants inside an initializer; zero
69 otherwise. */
70 int folding_initializer = 0;
72 /* The following constants represent a bit based encoding of GCC's
73 comparison operators. This encoding simplifies transformations
74 on relational comparison operators, such as AND and OR. */
75 enum comparison_code {
76 COMPCODE_FALSE = 0,
77 COMPCODE_LT = 1,
78 COMPCODE_EQ = 2,
79 COMPCODE_LE = 3,
80 COMPCODE_GT = 4,
81 COMPCODE_LTGT = 5,
82 COMPCODE_GE = 6,
83 COMPCODE_ORD = 7,
84 COMPCODE_UNORD = 8,
85 COMPCODE_UNLT = 9,
86 COMPCODE_UNEQ = 10,
87 COMPCODE_UNLE = 11,
88 COMPCODE_UNGT = 12,
89 COMPCODE_NE = 13,
90 COMPCODE_UNGE = 14,
91 COMPCODE_TRUE = 15
94 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
95 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
96 static bool negate_mathfn_p (enum built_in_function);
97 static bool negate_expr_p (tree);
98 static tree negate_expr (tree);
99 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
100 static tree associate_trees (tree, tree, enum tree_code, tree);
101 static tree const_binop (enum tree_code, tree, tree, int);
102 static enum comparison_code comparison_to_compcode (enum tree_code);
103 static enum tree_code compcode_to_comparison (enum comparison_code);
104 static tree combine_comparisons (enum tree_code, enum tree_code,
105 enum tree_code, tree, tree, tree);
106 static int truth_value_p (enum tree_code);
107 static int operand_equal_for_comparison_p (tree, tree, tree);
108 static int twoval_comparison_p (tree, tree *, tree *, int *);
109 static tree eval_subst (tree, tree, tree, tree, tree);
110 static tree pedantic_omit_one_operand (tree, tree, tree);
111 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
112 static tree make_bit_field_ref (tree, tree, int, int, int);
113 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
114 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
115 enum machine_mode *, int *, int *,
116 tree *, tree *);
117 static int all_ones_mask_p (const_tree, int);
118 static tree sign_bit_p (tree, const_tree);
119 static int simple_operand_p (const_tree);
120 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
121 static tree range_predecessor (tree);
122 static tree range_successor (tree);
123 static tree make_range (tree, int *, tree *, tree *, bool *);
124 static tree build_range_check (tree, tree, int, tree, tree);
125 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
126 tree);
127 static tree fold_range_test (enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree fold_truthop (enum tree_code, tree, tree, tree);
131 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
132 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
133 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
134 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
135 tree, tree,
136 tree, tree, int);
137 static bool fold_real_zero_addition_p (const_tree, const_tree, int);
138 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
139 tree, tree, tree);
140 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
141 static tree fold_div_compare (enum tree_code, tree, tree, tree);
142 static bool reorder_operands_p (const_tree, const_tree);
143 static tree fold_negate_const (tree, tree);
144 static tree fold_not_const (tree, tree);
145 static tree fold_relational_const (enum tree_code, tree, tree, tree);
148 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
149 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
150 and SUM1. Then this yields nonzero if overflow occurred during the
151 addition.
153 Overflow occurs if A and B have the same sign, but A and SUM differ in
154 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
155 sign. */
156 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
158 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
159 We do that by representing the two-word integer in 4 words, with only
160 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
161 number. The value of the word is LOWPART + HIGHPART * BASE. */
163 #define LOWPART(x) \
164 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
165 #define HIGHPART(x) \
166 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
167 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
169 /* Unpack a two-word integer into 4 words.
170 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
171 WORDS points to the array of HOST_WIDE_INTs. */
173 static void
174 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
176 words[0] = LOWPART (low);
177 words[1] = HIGHPART (low);
178 words[2] = LOWPART (hi);
179 words[3] = HIGHPART (hi);
182 /* Pack an array of 4 words into a two-word integer.
183 WORDS points to the array of words.
184 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
186 static void
187 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
188 HOST_WIDE_INT *hi)
190 *low = words[0] + words[1] * BASE;
191 *hi = words[2] + words[3] * BASE;
194 /* Force the double-word integer L1, H1 to be within the range of the
195 integer type TYPE. Stores the properly truncated and sign-extended
196 double-word integer in *LV, *HV. Returns true if the operation
197 overflows, that is, argument and result are different. */
200 fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
201 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type)
203 unsigned HOST_WIDE_INT low0 = l1;
204 HOST_WIDE_INT high0 = h1;
205 unsigned int prec;
206 int sign_extended_type;
208 if (POINTER_TYPE_P (type)
209 || TREE_CODE (type) == OFFSET_TYPE)
210 prec = POINTER_SIZE;
211 else
212 prec = TYPE_PRECISION (type);
214 /* Size types *are* sign extended. */
215 sign_extended_type = (!TYPE_UNSIGNED (type)
216 || (TREE_CODE (type) == INTEGER_TYPE
217 && TYPE_IS_SIZETYPE (type)));
219 /* First clear all bits that are beyond the type's precision. */
220 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
222 else if (prec > HOST_BITS_PER_WIDE_INT)
223 h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
224 else
226 h1 = 0;
227 if (prec < HOST_BITS_PER_WIDE_INT)
228 l1 &= ~((HOST_WIDE_INT) (-1) << prec);
231 /* Then do sign extension if necessary. */
232 if (!sign_extended_type)
233 /* No sign extension */;
234 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
235 /* Correct width already. */;
236 else if (prec > HOST_BITS_PER_WIDE_INT)
238 /* Sign extend top half? */
239 if (h1 & ((unsigned HOST_WIDE_INT)1
240 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
241 h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
243 else if (prec == HOST_BITS_PER_WIDE_INT)
245 if ((HOST_WIDE_INT)l1 < 0)
246 h1 = -1;
248 else
250 /* Sign extend bottom half? */
251 if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
253 h1 = -1;
254 l1 |= (HOST_WIDE_INT)(-1) << prec;
258 *lv = l1;
259 *hv = h1;
261 /* If the value didn't fit, signal overflow. */
262 return l1 != low0 || h1 != high0;
265 /* We force the double-int HIGH:LOW to the range of the type TYPE by
266 sign or zero extending it.
267 OVERFLOWABLE indicates if we are interested
268 in overflow of the value, when >0 we are only interested in signed
269 overflow, for <0 we are interested in any overflow. OVERFLOWED
270 indicates whether overflow has already occurred. CONST_OVERFLOWED
271 indicates whether constant overflow has already occurred. We force
272 T's value to be within range of T's type (by setting to 0 or 1 all
273 the bits outside the type's range). We set TREE_OVERFLOWED if,
274 OVERFLOWED is nonzero,
275 or OVERFLOWABLE is >0 and signed overflow occurs
276 or OVERFLOWABLE is <0 and any overflow occurs
277 We return a new tree node for the extended double-int. The node
278 is shared if no overflow flags are set. */
280 tree
281 force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
282 HOST_WIDE_INT high, int overflowable,
283 bool overflowed)
285 int sign_extended_type;
286 bool overflow;
288 /* Size types *are* sign extended. */
289 sign_extended_type = (!TYPE_UNSIGNED (type)
290 || (TREE_CODE (type) == INTEGER_TYPE
291 && TYPE_IS_SIZETYPE (type)));
293 overflow = fit_double_type (low, high, &low, &high, type);
295 /* If we need to set overflow flags, return a new unshared node. */
296 if (overflowed || overflow)
298 if (overflowed
299 || overflowable < 0
300 || (overflowable > 0 && sign_extended_type))
302 tree t = make_node (INTEGER_CST);
303 TREE_INT_CST_LOW (t) = low;
304 TREE_INT_CST_HIGH (t) = high;
305 TREE_TYPE (t) = type;
306 TREE_OVERFLOW (t) = 1;
307 return t;
311 /* Else build a shared node. */
312 return build_int_cst_wide (type, low, high);
315 /* Add two doubleword integers with doubleword result.
316 Return nonzero if the operation overflows according to UNSIGNED_P.
317 Each argument is given as two `HOST_WIDE_INT' pieces.
318 One argument is L1 and H1; the other, L2 and H2.
319 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
322 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
323 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
324 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
325 bool unsigned_p)
327 unsigned HOST_WIDE_INT l;
328 HOST_WIDE_INT h;
330 l = l1 + l2;
331 h = h1 + h2 + (l < l1);
333 *lv = l;
334 *hv = h;
336 if (unsigned_p)
337 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
338 else
339 return OVERFLOW_SUM_SIGN (h1, h2, h);
342 /* Negate a doubleword integer with doubleword result.
343 Return nonzero if the operation overflows, assuming it's signed.
344 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
345 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
348 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
349 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
351 if (l1 == 0)
353 *lv = 0;
354 *hv = - h1;
355 return (*hv & h1) < 0;
357 else
359 *lv = -l1;
360 *hv = ~h1;
361 return 0;
365 /* Multiply two doubleword integers with doubleword result.
366 Return nonzero if the operation overflows according to UNSIGNED_P.
367 Each argument is given as two `HOST_WIDE_INT' pieces.
368 One argument is L1 and H1; the other, L2 and H2.
369 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
372 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
373 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
374 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
375 bool unsigned_p)
377 HOST_WIDE_INT arg1[4];
378 HOST_WIDE_INT arg2[4];
379 HOST_WIDE_INT prod[4 * 2];
380 unsigned HOST_WIDE_INT carry;
381 int i, j, k;
382 unsigned HOST_WIDE_INT toplow, neglow;
383 HOST_WIDE_INT tophigh, neghigh;
385 encode (arg1, l1, h1);
386 encode (arg2, l2, h2);
388 memset (prod, 0, sizeof prod);
390 for (i = 0; i < 4; i++)
392 carry = 0;
393 for (j = 0; j < 4; j++)
395 k = i + j;
396 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
397 carry += arg1[i] * arg2[j];
398 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
399 carry += prod[k];
400 prod[k] = LOWPART (carry);
401 carry = HIGHPART (carry);
403 prod[i + 4] = carry;
406 decode (prod, lv, hv);
407 decode (prod + 4, &toplow, &tophigh);
409 /* Unsigned overflow is immediate. */
410 if (unsigned_p)
411 return (toplow | tophigh) != 0;
413 /* Check for signed overflow by calculating the signed representation of the
414 top half of the result; it should agree with the low half's sign bit. */
415 if (h1 < 0)
417 neg_double (l2, h2, &neglow, &neghigh);
418 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
420 if (h2 < 0)
422 neg_double (l1, h1, &neglow, &neghigh);
423 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
425 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
428 /* Shift the doubleword integer in L1, H1 left by COUNT places
429 keeping only PREC bits of result.
430 Shift right if COUNT is negative.
431 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
434 void
435 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
436 HOST_WIDE_INT count, unsigned int prec,
437 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
439 unsigned HOST_WIDE_INT signmask;
441 if (count < 0)
443 rshift_double (l1, h1, -count, prec, lv, hv, arith);
444 return;
447 if (SHIFT_COUNT_TRUNCATED)
448 count %= prec;
450 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
452 /* Shifting by the host word size is undefined according to the
453 ANSI standard, so we must handle this as a special case. */
454 *hv = 0;
455 *lv = 0;
457 else if (count >= HOST_BITS_PER_WIDE_INT)
459 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
460 *lv = 0;
462 else
464 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
465 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
466 *lv = l1 << count;
469 /* Sign extend all bits that are beyond the precision. */
471 signmask = -((prec > HOST_BITS_PER_WIDE_INT
472 ? ((unsigned HOST_WIDE_INT) *hv
473 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
474 : (*lv >> (prec - 1))) & 1);
476 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
478 else if (prec >= HOST_BITS_PER_WIDE_INT)
480 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
481 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
483 else
485 *hv = signmask;
486 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
487 *lv |= signmask << prec;
491 /* Shift the doubleword integer in L1, H1 right by COUNT places
492 keeping only PREC bits of result. COUNT must be positive.
493 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
494 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
496 void
497 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
498 HOST_WIDE_INT count, unsigned int prec,
499 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
500 int arith)
502 unsigned HOST_WIDE_INT signmask;
504 signmask = (arith
505 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
506 : 0);
508 if (SHIFT_COUNT_TRUNCATED)
509 count %= prec;
511 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
513 /* Shifting by the host word size is undefined according to the
514 ANSI standard, so we must handle this as a special case. */
515 *hv = 0;
516 *lv = 0;
518 else if (count >= HOST_BITS_PER_WIDE_INT)
520 *hv = 0;
521 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
523 else
525 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
526 *lv = ((l1 >> count)
527 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
530 /* Zero / sign extend all bits that are beyond the precision. */
532 if (count >= (HOST_WIDE_INT)prec)
534 *hv = signmask;
535 *lv = signmask;
537 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
539 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
541 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
542 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
544 else
546 *hv = signmask;
547 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
548 *lv |= signmask << (prec - count);
552 /* Rotate the doubleword integer in L1, H1 left by COUNT places
553 keeping only PREC bits of result.
554 Rotate right if COUNT is negative.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
557 void
558 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
565 count %= prec;
566 if (count < 0)
567 count += prec;
569 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
575 /* Rotate the doubleword integer in L1, H1 left by COUNT places
576 keeping only PREC bits of result. COUNT must be positive.
577 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
579 void
580 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
581 HOST_WIDE_INT count, unsigned int prec,
582 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
584 unsigned HOST_WIDE_INT s1l, s2l;
585 HOST_WIDE_INT s1h, s2h;
587 count %= prec;
588 if (count < 0)
589 count += prec;
591 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
592 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
593 *lv = s1l | s2l;
594 *hv = s1h | s2h;
597 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
598 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
599 CODE is a tree code for a kind of division, one of
600 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
601 or EXACT_DIV_EXPR
602 It controls how the quotient is rounded to an integer.
603 Return nonzero if the operation overflows.
604 UNS nonzero says do unsigned division. */
607 div_and_round_double (enum tree_code code, int uns,
608 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
609 HOST_WIDE_INT hnum_orig,
610 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
611 HOST_WIDE_INT hden_orig,
612 unsigned HOST_WIDE_INT *lquo,
613 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
614 HOST_WIDE_INT *hrem)
616 int quo_neg = 0;
617 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
618 HOST_WIDE_INT den[4], quo[4];
619 int i, j;
620 unsigned HOST_WIDE_INT work;
621 unsigned HOST_WIDE_INT carry = 0;
622 unsigned HOST_WIDE_INT lnum = lnum_orig;
623 HOST_WIDE_INT hnum = hnum_orig;
624 unsigned HOST_WIDE_INT lden = lden_orig;
625 HOST_WIDE_INT hden = hden_orig;
626 int overflow = 0;
628 if (hden == 0 && lden == 0)
629 overflow = 1, lden = 1;
631 /* Calculate quotient sign and convert operands to unsigned. */
632 if (!uns)
634 if (hnum < 0)
636 quo_neg = ~ quo_neg;
637 /* (minimum integer) / (-1) is the only overflow case. */
638 if (neg_double (lnum, hnum, &lnum, &hnum)
639 && ((HOST_WIDE_INT) lden & hden) == -1)
640 overflow = 1;
642 if (hden < 0)
644 quo_neg = ~ quo_neg;
645 neg_double (lden, hden, &lden, &hden);
649 if (hnum == 0 && hden == 0)
650 { /* single precision */
651 *hquo = *hrem = 0;
652 /* This unsigned division rounds toward zero. */
653 *lquo = lnum / lden;
654 goto finish_up;
657 if (hnum == 0)
658 { /* trivial case: dividend < divisor */
659 /* hden != 0 already checked. */
660 *hquo = *lquo = 0;
661 *hrem = hnum;
662 *lrem = lnum;
663 goto finish_up;
666 memset (quo, 0, sizeof quo);
668 memset (num, 0, sizeof num); /* to zero 9th element */
669 memset (den, 0, sizeof den);
671 encode (num, lnum, hnum);
672 encode (den, lden, hden);
674 /* Special code for when the divisor < BASE. */
675 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
677 /* hnum != 0 already checked. */
678 for (i = 4 - 1; i >= 0; i--)
680 work = num[i] + carry * BASE;
681 quo[i] = work / lden;
682 carry = work % lden;
685 else
687 /* Full double precision division,
688 with thanks to Don Knuth's "Seminumerical Algorithms". */
689 int num_hi_sig, den_hi_sig;
690 unsigned HOST_WIDE_INT quo_est, scale;
692 /* Find the highest nonzero divisor digit. */
693 for (i = 4 - 1;; i--)
694 if (den[i] != 0)
696 den_hi_sig = i;
697 break;
700 /* Insure that the first digit of the divisor is at least BASE/2.
701 This is required by the quotient digit estimation algorithm. */
703 scale = BASE / (den[den_hi_sig] + 1);
704 if (scale > 1)
705 { /* scale divisor and dividend */
706 carry = 0;
707 for (i = 0; i <= 4 - 1; i++)
709 work = (num[i] * scale) + carry;
710 num[i] = LOWPART (work);
711 carry = HIGHPART (work);
714 num[4] = carry;
715 carry = 0;
716 for (i = 0; i <= 4 - 1; i++)
718 work = (den[i] * scale) + carry;
719 den[i] = LOWPART (work);
720 carry = HIGHPART (work);
721 if (den[i] != 0) den_hi_sig = i;
725 num_hi_sig = 4;
727 /* Main loop */
728 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
730 /* Guess the next quotient digit, quo_est, by dividing the first
731 two remaining dividend digits by the high order quotient digit.
732 quo_est is never low and is at most 2 high. */
733 unsigned HOST_WIDE_INT tmp;
735 num_hi_sig = i + den_hi_sig + 1;
736 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
737 if (num[num_hi_sig] != den[den_hi_sig])
738 quo_est = work / den[den_hi_sig];
739 else
740 quo_est = BASE - 1;
742 /* Refine quo_est so it's usually correct, and at most one high. */
743 tmp = work - quo_est * den[den_hi_sig];
744 if (tmp < BASE
745 && (den[den_hi_sig - 1] * quo_est
746 > (tmp * BASE + num[num_hi_sig - 2])))
747 quo_est--;
749 /* Try QUO_EST as the quotient digit, by multiplying the
750 divisor by QUO_EST and subtracting from the remaining dividend.
751 Keep in mind that QUO_EST is the I - 1st digit. */
753 carry = 0;
754 for (j = 0; j <= den_hi_sig; j++)
756 work = quo_est * den[j] + carry;
757 carry = HIGHPART (work);
758 work = num[i + j] - LOWPART (work);
759 num[i + j] = LOWPART (work);
760 carry += HIGHPART (work) != 0;
763 /* If quo_est was high by one, then num[i] went negative and
764 we need to correct things. */
765 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
767 quo_est--;
768 carry = 0; /* add divisor back in */
769 for (j = 0; j <= den_hi_sig; j++)
771 work = num[i + j] + den[j] + carry;
772 carry = HIGHPART (work);
773 num[i + j] = LOWPART (work);
776 num [num_hi_sig] += carry;
779 /* Store the quotient digit. */
780 quo[i] = quo_est;
784 decode (quo, lquo, hquo);
786 finish_up:
787 /* If result is negative, make it so. */
788 if (quo_neg)
789 neg_double (*lquo, *hquo, lquo, hquo);
791 /* Compute trial remainder: rem = num - (quo * den) */
792 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
793 neg_double (*lrem, *hrem, lrem, hrem);
794 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
796 switch (code)
798 case TRUNC_DIV_EXPR:
799 case TRUNC_MOD_EXPR: /* round toward zero */
800 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
801 return overflow;
803 case FLOOR_DIV_EXPR:
804 case FLOOR_MOD_EXPR: /* round toward negative infinity */
805 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
807 /* quo = quo - 1; */
808 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
809 lquo, hquo);
811 else
812 return overflow;
813 break;
815 case CEIL_DIV_EXPR:
816 case CEIL_MOD_EXPR: /* round toward positive infinity */
817 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
822 else
823 return overflow;
824 break;
826 case ROUND_DIV_EXPR:
827 case ROUND_MOD_EXPR: /* round to closest integer */
829 unsigned HOST_WIDE_INT labs_rem = *lrem;
830 HOST_WIDE_INT habs_rem = *hrem;
831 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
832 HOST_WIDE_INT habs_den = hden, htwice;
834 /* Get absolute values. */
835 if (*hrem < 0)
836 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
837 if (hden < 0)
838 neg_double (lden, hden, &labs_den, &habs_den);
840 /* If (2 * abs (lrem) >= abs (lden)) */
841 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
842 labs_rem, habs_rem, &ltwice, &htwice);
844 if (((unsigned HOST_WIDE_INT) habs_den
845 < (unsigned HOST_WIDE_INT) htwice)
846 || (((unsigned HOST_WIDE_INT) habs_den
847 == (unsigned HOST_WIDE_INT) htwice)
848 && (labs_den < ltwice)))
850 if (*hquo < 0)
851 /* quo = quo - 1; */
852 add_double (*lquo, *hquo,
853 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
854 else
855 /* quo = quo + 1; */
856 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
857 lquo, hquo);
859 else
860 return overflow;
862 break;
864 default:
865 gcc_unreachable ();
868 /* Compute true remainder: rem = num - (quo * den) */
869 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
870 neg_double (*lrem, *hrem, lrem, hrem);
871 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
872 return overflow;
875 /* If ARG2 divides ARG1 with zero remainder, carries out the division
876 of type CODE and returns the quotient.
877 Otherwise returns NULL_TREE. */
879 static tree
880 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
882 unsigned HOST_WIDE_INT int1l, int2l;
883 HOST_WIDE_INT int1h, int2h;
884 unsigned HOST_WIDE_INT quol, reml;
885 HOST_WIDE_INT quoh, remh;
886 tree type = TREE_TYPE (arg1);
887 int uns = TYPE_UNSIGNED (type);
889 int1l = TREE_INT_CST_LOW (arg1);
890 int1h = TREE_INT_CST_HIGH (arg1);
891 /* &obj[0] + -128 really should be compiled as &obj[-8] rather than
892 &obj[some_exotic_number]. */
893 if (POINTER_TYPE_P (type))
895 uns = false;
896 type = signed_type_for (type);
897 fit_double_type (int1l, int1h, &int1l, &int1h,
898 type);
900 else
901 fit_double_type (int1l, int1h, &int1l, &int1h, type);
902 int2l = TREE_INT_CST_LOW (arg2);
903 int2h = TREE_INT_CST_HIGH (arg2);
905 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
906 &quol, &quoh, &reml, &remh);
907 if (remh != 0 || reml != 0)
908 return NULL_TREE;
910 return build_int_cst_wide (type, quol, quoh);
913 /* This is nonzero if we should defer warnings about undefined
914 overflow. This facility exists because these warnings are a
915 special case. The code to estimate loop iterations does not want
916 to issue any warnings, since it works with expressions which do not
917 occur in user code. Various bits of cleanup code call fold(), but
918 only use the result if it has certain characteristics (e.g., is a
919 constant); that code only wants to issue a warning if the result is
920 used. */
922 static int fold_deferring_overflow_warnings;
924 /* If a warning about undefined overflow is deferred, this is the
925 warning. Note that this may cause us to turn two warnings into
926 one, but that is fine since it is sufficient to only give one
927 warning per expression. */
929 static const char* fold_deferred_overflow_warning;
931 /* If a warning about undefined overflow is deferred, this is the
932 level at which the warning should be emitted. */
934 static enum warn_strict_overflow_code fold_deferred_overflow_code;
936 /* Start deferring overflow warnings. We could use a stack here to
937 permit nested calls, but at present it is not necessary. */
939 void
940 fold_defer_overflow_warnings (void)
942 ++fold_deferring_overflow_warnings;
945 /* Stop deferring overflow warnings. If there is a pending warning,
946 and ISSUE is true, then issue the warning if appropriate. STMT is
947 the statement with which the warning should be associated (used for
948 location information); STMT may be NULL. CODE is the level of the
949 warning--a warn_strict_overflow_code value. This function will use
950 the smaller of CODE and the deferred code when deciding whether to
951 issue the warning. CODE may be zero to mean to always use the
952 deferred code. */
954 void
955 fold_undefer_overflow_warnings (bool issue, const_tree stmt, int code)
957 const char *warnmsg;
958 location_t locus;
960 gcc_assert (fold_deferring_overflow_warnings > 0);
961 --fold_deferring_overflow_warnings;
962 if (fold_deferring_overflow_warnings > 0)
964 if (fold_deferred_overflow_warning != NULL
965 && code != 0
966 && code < (int) fold_deferred_overflow_code)
967 fold_deferred_overflow_code = code;
968 return;
971 warnmsg = fold_deferred_overflow_warning;
972 fold_deferred_overflow_warning = NULL;
974 if (!issue || warnmsg == NULL)
975 return;
977 /* Use the smallest code level when deciding to issue the
978 warning. */
979 if (code == 0 || code > (int) fold_deferred_overflow_code)
980 code = fold_deferred_overflow_code;
982 if (!issue_strict_overflow_warning (code))
983 return;
985 if (stmt == NULL_TREE || !expr_has_location (stmt))
986 locus = input_location;
987 else
988 locus = expr_location (stmt);
989 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
992 /* Stop deferring overflow warnings, ignoring any deferred
993 warnings. */
995 void
996 fold_undefer_and_ignore_overflow_warnings (void)
998 fold_undefer_overflow_warnings (false, NULL_TREE, 0);
1001 /* Whether we are deferring overflow warnings. */
1003 bool
1004 fold_deferring_overflow_warnings_p (void)
1006 return fold_deferring_overflow_warnings > 0;
1009 /* This is called when we fold something based on the fact that signed
1010 overflow is undefined. */
1012 static void
1013 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
1015 gcc_assert (!flag_wrapv && !flag_trapv);
1016 if (fold_deferring_overflow_warnings > 0)
1018 if (fold_deferred_overflow_warning == NULL
1019 || wc < fold_deferred_overflow_code)
1021 fold_deferred_overflow_warning = gmsgid;
1022 fold_deferred_overflow_code = wc;
1025 else if (issue_strict_overflow_warning (wc))
1026 warning (OPT_Wstrict_overflow, gmsgid);
1029 /* Return true if the built-in mathematical function specified by CODE
1030 is odd, i.e. -f(x) == f(-x). */
1032 static bool
1033 negate_mathfn_p (enum built_in_function code)
1035 switch (code)
1037 CASE_FLT_FN (BUILT_IN_ASIN):
1038 CASE_FLT_FN (BUILT_IN_ASINH):
1039 CASE_FLT_FN (BUILT_IN_ATAN):
1040 CASE_FLT_FN (BUILT_IN_ATANH):
1041 CASE_FLT_FN (BUILT_IN_CASIN):
1042 CASE_FLT_FN (BUILT_IN_CASINH):
1043 CASE_FLT_FN (BUILT_IN_CATAN):
1044 CASE_FLT_FN (BUILT_IN_CATANH):
1045 CASE_FLT_FN (BUILT_IN_CBRT):
1046 CASE_FLT_FN (BUILT_IN_CPROJ):
1047 CASE_FLT_FN (BUILT_IN_CSIN):
1048 CASE_FLT_FN (BUILT_IN_CSINH):
1049 CASE_FLT_FN (BUILT_IN_CTAN):
1050 CASE_FLT_FN (BUILT_IN_CTANH):
1051 CASE_FLT_FN (BUILT_IN_ERF):
1052 CASE_FLT_FN (BUILT_IN_LLROUND):
1053 CASE_FLT_FN (BUILT_IN_LROUND):
1054 CASE_FLT_FN (BUILT_IN_ROUND):
1055 CASE_FLT_FN (BUILT_IN_SIN):
1056 CASE_FLT_FN (BUILT_IN_SINH):
1057 CASE_FLT_FN (BUILT_IN_TAN):
1058 CASE_FLT_FN (BUILT_IN_TANH):
1059 CASE_FLT_FN (BUILT_IN_TRUNC):
1060 return true;
1062 CASE_FLT_FN (BUILT_IN_LLRINT):
1063 CASE_FLT_FN (BUILT_IN_LRINT):
1064 CASE_FLT_FN (BUILT_IN_NEARBYINT):
1065 CASE_FLT_FN (BUILT_IN_RINT):
1066 return !flag_rounding_math;
1068 default:
1069 break;
1071 return false;
1074 /* Check whether we may negate an integer constant T without causing
1075 overflow. */
1077 bool
1078 may_negate_without_overflow_p (const_tree t)
1080 unsigned HOST_WIDE_INT val;
1081 unsigned int prec;
1082 tree type;
1084 gcc_assert (TREE_CODE (t) == INTEGER_CST);
1086 type = TREE_TYPE (t);
1087 if (TYPE_UNSIGNED (type))
1088 return false;
1090 prec = TYPE_PRECISION (type);
1091 if (prec > HOST_BITS_PER_WIDE_INT)
1093 if (TREE_INT_CST_LOW (t) != 0)
1094 return true;
1095 prec -= HOST_BITS_PER_WIDE_INT;
1096 val = TREE_INT_CST_HIGH (t);
1098 else
1099 val = TREE_INT_CST_LOW (t);
1100 if (prec < HOST_BITS_PER_WIDE_INT)
1101 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1102 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
1105 /* Determine whether an expression T can be cheaply negated using
1106 the function negate_expr without introducing undefined overflow. */
1108 static bool
1109 negate_expr_p (tree t)
1111 tree type;
1113 if (t == 0)
1114 return false;
1116 type = TREE_TYPE (t);
1118 STRIP_SIGN_NOPS (t);
1119 switch (TREE_CODE (t))
1121 case INTEGER_CST:
1122 if (TYPE_OVERFLOW_WRAPS (type))
1123 return true;
1125 /* Check that -CST will not overflow type. */
1126 return may_negate_without_overflow_p (t);
1127 case BIT_NOT_EXPR:
1128 return (INTEGRAL_TYPE_P (type)
1129 && TYPE_OVERFLOW_WRAPS (type));
1131 case FIXED_CST:
1132 case REAL_CST:
1133 case NEGATE_EXPR:
1134 return true;
1136 case COMPLEX_CST:
1137 return negate_expr_p (TREE_REALPART (t))
1138 && negate_expr_p (TREE_IMAGPART (t));
1140 case COMPLEX_EXPR:
1141 return negate_expr_p (TREE_OPERAND (t, 0))
1142 && negate_expr_p (TREE_OPERAND (t, 1));
1144 case CONJ_EXPR:
1145 return negate_expr_p (TREE_OPERAND (t, 0));
1147 case PLUS_EXPR:
1148 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1149 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1150 return false;
1151 /* -(A + B) -> (-B) - A. */
1152 if (negate_expr_p (TREE_OPERAND (t, 1))
1153 && reorder_operands_p (TREE_OPERAND (t, 0),
1154 TREE_OPERAND (t, 1)))
1155 return true;
1156 /* -(A + B) -> (-A) - B. */
1157 return negate_expr_p (TREE_OPERAND (t, 0));
1159 case MINUS_EXPR:
1160 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1161 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1162 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1163 && reorder_operands_p (TREE_OPERAND (t, 0),
1164 TREE_OPERAND (t, 1));
1166 case MULT_EXPR:
1167 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1168 break;
1170 /* Fall through. */
1172 case RDIV_EXPR:
1173 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1174 return negate_expr_p (TREE_OPERAND (t, 1))
1175 || negate_expr_p (TREE_OPERAND (t, 0));
1176 break;
1178 case TRUNC_DIV_EXPR:
1179 case ROUND_DIV_EXPR:
1180 case FLOOR_DIV_EXPR:
1181 case CEIL_DIV_EXPR:
1182 case EXACT_DIV_EXPR:
1183 /* In general we can't negate A / B, because if A is INT_MIN and
1184 B is 1, we may turn this into INT_MIN / -1 which is undefined
1185 and actually traps on some architectures. But if overflow is
1186 undefined, we can negate, because - (INT_MIN / 1) is an
1187 overflow. */
1188 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
1189 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
1190 break;
1191 return negate_expr_p (TREE_OPERAND (t, 1))
1192 || negate_expr_p (TREE_OPERAND (t, 0));
1194 case NOP_EXPR:
1195 /* Negate -((double)float) as (double)(-float). */
1196 if (TREE_CODE (type) == REAL_TYPE)
1198 tree tem = strip_float_extensions (t);
1199 if (tem != t)
1200 return negate_expr_p (tem);
1202 break;
1204 case CALL_EXPR:
1205 /* Negate -f(x) as f(-x). */
1206 if (negate_mathfn_p (builtin_mathfn_code (t)))
1207 return negate_expr_p (CALL_EXPR_ARG (t, 0));
1208 break;
1210 case RSHIFT_EXPR:
1211 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1212 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1214 tree op1 = TREE_OPERAND (t, 1);
1215 if (TREE_INT_CST_HIGH (op1) == 0
1216 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1217 == TREE_INT_CST_LOW (op1))
1218 return true;
1220 break;
1222 default:
1223 break;
1225 return false;
1228 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1229 simplification is possible.
1230 If negate_expr_p would return true for T, NULL_TREE will never be
1231 returned. */
1233 static tree
1234 fold_negate_expr (tree t)
1236 tree type = TREE_TYPE (t);
1237 tree tem;
1239 switch (TREE_CODE (t))
1241 /* Convert - (~A) to A + 1. */
1242 case BIT_NOT_EXPR:
1243 if (INTEGRAL_TYPE_P (type))
1244 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1245 build_int_cst (type, 1));
1246 break;
1248 case INTEGER_CST:
1249 tem = fold_negate_const (t, type);
1250 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
1251 || !TYPE_OVERFLOW_TRAPS (type))
1252 return tem;
1253 break;
1255 case REAL_CST:
1256 tem = fold_negate_const (t, type);
1257 /* Two's complement FP formats, such as c4x, may overflow. */
1258 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1259 return tem;
1260 break;
1262 case FIXED_CST:
1263 tem = fold_negate_const (t, type);
1264 return tem;
1266 case COMPLEX_CST:
1268 tree rpart = negate_expr (TREE_REALPART (t));
1269 tree ipart = negate_expr (TREE_IMAGPART (t));
1271 if ((TREE_CODE (rpart) == REAL_CST
1272 && TREE_CODE (ipart) == REAL_CST)
1273 || (TREE_CODE (rpart) == INTEGER_CST
1274 && TREE_CODE (ipart) == INTEGER_CST))
1275 return build_complex (type, rpart, ipart);
1277 break;
1279 case COMPLEX_EXPR:
1280 if (negate_expr_p (t))
1281 return fold_build2 (COMPLEX_EXPR, type,
1282 fold_negate_expr (TREE_OPERAND (t, 0)),
1283 fold_negate_expr (TREE_OPERAND (t, 1)));
1284 break;
1286 case CONJ_EXPR:
1287 if (negate_expr_p (t))
1288 return fold_build1 (CONJ_EXPR, type,
1289 fold_negate_expr (TREE_OPERAND (t, 0)));
1290 break;
1292 case NEGATE_EXPR:
1293 return TREE_OPERAND (t, 0);
1295 case PLUS_EXPR:
1296 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1297 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1299 /* -(A + B) -> (-B) - A. */
1300 if (negate_expr_p (TREE_OPERAND (t, 1))
1301 && reorder_operands_p (TREE_OPERAND (t, 0),
1302 TREE_OPERAND (t, 1)))
1304 tem = negate_expr (TREE_OPERAND (t, 1));
1305 return fold_build2 (MINUS_EXPR, type,
1306 tem, TREE_OPERAND (t, 0));
1309 /* -(A + B) -> (-A) - B. */
1310 if (negate_expr_p (TREE_OPERAND (t, 0)))
1312 tem = negate_expr (TREE_OPERAND (t, 0));
1313 return fold_build2 (MINUS_EXPR, type,
1314 tem, TREE_OPERAND (t, 1));
1317 break;
1319 case MINUS_EXPR:
1320 /* - (A - B) -> B - A */
1321 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1322 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1323 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1324 return fold_build2 (MINUS_EXPR, type,
1325 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1326 break;
1328 case MULT_EXPR:
1329 if (TYPE_UNSIGNED (type))
1330 break;
1332 /* Fall through. */
1334 case RDIV_EXPR:
1335 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1337 tem = TREE_OPERAND (t, 1);
1338 if (negate_expr_p (tem))
1339 return fold_build2 (TREE_CODE (t), type,
1340 TREE_OPERAND (t, 0), negate_expr (tem));
1341 tem = TREE_OPERAND (t, 0);
1342 if (negate_expr_p (tem))
1343 return fold_build2 (TREE_CODE (t), type,
1344 negate_expr (tem), TREE_OPERAND (t, 1));
1346 break;
1348 case TRUNC_DIV_EXPR:
1349 case ROUND_DIV_EXPR:
1350 case FLOOR_DIV_EXPR:
1351 case CEIL_DIV_EXPR:
1352 case EXACT_DIV_EXPR:
1353 /* In general we can't negate A / B, because if A is INT_MIN and
1354 B is 1, we may turn this into INT_MIN / -1 which is undefined
1355 and actually traps on some architectures. But if overflow is
1356 undefined, we can negate, because - (INT_MIN / 1) is an
1357 overflow. */
1358 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
1360 const char * const warnmsg = G_("assuming signed overflow does not "
1361 "occur when negating a division");
1362 tem = TREE_OPERAND (t, 1);
1363 if (negate_expr_p (tem))
1365 if (INTEGRAL_TYPE_P (type)
1366 && (TREE_CODE (tem) != INTEGER_CST
1367 || integer_onep (tem)))
1368 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1369 return fold_build2 (TREE_CODE (t), type,
1370 TREE_OPERAND (t, 0), negate_expr (tem));
1372 tem = TREE_OPERAND (t, 0);
1373 if (negate_expr_p (tem))
1375 if (INTEGRAL_TYPE_P (type)
1376 && (TREE_CODE (tem) != INTEGER_CST
1377 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
1378 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1379 return fold_build2 (TREE_CODE (t), type,
1380 negate_expr (tem), TREE_OPERAND (t, 1));
1383 break;
1385 case NOP_EXPR:
1386 /* Convert -((double)float) into (double)(-float). */
1387 if (TREE_CODE (type) == REAL_TYPE)
1389 tem = strip_float_extensions (t);
1390 if (tem != t && negate_expr_p (tem))
1391 return fold_convert (type, negate_expr (tem));
1393 break;
1395 case CALL_EXPR:
1396 /* Negate -f(x) as f(-x). */
1397 if (negate_mathfn_p (builtin_mathfn_code (t))
1398 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
1400 tree fndecl, arg;
1402 fndecl = get_callee_fndecl (t);
1403 arg = negate_expr (CALL_EXPR_ARG (t, 0));
1404 return build_call_expr (fndecl, 1, arg);
1406 break;
1408 case RSHIFT_EXPR:
1409 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1410 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1412 tree op1 = TREE_OPERAND (t, 1);
1413 if (TREE_INT_CST_HIGH (op1) == 0
1414 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1415 == TREE_INT_CST_LOW (op1))
1417 tree ntype = TYPE_UNSIGNED (type)
1418 ? signed_type_for (type)
1419 : unsigned_type_for (type);
1420 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1421 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1422 return fold_convert (type, temp);
1425 break;
1427 default:
1428 break;
1431 return NULL_TREE;
1434 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1435 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1436 return NULL_TREE. */
1438 static tree
1439 negate_expr (tree t)
1441 tree type, tem;
1443 if (t == NULL_TREE)
1444 return NULL_TREE;
1446 type = TREE_TYPE (t);
1447 STRIP_SIGN_NOPS (t);
1449 tem = fold_negate_expr (t);
1450 if (!tem)
1451 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1452 return fold_convert (type, tem);
1455 /* Split a tree IN into a constant, literal and variable parts that could be
1456 combined with CODE to make IN. "constant" means an expression with
1457 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1458 commutative arithmetic operation. Store the constant part into *CONP,
1459 the literal in *LITP and return the variable part. If a part isn't
1460 present, set it to null. If the tree does not decompose in this way,
1461 return the entire tree as the variable part and the other parts as null.
1463 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1464 case, we negate an operand that was subtracted. Except if it is a
1465 literal for which we use *MINUS_LITP instead.
1467 If NEGATE_P is true, we are negating all of IN, again except a literal
1468 for which we use *MINUS_LITP instead.
1470 If IN is itself a literal or constant, return it as appropriate.
1472 Note that we do not guarantee that any of the three values will be the
1473 same type as IN, but they will have the same signedness and mode. */
1475 static tree
1476 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1477 tree *minus_litp, int negate_p)
1479 tree var = 0;
1481 *conp = 0;
1482 *litp = 0;
1483 *minus_litp = 0;
1485 /* Strip any conversions that don't change the machine mode or signedness. */
1486 STRIP_SIGN_NOPS (in);
1488 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
1489 || TREE_CODE (in) == FIXED_CST)
1490 *litp = in;
1491 else if (TREE_CODE (in) == code
1492 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1493 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
1494 /* We can associate addition and subtraction together (even
1495 though the C standard doesn't say so) for integers because
1496 the value is not affected. For reals, the value might be
1497 affected, so we can't. */
1498 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1499 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1501 tree op0 = TREE_OPERAND (in, 0);
1502 tree op1 = TREE_OPERAND (in, 1);
1503 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1504 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1506 /* First see if either of the operands is a literal, then a constant. */
1507 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
1508 || TREE_CODE (op0) == FIXED_CST)
1509 *litp = op0, op0 = 0;
1510 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
1511 || TREE_CODE (op1) == FIXED_CST)
1512 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1514 if (op0 != 0 && TREE_CONSTANT (op0))
1515 *conp = op0, op0 = 0;
1516 else if (op1 != 0 && TREE_CONSTANT (op1))
1517 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1519 /* If we haven't dealt with either operand, this is not a case we can
1520 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1521 if (op0 != 0 && op1 != 0)
1522 var = in;
1523 else if (op0 != 0)
1524 var = op0;
1525 else
1526 var = op1, neg_var_p = neg1_p;
1528 /* Now do any needed negations. */
1529 if (neg_litp_p)
1530 *minus_litp = *litp, *litp = 0;
1531 if (neg_conp_p)
1532 *conp = negate_expr (*conp);
1533 if (neg_var_p)
1534 var = negate_expr (var);
1536 else if (TREE_CONSTANT (in))
1537 *conp = in;
1538 else
1539 var = in;
1541 if (negate_p)
1543 if (*litp)
1544 *minus_litp = *litp, *litp = 0;
1545 else if (*minus_litp)
1546 *litp = *minus_litp, *minus_litp = 0;
1547 *conp = negate_expr (*conp);
1548 var = negate_expr (var);
1551 return var;
1554 /* Re-associate trees split by the above function. T1 and T2 are either
1555 expressions to associate or null. Return the new expression, if any. If
1556 we build an operation, do it in TYPE and with CODE. */
1558 static tree
1559 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1561 if (t1 == 0)
1562 return t2;
1563 else if (t2 == 0)
1564 return t1;
1566 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1567 try to fold this since we will have infinite recursion. But do
1568 deal with any NEGATE_EXPRs. */
1569 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1570 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1572 if (code == PLUS_EXPR)
1574 if (TREE_CODE (t1) == NEGATE_EXPR)
1575 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1576 fold_convert (type, TREE_OPERAND (t1, 0)));
1577 else if (TREE_CODE (t2) == NEGATE_EXPR)
1578 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1579 fold_convert (type, TREE_OPERAND (t2, 0)));
1580 else if (integer_zerop (t2))
1581 return fold_convert (type, t1);
1583 else if (code == MINUS_EXPR)
1585 if (integer_zerop (t2))
1586 return fold_convert (type, t1);
1589 return build2 (code, type, fold_convert (type, t1),
1590 fold_convert (type, t2));
1593 return fold_build2 (code, type, fold_convert (type, t1),
1594 fold_convert (type, t2));
1597 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1598 for use in int_const_binop, size_binop and size_diffop. */
1600 static bool
1601 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
1603 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
1604 return false;
1605 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
1606 return false;
1608 switch (code)
1610 case LSHIFT_EXPR:
1611 case RSHIFT_EXPR:
1612 case LROTATE_EXPR:
1613 case RROTATE_EXPR:
1614 return true;
1616 default:
1617 break;
1620 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1621 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1622 && TYPE_MODE (type1) == TYPE_MODE (type2);
1626 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1627 to produce a new constant. Return NULL_TREE if we don't know how
1628 to evaluate CODE at compile-time.
1630 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1632 tree
1633 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2, int notrunc)
1635 unsigned HOST_WIDE_INT int1l, int2l;
1636 HOST_WIDE_INT int1h, int2h;
1637 unsigned HOST_WIDE_INT low;
1638 HOST_WIDE_INT hi;
1639 unsigned HOST_WIDE_INT garbagel;
1640 HOST_WIDE_INT garbageh;
1641 tree t;
1642 tree type = TREE_TYPE (arg1);
1643 int uns = TYPE_UNSIGNED (type);
1644 int is_sizetype
1645 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1646 int overflow = 0;
1648 int1l = TREE_INT_CST_LOW (arg1);
1649 int1h = TREE_INT_CST_HIGH (arg1);
1650 int2l = TREE_INT_CST_LOW (arg2);
1651 int2h = TREE_INT_CST_HIGH (arg2);
1653 switch (code)
1655 case BIT_IOR_EXPR:
1656 low = int1l | int2l, hi = int1h | int2h;
1657 break;
1659 case BIT_XOR_EXPR:
1660 low = int1l ^ int2l, hi = int1h ^ int2h;
1661 break;
1663 case BIT_AND_EXPR:
1664 low = int1l & int2l, hi = int1h & int2h;
1665 break;
1667 case RSHIFT_EXPR:
1668 int2l = -int2l;
1669 case LSHIFT_EXPR:
1670 /* It's unclear from the C standard whether shifts can overflow.
1671 The following code ignores overflow; perhaps a C standard
1672 interpretation ruling is needed. */
1673 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1674 &low, &hi, !uns);
1675 break;
1677 case RROTATE_EXPR:
1678 int2l = - int2l;
1679 case LROTATE_EXPR:
1680 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1681 &low, &hi);
1682 break;
1684 case PLUS_EXPR:
1685 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1686 break;
1688 case MINUS_EXPR:
1689 neg_double (int2l, int2h, &low, &hi);
1690 add_double (int1l, int1h, low, hi, &low, &hi);
1691 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1692 break;
1694 case MULT_EXPR:
1695 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1696 break;
1698 case TRUNC_DIV_EXPR:
1699 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1700 case EXACT_DIV_EXPR:
1701 /* This is a shortcut for a common special case. */
1702 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1703 && !TREE_OVERFLOW (arg1)
1704 && !TREE_OVERFLOW (arg2)
1705 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1707 if (code == CEIL_DIV_EXPR)
1708 int1l += int2l - 1;
1710 low = int1l / int2l, hi = 0;
1711 break;
1714 /* ... fall through ... */
1716 case ROUND_DIV_EXPR:
1717 if (int2h == 0 && int2l == 0)
1718 return NULL_TREE;
1719 if (int2h == 0 && int2l == 1)
1721 low = int1l, hi = int1h;
1722 break;
1724 if (int1l == int2l && int1h == int2h
1725 && ! (int1l == 0 && int1h == 0))
1727 low = 1, hi = 0;
1728 break;
1730 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1731 &low, &hi, &garbagel, &garbageh);
1732 break;
1734 case TRUNC_MOD_EXPR:
1735 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1736 /* This is a shortcut for a common special case. */
1737 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1738 && !TREE_OVERFLOW (arg1)
1739 && !TREE_OVERFLOW (arg2)
1740 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1742 if (code == CEIL_MOD_EXPR)
1743 int1l += int2l - 1;
1744 low = int1l % int2l, hi = 0;
1745 break;
1748 /* ... fall through ... */
1750 case ROUND_MOD_EXPR:
1751 if (int2h == 0 && int2l == 0)
1752 return NULL_TREE;
1753 overflow = div_and_round_double (code, uns,
1754 int1l, int1h, int2l, int2h,
1755 &garbagel, &garbageh, &low, &hi);
1756 break;
1758 case MIN_EXPR:
1759 case MAX_EXPR:
1760 if (uns)
1761 low = (((unsigned HOST_WIDE_INT) int1h
1762 < (unsigned HOST_WIDE_INT) int2h)
1763 || (((unsigned HOST_WIDE_INT) int1h
1764 == (unsigned HOST_WIDE_INT) int2h)
1765 && int1l < int2l));
1766 else
1767 low = (int1h < int2h
1768 || (int1h == int2h && int1l < int2l));
1770 if (low == (code == MIN_EXPR))
1771 low = int1l, hi = int1h;
1772 else
1773 low = int2l, hi = int2h;
1774 break;
1776 default:
1777 return NULL_TREE;
1780 if (notrunc)
1782 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1784 /* Propagate overflow flags ourselves. */
1785 if (((!uns || is_sizetype) && overflow)
1786 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1788 t = copy_node (t);
1789 TREE_OVERFLOW (t) = 1;
1792 else
1793 t = force_fit_type_double (TREE_TYPE (arg1), low, hi, 1,
1794 ((!uns || is_sizetype) && overflow)
1795 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1797 return t;
1800 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1801 constant. We assume ARG1 and ARG2 have the same data type, or at least
1802 are the same kind of constant and the same machine mode. Return zero if
1803 combining the constants is not allowed in the current operating mode.
1805 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1807 static tree
1808 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1810 /* Sanity check for the recursive cases. */
1811 if (!arg1 || !arg2)
1812 return NULL_TREE;
1814 STRIP_NOPS (arg1);
1815 STRIP_NOPS (arg2);
1817 if (TREE_CODE (arg1) == INTEGER_CST)
1818 return int_const_binop (code, arg1, arg2, notrunc);
1820 if (TREE_CODE (arg1) == REAL_CST)
1822 enum machine_mode mode;
1823 REAL_VALUE_TYPE d1;
1824 REAL_VALUE_TYPE d2;
1825 REAL_VALUE_TYPE value;
1826 REAL_VALUE_TYPE result;
1827 bool inexact;
1828 tree t, type;
1830 /* The following codes are handled by real_arithmetic. */
1831 switch (code)
1833 case PLUS_EXPR:
1834 case MINUS_EXPR:
1835 case MULT_EXPR:
1836 case RDIV_EXPR:
1837 case MIN_EXPR:
1838 case MAX_EXPR:
1839 break;
1841 default:
1842 return NULL_TREE;
1845 d1 = TREE_REAL_CST (arg1);
1846 d2 = TREE_REAL_CST (arg2);
1848 type = TREE_TYPE (arg1);
1849 mode = TYPE_MODE (type);
1851 /* Don't perform operation if we honor signaling NaNs and
1852 either operand is a NaN. */
1853 if (HONOR_SNANS (mode)
1854 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1855 return NULL_TREE;
1857 /* Don't perform operation if it would raise a division
1858 by zero exception. */
1859 if (code == RDIV_EXPR
1860 && REAL_VALUES_EQUAL (d2, dconst0)
1861 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1862 return NULL_TREE;
1864 /* If either operand is a NaN, just return it. Otherwise, set up
1865 for floating-point trap; we return an overflow. */
1866 if (REAL_VALUE_ISNAN (d1))
1867 return arg1;
1868 else if (REAL_VALUE_ISNAN (d2))
1869 return arg2;
1871 inexact = real_arithmetic (&value, code, &d1, &d2);
1872 real_convert (&result, mode, &value);
1874 /* Don't constant fold this floating point operation if
1875 the result has overflowed and flag_trapping_math. */
1876 if (flag_trapping_math
1877 && MODE_HAS_INFINITIES (mode)
1878 && REAL_VALUE_ISINF (result)
1879 && !REAL_VALUE_ISINF (d1)
1880 && !REAL_VALUE_ISINF (d2))
1881 return NULL_TREE;
1883 /* Don't constant fold this floating point operation if the
1884 result may dependent upon the run-time rounding mode and
1885 flag_rounding_math is set, or if GCC's software emulation
1886 is unable to accurately represent the result. */
1887 if ((flag_rounding_math
1888 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1889 && !flag_unsafe_math_optimizations))
1890 && (inexact || !real_identical (&result, &value)))
1891 return NULL_TREE;
1893 t = build_real (type, result);
1895 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1896 return t;
1899 if (TREE_CODE (arg1) == FIXED_CST)
1901 FIXED_VALUE_TYPE f1;
1902 FIXED_VALUE_TYPE f2;
1903 FIXED_VALUE_TYPE result;
1904 tree t, type;
1905 int sat_p;
1906 bool overflow_p;
1908 /* The following codes are handled by fixed_arithmetic. */
1909 switch (code)
1911 case PLUS_EXPR:
1912 case MINUS_EXPR:
1913 case MULT_EXPR:
1914 case TRUNC_DIV_EXPR:
1915 f2 = TREE_FIXED_CST (arg2);
1916 break;
1918 case LSHIFT_EXPR:
1919 case RSHIFT_EXPR:
1920 f2.data.high = TREE_INT_CST_HIGH (arg2);
1921 f2.data.low = TREE_INT_CST_LOW (arg2);
1922 f2.mode = SImode;
1923 break;
1925 default:
1926 return NULL_TREE;
1929 f1 = TREE_FIXED_CST (arg1);
1930 type = TREE_TYPE (arg1);
1931 sat_p = TYPE_SATURATING (type);
1932 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1933 t = build_fixed (type, result);
1934 /* Propagate overflow flags. */
1935 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1937 TREE_OVERFLOW (t) = 1;
1938 TREE_CONSTANT_OVERFLOW (t) = 1;
1940 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1941 TREE_CONSTANT_OVERFLOW (t) = 1;
1942 return t;
1945 if (TREE_CODE (arg1) == COMPLEX_CST)
1947 tree type = TREE_TYPE (arg1);
1948 tree r1 = TREE_REALPART (arg1);
1949 tree i1 = TREE_IMAGPART (arg1);
1950 tree r2 = TREE_REALPART (arg2);
1951 tree i2 = TREE_IMAGPART (arg2);
1952 tree real, imag;
1954 switch (code)
1956 case PLUS_EXPR:
1957 case MINUS_EXPR:
1958 real = const_binop (code, r1, r2, notrunc);
1959 imag = const_binop (code, i1, i2, notrunc);
1960 break;
1962 case MULT_EXPR:
1963 real = const_binop (MINUS_EXPR,
1964 const_binop (MULT_EXPR, r1, r2, notrunc),
1965 const_binop (MULT_EXPR, i1, i2, notrunc),
1966 notrunc);
1967 imag = const_binop (PLUS_EXPR,
1968 const_binop (MULT_EXPR, r1, i2, notrunc),
1969 const_binop (MULT_EXPR, i1, r2, notrunc),
1970 notrunc);
1971 break;
1973 case RDIV_EXPR:
1975 tree magsquared
1976 = const_binop (PLUS_EXPR,
1977 const_binop (MULT_EXPR, r2, r2, notrunc),
1978 const_binop (MULT_EXPR, i2, i2, notrunc),
1979 notrunc);
1980 tree t1
1981 = const_binop (PLUS_EXPR,
1982 const_binop (MULT_EXPR, r1, r2, notrunc),
1983 const_binop (MULT_EXPR, i1, i2, notrunc),
1984 notrunc);
1985 tree t2
1986 = const_binop (MINUS_EXPR,
1987 const_binop (MULT_EXPR, i1, r2, notrunc),
1988 const_binop (MULT_EXPR, r1, i2, notrunc),
1989 notrunc);
1991 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1992 code = TRUNC_DIV_EXPR;
1994 real = const_binop (code, t1, magsquared, notrunc);
1995 imag = const_binop (code, t2, magsquared, notrunc);
1997 break;
1999 default:
2000 return NULL_TREE;
2003 if (real && imag)
2004 return build_complex (type, real, imag);
2007 return NULL_TREE;
2010 /* Create a size type INT_CST node with NUMBER sign extended. KIND
2011 indicates which particular sizetype to create. */
2013 tree
2014 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
2016 return build_int_cst (sizetype_tab[(int) kind], number);
2019 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2020 is a tree code. The type of the result is taken from the operands.
2021 Both must be equivalent integer types, ala int_binop_types_match_p.
2022 If the operands are constant, so is the result. */
2024 tree
2025 size_binop (enum tree_code code, tree arg0, tree arg1)
2027 tree type = TREE_TYPE (arg0);
2029 if (arg0 == error_mark_node || arg1 == error_mark_node)
2030 return error_mark_node;
2032 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
2033 TREE_TYPE (arg1)));
2035 /* Handle the special case of two integer constants faster. */
2036 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2038 /* And some specific cases even faster than that. */
2039 if (code == PLUS_EXPR)
2041 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
2042 return arg1;
2043 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2044 return arg0;
2046 else if (code == MINUS_EXPR)
2048 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2049 return arg0;
2051 else if (code == MULT_EXPR)
2053 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
2054 return arg1;
2057 /* Handle general case of two integer constants. */
2058 return int_const_binop (code, arg0, arg1, 0);
2061 return fold_build2 (code, type, arg0, arg1);
2064 /* Given two values, either both of sizetype or both of bitsizetype,
2065 compute the difference between the two values. Return the value
2066 in signed type corresponding to the type of the operands. */
2068 tree
2069 size_diffop (tree arg0, tree arg1)
2071 tree type = TREE_TYPE (arg0);
2072 tree ctype;
2074 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2075 TREE_TYPE (arg1)));
2077 /* If the type is already signed, just do the simple thing. */
2078 if (!TYPE_UNSIGNED (type))
2079 return size_binop (MINUS_EXPR, arg0, arg1);
2081 if (type == sizetype)
2082 ctype = ssizetype;
2083 else if (type == bitsizetype)
2084 ctype = sbitsizetype;
2085 else
2086 ctype = signed_type_for (type);
2088 /* If either operand is not a constant, do the conversions to the signed
2089 type and subtract. The hardware will do the right thing with any
2090 overflow in the subtraction. */
2091 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2092 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
2093 fold_convert (ctype, arg1));
2095 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2096 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2097 overflow) and negate (which can't either). Special-case a result
2098 of zero while we're here. */
2099 if (tree_int_cst_equal (arg0, arg1))
2100 return build_int_cst (ctype, 0);
2101 else if (tree_int_cst_lt (arg1, arg0))
2102 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2103 else
2104 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
2105 fold_convert (ctype, size_binop (MINUS_EXPR,
2106 arg1, arg0)));
2109 /* A subroutine of fold_convert_const handling conversions of an
2110 INTEGER_CST to another integer type. */
2112 static tree
2113 fold_convert_const_int_from_int (tree type, const_tree arg1)
2115 tree t;
2117 /* Given an integer constant, make new constant with new type,
2118 appropriately sign-extended or truncated. */
2119 t = force_fit_type_double (type, TREE_INT_CST_LOW (arg1),
2120 TREE_INT_CST_HIGH (arg1),
2121 /* Don't set the overflow when
2122 converting a pointer */
2123 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2124 (TREE_INT_CST_HIGH (arg1) < 0
2125 && (TYPE_UNSIGNED (type)
2126 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2127 | TREE_OVERFLOW (arg1));
2129 return t;
2132 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2133 to an integer type. */
2135 static tree
2136 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2138 int overflow = 0;
2139 tree t;
2141 /* The following code implements the floating point to integer
2142 conversion rules required by the Java Language Specification,
2143 that IEEE NaNs are mapped to zero and values that overflow
2144 the target precision saturate, i.e. values greater than
2145 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2146 are mapped to INT_MIN. These semantics are allowed by the
2147 C and C++ standards that simply state that the behavior of
2148 FP-to-integer conversion is unspecified upon overflow. */
2150 HOST_WIDE_INT high, low;
2151 REAL_VALUE_TYPE r;
2152 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2154 switch (code)
2156 case FIX_TRUNC_EXPR:
2157 real_trunc (&r, VOIDmode, &x);
2158 break;
2160 default:
2161 gcc_unreachable ();
2164 /* If R is NaN, return zero and show we have an overflow. */
2165 if (REAL_VALUE_ISNAN (r))
2167 overflow = 1;
2168 high = 0;
2169 low = 0;
2172 /* See if R is less than the lower bound or greater than the
2173 upper bound. */
2175 if (! overflow)
2177 tree lt = TYPE_MIN_VALUE (type);
2178 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2179 if (REAL_VALUES_LESS (r, l))
2181 overflow = 1;
2182 high = TREE_INT_CST_HIGH (lt);
2183 low = TREE_INT_CST_LOW (lt);
2187 if (! overflow)
2189 tree ut = TYPE_MAX_VALUE (type);
2190 if (ut)
2192 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2193 if (REAL_VALUES_LESS (u, r))
2195 overflow = 1;
2196 high = TREE_INT_CST_HIGH (ut);
2197 low = TREE_INT_CST_LOW (ut);
2202 if (! overflow)
2203 REAL_VALUE_TO_INT (&low, &high, r);
2205 t = force_fit_type_double (type, low, high, -1,
2206 overflow | TREE_OVERFLOW (arg1));
2207 return t;
2210 /* A subroutine of fold_convert_const handling conversions of a
2211 FIXED_CST to an integer type. */
2213 static tree
2214 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2216 tree t;
2217 double_int temp, temp_trunc;
2218 unsigned int mode;
2220 /* Right shift FIXED_CST to temp by fbit. */
2221 temp = TREE_FIXED_CST (arg1).data;
2222 mode = TREE_FIXED_CST (arg1).mode;
2223 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
2225 lshift_double (temp.low, temp.high,
2226 - GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2227 &temp.low, &temp.high, SIGNED_FIXED_POINT_MODE_P (mode));
2229 /* Left shift temp to temp_trunc by fbit. */
2230 lshift_double (temp.low, temp.high,
2231 GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2232 &temp_trunc.low, &temp_trunc.high,
2233 SIGNED_FIXED_POINT_MODE_P (mode));
2235 else
2237 temp.low = 0;
2238 temp.high = 0;
2239 temp_trunc.low = 0;
2240 temp_trunc.high = 0;
2243 /* If FIXED_CST is negative, we need to round the value toward 0.
2244 By checking if the fractional bits are not zero to add 1 to temp. */
2245 if (SIGNED_FIXED_POINT_MODE_P (mode) && temp_trunc.high < 0
2246 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
2248 double_int one;
2249 one.low = 1;
2250 one.high = 0;
2251 temp = double_int_add (temp, one);
2254 /* Given a fixed-point constant, make new constant with new type,
2255 appropriately sign-extended or truncated. */
2256 t = force_fit_type_double (type, temp.low, temp.high, -1,
2257 (temp.high < 0
2258 && (TYPE_UNSIGNED (type)
2259 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2260 | TREE_OVERFLOW (arg1));
2262 return t;
2265 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2266 to another floating point type. */
2268 static tree
2269 fold_convert_const_real_from_real (tree type, const_tree arg1)
2271 REAL_VALUE_TYPE value;
2272 tree t;
2274 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2275 t = build_real (type, value);
2277 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2278 return t;
2281 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2282 to a floating point type. */
2284 static tree
2285 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2287 REAL_VALUE_TYPE value;
2288 tree t;
2290 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2291 t = build_real (type, value);
2293 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2294 TREE_CONSTANT_OVERFLOW (t)
2295 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2296 return t;
2299 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2300 to another fixed-point type. */
2302 static tree
2303 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2305 FIXED_VALUE_TYPE value;
2306 tree t;
2307 bool overflow_p;
2309 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2310 TYPE_SATURATING (type));
2311 t = build_fixed (type, value);
2313 /* Propagate overflow flags. */
2314 if (overflow_p | TREE_OVERFLOW (arg1))
2316 TREE_OVERFLOW (t) = 1;
2317 TREE_CONSTANT_OVERFLOW (t) = 1;
2319 else if (TREE_CONSTANT_OVERFLOW (arg1))
2320 TREE_CONSTANT_OVERFLOW (t) = 1;
2321 return t;
2324 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2325 to a fixed-point type. */
2327 static tree
2328 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2330 FIXED_VALUE_TYPE value;
2331 tree t;
2332 bool overflow_p;
2334 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
2335 TREE_INT_CST (arg1),
2336 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2337 TYPE_SATURATING (type));
2338 t = build_fixed (type, value);
2340 /* Propagate overflow flags. */
2341 if (overflow_p | TREE_OVERFLOW (arg1))
2343 TREE_OVERFLOW (t) = 1;
2344 TREE_CONSTANT_OVERFLOW (t) = 1;
2346 else if (TREE_CONSTANT_OVERFLOW (arg1))
2347 TREE_CONSTANT_OVERFLOW (t) = 1;
2348 return t;
2351 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2352 to a fixed-point type. */
2354 static tree
2355 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2357 FIXED_VALUE_TYPE value;
2358 tree t;
2359 bool overflow_p;
2361 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2362 &TREE_REAL_CST (arg1),
2363 TYPE_SATURATING (type));
2364 t = build_fixed (type, value);
2366 /* Propagate overflow flags. */
2367 if (overflow_p | TREE_OVERFLOW (arg1))
2369 TREE_OVERFLOW (t) = 1;
2370 TREE_CONSTANT_OVERFLOW (t) = 1;
2372 else if (TREE_CONSTANT_OVERFLOW (arg1))
2373 TREE_CONSTANT_OVERFLOW (t) = 1;
2374 return t;
2377 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2378 type TYPE. If no simplification can be done return NULL_TREE. */
2380 static tree
2381 fold_convert_const (enum tree_code code, tree type, tree arg1)
2383 if (TREE_TYPE (arg1) == type)
2384 return arg1;
2386 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2388 if (TREE_CODE (arg1) == INTEGER_CST)
2389 return fold_convert_const_int_from_int (type, arg1);
2390 else if (TREE_CODE (arg1) == REAL_CST)
2391 return fold_convert_const_int_from_real (code, type, arg1);
2392 else if (TREE_CODE (arg1) == FIXED_CST)
2393 return fold_convert_const_int_from_fixed (type, arg1);
2395 else if (TREE_CODE (type) == REAL_TYPE)
2397 if (TREE_CODE (arg1) == INTEGER_CST)
2398 return build_real_from_int_cst (type, arg1);
2399 else if (TREE_CODE (arg1) == REAL_CST)
2400 return fold_convert_const_real_from_real (type, arg1);
2401 else if (TREE_CODE (arg1) == FIXED_CST)
2402 return fold_convert_const_real_from_fixed (type, arg1);
2404 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2406 if (TREE_CODE (arg1) == FIXED_CST)
2407 return fold_convert_const_fixed_from_fixed (type, arg1);
2408 else if (TREE_CODE (arg1) == INTEGER_CST)
2409 return fold_convert_const_fixed_from_int (type, arg1);
2410 else if (TREE_CODE (arg1) == REAL_CST)
2411 return fold_convert_const_fixed_from_real (type, arg1);
2413 return NULL_TREE;
2416 /* Construct a vector of zero elements of vector type TYPE. */
2418 static tree
2419 build_zero_vector (tree type)
2421 tree elem, list;
2422 int i, units;
2424 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2425 units = TYPE_VECTOR_SUBPARTS (type);
2427 list = NULL_TREE;
2428 for (i = 0; i < units; i++)
2429 list = tree_cons (NULL_TREE, elem, list);
2430 return build_vector (type, list);
2433 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2435 bool
2436 fold_convertible_p (const_tree type, const_tree arg)
2438 tree orig = TREE_TYPE (arg);
2440 if (type == orig)
2441 return true;
2443 if (TREE_CODE (arg) == ERROR_MARK
2444 || TREE_CODE (type) == ERROR_MARK
2445 || TREE_CODE (orig) == ERROR_MARK)
2446 return false;
2448 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2449 return true;
2451 switch (TREE_CODE (type))
2453 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2454 case POINTER_TYPE: case REFERENCE_TYPE:
2455 case OFFSET_TYPE:
2456 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2457 || TREE_CODE (orig) == OFFSET_TYPE)
2458 return true;
2459 return (TREE_CODE (orig) == VECTOR_TYPE
2460 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2462 default:
2463 return TREE_CODE (type) == TREE_CODE (orig);
2467 /* Convert expression ARG to type TYPE. Used by the middle-end for
2468 simple conversions in preference to calling the front-end's convert. */
2470 tree
2471 fold_convert (tree type, tree arg)
2473 tree orig = TREE_TYPE (arg);
2474 tree tem;
2476 if (type == orig)
2477 return arg;
2479 if (TREE_CODE (arg) == ERROR_MARK
2480 || TREE_CODE (type) == ERROR_MARK
2481 || TREE_CODE (orig) == ERROR_MARK)
2482 return error_mark_node;
2484 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2485 return fold_build1 (NOP_EXPR, type, arg);
2487 switch (TREE_CODE (type))
2489 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2490 case POINTER_TYPE: case REFERENCE_TYPE:
2491 case OFFSET_TYPE:
2492 if (TREE_CODE (arg) == INTEGER_CST)
2494 tem = fold_convert_const (NOP_EXPR, type, arg);
2495 if (tem != NULL_TREE)
2496 return tem;
2498 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2499 || TREE_CODE (orig) == OFFSET_TYPE)
2500 return fold_build1 (NOP_EXPR, type, arg);
2501 if (TREE_CODE (orig) == COMPLEX_TYPE)
2503 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2504 return fold_convert (type, tem);
2506 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2507 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2508 return fold_build1 (NOP_EXPR, type, arg);
2510 case REAL_TYPE:
2511 if (TREE_CODE (arg) == INTEGER_CST)
2513 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2514 if (tem != NULL_TREE)
2515 return tem;
2517 else if (TREE_CODE (arg) == REAL_CST)
2519 tem = fold_convert_const (NOP_EXPR, type, arg);
2520 if (tem != NULL_TREE)
2521 return tem;
2523 else if (TREE_CODE (arg) == FIXED_CST)
2525 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2526 if (tem != NULL_TREE)
2527 return tem;
2530 switch (TREE_CODE (orig))
2532 case INTEGER_TYPE:
2533 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2534 case POINTER_TYPE: case REFERENCE_TYPE:
2535 return fold_build1 (FLOAT_EXPR, type, arg);
2537 case REAL_TYPE:
2538 return fold_build1 (NOP_EXPR, type, arg);
2540 case FIXED_POINT_TYPE:
2541 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2543 case COMPLEX_TYPE:
2544 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2545 return fold_convert (type, tem);
2547 default:
2548 gcc_unreachable ();
2551 case FIXED_POINT_TYPE:
2552 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2553 || TREE_CODE (arg) == REAL_CST)
2555 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2556 if (tem != NULL_TREE)
2557 return tem;
2560 switch (TREE_CODE (orig))
2562 case FIXED_POINT_TYPE:
2563 case INTEGER_TYPE:
2564 case ENUMERAL_TYPE:
2565 case BOOLEAN_TYPE:
2566 case REAL_TYPE:
2567 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2569 case COMPLEX_TYPE:
2570 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2571 return fold_convert (type, tem);
2573 default:
2574 gcc_unreachable ();
2577 case COMPLEX_TYPE:
2578 switch (TREE_CODE (orig))
2580 case INTEGER_TYPE:
2581 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2582 case POINTER_TYPE: case REFERENCE_TYPE:
2583 case REAL_TYPE:
2584 case FIXED_POINT_TYPE:
2585 return build2 (COMPLEX_EXPR, type,
2586 fold_convert (TREE_TYPE (type), arg),
2587 fold_convert (TREE_TYPE (type), integer_zero_node));
2588 case COMPLEX_TYPE:
2590 tree rpart, ipart;
2592 if (TREE_CODE (arg) == COMPLEX_EXPR)
2594 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2595 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2596 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2599 arg = save_expr (arg);
2600 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2601 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2602 rpart = fold_convert (TREE_TYPE (type), rpart);
2603 ipart = fold_convert (TREE_TYPE (type), ipart);
2604 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2607 default:
2608 gcc_unreachable ();
2611 case VECTOR_TYPE:
2612 if (integer_zerop (arg))
2613 return build_zero_vector (type);
2614 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2615 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2616 || TREE_CODE (orig) == VECTOR_TYPE);
2617 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2619 case VOID_TYPE:
2620 tem = fold_ignored_result (arg);
2621 if (TREE_CODE (tem) == GIMPLE_MODIFY_STMT)
2622 return tem;
2623 return fold_build1 (NOP_EXPR, type, tem);
2625 default:
2626 gcc_unreachable ();
2630 /* Return false if expr can be assumed not to be an lvalue, true
2631 otherwise. */
2633 static bool
2634 maybe_lvalue_p (const_tree x)
2636 /* We only need to wrap lvalue tree codes. */
2637 switch (TREE_CODE (x))
2639 case VAR_DECL:
2640 case PARM_DECL:
2641 case RESULT_DECL:
2642 case LABEL_DECL:
2643 case FUNCTION_DECL:
2644 case SSA_NAME:
2646 case COMPONENT_REF:
2647 case INDIRECT_REF:
2648 case ALIGN_INDIRECT_REF:
2649 case MISALIGNED_INDIRECT_REF:
2650 case ARRAY_REF:
2651 case ARRAY_RANGE_REF:
2652 case BIT_FIELD_REF:
2653 case OBJ_TYPE_REF:
2655 case REALPART_EXPR:
2656 case IMAGPART_EXPR:
2657 case PREINCREMENT_EXPR:
2658 case PREDECREMENT_EXPR:
2659 case SAVE_EXPR:
2660 case TRY_CATCH_EXPR:
2661 case WITH_CLEANUP_EXPR:
2662 case COMPOUND_EXPR:
2663 case MODIFY_EXPR:
2664 case GIMPLE_MODIFY_STMT:
2665 case TARGET_EXPR:
2666 case COND_EXPR:
2667 case BIND_EXPR:
2668 case MIN_EXPR:
2669 case MAX_EXPR:
2670 break;
2672 default:
2673 /* Assume the worst for front-end tree codes. */
2674 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2675 break;
2676 return false;
2679 return true;
2682 /* Return an expr equal to X but certainly not valid as an lvalue. */
2684 tree
2685 non_lvalue (tree x)
2687 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2688 us. */
2689 if (in_gimple_form)
2690 return x;
2692 if (! maybe_lvalue_p (x))
2693 return x;
2694 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2697 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2698 Zero means allow extended lvalues. */
2700 int pedantic_lvalues;
2702 /* When pedantic, return an expr equal to X but certainly not valid as a
2703 pedantic lvalue. Otherwise, return X. */
2705 static tree
2706 pedantic_non_lvalue (tree x)
2708 if (pedantic_lvalues)
2709 return non_lvalue (x);
2710 else
2711 return x;
2714 /* Given a tree comparison code, return the code that is the logical inverse
2715 of the given code. It is not safe to do this for floating-point
2716 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2717 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2719 enum tree_code
2720 invert_tree_comparison (enum tree_code code, bool honor_nans)
2722 if (honor_nans && flag_trapping_math)
2723 return ERROR_MARK;
2725 switch (code)
2727 case EQ_EXPR:
2728 return NE_EXPR;
2729 case NE_EXPR:
2730 return EQ_EXPR;
2731 case GT_EXPR:
2732 return honor_nans ? UNLE_EXPR : LE_EXPR;
2733 case GE_EXPR:
2734 return honor_nans ? UNLT_EXPR : LT_EXPR;
2735 case LT_EXPR:
2736 return honor_nans ? UNGE_EXPR : GE_EXPR;
2737 case LE_EXPR:
2738 return honor_nans ? UNGT_EXPR : GT_EXPR;
2739 case LTGT_EXPR:
2740 return UNEQ_EXPR;
2741 case UNEQ_EXPR:
2742 return LTGT_EXPR;
2743 case UNGT_EXPR:
2744 return LE_EXPR;
2745 case UNGE_EXPR:
2746 return LT_EXPR;
2747 case UNLT_EXPR:
2748 return GE_EXPR;
2749 case UNLE_EXPR:
2750 return GT_EXPR;
2751 case ORDERED_EXPR:
2752 return UNORDERED_EXPR;
2753 case UNORDERED_EXPR:
2754 return ORDERED_EXPR;
2755 default:
2756 gcc_unreachable ();
2760 /* Similar, but return the comparison that results if the operands are
2761 swapped. This is safe for floating-point. */
2763 enum tree_code
2764 swap_tree_comparison (enum tree_code code)
2766 switch (code)
2768 case EQ_EXPR:
2769 case NE_EXPR:
2770 case ORDERED_EXPR:
2771 case UNORDERED_EXPR:
2772 case LTGT_EXPR:
2773 case UNEQ_EXPR:
2774 return code;
2775 case GT_EXPR:
2776 return LT_EXPR;
2777 case GE_EXPR:
2778 return LE_EXPR;
2779 case LT_EXPR:
2780 return GT_EXPR;
2781 case LE_EXPR:
2782 return GE_EXPR;
2783 case UNGT_EXPR:
2784 return UNLT_EXPR;
2785 case UNGE_EXPR:
2786 return UNLE_EXPR;
2787 case UNLT_EXPR:
2788 return UNGT_EXPR;
2789 case UNLE_EXPR:
2790 return UNGE_EXPR;
2791 default:
2792 gcc_unreachable ();
2797 /* Convert a comparison tree code from an enum tree_code representation
2798 into a compcode bit-based encoding. This function is the inverse of
2799 compcode_to_comparison. */
2801 static enum comparison_code
2802 comparison_to_compcode (enum tree_code code)
2804 switch (code)
2806 case LT_EXPR:
2807 return COMPCODE_LT;
2808 case EQ_EXPR:
2809 return COMPCODE_EQ;
2810 case LE_EXPR:
2811 return COMPCODE_LE;
2812 case GT_EXPR:
2813 return COMPCODE_GT;
2814 case NE_EXPR:
2815 return COMPCODE_NE;
2816 case GE_EXPR:
2817 return COMPCODE_GE;
2818 case ORDERED_EXPR:
2819 return COMPCODE_ORD;
2820 case UNORDERED_EXPR:
2821 return COMPCODE_UNORD;
2822 case UNLT_EXPR:
2823 return COMPCODE_UNLT;
2824 case UNEQ_EXPR:
2825 return COMPCODE_UNEQ;
2826 case UNLE_EXPR:
2827 return COMPCODE_UNLE;
2828 case UNGT_EXPR:
2829 return COMPCODE_UNGT;
2830 case LTGT_EXPR:
2831 return COMPCODE_LTGT;
2832 case UNGE_EXPR:
2833 return COMPCODE_UNGE;
2834 default:
2835 gcc_unreachable ();
2839 /* Convert a compcode bit-based encoding of a comparison operator back
2840 to GCC's enum tree_code representation. This function is the
2841 inverse of comparison_to_compcode. */
2843 static enum tree_code
2844 compcode_to_comparison (enum comparison_code code)
2846 switch (code)
2848 case COMPCODE_LT:
2849 return LT_EXPR;
2850 case COMPCODE_EQ:
2851 return EQ_EXPR;
2852 case COMPCODE_LE:
2853 return LE_EXPR;
2854 case COMPCODE_GT:
2855 return GT_EXPR;
2856 case COMPCODE_NE:
2857 return NE_EXPR;
2858 case COMPCODE_GE:
2859 return GE_EXPR;
2860 case COMPCODE_ORD:
2861 return ORDERED_EXPR;
2862 case COMPCODE_UNORD:
2863 return UNORDERED_EXPR;
2864 case COMPCODE_UNLT:
2865 return UNLT_EXPR;
2866 case COMPCODE_UNEQ:
2867 return UNEQ_EXPR;
2868 case COMPCODE_UNLE:
2869 return UNLE_EXPR;
2870 case COMPCODE_UNGT:
2871 return UNGT_EXPR;
2872 case COMPCODE_LTGT:
2873 return LTGT_EXPR;
2874 case COMPCODE_UNGE:
2875 return UNGE_EXPR;
2876 default:
2877 gcc_unreachable ();
2881 /* Return a tree for the comparison which is the combination of
2882 doing the AND or OR (depending on CODE) of the two operations LCODE
2883 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2884 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2885 if this makes the transformation invalid. */
2887 tree
2888 combine_comparisons (enum tree_code code, enum tree_code lcode,
2889 enum tree_code rcode, tree truth_type,
2890 tree ll_arg, tree lr_arg)
2892 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2893 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2894 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2895 enum comparison_code compcode;
2897 switch (code)
2899 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2900 compcode = lcompcode & rcompcode;
2901 break;
2903 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2904 compcode = lcompcode | rcompcode;
2905 break;
2907 default:
2908 return NULL_TREE;
2911 if (!honor_nans)
2913 /* Eliminate unordered comparisons, as well as LTGT and ORD
2914 which are not used unless the mode has NaNs. */
2915 compcode &= ~COMPCODE_UNORD;
2916 if (compcode == COMPCODE_LTGT)
2917 compcode = COMPCODE_NE;
2918 else if (compcode == COMPCODE_ORD)
2919 compcode = COMPCODE_TRUE;
2921 else if (flag_trapping_math)
2923 /* Check that the original operation and the optimized ones will trap
2924 under the same condition. */
2925 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2926 && (lcompcode != COMPCODE_EQ)
2927 && (lcompcode != COMPCODE_ORD);
2928 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2929 && (rcompcode != COMPCODE_EQ)
2930 && (rcompcode != COMPCODE_ORD);
2931 bool trap = (compcode & COMPCODE_UNORD) == 0
2932 && (compcode != COMPCODE_EQ)
2933 && (compcode != COMPCODE_ORD);
2935 /* In a short-circuited boolean expression the LHS might be
2936 such that the RHS, if evaluated, will never trap. For
2937 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2938 if neither x nor y is NaN. (This is a mixed blessing: for
2939 example, the expression above will never trap, hence
2940 optimizing it to x < y would be invalid). */
2941 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2942 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2943 rtrap = false;
2945 /* If the comparison was short-circuited, and only the RHS
2946 trapped, we may now generate a spurious trap. */
2947 if (rtrap && !ltrap
2948 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2949 return NULL_TREE;
2951 /* If we changed the conditions that cause a trap, we lose. */
2952 if ((ltrap || rtrap) != trap)
2953 return NULL_TREE;
2956 if (compcode == COMPCODE_TRUE)
2957 return constant_boolean_node (true, truth_type);
2958 else if (compcode == COMPCODE_FALSE)
2959 return constant_boolean_node (false, truth_type);
2960 else
2961 return fold_build2 (compcode_to_comparison (compcode),
2962 truth_type, ll_arg, lr_arg);
2965 /* Return nonzero if CODE is a tree code that represents a truth value. */
2967 static int
2968 truth_value_p (enum tree_code code)
2970 return (TREE_CODE_CLASS (code) == tcc_comparison
2971 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2972 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2973 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2976 /* Return nonzero if two operands (typically of the same tree node)
2977 are necessarily equal. If either argument has side-effects this
2978 function returns zero. FLAGS modifies behavior as follows:
2980 If OEP_ONLY_CONST is set, only return nonzero for constants.
2981 This function tests whether the operands are indistinguishable;
2982 it does not test whether they are equal using C's == operation.
2983 The distinction is important for IEEE floating point, because
2984 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2985 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2987 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2988 even though it may hold multiple values during a function.
2989 This is because a GCC tree node guarantees that nothing else is
2990 executed between the evaluation of its "operands" (which may often
2991 be evaluated in arbitrary order). Hence if the operands themselves
2992 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2993 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2994 unset means assuming isochronic (or instantaneous) tree equivalence.
2995 Unless comparing arbitrary expression trees, such as from different
2996 statements, this flag can usually be left unset.
2998 If OEP_PURE_SAME is set, then pure functions with identical arguments
2999 are considered the same. It is used when the caller has other ways
3000 to ensure that global memory is unchanged in between. */
3003 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3005 /* If either is ERROR_MARK, they aren't equal. */
3006 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
3007 return 0;
3009 /* If both types don't have the same signedness, then we can't consider
3010 them equal. We must check this before the STRIP_NOPS calls
3011 because they may change the signedness of the arguments. */
3012 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3013 return 0;
3015 /* If both types don't have the same precision, then it is not safe
3016 to strip NOPs. */
3017 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
3018 return 0;
3020 STRIP_NOPS (arg0);
3021 STRIP_NOPS (arg1);
3023 /* In case both args are comparisons but with different comparison
3024 code, try to swap the comparison operands of one arg to produce
3025 a match and compare that variant. */
3026 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3027 && COMPARISON_CLASS_P (arg0)
3028 && COMPARISON_CLASS_P (arg1))
3030 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3032 if (TREE_CODE (arg0) == swap_code)
3033 return operand_equal_p (TREE_OPERAND (arg0, 0),
3034 TREE_OPERAND (arg1, 1), flags)
3035 && operand_equal_p (TREE_OPERAND (arg0, 1),
3036 TREE_OPERAND (arg1, 0), flags);
3039 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3040 /* This is needed for conversions and for COMPONENT_REF.
3041 Might as well play it safe and always test this. */
3042 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3043 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3044 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
3045 return 0;
3047 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3048 We don't care about side effects in that case because the SAVE_EXPR
3049 takes care of that for us. In all other cases, two expressions are
3050 equal if they have no side effects. If we have two identical
3051 expressions with side effects that should be treated the same due
3052 to the only side effects being identical SAVE_EXPR's, that will
3053 be detected in the recursive calls below. */
3054 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3055 && (TREE_CODE (arg0) == SAVE_EXPR
3056 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3057 return 1;
3059 /* Next handle constant cases, those for which we can return 1 even
3060 if ONLY_CONST is set. */
3061 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3062 switch (TREE_CODE (arg0))
3064 case INTEGER_CST:
3065 return tree_int_cst_equal (arg0, arg1);
3067 case FIXED_CST:
3068 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3069 TREE_FIXED_CST (arg1));
3071 case REAL_CST:
3072 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
3073 TREE_REAL_CST (arg1)))
3074 return 1;
3077 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
3079 /* If we do not distinguish between signed and unsigned zero,
3080 consider them equal. */
3081 if (real_zerop (arg0) && real_zerop (arg1))
3082 return 1;
3084 return 0;
3086 case VECTOR_CST:
3088 tree v1, v2;
3090 v1 = TREE_VECTOR_CST_ELTS (arg0);
3091 v2 = TREE_VECTOR_CST_ELTS (arg1);
3092 while (v1 && v2)
3094 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
3095 flags))
3096 return 0;
3097 v1 = TREE_CHAIN (v1);
3098 v2 = TREE_CHAIN (v2);
3101 return v1 == v2;
3104 case COMPLEX_CST:
3105 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3106 flags)
3107 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3108 flags));
3110 case STRING_CST:
3111 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3112 && ! memcmp (TREE_STRING_POINTER (arg0),
3113 TREE_STRING_POINTER (arg1),
3114 TREE_STRING_LENGTH (arg0)));
3116 case ADDR_EXPR:
3117 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3119 default:
3120 break;
3123 if (flags & OEP_ONLY_CONST)
3124 return 0;
3126 /* Define macros to test an operand from arg0 and arg1 for equality and a
3127 variant that allows null and views null as being different from any
3128 non-null value. In the latter case, if either is null, the both
3129 must be; otherwise, do the normal comparison. */
3130 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3131 TREE_OPERAND (arg1, N), flags)
3133 #define OP_SAME_WITH_NULL(N) \
3134 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3135 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3137 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3139 case tcc_unary:
3140 /* Two conversions are equal only if signedness and modes match. */
3141 switch (TREE_CODE (arg0))
3143 case NOP_EXPR:
3144 case CONVERT_EXPR:
3145 case FIX_TRUNC_EXPR:
3146 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3147 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3148 return 0;
3149 break;
3150 default:
3151 break;
3154 return OP_SAME (0);
3157 case tcc_comparison:
3158 case tcc_binary:
3159 if (OP_SAME (0) && OP_SAME (1))
3160 return 1;
3162 /* For commutative ops, allow the other order. */
3163 return (commutative_tree_code (TREE_CODE (arg0))
3164 && operand_equal_p (TREE_OPERAND (arg0, 0),
3165 TREE_OPERAND (arg1, 1), flags)
3166 && operand_equal_p (TREE_OPERAND (arg0, 1),
3167 TREE_OPERAND (arg1, 0), flags));
3169 case tcc_reference:
3170 /* If either of the pointer (or reference) expressions we are
3171 dereferencing contain a side effect, these cannot be equal. */
3172 if (TREE_SIDE_EFFECTS (arg0)
3173 || TREE_SIDE_EFFECTS (arg1))
3174 return 0;
3176 switch (TREE_CODE (arg0))
3178 case INDIRECT_REF:
3179 case ALIGN_INDIRECT_REF:
3180 case MISALIGNED_INDIRECT_REF:
3181 case REALPART_EXPR:
3182 case IMAGPART_EXPR:
3183 return OP_SAME (0);
3185 case ARRAY_REF:
3186 case ARRAY_RANGE_REF:
3187 /* Operands 2 and 3 may be null.
3188 Compare the array index by value if it is constant first as we
3189 may have different types but same value here. */
3190 return (OP_SAME (0)
3191 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3192 TREE_OPERAND (arg1, 1))
3193 || OP_SAME (1))
3194 && OP_SAME_WITH_NULL (2)
3195 && OP_SAME_WITH_NULL (3));
3197 case COMPONENT_REF:
3198 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3199 may be NULL when we're called to compare MEM_EXPRs. */
3200 return OP_SAME_WITH_NULL (0)
3201 && OP_SAME (1)
3202 && OP_SAME_WITH_NULL (2);
3204 case BIT_FIELD_REF:
3205 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3207 default:
3208 return 0;
3211 case tcc_expression:
3212 switch (TREE_CODE (arg0))
3214 case ADDR_EXPR:
3215 case TRUTH_NOT_EXPR:
3216 return OP_SAME (0);
3218 case TRUTH_ANDIF_EXPR:
3219 case TRUTH_ORIF_EXPR:
3220 return OP_SAME (0) && OP_SAME (1);
3222 case TRUTH_AND_EXPR:
3223 case TRUTH_OR_EXPR:
3224 case TRUTH_XOR_EXPR:
3225 if (OP_SAME (0) && OP_SAME (1))
3226 return 1;
3228 /* Otherwise take into account this is a commutative operation. */
3229 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3230 TREE_OPERAND (arg1, 1), flags)
3231 && operand_equal_p (TREE_OPERAND (arg0, 1),
3232 TREE_OPERAND (arg1, 0), flags));
3234 default:
3235 return 0;
3238 case tcc_vl_exp:
3239 switch (TREE_CODE (arg0))
3241 case CALL_EXPR:
3242 /* If the CALL_EXPRs call different functions, then they
3243 clearly can not be equal. */
3244 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3245 flags))
3246 return 0;
3249 unsigned int cef = call_expr_flags (arg0);
3250 if (flags & OEP_PURE_SAME)
3251 cef &= ECF_CONST | ECF_PURE;
3252 else
3253 cef &= ECF_CONST;
3254 if (!cef)
3255 return 0;
3258 /* Now see if all the arguments are the same. */
3260 const_call_expr_arg_iterator iter0, iter1;
3261 const_tree a0, a1;
3262 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3263 a1 = first_const_call_expr_arg (arg1, &iter1);
3264 a0 && a1;
3265 a0 = next_const_call_expr_arg (&iter0),
3266 a1 = next_const_call_expr_arg (&iter1))
3267 if (! operand_equal_p (a0, a1, flags))
3268 return 0;
3270 /* If we get here and both argument lists are exhausted
3271 then the CALL_EXPRs are equal. */
3272 return ! (a0 || a1);
3274 default:
3275 return 0;
3278 case tcc_declaration:
3279 /* Consider __builtin_sqrt equal to sqrt. */
3280 return (TREE_CODE (arg0) == FUNCTION_DECL
3281 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3282 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3283 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3285 default:
3286 return 0;
3289 #undef OP_SAME
3290 #undef OP_SAME_WITH_NULL
3293 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3294 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3296 When in doubt, return 0. */
3298 static int
3299 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3301 int unsignedp1, unsignedpo;
3302 tree primarg0, primarg1, primother;
3303 unsigned int correct_width;
3305 if (operand_equal_p (arg0, arg1, 0))
3306 return 1;
3308 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3309 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3310 return 0;
3312 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3313 and see if the inner values are the same. This removes any
3314 signedness comparison, which doesn't matter here. */
3315 primarg0 = arg0, primarg1 = arg1;
3316 STRIP_NOPS (primarg0);
3317 STRIP_NOPS (primarg1);
3318 if (operand_equal_p (primarg0, primarg1, 0))
3319 return 1;
3321 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3322 actual comparison operand, ARG0.
3324 First throw away any conversions to wider types
3325 already present in the operands. */
3327 primarg1 = get_narrower (arg1, &unsignedp1);
3328 primother = get_narrower (other, &unsignedpo);
3330 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3331 if (unsignedp1 == unsignedpo
3332 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3333 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3335 tree type = TREE_TYPE (arg0);
3337 /* Make sure shorter operand is extended the right way
3338 to match the longer operand. */
3339 primarg1 = fold_convert (signed_or_unsigned_type_for
3340 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3342 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3343 return 1;
3346 return 0;
3349 /* See if ARG is an expression that is either a comparison or is performing
3350 arithmetic on comparisons. The comparisons must only be comparing
3351 two different values, which will be stored in *CVAL1 and *CVAL2; if
3352 they are nonzero it means that some operands have already been found.
3353 No variables may be used anywhere else in the expression except in the
3354 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3355 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3357 If this is true, return 1. Otherwise, return zero. */
3359 static int
3360 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3362 enum tree_code code = TREE_CODE (arg);
3363 enum tree_code_class class = TREE_CODE_CLASS (code);
3365 /* We can handle some of the tcc_expression cases here. */
3366 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3367 class = tcc_unary;
3368 else if (class == tcc_expression
3369 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3370 || code == COMPOUND_EXPR))
3371 class = tcc_binary;
3373 else if (class == tcc_expression && code == SAVE_EXPR
3374 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3376 /* If we've already found a CVAL1 or CVAL2, this expression is
3377 two complex to handle. */
3378 if (*cval1 || *cval2)
3379 return 0;
3381 class = tcc_unary;
3382 *save_p = 1;
3385 switch (class)
3387 case tcc_unary:
3388 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3390 case tcc_binary:
3391 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3392 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3393 cval1, cval2, save_p));
3395 case tcc_constant:
3396 return 1;
3398 case tcc_expression:
3399 if (code == COND_EXPR)
3400 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3401 cval1, cval2, save_p)
3402 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3403 cval1, cval2, save_p)
3404 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3405 cval1, cval2, save_p));
3406 return 0;
3408 case tcc_comparison:
3409 /* First see if we can handle the first operand, then the second. For
3410 the second operand, we know *CVAL1 can't be zero. It must be that
3411 one side of the comparison is each of the values; test for the
3412 case where this isn't true by failing if the two operands
3413 are the same. */
3415 if (operand_equal_p (TREE_OPERAND (arg, 0),
3416 TREE_OPERAND (arg, 1), 0))
3417 return 0;
3419 if (*cval1 == 0)
3420 *cval1 = TREE_OPERAND (arg, 0);
3421 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3423 else if (*cval2 == 0)
3424 *cval2 = TREE_OPERAND (arg, 0);
3425 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3427 else
3428 return 0;
3430 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3432 else if (*cval2 == 0)
3433 *cval2 = TREE_OPERAND (arg, 1);
3434 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3436 else
3437 return 0;
3439 return 1;
3441 default:
3442 return 0;
3446 /* ARG is a tree that is known to contain just arithmetic operations and
3447 comparisons. Evaluate the operations in the tree substituting NEW0 for
3448 any occurrence of OLD0 as an operand of a comparison and likewise for
3449 NEW1 and OLD1. */
3451 static tree
3452 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
3454 tree type = TREE_TYPE (arg);
3455 enum tree_code code = TREE_CODE (arg);
3456 enum tree_code_class class = TREE_CODE_CLASS (code);
3458 /* We can handle some of the tcc_expression cases here. */
3459 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3460 class = tcc_unary;
3461 else if (class == tcc_expression
3462 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3463 class = tcc_binary;
3465 switch (class)
3467 case tcc_unary:
3468 return fold_build1 (code, type,
3469 eval_subst (TREE_OPERAND (arg, 0),
3470 old0, new0, old1, new1));
3472 case tcc_binary:
3473 return fold_build2 (code, type,
3474 eval_subst (TREE_OPERAND (arg, 0),
3475 old0, new0, old1, new1),
3476 eval_subst (TREE_OPERAND (arg, 1),
3477 old0, new0, old1, new1));
3479 case tcc_expression:
3480 switch (code)
3482 case SAVE_EXPR:
3483 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
3485 case COMPOUND_EXPR:
3486 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
3488 case COND_EXPR:
3489 return fold_build3 (code, type,
3490 eval_subst (TREE_OPERAND (arg, 0),
3491 old0, new0, old1, new1),
3492 eval_subst (TREE_OPERAND (arg, 1),
3493 old0, new0, old1, new1),
3494 eval_subst (TREE_OPERAND (arg, 2),
3495 old0, new0, old1, new1));
3496 default:
3497 break;
3499 /* Fall through - ??? */
3501 case tcc_comparison:
3503 tree arg0 = TREE_OPERAND (arg, 0);
3504 tree arg1 = TREE_OPERAND (arg, 1);
3506 /* We need to check both for exact equality and tree equality. The
3507 former will be true if the operand has a side-effect. In that
3508 case, we know the operand occurred exactly once. */
3510 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3511 arg0 = new0;
3512 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3513 arg0 = new1;
3515 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3516 arg1 = new0;
3517 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3518 arg1 = new1;
3520 return fold_build2 (code, type, arg0, arg1);
3523 default:
3524 return arg;
3528 /* Return a tree for the case when the result of an expression is RESULT
3529 converted to TYPE and OMITTED was previously an operand of the expression
3530 but is now not needed (e.g., we folded OMITTED * 0).
3532 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3533 the conversion of RESULT to TYPE. */
3535 tree
3536 omit_one_operand (tree type, tree result, tree omitted)
3538 tree t = fold_convert (type, result);
3540 /* If the resulting operand is an empty statement, just return the omitted
3541 statement casted to void. */
3542 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3543 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3545 if (TREE_SIDE_EFFECTS (omitted))
3546 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3548 return non_lvalue (t);
3551 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3553 static tree
3554 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3556 tree t = fold_convert (type, result);
3558 /* If the resulting operand is an empty statement, just return the omitted
3559 statement casted to void. */
3560 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3561 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3563 if (TREE_SIDE_EFFECTS (omitted))
3564 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3566 return pedantic_non_lvalue (t);
3569 /* Return a tree for the case when the result of an expression is RESULT
3570 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3571 of the expression but are now not needed.
3573 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3574 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3575 evaluated before OMITTED2. Otherwise, if neither has side effects,
3576 just do the conversion of RESULT to TYPE. */
3578 tree
3579 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3581 tree t = fold_convert (type, result);
3583 if (TREE_SIDE_EFFECTS (omitted2))
3584 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3585 if (TREE_SIDE_EFFECTS (omitted1))
3586 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3588 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3592 /* Return a simplified tree node for the truth-negation of ARG. This
3593 never alters ARG itself. We assume that ARG is an operation that
3594 returns a truth value (0 or 1).
3596 FIXME: one would think we would fold the result, but it causes
3597 problems with the dominator optimizer. */
3599 tree
3600 fold_truth_not_expr (tree arg)
3602 tree type = TREE_TYPE (arg);
3603 enum tree_code code = TREE_CODE (arg);
3605 /* If this is a comparison, we can simply invert it, except for
3606 floating-point non-equality comparisons, in which case we just
3607 enclose a TRUTH_NOT_EXPR around what we have. */
3609 if (TREE_CODE_CLASS (code) == tcc_comparison)
3611 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3612 if (FLOAT_TYPE_P (op_type)
3613 && flag_trapping_math
3614 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3615 && code != NE_EXPR && code != EQ_EXPR)
3616 return NULL_TREE;
3617 else
3619 code = invert_tree_comparison (code,
3620 HONOR_NANS (TYPE_MODE (op_type)));
3621 if (code == ERROR_MARK)
3622 return NULL_TREE;
3623 else
3624 return build2 (code, type,
3625 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3629 switch (code)
3631 case INTEGER_CST:
3632 return constant_boolean_node (integer_zerop (arg), type);
3634 case TRUTH_AND_EXPR:
3635 return build2 (TRUTH_OR_EXPR, type,
3636 invert_truthvalue (TREE_OPERAND (arg, 0)),
3637 invert_truthvalue (TREE_OPERAND (arg, 1)));
3639 case TRUTH_OR_EXPR:
3640 return build2 (TRUTH_AND_EXPR, type,
3641 invert_truthvalue (TREE_OPERAND (arg, 0)),
3642 invert_truthvalue (TREE_OPERAND (arg, 1)));
3644 case TRUTH_XOR_EXPR:
3645 /* Here we can invert either operand. We invert the first operand
3646 unless the second operand is a TRUTH_NOT_EXPR in which case our
3647 result is the XOR of the first operand with the inside of the
3648 negation of the second operand. */
3650 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3651 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3652 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3653 else
3654 return build2 (TRUTH_XOR_EXPR, type,
3655 invert_truthvalue (TREE_OPERAND (arg, 0)),
3656 TREE_OPERAND (arg, 1));
3658 case TRUTH_ANDIF_EXPR:
3659 return build2 (TRUTH_ORIF_EXPR, type,
3660 invert_truthvalue (TREE_OPERAND (arg, 0)),
3661 invert_truthvalue (TREE_OPERAND (arg, 1)));
3663 case TRUTH_ORIF_EXPR:
3664 return build2 (TRUTH_ANDIF_EXPR, type,
3665 invert_truthvalue (TREE_OPERAND (arg, 0)),
3666 invert_truthvalue (TREE_OPERAND (arg, 1)));
3668 case TRUTH_NOT_EXPR:
3669 return TREE_OPERAND (arg, 0);
3671 case COND_EXPR:
3673 tree arg1 = TREE_OPERAND (arg, 1);
3674 tree arg2 = TREE_OPERAND (arg, 2);
3675 /* A COND_EXPR may have a throw as one operand, which
3676 then has void type. Just leave void operands
3677 as they are. */
3678 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3679 VOID_TYPE_P (TREE_TYPE (arg1))
3680 ? arg1 : invert_truthvalue (arg1),
3681 VOID_TYPE_P (TREE_TYPE (arg2))
3682 ? arg2 : invert_truthvalue (arg2));
3685 case COMPOUND_EXPR:
3686 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3687 invert_truthvalue (TREE_OPERAND (arg, 1)));
3689 case NON_LVALUE_EXPR:
3690 return invert_truthvalue (TREE_OPERAND (arg, 0));
3692 case NOP_EXPR:
3693 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3694 return build1 (TRUTH_NOT_EXPR, type, arg);
3696 case CONVERT_EXPR:
3697 case FLOAT_EXPR:
3698 return build1 (TREE_CODE (arg), type,
3699 invert_truthvalue (TREE_OPERAND (arg, 0)));
3701 case BIT_AND_EXPR:
3702 if (!integer_onep (TREE_OPERAND (arg, 1)))
3703 break;
3704 return build2 (EQ_EXPR, type, arg,
3705 build_int_cst (type, 0));
3707 case SAVE_EXPR:
3708 return build1 (TRUTH_NOT_EXPR, type, arg);
3710 case CLEANUP_POINT_EXPR:
3711 return build1 (CLEANUP_POINT_EXPR, type,
3712 invert_truthvalue (TREE_OPERAND (arg, 0)));
3714 default:
3715 break;
3718 return NULL_TREE;
3721 /* Return a simplified tree node for the truth-negation of ARG. This
3722 never alters ARG itself. We assume that ARG is an operation that
3723 returns a truth value (0 or 1).
3725 FIXME: one would think we would fold the result, but it causes
3726 problems with the dominator optimizer. */
3728 tree
3729 invert_truthvalue (tree arg)
3731 tree tem;
3733 if (TREE_CODE (arg) == ERROR_MARK)
3734 return arg;
3736 tem = fold_truth_not_expr (arg);
3737 if (!tem)
3738 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3740 return tem;
3743 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3744 operands are another bit-wise operation with a common input. If so,
3745 distribute the bit operations to save an operation and possibly two if
3746 constants are involved. For example, convert
3747 (A | B) & (A | C) into A | (B & C)
3748 Further simplification will occur if B and C are constants.
3750 If this optimization cannot be done, 0 will be returned. */
3752 static tree
3753 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3755 tree common;
3756 tree left, right;
3758 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3759 || TREE_CODE (arg0) == code
3760 || (TREE_CODE (arg0) != BIT_AND_EXPR
3761 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3762 return 0;
3764 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3766 common = TREE_OPERAND (arg0, 0);
3767 left = TREE_OPERAND (arg0, 1);
3768 right = TREE_OPERAND (arg1, 1);
3770 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3772 common = TREE_OPERAND (arg0, 0);
3773 left = TREE_OPERAND (arg0, 1);
3774 right = TREE_OPERAND (arg1, 0);
3776 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3778 common = TREE_OPERAND (arg0, 1);
3779 left = TREE_OPERAND (arg0, 0);
3780 right = TREE_OPERAND (arg1, 1);
3782 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3784 common = TREE_OPERAND (arg0, 1);
3785 left = TREE_OPERAND (arg0, 0);
3786 right = TREE_OPERAND (arg1, 0);
3788 else
3789 return 0;
3791 return fold_build2 (TREE_CODE (arg0), type, common,
3792 fold_build2 (code, type, left, right));
3795 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3796 with code CODE. This optimization is unsafe. */
3797 static tree
3798 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3800 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3801 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3803 /* (A / C) +- (B / C) -> (A +- B) / C. */
3804 if (mul0 == mul1
3805 && operand_equal_p (TREE_OPERAND (arg0, 1),
3806 TREE_OPERAND (arg1, 1), 0))
3807 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3808 fold_build2 (code, type,
3809 TREE_OPERAND (arg0, 0),
3810 TREE_OPERAND (arg1, 0)),
3811 TREE_OPERAND (arg0, 1));
3813 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3814 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3815 TREE_OPERAND (arg1, 0), 0)
3816 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3817 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3819 REAL_VALUE_TYPE r0, r1;
3820 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3821 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3822 if (!mul0)
3823 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3824 if (!mul1)
3825 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3826 real_arithmetic (&r0, code, &r0, &r1);
3827 return fold_build2 (MULT_EXPR, type,
3828 TREE_OPERAND (arg0, 0),
3829 build_real (type, r0));
3832 return NULL_TREE;
3835 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3836 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3838 static tree
3839 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3840 int unsignedp)
3842 tree result;
3844 if (bitpos == 0)
3846 tree size = TYPE_SIZE (TREE_TYPE (inner));
3847 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3848 || POINTER_TYPE_P (TREE_TYPE (inner)))
3849 && host_integerp (size, 0)
3850 && tree_low_cst (size, 0) == bitsize)
3851 return fold_convert (type, inner);
3854 result = build3 (BIT_FIELD_REF, type, inner,
3855 size_int (bitsize), bitsize_int (bitpos));
3857 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3859 return result;
3862 /* Optimize a bit-field compare.
3864 There are two cases: First is a compare against a constant and the
3865 second is a comparison of two items where the fields are at the same
3866 bit position relative to the start of a chunk (byte, halfword, word)
3867 large enough to contain it. In these cases we can avoid the shift
3868 implicit in bitfield extractions.
3870 For constants, we emit a compare of the shifted constant with the
3871 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3872 compared. For two fields at the same position, we do the ANDs with the
3873 similar mask and compare the result of the ANDs.
3875 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3876 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3877 are the left and right operands of the comparison, respectively.
3879 If the optimization described above can be done, we return the resulting
3880 tree. Otherwise we return zero. */
3882 static tree
3883 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3884 tree lhs, tree rhs)
3886 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3887 tree type = TREE_TYPE (lhs);
3888 tree signed_type, unsigned_type;
3889 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3890 enum machine_mode lmode, rmode, nmode;
3891 int lunsignedp, runsignedp;
3892 int lvolatilep = 0, rvolatilep = 0;
3893 tree linner, rinner = NULL_TREE;
3894 tree mask;
3895 tree offset;
3897 /* Get all the information about the extractions being done. If the bit size
3898 if the same as the size of the underlying object, we aren't doing an
3899 extraction at all and so can do nothing. We also don't want to
3900 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3901 then will no longer be able to replace it. */
3902 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3903 &lunsignedp, &lvolatilep, false);
3904 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3905 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3906 return 0;
3908 if (!const_p)
3910 /* If this is not a constant, we can only do something if bit positions,
3911 sizes, and signedness are the same. */
3912 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3913 &runsignedp, &rvolatilep, false);
3915 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3916 || lunsignedp != runsignedp || offset != 0
3917 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3918 return 0;
3921 /* See if we can find a mode to refer to this field. We should be able to,
3922 but fail if we can't. */
3923 nmode = get_best_mode (lbitsize, lbitpos,
3924 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3925 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3926 TYPE_ALIGN (TREE_TYPE (rinner))),
3927 word_mode, lvolatilep || rvolatilep);
3928 if (nmode == VOIDmode)
3929 return 0;
3931 /* Set signed and unsigned types of the precision of this mode for the
3932 shifts below. */
3933 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3934 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3936 /* Compute the bit position and size for the new reference and our offset
3937 within it. If the new reference is the same size as the original, we
3938 won't optimize anything, so return zero. */
3939 nbitsize = GET_MODE_BITSIZE (nmode);
3940 nbitpos = lbitpos & ~ (nbitsize - 1);
3941 lbitpos -= nbitpos;
3942 if (nbitsize == lbitsize)
3943 return 0;
3945 if (BYTES_BIG_ENDIAN)
3946 lbitpos = nbitsize - lbitsize - lbitpos;
3948 /* Make the mask to be used against the extracted field. */
3949 mask = build_int_cst_type (unsigned_type, -1);
3950 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3951 mask = const_binop (RSHIFT_EXPR, mask,
3952 size_int (nbitsize - lbitsize - lbitpos), 0);
3954 if (! const_p)
3955 /* If not comparing with constant, just rework the comparison
3956 and return. */
3957 return fold_build2 (code, compare_type,
3958 fold_build2 (BIT_AND_EXPR, unsigned_type,
3959 make_bit_field_ref (linner,
3960 unsigned_type,
3961 nbitsize, nbitpos,
3963 mask),
3964 fold_build2 (BIT_AND_EXPR, unsigned_type,
3965 make_bit_field_ref (rinner,
3966 unsigned_type,
3967 nbitsize, nbitpos,
3969 mask));
3971 /* Otherwise, we are handling the constant case. See if the constant is too
3972 big for the field. Warn and return a tree of for 0 (false) if so. We do
3973 this not only for its own sake, but to avoid having to test for this
3974 error case below. If we didn't, we might generate wrong code.
3976 For unsigned fields, the constant shifted right by the field length should
3977 be all zero. For signed fields, the high-order bits should agree with
3978 the sign bit. */
3980 if (lunsignedp)
3982 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3983 fold_convert (unsigned_type, rhs),
3984 size_int (lbitsize), 0)))
3986 warning (0, "comparison is always %d due to width of bit-field",
3987 code == NE_EXPR);
3988 return constant_boolean_node (code == NE_EXPR, compare_type);
3991 else
3993 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3994 size_int (lbitsize - 1), 0);
3995 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3997 warning (0, "comparison is always %d due to width of bit-field",
3998 code == NE_EXPR);
3999 return constant_boolean_node (code == NE_EXPR, compare_type);
4003 /* Single-bit compares should always be against zero. */
4004 if (lbitsize == 1 && ! integer_zerop (rhs))
4006 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4007 rhs = build_int_cst (type, 0);
4010 /* Make a new bitfield reference, shift the constant over the
4011 appropriate number of bits and mask it with the computed mask
4012 (in case this was a signed field). If we changed it, make a new one. */
4013 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
4014 if (lvolatilep)
4016 TREE_SIDE_EFFECTS (lhs) = 1;
4017 TREE_THIS_VOLATILE (lhs) = 1;
4020 rhs = const_binop (BIT_AND_EXPR,
4021 const_binop (LSHIFT_EXPR,
4022 fold_convert (unsigned_type, rhs),
4023 size_int (lbitpos), 0),
4024 mask, 0);
4026 return build2 (code, compare_type,
4027 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
4028 rhs);
4031 /* Subroutine for fold_truthop: decode a field reference.
4033 If EXP is a comparison reference, we return the innermost reference.
4035 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4036 set to the starting bit number.
4038 If the innermost field can be completely contained in a mode-sized
4039 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4041 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4042 otherwise it is not changed.
4044 *PUNSIGNEDP is set to the signedness of the field.
4046 *PMASK is set to the mask used. This is either contained in a
4047 BIT_AND_EXPR or derived from the width of the field.
4049 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4051 Return 0 if this is not a component reference or is one that we can't
4052 do anything with. */
4054 static tree
4055 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
4056 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
4057 int *punsignedp, int *pvolatilep,
4058 tree *pmask, tree *pand_mask)
4060 tree outer_type = 0;
4061 tree and_mask = 0;
4062 tree mask, inner, offset;
4063 tree unsigned_type;
4064 unsigned int precision;
4066 /* All the optimizations using this function assume integer fields.
4067 There are problems with FP fields since the type_for_size call
4068 below can fail for, e.g., XFmode. */
4069 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4070 return 0;
4072 /* We are interested in the bare arrangement of bits, so strip everything
4073 that doesn't affect the machine mode. However, record the type of the
4074 outermost expression if it may matter below. */
4075 if (TREE_CODE (exp) == NOP_EXPR
4076 || TREE_CODE (exp) == CONVERT_EXPR
4077 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4078 outer_type = TREE_TYPE (exp);
4079 STRIP_NOPS (exp);
4081 if (TREE_CODE (exp) == BIT_AND_EXPR)
4083 and_mask = TREE_OPERAND (exp, 1);
4084 exp = TREE_OPERAND (exp, 0);
4085 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4086 if (TREE_CODE (and_mask) != INTEGER_CST)
4087 return 0;
4090 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4091 punsignedp, pvolatilep, false);
4092 if ((inner == exp && and_mask == 0)
4093 || *pbitsize < 0 || offset != 0
4094 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4095 return 0;
4097 /* If the number of bits in the reference is the same as the bitsize of
4098 the outer type, then the outer type gives the signedness. Otherwise
4099 (in case of a small bitfield) the signedness is unchanged. */
4100 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4101 *punsignedp = TYPE_UNSIGNED (outer_type);
4103 /* Compute the mask to access the bitfield. */
4104 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4105 precision = TYPE_PRECISION (unsigned_type);
4107 mask = build_int_cst_type (unsigned_type, -1);
4109 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4110 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4112 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4113 if (and_mask != 0)
4114 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
4115 fold_convert (unsigned_type, and_mask), mask);
4117 *pmask = mask;
4118 *pand_mask = and_mask;
4119 return inner;
4122 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4123 bit positions. */
4125 static int
4126 all_ones_mask_p (const_tree mask, int size)
4128 tree type = TREE_TYPE (mask);
4129 unsigned int precision = TYPE_PRECISION (type);
4130 tree tmask;
4132 tmask = build_int_cst_type (signed_type_for (type), -1);
4134 return
4135 tree_int_cst_equal (mask,
4136 const_binop (RSHIFT_EXPR,
4137 const_binop (LSHIFT_EXPR, tmask,
4138 size_int (precision - size),
4140 size_int (precision - size), 0));
4143 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4144 represents the sign bit of EXP's type. If EXP represents a sign
4145 or zero extension, also test VAL against the unextended type.
4146 The return value is the (sub)expression whose sign bit is VAL,
4147 or NULL_TREE otherwise. */
4149 static tree
4150 sign_bit_p (tree exp, const_tree val)
4152 unsigned HOST_WIDE_INT mask_lo, lo;
4153 HOST_WIDE_INT mask_hi, hi;
4154 int width;
4155 tree t;
4157 /* Tree EXP must have an integral type. */
4158 t = TREE_TYPE (exp);
4159 if (! INTEGRAL_TYPE_P (t))
4160 return NULL_TREE;
4162 /* Tree VAL must be an integer constant. */
4163 if (TREE_CODE (val) != INTEGER_CST
4164 || TREE_OVERFLOW (val))
4165 return NULL_TREE;
4167 width = TYPE_PRECISION (t);
4168 if (width > HOST_BITS_PER_WIDE_INT)
4170 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
4171 lo = 0;
4173 mask_hi = ((unsigned HOST_WIDE_INT) -1
4174 >> (2 * HOST_BITS_PER_WIDE_INT - width));
4175 mask_lo = -1;
4177 else
4179 hi = 0;
4180 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
4182 mask_hi = 0;
4183 mask_lo = ((unsigned HOST_WIDE_INT) -1
4184 >> (HOST_BITS_PER_WIDE_INT - width));
4187 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
4188 treat VAL as if it were unsigned. */
4189 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
4190 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
4191 return exp;
4193 /* Handle extension from a narrower type. */
4194 if (TREE_CODE (exp) == NOP_EXPR
4195 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4196 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4198 return NULL_TREE;
4201 /* Subroutine for fold_truthop: determine if an operand is simple enough
4202 to be evaluated unconditionally. */
4204 static int
4205 simple_operand_p (const_tree exp)
4207 /* Strip any conversions that don't change the machine mode. */
4208 STRIP_NOPS (exp);
4210 return (CONSTANT_CLASS_P (exp)
4211 || TREE_CODE (exp) == SSA_NAME
4212 || (DECL_P (exp)
4213 && ! TREE_ADDRESSABLE (exp)
4214 && ! TREE_THIS_VOLATILE (exp)
4215 && ! DECL_NONLOCAL (exp)
4216 /* Don't regard global variables as simple. They may be
4217 allocated in ways unknown to the compiler (shared memory,
4218 #pragma weak, etc). */
4219 && ! TREE_PUBLIC (exp)
4220 && ! DECL_EXTERNAL (exp)
4221 /* Loading a static variable is unduly expensive, but global
4222 registers aren't expensive. */
4223 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4226 /* The following functions are subroutines to fold_range_test and allow it to
4227 try to change a logical combination of comparisons into a range test.
4229 For example, both
4230 X == 2 || X == 3 || X == 4 || X == 5
4232 X >= 2 && X <= 5
4233 are converted to
4234 (unsigned) (X - 2) <= 3
4236 We describe each set of comparisons as being either inside or outside
4237 a range, using a variable named like IN_P, and then describe the
4238 range with a lower and upper bound. If one of the bounds is omitted,
4239 it represents either the highest or lowest value of the type.
4241 In the comments below, we represent a range by two numbers in brackets
4242 preceded by a "+" to designate being inside that range, or a "-" to
4243 designate being outside that range, so the condition can be inverted by
4244 flipping the prefix. An omitted bound is represented by a "-". For
4245 example, "- [-, 10]" means being outside the range starting at the lowest
4246 possible value and ending at 10, in other words, being greater than 10.
4247 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4248 always false.
4250 We set up things so that the missing bounds are handled in a consistent
4251 manner so neither a missing bound nor "true" and "false" need to be
4252 handled using a special case. */
4254 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4255 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4256 and UPPER1_P are nonzero if the respective argument is an upper bound
4257 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4258 must be specified for a comparison. ARG1 will be converted to ARG0's
4259 type if both are specified. */
4261 static tree
4262 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4263 tree arg1, int upper1_p)
4265 tree tem;
4266 int result;
4267 int sgn0, sgn1;
4269 /* If neither arg represents infinity, do the normal operation.
4270 Else, if not a comparison, return infinity. Else handle the special
4271 comparison rules. Note that most of the cases below won't occur, but
4272 are handled for consistency. */
4274 if (arg0 != 0 && arg1 != 0)
4276 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4277 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4278 STRIP_NOPS (tem);
4279 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4282 if (TREE_CODE_CLASS (code) != tcc_comparison)
4283 return 0;
4285 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4286 for neither. In real maths, we cannot assume open ended ranges are
4287 the same. But, this is computer arithmetic, where numbers are finite.
4288 We can therefore make the transformation of any unbounded range with
4289 the value Z, Z being greater than any representable number. This permits
4290 us to treat unbounded ranges as equal. */
4291 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4292 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4293 switch (code)
4295 case EQ_EXPR:
4296 result = sgn0 == sgn1;
4297 break;
4298 case NE_EXPR:
4299 result = sgn0 != sgn1;
4300 break;
4301 case LT_EXPR:
4302 result = sgn0 < sgn1;
4303 break;
4304 case LE_EXPR:
4305 result = sgn0 <= sgn1;
4306 break;
4307 case GT_EXPR:
4308 result = sgn0 > sgn1;
4309 break;
4310 case GE_EXPR:
4311 result = sgn0 >= sgn1;
4312 break;
4313 default:
4314 gcc_unreachable ();
4317 return constant_boolean_node (result, type);
4320 /* Given EXP, a logical expression, set the range it is testing into
4321 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4322 actually being tested. *PLOW and *PHIGH will be made of the same
4323 type as the returned expression. If EXP is not a comparison, we
4324 will most likely not be returning a useful value and range. Set
4325 *STRICT_OVERFLOW_P to true if the return value is only valid
4326 because signed overflow is undefined; otherwise, do not change
4327 *STRICT_OVERFLOW_P. */
4329 static tree
4330 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4331 bool *strict_overflow_p)
4333 enum tree_code code;
4334 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4335 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
4336 int in_p, n_in_p;
4337 tree low, high, n_low, n_high;
4339 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4340 and see if we can refine the range. Some of the cases below may not
4341 happen, but it doesn't seem worth worrying about this. We "continue"
4342 the outer loop when we've changed something; otherwise we "break"
4343 the switch, which will "break" the while. */
4345 in_p = 0;
4346 low = high = build_int_cst (TREE_TYPE (exp), 0);
4348 while (1)
4350 code = TREE_CODE (exp);
4351 exp_type = TREE_TYPE (exp);
4353 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4355 if (TREE_OPERAND_LENGTH (exp) > 0)
4356 arg0 = TREE_OPERAND (exp, 0);
4357 if (TREE_CODE_CLASS (code) == tcc_comparison
4358 || TREE_CODE_CLASS (code) == tcc_unary
4359 || TREE_CODE_CLASS (code) == tcc_binary)
4360 arg0_type = TREE_TYPE (arg0);
4361 if (TREE_CODE_CLASS (code) == tcc_binary
4362 || TREE_CODE_CLASS (code) == tcc_comparison
4363 || (TREE_CODE_CLASS (code) == tcc_expression
4364 && TREE_OPERAND_LENGTH (exp) > 1))
4365 arg1 = TREE_OPERAND (exp, 1);
4368 switch (code)
4370 case TRUTH_NOT_EXPR:
4371 in_p = ! in_p, exp = arg0;
4372 continue;
4374 case EQ_EXPR: case NE_EXPR:
4375 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4376 /* We can only do something if the range is testing for zero
4377 and if the second operand is an integer constant. Note that
4378 saying something is "in" the range we make is done by
4379 complementing IN_P since it will set in the initial case of
4380 being not equal to zero; "out" is leaving it alone. */
4381 if (low == 0 || high == 0
4382 || ! integer_zerop (low) || ! integer_zerop (high)
4383 || TREE_CODE (arg1) != INTEGER_CST)
4384 break;
4386 switch (code)
4388 case NE_EXPR: /* - [c, c] */
4389 low = high = arg1;
4390 break;
4391 case EQ_EXPR: /* + [c, c] */
4392 in_p = ! in_p, low = high = arg1;
4393 break;
4394 case GT_EXPR: /* - [-, c] */
4395 low = 0, high = arg1;
4396 break;
4397 case GE_EXPR: /* + [c, -] */
4398 in_p = ! in_p, low = arg1, high = 0;
4399 break;
4400 case LT_EXPR: /* - [c, -] */
4401 low = arg1, high = 0;
4402 break;
4403 case LE_EXPR: /* + [-, c] */
4404 in_p = ! in_p, low = 0, high = arg1;
4405 break;
4406 default:
4407 gcc_unreachable ();
4410 /* If this is an unsigned comparison, we also know that EXP is
4411 greater than or equal to zero. We base the range tests we make
4412 on that fact, so we record it here so we can parse existing
4413 range tests. We test arg0_type since often the return type
4414 of, e.g. EQ_EXPR, is boolean. */
4415 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4417 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4418 in_p, low, high, 1,
4419 build_int_cst (arg0_type, 0),
4420 NULL_TREE))
4421 break;
4423 in_p = n_in_p, low = n_low, high = n_high;
4425 /* If the high bound is missing, but we have a nonzero low
4426 bound, reverse the range so it goes from zero to the low bound
4427 minus 1. */
4428 if (high == 0 && low && ! integer_zerop (low))
4430 in_p = ! in_p;
4431 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4432 integer_one_node, 0);
4433 low = build_int_cst (arg0_type, 0);
4437 exp = arg0;
4438 continue;
4440 case NEGATE_EXPR:
4441 /* (-x) IN [a,b] -> x in [-b, -a] */
4442 n_low = range_binop (MINUS_EXPR, exp_type,
4443 build_int_cst (exp_type, 0),
4444 0, high, 1);
4445 n_high = range_binop (MINUS_EXPR, exp_type,
4446 build_int_cst (exp_type, 0),
4447 0, low, 0);
4448 low = n_low, high = n_high;
4449 exp = arg0;
4450 continue;
4452 case BIT_NOT_EXPR:
4453 /* ~ X -> -X - 1 */
4454 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
4455 build_int_cst (exp_type, 1));
4456 continue;
4458 case PLUS_EXPR: case MINUS_EXPR:
4459 if (TREE_CODE (arg1) != INTEGER_CST)
4460 break;
4462 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4463 move a constant to the other side. */
4464 if (!TYPE_UNSIGNED (arg0_type)
4465 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4466 break;
4468 /* If EXP is signed, any overflow in the computation is undefined,
4469 so we don't worry about it so long as our computations on
4470 the bounds don't overflow. For unsigned, overflow is defined
4471 and this is exactly the right thing. */
4472 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4473 arg0_type, low, 0, arg1, 0);
4474 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4475 arg0_type, high, 1, arg1, 0);
4476 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4477 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4478 break;
4480 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4481 *strict_overflow_p = true;
4483 /* Check for an unsigned range which has wrapped around the maximum
4484 value thus making n_high < n_low, and normalize it. */
4485 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4487 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4488 integer_one_node, 0);
4489 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4490 integer_one_node, 0);
4492 /* If the range is of the form +/- [ x+1, x ], we won't
4493 be able to normalize it. But then, it represents the
4494 whole range or the empty set, so make it
4495 +/- [ -, - ]. */
4496 if (tree_int_cst_equal (n_low, low)
4497 && tree_int_cst_equal (n_high, high))
4498 low = high = 0;
4499 else
4500 in_p = ! in_p;
4502 else
4503 low = n_low, high = n_high;
4505 exp = arg0;
4506 continue;
4508 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
4509 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4510 break;
4512 if (! INTEGRAL_TYPE_P (arg0_type)
4513 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4514 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4515 break;
4517 n_low = low, n_high = high;
4519 if (n_low != 0)
4520 n_low = fold_convert (arg0_type, n_low);
4522 if (n_high != 0)
4523 n_high = fold_convert (arg0_type, n_high);
4526 /* If we're converting arg0 from an unsigned type, to exp,
4527 a signed type, we will be doing the comparison as unsigned.
4528 The tests above have already verified that LOW and HIGH
4529 are both positive.
4531 So we have to ensure that we will handle large unsigned
4532 values the same way that the current signed bounds treat
4533 negative values. */
4535 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4537 tree high_positive;
4538 tree equiv_type;
4539 /* For fixed-point modes, we need to pass the saturating flag
4540 as the 2nd parameter. */
4541 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4542 equiv_type = lang_hooks.types.type_for_mode
4543 (TYPE_MODE (arg0_type),
4544 TYPE_SATURATING (arg0_type));
4545 else
4546 equiv_type = lang_hooks.types.type_for_mode
4547 (TYPE_MODE (arg0_type), 1);
4549 /* A range without an upper bound is, naturally, unbounded.
4550 Since convert would have cropped a very large value, use
4551 the max value for the destination type. */
4552 high_positive
4553 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4554 : TYPE_MAX_VALUE (arg0_type);
4556 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4557 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4558 fold_convert (arg0_type,
4559 high_positive),
4560 build_int_cst (arg0_type, 1));
4562 /* If the low bound is specified, "and" the range with the
4563 range for which the original unsigned value will be
4564 positive. */
4565 if (low != 0)
4567 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4568 1, n_low, n_high, 1,
4569 fold_convert (arg0_type,
4570 integer_zero_node),
4571 high_positive))
4572 break;
4574 in_p = (n_in_p == in_p);
4576 else
4578 /* Otherwise, "or" the range with the range of the input
4579 that will be interpreted as negative. */
4580 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4581 0, n_low, n_high, 1,
4582 fold_convert (arg0_type,
4583 integer_zero_node),
4584 high_positive))
4585 break;
4587 in_p = (in_p != n_in_p);
4591 exp = arg0;
4592 low = n_low, high = n_high;
4593 continue;
4595 default:
4596 break;
4599 break;
4602 /* If EXP is a constant, we can evaluate whether this is true or false. */
4603 if (TREE_CODE (exp) == INTEGER_CST)
4605 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4606 exp, 0, low, 0))
4607 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4608 exp, 1, high, 1)));
4609 low = high = 0;
4610 exp = 0;
4613 *pin_p = in_p, *plow = low, *phigh = high;
4614 return exp;
4617 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4618 type, TYPE, return an expression to test if EXP is in (or out of, depending
4619 on IN_P) the range. Return 0 if the test couldn't be created. */
4621 static tree
4622 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4624 tree etype = TREE_TYPE (exp);
4625 tree value;
4627 #ifdef HAVE_canonicalize_funcptr_for_compare
4628 /* Disable this optimization for function pointer expressions
4629 on targets that require function pointer canonicalization. */
4630 if (HAVE_canonicalize_funcptr_for_compare
4631 && TREE_CODE (etype) == POINTER_TYPE
4632 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4633 return NULL_TREE;
4634 #endif
4636 if (! in_p)
4638 value = build_range_check (type, exp, 1, low, high);
4639 if (value != 0)
4640 return invert_truthvalue (value);
4642 return 0;
4645 if (low == 0 && high == 0)
4646 return build_int_cst (type, 1);
4648 if (low == 0)
4649 return fold_build2 (LE_EXPR, type, exp,
4650 fold_convert (etype, high));
4652 if (high == 0)
4653 return fold_build2 (GE_EXPR, type, exp,
4654 fold_convert (etype, low));
4656 if (operand_equal_p (low, high, 0))
4657 return fold_build2 (EQ_EXPR, type, exp,
4658 fold_convert (etype, low));
4660 if (integer_zerop (low))
4662 if (! TYPE_UNSIGNED (etype))
4664 etype = unsigned_type_for (etype);
4665 high = fold_convert (etype, high);
4666 exp = fold_convert (etype, exp);
4668 return build_range_check (type, exp, 1, 0, high);
4671 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4672 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4674 unsigned HOST_WIDE_INT lo;
4675 HOST_WIDE_INT hi;
4676 int prec;
4678 prec = TYPE_PRECISION (etype);
4679 if (prec <= HOST_BITS_PER_WIDE_INT)
4681 hi = 0;
4682 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4684 else
4686 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4687 lo = (unsigned HOST_WIDE_INT) -1;
4690 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4692 if (TYPE_UNSIGNED (etype))
4694 etype = signed_type_for (etype);
4695 exp = fold_convert (etype, exp);
4697 return fold_build2 (GT_EXPR, type, exp,
4698 build_int_cst (etype, 0));
4702 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4703 This requires wrap-around arithmetics for the type of the expression. */
4704 switch (TREE_CODE (etype))
4706 case INTEGER_TYPE:
4707 /* There is no requirement that LOW be within the range of ETYPE
4708 if the latter is a subtype. It must, however, be within the base
4709 type of ETYPE. So be sure we do the subtraction in that type. */
4710 if (TREE_TYPE (etype))
4711 etype = TREE_TYPE (etype);
4712 break;
4714 case ENUMERAL_TYPE:
4715 case BOOLEAN_TYPE:
4716 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4717 TYPE_UNSIGNED (etype));
4718 break;
4720 default:
4721 break;
4724 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4725 if (TREE_CODE (etype) == INTEGER_TYPE
4726 && !TYPE_OVERFLOW_WRAPS (etype))
4728 tree utype, minv, maxv;
4730 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4731 for the type in question, as we rely on this here. */
4732 utype = unsigned_type_for (etype);
4733 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4734 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4735 integer_one_node, 1);
4736 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4738 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4739 minv, 1, maxv, 1)))
4740 etype = utype;
4741 else
4742 return 0;
4745 high = fold_convert (etype, high);
4746 low = fold_convert (etype, low);
4747 exp = fold_convert (etype, exp);
4749 value = const_binop (MINUS_EXPR, high, low, 0);
4752 if (POINTER_TYPE_P (etype))
4754 if (value != 0 && !TREE_OVERFLOW (value))
4756 low = fold_convert (sizetype, low);
4757 low = fold_build1 (NEGATE_EXPR, sizetype, low);
4758 return build_range_check (type,
4759 fold_build2 (POINTER_PLUS_EXPR, etype, exp, low),
4760 1, build_int_cst (etype, 0), value);
4762 return 0;
4765 if (value != 0 && !TREE_OVERFLOW (value))
4766 return build_range_check (type,
4767 fold_build2 (MINUS_EXPR, etype, exp, low),
4768 1, build_int_cst (etype, 0), value);
4770 return 0;
4773 /* Return the predecessor of VAL in its type, handling the infinite case. */
4775 static tree
4776 range_predecessor (tree val)
4778 tree type = TREE_TYPE (val);
4780 if (INTEGRAL_TYPE_P (type)
4781 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4782 return 0;
4783 else
4784 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4787 /* Return the successor of VAL in its type, handling the infinite case. */
4789 static tree
4790 range_successor (tree val)
4792 tree type = TREE_TYPE (val);
4794 if (INTEGRAL_TYPE_P (type)
4795 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4796 return 0;
4797 else
4798 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4801 /* Given two ranges, see if we can merge them into one. Return 1 if we
4802 can, 0 if we can't. Set the output range into the specified parameters. */
4804 static int
4805 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4806 tree high0, int in1_p, tree low1, tree high1)
4808 int no_overlap;
4809 int subset;
4810 int temp;
4811 tree tem;
4812 int in_p;
4813 tree low, high;
4814 int lowequal = ((low0 == 0 && low1 == 0)
4815 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4816 low0, 0, low1, 0)));
4817 int highequal = ((high0 == 0 && high1 == 0)
4818 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4819 high0, 1, high1, 1)));
4821 /* Make range 0 be the range that starts first, or ends last if they
4822 start at the same value. Swap them if it isn't. */
4823 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4824 low0, 0, low1, 0))
4825 || (lowequal
4826 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4827 high1, 1, high0, 1))))
4829 temp = in0_p, in0_p = in1_p, in1_p = temp;
4830 tem = low0, low0 = low1, low1 = tem;
4831 tem = high0, high0 = high1, high1 = tem;
4834 /* Now flag two cases, whether the ranges are disjoint or whether the
4835 second range is totally subsumed in the first. Note that the tests
4836 below are simplified by the ones above. */
4837 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4838 high0, 1, low1, 0));
4839 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4840 high1, 1, high0, 1));
4842 /* We now have four cases, depending on whether we are including or
4843 excluding the two ranges. */
4844 if (in0_p && in1_p)
4846 /* If they don't overlap, the result is false. If the second range
4847 is a subset it is the result. Otherwise, the range is from the start
4848 of the second to the end of the first. */
4849 if (no_overlap)
4850 in_p = 0, low = high = 0;
4851 else if (subset)
4852 in_p = 1, low = low1, high = high1;
4853 else
4854 in_p = 1, low = low1, high = high0;
4857 else if (in0_p && ! in1_p)
4859 /* If they don't overlap, the result is the first range. If they are
4860 equal, the result is false. If the second range is a subset of the
4861 first, and the ranges begin at the same place, we go from just after
4862 the end of the second range to the end of the first. If the second
4863 range is not a subset of the first, or if it is a subset and both
4864 ranges end at the same place, the range starts at the start of the
4865 first range and ends just before the second range.
4866 Otherwise, we can't describe this as a single range. */
4867 if (no_overlap)
4868 in_p = 1, low = low0, high = high0;
4869 else if (lowequal && highequal)
4870 in_p = 0, low = high = 0;
4871 else if (subset && lowequal)
4873 low = range_successor (high1);
4874 high = high0;
4875 in_p = 1;
4876 if (low == 0)
4878 /* We are in the weird situation where high0 > high1 but
4879 high1 has no successor. Punt. */
4880 return 0;
4883 else if (! subset || highequal)
4885 low = low0;
4886 high = range_predecessor (low1);
4887 in_p = 1;
4888 if (high == 0)
4890 /* low0 < low1 but low1 has no predecessor. Punt. */
4891 return 0;
4894 else
4895 return 0;
4898 else if (! in0_p && in1_p)
4900 /* If they don't overlap, the result is the second range. If the second
4901 is a subset of the first, the result is false. Otherwise,
4902 the range starts just after the first range and ends at the
4903 end of the second. */
4904 if (no_overlap)
4905 in_p = 1, low = low1, high = high1;
4906 else if (subset || highequal)
4907 in_p = 0, low = high = 0;
4908 else
4910 low = range_successor (high0);
4911 high = high1;
4912 in_p = 1;
4913 if (low == 0)
4915 /* high1 > high0 but high0 has no successor. Punt. */
4916 return 0;
4921 else
4923 /* The case where we are excluding both ranges. Here the complex case
4924 is if they don't overlap. In that case, the only time we have a
4925 range is if they are adjacent. If the second is a subset of the
4926 first, the result is the first. Otherwise, the range to exclude
4927 starts at the beginning of the first range and ends at the end of the
4928 second. */
4929 if (no_overlap)
4931 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4932 range_successor (high0),
4933 1, low1, 0)))
4934 in_p = 0, low = low0, high = high1;
4935 else
4937 /* Canonicalize - [min, x] into - [-, x]. */
4938 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4939 switch (TREE_CODE (TREE_TYPE (low0)))
4941 case ENUMERAL_TYPE:
4942 if (TYPE_PRECISION (TREE_TYPE (low0))
4943 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4944 break;
4945 /* FALLTHROUGH */
4946 case INTEGER_TYPE:
4947 if (tree_int_cst_equal (low0,
4948 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4949 low0 = 0;
4950 break;
4951 case POINTER_TYPE:
4952 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4953 && integer_zerop (low0))
4954 low0 = 0;
4955 break;
4956 default:
4957 break;
4960 /* Canonicalize - [x, max] into - [x, -]. */
4961 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4962 switch (TREE_CODE (TREE_TYPE (high1)))
4964 case ENUMERAL_TYPE:
4965 if (TYPE_PRECISION (TREE_TYPE (high1))
4966 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4967 break;
4968 /* FALLTHROUGH */
4969 case INTEGER_TYPE:
4970 if (tree_int_cst_equal (high1,
4971 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4972 high1 = 0;
4973 break;
4974 case POINTER_TYPE:
4975 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4976 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4977 high1, 1,
4978 integer_one_node, 1)))
4979 high1 = 0;
4980 break;
4981 default:
4982 break;
4985 /* The ranges might be also adjacent between the maximum and
4986 minimum values of the given type. For
4987 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4988 return + [x + 1, y - 1]. */
4989 if (low0 == 0 && high1 == 0)
4991 low = range_successor (high0);
4992 high = range_predecessor (low1);
4993 if (low == 0 || high == 0)
4994 return 0;
4996 in_p = 1;
4998 else
4999 return 0;
5002 else if (subset)
5003 in_p = 0, low = low0, high = high0;
5004 else
5005 in_p = 0, low = low0, high = high1;
5008 *pin_p = in_p, *plow = low, *phigh = high;
5009 return 1;
5013 /* Subroutine of fold, looking inside expressions of the form
5014 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5015 of the COND_EXPR. This function is being used also to optimize
5016 A op B ? C : A, by reversing the comparison first.
5018 Return a folded expression whose code is not a COND_EXPR
5019 anymore, or NULL_TREE if no folding opportunity is found. */
5021 static tree
5022 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
5024 enum tree_code comp_code = TREE_CODE (arg0);
5025 tree arg00 = TREE_OPERAND (arg0, 0);
5026 tree arg01 = TREE_OPERAND (arg0, 1);
5027 tree arg1_type = TREE_TYPE (arg1);
5028 tree tem;
5030 STRIP_NOPS (arg1);
5031 STRIP_NOPS (arg2);
5033 /* If we have A op 0 ? A : -A, consider applying the following
5034 transformations:
5036 A == 0? A : -A same as -A
5037 A != 0? A : -A same as A
5038 A >= 0? A : -A same as abs (A)
5039 A > 0? A : -A same as abs (A)
5040 A <= 0? A : -A same as -abs (A)
5041 A < 0? A : -A same as -abs (A)
5043 None of these transformations work for modes with signed
5044 zeros. If A is +/-0, the first two transformations will
5045 change the sign of the result (from +0 to -0, or vice
5046 versa). The last four will fix the sign of the result,
5047 even though the original expressions could be positive or
5048 negative, depending on the sign of A.
5050 Note that all these transformations are correct if A is
5051 NaN, since the two alternatives (A and -A) are also NaNs. */
5052 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
5053 ? real_zerop (arg01)
5054 : integer_zerop (arg01))
5055 && ((TREE_CODE (arg2) == NEGATE_EXPR
5056 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5057 /* In the case that A is of the form X-Y, '-A' (arg2) may
5058 have already been folded to Y-X, check for that. */
5059 || (TREE_CODE (arg1) == MINUS_EXPR
5060 && TREE_CODE (arg2) == MINUS_EXPR
5061 && operand_equal_p (TREE_OPERAND (arg1, 0),
5062 TREE_OPERAND (arg2, 1), 0)
5063 && operand_equal_p (TREE_OPERAND (arg1, 1),
5064 TREE_OPERAND (arg2, 0), 0))))
5065 switch (comp_code)
5067 case EQ_EXPR:
5068 case UNEQ_EXPR:
5069 tem = fold_convert (arg1_type, arg1);
5070 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
5071 case NE_EXPR:
5072 case LTGT_EXPR:
5073 return pedantic_non_lvalue (fold_convert (type, arg1));
5074 case UNGE_EXPR:
5075 case UNGT_EXPR:
5076 if (flag_trapping_math)
5077 break;
5078 /* Fall through. */
5079 case GE_EXPR:
5080 case GT_EXPR:
5081 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5082 arg1 = fold_convert (signed_type_for
5083 (TREE_TYPE (arg1)), arg1);
5084 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5085 return pedantic_non_lvalue (fold_convert (type, tem));
5086 case UNLE_EXPR:
5087 case UNLT_EXPR:
5088 if (flag_trapping_math)
5089 break;
5090 case LE_EXPR:
5091 case LT_EXPR:
5092 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5093 arg1 = fold_convert (signed_type_for
5094 (TREE_TYPE (arg1)), arg1);
5095 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5096 return negate_expr (fold_convert (type, tem));
5097 default:
5098 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5099 break;
5102 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5103 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5104 both transformations are correct when A is NaN: A != 0
5105 is then true, and A == 0 is false. */
5107 if (integer_zerop (arg01) && integer_zerop (arg2))
5109 if (comp_code == NE_EXPR)
5110 return pedantic_non_lvalue (fold_convert (type, arg1));
5111 else if (comp_code == EQ_EXPR)
5112 return build_int_cst (type, 0);
5115 /* Try some transformations of A op B ? A : B.
5117 A == B? A : B same as B
5118 A != B? A : B same as A
5119 A >= B? A : B same as max (A, B)
5120 A > B? A : B same as max (B, A)
5121 A <= B? A : B same as min (A, B)
5122 A < B? A : B same as min (B, A)
5124 As above, these transformations don't work in the presence
5125 of signed zeros. For example, if A and B are zeros of
5126 opposite sign, the first two transformations will change
5127 the sign of the result. In the last four, the original
5128 expressions give different results for (A=+0, B=-0) and
5129 (A=-0, B=+0), but the transformed expressions do not.
5131 The first two transformations are correct if either A or B
5132 is a NaN. In the first transformation, the condition will
5133 be false, and B will indeed be chosen. In the case of the
5134 second transformation, the condition A != B will be true,
5135 and A will be chosen.
5137 The conversions to max() and min() are not correct if B is
5138 a number and A is not. The conditions in the original
5139 expressions will be false, so all four give B. The min()
5140 and max() versions would give a NaN instead. */
5141 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
5142 /* Avoid these transformations if the COND_EXPR may be used
5143 as an lvalue in the C++ front-end. PR c++/19199. */
5144 && (in_gimple_form
5145 || (strcmp (lang_hooks.name, "GNU C++") != 0
5146 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5147 || ! maybe_lvalue_p (arg1)
5148 || ! maybe_lvalue_p (arg2)))
5150 tree comp_op0 = arg00;
5151 tree comp_op1 = arg01;
5152 tree comp_type = TREE_TYPE (comp_op0);
5154 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5155 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5157 comp_type = type;
5158 comp_op0 = arg1;
5159 comp_op1 = arg2;
5162 switch (comp_code)
5164 case EQ_EXPR:
5165 return pedantic_non_lvalue (fold_convert (type, arg2));
5166 case NE_EXPR:
5167 return pedantic_non_lvalue (fold_convert (type, arg1));
5168 case LE_EXPR:
5169 case LT_EXPR:
5170 case UNLE_EXPR:
5171 case UNLT_EXPR:
5172 /* In C++ a ?: expression can be an lvalue, so put the
5173 operand which will be used if they are equal first
5174 so that we can convert this back to the
5175 corresponding COND_EXPR. */
5176 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5178 comp_op0 = fold_convert (comp_type, comp_op0);
5179 comp_op1 = fold_convert (comp_type, comp_op1);
5180 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5181 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
5182 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
5183 return pedantic_non_lvalue (fold_convert (type, tem));
5185 break;
5186 case GE_EXPR:
5187 case GT_EXPR:
5188 case UNGE_EXPR:
5189 case UNGT_EXPR:
5190 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5192 comp_op0 = fold_convert (comp_type, comp_op0);
5193 comp_op1 = fold_convert (comp_type, comp_op1);
5194 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5195 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
5196 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
5197 return pedantic_non_lvalue (fold_convert (type, tem));
5199 break;
5200 case UNEQ_EXPR:
5201 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5202 return pedantic_non_lvalue (fold_convert (type, arg2));
5203 break;
5204 case LTGT_EXPR:
5205 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5206 return pedantic_non_lvalue (fold_convert (type, arg1));
5207 break;
5208 default:
5209 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5210 break;
5214 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5215 we might still be able to simplify this. For example,
5216 if C1 is one less or one more than C2, this might have started
5217 out as a MIN or MAX and been transformed by this function.
5218 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5220 if (INTEGRAL_TYPE_P (type)
5221 && TREE_CODE (arg01) == INTEGER_CST
5222 && TREE_CODE (arg2) == INTEGER_CST)
5223 switch (comp_code)
5225 case EQ_EXPR:
5226 /* We can replace A with C1 in this case. */
5227 arg1 = fold_convert (type, arg01);
5228 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
5230 case LT_EXPR:
5231 /* If C1 is C2 + 1, this is min(A, C2). */
5232 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5233 OEP_ONLY_CONST)
5234 && operand_equal_p (arg01,
5235 const_binop (PLUS_EXPR, arg2,
5236 build_int_cst (type, 1), 0),
5237 OEP_ONLY_CONST))
5238 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5239 type,
5240 fold_convert (type, arg1),
5241 arg2));
5242 break;
5244 case LE_EXPR:
5245 /* If C1 is C2 - 1, this is min(A, C2). */
5246 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5247 OEP_ONLY_CONST)
5248 && operand_equal_p (arg01,
5249 const_binop (MINUS_EXPR, arg2,
5250 build_int_cst (type, 1), 0),
5251 OEP_ONLY_CONST))
5252 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5253 type,
5254 fold_convert (type, arg1),
5255 arg2));
5256 break;
5258 case GT_EXPR:
5259 /* If C1 is C2 - 1, this is max(A, C2). */
5260 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5261 OEP_ONLY_CONST)
5262 && operand_equal_p (arg01,
5263 const_binop (MINUS_EXPR, arg2,
5264 build_int_cst (type, 1), 0),
5265 OEP_ONLY_CONST))
5266 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5267 type,
5268 fold_convert (type, arg1),
5269 arg2));
5270 break;
5272 case GE_EXPR:
5273 /* If C1 is C2 + 1, this is max(A, C2). */
5274 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5275 OEP_ONLY_CONST)
5276 && operand_equal_p (arg01,
5277 const_binop (PLUS_EXPR, arg2,
5278 build_int_cst (type, 1), 0),
5279 OEP_ONLY_CONST))
5280 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5281 type,
5282 fold_convert (type, arg1),
5283 arg2));
5284 break;
5285 case NE_EXPR:
5286 break;
5287 default:
5288 gcc_unreachable ();
5291 return NULL_TREE;
5296 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5297 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
5298 #endif
5300 /* EXP is some logical combination of boolean tests. See if we can
5301 merge it into some range test. Return the new tree if so. */
5303 static tree
5304 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
5306 int or_op = (code == TRUTH_ORIF_EXPR
5307 || code == TRUTH_OR_EXPR);
5308 int in0_p, in1_p, in_p;
5309 tree low0, low1, low, high0, high1, high;
5310 bool strict_overflow_p = false;
5311 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5312 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5313 tree tem;
5314 const char * const warnmsg = G_("assuming signed overflow does not occur "
5315 "when simplifying range test");
5317 /* If this is an OR operation, invert both sides; we will invert
5318 again at the end. */
5319 if (or_op)
5320 in0_p = ! in0_p, in1_p = ! in1_p;
5322 /* If both expressions are the same, if we can merge the ranges, and we
5323 can build the range test, return it or it inverted. If one of the
5324 ranges is always true or always false, consider it to be the same
5325 expression as the other. */
5326 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5327 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5328 in1_p, low1, high1)
5329 && 0 != (tem = (build_range_check (type,
5330 lhs != 0 ? lhs
5331 : rhs != 0 ? rhs : integer_zero_node,
5332 in_p, low, high))))
5334 if (strict_overflow_p)
5335 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5336 return or_op ? invert_truthvalue (tem) : tem;
5339 /* On machines where the branch cost is expensive, if this is a
5340 short-circuited branch and the underlying object on both sides
5341 is the same, make a non-short-circuit operation. */
5342 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5343 && lhs != 0 && rhs != 0
5344 && (code == TRUTH_ANDIF_EXPR
5345 || code == TRUTH_ORIF_EXPR)
5346 && operand_equal_p (lhs, rhs, 0))
5348 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5349 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5350 which cases we can't do this. */
5351 if (simple_operand_p (lhs))
5352 return build2 (code == TRUTH_ANDIF_EXPR
5353 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5354 type, op0, op1);
5356 else if (lang_hooks.decls.global_bindings_p () == 0
5357 && ! CONTAINS_PLACEHOLDER_P (lhs))
5359 tree common = save_expr (lhs);
5361 if (0 != (lhs = build_range_check (type, common,
5362 or_op ? ! in0_p : in0_p,
5363 low0, high0))
5364 && (0 != (rhs = build_range_check (type, common,
5365 or_op ? ! in1_p : in1_p,
5366 low1, high1))))
5368 if (strict_overflow_p)
5369 fold_overflow_warning (warnmsg,
5370 WARN_STRICT_OVERFLOW_COMPARISON);
5371 return build2 (code == TRUTH_ANDIF_EXPR
5372 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5373 type, lhs, rhs);
5378 return 0;
5381 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5382 bit value. Arrange things so the extra bits will be set to zero if and
5383 only if C is signed-extended to its full width. If MASK is nonzero,
5384 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5386 static tree
5387 unextend (tree c, int p, int unsignedp, tree mask)
5389 tree type = TREE_TYPE (c);
5390 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5391 tree temp;
5393 if (p == modesize || unsignedp)
5394 return c;
5396 /* We work by getting just the sign bit into the low-order bit, then
5397 into the high-order bit, then sign-extend. We then XOR that value
5398 with C. */
5399 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
5400 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
5402 /* We must use a signed type in order to get an arithmetic right shift.
5403 However, we must also avoid introducing accidental overflows, so that
5404 a subsequent call to integer_zerop will work. Hence we must
5405 do the type conversion here. At this point, the constant is either
5406 zero or one, and the conversion to a signed type can never overflow.
5407 We could get an overflow if this conversion is done anywhere else. */
5408 if (TYPE_UNSIGNED (type))
5409 temp = fold_convert (signed_type_for (type), temp);
5411 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
5412 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
5413 if (mask != 0)
5414 temp = const_binop (BIT_AND_EXPR, temp,
5415 fold_convert (TREE_TYPE (c), mask), 0);
5416 /* If necessary, convert the type back to match the type of C. */
5417 if (TYPE_UNSIGNED (type))
5418 temp = fold_convert (type, temp);
5420 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
5423 /* Find ways of folding logical expressions of LHS and RHS:
5424 Try to merge two comparisons to the same innermost item.
5425 Look for range tests like "ch >= '0' && ch <= '9'".
5426 Look for combinations of simple terms on machines with expensive branches
5427 and evaluate the RHS unconditionally.
5429 For example, if we have p->a == 2 && p->b == 4 and we can make an
5430 object large enough to span both A and B, we can do this with a comparison
5431 against the object ANDed with the a mask.
5433 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5434 operations to do this with one comparison.
5436 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5437 function and the one above.
5439 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5440 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5442 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5443 two operands.
5445 We return the simplified tree or 0 if no optimization is possible. */
5447 static tree
5448 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
5450 /* If this is the "or" of two comparisons, we can do something if
5451 the comparisons are NE_EXPR. If this is the "and", we can do something
5452 if the comparisons are EQ_EXPR. I.e.,
5453 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5455 WANTED_CODE is this operation code. For single bit fields, we can
5456 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5457 comparison for one-bit fields. */
5459 enum tree_code wanted_code;
5460 enum tree_code lcode, rcode;
5461 tree ll_arg, lr_arg, rl_arg, rr_arg;
5462 tree ll_inner, lr_inner, rl_inner, rr_inner;
5463 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5464 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5465 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5466 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5467 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5468 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5469 enum machine_mode lnmode, rnmode;
5470 tree ll_mask, lr_mask, rl_mask, rr_mask;
5471 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5472 tree l_const, r_const;
5473 tree lntype, rntype, result;
5474 int first_bit, end_bit;
5475 int volatilep;
5476 tree orig_lhs = lhs, orig_rhs = rhs;
5477 enum tree_code orig_code = code;
5479 /* Start by getting the comparison codes. Fail if anything is volatile.
5480 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5481 it were surrounded with a NE_EXPR. */
5483 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5484 return 0;
5486 lcode = TREE_CODE (lhs);
5487 rcode = TREE_CODE (rhs);
5489 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5491 lhs = build2 (NE_EXPR, truth_type, lhs,
5492 build_int_cst (TREE_TYPE (lhs), 0));
5493 lcode = NE_EXPR;
5496 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5498 rhs = build2 (NE_EXPR, truth_type, rhs,
5499 build_int_cst (TREE_TYPE (rhs), 0));
5500 rcode = NE_EXPR;
5503 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5504 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5505 return 0;
5507 ll_arg = TREE_OPERAND (lhs, 0);
5508 lr_arg = TREE_OPERAND (lhs, 1);
5509 rl_arg = TREE_OPERAND (rhs, 0);
5510 rr_arg = TREE_OPERAND (rhs, 1);
5512 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5513 if (simple_operand_p (ll_arg)
5514 && simple_operand_p (lr_arg))
5516 tree result;
5517 if (operand_equal_p (ll_arg, rl_arg, 0)
5518 && operand_equal_p (lr_arg, rr_arg, 0))
5520 result = combine_comparisons (code, lcode, rcode,
5521 truth_type, ll_arg, lr_arg);
5522 if (result)
5523 return result;
5525 else if (operand_equal_p (ll_arg, rr_arg, 0)
5526 && operand_equal_p (lr_arg, rl_arg, 0))
5528 result = combine_comparisons (code, lcode,
5529 swap_tree_comparison (rcode),
5530 truth_type, ll_arg, lr_arg);
5531 if (result)
5532 return result;
5536 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5537 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5539 /* If the RHS can be evaluated unconditionally and its operands are
5540 simple, it wins to evaluate the RHS unconditionally on machines
5541 with expensive branches. In this case, this isn't a comparison
5542 that can be merged. Avoid doing this if the RHS is a floating-point
5543 comparison since those can trap. */
5545 if (BRANCH_COST >= 2
5546 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5547 && simple_operand_p (rl_arg)
5548 && simple_operand_p (rr_arg))
5550 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5551 if (code == TRUTH_OR_EXPR
5552 && lcode == NE_EXPR && integer_zerop (lr_arg)
5553 && rcode == NE_EXPR && integer_zerop (rr_arg)
5554 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5555 return build2 (NE_EXPR, truth_type,
5556 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5557 ll_arg, rl_arg),
5558 build_int_cst (TREE_TYPE (ll_arg), 0));
5560 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5561 if (code == TRUTH_AND_EXPR
5562 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5563 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5564 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5565 return build2 (EQ_EXPR, truth_type,
5566 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5567 ll_arg, rl_arg),
5568 build_int_cst (TREE_TYPE (ll_arg), 0));
5570 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5572 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5573 return build2 (code, truth_type, lhs, rhs);
5574 return NULL_TREE;
5578 /* See if the comparisons can be merged. Then get all the parameters for
5579 each side. */
5581 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5582 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5583 return 0;
5585 volatilep = 0;
5586 ll_inner = decode_field_reference (ll_arg,
5587 &ll_bitsize, &ll_bitpos, &ll_mode,
5588 &ll_unsignedp, &volatilep, &ll_mask,
5589 &ll_and_mask);
5590 lr_inner = decode_field_reference (lr_arg,
5591 &lr_bitsize, &lr_bitpos, &lr_mode,
5592 &lr_unsignedp, &volatilep, &lr_mask,
5593 &lr_and_mask);
5594 rl_inner = decode_field_reference (rl_arg,
5595 &rl_bitsize, &rl_bitpos, &rl_mode,
5596 &rl_unsignedp, &volatilep, &rl_mask,
5597 &rl_and_mask);
5598 rr_inner = decode_field_reference (rr_arg,
5599 &rr_bitsize, &rr_bitpos, &rr_mode,
5600 &rr_unsignedp, &volatilep, &rr_mask,
5601 &rr_and_mask);
5603 /* It must be true that the inner operation on the lhs of each
5604 comparison must be the same if we are to be able to do anything.
5605 Then see if we have constants. If not, the same must be true for
5606 the rhs's. */
5607 if (volatilep || ll_inner == 0 || rl_inner == 0
5608 || ! operand_equal_p (ll_inner, rl_inner, 0))
5609 return 0;
5611 if (TREE_CODE (lr_arg) == INTEGER_CST
5612 && TREE_CODE (rr_arg) == INTEGER_CST)
5613 l_const = lr_arg, r_const = rr_arg;
5614 else if (lr_inner == 0 || rr_inner == 0
5615 || ! operand_equal_p (lr_inner, rr_inner, 0))
5616 return 0;
5617 else
5618 l_const = r_const = 0;
5620 /* If either comparison code is not correct for our logical operation,
5621 fail. However, we can convert a one-bit comparison against zero into
5622 the opposite comparison against that bit being set in the field. */
5624 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5625 if (lcode != wanted_code)
5627 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5629 /* Make the left operand unsigned, since we are only interested
5630 in the value of one bit. Otherwise we are doing the wrong
5631 thing below. */
5632 ll_unsignedp = 1;
5633 l_const = ll_mask;
5635 else
5636 return 0;
5639 /* This is analogous to the code for l_const above. */
5640 if (rcode != wanted_code)
5642 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5644 rl_unsignedp = 1;
5645 r_const = rl_mask;
5647 else
5648 return 0;
5651 /* See if we can find a mode that contains both fields being compared on
5652 the left. If we can't, fail. Otherwise, update all constants and masks
5653 to be relative to a field of that size. */
5654 first_bit = MIN (ll_bitpos, rl_bitpos);
5655 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5656 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5657 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5658 volatilep);
5659 if (lnmode == VOIDmode)
5660 return 0;
5662 lnbitsize = GET_MODE_BITSIZE (lnmode);
5663 lnbitpos = first_bit & ~ (lnbitsize - 1);
5664 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5665 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5667 if (BYTES_BIG_ENDIAN)
5669 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5670 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5673 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5674 size_int (xll_bitpos), 0);
5675 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5676 size_int (xrl_bitpos), 0);
5678 if (l_const)
5680 l_const = fold_convert (lntype, l_const);
5681 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5682 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5683 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5684 fold_build1 (BIT_NOT_EXPR,
5685 lntype, ll_mask),
5686 0)))
5688 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5690 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5693 if (r_const)
5695 r_const = fold_convert (lntype, r_const);
5696 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5697 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5698 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5699 fold_build1 (BIT_NOT_EXPR,
5700 lntype, rl_mask),
5701 0)))
5703 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5705 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5709 /* If the right sides are not constant, do the same for it. Also,
5710 disallow this optimization if a size or signedness mismatch occurs
5711 between the left and right sides. */
5712 if (l_const == 0)
5714 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5715 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5716 /* Make sure the two fields on the right
5717 correspond to the left without being swapped. */
5718 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5719 return 0;
5721 first_bit = MIN (lr_bitpos, rr_bitpos);
5722 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5723 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5724 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5725 volatilep);
5726 if (rnmode == VOIDmode)
5727 return 0;
5729 rnbitsize = GET_MODE_BITSIZE (rnmode);
5730 rnbitpos = first_bit & ~ (rnbitsize - 1);
5731 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5732 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5734 if (BYTES_BIG_ENDIAN)
5736 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5737 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5740 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5741 size_int (xlr_bitpos), 0);
5742 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5743 size_int (xrr_bitpos), 0);
5745 /* Make a mask that corresponds to both fields being compared.
5746 Do this for both items being compared. If the operands are the
5747 same size and the bits being compared are in the same position
5748 then we can do this by masking both and comparing the masked
5749 results. */
5750 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5751 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5752 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5754 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5755 ll_unsignedp || rl_unsignedp);
5756 if (! all_ones_mask_p (ll_mask, lnbitsize))
5757 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5759 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5760 lr_unsignedp || rr_unsignedp);
5761 if (! all_ones_mask_p (lr_mask, rnbitsize))
5762 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5764 return build2 (wanted_code, truth_type, lhs, rhs);
5767 /* There is still another way we can do something: If both pairs of
5768 fields being compared are adjacent, we may be able to make a wider
5769 field containing them both.
5771 Note that we still must mask the lhs/rhs expressions. Furthermore,
5772 the mask must be shifted to account for the shift done by
5773 make_bit_field_ref. */
5774 if ((ll_bitsize + ll_bitpos == rl_bitpos
5775 && lr_bitsize + lr_bitpos == rr_bitpos)
5776 || (ll_bitpos == rl_bitpos + rl_bitsize
5777 && lr_bitpos == rr_bitpos + rr_bitsize))
5779 tree type;
5781 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5782 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5783 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5784 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5786 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5787 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5788 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5789 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5791 /* Convert to the smaller type before masking out unwanted bits. */
5792 type = lntype;
5793 if (lntype != rntype)
5795 if (lnbitsize > rnbitsize)
5797 lhs = fold_convert (rntype, lhs);
5798 ll_mask = fold_convert (rntype, ll_mask);
5799 type = rntype;
5801 else if (lnbitsize < rnbitsize)
5803 rhs = fold_convert (lntype, rhs);
5804 lr_mask = fold_convert (lntype, lr_mask);
5805 type = lntype;
5809 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5810 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5812 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5813 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5815 return build2 (wanted_code, truth_type, lhs, rhs);
5818 return 0;
5821 /* Handle the case of comparisons with constants. If there is something in
5822 common between the masks, those bits of the constants must be the same.
5823 If not, the condition is always false. Test for this to avoid generating
5824 incorrect code below. */
5825 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5826 if (! integer_zerop (result)
5827 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5828 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5830 if (wanted_code == NE_EXPR)
5832 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5833 return constant_boolean_node (true, truth_type);
5835 else
5837 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5838 return constant_boolean_node (false, truth_type);
5842 /* Construct the expression we will return. First get the component
5843 reference we will make. Unless the mask is all ones the width of
5844 that field, perform the mask operation. Then compare with the
5845 merged constant. */
5846 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5847 ll_unsignedp || rl_unsignedp);
5849 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5850 if (! all_ones_mask_p (ll_mask, lnbitsize))
5851 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5853 return build2 (wanted_code, truth_type, result,
5854 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5857 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5858 constant. */
5860 static tree
5861 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5863 tree arg0 = op0;
5864 enum tree_code op_code;
5865 tree comp_const = op1;
5866 tree minmax_const;
5867 int consts_equal, consts_lt;
5868 tree inner;
5870 STRIP_SIGN_NOPS (arg0);
5872 op_code = TREE_CODE (arg0);
5873 minmax_const = TREE_OPERAND (arg0, 1);
5874 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5875 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5876 inner = TREE_OPERAND (arg0, 0);
5878 /* If something does not permit us to optimize, return the original tree. */
5879 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5880 || TREE_CODE (comp_const) != INTEGER_CST
5881 || TREE_OVERFLOW (comp_const)
5882 || TREE_CODE (minmax_const) != INTEGER_CST
5883 || TREE_OVERFLOW (minmax_const))
5884 return NULL_TREE;
5886 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5887 and GT_EXPR, doing the rest with recursive calls using logical
5888 simplifications. */
5889 switch (code)
5891 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5893 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5894 type, op0, op1);
5895 if (tem)
5896 return invert_truthvalue (tem);
5897 return NULL_TREE;
5900 case GE_EXPR:
5901 return
5902 fold_build2 (TRUTH_ORIF_EXPR, type,
5903 optimize_minmax_comparison
5904 (EQ_EXPR, type, arg0, comp_const),
5905 optimize_minmax_comparison
5906 (GT_EXPR, type, arg0, comp_const));
5908 case EQ_EXPR:
5909 if (op_code == MAX_EXPR && consts_equal)
5910 /* MAX (X, 0) == 0 -> X <= 0 */
5911 return fold_build2 (LE_EXPR, type, inner, comp_const);
5913 else if (op_code == MAX_EXPR && consts_lt)
5914 /* MAX (X, 0) == 5 -> X == 5 */
5915 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5917 else if (op_code == MAX_EXPR)
5918 /* MAX (X, 0) == -1 -> false */
5919 return omit_one_operand (type, integer_zero_node, inner);
5921 else if (consts_equal)
5922 /* MIN (X, 0) == 0 -> X >= 0 */
5923 return fold_build2 (GE_EXPR, type, inner, comp_const);
5925 else if (consts_lt)
5926 /* MIN (X, 0) == 5 -> false */
5927 return omit_one_operand (type, integer_zero_node, inner);
5929 else
5930 /* MIN (X, 0) == -1 -> X == -1 */
5931 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5933 case GT_EXPR:
5934 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5935 /* MAX (X, 0) > 0 -> X > 0
5936 MAX (X, 0) > 5 -> X > 5 */
5937 return fold_build2 (GT_EXPR, type, inner, comp_const);
5939 else if (op_code == MAX_EXPR)
5940 /* MAX (X, 0) > -1 -> true */
5941 return omit_one_operand (type, integer_one_node, inner);
5943 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5944 /* MIN (X, 0) > 0 -> false
5945 MIN (X, 0) > 5 -> false */
5946 return omit_one_operand (type, integer_zero_node, inner);
5948 else
5949 /* MIN (X, 0) > -1 -> X > -1 */
5950 return fold_build2 (GT_EXPR, type, inner, comp_const);
5952 default:
5953 return NULL_TREE;
5957 /* T is an integer expression that is being multiplied, divided, or taken a
5958 modulus (CODE says which and what kind of divide or modulus) by a
5959 constant C. See if we can eliminate that operation by folding it with
5960 other operations already in T. WIDE_TYPE, if non-null, is a type that
5961 should be used for the computation if wider than our type.
5963 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5964 (X * 2) + (Y * 4). We must, however, be assured that either the original
5965 expression would not overflow or that overflow is undefined for the type
5966 in the language in question.
5968 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5969 the machine has a multiply-accumulate insn or that this is part of an
5970 addressing calculation.
5972 If we return a non-null expression, it is an equivalent form of the
5973 original computation, but need not be in the original type.
5975 We set *STRICT_OVERFLOW_P to true if the return values depends on
5976 signed overflow being undefined. Otherwise we do not change
5977 *STRICT_OVERFLOW_P. */
5979 static tree
5980 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5981 bool *strict_overflow_p)
5983 /* To avoid exponential search depth, refuse to allow recursion past
5984 three levels. Beyond that (1) it's highly unlikely that we'll find
5985 something interesting and (2) we've probably processed it before
5986 when we built the inner expression. */
5988 static int depth;
5989 tree ret;
5991 if (depth > 3)
5992 return NULL;
5994 depth++;
5995 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5996 depth--;
5998 return ret;
6001 static tree
6002 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6003 bool *strict_overflow_p)
6005 tree type = TREE_TYPE (t);
6006 enum tree_code tcode = TREE_CODE (t);
6007 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6008 > GET_MODE_SIZE (TYPE_MODE (type)))
6009 ? wide_type : type);
6010 tree t1, t2;
6011 int same_p = tcode == code;
6012 tree op0 = NULL_TREE, op1 = NULL_TREE;
6013 bool sub_strict_overflow_p;
6015 /* Don't deal with constants of zero here; they confuse the code below. */
6016 if (integer_zerop (c))
6017 return NULL_TREE;
6019 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6020 op0 = TREE_OPERAND (t, 0);
6022 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6023 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6025 /* Note that we need not handle conditional operations here since fold
6026 already handles those cases. So just do arithmetic here. */
6027 switch (tcode)
6029 case INTEGER_CST:
6030 /* For a constant, we can always simplify if we are a multiply
6031 or (for divide and modulus) if it is a multiple of our constant. */
6032 if (code == MULT_EXPR
6033 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
6034 return const_binop (code, fold_convert (ctype, t),
6035 fold_convert (ctype, c), 0);
6036 break;
6038 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
6039 /* If op0 is an expression ... */
6040 if ((COMPARISON_CLASS_P (op0)
6041 || UNARY_CLASS_P (op0)
6042 || BINARY_CLASS_P (op0)
6043 || VL_EXP_CLASS_P (op0)
6044 || EXPRESSION_CLASS_P (op0))
6045 /* ... and is unsigned, and its type is smaller than ctype,
6046 then we cannot pass through as widening. */
6047 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
6048 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
6049 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
6050 && (GET_MODE_SIZE (TYPE_MODE (ctype))
6051 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
6052 /* ... or this is a truncation (t is narrower than op0),
6053 then we cannot pass through this narrowing. */
6054 || (GET_MODE_SIZE (TYPE_MODE (type))
6055 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
6056 /* ... or signedness changes for division or modulus,
6057 then we cannot pass through this conversion. */
6058 || (code != MULT_EXPR
6059 && (TYPE_UNSIGNED (ctype)
6060 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
6061 break;
6063 /* Pass the constant down and see if we can make a simplification. If
6064 we can, replace this expression with the inner simplification for
6065 possible later conversion to our or some other type. */
6066 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6067 && TREE_CODE (t2) == INTEGER_CST
6068 && !TREE_OVERFLOW (t2)
6069 && (0 != (t1 = extract_muldiv (op0, t2, code,
6070 code == MULT_EXPR
6071 ? ctype : NULL_TREE,
6072 strict_overflow_p))))
6073 return t1;
6074 break;
6076 case ABS_EXPR:
6077 /* If widening the type changes it from signed to unsigned, then we
6078 must avoid building ABS_EXPR itself as unsigned. */
6079 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6081 tree cstype = (*signed_type_for) (ctype);
6082 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6083 != 0)
6085 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6086 return fold_convert (ctype, t1);
6088 break;
6090 /* FALLTHROUGH */
6091 case NEGATE_EXPR:
6092 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6093 != 0)
6094 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6095 break;
6097 case MIN_EXPR: case MAX_EXPR:
6098 /* If widening the type changes the signedness, then we can't perform
6099 this optimization as that changes the result. */
6100 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6101 break;
6103 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6104 sub_strict_overflow_p = false;
6105 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6106 &sub_strict_overflow_p)) != 0
6107 && (t2 = extract_muldiv (op1, c, code, wide_type,
6108 &sub_strict_overflow_p)) != 0)
6110 if (tree_int_cst_sgn (c) < 0)
6111 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6112 if (sub_strict_overflow_p)
6113 *strict_overflow_p = true;
6114 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6115 fold_convert (ctype, t2));
6117 break;
6119 case LSHIFT_EXPR: case RSHIFT_EXPR:
6120 /* If the second operand is constant, this is a multiplication
6121 or floor division, by a power of two, so we can treat it that
6122 way unless the multiplier or divisor overflows. Signed
6123 left-shift overflow is implementation-defined rather than
6124 undefined in C90, so do not convert signed left shift into
6125 multiplication. */
6126 if (TREE_CODE (op1) == INTEGER_CST
6127 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6128 /* const_binop may not detect overflow correctly,
6129 so check for it explicitly here. */
6130 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
6131 && TREE_INT_CST_HIGH (op1) == 0
6132 && 0 != (t1 = fold_convert (ctype,
6133 const_binop (LSHIFT_EXPR,
6134 size_one_node,
6135 op1, 0)))
6136 && !TREE_OVERFLOW (t1))
6137 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6138 ? MULT_EXPR : FLOOR_DIV_EXPR,
6139 ctype, fold_convert (ctype, op0), t1),
6140 c, code, wide_type, strict_overflow_p);
6141 break;
6143 case PLUS_EXPR: case MINUS_EXPR:
6144 /* See if we can eliminate the operation on both sides. If we can, we
6145 can return a new PLUS or MINUS. If we can't, the only remaining
6146 cases where we can do anything are if the second operand is a
6147 constant. */
6148 sub_strict_overflow_p = false;
6149 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6150 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6151 if (t1 != 0 && t2 != 0
6152 && (code == MULT_EXPR
6153 /* If not multiplication, we can only do this if both operands
6154 are divisible by c. */
6155 || (multiple_of_p (ctype, op0, c)
6156 && multiple_of_p (ctype, op1, c))))
6158 if (sub_strict_overflow_p)
6159 *strict_overflow_p = true;
6160 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6161 fold_convert (ctype, t2));
6164 /* If this was a subtraction, negate OP1 and set it to be an addition.
6165 This simplifies the logic below. */
6166 if (tcode == MINUS_EXPR)
6167 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6169 if (TREE_CODE (op1) != INTEGER_CST)
6170 break;
6172 /* If either OP1 or C are negative, this optimization is not safe for
6173 some of the division and remainder types while for others we need
6174 to change the code. */
6175 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6177 if (code == CEIL_DIV_EXPR)
6178 code = FLOOR_DIV_EXPR;
6179 else if (code == FLOOR_DIV_EXPR)
6180 code = CEIL_DIV_EXPR;
6181 else if (code != MULT_EXPR
6182 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6183 break;
6186 /* If it's a multiply or a division/modulus operation of a multiple
6187 of our constant, do the operation and verify it doesn't overflow. */
6188 if (code == MULT_EXPR
6189 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6191 op1 = const_binop (code, fold_convert (ctype, op1),
6192 fold_convert (ctype, c), 0);
6193 /* We allow the constant to overflow with wrapping semantics. */
6194 if (op1 == 0
6195 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6196 break;
6198 else
6199 break;
6201 /* If we have an unsigned type is not a sizetype, we cannot widen
6202 the operation since it will change the result if the original
6203 computation overflowed. */
6204 if (TYPE_UNSIGNED (ctype)
6205 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
6206 && ctype != type)
6207 break;
6209 /* If we were able to eliminate our operation from the first side,
6210 apply our operation to the second side and reform the PLUS. */
6211 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6212 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6214 /* The last case is if we are a multiply. In that case, we can
6215 apply the distributive law to commute the multiply and addition
6216 if the multiplication of the constants doesn't overflow. */
6217 if (code == MULT_EXPR)
6218 return fold_build2 (tcode, ctype,
6219 fold_build2 (code, ctype,
6220 fold_convert (ctype, op0),
6221 fold_convert (ctype, c)),
6222 op1);
6224 break;
6226 case MULT_EXPR:
6227 /* We have a special case here if we are doing something like
6228 (C * 8) % 4 since we know that's zero. */
6229 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6230 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6231 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6232 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6233 return omit_one_operand (type, integer_zero_node, op0);
6235 /* ... fall through ... */
6237 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6238 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6239 /* If we can extract our operation from the LHS, do so and return a
6240 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6241 do something only if the second operand is a constant. */
6242 if (same_p
6243 && (t1 = extract_muldiv (op0, c, code, wide_type,
6244 strict_overflow_p)) != 0)
6245 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6246 fold_convert (ctype, op1));
6247 else if (tcode == MULT_EXPR && code == MULT_EXPR
6248 && (t1 = extract_muldiv (op1, c, code, wide_type,
6249 strict_overflow_p)) != 0)
6250 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6251 fold_convert (ctype, t1));
6252 else if (TREE_CODE (op1) != INTEGER_CST)
6253 return 0;
6255 /* If these are the same operation types, we can associate them
6256 assuming no overflow. */
6257 if (tcode == code
6258 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
6259 fold_convert (ctype, c), 0))
6260 && !TREE_OVERFLOW (t1))
6261 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
6263 /* If these operations "cancel" each other, we have the main
6264 optimizations of this pass, which occur when either constant is a
6265 multiple of the other, in which case we replace this with either an
6266 operation or CODE or TCODE.
6268 If we have an unsigned type that is not a sizetype, we cannot do
6269 this since it will change the result if the original computation
6270 overflowed. */
6271 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
6272 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
6273 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6274 || (tcode == MULT_EXPR
6275 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6276 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
6278 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6280 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6281 *strict_overflow_p = true;
6282 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6283 fold_convert (ctype,
6284 const_binop (TRUNC_DIV_EXPR,
6285 op1, c, 0)));
6287 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
6289 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6290 *strict_overflow_p = true;
6291 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6292 fold_convert (ctype,
6293 const_binop (TRUNC_DIV_EXPR,
6294 c, op1, 0)));
6297 break;
6299 default:
6300 break;
6303 return 0;
6306 /* Return a node which has the indicated constant VALUE (either 0 or
6307 1), and is of the indicated TYPE. */
6309 tree
6310 constant_boolean_node (int value, tree type)
6312 if (type == integer_type_node)
6313 return value ? integer_one_node : integer_zero_node;
6314 else if (type == boolean_type_node)
6315 return value ? boolean_true_node : boolean_false_node;
6316 else
6317 return build_int_cst (type, value);
6321 /* Return true if expr looks like an ARRAY_REF and set base and
6322 offset to the appropriate trees. If there is no offset,
6323 offset is set to NULL_TREE. Base will be canonicalized to
6324 something you can get the element type from using
6325 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
6326 in bytes to the base in sizetype. */
6328 static bool
6329 extract_array_ref (tree expr, tree *base, tree *offset)
6331 /* One canonical form is a PLUS_EXPR with the first
6332 argument being an ADDR_EXPR with a possible NOP_EXPR
6333 attached. */
6334 if (TREE_CODE (expr) == POINTER_PLUS_EXPR)
6336 tree op0 = TREE_OPERAND (expr, 0);
6337 tree inner_base, dummy1;
6338 /* Strip NOP_EXPRs here because the C frontends and/or
6339 folders present us (int *)&x.a p+ 4 possibly. */
6340 STRIP_NOPS (op0);
6341 if (extract_array_ref (op0, &inner_base, &dummy1))
6343 *base = inner_base;
6344 *offset = fold_convert (sizetype, TREE_OPERAND (expr, 1));
6345 if (dummy1 != NULL_TREE)
6346 *offset = fold_build2 (PLUS_EXPR, sizetype,
6347 dummy1, *offset);
6348 return true;
6351 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
6352 which we transform into an ADDR_EXPR with appropriate
6353 offset. For other arguments to the ADDR_EXPR we assume
6354 zero offset and as such do not care about the ADDR_EXPR
6355 type and strip possible nops from it. */
6356 else if (TREE_CODE (expr) == ADDR_EXPR)
6358 tree op0 = TREE_OPERAND (expr, 0);
6359 if (TREE_CODE (op0) == ARRAY_REF)
6361 tree idx = TREE_OPERAND (op0, 1);
6362 *base = TREE_OPERAND (op0, 0);
6363 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
6364 array_ref_element_size (op0));
6365 *offset = fold_convert (sizetype, *offset);
6367 else
6369 /* Handle array-to-pointer decay as &a. */
6370 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
6371 *base = TREE_OPERAND (expr, 0);
6372 else
6373 *base = expr;
6374 *offset = NULL_TREE;
6376 return true;
6378 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
6379 else if (SSA_VAR_P (expr)
6380 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
6382 *base = expr;
6383 *offset = NULL_TREE;
6384 return true;
6387 return false;
6391 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6392 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6393 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6394 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6395 COND is the first argument to CODE; otherwise (as in the example
6396 given here), it is the second argument. TYPE is the type of the
6397 original expression. Return NULL_TREE if no simplification is
6398 possible. */
6400 static tree
6401 fold_binary_op_with_conditional_arg (enum tree_code code,
6402 tree type, tree op0, tree op1,
6403 tree cond, tree arg, int cond_first_p)
6405 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6406 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6407 tree test, true_value, false_value;
6408 tree lhs = NULL_TREE;
6409 tree rhs = NULL_TREE;
6411 /* This transformation is only worthwhile if we don't have to wrap
6412 arg in a SAVE_EXPR, and the operation can be simplified on at least
6413 one of the branches once its pushed inside the COND_EXPR. */
6414 if (!TREE_CONSTANT (arg))
6415 return NULL_TREE;
6417 if (TREE_CODE (cond) == COND_EXPR)
6419 test = TREE_OPERAND (cond, 0);
6420 true_value = TREE_OPERAND (cond, 1);
6421 false_value = TREE_OPERAND (cond, 2);
6422 /* If this operand throws an expression, then it does not make
6423 sense to try to perform a logical or arithmetic operation
6424 involving it. */
6425 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6426 lhs = true_value;
6427 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6428 rhs = false_value;
6430 else
6432 tree testtype = TREE_TYPE (cond);
6433 test = cond;
6434 true_value = constant_boolean_node (true, testtype);
6435 false_value = constant_boolean_node (false, testtype);
6438 arg = fold_convert (arg_type, arg);
6439 if (lhs == 0)
6441 true_value = fold_convert (cond_type, true_value);
6442 if (cond_first_p)
6443 lhs = fold_build2 (code, type, true_value, arg);
6444 else
6445 lhs = fold_build2 (code, type, arg, true_value);
6447 if (rhs == 0)
6449 false_value = fold_convert (cond_type, false_value);
6450 if (cond_first_p)
6451 rhs = fold_build2 (code, type, false_value, arg);
6452 else
6453 rhs = fold_build2 (code, type, arg, false_value);
6456 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
6457 return fold_convert (type, test);
6461 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6463 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6464 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6465 ADDEND is the same as X.
6467 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6468 and finite. The problematic cases are when X is zero, and its mode
6469 has signed zeros. In the case of rounding towards -infinity,
6470 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6471 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6473 static bool
6474 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6476 if (!real_zerop (addend))
6477 return false;
6479 /* Don't allow the fold with -fsignaling-nans. */
6480 if (HONOR_SNANS (TYPE_MODE (type)))
6481 return false;
6483 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6484 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6485 return true;
6487 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6488 if (TREE_CODE (addend) == REAL_CST
6489 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6490 negate = !negate;
6492 /* The mode has signed zeros, and we have to honor their sign.
6493 In this situation, there is only one case we can return true for.
6494 X - 0 is the same as X unless rounding towards -infinity is
6495 supported. */
6496 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6499 /* Subroutine of fold() that checks comparisons of built-in math
6500 functions against real constants.
6502 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6503 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6504 is the type of the result and ARG0 and ARG1 are the operands of the
6505 comparison. ARG1 must be a TREE_REAL_CST.
6507 The function returns the constant folded tree if a simplification
6508 can be made, and NULL_TREE otherwise. */
6510 static tree
6511 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
6512 tree type, tree arg0, tree arg1)
6514 REAL_VALUE_TYPE c;
6516 if (BUILTIN_SQRT_P (fcode))
6518 tree arg = CALL_EXPR_ARG (arg0, 0);
6519 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6521 c = TREE_REAL_CST (arg1);
6522 if (REAL_VALUE_NEGATIVE (c))
6524 /* sqrt(x) < y is always false, if y is negative. */
6525 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6526 return omit_one_operand (type, integer_zero_node, arg);
6528 /* sqrt(x) > y is always true, if y is negative and we
6529 don't care about NaNs, i.e. negative values of x. */
6530 if (code == NE_EXPR || !HONOR_NANS (mode))
6531 return omit_one_operand (type, integer_one_node, arg);
6533 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6534 return fold_build2 (GE_EXPR, type, arg,
6535 build_real (TREE_TYPE (arg), dconst0));
6537 else if (code == GT_EXPR || code == GE_EXPR)
6539 REAL_VALUE_TYPE c2;
6541 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6542 real_convert (&c2, mode, &c2);
6544 if (REAL_VALUE_ISINF (c2))
6546 /* sqrt(x) > y is x == +Inf, when y is very large. */
6547 if (HONOR_INFINITIES (mode))
6548 return fold_build2 (EQ_EXPR, type, arg,
6549 build_real (TREE_TYPE (arg), c2));
6551 /* sqrt(x) > y is always false, when y is very large
6552 and we don't care about infinities. */
6553 return omit_one_operand (type, integer_zero_node, arg);
6556 /* sqrt(x) > c is the same as x > c*c. */
6557 return fold_build2 (code, type, arg,
6558 build_real (TREE_TYPE (arg), c2));
6560 else if (code == LT_EXPR || code == LE_EXPR)
6562 REAL_VALUE_TYPE c2;
6564 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6565 real_convert (&c2, mode, &c2);
6567 if (REAL_VALUE_ISINF (c2))
6569 /* sqrt(x) < y is always true, when y is a very large
6570 value and we don't care about NaNs or Infinities. */
6571 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6572 return omit_one_operand (type, integer_one_node, arg);
6574 /* sqrt(x) < y is x != +Inf when y is very large and we
6575 don't care about NaNs. */
6576 if (! HONOR_NANS (mode))
6577 return fold_build2 (NE_EXPR, type, arg,
6578 build_real (TREE_TYPE (arg), c2));
6580 /* sqrt(x) < y is x >= 0 when y is very large and we
6581 don't care about Infinities. */
6582 if (! HONOR_INFINITIES (mode))
6583 return fold_build2 (GE_EXPR, type, arg,
6584 build_real (TREE_TYPE (arg), dconst0));
6586 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6587 if (lang_hooks.decls.global_bindings_p () != 0
6588 || CONTAINS_PLACEHOLDER_P (arg))
6589 return NULL_TREE;
6591 arg = save_expr (arg);
6592 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6593 fold_build2 (GE_EXPR, type, arg,
6594 build_real (TREE_TYPE (arg),
6595 dconst0)),
6596 fold_build2 (NE_EXPR, type, arg,
6597 build_real (TREE_TYPE (arg),
6598 c2)));
6601 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6602 if (! HONOR_NANS (mode))
6603 return fold_build2 (code, type, arg,
6604 build_real (TREE_TYPE (arg), c2));
6606 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6607 if (lang_hooks.decls.global_bindings_p () == 0
6608 && ! CONTAINS_PLACEHOLDER_P (arg))
6610 arg = save_expr (arg);
6611 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6612 fold_build2 (GE_EXPR, type, arg,
6613 build_real (TREE_TYPE (arg),
6614 dconst0)),
6615 fold_build2 (code, type, arg,
6616 build_real (TREE_TYPE (arg),
6617 c2)));
6622 return NULL_TREE;
6625 /* Subroutine of fold() that optimizes comparisons against Infinities,
6626 either +Inf or -Inf.
6628 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6629 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6630 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6632 The function returns the constant folded tree if a simplification
6633 can be made, and NULL_TREE otherwise. */
6635 static tree
6636 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6638 enum machine_mode mode;
6639 REAL_VALUE_TYPE max;
6640 tree temp;
6641 bool neg;
6643 mode = TYPE_MODE (TREE_TYPE (arg0));
6645 /* For negative infinity swap the sense of the comparison. */
6646 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6647 if (neg)
6648 code = swap_tree_comparison (code);
6650 switch (code)
6652 case GT_EXPR:
6653 /* x > +Inf is always false, if with ignore sNANs. */
6654 if (HONOR_SNANS (mode))
6655 return NULL_TREE;
6656 return omit_one_operand (type, integer_zero_node, arg0);
6658 case LE_EXPR:
6659 /* x <= +Inf is always true, if we don't case about NaNs. */
6660 if (! HONOR_NANS (mode))
6661 return omit_one_operand (type, integer_one_node, arg0);
6663 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6664 if (lang_hooks.decls.global_bindings_p () == 0
6665 && ! CONTAINS_PLACEHOLDER_P (arg0))
6667 arg0 = save_expr (arg0);
6668 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6670 break;
6672 case EQ_EXPR:
6673 case GE_EXPR:
6674 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6675 real_maxval (&max, neg, mode);
6676 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6677 arg0, build_real (TREE_TYPE (arg0), max));
6679 case LT_EXPR:
6680 /* x < +Inf is always equal to x <= DBL_MAX. */
6681 real_maxval (&max, neg, mode);
6682 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6683 arg0, build_real (TREE_TYPE (arg0), max));
6685 case NE_EXPR:
6686 /* x != +Inf is always equal to !(x > DBL_MAX). */
6687 real_maxval (&max, neg, mode);
6688 if (! HONOR_NANS (mode))
6689 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6690 arg0, build_real (TREE_TYPE (arg0), max));
6692 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6693 arg0, build_real (TREE_TYPE (arg0), max));
6694 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6696 default:
6697 break;
6700 return NULL_TREE;
6703 /* Subroutine of fold() that optimizes comparisons of a division by
6704 a nonzero integer constant against an integer constant, i.e.
6705 X/C1 op C2.
6707 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6708 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6709 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6711 The function returns the constant folded tree if a simplification
6712 can be made, and NULL_TREE otherwise. */
6714 static tree
6715 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6717 tree prod, tmp, hi, lo;
6718 tree arg00 = TREE_OPERAND (arg0, 0);
6719 tree arg01 = TREE_OPERAND (arg0, 1);
6720 unsigned HOST_WIDE_INT lpart;
6721 HOST_WIDE_INT hpart;
6722 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6723 bool neg_overflow;
6724 int overflow;
6726 /* We have to do this the hard way to detect unsigned overflow.
6727 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6728 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6729 TREE_INT_CST_HIGH (arg01),
6730 TREE_INT_CST_LOW (arg1),
6731 TREE_INT_CST_HIGH (arg1),
6732 &lpart, &hpart, unsigned_p);
6733 prod = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6734 -1, overflow);
6735 neg_overflow = false;
6737 if (unsigned_p)
6739 tmp = int_const_binop (MINUS_EXPR, arg01,
6740 build_int_cst (TREE_TYPE (arg01), 1), 0);
6741 lo = prod;
6743 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6744 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6745 TREE_INT_CST_HIGH (prod),
6746 TREE_INT_CST_LOW (tmp),
6747 TREE_INT_CST_HIGH (tmp),
6748 &lpart, &hpart, unsigned_p);
6749 hi = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6750 -1, overflow | TREE_OVERFLOW (prod));
6752 else if (tree_int_cst_sgn (arg01) >= 0)
6754 tmp = int_const_binop (MINUS_EXPR, arg01,
6755 build_int_cst (TREE_TYPE (arg01), 1), 0);
6756 switch (tree_int_cst_sgn (arg1))
6758 case -1:
6759 neg_overflow = true;
6760 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6761 hi = prod;
6762 break;
6764 case 0:
6765 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6766 hi = tmp;
6767 break;
6769 case 1:
6770 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6771 lo = prod;
6772 break;
6774 default:
6775 gcc_unreachable ();
6778 else
6780 /* A negative divisor reverses the relational operators. */
6781 code = swap_tree_comparison (code);
6783 tmp = int_const_binop (PLUS_EXPR, arg01,
6784 build_int_cst (TREE_TYPE (arg01), 1), 0);
6785 switch (tree_int_cst_sgn (arg1))
6787 case -1:
6788 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6789 lo = prod;
6790 break;
6792 case 0:
6793 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6794 lo = tmp;
6795 break;
6797 case 1:
6798 neg_overflow = true;
6799 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6800 hi = prod;
6801 break;
6803 default:
6804 gcc_unreachable ();
6808 switch (code)
6810 case EQ_EXPR:
6811 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6812 return omit_one_operand (type, integer_zero_node, arg00);
6813 if (TREE_OVERFLOW (hi))
6814 return fold_build2 (GE_EXPR, type, arg00, lo);
6815 if (TREE_OVERFLOW (lo))
6816 return fold_build2 (LE_EXPR, type, arg00, hi);
6817 return build_range_check (type, arg00, 1, lo, hi);
6819 case NE_EXPR:
6820 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6821 return omit_one_operand (type, integer_one_node, arg00);
6822 if (TREE_OVERFLOW (hi))
6823 return fold_build2 (LT_EXPR, type, arg00, lo);
6824 if (TREE_OVERFLOW (lo))
6825 return fold_build2 (GT_EXPR, type, arg00, hi);
6826 return build_range_check (type, arg00, 0, lo, hi);
6828 case LT_EXPR:
6829 if (TREE_OVERFLOW (lo))
6831 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6832 return omit_one_operand (type, tmp, arg00);
6834 return fold_build2 (LT_EXPR, type, arg00, lo);
6836 case LE_EXPR:
6837 if (TREE_OVERFLOW (hi))
6839 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6840 return omit_one_operand (type, tmp, arg00);
6842 return fold_build2 (LE_EXPR, type, arg00, hi);
6844 case GT_EXPR:
6845 if (TREE_OVERFLOW (hi))
6847 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6848 return omit_one_operand (type, tmp, arg00);
6850 return fold_build2 (GT_EXPR, type, arg00, hi);
6852 case GE_EXPR:
6853 if (TREE_OVERFLOW (lo))
6855 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6856 return omit_one_operand (type, tmp, arg00);
6858 return fold_build2 (GE_EXPR, type, arg00, lo);
6860 default:
6861 break;
6864 return NULL_TREE;
6868 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6869 equality/inequality test, then return a simplified form of the test
6870 using a sign testing. Otherwise return NULL. TYPE is the desired
6871 result type. */
6873 static tree
6874 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6875 tree result_type)
6877 /* If this is testing a single bit, we can optimize the test. */
6878 if ((code == NE_EXPR || code == EQ_EXPR)
6879 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6880 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6882 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6883 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6884 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6886 if (arg00 != NULL_TREE
6887 /* This is only a win if casting to a signed type is cheap,
6888 i.e. when arg00's type is not a partial mode. */
6889 && TYPE_PRECISION (TREE_TYPE (arg00))
6890 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6892 tree stype = signed_type_for (TREE_TYPE (arg00));
6893 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6894 result_type, fold_convert (stype, arg00),
6895 build_int_cst (stype, 0));
6899 return NULL_TREE;
6902 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6903 equality/inequality test, then return a simplified form of
6904 the test using shifts and logical operations. Otherwise return
6905 NULL. TYPE is the desired result type. */
6907 tree
6908 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6909 tree result_type)
6911 /* If this is testing a single bit, we can optimize the test. */
6912 if ((code == NE_EXPR || code == EQ_EXPR)
6913 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6914 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6916 tree inner = TREE_OPERAND (arg0, 0);
6917 tree type = TREE_TYPE (arg0);
6918 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6919 enum machine_mode operand_mode = TYPE_MODE (type);
6920 int ops_unsigned;
6921 tree signed_type, unsigned_type, intermediate_type;
6922 tree tem, one;
6924 /* First, see if we can fold the single bit test into a sign-bit
6925 test. */
6926 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6927 result_type);
6928 if (tem)
6929 return tem;
6931 /* Otherwise we have (A & C) != 0 where C is a single bit,
6932 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6933 Similarly for (A & C) == 0. */
6935 /* If INNER is a right shift of a constant and it plus BITNUM does
6936 not overflow, adjust BITNUM and INNER. */
6937 if (TREE_CODE (inner) == RSHIFT_EXPR
6938 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6939 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6940 && bitnum < TYPE_PRECISION (type)
6941 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6942 bitnum - TYPE_PRECISION (type)))
6944 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6945 inner = TREE_OPERAND (inner, 0);
6948 /* If we are going to be able to omit the AND below, we must do our
6949 operations as unsigned. If we must use the AND, we have a choice.
6950 Normally unsigned is faster, but for some machines signed is. */
6951 #ifdef LOAD_EXTEND_OP
6952 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6953 && !flag_syntax_only) ? 0 : 1;
6954 #else
6955 ops_unsigned = 1;
6956 #endif
6958 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6959 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6960 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6961 inner = fold_convert (intermediate_type, inner);
6963 if (bitnum != 0)
6964 inner = build2 (RSHIFT_EXPR, intermediate_type,
6965 inner, size_int (bitnum));
6967 one = build_int_cst (intermediate_type, 1);
6969 if (code == EQ_EXPR)
6970 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type, inner, one);
6972 /* Put the AND last so it can combine with more things. */
6973 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6975 /* Make sure to return the proper type. */
6976 inner = fold_convert (result_type, inner);
6978 return inner;
6980 return NULL_TREE;
6983 /* Check whether we are allowed to reorder operands arg0 and arg1,
6984 such that the evaluation of arg1 occurs before arg0. */
6986 static bool
6987 reorder_operands_p (const_tree arg0, const_tree arg1)
6989 if (! flag_evaluation_order)
6990 return true;
6991 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6992 return true;
6993 return ! TREE_SIDE_EFFECTS (arg0)
6994 && ! TREE_SIDE_EFFECTS (arg1);
6997 /* Test whether it is preferable two swap two operands, ARG0 and
6998 ARG1, for example because ARG0 is an integer constant and ARG1
6999 isn't. If REORDER is true, only recommend swapping if we can
7000 evaluate the operands in reverse order. */
7002 bool
7003 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
7005 STRIP_SIGN_NOPS (arg0);
7006 STRIP_SIGN_NOPS (arg1);
7008 if (TREE_CODE (arg1) == INTEGER_CST)
7009 return 0;
7010 if (TREE_CODE (arg0) == INTEGER_CST)
7011 return 1;
7013 if (TREE_CODE (arg1) == REAL_CST)
7014 return 0;
7015 if (TREE_CODE (arg0) == REAL_CST)
7016 return 1;
7018 if (TREE_CODE (arg1) == FIXED_CST)
7019 return 0;
7020 if (TREE_CODE (arg0) == FIXED_CST)
7021 return 1;
7023 if (TREE_CODE (arg1) == COMPLEX_CST)
7024 return 0;
7025 if (TREE_CODE (arg0) == COMPLEX_CST)
7026 return 1;
7028 if (TREE_CONSTANT (arg1))
7029 return 0;
7030 if (TREE_CONSTANT (arg0))
7031 return 1;
7033 if (optimize_size)
7034 return 0;
7036 if (reorder && flag_evaluation_order
7037 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
7038 return 0;
7040 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7041 for commutative and comparison operators. Ensuring a canonical
7042 form allows the optimizers to find additional redundancies without
7043 having to explicitly check for both orderings. */
7044 if (TREE_CODE (arg0) == SSA_NAME
7045 && TREE_CODE (arg1) == SSA_NAME
7046 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7047 return 1;
7049 /* Put SSA_NAMEs last. */
7050 if (TREE_CODE (arg1) == SSA_NAME)
7051 return 0;
7052 if (TREE_CODE (arg0) == SSA_NAME)
7053 return 1;
7055 /* Put variables last. */
7056 if (DECL_P (arg1))
7057 return 0;
7058 if (DECL_P (arg0))
7059 return 1;
7061 return 0;
7064 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
7065 ARG0 is extended to a wider type. */
7067 static tree
7068 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
7070 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
7071 tree arg1_unw;
7072 tree shorter_type, outer_type;
7073 tree min, max;
7074 bool above, below;
7076 if (arg0_unw == arg0)
7077 return NULL_TREE;
7078 shorter_type = TREE_TYPE (arg0_unw);
7080 #ifdef HAVE_canonicalize_funcptr_for_compare
7081 /* Disable this optimization if we're casting a function pointer
7082 type on targets that require function pointer canonicalization. */
7083 if (HAVE_canonicalize_funcptr_for_compare
7084 && TREE_CODE (shorter_type) == POINTER_TYPE
7085 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
7086 return NULL_TREE;
7087 #endif
7089 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
7090 return NULL_TREE;
7092 arg1_unw = get_unwidened (arg1, shorter_type);
7094 /* If possible, express the comparison in the shorter mode. */
7095 if ((code == EQ_EXPR || code == NE_EXPR
7096 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
7097 && (TREE_TYPE (arg1_unw) == shorter_type
7098 || (TREE_CODE (arg1_unw) == INTEGER_CST
7099 && (TREE_CODE (shorter_type) == INTEGER_TYPE
7100 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
7101 && int_fits_type_p (arg1_unw, shorter_type))))
7102 return fold_build2 (code, type, arg0_unw,
7103 fold_convert (shorter_type, arg1_unw));
7105 if (TREE_CODE (arg1_unw) != INTEGER_CST
7106 || TREE_CODE (shorter_type) != INTEGER_TYPE
7107 || !int_fits_type_p (arg1_unw, shorter_type))
7108 return NULL_TREE;
7110 /* If we are comparing with the integer that does not fit into the range
7111 of the shorter type, the result is known. */
7112 outer_type = TREE_TYPE (arg1_unw);
7113 min = lower_bound_in_type (outer_type, shorter_type);
7114 max = upper_bound_in_type (outer_type, shorter_type);
7116 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7117 max, arg1_unw));
7118 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7119 arg1_unw, min));
7121 switch (code)
7123 case EQ_EXPR:
7124 if (above || below)
7125 return omit_one_operand (type, integer_zero_node, arg0);
7126 break;
7128 case NE_EXPR:
7129 if (above || below)
7130 return omit_one_operand (type, integer_one_node, arg0);
7131 break;
7133 case LT_EXPR:
7134 case LE_EXPR:
7135 if (above)
7136 return omit_one_operand (type, integer_one_node, arg0);
7137 else if (below)
7138 return omit_one_operand (type, integer_zero_node, arg0);
7140 case GT_EXPR:
7141 case GE_EXPR:
7142 if (above)
7143 return omit_one_operand (type, integer_zero_node, arg0);
7144 else if (below)
7145 return omit_one_operand (type, integer_one_node, arg0);
7147 default:
7148 break;
7151 return NULL_TREE;
7154 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7155 ARG0 just the signedness is changed. */
7157 static tree
7158 fold_sign_changed_comparison (enum tree_code code, tree type,
7159 tree arg0, tree arg1)
7161 tree arg0_inner;
7162 tree inner_type, outer_type;
7164 if (TREE_CODE (arg0) != NOP_EXPR
7165 && TREE_CODE (arg0) != CONVERT_EXPR)
7166 return NULL_TREE;
7168 outer_type = TREE_TYPE (arg0);
7169 arg0_inner = TREE_OPERAND (arg0, 0);
7170 inner_type = TREE_TYPE (arg0_inner);
7172 #ifdef HAVE_canonicalize_funcptr_for_compare
7173 /* Disable this optimization if we're casting a function pointer
7174 type on targets that require function pointer canonicalization. */
7175 if (HAVE_canonicalize_funcptr_for_compare
7176 && TREE_CODE (inner_type) == POINTER_TYPE
7177 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7178 return NULL_TREE;
7179 #endif
7181 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7182 return NULL_TREE;
7184 if (TREE_CODE (arg1) != INTEGER_CST
7185 && !((TREE_CODE (arg1) == NOP_EXPR
7186 || TREE_CODE (arg1) == CONVERT_EXPR)
7187 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7188 return NULL_TREE;
7190 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7191 && code != NE_EXPR
7192 && code != EQ_EXPR)
7193 return NULL_TREE;
7195 if (TREE_CODE (arg1) == INTEGER_CST)
7196 arg1 = force_fit_type_double (inner_type, TREE_INT_CST_LOW (arg1),
7197 TREE_INT_CST_HIGH (arg1), 0,
7198 TREE_OVERFLOW (arg1));
7199 else
7200 arg1 = fold_convert (inner_type, arg1);
7202 return fold_build2 (code, type, arg0_inner, arg1);
7205 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
7206 step of the array. Reconstructs s and delta in the case of s * delta
7207 being an integer constant (and thus already folded).
7208 ADDR is the address. MULT is the multiplicative expression.
7209 If the function succeeds, the new address expression is returned. Otherwise
7210 NULL_TREE is returned. */
7212 static tree
7213 try_move_mult_to_index (tree addr, tree op1)
7215 tree s, delta, step;
7216 tree ref = TREE_OPERAND (addr, 0), pref;
7217 tree ret, pos;
7218 tree itype;
7219 bool mdim = false;
7221 /* Strip the nops that might be added when converting op1 to sizetype. */
7222 STRIP_NOPS (op1);
7224 /* Canonicalize op1 into a possibly non-constant delta
7225 and an INTEGER_CST s. */
7226 if (TREE_CODE (op1) == MULT_EXPR)
7228 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
7230 STRIP_NOPS (arg0);
7231 STRIP_NOPS (arg1);
7233 if (TREE_CODE (arg0) == INTEGER_CST)
7235 s = arg0;
7236 delta = arg1;
7238 else if (TREE_CODE (arg1) == INTEGER_CST)
7240 s = arg1;
7241 delta = arg0;
7243 else
7244 return NULL_TREE;
7246 else if (TREE_CODE (op1) == INTEGER_CST)
7248 delta = op1;
7249 s = NULL_TREE;
7251 else
7253 /* Simulate we are delta * 1. */
7254 delta = op1;
7255 s = integer_one_node;
7258 for (;; ref = TREE_OPERAND (ref, 0))
7260 if (TREE_CODE (ref) == ARRAY_REF)
7262 /* Remember if this was a multi-dimensional array. */
7263 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
7264 mdim = true;
7266 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
7267 if (! itype)
7268 continue;
7270 step = array_ref_element_size (ref);
7271 if (TREE_CODE (step) != INTEGER_CST)
7272 continue;
7274 if (s)
7276 if (! tree_int_cst_equal (step, s))
7277 continue;
7279 else
7281 /* Try if delta is a multiple of step. */
7282 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
7283 if (! tmp)
7284 continue;
7285 delta = tmp;
7288 /* Only fold here if we can verify we do not overflow one
7289 dimension of a multi-dimensional array. */
7290 if (mdim)
7292 tree tmp;
7294 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
7295 || !INTEGRAL_TYPE_P (itype)
7296 || !TYPE_MAX_VALUE (itype)
7297 || TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)
7298 continue;
7300 tmp = fold_binary (PLUS_EXPR, itype,
7301 fold_convert (itype,
7302 TREE_OPERAND (ref, 1)),
7303 fold_convert (itype, delta));
7304 if (!tmp
7305 || TREE_CODE (tmp) != INTEGER_CST
7306 || tree_int_cst_lt (TYPE_MAX_VALUE (itype), tmp))
7307 continue;
7310 break;
7312 else
7313 mdim = false;
7315 if (!handled_component_p (ref))
7316 return NULL_TREE;
7319 /* We found the suitable array reference. So copy everything up to it,
7320 and replace the index. */
7322 pref = TREE_OPERAND (addr, 0);
7323 ret = copy_node (pref);
7324 pos = ret;
7326 while (pref != ref)
7328 pref = TREE_OPERAND (pref, 0);
7329 TREE_OPERAND (pos, 0) = copy_node (pref);
7330 pos = TREE_OPERAND (pos, 0);
7333 TREE_OPERAND (pos, 1) = fold_build2 (PLUS_EXPR, itype,
7334 fold_convert (itype,
7335 TREE_OPERAND (pos, 1)),
7336 fold_convert (itype, delta));
7338 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
7342 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7343 means A >= Y && A != MAX, but in this case we know that
7344 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7346 static tree
7347 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
7349 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7351 if (TREE_CODE (bound) == LT_EXPR)
7352 a = TREE_OPERAND (bound, 0);
7353 else if (TREE_CODE (bound) == GT_EXPR)
7354 a = TREE_OPERAND (bound, 1);
7355 else
7356 return NULL_TREE;
7358 typea = TREE_TYPE (a);
7359 if (!INTEGRAL_TYPE_P (typea)
7360 && !POINTER_TYPE_P (typea))
7361 return NULL_TREE;
7363 if (TREE_CODE (ineq) == LT_EXPR)
7365 a1 = TREE_OPERAND (ineq, 1);
7366 y = TREE_OPERAND (ineq, 0);
7368 else if (TREE_CODE (ineq) == GT_EXPR)
7370 a1 = TREE_OPERAND (ineq, 0);
7371 y = TREE_OPERAND (ineq, 1);
7373 else
7374 return NULL_TREE;
7376 if (TREE_TYPE (a1) != typea)
7377 return NULL_TREE;
7379 if (POINTER_TYPE_P (typea))
7381 /* Convert the pointer types into integer before taking the difference. */
7382 tree ta = fold_convert (ssizetype, a);
7383 tree ta1 = fold_convert (ssizetype, a1);
7384 diff = fold_binary (MINUS_EXPR, ssizetype, ta1, ta);
7386 else
7387 diff = fold_binary (MINUS_EXPR, typea, a1, a);
7389 if (!diff || !integer_onep (diff))
7390 return NULL_TREE;
7392 return fold_build2 (GE_EXPR, type, a, y);
7395 /* Fold a sum or difference of at least one multiplication.
7396 Returns the folded tree or NULL if no simplification could be made. */
7398 static tree
7399 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
7401 tree arg00, arg01, arg10, arg11;
7402 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7404 /* (A * C) +- (B * C) -> (A+-B) * C.
7405 (A * C) +- A -> A * (C+-1).
7406 We are most concerned about the case where C is a constant,
7407 but other combinations show up during loop reduction. Since
7408 it is not difficult, try all four possibilities. */
7410 if (TREE_CODE (arg0) == MULT_EXPR)
7412 arg00 = TREE_OPERAND (arg0, 0);
7413 arg01 = TREE_OPERAND (arg0, 1);
7415 else if (TREE_CODE (arg0) == INTEGER_CST)
7417 arg00 = build_one_cst (type);
7418 arg01 = arg0;
7420 else
7422 /* We cannot generate constant 1 for fract. */
7423 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7424 return NULL_TREE;
7425 arg00 = arg0;
7426 arg01 = build_one_cst (type);
7428 if (TREE_CODE (arg1) == MULT_EXPR)
7430 arg10 = TREE_OPERAND (arg1, 0);
7431 arg11 = TREE_OPERAND (arg1, 1);
7433 else if (TREE_CODE (arg1) == INTEGER_CST)
7435 arg10 = build_one_cst (type);
7436 arg11 = arg1;
7438 else
7440 /* We cannot generate constant 1 for fract. */
7441 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7442 return NULL_TREE;
7443 arg10 = arg1;
7444 arg11 = build_one_cst (type);
7446 same = NULL_TREE;
7448 if (operand_equal_p (arg01, arg11, 0))
7449 same = arg01, alt0 = arg00, alt1 = arg10;
7450 else if (operand_equal_p (arg00, arg10, 0))
7451 same = arg00, alt0 = arg01, alt1 = arg11;
7452 else if (operand_equal_p (arg00, arg11, 0))
7453 same = arg00, alt0 = arg01, alt1 = arg10;
7454 else if (operand_equal_p (arg01, arg10, 0))
7455 same = arg01, alt0 = arg00, alt1 = arg11;
7457 /* No identical multiplicands; see if we can find a common
7458 power-of-two factor in non-power-of-two multiplies. This
7459 can help in multi-dimensional array access. */
7460 else if (host_integerp (arg01, 0)
7461 && host_integerp (arg11, 0))
7463 HOST_WIDE_INT int01, int11, tmp;
7464 bool swap = false;
7465 tree maybe_same;
7466 int01 = TREE_INT_CST_LOW (arg01);
7467 int11 = TREE_INT_CST_LOW (arg11);
7469 /* Move min of absolute values to int11. */
7470 if ((int01 >= 0 ? int01 : -int01)
7471 < (int11 >= 0 ? int11 : -int11))
7473 tmp = int01, int01 = int11, int11 = tmp;
7474 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7475 maybe_same = arg01;
7476 swap = true;
7478 else
7479 maybe_same = arg11;
7481 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
7483 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
7484 build_int_cst (TREE_TYPE (arg00),
7485 int01 / int11));
7486 alt1 = arg10;
7487 same = maybe_same;
7488 if (swap)
7489 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7493 if (same)
7494 return fold_build2 (MULT_EXPR, type,
7495 fold_build2 (code, type,
7496 fold_convert (type, alt0),
7497 fold_convert (type, alt1)),
7498 fold_convert (type, same));
7500 return NULL_TREE;
7503 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7504 specified by EXPR into the buffer PTR of length LEN bytes.
7505 Return the number of bytes placed in the buffer, or zero
7506 upon failure. */
7508 static int
7509 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7511 tree type = TREE_TYPE (expr);
7512 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7513 int byte, offset, word, words;
7514 unsigned char value;
7516 if (total_bytes > len)
7517 return 0;
7518 words = total_bytes / UNITS_PER_WORD;
7520 for (byte = 0; byte < total_bytes; byte++)
7522 int bitpos = byte * BITS_PER_UNIT;
7523 if (bitpos < HOST_BITS_PER_WIDE_INT)
7524 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7525 else
7526 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7527 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7529 if (total_bytes > UNITS_PER_WORD)
7531 word = byte / UNITS_PER_WORD;
7532 if (WORDS_BIG_ENDIAN)
7533 word = (words - 1) - word;
7534 offset = word * UNITS_PER_WORD;
7535 if (BYTES_BIG_ENDIAN)
7536 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7537 else
7538 offset += byte % UNITS_PER_WORD;
7540 else
7541 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7542 ptr[offset] = value;
7544 return total_bytes;
7548 /* Subroutine of native_encode_expr. Encode the REAL_CST
7549 specified by EXPR into the buffer PTR of length LEN bytes.
7550 Return the number of bytes placed in the buffer, or zero
7551 upon failure. */
7553 static int
7554 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7556 tree type = TREE_TYPE (expr);
7557 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7558 int byte, offset, word, words, bitpos;
7559 unsigned char value;
7561 /* There are always 32 bits in each long, no matter the size of
7562 the hosts long. We handle floating point representations with
7563 up to 192 bits. */
7564 long tmp[6];
7566 if (total_bytes > len)
7567 return 0;
7568 words = 32 / UNITS_PER_WORD;
7570 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7572 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7573 bitpos += BITS_PER_UNIT)
7575 byte = (bitpos / BITS_PER_UNIT) & 3;
7576 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7578 if (UNITS_PER_WORD < 4)
7580 word = byte / UNITS_PER_WORD;
7581 if (WORDS_BIG_ENDIAN)
7582 word = (words - 1) - word;
7583 offset = word * UNITS_PER_WORD;
7584 if (BYTES_BIG_ENDIAN)
7585 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7586 else
7587 offset += byte % UNITS_PER_WORD;
7589 else
7590 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7591 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7593 return total_bytes;
7596 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7597 specified by EXPR into the buffer PTR of length LEN bytes.
7598 Return the number of bytes placed in the buffer, or zero
7599 upon failure. */
7601 static int
7602 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7604 int rsize, isize;
7605 tree part;
7607 part = TREE_REALPART (expr);
7608 rsize = native_encode_expr (part, ptr, len);
7609 if (rsize == 0)
7610 return 0;
7611 part = TREE_IMAGPART (expr);
7612 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7613 if (isize != rsize)
7614 return 0;
7615 return rsize + isize;
7619 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7620 specified by EXPR into the buffer PTR of length LEN bytes.
7621 Return the number of bytes placed in the buffer, or zero
7622 upon failure. */
7624 static int
7625 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7627 int i, size, offset, count;
7628 tree itype, elem, elements;
7630 offset = 0;
7631 elements = TREE_VECTOR_CST_ELTS (expr);
7632 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7633 itype = TREE_TYPE (TREE_TYPE (expr));
7634 size = GET_MODE_SIZE (TYPE_MODE (itype));
7635 for (i = 0; i < count; i++)
7637 if (elements)
7639 elem = TREE_VALUE (elements);
7640 elements = TREE_CHAIN (elements);
7642 else
7643 elem = NULL_TREE;
7645 if (elem)
7647 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7648 return 0;
7650 else
7652 if (offset + size > len)
7653 return 0;
7654 memset (ptr+offset, 0, size);
7656 offset += size;
7658 return offset;
7662 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7663 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7664 buffer PTR of length LEN bytes. Return the number of bytes
7665 placed in the buffer, or zero upon failure. */
7668 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7670 switch (TREE_CODE (expr))
7672 case INTEGER_CST:
7673 return native_encode_int (expr, ptr, len);
7675 case REAL_CST:
7676 return native_encode_real (expr, ptr, len);
7678 case COMPLEX_CST:
7679 return native_encode_complex (expr, ptr, len);
7681 case VECTOR_CST:
7682 return native_encode_vector (expr, ptr, len);
7684 default:
7685 return 0;
7690 /* Subroutine of native_interpret_expr. Interpret the contents of
7691 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7692 If the buffer cannot be interpreted, return NULL_TREE. */
7694 static tree
7695 native_interpret_int (tree type, const unsigned char *ptr, int len)
7697 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7698 int byte, offset, word, words;
7699 unsigned char value;
7700 unsigned int HOST_WIDE_INT lo = 0;
7701 HOST_WIDE_INT hi = 0;
7703 if (total_bytes > len)
7704 return NULL_TREE;
7705 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7706 return NULL_TREE;
7707 words = total_bytes / UNITS_PER_WORD;
7709 for (byte = 0; byte < total_bytes; byte++)
7711 int bitpos = byte * BITS_PER_UNIT;
7712 if (total_bytes > UNITS_PER_WORD)
7714 word = byte / UNITS_PER_WORD;
7715 if (WORDS_BIG_ENDIAN)
7716 word = (words - 1) - word;
7717 offset = word * UNITS_PER_WORD;
7718 if (BYTES_BIG_ENDIAN)
7719 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7720 else
7721 offset += byte % UNITS_PER_WORD;
7723 else
7724 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7725 value = ptr[offset];
7727 if (bitpos < HOST_BITS_PER_WIDE_INT)
7728 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7729 else
7730 hi |= (unsigned HOST_WIDE_INT) value
7731 << (bitpos - HOST_BITS_PER_WIDE_INT);
7734 return build_int_cst_wide_type (type, lo, hi);
7738 /* Subroutine of native_interpret_expr. Interpret the contents of
7739 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7740 If the buffer cannot be interpreted, return NULL_TREE. */
7742 static tree
7743 native_interpret_real (tree type, const unsigned char *ptr, int len)
7745 enum machine_mode mode = TYPE_MODE (type);
7746 int total_bytes = GET_MODE_SIZE (mode);
7747 int byte, offset, word, words, bitpos;
7748 unsigned char value;
7749 /* There are always 32 bits in each long, no matter the size of
7750 the hosts long. We handle floating point representations with
7751 up to 192 bits. */
7752 REAL_VALUE_TYPE r;
7753 long tmp[6];
7755 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7756 if (total_bytes > len || total_bytes > 24)
7757 return NULL_TREE;
7758 words = 32 / UNITS_PER_WORD;
7760 memset (tmp, 0, sizeof (tmp));
7761 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7762 bitpos += BITS_PER_UNIT)
7764 byte = (bitpos / BITS_PER_UNIT) & 3;
7765 if (UNITS_PER_WORD < 4)
7767 word = byte / UNITS_PER_WORD;
7768 if (WORDS_BIG_ENDIAN)
7769 word = (words - 1) - word;
7770 offset = word * UNITS_PER_WORD;
7771 if (BYTES_BIG_ENDIAN)
7772 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7773 else
7774 offset += byte % UNITS_PER_WORD;
7776 else
7777 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7778 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7780 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7783 real_from_target (&r, tmp, mode);
7784 return build_real (type, r);
7788 /* Subroutine of native_interpret_expr. Interpret the contents of
7789 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7790 If the buffer cannot be interpreted, return NULL_TREE. */
7792 static tree
7793 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7795 tree etype, rpart, ipart;
7796 int size;
7798 etype = TREE_TYPE (type);
7799 size = GET_MODE_SIZE (TYPE_MODE (etype));
7800 if (size * 2 > len)
7801 return NULL_TREE;
7802 rpart = native_interpret_expr (etype, ptr, size);
7803 if (!rpart)
7804 return NULL_TREE;
7805 ipart = native_interpret_expr (etype, ptr+size, size);
7806 if (!ipart)
7807 return NULL_TREE;
7808 return build_complex (type, rpart, ipart);
7812 /* Subroutine of native_interpret_expr. Interpret the contents of
7813 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7814 If the buffer cannot be interpreted, return NULL_TREE. */
7816 static tree
7817 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7819 tree etype, elem, elements;
7820 int i, size, count;
7822 etype = TREE_TYPE (type);
7823 size = GET_MODE_SIZE (TYPE_MODE (etype));
7824 count = TYPE_VECTOR_SUBPARTS (type);
7825 if (size * count > len)
7826 return NULL_TREE;
7828 elements = NULL_TREE;
7829 for (i = count - 1; i >= 0; i--)
7831 elem = native_interpret_expr (etype, ptr+(i*size), size);
7832 if (!elem)
7833 return NULL_TREE;
7834 elements = tree_cons (NULL_TREE, elem, elements);
7836 return build_vector (type, elements);
7840 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7841 the buffer PTR of length LEN as a constant of type TYPE. For
7842 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7843 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7844 return NULL_TREE. */
7846 tree
7847 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7849 switch (TREE_CODE (type))
7851 case INTEGER_TYPE:
7852 case ENUMERAL_TYPE:
7853 case BOOLEAN_TYPE:
7854 return native_interpret_int (type, ptr, len);
7856 case REAL_TYPE:
7857 return native_interpret_real (type, ptr, len);
7859 case COMPLEX_TYPE:
7860 return native_interpret_complex (type, ptr, len);
7862 case VECTOR_TYPE:
7863 return native_interpret_vector (type, ptr, len);
7865 default:
7866 return NULL_TREE;
7871 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7872 TYPE at compile-time. If we're unable to perform the conversion
7873 return NULL_TREE. */
7875 static tree
7876 fold_view_convert_expr (tree type, tree expr)
7878 /* We support up to 512-bit values (for V8DFmode). */
7879 unsigned char buffer[64];
7880 int len;
7882 /* Check that the host and target are sane. */
7883 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7884 return NULL_TREE;
7886 len = native_encode_expr (expr, buffer, sizeof (buffer));
7887 if (len == 0)
7888 return NULL_TREE;
7890 return native_interpret_expr (type, buffer, len);
7893 /* Build an expression for the address of T. Folds away INDIRECT_REF
7894 to avoid confusing the gimplify process. When IN_FOLD is true
7895 avoid modifications of T. */
7897 static tree
7898 build_fold_addr_expr_with_type_1 (tree t, tree ptrtype, bool in_fold)
7900 /* The size of the object is not relevant when talking about its address. */
7901 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7902 t = TREE_OPERAND (t, 0);
7904 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
7905 if (TREE_CODE (t) == INDIRECT_REF
7906 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
7908 t = TREE_OPERAND (t, 0);
7910 if (TREE_TYPE (t) != ptrtype)
7911 t = build1 (NOP_EXPR, ptrtype, t);
7913 else if (!in_fold)
7915 tree base = t;
7917 while (handled_component_p (base))
7918 base = TREE_OPERAND (base, 0);
7920 if (DECL_P (base))
7921 TREE_ADDRESSABLE (base) = 1;
7923 t = build1 (ADDR_EXPR, ptrtype, t);
7925 else
7926 t = build1 (ADDR_EXPR, ptrtype, t);
7928 return t;
7931 /* Build an expression for the address of T with type PTRTYPE. This
7932 function modifies the input parameter 'T' by sometimes setting the
7933 TREE_ADDRESSABLE flag. */
7935 tree
7936 build_fold_addr_expr_with_type (tree t, tree ptrtype)
7938 return build_fold_addr_expr_with_type_1 (t, ptrtype, false);
7941 /* Build an expression for the address of T. This function modifies
7942 the input parameter 'T' by sometimes setting the TREE_ADDRESSABLE
7943 flag. When called from fold functions, use fold_addr_expr instead. */
7945 tree
7946 build_fold_addr_expr (tree t)
7948 return build_fold_addr_expr_with_type_1 (t,
7949 build_pointer_type (TREE_TYPE (t)),
7950 false);
7953 /* Same as build_fold_addr_expr, builds an expression for the address
7954 of T, but avoids touching the input node 't'. Fold functions
7955 should use this version. */
7957 static tree
7958 fold_addr_expr (tree t)
7960 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7962 return build_fold_addr_expr_with_type_1 (t, ptrtype, true);
7965 /* Fold a unary expression of code CODE and type TYPE with operand
7966 OP0. Return the folded expression if folding is successful.
7967 Otherwise, return NULL_TREE. */
7969 tree
7970 fold_unary (enum tree_code code, tree type, tree op0)
7972 tree tem;
7973 tree arg0;
7974 enum tree_code_class kind = TREE_CODE_CLASS (code);
7976 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7977 && TREE_CODE_LENGTH (code) == 1);
7979 arg0 = op0;
7980 if (arg0)
7982 if (code == NOP_EXPR || code == CONVERT_EXPR
7983 || code == FLOAT_EXPR || code == ABS_EXPR)
7985 /* Don't use STRIP_NOPS, because signedness of argument type
7986 matters. */
7987 STRIP_SIGN_NOPS (arg0);
7989 else
7991 /* Strip any conversions that don't change the mode. This
7992 is safe for every expression, except for a comparison
7993 expression because its signedness is derived from its
7994 operands.
7996 Note that this is done as an internal manipulation within
7997 the constant folder, in order to find the simplest
7998 representation of the arguments so that their form can be
7999 studied. In any cases, the appropriate type conversions
8000 should be put back in the tree that will get out of the
8001 constant folder. */
8002 STRIP_NOPS (arg0);
8006 if (TREE_CODE_CLASS (code) == tcc_unary)
8008 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8009 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8010 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
8011 else if (TREE_CODE (arg0) == COND_EXPR)
8013 tree arg01 = TREE_OPERAND (arg0, 1);
8014 tree arg02 = TREE_OPERAND (arg0, 2);
8015 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8016 arg01 = fold_build1 (code, type, arg01);
8017 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8018 arg02 = fold_build1 (code, type, arg02);
8019 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
8020 arg01, arg02);
8022 /* If this was a conversion, and all we did was to move into
8023 inside the COND_EXPR, bring it back out. But leave it if
8024 it is a conversion from integer to integer and the
8025 result precision is no wider than a word since such a
8026 conversion is cheap and may be optimized away by combine,
8027 while it couldn't if it were outside the COND_EXPR. Then return
8028 so we don't get into an infinite recursion loop taking the
8029 conversion out and then back in. */
8031 if ((code == NOP_EXPR || code == CONVERT_EXPR
8032 || code == NON_LVALUE_EXPR)
8033 && TREE_CODE (tem) == COND_EXPR
8034 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8035 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8036 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8037 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8038 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8039 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8040 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8041 && (INTEGRAL_TYPE_P
8042 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8043 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8044 || flag_syntax_only))
8045 tem = build1 (code, type,
8046 build3 (COND_EXPR,
8047 TREE_TYPE (TREE_OPERAND
8048 (TREE_OPERAND (tem, 1), 0)),
8049 TREE_OPERAND (tem, 0),
8050 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8051 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
8052 return tem;
8054 else if (COMPARISON_CLASS_P (arg0))
8056 if (TREE_CODE (type) == BOOLEAN_TYPE)
8058 arg0 = copy_node (arg0);
8059 TREE_TYPE (arg0) = type;
8060 return arg0;
8062 else if (TREE_CODE (type) != INTEGER_TYPE)
8063 return fold_build3 (COND_EXPR, type, arg0,
8064 fold_build1 (code, type,
8065 integer_one_node),
8066 fold_build1 (code, type,
8067 integer_zero_node));
8071 switch (code)
8073 case NOP_EXPR:
8074 case FLOAT_EXPR:
8075 case CONVERT_EXPR:
8076 case FIX_TRUNC_EXPR:
8077 if (TREE_TYPE (op0) == type)
8078 return op0;
8080 /* If we have (type) (a CMP b) and type is an integral type, return
8081 new expression involving the new type. */
8082 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
8083 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
8084 TREE_OPERAND (op0, 1));
8086 /* Handle cases of two conversions in a row. */
8087 if (TREE_CODE (op0) == NOP_EXPR
8088 || TREE_CODE (op0) == CONVERT_EXPR)
8090 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
8091 tree inter_type = TREE_TYPE (op0);
8092 int inside_int = INTEGRAL_TYPE_P (inside_type);
8093 int inside_ptr = POINTER_TYPE_P (inside_type);
8094 int inside_float = FLOAT_TYPE_P (inside_type);
8095 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
8096 unsigned int inside_prec = TYPE_PRECISION (inside_type);
8097 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
8098 int inter_int = INTEGRAL_TYPE_P (inter_type);
8099 int inter_ptr = POINTER_TYPE_P (inter_type);
8100 int inter_float = FLOAT_TYPE_P (inter_type);
8101 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
8102 unsigned int inter_prec = TYPE_PRECISION (inter_type);
8103 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
8104 int final_int = INTEGRAL_TYPE_P (type);
8105 int final_ptr = POINTER_TYPE_P (type);
8106 int final_float = FLOAT_TYPE_P (type);
8107 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
8108 unsigned int final_prec = TYPE_PRECISION (type);
8109 int final_unsignedp = TYPE_UNSIGNED (type);
8111 /* In addition to the cases of two conversions in a row
8112 handled below, if we are converting something to its own
8113 type via an object of identical or wider precision, neither
8114 conversion is needed. */
8115 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
8116 && (((inter_int || inter_ptr) && final_int)
8117 || (inter_float && final_float))
8118 && inter_prec >= final_prec)
8119 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8121 /* Likewise, if the intermediate and final types are either both
8122 float or both integer, we don't need the middle conversion if
8123 it is wider than the final type and doesn't change the signedness
8124 (for integers). Avoid this if the final type is a pointer
8125 since then we sometimes need the inner conversion. Likewise if
8126 the outer has a precision not equal to the size of its mode. */
8127 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
8128 || (inter_float && inside_float)
8129 || (inter_vec && inside_vec))
8130 && inter_prec >= inside_prec
8131 && (inter_float || inter_vec
8132 || inter_unsignedp == inside_unsignedp)
8133 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8134 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8135 && ! final_ptr
8136 && (! final_vec || inter_prec == inside_prec))
8137 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8139 /* If we have a sign-extension of a zero-extended value, we can
8140 replace that by a single zero-extension. */
8141 if (inside_int && inter_int && final_int
8142 && inside_prec < inter_prec && inter_prec < final_prec
8143 && inside_unsignedp && !inter_unsignedp)
8144 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8146 /* Two conversions in a row are not needed unless:
8147 - some conversion is floating-point (overstrict for now), or
8148 - some conversion is a vector (overstrict for now), or
8149 - the intermediate type is narrower than both initial and
8150 final, or
8151 - the intermediate type and innermost type differ in signedness,
8152 and the outermost type is wider than the intermediate, or
8153 - the initial type is a pointer type and the precisions of the
8154 intermediate and final types differ, or
8155 - the final type is a pointer type and the precisions of the
8156 initial and intermediate types differ.
8157 - the final type is a pointer type and the initial type not
8158 - the initial type is a pointer to an array and the final type
8159 not. */
8160 if (! inside_float && ! inter_float && ! final_float
8161 && ! inside_vec && ! inter_vec && ! final_vec
8162 && (inter_prec >= inside_prec || inter_prec >= final_prec)
8163 && ! (inside_int && inter_int
8164 && inter_unsignedp != inside_unsignedp
8165 && inter_prec < final_prec)
8166 && ((inter_unsignedp && inter_prec > inside_prec)
8167 == (final_unsignedp && final_prec > inter_prec))
8168 && ! (inside_ptr && inter_prec != final_prec)
8169 && ! (final_ptr && inside_prec != inter_prec)
8170 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8171 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8172 && final_ptr == inside_ptr
8173 && ! (inside_ptr
8174 && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
8175 && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE))
8176 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8179 /* Handle (T *)&A.B.C for A being of type T and B and C
8180 living at offset zero. This occurs frequently in
8181 C++ upcasting and then accessing the base. */
8182 if (TREE_CODE (op0) == ADDR_EXPR
8183 && POINTER_TYPE_P (type)
8184 && handled_component_p (TREE_OPERAND (op0, 0)))
8186 HOST_WIDE_INT bitsize, bitpos;
8187 tree offset;
8188 enum machine_mode mode;
8189 int unsignedp, volatilep;
8190 tree base = TREE_OPERAND (op0, 0);
8191 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
8192 &mode, &unsignedp, &volatilep, false);
8193 /* If the reference was to a (constant) zero offset, we can use
8194 the address of the base if it has the same base type
8195 as the result type. */
8196 if (! offset && bitpos == 0
8197 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
8198 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8199 return fold_convert (type, fold_addr_expr (base));
8202 if ((TREE_CODE (op0) == MODIFY_EXPR
8203 || TREE_CODE (op0) == GIMPLE_MODIFY_STMT)
8204 && TREE_CONSTANT (GENERIC_TREE_OPERAND (op0, 1))
8205 /* Detect assigning a bitfield. */
8206 && !(TREE_CODE (GENERIC_TREE_OPERAND (op0, 0)) == COMPONENT_REF
8207 && DECL_BIT_FIELD
8208 (TREE_OPERAND (GENERIC_TREE_OPERAND (op0, 0), 1))))
8210 /* Don't leave an assignment inside a conversion
8211 unless assigning a bitfield. */
8212 tem = fold_build1 (code, type, GENERIC_TREE_OPERAND (op0, 1));
8213 /* First do the assignment, then return converted constant. */
8214 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8215 TREE_NO_WARNING (tem) = 1;
8216 TREE_USED (tem) = 1;
8217 return tem;
8220 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8221 constants (if x has signed type, the sign bit cannot be set
8222 in c). This folds extension into the BIT_AND_EXPR. */
8223 if (INTEGRAL_TYPE_P (type)
8224 && TREE_CODE (type) != BOOLEAN_TYPE
8225 && TREE_CODE (op0) == BIT_AND_EXPR
8226 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
8228 tree and = op0;
8229 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
8230 int change = 0;
8232 if (TYPE_UNSIGNED (TREE_TYPE (and))
8233 || (TYPE_PRECISION (type)
8234 <= TYPE_PRECISION (TREE_TYPE (and))))
8235 change = 1;
8236 else if (TYPE_PRECISION (TREE_TYPE (and1))
8237 <= HOST_BITS_PER_WIDE_INT
8238 && host_integerp (and1, 1))
8240 unsigned HOST_WIDE_INT cst;
8242 cst = tree_low_cst (and1, 1);
8243 cst &= (HOST_WIDE_INT) -1
8244 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8245 change = (cst == 0);
8246 #ifdef LOAD_EXTEND_OP
8247 if (change
8248 && !flag_syntax_only
8249 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8250 == ZERO_EXTEND))
8252 tree uns = unsigned_type_for (TREE_TYPE (and0));
8253 and0 = fold_convert (uns, and0);
8254 and1 = fold_convert (uns, and1);
8256 #endif
8258 if (change)
8260 tem = force_fit_type_double (type, TREE_INT_CST_LOW (and1),
8261 TREE_INT_CST_HIGH (and1), 0,
8262 TREE_OVERFLOW (and1));
8263 return fold_build2 (BIT_AND_EXPR, type,
8264 fold_convert (type, and0), tem);
8268 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8269 when one of the new casts will fold away. Conservatively we assume
8270 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8271 if (POINTER_TYPE_P (type)
8272 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8273 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8274 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8275 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8277 tree arg00 = TREE_OPERAND (arg0, 0);
8278 tree arg01 = TREE_OPERAND (arg0, 1);
8280 return fold_build2 (TREE_CODE (arg0), type, fold_convert (type, arg00),
8281 fold_convert (sizetype, arg01));
8284 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8285 of the same precision, and X is an integer type not narrower than
8286 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8287 if (INTEGRAL_TYPE_P (type)
8288 && TREE_CODE (op0) == BIT_NOT_EXPR
8289 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8290 && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
8291 || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
8292 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8294 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8295 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8296 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8297 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
8300 tem = fold_convert_const (code, type, op0);
8301 return tem ? tem : NULL_TREE;
8303 case FIXED_CONVERT_EXPR:
8304 tem = fold_convert_const (code, type, arg0);
8305 return tem ? tem : NULL_TREE;
8307 case VIEW_CONVERT_EXPR:
8308 if (TREE_TYPE (op0) == type)
8309 return op0;
8310 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8311 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8312 return fold_view_convert_expr (type, op0);
8314 case NEGATE_EXPR:
8315 tem = fold_negate_expr (arg0);
8316 if (tem)
8317 return fold_convert (type, tem);
8318 return NULL_TREE;
8320 case ABS_EXPR:
8321 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8322 return fold_abs_const (arg0, type);
8323 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8324 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8325 /* Convert fabs((double)float) into (double)fabsf(float). */
8326 else if (TREE_CODE (arg0) == NOP_EXPR
8327 && TREE_CODE (type) == REAL_TYPE)
8329 tree targ0 = strip_float_extensions (arg0);
8330 if (targ0 != arg0)
8331 return fold_convert (type, fold_build1 (ABS_EXPR,
8332 TREE_TYPE (targ0),
8333 targ0));
8335 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8336 else if (TREE_CODE (arg0) == ABS_EXPR)
8337 return arg0;
8338 else if (tree_expr_nonnegative_p (arg0))
8339 return arg0;
8341 /* Strip sign ops from argument. */
8342 if (TREE_CODE (type) == REAL_TYPE)
8344 tem = fold_strip_sign_ops (arg0);
8345 if (tem)
8346 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
8348 return NULL_TREE;
8350 case CONJ_EXPR:
8351 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8352 return fold_convert (type, arg0);
8353 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8355 tree itype = TREE_TYPE (type);
8356 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
8357 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
8358 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
8360 if (TREE_CODE (arg0) == COMPLEX_CST)
8362 tree itype = TREE_TYPE (type);
8363 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
8364 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
8365 return build_complex (type, rpart, negate_expr (ipart));
8367 if (TREE_CODE (arg0) == CONJ_EXPR)
8368 return fold_convert (type, TREE_OPERAND (arg0, 0));
8369 return NULL_TREE;
8371 case BIT_NOT_EXPR:
8372 if (TREE_CODE (arg0) == INTEGER_CST)
8373 return fold_not_const (arg0, type);
8374 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8375 return TREE_OPERAND (arg0, 0);
8376 /* Convert ~ (-A) to A - 1. */
8377 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8378 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
8379 build_int_cst (type, 1));
8380 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8381 else if (INTEGRAL_TYPE_P (type)
8382 && ((TREE_CODE (arg0) == MINUS_EXPR
8383 && integer_onep (TREE_OPERAND (arg0, 1)))
8384 || (TREE_CODE (arg0) == PLUS_EXPR
8385 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8386 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
8387 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8388 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8389 && (tem = fold_unary (BIT_NOT_EXPR, type,
8390 fold_convert (type,
8391 TREE_OPERAND (arg0, 0)))))
8392 return fold_build2 (BIT_XOR_EXPR, type, tem,
8393 fold_convert (type, TREE_OPERAND (arg0, 1)));
8394 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8395 && (tem = fold_unary (BIT_NOT_EXPR, type,
8396 fold_convert (type,
8397 TREE_OPERAND (arg0, 1)))))
8398 return fold_build2 (BIT_XOR_EXPR, type,
8399 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
8400 /* Perform BIT_NOT_EXPR on each element individually. */
8401 else if (TREE_CODE (arg0) == VECTOR_CST)
8403 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8404 int count = TYPE_VECTOR_SUBPARTS (type), i;
8406 for (i = 0; i < count; i++)
8408 if (elements)
8410 elem = TREE_VALUE (elements);
8411 elem = fold_unary (BIT_NOT_EXPR, TREE_TYPE (type), elem);
8412 if (elem == NULL_TREE)
8413 break;
8414 elements = TREE_CHAIN (elements);
8416 else
8417 elem = build_int_cst (TREE_TYPE (type), -1);
8418 list = tree_cons (NULL_TREE, elem, list);
8420 if (i == count)
8421 return build_vector (type, nreverse (list));
8424 return NULL_TREE;
8426 case TRUTH_NOT_EXPR:
8427 /* The argument to invert_truthvalue must have Boolean type. */
8428 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8429 arg0 = fold_convert (boolean_type_node, arg0);
8431 /* Note that the operand of this must be an int
8432 and its values must be 0 or 1.
8433 ("true" is a fixed value perhaps depending on the language,
8434 but we don't handle values other than 1 correctly yet.) */
8435 tem = fold_truth_not_expr (arg0);
8436 if (!tem)
8437 return NULL_TREE;
8438 return fold_convert (type, tem);
8440 case REALPART_EXPR:
8441 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8442 return fold_convert (type, arg0);
8443 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8444 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8445 TREE_OPERAND (arg0, 1));
8446 if (TREE_CODE (arg0) == COMPLEX_CST)
8447 return fold_convert (type, TREE_REALPART (arg0));
8448 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8450 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8451 tem = fold_build2 (TREE_CODE (arg0), itype,
8452 fold_build1 (REALPART_EXPR, itype,
8453 TREE_OPERAND (arg0, 0)),
8454 fold_build1 (REALPART_EXPR, itype,
8455 TREE_OPERAND (arg0, 1)));
8456 return fold_convert (type, tem);
8458 if (TREE_CODE (arg0) == CONJ_EXPR)
8460 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8461 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8462 return fold_convert (type, tem);
8464 if (TREE_CODE (arg0) == CALL_EXPR)
8466 tree fn = get_callee_fndecl (arg0);
8467 if (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8468 switch (DECL_FUNCTION_CODE (fn))
8470 CASE_FLT_FN (BUILT_IN_CEXPI):
8471 fn = mathfn_built_in (type, BUILT_IN_COS);
8472 if (fn)
8473 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8474 break;
8476 default:
8477 break;
8480 return NULL_TREE;
8482 case IMAGPART_EXPR:
8483 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8484 return fold_convert (type, integer_zero_node);
8485 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8486 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8487 TREE_OPERAND (arg0, 0));
8488 if (TREE_CODE (arg0) == COMPLEX_CST)
8489 return fold_convert (type, TREE_IMAGPART (arg0));
8490 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8492 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8493 tem = fold_build2 (TREE_CODE (arg0), itype,
8494 fold_build1 (IMAGPART_EXPR, itype,
8495 TREE_OPERAND (arg0, 0)),
8496 fold_build1 (IMAGPART_EXPR, itype,
8497 TREE_OPERAND (arg0, 1)));
8498 return fold_convert (type, tem);
8500 if (TREE_CODE (arg0) == CONJ_EXPR)
8502 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8503 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8504 return fold_convert (type, negate_expr (tem));
8506 if (TREE_CODE (arg0) == CALL_EXPR)
8508 tree fn = get_callee_fndecl (arg0);
8509 if (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8510 switch (DECL_FUNCTION_CODE (fn))
8512 CASE_FLT_FN (BUILT_IN_CEXPI):
8513 fn = mathfn_built_in (type, BUILT_IN_SIN);
8514 if (fn)
8515 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8516 break;
8518 default:
8519 break;
8522 return NULL_TREE;
8524 default:
8525 return NULL_TREE;
8526 } /* switch (code) */
8529 /* Fold a binary expression of code CODE and type TYPE with operands
8530 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8531 Return the folded expression if folding is successful. Otherwise,
8532 return NULL_TREE. */
8534 static tree
8535 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
8537 enum tree_code compl_code;
8539 if (code == MIN_EXPR)
8540 compl_code = MAX_EXPR;
8541 else if (code == MAX_EXPR)
8542 compl_code = MIN_EXPR;
8543 else
8544 gcc_unreachable ();
8546 /* MIN (MAX (a, b), b) == b. */
8547 if (TREE_CODE (op0) == compl_code
8548 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8549 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
8551 /* MIN (MAX (b, a), b) == b. */
8552 if (TREE_CODE (op0) == compl_code
8553 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8554 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8555 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
8557 /* MIN (a, MAX (a, b)) == a. */
8558 if (TREE_CODE (op1) == compl_code
8559 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8560 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8561 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
8563 /* MIN (a, MAX (b, a)) == a. */
8564 if (TREE_CODE (op1) == compl_code
8565 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8566 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8567 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
8569 return NULL_TREE;
8572 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8573 by changing CODE to reduce the magnitude of constants involved in
8574 ARG0 of the comparison.
8575 Returns a canonicalized comparison tree if a simplification was
8576 possible, otherwise returns NULL_TREE.
8577 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8578 valid if signed overflow is undefined. */
8580 static tree
8581 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
8582 tree arg0, tree arg1,
8583 bool *strict_overflow_p)
8585 enum tree_code code0 = TREE_CODE (arg0);
8586 tree t, cst0 = NULL_TREE;
8587 int sgn0;
8588 bool swap = false;
8590 /* Match A +- CST code arg1 and CST code arg1. */
8591 if (!(((code0 == MINUS_EXPR
8592 || code0 == PLUS_EXPR)
8593 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8594 || code0 == INTEGER_CST))
8595 return NULL_TREE;
8597 /* Identify the constant in arg0 and its sign. */
8598 if (code0 == INTEGER_CST)
8599 cst0 = arg0;
8600 else
8601 cst0 = TREE_OPERAND (arg0, 1);
8602 sgn0 = tree_int_cst_sgn (cst0);
8604 /* Overflowed constants and zero will cause problems. */
8605 if (integer_zerop (cst0)
8606 || TREE_OVERFLOW (cst0))
8607 return NULL_TREE;
8609 /* See if we can reduce the magnitude of the constant in
8610 arg0 by changing the comparison code. */
8611 if (code0 == INTEGER_CST)
8613 /* CST <= arg1 -> CST-1 < arg1. */
8614 if (code == LE_EXPR && sgn0 == 1)
8615 code = LT_EXPR;
8616 /* -CST < arg1 -> -CST-1 <= arg1. */
8617 else if (code == LT_EXPR && sgn0 == -1)
8618 code = LE_EXPR;
8619 /* CST > arg1 -> CST-1 >= arg1. */
8620 else if (code == GT_EXPR && sgn0 == 1)
8621 code = GE_EXPR;
8622 /* -CST >= arg1 -> -CST-1 > arg1. */
8623 else if (code == GE_EXPR && sgn0 == -1)
8624 code = GT_EXPR;
8625 else
8626 return NULL_TREE;
8627 /* arg1 code' CST' might be more canonical. */
8628 swap = true;
8630 else
8632 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8633 if (code == LT_EXPR
8634 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8635 code = LE_EXPR;
8636 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8637 else if (code == GT_EXPR
8638 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8639 code = GE_EXPR;
8640 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8641 else if (code == LE_EXPR
8642 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8643 code = LT_EXPR;
8644 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8645 else if (code == GE_EXPR
8646 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8647 code = GT_EXPR;
8648 else
8649 return NULL_TREE;
8650 *strict_overflow_p = true;
8653 /* Now build the constant reduced in magnitude. */
8654 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8655 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
8656 if (code0 != INTEGER_CST)
8657 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8659 /* If swapping might yield to a more canonical form, do so. */
8660 if (swap)
8661 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
8662 else
8663 return fold_build2 (code, type, t, arg1);
8666 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8667 overflow further. Try to decrease the magnitude of constants involved
8668 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8669 and put sole constants at the second argument position.
8670 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8672 static tree
8673 maybe_canonicalize_comparison (enum tree_code code, tree type,
8674 tree arg0, tree arg1)
8676 tree t;
8677 bool strict_overflow_p;
8678 const char * const warnmsg = G_("assuming signed overflow does not occur "
8679 "when reducing constant in comparison");
8681 /* In principle pointers also have undefined overflow behavior,
8682 but that causes problems elsewhere. */
8683 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8684 || POINTER_TYPE_P (TREE_TYPE (arg0)))
8685 return NULL_TREE;
8687 /* Try canonicalization by simplifying arg0. */
8688 strict_overflow_p = false;
8689 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1,
8690 &strict_overflow_p);
8691 if (t)
8693 if (strict_overflow_p)
8694 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8695 return t;
8698 /* Try canonicalization by simplifying arg1 using the swapped
8699 comparison. */
8700 code = swap_tree_comparison (code);
8701 strict_overflow_p = false;
8702 t = maybe_canonicalize_comparison_1 (code, type, arg1, arg0,
8703 &strict_overflow_p);
8704 if (t && strict_overflow_p)
8705 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8706 return t;
8709 /* Subroutine of fold_binary. This routine performs all of the
8710 transformations that are common to the equality/inequality
8711 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8712 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8713 fold_binary should call fold_binary. Fold a comparison with
8714 tree code CODE and type TYPE with operands OP0 and OP1. Return
8715 the folded comparison or NULL_TREE. */
8717 static tree
8718 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
8720 tree arg0, arg1, tem;
8722 arg0 = op0;
8723 arg1 = op1;
8725 STRIP_SIGN_NOPS (arg0);
8726 STRIP_SIGN_NOPS (arg1);
8728 tem = fold_relational_const (code, type, arg0, arg1);
8729 if (tem != NULL_TREE)
8730 return tem;
8732 /* If one arg is a real or integer constant, put it last. */
8733 if (tree_swap_operands_p (arg0, arg1, true))
8734 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8736 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8737 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8738 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8739 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8740 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8741 && (TREE_CODE (arg1) == INTEGER_CST
8742 && !TREE_OVERFLOW (arg1)))
8744 tree const1 = TREE_OPERAND (arg0, 1);
8745 tree const2 = arg1;
8746 tree variable = TREE_OPERAND (arg0, 0);
8747 tree lhs;
8748 int lhs_add;
8749 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8751 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
8752 TREE_TYPE (arg1), const2, const1);
8754 /* If the constant operation overflowed this can be
8755 simplified as a comparison against INT_MAX/INT_MIN. */
8756 if (TREE_CODE (lhs) == INTEGER_CST
8757 && TREE_OVERFLOW (lhs))
8759 int const1_sgn = tree_int_cst_sgn (const1);
8760 enum tree_code code2 = code;
8762 /* Get the sign of the constant on the lhs if the
8763 operation were VARIABLE + CONST1. */
8764 if (TREE_CODE (arg0) == MINUS_EXPR)
8765 const1_sgn = -const1_sgn;
8767 /* The sign of the constant determines if we overflowed
8768 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8769 Canonicalize to the INT_MIN overflow by swapping the comparison
8770 if necessary. */
8771 if (const1_sgn == -1)
8772 code2 = swap_tree_comparison (code);
8774 /* We now can look at the canonicalized case
8775 VARIABLE + 1 CODE2 INT_MIN
8776 and decide on the result. */
8777 if (code2 == LT_EXPR
8778 || code2 == LE_EXPR
8779 || code2 == EQ_EXPR)
8780 return omit_one_operand (type, boolean_false_node, variable);
8781 else if (code2 == NE_EXPR
8782 || code2 == GE_EXPR
8783 || code2 == GT_EXPR)
8784 return omit_one_operand (type, boolean_true_node, variable);
8787 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8788 && (TREE_CODE (lhs) != INTEGER_CST
8789 || !TREE_OVERFLOW (lhs)))
8791 fold_overflow_warning (("assuming signed overflow does not occur "
8792 "when changing X +- C1 cmp C2 to "
8793 "X cmp C1 +- C2"),
8794 WARN_STRICT_OVERFLOW_COMPARISON);
8795 return fold_build2 (code, type, variable, lhs);
8799 /* For comparisons of pointers we can decompose it to a compile time
8800 comparison of the base objects and the offsets into the object.
8801 This requires at least one operand being an ADDR_EXPR to do more
8802 than the operand_equal_p test below. */
8803 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8804 && (TREE_CODE (arg0) == ADDR_EXPR
8805 || TREE_CODE (arg1) == ADDR_EXPR))
8807 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8808 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8809 enum machine_mode mode;
8810 int volatilep, unsignedp;
8811 bool indirect_base0 = false;
8813 /* Get base and offset for the access. Strip ADDR_EXPR for
8814 get_inner_reference, but put it back by stripping INDIRECT_REF
8815 off the base object if possible. */
8816 base0 = arg0;
8817 if (TREE_CODE (arg0) == ADDR_EXPR)
8819 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8820 &bitsize, &bitpos0, &offset0, &mode,
8821 &unsignedp, &volatilep, false);
8822 if (TREE_CODE (base0) == INDIRECT_REF)
8823 base0 = TREE_OPERAND (base0, 0);
8824 else
8825 indirect_base0 = true;
8828 base1 = arg1;
8829 if (TREE_CODE (arg1) == ADDR_EXPR)
8831 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8832 &bitsize, &bitpos1, &offset1, &mode,
8833 &unsignedp, &volatilep, false);
8834 /* We have to make sure to have an indirect/non-indirect base1
8835 just the same as we did for base0. */
8836 if (TREE_CODE (base1) == INDIRECT_REF
8837 && !indirect_base0)
8838 base1 = TREE_OPERAND (base1, 0);
8839 else if (!indirect_base0)
8840 base1 = NULL_TREE;
8842 else if (indirect_base0)
8843 base1 = NULL_TREE;
8845 /* If we have equivalent bases we might be able to simplify. */
8846 if (base0 && base1
8847 && operand_equal_p (base0, base1, 0))
8849 /* We can fold this expression to a constant if the non-constant
8850 offset parts are equal. */
8851 if (offset0 == offset1
8852 || (offset0 && offset1
8853 && operand_equal_p (offset0, offset1, 0)))
8855 switch (code)
8857 case EQ_EXPR:
8858 return build_int_cst (boolean_type_node, bitpos0 == bitpos1);
8859 case NE_EXPR:
8860 return build_int_cst (boolean_type_node, bitpos0 != bitpos1);
8861 case LT_EXPR:
8862 return build_int_cst (boolean_type_node, bitpos0 < bitpos1);
8863 case LE_EXPR:
8864 return build_int_cst (boolean_type_node, bitpos0 <= bitpos1);
8865 case GE_EXPR:
8866 return build_int_cst (boolean_type_node, bitpos0 >= bitpos1);
8867 case GT_EXPR:
8868 return build_int_cst (boolean_type_node, bitpos0 > bitpos1);
8869 default:;
8872 /* We can simplify the comparison to a comparison of the variable
8873 offset parts if the constant offset parts are equal.
8874 Be careful to use signed size type here because otherwise we
8875 mess with array offsets in the wrong way. This is possible
8876 because pointer arithmetic is restricted to retain within an
8877 object and overflow on pointer differences is undefined as of
8878 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8879 else if (bitpos0 == bitpos1)
8881 tree signed_size_type_node;
8882 signed_size_type_node = signed_type_for (size_type_node);
8884 /* By converting to signed size type we cover middle-end pointer
8885 arithmetic which operates on unsigned pointer types of size
8886 type size and ARRAY_REF offsets which are properly sign or
8887 zero extended from their type in case it is narrower than
8888 size type. */
8889 if (offset0 == NULL_TREE)
8890 offset0 = build_int_cst (signed_size_type_node, 0);
8891 else
8892 offset0 = fold_convert (signed_size_type_node, offset0);
8893 if (offset1 == NULL_TREE)
8894 offset1 = build_int_cst (signed_size_type_node, 0);
8895 else
8896 offset1 = fold_convert (signed_size_type_node, offset1);
8898 return fold_build2 (code, type, offset0, offset1);
8903 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
8904 same object, then we can fold this to a comparison of the two offsets in
8905 signed size type. This is possible because pointer arithmetic is
8906 restricted to retain within an object and overflow on pointer differences
8907 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
8909 We check flag_wrapv directly because pointers types are unsigned,
8910 and therefore TYPE_OVERFLOW_WRAPS returns true for them. That is
8911 normally what we want to avoid certain odd overflow cases, but
8912 not here. */
8913 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8914 && !flag_wrapv
8915 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0)))
8917 tree base0, offset0, base1, offset1;
8919 if (extract_array_ref (arg0, &base0, &offset0)
8920 && extract_array_ref (arg1, &base1, &offset1)
8921 && operand_equal_p (base0, base1, 0))
8923 tree signed_size_type_node;
8924 signed_size_type_node = signed_type_for (size_type_node);
8926 /* By converting to signed size type we cover middle-end pointer
8927 arithmetic which operates on unsigned pointer types of size
8928 type size and ARRAY_REF offsets which are properly sign or
8929 zero extended from their type in case it is narrower than
8930 size type. */
8931 if (offset0 == NULL_TREE)
8932 offset0 = build_int_cst (signed_size_type_node, 0);
8933 else
8934 offset0 = fold_convert (signed_size_type_node, offset0);
8935 if (offset1 == NULL_TREE)
8936 offset1 = build_int_cst (signed_size_type_node, 0);
8937 else
8938 offset1 = fold_convert (signed_size_type_node, offset1);
8940 return fold_build2 (code, type, offset0, offset1);
8944 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8945 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8946 the resulting offset is smaller in absolute value than the
8947 original one. */
8948 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8949 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8950 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8951 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8952 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8953 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8954 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8956 tree const1 = TREE_OPERAND (arg0, 1);
8957 tree const2 = TREE_OPERAND (arg1, 1);
8958 tree variable1 = TREE_OPERAND (arg0, 0);
8959 tree variable2 = TREE_OPERAND (arg1, 0);
8960 tree cst;
8961 const char * const warnmsg = G_("assuming signed overflow does not "
8962 "occur when combining constants around "
8963 "a comparison");
8965 /* Put the constant on the side where it doesn't overflow and is
8966 of lower absolute value than before. */
8967 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8968 ? MINUS_EXPR : PLUS_EXPR,
8969 const2, const1, 0);
8970 if (!TREE_OVERFLOW (cst)
8971 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
8973 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8974 return fold_build2 (code, type,
8975 variable1,
8976 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
8977 variable2, cst));
8980 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8981 ? MINUS_EXPR : PLUS_EXPR,
8982 const1, const2, 0);
8983 if (!TREE_OVERFLOW (cst)
8984 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
8986 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8987 return fold_build2 (code, type,
8988 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
8989 variable1, cst),
8990 variable2);
8994 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8995 signed arithmetic case. That form is created by the compiler
8996 often enough for folding it to be of value. One example is in
8997 computing loop trip counts after Operator Strength Reduction. */
8998 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8999 && TREE_CODE (arg0) == MULT_EXPR
9000 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9001 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9002 && integer_zerop (arg1))
9004 tree const1 = TREE_OPERAND (arg0, 1);
9005 tree const2 = arg1; /* zero */
9006 tree variable1 = TREE_OPERAND (arg0, 0);
9007 enum tree_code cmp_code = code;
9009 gcc_assert (!integer_zerop (const1));
9011 fold_overflow_warning (("assuming signed overflow does not occur when "
9012 "eliminating multiplication in comparison "
9013 "with zero"),
9014 WARN_STRICT_OVERFLOW_COMPARISON);
9016 /* If const1 is negative we swap the sense of the comparison. */
9017 if (tree_int_cst_sgn (const1) < 0)
9018 cmp_code = swap_tree_comparison (cmp_code);
9020 return fold_build2 (cmp_code, type, variable1, const2);
9023 tem = maybe_canonicalize_comparison (code, type, op0, op1);
9024 if (tem)
9025 return tem;
9027 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9029 tree targ0 = strip_float_extensions (arg0);
9030 tree targ1 = strip_float_extensions (arg1);
9031 tree newtype = TREE_TYPE (targ0);
9033 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9034 newtype = TREE_TYPE (targ1);
9036 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9037 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9038 return fold_build2 (code, type, fold_convert (newtype, targ0),
9039 fold_convert (newtype, targ1));
9041 /* (-a) CMP (-b) -> b CMP a */
9042 if (TREE_CODE (arg0) == NEGATE_EXPR
9043 && TREE_CODE (arg1) == NEGATE_EXPR)
9044 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9045 TREE_OPERAND (arg0, 0));
9047 if (TREE_CODE (arg1) == REAL_CST)
9049 REAL_VALUE_TYPE cst;
9050 cst = TREE_REAL_CST (arg1);
9052 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9053 if (TREE_CODE (arg0) == NEGATE_EXPR)
9054 return fold_build2 (swap_tree_comparison (code), type,
9055 TREE_OPERAND (arg0, 0),
9056 build_real (TREE_TYPE (arg1),
9057 REAL_VALUE_NEGATE (cst)));
9059 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9060 /* a CMP (-0) -> a CMP 0 */
9061 if (REAL_VALUE_MINUS_ZERO (cst))
9062 return fold_build2 (code, type, arg0,
9063 build_real (TREE_TYPE (arg1), dconst0));
9065 /* x != NaN is always true, other ops are always false. */
9066 if (REAL_VALUE_ISNAN (cst)
9067 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9069 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9070 return omit_one_operand (type, tem, arg0);
9073 /* Fold comparisons against infinity. */
9074 if (REAL_VALUE_ISINF (cst))
9076 tem = fold_inf_compare (code, type, arg0, arg1);
9077 if (tem != NULL_TREE)
9078 return tem;
9082 /* If this is a comparison of a real constant with a PLUS_EXPR
9083 or a MINUS_EXPR of a real constant, we can convert it into a
9084 comparison with a revised real constant as long as no overflow
9085 occurs when unsafe_math_optimizations are enabled. */
9086 if (flag_unsafe_math_optimizations
9087 && TREE_CODE (arg1) == REAL_CST
9088 && (TREE_CODE (arg0) == PLUS_EXPR
9089 || TREE_CODE (arg0) == MINUS_EXPR)
9090 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9091 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9092 ? MINUS_EXPR : PLUS_EXPR,
9093 arg1, TREE_OPERAND (arg0, 1), 0))
9094 && !TREE_OVERFLOW (tem))
9095 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9097 /* Likewise, we can simplify a comparison of a real constant with
9098 a MINUS_EXPR whose first operand is also a real constant, i.e.
9099 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9100 floating-point types only if -fassociative-math is set. */
9101 if (flag_associative_math
9102 && TREE_CODE (arg1) == REAL_CST
9103 && TREE_CODE (arg0) == MINUS_EXPR
9104 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9105 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9106 arg1, 0))
9107 && !TREE_OVERFLOW (tem))
9108 return fold_build2 (swap_tree_comparison (code), type,
9109 TREE_OPERAND (arg0, 1), tem);
9111 /* Fold comparisons against built-in math functions. */
9112 if (TREE_CODE (arg1) == REAL_CST
9113 && flag_unsafe_math_optimizations
9114 && ! flag_errno_math)
9116 enum built_in_function fcode = builtin_mathfn_code (arg0);
9118 if (fcode != END_BUILTINS)
9120 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9121 if (tem != NULL_TREE)
9122 return tem;
9127 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9128 && (TREE_CODE (arg0) == NOP_EXPR
9129 || TREE_CODE (arg0) == CONVERT_EXPR))
9131 /* If we are widening one operand of an integer comparison,
9132 see if the other operand is similarly being widened. Perhaps we
9133 can do the comparison in the narrower type. */
9134 tem = fold_widened_comparison (code, type, arg0, arg1);
9135 if (tem)
9136 return tem;
9138 /* Or if we are changing signedness. */
9139 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9140 if (tem)
9141 return tem;
9144 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9145 constant, we can simplify it. */
9146 if (TREE_CODE (arg1) == INTEGER_CST
9147 && (TREE_CODE (arg0) == MIN_EXPR
9148 || TREE_CODE (arg0) == MAX_EXPR)
9149 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9151 tem = optimize_minmax_comparison (code, type, op0, op1);
9152 if (tem)
9153 return tem;
9156 /* Simplify comparison of something with itself. (For IEEE
9157 floating-point, we can only do some of these simplifications.) */
9158 if (operand_equal_p (arg0, arg1, 0))
9160 switch (code)
9162 case EQ_EXPR:
9163 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9164 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9165 return constant_boolean_node (1, type);
9166 break;
9168 case GE_EXPR:
9169 case LE_EXPR:
9170 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9171 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9172 return constant_boolean_node (1, type);
9173 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9175 case NE_EXPR:
9176 /* For NE, we can only do this simplification if integer
9177 or we don't honor IEEE floating point NaNs. */
9178 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9179 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9180 break;
9181 /* ... fall through ... */
9182 case GT_EXPR:
9183 case LT_EXPR:
9184 return constant_boolean_node (0, type);
9185 default:
9186 gcc_unreachable ();
9190 /* If we are comparing an expression that just has comparisons
9191 of two integer values, arithmetic expressions of those comparisons,
9192 and constants, we can simplify it. There are only three cases
9193 to check: the two values can either be equal, the first can be
9194 greater, or the second can be greater. Fold the expression for
9195 those three values. Since each value must be 0 or 1, we have
9196 eight possibilities, each of which corresponds to the constant 0
9197 or 1 or one of the six possible comparisons.
9199 This handles common cases like (a > b) == 0 but also handles
9200 expressions like ((x > y) - (y > x)) > 0, which supposedly
9201 occur in macroized code. */
9203 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9205 tree cval1 = 0, cval2 = 0;
9206 int save_p = 0;
9208 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9209 /* Don't handle degenerate cases here; they should already
9210 have been handled anyway. */
9211 && cval1 != 0 && cval2 != 0
9212 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9213 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9214 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9215 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9216 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9217 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9218 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9220 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9221 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9223 /* We can't just pass T to eval_subst in case cval1 or cval2
9224 was the same as ARG1. */
9226 tree high_result
9227 = fold_build2 (code, type,
9228 eval_subst (arg0, cval1, maxval,
9229 cval2, minval),
9230 arg1);
9231 tree equal_result
9232 = fold_build2 (code, type,
9233 eval_subst (arg0, cval1, maxval,
9234 cval2, maxval),
9235 arg1);
9236 tree low_result
9237 = fold_build2 (code, type,
9238 eval_subst (arg0, cval1, minval,
9239 cval2, maxval),
9240 arg1);
9242 /* All three of these results should be 0 or 1. Confirm they are.
9243 Then use those values to select the proper code to use. */
9245 if (TREE_CODE (high_result) == INTEGER_CST
9246 && TREE_CODE (equal_result) == INTEGER_CST
9247 && TREE_CODE (low_result) == INTEGER_CST)
9249 /* Make a 3-bit mask with the high-order bit being the
9250 value for `>', the next for '=', and the low for '<'. */
9251 switch ((integer_onep (high_result) * 4)
9252 + (integer_onep (equal_result) * 2)
9253 + integer_onep (low_result))
9255 case 0:
9256 /* Always false. */
9257 return omit_one_operand (type, integer_zero_node, arg0);
9258 case 1:
9259 code = LT_EXPR;
9260 break;
9261 case 2:
9262 code = EQ_EXPR;
9263 break;
9264 case 3:
9265 code = LE_EXPR;
9266 break;
9267 case 4:
9268 code = GT_EXPR;
9269 break;
9270 case 5:
9271 code = NE_EXPR;
9272 break;
9273 case 6:
9274 code = GE_EXPR;
9275 break;
9276 case 7:
9277 /* Always true. */
9278 return omit_one_operand (type, integer_one_node, arg0);
9281 if (save_p)
9282 return save_expr (build2 (code, type, cval1, cval2));
9283 return fold_build2 (code, type, cval1, cval2);
9288 /* Fold a comparison of the address of COMPONENT_REFs with the same
9289 type and component to a comparison of the address of the base
9290 object. In short, &x->a OP &y->a to x OP y and
9291 &x->a OP &y.a to x OP &y */
9292 if (TREE_CODE (arg0) == ADDR_EXPR
9293 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
9294 && TREE_CODE (arg1) == ADDR_EXPR
9295 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
9297 tree cref0 = TREE_OPERAND (arg0, 0);
9298 tree cref1 = TREE_OPERAND (arg1, 0);
9299 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
9301 tree op0 = TREE_OPERAND (cref0, 0);
9302 tree op1 = TREE_OPERAND (cref1, 0);
9303 return fold_build2 (code, type,
9304 fold_addr_expr (op0),
9305 fold_addr_expr (op1));
9309 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9310 into a single range test. */
9311 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9312 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9313 && TREE_CODE (arg1) == INTEGER_CST
9314 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9315 && !integer_zerop (TREE_OPERAND (arg0, 1))
9316 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9317 && !TREE_OVERFLOW (arg1))
9319 tem = fold_div_compare (code, type, arg0, arg1);
9320 if (tem != NULL_TREE)
9321 return tem;
9324 /* Fold ~X op ~Y as Y op X. */
9325 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9326 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9328 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9329 return fold_build2 (code, type,
9330 fold_convert (cmp_type, TREE_OPERAND (arg1, 0)),
9331 TREE_OPERAND (arg0, 0));
9334 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9335 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9336 && TREE_CODE (arg1) == INTEGER_CST)
9338 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9339 return fold_build2 (swap_tree_comparison (code), type,
9340 TREE_OPERAND (arg0, 0),
9341 fold_build1 (BIT_NOT_EXPR, cmp_type,
9342 fold_convert (cmp_type, arg1)));
9345 return NULL_TREE;
9349 /* Subroutine of fold_binary. Optimize complex multiplications of the
9350 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9351 argument EXPR represents the expression "z" of type TYPE. */
9353 static tree
9354 fold_mult_zconjz (tree type, tree expr)
9356 tree itype = TREE_TYPE (type);
9357 tree rpart, ipart, tem;
9359 if (TREE_CODE (expr) == COMPLEX_EXPR)
9361 rpart = TREE_OPERAND (expr, 0);
9362 ipart = TREE_OPERAND (expr, 1);
9364 else if (TREE_CODE (expr) == COMPLEX_CST)
9366 rpart = TREE_REALPART (expr);
9367 ipart = TREE_IMAGPART (expr);
9369 else
9371 expr = save_expr (expr);
9372 rpart = fold_build1 (REALPART_EXPR, itype, expr);
9373 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
9376 rpart = save_expr (rpart);
9377 ipart = save_expr (ipart);
9378 tem = fold_build2 (PLUS_EXPR, itype,
9379 fold_build2 (MULT_EXPR, itype, rpart, rpart),
9380 fold_build2 (MULT_EXPR, itype, ipart, ipart));
9381 return fold_build2 (COMPLEX_EXPR, type, tem,
9382 fold_convert (itype, integer_zero_node));
9386 /* Fold a binary expression of code CODE and type TYPE with operands
9387 OP0 and OP1. Return the folded expression if folding is
9388 successful. Otherwise, return NULL_TREE. */
9390 tree
9391 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
9393 enum tree_code_class kind = TREE_CODE_CLASS (code);
9394 tree arg0, arg1, tem;
9395 tree t1 = NULL_TREE;
9396 bool strict_overflow_p;
9398 gcc_assert ((IS_EXPR_CODE_CLASS (kind)
9399 || IS_GIMPLE_STMT_CODE_CLASS (kind))
9400 && TREE_CODE_LENGTH (code) == 2
9401 && op0 != NULL_TREE
9402 && op1 != NULL_TREE);
9404 arg0 = op0;
9405 arg1 = op1;
9407 /* Strip any conversions that don't change the mode. This is
9408 safe for every expression, except for a comparison expression
9409 because its signedness is derived from its operands. So, in
9410 the latter case, only strip conversions that don't change the
9411 signedness.
9413 Note that this is done as an internal manipulation within the
9414 constant folder, in order to find the simplest representation
9415 of the arguments so that their form can be studied. In any
9416 cases, the appropriate type conversions should be put back in
9417 the tree that will get out of the constant folder. */
9419 if (kind == tcc_comparison)
9421 STRIP_SIGN_NOPS (arg0);
9422 STRIP_SIGN_NOPS (arg1);
9424 else
9426 STRIP_NOPS (arg0);
9427 STRIP_NOPS (arg1);
9430 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9431 constant but we can't do arithmetic on them. */
9432 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9433 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9434 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9435 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9436 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9437 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9439 if (kind == tcc_binary)
9441 /* Make sure type and arg0 have the same saturating flag. */
9442 gcc_assert (TYPE_SATURATING (type)
9443 == TYPE_SATURATING (TREE_TYPE (arg0)));
9444 tem = const_binop (code, arg0, arg1, 0);
9446 else if (kind == tcc_comparison)
9447 tem = fold_relational_const (code, type, arg0, arg1);
9448 else
9449 tem = NULL_TREE;
9451 if (tem != NULL_TREE)
9453 if (TREE_TYPE (tem) != type)
9454 tem = fold_convert (type, tem);
9455 return tem;
9459 /* If this is a commutative operation, and ARG0 is a constant, move it
9460 to ARG1 to reduce the number of tests below. */
9461 if (commutative_tree_code (code)
9462 && tree_swap_operands_p (arg0, arg1, true))
9463 return fold_build2 (code, type, op1, op0);
9465 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9467 First check for cases where an arithmetic operation is applied to a
9468 compound, conditional, or comparison operation. Push the arithmetic
9469 operation inside the compound or conditional to see if any folding
9470 can then be done. Convert comparison to conditional for this purpose.
9471 The also optimizes non-constant cases that used to be done in
9472 expand_expr.
9474 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9475 one of the operands is a comparison and the other is a comparison, a
9476 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9477 code below would make the expression more complex. Change it to a
9478 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9479 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9481 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9482 || code == EQ_EXPR || code == NE_EXPR)
9483 && ((truth_value_p (TREE_CODE (arg0))
9484 && (truth_value_p (TREE_CODE (arg1))
9485 || (TREE_CODE (arg1) == BIT_AND_EXPR
9486 && integer_onep (TREE_OPERAND (arg1, 1)))))
9487 || (truth_value_p (TREE_CODE (arg1))
9488 && (truth_value_p (TREE_CODE (arg0))
9489 || (TREE_CODE (arg0) == BIT_AND_EXPR
9490 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9492 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9493 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9494 : TRUTH_XOR_EXPR,
9495 boolean_type_node,
9496 fold_convert (boolean_type_node, arg0),
9497 fold_convert (boolean_type_node, arg1));
9499 if (code == EQ_EXPR)
9500 tem = invert_truthvalue (tem);
9502 return fold_convert (type, tem);
9505 if (TREE_CODE_CLASS (code) == tcc_binary
9506 || TREE_CODE_CLASS (code) == tcc_comparison)
9508 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9509 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9510 fold_build2 (code, type,
9511 TREE_OPERAND (arg0, 1), op1));
9512 if (TREE_CODE (arg1) == COMPOUND_EXPR
9513 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9514 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9515 fold_build2 (code, type,
9516 op0, TREE_OPERAND (arg1, 1)));
9518 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9520 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9521 arg0, arg1,
9522 /*cond_first_p=*/1);
9523 if (tem != NULL_TREE)
9524 return tem;
9527 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9529 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9530 arg1, arg0,
9531 /*cond_first_p=*/0);
9532 if (tem != NULL_TREE)
9533 return tem;
9537 switch (code)
9539 case POINTER_PLUS_EXPR:
9540 /* 0 +p index -> (type)index */
9541 if (integer_zerop (arg0))
9542 return non_lvalue (fold_convert (type, arg1));
9544 /* PTR +p 0 -> PTR */
9545 if (integer_zerop (arg1))
9546 return non_lvalue (fold_convert (type, arg0));
9548 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9549 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9550 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9551 return fold_convert (type, fold_build2 (PLUS_EXPR, sizetype,
9552 fold_convert (sizetype, arg1),
9553 fold_convert (sizetype, arg0)));
9555 /* index +p PTR -> PTR +p index */
9556 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9557 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9558 return fold_build2 (POINTER_PLUS_EXPR, type,
9559 fold_convert (type, arg1),
9560 fold_convert (sizetype, arg0));
9562 /* (PTR +p B) +p A -> PTR +p (B + A) */
9563 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9565 tree inner;
9566 tree arg01 = fold_convert (sizetype, TREE_OPERAND (arg0, 1));
9567 tree arg00 = TREE_OPERAND (arg0, 0);
9568 inner = fold_build2 (PLUS_EXPR, sizetype,
9569 arg01, fold_convert (sizetype, arg1));
9570 return fold_convert (type,
9571 fold_build2 (POINTER_PLUS_EXPR,
9572 TREE_TYPE (arg00), arg00, inner));
9575 /* PTR_CST +p CST -> CST1 */
9576 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9577 return fold_build2 (PLUS_EXPR, type, arg0, fold_convert (type, arg1));
9579 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9580 of the array. Loop optimizer sometimes produce this type of
9581 expressions. */
9582 if (TREE_CODE (arg0) == ADDR_EXPR)
9584 tem = try_move_mult_to_index (arg0, fold_convert (sizetype, arg1));
9585 if (tem)
9586 return fold_convert (type, tem);
9589 return NULL_TREE;
9591 case PLUS_EXPR:
9592 /* PTR + INT -> (INT)(PTR p+ INT) */
9593 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9594 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
9595 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9596 TREE_TYPE (arg0),
9597 arg0,
9598 fold_convert (sizetype, arg1)));
9599 /* INT + PTR -> (INT)(PTR p+ INT) */
9600 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9601 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9602 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9603 TREE_TYPE (arg1),
9604 arg1,
9605 fold_convert (sizetype, arg0)));
9606 /* A + (-B) -> A - B */
9607 if (TREE_CODE (arg1) == NEGATE_EXPR)
9608 return fold_build2 (MINUS_EXPR, type,
9609 fold_convert (type, arg0),
9610 fold_convert (type, TREE_OPERAND (arg1, 0)));
9611 /* (-A) + B -> B - A */
9612 if (TREE_CODE (arg0) == NEGATE_EXPR
9613 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9614 return fold_build2 (MINUS_EXPR, type,
9615 fold_convert (type, arg1),
9616 fold_convert (type, TREE_OPERAND (arg0, 0)));
9618 if (INTEGRAL_TYPE_P (type))
9620 /* Convert ~A + 1 to -A. */
9621 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9622 && integer_onep (arg1))
9623 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
9625 /* ~X + X is -1. */
9626 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9627 && !TYPE_OVERFLOW_TRAPS (type))
9629 tree tem = TREE_OPERAND (arg0, 0);
9631 STRIP_NOPS (tem);
9632 if (operand_equal_p (tem, arg1, 0))
9634 t1 = build_int_cst_type (type, -1);
9635 return omit_one_operand (type, t1, arg1);
9639 /* X + ~X is -1. */
9640 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9641 && !TYPE_OVERFLOW_TRAPS (type))
9643 tree tem = TREE_OPERAND (arg1, 0);
9645 STRIP_NOPS (tem);
9646 if (operand_equal_p (arg0, tem, 0))
9648 t1 = build_int_cst_type (type, -1);
9649 return omit_one_operand (type, t1, arg0);
9654 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9655 same or one. Make sure type is not saturating.
9656 fold_plusminus_mult_expr will re-associate. */
9657 if ((TREE_CODE (arg0) == MULT_EXPR
9658 || TREE_CODE (arg1) == MULT_EXPR)
9659 && !TYPE_SATURATING (type)
9660 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9662 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9663 if (tem)
9664 return tem;
9667 if (! FLOAT_TYPE_P (type))
9669 if (integer_zerop (arg1))
9670 return non_lvalue (fold_convert (type, arg0));
9672 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9673 with a constant, and the two constants have no bits in common,
9674 we should treat this as a BIT_IOR_EXPR since this may produce more
9675 simplifications. */
9676 if (TREE_CODE (arg0) == BIT_AND_EXPR
9677 && TREE_CODE (arg1) == BIT_AND_EXPR
9678 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9679 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9680 && integer_zerop (const_binop (BIT_AND_EXPR,
9681 TREE_OPERAND (arg0, 1),
9682 TREE_OPERAND (arg1, 1), 0)))
9684 code = BIT_IOR_EXPR;
9685 goto bit_ior;
9688 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9689 (plus (plus (mult) (mult)) (foo)) so that we can
9690 take advantage of the factoring cases below. */
9691 if (((TREE_CODE (arg0) == PLUS_EXPR
9692 || TREE_CODE (arg0) == MINUS_EXPR)
9693 && TREE_CODE (arg1) == MULT_EXPR)
9694 || ((TREE_CODE (arg1) == PLUS_EXPR
9695 || TREE_CODE (arg1) == MINUS_EXPR)
9696 && TREE_CODE (arg0) == MULT_EXPR))
9698 tree parg0, parg1, parg, marg;
9699 enum tree_code pcode;
9701 if (TREE_CODE (arg1) == MULT_EXPR)
9702 parg = arg0, marg = arg1;
9703 else
9704 parg = arg1, marg = arg0;
9705 pcode = TREE_CODE (parg);
9706 parg0 = TREE_OPERAND (parg, 0);
9707 parg1 = TREE_OPERAND (parg, 1);
9708 STRIP_NOPS (parg0);
9709 STRIP_NOPS (parg1);
9711 if (TREE_CODE (parg0) == MULT_EXPR
9712 && TREE_CODE (parg1) != MULT_EXPR)
9713 return fold_build2 (pcode, type,
9714 fold_build2 (PLUS_EXPR, type,
9715 fold_convert (type, parg0),
9716 fold_convert (type, marg)),
9717 fold_convert (type, parg1));
9718 if (TREE_CODE (parg0) != MULT_EXPR
9719 && TREE_CODE (parg1) == MULT_EXPR)
9720 return fold_build2 (PLUS_EXPR, type,
9721 fold_convert (type, parg0),
9722 fold_build2 (pcode, type,
9723 fold_convert (type, marg),
9724 fold_convert (type,
9725 parg1)));
9728 else
9730 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9731 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9732 return non_lvalue (fold_convert (type, arg0));
9734 /* Likewise if the operands are reversed. */
9735 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9736 return non_lvalue (fold_convert (type, arg1));
9738 /* Convert X + -C into X - C. */
9739 if (TREE_CODE (arg1) == REAL_CST
9740 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9742 tem = fold_negate_const (arg1, type);
9743 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9744 return fold_build2 (MINUS_EXPR, type,
9745 fold_convert (type, arg0),
9746 fold_convert (type, tem));
9749 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9750 to __complex__ ( x, y ). This is not the same for SNaNs or
9751 if signed zeros are involved. */
9752 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9753 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9754 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9756 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9757 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
9758 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
9759 bool arg0rz = false, arg0iz = false;
9760 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9761 || (arg0i && (arg0iz = real_zerop (arg0i))))
9763 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
9764 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
9765 if (arg0rz && arg1i && real_zerop (arg1i))
9767 tree rp = arg1r ? arg1r
9768 : build1 (REALPART_EXPR, rtype, arg1);
9769 tree ip = arg0i ? arg0i
9770 : build1 (IMAGPART_EXPR, rtype, arg0);
9771 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9773 else if (arg0iz && arg1r && real_zerop (arg1r))
9775 tree rp = arg0r ? arg0r
9776 : build1 (REALPART_EXPR, rtype, arg0);
9777 tree ip = arg1i ? arg1i
9778 : build1 (IMAGPART_EXPR, rtype, arg1);
9779 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9784 if (flag_unsafe_math_optimizations
9785 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9786 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9787 && (tem = distribute_real_division (code, type, arg0, arg1)))
9788 return tem;
9790 /* Convert x+x into x*2.0. */
9791 if (operand_equal_p (arg0, arg1, 0)
9792 && SCALAR_FLOAT_TYPE_P (type))
9793 return fold_build2 (MULT_EXPR, type, arg0,
9794 build_real (type, dconst2));
9796 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9797 We associate floats only if the user has specified
9798 -fassociative-math. */
9799 if (flag_associative_math
9800 && TREE_CODE (arg1) == PLUS_EXPR
9801 && TREE_CODE (arg0) != MULT_EXPR)
9803 tree tree10 = TREE_OPERAND (arg1, 0);
9804 tree tree11 = TREE_OPERAND (arg1, 1);
9805 if (TREE_CODE (tree11) == MULT_EXPR
9806 && TREE_CODE (tree10) == MULT_EXPR)
9808 tree tree0;
9809 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
9810 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
9813 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9814 We associate floats only if the user has specified
9815 -fassociative-math. */
9816 if (flag_associative_math
9817 && TREE_CODE (arg0) == PLUS_EXPR
9818 && TREE_CODE (arg1) != MULT_EXPR)
9820 tree tree00 = TREE_OPERAND (arg0, 0);
9821 tree tree01 = TREE_OPERAND (arg0, 1);
9822 if (TREE_CODE (tree01) == MULT_EXPR
9823 && TREE_CODE (tree00) == MULT_EXPR)
9825 tree tree0;
9826 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
9827 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
9832 bit_rotate:
9833 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9834 is a rotate of A by C1 bits. */
9835 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9836 is a rotate of A by B bits. */
9838 enum tree_code code0, code1;
9839 code0 = TREE_CODE (arg0);
9840 code1 = TREE_CODE (arg1);
9841 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9842 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9843 && operand_equal_p (TREE_OPERAND (arg0, 0),
9844 TREE_OPERAND (arg1, 0), 0)
9845 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
9847 tree tree01, tree11;
9848 enum tree_code code01, code11;
9850 tree01 = TREE_OPERAND (arg0, 1);
9851 tree11 = TREE_OPERAND (arg1, 1);
9852 STRIP_NOPS (tree01);
9853 STRIP_NOPS (tree11);
9854 code01 = TREE_CODE (tree01);
9855 code11 = TREE_CODE (tree11);
9856 if (code01 == INTEGER_CST
9857 && code11 == INTEGER_CST
9858 && TREE_INT_CST_HIGH (tree01) == 0
9859 && TREE_INT_CST_HIGH (tree11) == 0
9860 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
9861 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9862 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
9863 code0 == LSHIFT_EXPR ? tree01 : tree11);
9864 else if (code11 == MINUS_EXPR)
9866 tree tree110, tree111;
9867 tree110 = TREE_OPERAND (tree11, 0);
9868 tree111 = TREE_OPERAND (tree11, 1);
9869 STRIP_NOPS (tree110);
9870 STRIP_NOPS (tree111);
9871 if (TREE_CODE (tree110) == INTEGER_CST
9872 && 0 == compare_tree_int (tree110,
9873 TYPE_PRECISION
9874 (TREE_TYPE (TREE_OPERAND
9875 (arg0, 0))))
9876 && operand_equal_p (tree01, tree111, 0))
9877 return build2 ((code0 == LSHIFT_EXPR
9878 ? LROTATE_EXPR
9879 : RROTATE_EXPR),
9880 type, TREE_OPERAND (arg0, 0), tree01);
9882 else if (code01 == MINUS_EXPR)
9884 tree tree010, tree011;
9885 tree010 = TREE_OPERAND (tree01, 0);
9886 tree011 = TREE_OPERAND (tree01, 1);
9887 STRIP_NOPS (tree010);
9888 STRIP_NOPS (tree011);
9889 if (TREE_CODE (tree010) == INTEGER_CST
9890 && 0 == compare_tree_int (tree010,
9891 TYPE_PRECISION
9892 (TREE_TYPE (TREE_OPERAND
9893 (arg0, 0))))
9894 && operand_equal_p (tree11, tree011, 0))
9895 return build2 ((code0 != LSHIFT_EXPR
9896 ? LROTATE_EXPR
9897 : RROTATE_EXPR),
9898 type, TREE_OPERAND (arg0, 0), tree11);
9903 associate:
9904 /* In most languages, can't associate operations on floats through
9905 parentheses. Rather than remember where the parentheses were, we
9906 don't associate floats at all, unless the user has specified
9907 -fassociative-math.
9908 And, we need to make sure type is not saturating. */
9910 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9911 && !TYPE_SATURATING (type))
9913 tree var0, con0, lit0, minus_lit0;
9914 tree var1, con1, lit1, minus_lit1;
9915 bool ok = true;
9917 /* Split both trees into variables, constants, and literals. Then
9918 associate each group together, the constants with literals,
9919 then the result with variables. This increases the chances of
9920 literals being recombined later and of generating relocatable
9921 expressions for the sum of a constant and literal. */
9922 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9923 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9924 code == MINUS_EXPR);
9926 /* With undefined overflow we can only associate constants
9927 with one variable. */
9928 if ((POINTER_TYPE_P (type)
9929 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9930 && var0 && var1)
9932 tree tmp0 = var0;
9933 tree tmp1 = var1;
9935 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9936 tmp0 = TREE_OPERAND (tmp0, 0);
9937 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9938 tmp1 = TREE_OPERAND (tmp1, 0);
9939 /* The only case we can still associate with two variables
9940 is if they are the same, modulo negation. */
9941 if (!operand_equal_p (tmp0, tmp1, 0))
9942 ok = false;
9945 /* Only do something if we found more than two objects. Otherwise,
9946 nothing has changed and we risk infinite recursion. */
9947 if (ok
9948 && (2 < ((var0 != 0) + (var1 != 0)
9949 + (con0 != 0) + (con1 != 0)
9950 + (lit0 != 0) + (lit1 != 0)
9951 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9953 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9954 if (code == MINUS_EXPR)
9955 code = PLUS_EXPR;
9957 var0 = associate_trees (var0, var1, code, type);
9958 con0 = associate_trees (con0, con1, code, type);
9959 lit0 = associate_trees (lit0, lit1, code, type);
9960 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
9962 /* Preserve the MINUS_EXPR if the negative part of the literal is
9963 greater than the positive part. Otherwise, the multiplicative
9964 folding code (i.e extract_muldiv) may be fooled in case
9965 unsigned constants are subtracted, like in the following
9966 example: ((X*2 + 4) - 8U)/2. */
9967 if (minus_lit0 && lit0)
9969 if (TREE_CODE (lit0) == INTEGER_CST
9970 && TREE_CODE (minus_lit0) == INTEGER_CST
9971 && tree_int_cst_lt (lit0, minus_lit0))
9973 minus_lit0 = associate_trees (minus_lit0, lit0,
9974 MINUS_EXPR, type);
9975 lit0 = 0;
9977 else
9979 lit0 = associate_trees (lit0, minus_lit0,
9980 MINUS_EXPR, type);
9981 minus_lit0 = 0;
9984 if (minus_lit0)
9986 if (con0 == 0)
9987 return fold_convert (type,
9988 associate_trees (var0, minus_lit0,
9989 MINUS_EXPR, type));
9990 else
9992 con0 = associate_trees (con0, minus_lit0,
9993 MINUS_EXPR, type);
9994 return fold_convert (type,
9995 associate_trees (var0, con0,
9996 PLUS_EXPR, type));
10000 con0 = associate_trees (con0, lit0, code, type);
10001 return fold_convert (type, associate_trees (var0, con0,
10002 code, type));
10006 return NULL_TREE;
10008 case MINUS_EXPR:
10009 /* Pointer simplifications for subtraction, simple reassociations. */
10010 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10012 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10013 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10014 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10016 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10017 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10018 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10019 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10020 return fold_build2 (PLUS_EXPR, type,
10021 fold_build2 (MINUS_EXPR, type, arg00, arg10),
10022 fold_build2 (MINUS_EXPR, type, arg01, arg11));
10024 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10025 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10027 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10028 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10029 tree tmp = fold_binary (MINUS_EXPR, type, arg00, fold_convert (type, arg1));
10030 if (tmp)
10031 return fold_build2 (PLUS_EXPR, type, tmp, arg01);
10034 /* A - (-B) -> A + B */
10035 if (TREE_CODE (arg1) == NEGATE_EXPR)
10036 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
10037 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10038 if (TREE_CODE (arg0) == NEGATE_EXPR
10039 && (FLOAT_TYPE_P (type)
10040 || INTEGRAL_TYPE_P (type))
10041 && negate_expr_p (arg1)
10042 && reorder_operands_p (arg0, arg1))
10043 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
10044 TREE_OPERAND (arg0, 0));
10045 /* Convert -A - 1 to ~A. */
10046 if (INTEGRAL_TYPE_P (type)
10047 && TREE_CODE (arg0) == NEGATE_EXPR
10048 && integer_onep (arg1)
10049 && !TYPE_OVERFLOW_TRAPS (type))
10050 return fold_build1 (BIT_NOT_EXPR, type,
10051 fold_convert (type, TREE_OPERAND (arg0, 0)));
10053 /* Convert -1 - A to ~A. */
10054 if (INTEGRAL_TYPE_P (type)
10055 && integer_all_onesp (arg0))
10056 return fold_build1 (BIT_NOT_EXPR, type, op1);
10058 if (! FLOAT_TYPE_P (type))
10060 if (integer_zerop (arg0))
10061 return negate_expr (fold_convert (type, arg1));
10062 if (integer_zerop (arg1))
10063 return non_lvalue (fold_convert (type, arg0));
10065 /* Fold A - (A & B) into ~B & A. */
10066 if (!TREE_SIDE_EFFECTS (arg0)
10067 && TREE_CODE (arg1) == BIT_AND_EXPR)
10069 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10071 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10072 return fold_build2 (BIT_AND_EXPR, type,
10073 fold_build1 (BIT_NOT_EXPR, type, arg10),
10074 fold_convert (type, arg0));
10076 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10078 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10079 return fold_build2 (BIT_AND_EXPR, type,
10080 fold_build1 (BIT_NOT_EXPR, type, arg11),
10081 fold_convert (type, arg0));
10085 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10086 any power of 2 minus 1. */
10087 if (TREE_CODE (arg0) == BIT_AND_EXPR
10088 && TREE_CODE (arg1) == BIT_AND_EXPR
10089 && operand_equal_p (TREE_OPERAND (arg0, 0),
10090 TREE_OPERAND (arg1, 0), 0))
10092 tree mask0 = TREE_OPERAND (arg0, 1);
10093 tree mask1 = TREE_OPERAND (arg1, 1);
10094 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
10096 if (operand_equal_p (tem, mask1, 0))
10098 tem = fold_build2 (BIT_XOR_EXPR, type,
10099 TREE_OPERAND (arg0, 0), mask1);
10100 return fold_build2 (MINUS_EXPR, type, tem, mask1);
10105 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10106 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10107 return non_lvalue (fold_convert (type, arg0));
10109 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10110 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10111 (-ARG1 + ARG0) reduces to -ARG1. */
10112 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10113 return negate_expr (fold_convert (type, arg1));
10115 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10116 __complex__ ( x, -y ). This is not the same for SNaNs or if
10117 signed zeros are involved. */
10118 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10119 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10120 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10122 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10123 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10124 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10125 bool arg0rz = false, arg0iz = false;
10126 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10127 || (arg0i && (arg0iz = real_zerop (arg0i))))
10129 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10130 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10131 if (arg0rz && arg1i && real_zerop (arg1i))
10133 tree rp = fold_build1 (NEGATE_EXPR, rtype,
10134 arg1r ? arg1r
10135 : build1 (REALPART_EXPR, rtype, arg1));
10136 tree ip = arg0i ? arg0i
10137 : build1 (IMAGPART_EXPR, rtype, arg0);
10138 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10140 else if (arg0iz && arg1r && real_zerop (arg1r))
10142 tree rp = arg0r ? arg0r
10143 : build1 (REALPART_EXPR, rtype, arg0);
10144 tree ip = fold_build1 (NEGATE_EXPR, rtype,
10145 arg1i ? arg1i
10146 : build1 (IMAGPART_EXPR, rtype, arg1));
10147 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10152 /* Fold &x - &x. This can happen from &x.foo - &x.
10153 This is unsafe for certain floats even in non-IEEE formats.
10154 In IEEE, it is unsafe because it does wrong for NaNs.
10155 Also note that operand_equal_p is always false if an operand
10156 is volatile. */
10158 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10159 && operand_equal_p (arg0, arg1, 0))
10160 return fold_convert (type, integer_zero_node);
10162 /* A - B -> A + (-B) if B is easily negatable. */
10163 if (negate_expr_p (arg1)
10164 && ((FLOAT_TYPE_P (type)
10165 /* Avoid this transformation if B is a positive REAL_CST. */
10166 && (TREE_CODE (arg1) != REAL_CST
10167 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10168 || INTEGRAL_TYPE_P (type)))
10169 return fold_build2 (PLUS_EXPR, type,
10170 fold_convert (type, arg0),
10171 fold_convert (type, negate_expr (arg1)));
10173 /* Try folding difference of addresses. */
10175 HOST_WIDE_INT diff;
10177 if ((TREE_CODE (arg0) == ADDR_EXPR
10178 || TREE_CODE (arg1) == ADDR_EXPR)
10179 && ptr_difference_const (arg0, arg1, &diff))
10180 return build_int_cst_type (type, diff);
10183 /* Fold &a[i] - &a[j] to i-j. */
10184 if (TREE_CODE (arg0) == ADDR_EXPR
10185 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10186 && TREE_CODE (arg1) == ADDR_EXPR
10187 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10189 tree aref0 = TREE_OPERAND (arg0, 0);
10190 tree aref1 = TREE_OPERAND (arg1, 0);
10191 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10192 TREE_OPERAND (aref1, 0), 0))
10194 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
10195 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
10196 tree esz = array_ref_element_size (aref0);
10197 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10198 return fold_build2 (MULT_EXPR, type, diff,
10199 fold_convert (type, esz));
10204 if (flag_unsafe_math_optimizations
10205 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10206 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10207 && (tem = distribute_real_division (code, type, arg0, arg1)))
10208 return tem;
10210 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10211 same or one. Make sure type is not saturating.
10212 fold_plusminus_mult_expr will re-associate. */
10213 if ((TREE_CODE (arg0) == MULT_EXPR
10214 || TREE_CODE (arg1) == MULT_EXPR)
10215 && !TYPE_SATURATING (type)
10216 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10218 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
10219 if (tem)
10220 return tem;
10223 goto associate;
10225 case MULT_EXPR:
10226 /* (-A) * (-B) -> A * B */
10227 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10228 return fold_build2 (MULT_EXPR, type,
10229 fold_convert (type, TREE_OPERAND (arg0, 0)),
10230 fold_convert (type, negate_expr (arg1)));
10231 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10232 return fold_build2 (MULT_EXPR, type,
10233 fold_convert (type, negate_expr (arg0)),
10234 fold_convert (type, TREE_OPERAND (arg1, 0)));
10236 if (! FLOAT_TYPE_P (type))
10238 if (integer_zerop (arg1))
10239 return omit_one_operand (type, arg1, arg0);
10240 if (integer_onep (arg1))
10241 return non_lvalue (fold_convert (type, arg0));
10242 /* Transform x * -1 into -x. */
10243 if (integer_all_onesp (arg1))
10244 return fold_convert (type, negate_expr (arg0));
10245 /* Transform x * -C into -x * C if x is easily negatable. */
10246 if (TREE_CODE (arg1) == INTEGER_CST
10247 && tree_int_cst_sgn (arg1) == -1
10248 && negate_expr_p (arg0)
10249 && (tem = negate_expr (arg1)) != arg1
10250 && !TREE_OVERFLOW (tem))
10251 return fold_build2 (MULT_EXPR, type,
10252 negate_expr (arg0), tem);
10254 /* (a * (1 << b)) is (a << b) */
10255 if (TREE_CODE (arg1) == LSHIFT_EXPR
10256 && integer_onep (TREE_OPERAND (arg1, 0)))
10257 return fold_build2 (LSHIFT_EXPR, type, arg0,
10258 TREE_OPERAND (arg1, 1));
10259 if (TREE_CODE (arg0) == LSHIFT_EXPR
10260 && integer_onep (TREE_OPERAND (arg0, 0)))
10261 return fold_build2 (LSHIFT_EXPR, type, arg1,
10262 TREE_OPERAND (arg0, 1));
10264 strict_overflow_p = false;
10265 if (TREE_CODE (arg1) == INTEGER_CST
10266 && 0 != (tem = extract_muldiv (op0,
10267 fold_convert (type, arg1),
10268 code, NULL_TREE,
10269 &strict_overflow_p)))
10271 if (strict_overflow_p)
10272 fold_overflow_warning (("assuming signed overflow does not "
10273 "occur when simplifying "
10274 "multiplication"),
10275 WARN_STRICT_OVERFLOW_MISC);
10276 return fold_convert (type, tem);
10279 /* Optimize z * conj(z) for integer complex numbers. */
10280 if (TREE_CODE (arg0) == CONJ_EXPR
10281 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10282 return fold_mult_zconjz (type, arg1);
10283 if (TREE_CODE (arg1) == CONJ_EXPR
10284 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10285 return fold_mult_zconjz (type, arg0);
10287 else
10289 /* Maybe fold x * 0 to 0. The expressions aren't the same
10290 when x is NaN, since x * 0 is also NaN. Nor are they the
10291 same in modes with signed zeros, since multiplying a
10292 negative value by 0 gives -0, not +0. */
10293 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10294 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10295 && real_zerop (arg1))
10296 return omit_one_operand (type, arg1, arg0);
10297 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
10298 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10299 && real_onep (arg1))
10300 return non_lvalue (fold_convert (type, arg0));
10302 /* Transform x * -1.0 into -x. */
10303 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10304 && real_minus_onep (arg1))
10305 return fold_convert (type, negate_expr (arg0));
10307 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10308 the result for floating point types due to rounding so it is applied
10309 only if -fassociative-math was specify. */
10310 if (flag_associative_math
10311 && TREE_CODE (arg0) == RDIV_EXPR
10312 && TREE_CODE (arg1) == REAL_CST
10313 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10315 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10316 arg1, 0);
10317 if (tem)
10318 return fold_build2 (RDIV_EXPR, type, tem,
10319 TREE_OPERAND (arg0, 1));
10322 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10323 if (operand_equal_p (arg0, arg1, 0))
10325 tree tem = fold_strip_sign_ops (arg0);
10326 if (tem != NULL_TREE)
10328 tem = fold_convert (type, tem);
10329 return fold_build2 (MULT_EXPR, type, tem, tem);
10333 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10334 This is not the same for NaNs or if signed zeros are
10335 involved. */
10336 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10337 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10338 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10339 && TREE_CODE (arg1) == COMPLEX_CST
10340 && real_zerop (TREE_REALPART (arg1)))
10342 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10343 if (real_onep (TREE_IMAGPART (arg1)))
10344 return fold_build2 (COMPLEX_EXPR, type,
10345 negate_expr (fold_build1 (IMAGPART_EXPR,
10346 rtype, arg0)),
10347 fold_build1 (REALPART_EXPR, rtype, arg0));
10348 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10349 return fold_build2 (COMPLEX_EXPR, type,
10350 fold_build1 (IMAGPART_EXPR, rtype, arg0),
10351 negate_expr (fold_build1 (REALPART_EXPR,
10352 rtype, arg0)));
10355 /* Optimize z * conj(z) for floating point complex numbers.
10356 Guarded by flag_unsafe_math_optimizations as non-finite
10357 imaginary components don't produce scalar results. */
10358 if (flag_unsafe_math_optimizations
10359 && TREE_CODE (arg0) == CONJ_EXPR
10360 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10361 return fold_mult_zconjz (type, arg1);
10362 if (flag_unsafe_math_optimizations
10363 && TREE_CODE (arg1) == CONJ_EXPR
10364 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10365 return fold_mult_zconjz (type, arg0);
10367 if (flag_unsafe_math_optimizations)
10369 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10370 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10372 /* Optimizations of root(...)*root(...). */
10373 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10375 tree rootfn, arg;
10376 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10377 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10379 /* Optimize sqrt(x)*sqrt(x) as x. */
10380 if (BUILTIN_SQRT_P (fcode0)
10381 && operand_equal_p (arg00, arg10, 0)
10382 && ! HONOR_SNANS (TYPE_MODE (type)))
10383 return arg00;
10385 /* Optimize root(x)*root(y) as root(x*y). */
10386 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10387 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10388 return build_call_expr (rootfn, 1, arg);
10391 /* Optimize expN(x)*expN(y) as expN(x+y). */
10392 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10394 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10395 tree arg = fold_build2 (PLUS_EXPR, type,
10396 CALL_EXPR_ARG (arg0, 0),
10397 CALL_EXPR_ARG (arg1, 0));
10398 return build_call_expr (expfn, 1, arg);
10401 /* Optimizations of pow(...)*pow(...). */
10402 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10403 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10404 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10406 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10407 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10408 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10409 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10411 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10412 if (operand_equal_p (arg01, arg11, 0))
10414 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10415 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10416 return build_call_expr (powfn, 2, arg, arg01);
10419 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10420 if (operand_equal_p (arg00, arg10, 0))
10422 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10423 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
10424 return build_call_expr (powfn, 2, arg00, arg);
10428 /* Optimize tan(x)*cos(x) as sin(x). */
10429 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10430 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10431 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10432 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10433 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10434 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10435 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10436 CALL_EXPR_ARG (arg1, 0), 0))
10438 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10440 if (sinfn != NULL_TREE)
10441 return build_call_expr (sinfn, 1, CALL_EXPR_ARG (arg0, 0));
10444 /* Optimize x*pow(x,c) as pow(x,c+1). */
10445 if (fcode1 == BUILT_IN_POW
10446 || fcode1 == BUILT_IN_POWF
10447 || fcode1 == BUILT_IN_POWL)
10449 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10450 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10451 if (TREE_CODE (arg11) == REAL_CST
10452 && !TREE_OVERFLOW (arg11)
10453 && operand_equal_p (arg0, arg10, 0))
10455 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10456 REAL_VALUE_TYPE c;
10457 tree arg;
10459 c = TREE_REAL_CST (arg11);
10460 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10461 arg = build_real (type, c);
10462 return build_call_expr (powfn, 2, arg0, arg);
10466 /* Optimize pow(x,c)*x as pow(x,c+1). */
10467 if (fcode0 == BUILT_IN_POW
10468 || fcode0 == BUILT_IN_POWF
10469 || fcode0 == BUILT_IN_POWL)
10471 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10472 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10473 if (TREE_CODE (arg01) == REAL_CST
10474 && !TREE_OVERFLOW (arg01)
10475 && operand_equal_p (arg1, arg00, 0))
10477 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10478 REAL_VALUE_TYPE c;
10479 tree arg;
10481 c = TREE_REAL_CST (arg01);
10482 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10483 arg = build_real (type, c);
10484 return build_call_expr (powfn, 2, arg1, arg);
10488 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10489 if (! optimize_size
10490 && operand_equal_p (arg0, arg1, 0))
10492 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10494 if (powfn)
10496 tree arg = build_real (type, dconst2);
10497 return build_call_expr (powfn, 2, arg0, arg);
10502 goto associate;
10504 case BIT_IOR_EXPR:
10505 bit_ior:
10506 if (integer_all_onesp (arg1))
10507 return omit_one_operand (type, arg1, arg0);
10508 if (integer_zerop (arg1))
10509 return non_lvalue (fold_convert (type, arg0));
10510 if (operand_equal_p (arg0, arg1, 0))
10511 return non_lvalue (fold_convert (type, arg0));
10513 /* ~X | X is -1. */
10514 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10515 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10517 t1 = fold_convert (type, integer_zero_node);
10518 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10519 return omit_one_operand (type, t1, arg1);
10522 /* X | ~X is -1. */
10523 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10524 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10526 t1 = fold_convert (type, integer_zero_node);
10527 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10528 return omit_one_operand (type, t1, arg0);
10531 /* Canonicalize (X & C1) | C2. */
10532 if (TREE_CODE (arg0) == BIT_AND_EXPR
10533 && TREE_CODE (arg1) == INTEGER_CST
10534 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10536 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
10537 int width = TYPE_PRECISION (type);
10538 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10539 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10540 hi2 = TREE_INT_CST_HIGH (arg1);
10541 lo2 = TREE_INT_CST_LOW (arg1);
10543 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10544 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10545 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10547 if (width > HOST_BITS_PER_WIDE_INT)
10549 mhi = (unsigned HOST_WIDE_INT) -1
10550 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10551 mlo = -1;
10553 else
10555 mhi = 0;
10556 mlo = (unsigned HOST_WIDE_INT) -1
10557 >> (HOST_BITS_PER_WIDE_INT - width);
10560 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10561 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10562 return fold_build2 (BIT_IOR_EXPR, type,
10563 TREE_OPERAND (arg0, 0), arg1);
10565 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
10566 hi1 &= mhi;
10567 lo1 &= mlo;
10568 if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
10569 return fold_build2 (BIT_IOR_EXPR, type,
10570 fold_build2 (BIT_AND_EXPR, type,
10571 TREE_OPERAND (arg0, 0),
10572 build_int_cst_wide (type,
10573 lo1 & ~lo2,
10574 hi1 & ~hi2)),
10575 arg1);
10578 /* (X & Y) | Y is (X, Y). */
10579 if (TREE_CODE (arg0) == BIT_AND_EXPR
10580 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10581 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10582 /* (X & Y) | X is (Y, X). */
10583 if (TREE_CODE (arg0) == BIT_AND_EXPR
10584 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10585 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10586 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10587 /* X | (X & Y) is (Y, X). */
10588 if (TREE_CODE (arg1) == BIT_AND_EXPR
10589 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10590 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10591 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10592 /* X | (Y & X) is (Y, X). */
10593 if (TREE_CODE (arg1) == BIT_AND_EXPR
10594 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10595 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10596 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10598 t1 = distribute_bit_expr (code, type, arg0, arg1);
10599 if (t1 != NULL_TREE)
10600 return t1;
10602 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10604 This results in more efficient code for machines without a NAND
10605 instruction. Combine will canonicalize to the first form
10606 which will allow use of NAND instructions provided by the
10607 backend if they exist. */
10608 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10609 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10611 return fold_build1 (BIT_NOT_EXPR, type,
10612 build2 (BIT_AND_EXPR, type,
10613 TREE_OPERAND (arg0, 0),
10614 TREE_OPERAND (arg1, 0)));
10617 /* See if this can be simplified into a rotate first. If that
10618 is unsuccessful continue in the association code. */
10619 goto bit_rotate;
10621 case BIT_XOR_EXPR:
10622 if (integer_zerop (arg1))
10623 return non_lvalue (fold_convert (type, arg0));
10624 if (integer_all_onesp (arg1))
10625 return fold_build1 (BIT_NOT_EXPR, type, op0);
10626 if (operand_equal_p (arg0, arg1, 0))
10627 return omit_one_operand (type, integer_zero_node, arg0);
10629 /* ~X ^ X is -1. */
10630 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10631 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10633 t1 = fold_convert (type, integer_zero_node);
10634 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10635 return omit_one_operand (type, t1, arg1);
10638 /* X ^ ~X is -1. */
10639 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10640 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10642 t1 = fold_convert (type, integer_zero_node);
10643 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10644 return omit_one_operand (type, t1, arg0);
10647 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10648 with a constant, and the two constants have no bits in common,
10649 we should treat this as a BIT_IOR_EXPR since this may produce more
10650 simplifications. */
10651 if (TREE_CODE (arg0) == BIT_AND_EXPR
10652 && TREE_CODE (arg1) == BIT_AND_EXPR
10653 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10654 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10655 && integer_zerop (const_binop (BIT_AND_EXPR,
10656 TREE_OPERAND (arg0, 1),
10657 TREE_OPERAND (arg1, 1), 0)))
10659 code = BIT_IOR_EXPR;
10660 goto bit_ior;
10663 /* (X | Y) ^ X -> Y & ~ X*/
10664 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10665 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10667 tree t2 = TREE_OPERAND (arg0, 1);
10668 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10669 arg1);
10670 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10671 fold_convert (type, t1));
10672 return t1;
10675 /* (Y | X) ^ X -> Y & ~ X*/
10676 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10677 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10679 tree t2 = TREE_OPERAND (arg0, 0);
10680 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10681 arg1);
10682 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10683 fold_convert (type, t1));
10684 return t1;
10687 /* X ^ (X | Y) -> Y & ~ X*/
10688 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10689 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
10691 tree t2 = TREE_OPERAND (arg1, 1);
10692 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10693 arg0);
10694 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10695 fold_convert (type, t1));
10696 return t1;
10699 /* X ^ (Y | X) -> Y & ~ X*/
10700 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10701 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
10703 tree t2 = TREE_OPERAND (arg1, 0);
10704 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10705 arg0);
10706 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10707 fold_convert (type, t1));
10708 return t1;
10711 /* Convert ~X ^ ~Y to X ^ Y. */
10712 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10713 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10714 return fold_build2 (code, type,
10715 fold_convert (type, TREE_OPERAND (arg0, 0)),
10716 fold_convert (type, TREE_OPERAND (arg1, 0)));
10718 /* Convert ~X ^ C to X ^ ~C. */
10719 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10720 && TREE_CODE (arg1) == INTEGER_CST)
10721 return fold_build2 (code, type,
10722 fold_convert (type, TREE_OPERAND (arg0, 0)),
10723 fold_build1 (BIT_NOT_EXPR, type, arg1));
10725 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10726 if (TREE_CODE (arg0) == BIT_AND_EXPR
10727 && integer_onep (TREE_OPERAND (arg0, 1))
10728 && integer_onep (arg1))
10729 return fold_build2 (EQ_EXPR, type, arg0,
10730 build_int_cst (TREE_TYPE (arg0), 0));
10732 /* Fold (X & Y) ^ Y as ~X & Y. */
10733 if (TREE_CODE (arg0) == BIT_AND_EXPR
10734 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10736 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10737 return fold_build2 (BIT_AND_EXPR, type,
10738 fold_build1 (BIT_NOT_EXPR, type, tem),
10739 fold_convert (type, arg1));
10741 /* Fold (X & Y) ^ X as ~Y & X. */
10742 if (TREE_CODE (arg0) == BIT_AND_EXPR
10743 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10744 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10746 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10747 return fold_build2 (BIT_AND_EXPR, type,
10748 fold_build1 (BIT_NOT_EXPR, type, tem),
10749 fold_convert (type, arg1));
10751 /* Fold X ^ (X & Y) as X & ~Y. */
10752 if (TREE_CODE (arg1) == BIT_AND_EXPR
10753 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10755 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10756 return fold_build2 (BIT_AND_EXPR, type,
10757 fold_convert (type, arg0),
10758 fold_build1 (BIT_NOT_EXPR, type, tem));
10760 /* Fold X ^ (Y & X) as ~Y & X. */
10761 if (TREE_CODE (arg1) == BIT_AND_EXPR
10762 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10763 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10765 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10766 return fold_build2 (BIT_AND_EXPR, type,
10767 fold_build1 (BIT_NOT_EXPR, type, tem),
10768 fold_convert (type, arg0));
10771 /* See if this can be simplified into a rotate first. If that
10772 is unsuccessful continue in the association code. */
10773 goto bit_rotate;
10775 case BIT_AND_EXPR:
10776 if (integer_all_onesp (arg1))
10777 return non_lvalue (fold_convert (type, arg0));
10778 if (integer_zerop (arg1))
10779 return omit_one_operand (type, arg1, arg0);
10780 if (operand_equal_p (arg0, arg1, 0))
10781 return non_lvalue (fold_convert (type, arg0));
10783 /* ~X & X is always zero. */
10784 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10785 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10786 return omit_one_operand (type, integer_zero_node, arg1);
10788 /* X & ~X is always zero. */
10789 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10790 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10791 return omit_one_operand (type, integer_zero_node, arg0);
10793 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10794 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10795 && TREE_CODE (arg1) == INTEGER_CST
10796 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10797 return fold_build2 (BIT_IOR_EXPR, type,
10798 fold_build2 (BIT_AND_EXPR, type,
10799 TREE_OPERAND (arg0, 0), arg1),
10800 fold_build2 (BIT_AND_EXPR, type,
10801 TREE_OPERAND (arg0, 1), arg1));
10803 /* (X | Y) & Y is (X, Y). */
10804 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10805 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10806 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10807 /* (X | Y) & X is (Y, X). */
10808 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10809 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10810 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10811 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10812 /* X & (X | Y) is (Y, X). */
10813 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10814 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10815 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10816 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10817 /* X & (Y | X) is (Y, X). */
10818 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10819 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10820 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10821 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10823 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10824 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10825 && integer_onep (TREE_OPERAND (arg0, 1))
10826 && integer_onep (arg1))
10828 tem = TREE_OPERAND (arg0, 0);
10829 return fold_build2 (EQ_EXPR, type,
10830 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10831 build_int_cst (TREE_TYPE (tem), 1)),
10832 build_int_cst (TREE_TYPE (tem), 0));
10834 /* Fold ~X & 1 as (X & 1) == 0. */
10835 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10836 && integer_onep (arg1))
10838 tem = TREE_OPERAND (arg0, 0);
10839 return fold_build2 (EQ_EXPR, type,
10840 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10841 build_int_cst (TREE_TYPE (tem), 1)),
10842 build_int_cst (TREE_TYPE (tem), 0));
10845 /* Fold (X ^ Y) & Y as ~X & Y. */
10846 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10847 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10849 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10850 return fold_build2 (BIT_AND_EXPR, type,
10851 fold_build1 (BIT_NOT_EXPR, type, tem),
10852 fold_convert (type, arg1));
10854 /* Fold (X ^ Y) & X as ~Y & X. */
10855 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10856 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10857 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10859 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10860 return fold_build2 (BIT_AND_EXPR, type,
10861 fold_build1 (BIT_NOT_EXPR, type, tem),
10862 fold_convert (type, arg1));
10864 /* Fold X & (X ^ Y) as X & ~Y. */
10865 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10866 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10868 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10869 return fold_build2 (BIT_AND_EXPR, type,
10870 fold_convert (type, arg0),
10871 fold_build1 (BIT_NOT_EXPR, type, tem));
10873 /* Fold X & (Y ^ X) as ~Y & X. */
10874 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10875 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10876 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10878 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10879 return fold_build2 (BIT_AND_EXPR, type,
10880 fold_build1 (BIT_NOT_EXPR, type, tem),
10881 fold_convert (type, arg0));
10884 t1 = distribute_bit_expr (code, type, arg0, arg1);
10885 if (t1 != NULL_TREE)
10886 return t1;
10887 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10888 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10889 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10891 unsigned int prec
10892 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10894 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
10895 && (~TREE_INT_CST_LOW (arg1)
10896 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
10897 return fold_convert (type, TREE_OPERAND (arg0, 0));
10900 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
10902 This results in more efficient code for machines without a NOR
10903 instruction. Combine will canonicalize to the first form
10904 which will allow use of NOR instructions provided by the
10905 backend if they exist. */
10906 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10907 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10909 return fold_build1 (BIT_NOT_EXPR, type,
10910 build2 (BIT_IOR_EXPR, type,
10911 TREE_OPERAND (arg0, 0),
10912 TREE_OPERAND (arg1, 0)));
10915 goto associate;
10917 case RDIV_EXPR:
10918 /* Don't touch a floating-point divide by zero unless the mode
10919 of the constant can represent infinity. */
10920 if (TREE_CODE (arg1) == REAL_CST
10921 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10922 && real_zerop (arg1))
10923 return NULL_TREE;
10925 /* Optimize A / A to 1.0 if we don't care about
10926 NaNs or Infinities. Skip the transformation
10927 for non-real operands. */
10928 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
10929 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10930 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
10931 && operand_equal_p (arg0, arg1, 0))
10933 tree r = build_real (TREE_TYPE (arg0), dconst1);
10935 return omit_two_operands (type, r, arg0, arg1);
10938 /* The complex version of the above A / A optimization. */
10939 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10940 && operand_equal_p (arg0, arg1, 0))
10942 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
10943 if (! HONOR_NANS (TYPE_MODE (elem_type))
10944 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
10946 tree r = build_real (elem_type, dconst1);
10947 /* omit_two_operands will call fold_convert for us. */
10948 return omit_two_operands (type, r, arg0, arg1);
10952 /* (-A) / (-B) -> A / B */
10953 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10954 return fold_build2 (RDIV_EXPR, type,
10955 TREE_OPERAND (arg0, 0),
10956 negate_expr (arg1));
10957 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10958 return fold_build2 (RDIV_EXPR, type,
10959 negate_expr (arg0),
10960 TREE_OPERAND (arg1, 0));
10962 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
10963 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10964 && real_onep (arg1))
10965 return non_lvalue (fold_convert (type, arg0));
10967 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
10968 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10969 && real_minus_onep (arg1))
10970 return non_lvalue (fold_convert (type, negate_expr (arg0)));
10972 /* If ARG1 is a constant, we can convert this to a multiply by the
10973 reciprocal. This does not have the same rounding properties,
10974 so only do this if -freciprocal-math. We can actually
10975 always safely do it if ARG1 is a power of two, but it's hard to
10976 tell if it is or not in a portable manner. */
10977 if (TREE_CODE (arg1) == REAL_CST)
10979 if (flag_reciprocal_math
10980 && 0 != (tem = const_binop (code, build_real (type, dconst1),
10981 arg1, 0)))
10982 return fold_build2 (MULT_EXPR, type, arg0, tem);
10983 /* Find the reciprocal if optimizing and the result is exact. */
10984 if (optimize)
10986 REAL_VALUE_TYPE r;
10987 r = TREE_REAL_CST (arg1);
10988 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
10990 tem = build_real (type, r);
10991 return fold_build2 (MULT_EXPR, type,
10992 fold_convert (type, arg0), tem);
10996 /* Convert A/B/C to A/(B*C). */
10997 if (flag_reciprocal_math
10998 && TREE_CODE (arg0) == RDIV_EXPR)
10999 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11000 fold_build2 (MULT_EXPR, type,
11001 TREE_OPERAND (arg0, 1), arg1));
11003 /* Convert A/(B/C) to (A/B)*C. */
11004 if (flag_reciprocal_math
11005 && TREE_CODE (arg1) == RDIV_EXPR)
11006 return fold_build2 (MULT_EXPR, type,
11007 fold_build2 (RDIV_EXPR, type, arg0,
11008 TREE_OPERAND (arg1, 0)),
11009 TREE_OPERAND (arg1, 1));
11011 /* Convert C1/(X*C2) into (C1/C2)/X. */
11012 if (flag_reciprocal_math
11013 && TREE_CODE (arg1) == MULT_EXPR
11014 && TREE_CODE (arg0) == REAL_CST
11015 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11017 tree tem = const_binop (RDIV_EXPR, arg0,
11018 TREE_OPERAND (arg1, 1), 0);
11019 if (tem)
11020 return fold_build2 (RDIV_EXPR, type, tem,
11021 TREE_OPERAND (arg1, 0));
11024 if (flag_unsafe_math_optimizations)
11026 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11027 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11029 /* Optimize sin(x)/cos(x) as tan(x). */
11030 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11031 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11032 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11033 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11034 CALL_EXPR_ARG (arg1, 0), 0))
11036 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11038 if (tanfn != NULL_TREE)
11039 return build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11042 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11043 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11044 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11045 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11046 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11047 CALL_EXPR_ARG (arg1, 0), 0))
11049 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11051 if (tanfn != NULL_TREE)
11053 tree tmp = build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11054 return fold_build2 (RDIV_EXPR, type,
11055 build_real (type, dconst1), tmp);
11059 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11060 NaNs or Infinities. */
11061 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11062 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11063 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11065 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11066 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11068 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11069 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11070 && operand_equal_p (arg00, arg01, 0))
11072 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11074 if (cosfn != NULL_TREE)
11075 return build_call_expr (cosfn, 1, arg00);
11079 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11080 NaNs or Infinities. */
11081 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11082 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11083 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11085 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11086 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11088 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11089 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11090 && operand_equal_p (arg00, arg01, 0))
11092 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11094 if (cosfn != NULL_TREE)
11096 tree tmp = build_call_expr (cosfn, 1, arg00);
11097 return fold_build2 (RDIV_EXPR, type,
11098 build_real (type, dconst1),
11099 tmp);
11104 /* Optimize pow(x,c)/x as pow(x,c-1). */
11105 if (fcode0 == BUILT_IN_POW
11106 || fcode0 == BUILT_IN_POWF
11107 || fcode0 == BUILT_IN_POWL)
11109 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11110 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11111 if (TREE_CODE (arg01) == REAL_CST
11112 && !TREE_OVERFLOW (arg01)
11113 && operand_equal_p (arg1, arg00, 0))
11115 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11116 REAL_VALUE_TYPE c;
11117 tree arg;
11119 c = TREE_REAL_CST (arg01);
11120 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11121 arg = build_real (type, c);
11122 return build_call_expr (powfn, 2, arg1, arg);
11126 /* Optimize a/root(b/c) into a*root(c/b). */
11127 if (BUILTIN_ROOT_P (fcode1))
11129 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11131 if (TREE_CODE (rootarg) == RDIV_EXPR)
11133 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11134 tree b = TREE_OPERAND (rootarg, 0);
11135 tree c = TREE_OPERAND (rootarg, 1);
11137 tree tmp = fold_build2 (RDIV_EXPR, type, c, b);
11139 tmp = build_call_expr (rootfn, 1, tmp);
11140 return fold_build2 (MULT_EXPR, type, arg0, tmp);
11144 /* Optimize x/expN(y) into x*expN(-y). */
11145 if (BUILTIN_EXPONENT_P (fcode1))
11147 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11148 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11149 arg1 = build_call_expr (expfn, 1, fold_convert (type, arg));
11150 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11153 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11154 if (fcode1 == BUILT_IN_POW
11155 || fcode1 == BUILT_IN_POWF
11156 || fcode1 == BUILT_IN_POWL)
11158 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11159 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11160 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11161 tree neg11 = fold_convert (type, negate_expr (arg11));
11162 arg1 = build_call_expr (powfn, 2, arg10, neg11);
11163 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11166 return NULL_TREE;
11168 case TRUNC_DIV_EXPR:
11169 case FLOOR_DIV_EXPR:
11170 /* Simplify A / (B << N) where A and B are positive and B is
11171 a power of 2, to A >> (N + log2(B)). */
11172 strict_overflow_p = false;
11173 if (TREE_CODE (arg1) == LSHIFT_EXPR
11174 && (TYPE_UNSIGNED (type)
11175 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
11177 tree sval = TREE_OPERAND (arg1, 0);
11178 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11180 tree sh_cnt = TREE_OPERAND (arg1, 1);
11181 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11183 if (strict_overflow_p)
11184 fold_overflow_warning (("assuming signed overflow does not "
11185 "occur when simplifying A / (B << N)"),
11186 WARN_STRICT_OVERFLOW_MISC);
11188 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
11189 sh_cnt, build_int_cst (NULL_TREE, pow2));
11190 return fold_build2 (RSHIFT_EXPR, type,
11191 fold_convert (type, arg0), sh_cnt);
11194 /* Fall thru */
11196 case ROUND_DIV_EXPR:
11197 case CEIL_DIV_EXPR:
11198 case EXACT_DIV_EXPR:
11199 if (integer_onep (arg1))
11200 return non_lvalue (fold_convert (type, arg0));
11201 if (integer_zerop (arg1))
11202 return NULL_TREE;
11203 /* X / -1 is -X. */
11204 if (!TYPE_UNSIGNED (type)
11205 && TREE_CODE (arg1) == INTEGER_CST
11206 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11207 && TREE_INT_CST_HIGH (arg1) == -1)
11208 return fold_convert (type, negate_expr (arg0));
11210 /* Convert -A / -B to A / B when the type is signed and overflow is
11211 undefined. */
11212 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11213 && TREE_CODE (arg0) == NEGATE_EXPR
11214 && negate_expr_p (arg1))
11216 if (INTEGRAL_TYPE_P (type))
11217 fold_overflow_warning (("assuming signed overflow does not occur "
11218 "when distributing negation across "
11219 "division"),
11220 WARN_STRICT_OVERFLOW_MISC);
11221 return fold_build2 (code, type,
11222 fold_convert (type, TREE_OPERAND (arg0, 0)),
11223 negate_expr (arg1));
11225 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11226 && TREE_CODE (arg1) == NEGATE_EXPR
11227 && negate_expr_p (arg0))
11229 if (INTEGRAL_TYPE_P (type))
11230 fold_overflow_warning (("assuming signed overflow does not occur "
11231 "when distributing negation across "
11232 "division"),
11233 WARN_STRICT_OVERFLOW_MISC);
11234 return fold_build2 (code, type, negate_expr (arg0),
11235 TREE_OPERAND (arg1, 0));
11238 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11239 operation, EXACT_DIV_EXPR.
11241 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11242 At one time others generated faster code, it's not clear if they do
11243 after the last round to changes to the DIV code in expmed.c. */
11244 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11245 && multiple_of_p (type, arg0, arg1))
11246 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
11248 strict_overflow_p = false;
11249 if (TREE_CODE (arg1) == INTEGER_CST
11250 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11251 &strict_overflow_p)))
11253 if (strict_overflow_p)
11254 fold_overflow_warning (("assuming signed overflow does not occur "
11255 "when simplifying division"),
11256 WARN_STRICT_OVERFLOW_MISC);
11257 return fold_convert (type, tem);
11260 return NULL_TREE;
11262 case CEIL_MOD_EXPR:
11263 case FLOOR_MOD_EXPR:
11264 case ROUND_MOD_EXPR:
11265 case TRUNC_MOD_EXPR:
11266 /* X % 1 is always zero, but be sure to preserve any side
11267 effects in X. */
11268 if (integer_onep (arg1))
11269 return omit_one_operand (type, integer_zero_node, arg0);
11271 /* X % 0, return X % 0 unchanged so that we can get the
11272 proper warnings and errors. */
11273 if (integer_zerop (arg1))
11274 return NULL_TREE;
11276 /* 0 % X is always zero, but be sure to preserve any side
11277 effects in X. Place this after checking for X == 0. */
11278 if (integer_zerop (arg0))
11279 return omit_one_operand (type, integer_zero_node, arg1);
11281 /* X % -1 is zero. */
11282 if (!TYPE_UNSIGNED (type)
11283 && TREE_CODE (arg1) == INTEGER_CST
11284 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11285 && TREE_INT_CST_HIGH (arg1) == -1)
11286 return omit_one_operand (type, integer_zero_node, arg0);
11288 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11289 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11290 strict_overflow_p = false;
11291 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11292 && (TYPE_UNSIGNED (type)
11293 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
11295 tree c = arg1;
11296 /* Also optimize A % (C << N) where C is a power of 2,
11297 to A & ((C << N) - 1). */
11298 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11299 c = TREE_OPERAND (arg1, 0);
11301 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11303 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1), arg1,
11304 build_int_cst (TREE_TYPE (arg1), 1));
11305 if (strict_overflow_p)
11306 fold_overflow_warning (("assuming signed overflow does not "
11307 "occur when simplifying "
11308 "X % (power of two)"),
11309 WARN_STRICT_OVERFLOW_MISC);
11310 return fold_build2 (BIT_AND_EXPR, type,
11311 fold_convert (type, arg0),
11312 fold_convert (type, mask));
11316 /* X % -C is the same as X % C. */
11317 if (code == TRUNC_MOD_EXPR
11318 && !TYPE_UNSIGNED (type)
11319 && TREE_CODE (arg1) == INTEGER_CST
11320 && !TREE_OVERFLOW (arg1)
11321 && TREE_INT_CST_HIGH (arg1) < 0
11322 && !TYPE_OVERFLOW_TRAPS (type)
11323 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11324 && !sign_bit_p (arg1, arg1))
11325 return fold_build2 (code, type, fold_convert (type, arg0),
11326 fold_convert (type, negate_expr (arg1)));
11328 /* X % -Y is the same as X % Y. */
11329 if (code == TRUNC_MOD_EXPR
11330 && !TYPE_UNSIGNED (type)
11331 && TREE_CODE (arg1) == NEGATE_EXPR
11332 && !TYPE_OVERFLOW_TRAPS (type))
11333 return fold_build2 (code, type, fold_convert (type, arg0),
11334 fold_convert (type, TREE_OPERAND (arg1, 0)));
11336 if (TREE_CODE (arg1) == INTEGER_CST
11337 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11338 &strict_overflow_p)))
11340 if (strict_overflow_p)
11341 fold_overflow_warning (("assuming signed overflow does not occur "
11342 "when simplifying modulos"),
11343 WARN_STRICT_OVERFLOW_MISC);
11344 return fold_convert (type, tem);
11347 return NULL_TREE;
11349 case LROTATE_EXPR:
11350 case RROTATE_EXPR:
11351 if (integer_all_onesp (arg0))
11352 return omit_one_operand (type, arg0, arg1);
11353 goto shift;
11355 case RSHIFT_EXPR:
11356 /* Optimize -1 >> x for arithmetic right shifts. */
11357 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
11358 return omit_one_operand (type, arg0, arg1);
11359 /* ... fall through ... */
11361 case LSHIFT_EXPR:
11362 shift:
11363 if (integer_zerop (arg1))
11364 return non_lvalue (fold_convert (type, arg0));
11365 if (integer_zerop (arg0))
11366 return omit_one_operand (type, arg0, arg1);
11368 /* Since negative shift count is not well-defined,
11369 don't try to compute it in the compiler. */
11370 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11371 return NULL_TREE;
11373 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11374 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11375 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11376 && host_integerp (TREE_OPERAND (arg0, 1), false)
11377 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11379 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11380 + TREE_INT_CST_LOW (arg1));
11382 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11383 being well defined. */
11384 if (low >= TYPE_PRECISION (type))
11386 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11387 low = low % TYPE_PRECISION (type);
11388 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11389 return build_int_cst (type, 0);
11390 else
11391 low = TYPE_PRECISION (type) - 1;
11394 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11395 build_int_cst (type, low));
11398 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11399 into x & ((unsigned)-1 >> c) for unsigned types. */
11400 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11401 || (TYPE_UNSIGNED (type)
11402 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11403 && host_integerp (arg1, false)
11404 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11405 && host_integerp (TREE_OPERAND (arg0, 1), false)
11406 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11408 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11409 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11410 tree lshift;
11411 tree arg00;
11413 if (low0 == low1)
11415 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
11417 lshift = build_int_cst (type, -1);
11418 lshift = int_const_binop (code, lshift, arg1, 0);
11420 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
11424 /* Rewrite an LROTATE_EXPR by a constant into an
11425 RROTATE_EXPR by a new constant. */
11426 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11428 tree tem = build_int_cst (TREE_TYPE (arg1),
11429 GET_MODE_BITSIZE (TYPE_MODE (type)));
11430 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
11431 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
11434 /* If we have a rotate of a bit operation with the rotate count and
11435 the second operand of the bit operation both constant,
11436 permute the two operations. */
11437 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11438 && (TREE_CODE (arg0) == BIT_AND_EXPR
11439 || TREE_CODE (arg0) == BIT_IOR_EXPR
11440 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11441 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11442 return fold_build2 (TREE_CODE (arg0), type,
11443 fold_build2 (code, type,
11444 TREE_OPERAND (arg0, 0), arg1),
11445 fold_build2 (code, type,
11446 TREE_OPERAND (arg0, 1), arg1));
11448 /* Two consecutive rotates adding up to the width of the mode can
11449 be ignored. */
11450 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11451 && TREE_CODE (arg0) == RROTATE_EXPR
11452 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11453 && TREE_INT_CST_HIGH (arg1) == 0
11454 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11455 && ((TREE_INT_CST_LOW (arg1)
11456 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11457 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
11458 return TREE_OPERAND (arg0, 0);
11460 return NULL_TREE;
11462 case MIN_EXPR:
11463 if (operand_equal_p (arg0, arg1, 0))
11464 return omit_one_operand (type, arg0, arg1);
11465 if (INTEGRAL_TYPE_P (type)
11466 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11467 return omit_one_operand (type, arg1, arg0);
11468 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
11469 if (tem)
11470 return tem;
11471 goto associate;
11473 case MAX_EXPR:
11474 if (operand_equal_p (arg0, arg1, 0))
11475 return omit_one_operand (type, arg0, arg1);
11476 if (INTEGRAL_TYPE_P (type)
11477 && TYPE_MAX_VALUE (type)
11478 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
11479 return omit_one_operand (type, arg1, arg0);
11480 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
11481 if (tem)
11482 return tem;
11483 goto associate;
11485 case TRUTH_ANDIF_EXPR:
11486 /* Note that the operands of this must be ints
11487 and their values must be 0 or 1.
11488 ("true" is a fixed value perhaps depending on the language.) */
11489 /* If first arg is constant zero, return it. */
11490 if (integer_zerop (arg0))
11491 return fold_convert (type, arg0);
11492 case TRUTH_AND_EXPR:
11493 /* If either arg is constant true, drop it. */
11494 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11495 return non_lvalue (fold_convert (type, arg1));
11496 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11497 /* Preserve sequence points. */
11498 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11499 return non_lvalue (fold_convert (type, arg0));
11500 /* If second arg is constant zero, result is zero, but first arg
11501 must be evaluated. */
11502 if (integer_zerop (arg1))
11503 return omit_one_operand (type, arg1, arg0);
11504 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11505 case will be handled here. */
11506 if (integer_zerop (arg0))
11507 return omit_one_operand (type, arg0, arg1);
11509 /* !X && X is always false. */
11510 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11511 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11512 return omit_one_operand (type, integer_zero_node, arg1);
11513 /* X && !X is always false. */
11514 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11515 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11516 return omit_one_operand (type, integer_zero_node, arg0);
11518 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
11519 means A >= Y && A != MAX, but in this case we know that
11520 A < X <= MAX. */
11522 if (!TREE_SIDE_EFFECTS (arg0)
11523 && !TREE_SIDE_EFFECTS (arg1))
11525 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
11526 if (tem && !operand_equal_p (tem, arg0, 0))
11527 return fold_build2 (code, type, tem, arg1);
11529 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
11530 if (tem && !operand_equal_p (tem, arg1, 0))
11531 return fold_build2 (code, type, arg0, tem);
11534 truth_andor:
11535 /* We only do these simplifications if we are optimizing. */
11536 if (!optimize)
11537 return NULL_TREE;
11539 /* Check for things like (A || B) && (A || C). We can convert this
11540 to A || (B && C). Note that either operator can be any of the four
11541 truth and/or operations and the transformation will still be
11542 valid. Also note that we only care about order for the
11543 ANDIF and ORIF operators. If B contains side effects, this
11544 might change the truth-value of A. */
11545 if (TREE_CODE (arg0) == TREE_CODE (arg1)
11546 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
11547 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
11548 || TREE_CODE (arg0) == TRUTH_AND_EXPR
11549 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
11550 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
11552 tree a00 = TREE_OPERAND (arg0, 0);
11553 tree a01 = TREE_OPERAND (arg0, 1);
11554 tree a10 = TREE_OPERAND (arg1, 0);
11555 tree a11 = TREE_OPERAND (arg1, 1);
11556 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
11557 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
11558 && (code == TRUTH_AND_EXPR
11559 || code == TRUTH_OR_EXPR));
11561 if (operand_equal_p (a00, a10, 0))
11562 return fold_build2 (TREE_CODE (arg0), type, a00,
11563 fold_build2 (code, type, a01, a11));
11564 else if (commutative && operand_equal_p (a00, a11, 0))
11565 return fold_build2 (TREE_CODE (arg0), type, a00,
11566 fold_build2 (code, type, a01, a10));
11567 else if (commutative && operand_equal_p (a01, a10, 0))
11568 return fold_build2 (TREE_CODE (arg0), type, a01,
11569 fold_build2 (code, type, a00, a11));
11571 /* This case if tricky because we must either have commutative
11572 operators or else A10 must not have side-effects. */
11574 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
11575 && operand_equal_p (a01, a11, 0))
11576 return fold_build2 (TREE_CODE (arg0), type,
11577 fold_build2 (code, type, a00, a10),
11578 a01);
11581 /* See if we can build a range comparison. */
11582 if (0 != (tem = fold_range_test (code, type, op0, op1)))
11583 return tem;
11585 /* Check for the possibility of merging component references. If our
11586 lhs is another similar operation, try to merge its rhs with our
11587 rhs. Then try to merge our lhs and rhs. */
11588 if (TREE_CODE (arg0) == code
11589 && 0 != (tem = fold_truthop (code, type,
11590 TREE_OPERAND (arg0, 1), arg1)))
11591 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11593 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
11594 return tem;
11596 return NULL_TREE;
11598 case TRUTH_ORIF_EXPR:
11599 /* Note that the operands of this must be ints
11600 and their values must be 0 or true.
11601 ("true" is a fixed value perhaps depending on the language.) */
11602 /* If first arg is constant true, return it. */
11603 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11604 return fold_convert (type, arg0);
11605 case TRUTH_OR_EXPR:
11606 /* If either arg is constant zero, drop it. */
11607 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11608 return non_lvalue (fold_convert (type, arg1));
11609 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11610 /* Preserve sequence points. */
11611 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11612 return non_lvalue (fold_convert (type, arg0));
11613 /* If second arg is constant true, result is true, but we must
11614 evaluate first arg. */
11615 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11616 return omit_one_operand (type, arg1, arg0);
11617 /* Likewise for first arg, but note this only occurs here for
11618 TRUTH_OR_EXPR. */
11619 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11620 return omit_one_operand (type, arg0, arg1);
11622 /* !X || X is always true. */
11623 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11624 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11625 return omit_one_operand (type, integer_one_node, arg1);
11626 /* X || !X is always true. */
11627 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11628 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11629 return omit_one_operand (type, integer_one_node, arg0);
11631 goto truth_andor;
11633 case TRUTH_XOR_EXPR:
11634 /* If the second arg is constant zero, drop it. */
11635 if (integer_zerop (arg1))
11636 return non_lvalue (fold_convert (type, arg0));
11637 /* If the second arg is constant true, this is a logical inversion. */
11638 if (integer_onep (arg1))
11640 /* Only call invert_truthvalue if operand is a truth value. */
11641 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
11642 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
11643 else
11644 tem = invert_truthvalue (arg0);
11645 return non_lvalue (fold_convert (type, tem));
11647 /* Identical arguments cancel to zero. */
11648 if (operand_equal_p (arg0, arg1, 0))
11649 return omit_one_operand (type, integer_zero_node, arg0);
11651 /* !X ^ X is always true. */
11652 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11653 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11654 return omit_one_operand (type, integer_one_node, arg1);
11656 /* X ^ !X is always true. */
11657 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11658 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11659 return omit_one_operand (type, integer_one_node, arg0);
11661 return NULL_TREE;
11663 case EQ_EXPR:
11664 case NE_EXPR:
11665 tem = fold_comparison (code, type, op0, op1);
11666 if (tem != NULL_TREE)
11667 return tem;
11669 /* bool_var != 0 becomes bool_var. */
11670 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11671 && code == NE_EXPR)
11672 return non_lvalue (fold_convert (type, arg0));
11674 /* bool_var == 1 becomes bool_var. */
11675 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11676 && code == EQ_EXPR)
11677 return non_lvalue (fold_convert (type, arg0));
11679 /* bool_var != 1 becomes !bool_var. */
11680 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11681 && code == NE_EXPR)
11682 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11684 /* bool_var == 0 becomes !bool_var. */
11685 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11686 && code == EQ_EXPR)
11687 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11689 /* If this is an equality comparison of the address of two non-weak,
11690 unaliased symbols neither of which are extern (since we do not
11691 have access to attributes for externs), then we know the result. */
11692 if (TREE_CODE (arg0) == ADDR_EXPR
11693 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
11694 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
11695 && ! lookup_attribute ("alias",
11696 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
11697 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
11698 && TREE_CODE (arg1) == ADDR_EXPR
11699 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
11700 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
11701 && ! lookup_attribute ("alias",
11702 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
11703 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
11705 /* We know that we're looking at the address of two
11706 non-weak, unaliased, static _DECL nodes.
11708 It is both wasteful and incorrect to call operand_equal_p
11709 to compare the two ADDR_EXPR nodes. It is wasteful in that
11710 all we need to do is test pointer equality for the arguments
11711 to the two ADDR_EXPR nodes. It is incorrect to use
11712 operand_equal_p as that function is NOT equivalent to a
11713 C equality test. It can in fact return false for two
11714 objects which would test as equal using the C equality
11715 operator. */
11716 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
11717 return constant_boolean_node (equal
11718 ? code == EQ_EXPR : code != EQ_EXPR,
11719 type);
11722 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
11723 a MINUS_EXPR of a constant, we can convert it into a comparison with
11724 a revised constant as long as no overflow occurs. */
11725 if (TREE_CODE (arg1) == INTEGER_CST
11726 && (TREE_CODE (arg0) == PLUS_EXPR
11727 || TREE_CODE (arg0) == MINUS_EXPR)
11728 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11729 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
11730 ? MINUS_EXPR : PLUS_EXPR,
11731 fold_convert (TREE_TYPE (arg0), arg1),
11732 TREE_OPERAND (arg0, 1), 0))
11733 && !TREE_OVERFLOW (tem))
11734 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11736 /* Similarly for a NEGATE_EXPR. */
11737 if (TREE_CODE (arg0) == NEGATE_EXPR
11738 && TREE_CODE (arg1) == INTEGER_CST
11739 && 0 != (tem = negate_expr (arg1))
11740 && TREE_CODE (tem) == INTEGER_CST
11741 && !TREE_OVERFLOW (tem))
11742 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11744 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11745 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11746 && TREE_CODE (arg1) == INTEGER_CST
11747 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11748 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11749 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg0),
11750 fold_convert (TREE_TYPE (arg0), arg1),
11751 TREE_OPERAND (arg0, 1)));
11753 /* Transform comparisons of the form X +- C CMP X. */
11754 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11755 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11756 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11757 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11758 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11760 tree cst = TREE_OPERAND (arg0, 1);
11762 if (code == EQ_EXPR
11763 && !integer_zerop (cst))
11764 return omit_two_operands (type, boolean_false_node,
11765 TREE_OPERAND (arg0, 0), arg1);
11766 else
11767 return omit_two_operands (type, boolean_true_node,
11768 TREE_OPERAND (arg0, 0), arg1);
11771 /* If we have X - Y == 0, we can convert that to X == Y and similarly
11772 for !=. Don't do this for ordered comparisons due to overflow. */
11773 if (TREE_CODE (arg0) == MINUS_EXPR
11774 && integer_zerop (arg1))
11775 return fold_build2 (code, type,
11776 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
11778 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11779 if (TREE_CODE (arg0) == ABS_EXPR
11780 && (integer_zerop (arg1) || real_zerop (arg1)))
11781 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
11783 /* If this is an EQ or NE comparison with zero and ARG0 is
11784 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11785 two operations, but the latter can be done in one less insn
11786 on machines that have only two-operand insns or on which a
11787 constant cannot be the first operand. */
11788 if (TREE_CODE (arg0) == BIT_AND_EXPR
11789 && integer_zerop (arg1))
11791 tree arg00 = TREE_OPERAND (arg0, 0);
11792 tree arg01 = TREE_OPERAND (arg0, 1);
11793 if (TREE_CODE (arg00) == LSHIFT_EXPR
11794 && integer_onep (TREE_OPERAND (arg00, 0)))
11795 return
11796 fold_build2 (code, type,
11797 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11798 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
11799 arg01, TREE_OPERAND (arg00, 1)),
11800 fold_convert (TREE_TYPE (arg0),
11801 integer_one_node)),
11802 arg1);
11803 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
11804 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
11805 return
11806 fold_build2 (code, type,
11807 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11808 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
11809 arg00, TREE_OPERAND (arg01, 1)),
11810 fold_convert (TREE_TYPE (arg0),
11811 integer_one_node)),
11812 arg1);
11815 /* If this is an NE or EQ comparison of zero against the result of a
11816 signed MOD operation whose second operand is a power of 2, make
11817 the MOD operation unsigned since it is simpler and equivalent. */
11818 if (integer_zerop (arg1)
11819 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11820 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11821 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11822 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11823 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11824 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11826 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
11827 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
11828 fold_convert (newtype,
11829 TREE_OPERAND (arg0, 0)),
11830 fold_convert (newtype,
11831 TREE_OPERAND (arg0, 1)));
11833 return fold_build2 (code, type, newmod,
11834 fold_convert (newtype, arg1));
11837 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11838 C1 is a valid shift constant, and C2 is a power of two, i.e.
11839 a single bit. */
11840 if (TREE_CODE (arg0) == BIT_AND_EXPR
11841 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11842 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11843 == INTEGER_CST
11844 && integer_pow2p (TREE_OPERAND (arg0, 1))
11845 && integer_zerop (arg1))
11847 tree itype = TREE_TYPE (arg0);
11848 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
11849 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11851 /* Check for a valid shift count. */
11852 if (TREE_INT_CST_HIGH (arg001) == 0
11853 && TREE_INT_CST_LOW (arg001) < prec)
11855 tree arg01 = TREE_OPERAND (arg0, 1);
11856 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11857 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11858 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11859 can be rewritten as (X & (C2 << C1)) != 0. */
11860 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11862 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
11863 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
11864 return fold_build2 (code, type, tem, arg1);
11866 /* Otherwise, for signed (arithmetic) shifts,
11867 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11868 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11869 else if (!TYPE_UNSIGNED (itype))
11870 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11871 arg000, build_int_cst (itype, 0));
11872 /* Otherwise, of unsigned (logical) shifts,
11873 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11874 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11875 else
11876 return omit_one_operand (type,
11877 code == EQ_EXPR ? integer_one_node
11878 : integer_zero_node,
11879 arg000);
11883 /* If this is an NE comparison of zero with an AND of one, remove the
11884 comparison since the AND will give the correct value. */
11885 if (code == NE_EXPR
11886 && integer_zerop (arg1)
11887 && TREE_CODE (arg0) == BIT_AND_EXPR
11888 && integer_onep (TREE_OPERAND (arg0, 1)))
11889 return fold_convert (type, arg0);
11891 /* If we have (A & C) == C where C is a power of 2, convert this into
11892 (A & C) != 0. Similarly for NE_EXPR. */
11893 if (TREE_CODE (arg0) == BIT_AND_EXPR
11894 && integer_pow2p (TREE_OPERAND (arg0, 1))
11895 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11896 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11897 arg0, fold_convert (TREE_TYPE (arg0),
11898 integer_zero_node));
11900 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11901 bit, then fold the expression into A < 0 or A >= 0. */
11902 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
11903 if (tem)
11904 return tem;
11906 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11907 Similarly for NE_EXPR. */
11908 if (TREE_CODE (arg0) == BIT_AND_EXPR
11909 && TREE_CODE (arg1) == INTEGER_CST
11910 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11912 tree notc = fold_build1 (BIT_NOT_EXPR,
11913 TREE_TYPE (TREE_OPERAND (arg0, 1)),
11914 TREE_OPERAND (arg0, 1));
11915 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11916 arg1, notc);
11917 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11918 if (integer_nonzerop (dandnotc))
11919 return omit_one_operand (type, rslt, arg0);
11922 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
11923 Similarly for NE_EXPR. */
11924 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11925 && TREE_CODE (arg1) == INTEGER_CST
11926 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11928 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
11929 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11930 TREE_OPERAND (arg0, 1), notd);
11931 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11932 if (integer_nonzerop (candnotd))
11933 return omit_one_operand (type, rslt, arg0);
11936 /* If this is a comparison of a field, we may be able to simplify it. */
11937 if ((TREE_CODE (arg0) == COMPONENT_REF
11938 || TREE_CODE (arg0) == BIT_FIELD_REF)
11939 /* Handle the constant case even without -O
11940 to make sure the warnings are given. */
11941 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11943 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
11944 if (t1)
11945 return t1;
11948 /* Optimize comparisons of strlen vs zero to a compare of the
11949 first character of the string vs zero. To wit,
11950 strlen(ptr) == 0 => *ptr == 0
11951 strlen(ptr) != 0 => *ptr != 0
11952 Other cases should reduce to one of these two (or a constant)
11953 due to the return value of strlen being unsigned. */
11954 if (TREE_CODE (arg0) == CALL_EXPR
11955 && integer_zerop (arg1))
11957 tree fndecl = get_callee_fndecl (arg0);
11959 if (fndecl
11960 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
11961 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
11962 && call_expr_nargs (arg0) == 1
11963 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
11965 tree iref = build_fold_indirect_ref (CALL_EXPR_ARG (arg0, 0));
11966 return fold_build2 (code, type, iref,
11967 build_int_cst (TREE_TYPE (iref), 0));
11971 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11972 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11973 if (TREE_CODE (arg0) == RSHIFT_EXPR
11974 && integer_zerop (arg1)
11975 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11977 tree arg00 = TREE_OPERAND (arg0, 0);
11978 tree arg01 = TREE_OPERAND (arg0, 1);
11979 tree itype = TREE_TYPE (arg00);
11980 if (TREE_INT_CST_HIGH (arg01) == 0
11981 && TREE_INT_CST_LOW (arg01)
11982 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
11984 if (TYPE_UNSIGNED (itype))
11986 itype = signed_type_for (itype);
11987 arg00 = fold_convert (itype, arg00);
11989 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11990 type, arg00, build_int_cst (itype, 0));
11994 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
11995 if (integer_zerop (arg1)
11996 && TREE_CODE (arg0) == BIT_XOR_EXPR)
11997 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11998 TREE_OPERAND (arg0, 1));
12000 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12001 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12002 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12003 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12004 build_int_cst (TREE_TYPE (arg1), 0));
12005 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12006 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12007 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12008 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12009 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
12010 build_int_cst (TREE_TYPE (arg1), 0));
12012 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12013 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12014 && TREE_CODE (arg1) == INTEGER_CST
12015 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12016 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12017 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
12018 TREE_OPERAND (arg0, 1), arg1));
12020 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12021 (X & C) == 0 when C is a single bit. */
12022 if (TREE_CODE (arg0) == BIT_AND_EXPR
12023 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12024 && integer_zerop (arg1)
12025 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12027 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12028 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12029 TREE_OPERAND (arg0, 1));
12030 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12031 type, tem, arg1);
12034 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12035 constant C is a power of two, i.e. a single bit. */
12036 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12037 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12038 && integer_zerop (arg1)
12039 && integer_pow2p (TREE_OPERAND (arg0, 1))
12040 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12041 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12043 tree arg00 = TREE_OPERAND (arg0, 0);
12044 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12045 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12048 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12049 when is C is a power of two, i.e. a single bit. */
12050 if (TREE_CODE (arg0) == BIT_AND_EXPR
12051 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12052 && integer_zerop (arg1)
12053 && integer_pow2p (TREE_OPERAND (arg0, 1))
12054 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12055 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12057 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12058 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
12059 arg000, TREE_OPERAND (arg0, 1));
12060 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12061 tem, build_int_cst (TREE_TYPE (tem), 0));
12064 if (integer_zerop (arg1)
12065 && tree_expr_nonzero_p (arg0))
12067 tree res = constant_boolean_node (code==NE_EXPR, type);
12068 return omit_one_operand (type, res, arg0);
12071 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12072 if (TREE_CODE (arg0) == NEGATE_EXPR
12073 && TREE_CODE (arg1) == NEGATE_EXPR)
12074 return fold_build2 (code, type,
12075 TREE_OPERAND (arg0, 0),
12076 TREE_OPERAND (arg1, 0));
12078 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12079 if (TREE_CODE (arg0) == BIT_AND_EXPR
12080 && TREE_CODE (arg1) == BIT_AND_EXPR)
12082 tree arg00 = TREE_OPERAND (arg0, 0);
12083 tree arg01 = TREE_OPERAND (arg0, 1);
12084 tree arg10 = TREE_OPERAND (arg1, 0);
12085 tree arg11 = TREE_OPERAND (arg1, 1);
12086 tree itype = TREE_TYPE (arg0);
12088 if (operand_equal_p (arg01, arg11, 0))
12089 return fold_build2 (code, type,
12090 fold_build2 (BIT_AND_EXPR, itype,
12091 fold_build2 (BIT_XOR_EXPR, itype,
12092 arg00, arg10),
12093 arg01),
12094 build_int_cst (itype, 0));
12096 if (operand_equal_p (arg01, arg10, 0))
12097 return fold_build2 (code, type,
12098 fold_build2 (BIT_AND_EXPR, itype,
12099 fold_build2 (BIT_XOR_EXPR, itype,
12100 arg00, arg11),
12101 arg01),
12102 build_int_cst (itype, 0));
12104 if (operand_equal_p (arg00, arg11, 0))
12105 return fold_build2 (code, type,
12106 fold_build2 (BIT_AND_EXPR, itype,
12107 fold_build2 (BIT_XOR_EXPR, itype,
12108 arg01, arg10),
12109 arg00),
12110 build_int_cst (itype, 0));
12112 if (operand_equal_p (arg00, arg10, 0))
12113 return fold_build2 (code, type,
12114 fold_build2 (BIT_AND_EXPR, itype,
12115 fold_build2 (BIT_XOR_EXPR, itype,
12116 arg01, arg11),
12117 arg00),
12118 build_int_cst (itype, 0));
12121 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12122 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12124 tree arg00 = TREE_OPERAND (arg0, 0);
12125 tree arg01 = TREE_OPERAND (arg0, 1);
12126 tree arg10 = TREE_OPERAND (arg1, 0);
12127 tree arg11 = TREE_OPERAND (arg1, 1);
12128 tree itype = TREE_TYPE (arg0);
12130 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12131 operand_equal_p guarantees no side-effects so we don't need
12132 to use omit_one_operand on Z. */
12133 if (operand_equal_p (arg01, arg11, 0))
12134 return fold_build2 (code, type, arg00, arg10);
12135 if (operand_equal_p (arg01, arg10, 0))
12136 return fold_build2 (code, type, arg00, arg11);
12137 if (operand_equal_p (arg00, arg11, 0))
12138 return fold_build2 (code, type, arg01, arg10);
12139 if (operand_equal_p (arg00, arg10, 0))
12140 return fold_build2 (code, type, arg01, arg11);
12142 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12143 if (TREE_CODE (arg01) == INTEGER_CST
12144 && TREE_CODE (arg11) == INTEGER_CST)
12145 return fold_build2 (code, type,
12146 fold_build2 (BIT_XOR_EXPR, itype, arg00,
12147 fold_build2 (BIT_XOR_EXPR, itype,
12148 arg01, arg11)),
12149 arg10);
12152 /* Attempt to simplify equality/inequality comparisons of complex
12153 values. Only lower the comparison if the result is known or
12154 can be simplified to a single scalar comparison. */
12155 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12156 || TREE_CODE (arg0) == COMPLEX_CST)
12157 && (TREE_CODE (arg1) == COMPLEX_EXPR
12158 || TREE_CODE (arg1) == COMPLEX_CST))
12160 tree real0, imag0, real1, imag1;
12161 tree rcond, icond;
12163 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12165 real0 = TREE_OPERAND (arg0, 0);
12166 imag0 = TREE_OPERAND (arg0, 1);
12168 else
12170 real0 = TREE_REALPART (arg0);
12171 imag0 = TREE_IMAGPART (arg0);
12174 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12176 real1 = TREE_OPERAND (arg1, 0);
12177 imag1 = TREE_OPERAND (arg1, 1);
12179 else
12181 real1 = TREE_REALPART (arg1);
12182 imag1 = TREE_IMAGPART (arg1);
12185 rcond = fold_binary (code, type, real0, real1);
12186 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12188 if (integer_zerop (rcond))
12190 if (code == EQ_EXPR)
12191 return omit_two_operands (type, boolean_false_node,
12192 imag0, imag1);
12193 return fold_build2 (NE_EXPR, type, imag0, imag1);
12195 else
12197 if (code == NE_EXPR)
12198 return omit_two_operands (type, boolean_true_node,
12199 imag0, imag1);
12200 return fold_build2 (EQ_EXPR, type, imag0, imag1);
12204 icond = fold_binary (code, type, imag0, imag1);
12205 if (icond && TREE_CODE (icond) == INTEGER_CST)
12207 if (integer_zerop (icond))
12209 if (code == EQ_EXPR)
12210 return omit_two_operands (type, boolean_false_node,
12211 real0, real1);
12212 return fold_build2 (NE_EXPR, type, real0, real1);
12214 else
12216 if (code == NE_EXPR)
12217 return omit_two_operands (type, boolean_true_node,
12218 real0, real1);
12219 return fold_build2 (EQ_EXPR, type, real0, real1);
12224 return NULL_TREE;
12226 case LT_EXPR:
12227 case GT_EXPR:
12228 case LE_EXPR:
12229 case GE_EXPR:
12230 tem = fold_comparison (code, type, op0, op1);
12231 if (tem != NULL_TREE)
12232 return tem;
12234 /* Transform comparisons of the form X +- C CMP X. */
12235 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12236 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12237 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12238 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12239 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12242 tree arg01 = TREE_OPERAND (arg0, 1);
12243 enum tree_code code0 = TREE_CODE (arg0);
12244 int is_positive;
12246 if (TREE_CODE (arg01) == REAL_CST)
12247 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12248 else
12249 is_positive = tree_int_cst_sgn (arg01);
12251 /* (X - c) > X becomes false. */
12252 if (code == GT_EXPR
12253 && ((code0 == MINUS_EXPR && is_positive >= 0)
12254 || (code0 == PLUS_EXPR && is_positive <= 0)))
12256 if (TREE_CODE (arg01) == INTEGER_CST
12257 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12258 fold_overflow_warning (("assuming signed overflow does not "
12259 "occur when assuming that (X - c) > X "
12260 "is always false"),
12261 WARN_STRICT_OVERFLOW_ALL);
12262 return constant_boolean_node (0, type);
12265 /* Likewise (X + c) < X becomes false. */
12266 if (code == LT_EXPR
12267 && ((code0 == PLUS_EXPR && is_positive >= 0)
12268 || (code0 == MINUS_EXPR && is_positive <= 0)))
12270 if (TREE_CODE (arg01) == INTEGER_CST
12271 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12272 fold_overflow_warning (("assuming signed overflow does not "
12273 "occur when assuming that "
12274 "(X + c) < X is always false"),
12275 WARN_STRICT_OVERFLOW_ALL);
12276 return constant_boolean_node (0, type);
12279 /* Convert (X - c) <= X to true. */
12280 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12281 && code == LE_EXPR
12282 && ((code0 == MINUS_EXPR && is_positive >= 0)
12283 || (code0 == PLUS_EXPR && is_positive <= 0)))
12285 if (TREE_CODE (arg01) == INTEGER_CST
12286 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12287 fold_overflow_warning (("assuming signed overflow does not "
12288 "occur when assuming that "
12289 "(X - c) <= X is always true"),
12290 WARN_STRICT_OVERFLOW_ALL);
12291 return constant_boolean_node (1, type);
12294 /* Convert (X + c) >= X to true. */
12295 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12296 && code == GE_EXPR
12297 && ((code0 == PLUS_EXPR && is_positive >= 0)
12298 || (code0 == MINUS_EXPR && is_positive <= 0)))
12300 if (TREE_CODE (arg01) == INTEGER_CST
12301 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12302 fold_overflow_warning (("assuming signed overflow does not "
12303 "occur when assuming that "
12304 "(X + c) >= X is always true"),
12305 WARN_STRICT_OVERFLOW_ALL);
12306 return constant_boolean_node (1, type);
12309 if (TREE_CODE (arg01) == INTEGER_CST)
12311 /* Convert X + c > X and X - c < X to true for integers. */
12312 if (code == GT_EXPR
12313 && ((code0 == PLUS_EXPR && is_positive > 0)
12314 || (code0 == MINUS_EXPR && is_positive < 0)))
12316 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12317 fold_overflow_warning (("assuming signed overflow does "
12318 "not occur when assuming that "
12319 "(X + c) > X is always true"),
12320 WARN_STRICT_OVERFLOW_ALL);
12321 return constant_boolean_node (1, type);
12324 if (code == LT_EXPR
12325 && ((code0 == MINUS_EXPR && is_positive > 0)
12326 || (code0 == PLUS_EXPR && is_positive < 0)))
12328 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12329 fold_overflow_warning (("assuming signed overflow does "
12330 "not occur when assuming that "
12331 "(X - c) < X is always true"),
12332 WARN_STRICT_OVERFLOW_ALL);
12333 return constant_boolean_node (1, type);
12336 /* Convert X + c <= X and X - c >= X to false for integers. */
12337 if (code == LE_EXPR
12338 && ((code0 == PLUS_EXPR && is_positive > 0)
12339 || (code0 == MINUS_EXPR && is_positive < 0)))
12341 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12342 fold_overflow_warning (("assuming signed overflow does "
12343 "not occur when assuming that "
12344 "(X + c) <= X is always false"),
12345 WARN_STRICT_OVERFLOW_ALL);
12346 return constant_boolean_node (0, type);
12349 if (code == GE_EXPR
12350 && ((code0 == MINUS_EXPR && is_positive > 0)
12351 || (code0 == PLUS_EXPR && is_positive < 0)))
12353 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12354 fold_overflow_warning (("assuming signed overflow does "
12355 "not occur when assuming that "
12356 "(X - c) >= X is always false"),
12357 WARN_STRICT_OVERFLOW_ALL);
12358 return constant_boolean_node (0, type);
12363 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
12364 This transformation affects the cases which are handled in later
12365 optimizations involving comparisons with non-negative constants. */
12366 if (TREE_CODE (arg1) == INTEGER_CST
12367 && TREE_CODE (arg0) != INTEGER_CST
12368 && tree_int_cst_sgn (arg1) > 0)
12370 if (code == GE_EXPR)
12372 arg1 = const_binop (MINUS_EXPR, arg1,
12373 build_int_cst (TREE_TYPE (arg1), 1), 0);
12374 return fold_build2 (GT_EXPR, type, arg0,
12375 fold_convert (TREE_TYPE (arg0), arg1));
12377 if (code == LT_EXPR)
12379 arg1 = const_binop (MINUS_EXPR, arg1,
12380 build_int_cst (TREE_TYPE (arg1), 1), 0);
12381 return fold_build2 (LE_EXPR, type, arg0,
12382 fold_convert (TREE_TYPE (arg0), arg1));
12386 /* Comparisons with the highest or lowest possible integer of
12387 the specified precision will have known values. */
12389 tree arg1_type = TREE_TYPE (arg1);
12390 unsigned int width = TYPE_PRECISION (arg1_type);
12392 if (TREE_CODE (arg1) == INTEGER_CST
12393 && !TREE_OVERFLOW (arg1)
12394 && width <= 2 * HOST_BITS_PER_WIDE_INT
12395 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12397 HOST_WIDE_INT signed_max_hi;
12398 unsigned HOST_WIDE_INT signed_max_lo;
12399 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12401 if (width <= HOST_BITS_PER_WIDE_INT)
12403 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12404 - 1;
12405 signed_max_hi = 0;
12406 max_hi = 0;
12408 if (TYPE_UNSIGNED (arg1_type))
12410 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12411 min_lo = 0;
12412 min_hi = 0;
12414 else
12416 max_lo = signed_max_lo;
12417 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12418 min_hi = -1;
12421 else
12423 width -= HOST_BITS_PER_WIDE_INT;
12424 signed_max_lo = -1;
12425 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12426 - 1;
12427 max_lo = -1;
12428 min_lo = 0;
12430 if (TYPE_UNSIGNED (arg1_type))
12432 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12433 min_hi = 0;
12435 else
12437 max_hi = signed_max_hi;
12438 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12442 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12443 && TREE_INT_CST_LOW (arg1) == max_lo)
12444 switch (code)
12446 case GT_EXPR:
12447 return omit_one_operand (type, integer_zero_node, arg0);
12449 case GE_EXPR:
12450 return fold_build2 (EQ_EXPR, type, op0, op1);
12452 case LE_EXPR:
12453 return omit_one_operand (type, integer_one_node, arg0);
12455 case LT_EXPR:
12456 return fold_build2 (NE_EXPR, type, op0, op1);
12458 /* The GE_EXPR and LT_EXPR cases above are not normally
12459 reached because of previous transformations. */
12461 default:
12462 break;
12464 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12465 == max_hi
12466 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12467 switch (code)
12469 case GT_EXPR:
12470 arg1 = const_binop (PLUS_EXPR, arg1,
12471 build_int_cst (TREE_TYPE (arg1), 1), 0);
12472 return fold_build2 (EQ_EXPR, type,
12473 fold_convert (TREE_TYPE (arg1), arg0),
12474 arg1);
12475 case LE_EXPR:
12476 arg1 = const_binop (PLUS_EXPR, arg1,
12477 build_int_cst (TREE_TYPE (arg1), 1), 0);
12478 return fold_build2 (NE_EXPR, type,
12479 fold_convert (TREE_TYPE (arg1), arg0),
12480 arg1);
12481 default:
12482 break;
12484 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12485 == min_hi
12486 && TREE_INT_CST_LOW (arg1) == min_lo)
12487 switch (code)
12489 case LT_EXPR:
12490 return omit_one_operand (type, integer_zero_node, arg0);
12492 case LE_EXPR:
12493 return fold_build2 (EQ_EXPR, type, op0, op1);
12495 case GE_EXPR:
12496 return omit_one_operand (type, integer_one_node, arg0);
12498 case GT_EXPR:
12499 return fold_build2 (NE_EXPR, type, op0, op1);
12501 default:
12502 break;
12504 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12505 == min_hi
12506 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
12507 switch (code)
12509 case GE_EXPR:
12510 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12511 return fold_build2 (NE_EXPR, type,
12512 fold_convert (TREE_TYPE (arg1), arg0),
12513 arg1);
12514 case LT_EXPR:
12515 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12516 return fold_build2 (EQ_EXPR, type,
12517 fold_convert (TREE_TYPE (arg1), arg0),
12518 arg1);
12519 default:
12520 break;
12523 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
12524 && TREE_INT_CST_LOW (arg1) == signed_max_lo
12525 && TYPE_UNSIGNED (arg1_type)
12526 /* We will flip the signedness of the comparison operator
12527 associated with the mode of arg1, so the sign bit is
12528 specified by this mode. Check that arg1 is the signed
12529 max associated with this sign bit. */
12530 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
12531 /* signed_type does not work on pointer types. */
12532 && INTEGRAL_TYPE_P (arg1_type))
12534 /* The following case also applies to X < signed_max+1
12535 and X >= signed_max+1 because previous transformations. */
12536 if (code == LE_EXPR || code == GT_EXPR)
12538 tree st;
12539 st = signed_type_for (TREE_TYPE (arg1));
12540 return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
12541 type, fold_convert (st, arg0),
12542 build_int_cst (st, 0));
12548 /* If we are comparing an ABS_EXPR with a constant, we can
12549 convert all the cases into explicit comparisons, but they may
12550 well not be faster than doing the ABS and one comparison.
12551 But ABS (X) <= C is a range comparison, which becomes a subtraction
12552 and a comparison, and is probably faster. */
12553 if (code == LE_EXPR
12554 && TREE_CODE (arg1) == INTEGER_CST
12555 && TREE_CODE (arg0) == ABS_EXPR
12556 && ! TREE_SIDE_EFFECTS (arg0)
12557 && (0 != (tem = negate_expr (arg1)))
12558 && TREE_CODE (tem) == INTEGER_CST
12559 && !TREE_OVERFLOW (tem))
12560 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12561 build2 (GE_EXPR, type,
12562 TREE_OPERAND (arg0, 0), tem),
12563 build2 (LE_EXPR, type,
12564 TREE_OPERAND (arg0, 0), arg1));
12566 /* Convert ABS_EXPR<x> >= 0 to true. */
12567 strict_overflow_p = false;
12568 if (code == GE_EXPR
12569 && (integer_zerop (arg1)
12570 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
12571 && real_zerop (arg1)))
12572 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12574 if (strict_overflow_p)
12575 fold_overflow_warning (("assuming signed overflow does not occur "
12576 "when simplifying comparison of "
12577 "absolute value and zero"),
12578 WARN_STRICT_OVERFLOW_CONDITIONAL);
12579 return omit_one_operand (type, integer_one_node, arg0);
12582 /* Convert ABS_EXPR<x> < 0 to false. */
12583 strict_overflow_p = false;
12584 if (code == LT_EXPR
12585 && (integer_zerop (arg1) || real_zerop (arg1))
12586 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12588 if (strict_overflow_p)
12589 fold_overflow_warning (("assuming signed overflow does not occur "
12590 "when simplifying comparison of "
12591 "absolute value and zero"),
12592 WARN_STRICT_OVERFLOW_CONDITIONAL);
12593 return omit_one_operand (type, integer_zero_node, arg0);
12596 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12597 and similarly for >= into !=. */
12598 if ((code == LT_EXPR || code == GE_EXPR)
12599 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12600 && TREE_CODE (arg1) == LSHIFT_EXPR
12601 && integer_onep (TREE_OPERAND (arg1, 0)))
12602 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12603 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12604 TREE_OPERAND (arg1, 1)),
12605 build_int_cst (TREE_TYPE (arg0), 0));
12607 if ((code == LT_EXPR || code == GE_EXPR)
12608 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12609 && (TREE_CODE (arg1) == NOP_EXPR
12610 || TREE_CODE (arg1) == CONVERT_EXPR)
12611 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12612 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12613 return
12614 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12615 fold_convert (TREE_TYPE (arg0),
12616 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12617 TREE_OPERAND (TREE_OPERAND (arg1, 0),
12618 1))),
12619 build_int_cst (TREE_TYPE (arg0), 0));
12621 return NULL_TREE;
12623 case UNORDERED_EXPR:
12624 case ORDERED_EXPR:
12625 case UNLT_EXPR:
12626 case UNLE_EXPR:
12627 case UNGT_EXPR:
12628 case UNGE_EXPR:
12629 case UNEQ_EXPR:
12630 case LTGT_EXPR:
12631 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
12633 t1 = fold_relational_const (code, type, arg0, arg1);
12634 if (t1 != NULL_TREE)
12635 return t1;
12638 /* If the first operand is NaN, the result is constant. */
12639 if (TREE_CODE (arg0) == REAL_CST
12640 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
12641 && (code != LTGT_EXPR || ! flag_trapping_math))
12643 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12644 ? integer_zero_node
12645 : integer_one_node;
12646 return omit_one_operand (type, t1, arg1);
12649 /* If the second operand is NaN, the result is constant. */
12650 if (TREE_CODE (arg1) == REAL_CST
12651 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
12652 && (code != LTGT_EXPR || ! flag_trapping_math))
12654 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12655 ? integer_zero_node
12656 : integer_one_node;
12657 return omit_one_operand (type, t1, arg0);
12660 /* Simplify unordered comparison of something with itself. */
12661 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
12662 && operand_equal_p (arg0, arg1, 0))
12663 return constant_boolean_node (1, type);
12665 if (code == LTGT_EXPR
12666 && !flag_trapping_math
12667 && operand_equal_p (arg0, arg1, 0))
12668 return constant_boolean_node (0, type);
12670 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12672 tree targ0 = strip_float_extensions (arg0);
12673 tree targ1 = strip_float_extensions (arg1);
12674 tree newtype = TREE_TYPE (targ0);
12676 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12677 newtype = TREE_TYPE (targ1);
12679 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12680 return fold_build2 (code, type, fold_convert (newtype, targ0),
12681 fold_convert (newtype, targ1));
12684 return NULL_TREE;
12686 case COMPOUND_EXPR:
12687 /* When pedantic, a compound expression can be neither an lvalue
12688 nor an integer constant expression. */
12689 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12690 return NULL_TREE;
12691 /* Don't let (0, 0) be null pointer constant. */
12692 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
12693 : fold_convert (type, arg1);
12694 return pedantic_non_lvalue (tem);
12696 case COMPLEX_EXPR:
12697 if ((TREE_CODE (arg0) == REAL_CST
12698 && TREE_CODE (arg1) == REAL_CST)
12699 || (TREE_CODE (arg0) == INTEGER_CST
12700 && TREE_CODE (arg1) == INTEGER_CST))
12701 return build_complex (type, arg0, arg1);
12702 return NULL_TREE;
12704 case ASSERT_EXPR:
12705 /* An ASSERT_EXPR should never be passed to fold_binary. */
12706 gcc_unreachable ();
12708 default:
12709 return NULL_TREE;
12710 } /* switch (code) */
12713 /* Callback for walk_tree, looking for LABEL_EXPR.
12714 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
12715 Do not check the sub-tree of GOTO_EXPR. */
12717 static tree
12718 contains_label_1 (tree *tp,
12719 int *walk_subtrees,
12720 void *data ATTRIBUTE_UNUSED)
12722 switch (TREE_CODE (*tp))
12724 case LABEL_EXPR:
12725 return *tp;
12726 case GOTO_EXPR:
12727 *walk_subtrees = 0;
12728 /* no break */
12729 default:
12730 return NULL_TREE;
12734 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
12735 accessible from outside the sub-tree. Returns NULL_TREE if no
12736 addressable label is found. */
12738 static bool
12739 contains_label_p (tree st)
12741 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
12744 /* Fold a ternary expression of code CODE and type TYPE with operands
12745 OP0, OP1, and OP2. Return the folded expression if folding is
12746 successful. Otherwise, return NULL_TREE. */
12748 tree
12749 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
12751 tree tem;
12752 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
12753 enum tree_code_class kind = TREE_CODE_CLASS (code);
12755 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12756 && TREE_CODE_LENGTH (code) == 3);
12758 /* Strip any conversions that don't change the mode. This is safe
12759 for every expression, except for a comparison expression because
12760 its signedness is derived from its operands. So, in the latter
12761 case, only strip conversions that don't change the signedness.
12763 Note that this is done as an internal manipulation within the
12764 constant folder, in order to find the simplest representation of
12765 the arguments so that their form can be studied. In any cases,
12766 the appropriate type conversions should be put back in the tree
12767 that will get out of the constant folder. */
12768 if (op0)
12770 arg0 = op0;
12771 STRIP_NOPS (arg0);
12774 if (op1)
12776 arg1 = op1;
12777 STRIP_NOPS (arg1);
12780 switch (code)
12782 case COMPONENT_REF:
12783 if (TREE_CODE (arg0) == CONSTRUCTOR
12784 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12786 unsigned HOST_WIDE_INT idx;
12787 tree field, value;
12788 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12789 if (field == arg1)
12790 return value;
12792 return NULL_TREE;
12794 case COND_EXPR:
12795 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12796 so all simple results must be passed through pedantic_non_lvalue. */
12797 if (TREE_CODE (arg0) == INTEGER_CST)
12799 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12800 tem = integer_zerop (arg0) ? op2 : op1;
12801 /* Only optimize constant conditions when the selected branch
12802 has the same type as the COND_EXPR. This avoids optimizing
12803 away "c ? x : throw", where the throw has a void type.
12804 Avoid throwing away that operand which contains label. */
12805 if ((!TREE_SIDE_EFFECTS (unused_op)
12806 || !contains_label_p (unused_op))
12807 && (! VOID_TYPE_P (TREE_TYPE (tem))
12808 || VOID_TYPE_P (type)))
12809 return pedantic_non_lvalue (tem);
12810 return NULL_TREE;
12812 if (operand_equal_p (arg1, op2, 0))
12813 return pedantic_omit_one_operand (type, arg1, arg0);
12815 /* If we have A op B ? A : C, we may be able to convert this to a
12816 simpler expression, depending on the operation and the values
12817 of B and C. Signed zeros prevent all of these transformations,
12818 for reasons given above each one.
12820 Also try swapping the arguments and inverting the conditional. */
12821 if (COMPARISON_CLASS_P (arg0)
12822 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12823 arg1, TREE_OPERAND (arg0, 1))
12824 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
12826 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
12827 if (tem)
12828 return tem;
12831 if (COMPARISON_CLASS_P (arg0)
12832 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12833 op2,
12834 TREE_OPERAND (arg0, 1))
12835 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
12837 tem = fold_truth_not_expr (arg0);
12838 if (tem && COMPARISON_CLASS_P (tem))
12840 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
12841 if (tem)
12842 return tem;
12846 /* If the second operand is simpler than the third, swap them
12847 since that produces better jump optimization results. */
12848 if (truth_value_p (TREE_CODE (arg0))
12849 && tree_swap_operands_p (op1, op2, false))
12851 /* See if this can be inverted. If it can't, possibly because
12852 it was a floating-point inequality comparison, don't do
12853 anything. */
12854 tem = fold_truth_not_expr (arg0);
12855 if (tem)
12856 return fold_build3 (code, type, tem, op2, op1);
12859 /* Convert A ? 1 : 0 to simply A. */
12860 if (integer_onep (op1)
12861 && integer_zerop (op2)
12862 /* If we try to convert OP0 to our type, the
12863 call to fold will try to move the conversion inside
12864 a COND, which will recurse. In that case, the COND_EXPR
12865 is probably the best choice, so leave it alone. */
12866 && type == TREE_TYPE (arg0))
12867 return pedantic_non_lvalue (arg0);
12869 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12870 over COND_EXPR in cases such as floating point comparisons. */
12871 if (integer_zerop (op1)
12872 && integer_onep (op2)
12873 && truth_value_p (TREE_CODE (arg0)))
12874 return pedantic_non_lvalue (fold_convert (type,
12875 invert_truthvalue (arg0)));
12877 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12878 if (TREE_CODE (arg0) == LT_EXPR
12879 && integer_zerop (TREE_OPERAND (arg0, 1))
12880 && integer_zerop (op2)
12881 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12883 /* sign_bit_p only checks ARG1 bits within A's precision.
12884 If <sign bit of A> has wider type than A, bits outside
12885 of A's precision in <sign bit of A> need to be checked.
12886 If they are all 0, this optimization needs to be done
12887 in unsigned A's type, if they are all 1 in signed A's type,
12888 otherwise this can't be done. */
12889 if (TYPE_PRECISION (TREE_TYPE (tem))
12890 < TYPE_PRECISION (TREE_TYPE (arg1))
12891 && TYPE_PRECISION (TREE_TYPE (tem))
12892 < TYPE_PRECISION (type))
12894 unsigned HOST_WIDE_INT mask_lo;
12895 HOST_WIDE_INT mask_hi;
12896 int inner_width, outer_width;
12897 tree tem_type;
12899 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12900 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12901 if (outer_width > TYPE_PRECISION (type))
12902 outer_width = TYPE_PRECISION (type);
12904 if (outer_width > HOST_BITS_PER_WIDE_INT)
12906 mask_hi = ((unsigned HOST_WIDE_INT) -1
12907 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
12908 mask_lo = -1;
12910 else
12912 mask_hi = 0;
12913 mask_lo = ((unsigned HOST_WIDE_INT) -1
12914 >> (HOST_BITS_PER_WIDE_INT - outer_width));
12916 if (inner_width > HOST_BITS_PER_WIDE_INT)
12918 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
12919 >> (HOST_BITS_PER_WIDE_INT - inner_width));
12920 mask_lo = 0;
12922 else
12923 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
12924 >> (HOST_BITS_PER_WIDE_INT - inner_width));
12926 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
12927 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
12929 tem_type = signed_type_for (TREE_TYPE (tem));
12930 tem = fold_convert (tem_type, tem);
12932 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
12933 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
12935 tem_type = unsigned_type_for (TREE_TYPE (tem));
12936 tem = fold_convert (tem_type, tem);
12938 else
12939 tem = NULL;
12942 if (tem)
12943 return fold_convert (type,
12944 fold_build2 (BIT_AND_EXPR,
12945 TREE_TYPE (tem), tem,
12946 fold_convert (TREE_TYPE (tem),
12947 arg1)));
12950 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12951 already handled above. */
12952 if (TREE_CODE (arg0) == BIT_AND_EXPR
12953 && integer_onep (TREE_OPERAND (arg0, 1))
12954 && integer_zerop (op2)
12955 && integer_pow2p (arg1))
12957 tree tem = TREE_OPERAND (arg0, 0);
12958 STRIP_NOPS (tem);
12959 if (TREE_CODE (tem) == RSHIFT_EXPR
12960 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
12961 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
12962 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
12963 return fold_build2 (BIT_AND_EXPR, type,
12964 TREE_OPERAND (tem, 0), arg1);
12967 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12968 is probably obsolete because the first operand should be a
12969 truth value (that's why we have the two cases above), but let's
12970 leave it in until we can confirm this for all front-ends. */
12971 if (integer_zerop (op2)
12972 && TREE_CODE (arg0) == NE_EXPR
12973 && integer_zerop (TREE_OPERAND (arg0, 1))
12974 && integer_pow2p (arg1)
12975 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12976 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12977 arg1, OEP_ONLY_CONST))
12978 return pedantic_non_lvalue (fold_convert (type,
12979 TREE_OPERAND (arg0, 0)));
12981 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12982 if (integer_zerop (op2)
12983 && truth_value_p (TREE_CODE (arg0))
12984 && truth_value_p (TREE_CODE (arg1)))
12985 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12986 fold_convert (type, arg0),
12987 arg1);
12989 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12990 if (integer_onep (op2)
12991 && truth_value_p (TREE_CODE (arg0))
12992 && truth_value_p (TREE_CODE (arg1)))
12994 /* Only perform transformation if ARG0 is easily inverted. */
12995 tem = fold_truth_not_expr (arg0);
12996 if (tem)
12997 return fold_build2 (TRUTH_ORIF_EXPR, type,
12998 fold_convert (type, tem),
12999 arg1);
13002 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13003 if (integer_zerop (arg1)
13004 && truth_value_p (TREE_CODE (arg0))
13005 && truth_value_p (TREE_CODE (op2)))
13007 /* Only perform transformation if ARG0 is easily inverted. */
13008 tem = fold_truth_not_expr (arg0);
13009 if (tem)
13010 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13011 fold_convert (type, tem),
13012 op2);
13015 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13016 if (integer_onep (arg1)
13017 && truth_value_p (TREE_CODE (arg0))
13018 && truth_value_p (TREE_CODE (op2)))
13019 return fold_build2 (TRUTH_ORIF_EXPR, type,
13020 fold_convert (type, arg0),
13021 op2);
13023 return NULL_TREE;
13025 case CALL_EXPR:
13026 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13027 of fold_ternary on them. */
13028 gcc_unreachable ();
13030 case BIT_FIELD_REF:
13031 if ((TREE_CODE (arg0) == VECTOR_CST
13032 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13033 && type == TREE_TYPE (TREE_TYPE (arg0))
13034 && host_integerp (arg1, 1)
13035 && host_integerp (op2, 1))
13037 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13038 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13040 if (width != 0
13041 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13042 && (idx % width) == 0
13043 && (idx = idx / width)
13044 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13046 tree elements = NULL_TREE;
13048 if (TREE_CODE (arg0) == VECTOR_CST)
13049 elements = TREE_VECTOR_CST_ELTS (arg0);
13050 else
13052 unsigned HOST_WIDE_INT idx;
13053 tree value;
13055 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13056 elements = tree_cons (NULL_TREE, value, elements);
13058 while (idx-- > 0 && elements)
13059 elements = TREE_CHAIN (elements);
13060 if (elements)
13061 return TREE_VALUE (elements);
13062 else
13063 return fold_convert (type, integer_zero_node);
13066 return NULL_TREE;
13068 default:
13069 return NULL_TREE;
13070 } /* switch (code) */
13073 /* Perform constant folding and related simplification of EXPR.
13074 The related simplifications include x*1 => x, x*0 => 0, etc.,
13075 and application of the associative law.
13076 NOP_EXPR conversions may be removed freely (as long as we
13077 are careful not to change the type of the overall expression).
13078 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13079 but we can constant-fold them if they have constant operands. */
13081 #ifdef ENABLE_FOLD_CHECKING
13082 # define fold(x) fold_1 (x)
13083 static tree fold_1 (tree);
13084 static
13085 #endif
13086 tree
13087 fold (tree expr)
13089 const tree t = expr;
13090 enum tree_code code = TREE_CODE (t);
13091 enum tree_code_class kind = TREE_CODE_CLASS (code);
13092 tree tem;
13094 /* Return right away if a constant. */
13095 if (kind == tcc_constant)
13096 return t;
13098 /* CALL_EXPR-like objects with variable numbers of operands are
13099 treated specially. */
13100 if (kind == tcc_vl_exp)
13102 if (code == CALL_EXPR)
13104 tem = fold_call_expr (expr, false);
13105 return tem ? tem : expr;
13107 return expr;
13110 if (IS_EXPR_CODE_CLASS (kind)
13111 || IS_GIMPLE_STMT_CODE_CLASS (kind))
13113 tree type = TREE_TYPE (t);
13114 tree op0, op1, op2;
13116 switch (TREE_CODE_LENGTH (code))
13118 case 1:
13119 op0 = TREE_OPERAND (t, 0);
13120 tem = fold_unary (code, type, op0);
13121 return tem ? tem : expr;
13122 case 2:
13123 op0 = TREE_OPERAND (t, 0);
13124 op1 = TREE_OPERAND (t, 1);
13125 tem = fold_binary (code, type, op0, op1);
13126 return tem ? tem : expr;
13127 case 3:
13128 op0 = TREE_OPERAND (t, 0);
13129 op1 = TREE_OPERAND (t, 1);
13130 op2 = TREE_OPERAND (t, 2);
13131 tem = fold_ternary (code, type, op0, op1, op2);
13132 return tem ? tem : expr;
13133 default:
13134 break;
13138 switch (code)
13140 case CONST_DECL:
13141 return fold (DECL_INITIAL (t));
13143 default:
13144 return t;
13145 } /* switch (code) */
13148 #ifdef ENABLE_FOLD_CHECKING
13149 #undef fold
13151 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13152 static void fold_check_failed (const_tree, const_tree);
13153 void print_fold_checksum (const_tree);
13155 /* When --enable-checking=fold, compute a digest of expr before
13156 and after actual fold call to see if fold did not accidentally
13157 change original expr. */
13159 tree
13160 fold (tree expr)
13162 tree ret;
13163 struct md5_ctx ctx;
13164 unsigned char checksum_before[16], checksum_after[16];
13165 htab_t ht;
13167 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13168 md5_init_ctx (&ctx);
13169 fold_checksum_tree (expr, &ctx, ht);
13170 md5_finish_ctx (&ctx, checksum_before);
13171 htab_empty (ht);
13173 ret = fold_1 (expr);
13175 md5_init_ctx (&ctx);
13176 fold_checksum_tree (expr, &ctx, ht);
13177 md5_finish_ctx (&ctx, checksum_after);
13178 htab_delete (ht);
13180 if (memcmp (checksum_before, checksum_after, 16))
13181 fold_check_failed (expr, ret);
13183 return ret;
13186 void
13187 print_fold_checksum (const_tree expr)
13189 struct md5_ctx ctx;
13190 unsigned char checksum[16], cnt;
13191 htab_t ht;
13193 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13194 md5_init_ctx (&ctx);
13195 fold_checksum_tree (expr, &ctx, ht);
13196 md5_finish_ctx (&ctx, checksum);
13197 htab_delete (ht);
13198 for (cnt = 0; cnt < 16; ++cnt)
13199 fprintf (stderr, "%02x", checksum[cnt]);
13200 putc ('\n', stderr);
13203 static void
13204 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13206 internal_error ("fold check: original tree changed by fold");
13209 static void
13210 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13212 const void **slot;
13213 enum tree_code code;
13214 struct tree_function_decl buf;
13215 int i, len;
13217 recursive_label:
13219 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13220 <= sizeof (struct tree_function_decl))
13221 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13222 if (expr == NULL)
13223 return;
13224 slot = (const void **) htab_find_slot (ht, expr, INSERT);
13225 if (*slot != NULL)
13226 return;
13227 *slot = expr;
13228 code = TREE_CODE (expr);
13229 if (TREE_CODE_CLASS (code) == tcc_declaration
13230 && DECL_ASSEMBLER_NAME_SET_P (expr))
13232 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13233 memcpy ((char *) &buf, expr, tree_size (expr));
13234 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13235 expr = (tree) &buf;
13237 else if (TREE_CODE_CLASS (code) == tcc_type
13238 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
13239 || TYPE_CACHED_VALUES_P (expr)
13240 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
13242 /* Allow these fields to be modified. */
13243 tree tmp;
13244 memcpy ((char *) &buf, expr, tree_size (expr));
13245 expr = tmp = (tree) &buf;
13246 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13247 TYPE_POINTER_TO (tmp) = NULL;
13248 TYPE_REFERENCE_TO (tmp) = NULL;
13249 if (TYPE_CACHED_VALUES_P (tmp))
13251 TYPE_CACHED_VALUES_P (tmp) = 0;
13252 TYPE_CACHED_VALUES (tmp) = NULL;
13255 md5_process_bytes (expr, tree_size (expr), ctx);
13256 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13257 if (TREE_CODE_CLASS (code) != tcc_type
13258 && TREE_CODE_CLASS (code) != tcc_declaration
13259 && code != TREE_LIST
13260 && code != SSA_NAME)
13261 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13262 switch (TREE_CODE_CLASS (code))
13264 case tcc_constant:
13265 switch (code)
13267 case STRING_CST:
13268 md5_process_bytes (TREE_STRING_POINTER (expr),
13269 TREE_STRING_LENGTH (expr), ctx);
13270 break;
13271 case COMPLEX_CST:
13272 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13273 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13274 break;
13275 case VECTOR_CST:
13276 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13277 break;
13278 default:
13279 break;
13281 break;
13282 case tcc_exceptional:
13283 switch (code)
13285 case TREE_LIST:
13286 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13287 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13288 expr = TREE_CHAIN (expr);
13289 goto recursive_label;
13290 break;
13291 case TREE_VEC:
13292 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13293 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13294 break;
13295 default:
13296 break;
13298 break;
13299 case tcc_expression:
13300 case tcc_reference:
13301 case tcc_comparison:
13302 case tcc_unary:
13303 case tcc_binary:
13304 case tcc_statement:
13305 case tcc_vl_exp:
13306 len = TREE_OPERAND_LENGTH (expr);
13307 for (i = 0; i < len; ++i)
13308 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13309 break;
13310 case tcc_declaration:
13311 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13312 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13313 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13315 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13316 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13317 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13318 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13319 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13321 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13322 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13324 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13326 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13327 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13328 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13330 break;
13331 case tcc_type:
13332 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13333 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13334 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13335 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13336 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13337 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13338 if (INTEGRAL_TYPE_P (expr)
13339 || SCALAR_FLOAT_TYPE_P (expr))
13341 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13342 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13344 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13345 if (TREE_CODE (expr) == RECORD_TYPE
13346 || TREE_CODE (expr) == UNION_TYPE
13347 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13348 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13349 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13350 break;
13351 default:
13352 break;
13356 /* Helper function for outputting the checksum of a tree T. When
13357 debugging with gdb, you can "define mynext" to be "next" followed
13358 by "call debug_fold_checksum (op0)", then just trace down till the
13359 outputs differ. */
13361 void
13362 debug_fold_checksum (const_tree t)
13364 int i;
13365 unsigned char checksum[16];
13366 struct md5_ctx ctx;
13367 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13369 md5_init_ctx (&ctx);
13370 fold_checksum_tree (t, &ctx, ht);
13371 md5_finish_ctx (&ctx, checksum);
13372 htab_empty (ht);
13374 for (i = 0; i < 16; i++)
13375 fprintf (stderr, "%d ", checksum[i]);
13377 fprintf (stderr, "\n");
13380 #endif
13382 /* Fold a unary tree expression with code CODE of type TYPE with an
13383 operand OP0. Return a folded expression if successful. Otherwise,
13384 return a tree expression with code CODE of type TYPE with an
13385 operand OP0. */
13387 tree
13388 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13390 tree tem;
13391 #ifdef ENABLE_FOLD_CHECKING
13392 unsigned char checksum_before[16], checksum_after[16];
13393 struct md5_ctx ctx;
13394 htab_t ht;
13396 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13397 md5_init_ctx (&ctx);
13398 fold_checksum_tree (op0, &ctx, ht);
13399 md5_finish_ctx (&ctx, checksum_before);
13400 htab_empty (ht);
13401 #endif
13403 tem = fold_unary (code, type, op0);
13404 if (!tem)
13405 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
13407 #ifdef ENABLE_FOLD_CHECKING
13408 md5_init_ctx (&ctx);
13409 fold_checksum_tree (op0, &ctx, ht);
13410 md5_finish_ctx (&ctx, checksum_after);
13411 htab_delete (ht);
13413 if (memcmp (checksum_before, checksum_after, 16))
13414 fold_check_failed (op0, tem);
13415 #endif
13416 return tem;
13419 /* Fold a binary tree expression with code CODE of type TYPE with
13420 operands OP0 and OP1. Return a folded expression if successful.
13421 Otherwise, return a tree expression with code CODE of type TYPE
13422 with operands OP0 and OP1. */
13424 tree
13425 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
13426 MEM_STAT_DECL)
13428 tree tem;
13429 #ifdef ENABLE_FOLD_CHECKING
13430 unsigned char checksum_before_op0[16],
13431 checksum_before_op1[16],
13432 checksum_after_op0[16],
13433 checksum_after_op1[16];
13434 struct md5_ctx ctx;
13435 htab_t ht;
13437 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13438 md5_init_ctx (&ctx);
13439 fold_checksum_tree (op0, &ctx, ht);
13440 md5_finish_ctx (&ctx, checksum_before_op0);
13441 htab_empty (ht);
13443 md5_init_ctx (&ctx);
13444 fold_checksum_tree (op1, &ctx, ht);
13445 md5_finish_ctx (&ctx, checksum_before_op1);
13446 htab_empty (ht);
13447 #endif
13449 tem = fold_binary (code, type, op0, op1);
13450 if (!tem)
13451 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
13453 #ifdef ENABLE_FOLD_CHECKING
13454 md5_init_ctx (&ctx);
13455 fold_checksum_tree (op0, &ctx, ht);
13456 md5_finish_ctx (&ctx, checksum_after_op0);
13457 htab_empty (ht);
13459 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13460 fold_check_failed (op0, tem);
13462 md5_init_ctx (&ctx);
13463 fold_checksum_tree (op1, &ctx, ht);
13464 md5_finish_ctx (&ctx, checksum_after_op1);
13465 htab_delete (ht);
13467 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13468 fold_check_failed (op1, tem);
13469 #endif
13470 return tem;
13473 /* Fold a ternary tree expression with code CODE of type TYPE with
13474 operands OP0, OP1, and OP2. Return a folded expression if
13475 successful. Otherwise, return a tree expression with code CODE of
13476 type TYPE with operands OP0, OP1, and OP2. */
13478 tree
13479 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
13480 MEM_STAT_DECL)
13482 tree tem;
13483 #ifdef ENABLE_FOLD_CHECKING
13484 unsigned char checksum_before_op0[16],
13485 checksum_before_op1[16],
13486 checksum_before_op2[16],
13487 checksum_after_op0[16],
13488 checksum_after_op1[16],
13489 checksum_after_op2[16];
13490 struct md5_ctx ctx;
13491 htab_t ht;
13493 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13494 md5_init_ctx (&ctx);
13495 fold_checksum_tree (op0, &ctx, ht);
13496 md5_finish_ctx (&ctx, checksum_before_op0);
13497 htab_empty (ht);
13499 md5_init_ctx (&ctx);
13500 fold_checksum_tree (op1, &ctx, ht);
13501 md5_finish_ctx (&ctx, checksum_before_op1);
13502 htab_empty (ht);
13504 md5_init_ctx (&ctx);
13505 fold_checksum_tree (op2, &ctx, ht);
13506 md5_finish_ctx (&ctx, checksum_before_op2);
13507 htab_empty (ht);
13508 #endif
13510 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13511 tem = fold_ternary (code, type, op0, op1, op2);
13512 if (!tem)
13513 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
13515 #ifdef ENABLE_FOLD_CHECKING
13516 md5_init_ctx (&ctx);
13517 fold_checksum_tree (op0, &ctx, ht);
13518 md5_finish_ctx (&ctx, checksum_after_op0);
13519 htab_empty (ht);
13521 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13522 fold_check_failed (op0, tem);
13524 md5_init_ctx (&ctx);
13525 fold_checksum_tree (op1, &ctx, ht);
13526 md5_finish_ctx (&ctx, checksum_after_op1);
13527 htab_empty (ht);
13529 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13530 fold_check_failed (op1, tem);
13532 md5_init_ctx (&ctx);
13533 fold_checksum_tree (op2, &ctx, ht);
13534 md5_finish_ctx (&ctx, checksum_after_op2);
13535 htab_delete (ht);
13537 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13538 fold_check_failed (op2, tem);
13539 #endif
13540 return tem;
13543 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13544 arguments in ARGARRAY, and a null static chain.
13545 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13546 of type TYPE from the given operands as constructed by build_call_array. */
13548 tree
13549 fold_build_call_array (tree type, tree fn, int nargs, tree *argarray)
13551 tree tem;
13552 #ifdef ENABLE_FOLD_CHECKING
13553 unsigned char checksum_before_fn[16],
13554 checksum_before_arglist[16],
13555 checksum_after_fn[16],
13556 checksum_after_arglist[16];
13557 struct md5_ctx ctx;
13558 htab_t ht;
13559 int i;
13561 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13562 md5_init_ctx (&ctx);
13563 fold_checksum_tree (fn, &ctx, ht);
13564 md5_finish_ctx (&ctx, checksum_before_fn);
13565 htab_empty (ht);
13567 md5_init_ctx (&ctx);
13568 for (i = 0; i < nargs; i++)
13569 fold_checksum_tree (argarray[i], &ctx, ht);
13570 md5_finish_ctx (&ctx, checksum_before_arglist);
13571 htab_empty (ht);
13572 #endif
13574 tem = fold_builtin_call_array (type, fn, nargs, argarray);
13576 #ifdef ENABLE_FOLD_CHECKING
13577 md5_init_ctx (&ctx);
13578 fold_checksum_tree (fn, &ctx, ht);
13579 md5_finish_ctx (&ctx, checksum_after_fn);
13580 htab_empty (ht);
13582 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13583 fold_check_failed (fn, tem);
13585 md5_init_ctx (&ctx);
13586 for (i = 0; i < nargs; i++)
13587 fold_checksum_tree (argarray[i], &ctx, ht);
13588 md5_finish_ctx (&ctx, checksum_after_arglist);
13589 htab_delete (ht);
13591 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13592 fold_check_failed (NULL_TREE, tem);
13593 #endif
13594 return tem;
13597 /* Perform constant folding and related simplification of initializer
13598 expression EXPR. These behave identically to "fold_buildN" but ignore
13599 potential run-time traps and exceptions that fold must preserve. */
13601 #define START_FOLD_INIT \
13602 int saved_signaling_nans = flag_signaling_nans;\
13603 int saved_trapping_math = flag_trapping_math;\
13604 int saved_rounding_math = flag_rounding_math;\
13605 int saved_trapv = flag_trapv;\
13606 int saved_folding_initializer = folding_initializer;\
13607 flag_signaling_nans = 0;\
13608 flag_trapping_math = 0;\
13609 flag_rounding_math = 0;\
13610 flag_trapv = 0;\
13611 folding_initializer = 1;
13613 #define END_FOLD_INIT \
13614 flag_signaling_nans = saved_signaling_nans;\
13615 flag_trapping_math = saved_trapping_math;\
13616 flag_rounding_math = saved_rounding_math;\
13617 flag_trapv = saved_trapv;\
13618 folding_initializer = saved_folding_initializer;
13620 tree
13621 fold_build1_initializer (enum tree_code code, tree type, tree op)
13623 tree result;
13624 START_FOLD_INIT;
13626 result = fold_build1 (code, type, op);
13628 END_FOLD_INIT;
13629 return result;
13632 tree
13633 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
13635 tree result;
13636 START_FOLD_INIT;
13638 result = fold_build2 (code, type, op0, op1);
13640 END_FOLD_INIT;
13641 return result;
13644 tree
13645 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
13646 tree op2)
13648 tree result;
13649 START_FOLD_INIT;
13651 result = fold_build3 (code, type, op0, op1, op2);
13653 END_FOLD_INIT;
13654 return result;
13657 tree
13658 fold_build_call_array_initializer (tree type, tree fn,
13659 int nargs, tree *argarray)
13661 tree result;
13662 START_FOLD_INIT;
13664 result = fold_build_call_array (type, fn, nargs, argarray);
13666 END_FOLD_INIT;
13667 return result;
13670 #undef START_FOLD_INIT
13671 #undef END_FOLD_INIT
13673 /* Determine if first argument is a multiple of second argument. Return 0 if
13674 it is not, or we cannot easily determined it to be.
13676 An example of the sort of thing we care about (at this point; this routine
13677 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13678 fold cases do now) is discovering that
13680 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13682 is a multiple of
13684 SAVE_EXPR (J * 8)
13686 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13688 This code also handles discovering that
13690 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13692 is a multiple of 8 so we don't have to worry about dealing with a
13693 possible remainder.
13695 Note that we *look* inside a SAVE_EXPR only to determine how it was
13696 calculated; it is not safe for fold to do much of anything else with the
13697 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13698 at run time. For example, the latter example above *cannot* be implemented
13699 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13700 evaluation time of the original SAVE_EXPR is not necessarily the same at
13701 the time the new expression is evaluated. The only optimization of this
13702 sort that would be valid is changing
13704 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13706 divided by 8 to
13708 SAVE_EXPR (I) * SAVE_EXPR (J)
13710 (where the same SAVE_EXPR (J) is used in the original and the
13711 transformed version). */
13714 multiple_of_p (tree type, const_tree top, const_tree bottom)
13716 if (operand_equal_p (top, bottom, 0))
13717 return 1;
13719 if (TREE_CODE (type) != INTEGER_TYPE)
13720 return 0;
13722 switch (TREE_CODE (top))
13724 case BIT_AND_EXPR:
13725 /* Bitwise and provides a power of two multiple. If the mask is
13726 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13727 if (!integer_pow2p (bottom))
13728 return 0;
13729 /* FALLTHRU */
13731 case MULT_EXPR:
13732 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13733 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13735 case PLUS_EXPR:
13736 case MINUS_EXPR:
13737 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13738 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13740 case LSHIFT_EXPR:
13741 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13743 tree op1, t1;
13745 op1 = TREE_OPERAND (top, 1);
13746 /* const_binop may not detect overflow correctly,
13747 so check for it explicitly here. */
13748 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
13749 > TREE_INT_CST_LOW (op1)
13750 && TREE_INT_CST_HIGH (op1) == 0
13751 && 0 != (t1 = fold_convert (type,
13752 const_binop (LSHIFT_EXPR,
13753 size_one_node,
13754 op1, 0)))
13755 && !TREE_OVERFLOW (t1))
13756 return multiple_of_p (type, t1, bottom);
13758 return 0;
13760 case NOP_EXPR:
13761 /* Can't handle conversions from non-integral or wider integral type. */
13762 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13763 || (TYPE_PRECISION (type)
13764 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13765 return 0;
13767 /* .. fall through ... */
13769 case SAVE_EXPR:
13770 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13772 case INTEGER_CST:
13773 if (TREE_CODE (bottom) != INTEGER_CST
13774 || integer_zerop (bottom)
13775 || (TYPE_UNSIGNED (type)
13776 && (tree_int_cst_sgn (top) < 0
13777 || tree_int_cst_sgn (bottom) < 0)))
13778 return 0;
13779 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
13780 top, bottom, 0));
13782 default:
13783 return 0;
13787 /* Return true if `t' is known to be non-negative. If the return
13788 value is based on the assumption that signed overflow is undefined,
13789 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13790 *STRICT_OVERFLOW_P. */
13792 bool
13793 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13795 if (t == error_mark_node)
13796 return false;
13798 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13799 return true;
13801 switch (TREE_CODE (t))
13803 case SSA_NAME:
13804 /* Query VRP to see if it has recorded any information about
13805 the range of this object. */
13806 return ssa_name_nonnegative_p (t);
13808 case ABS_EXPR:
13809 /* We can't return 1 if flag_wrapv is set because
13810 ABS_EXPR<INT_MIN> = INT_MIN. */
13811 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13812 return true;
13813 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
13815 *strict_overflow_p = true;
13816 return true;
13818 break;
13820 case INTEGER_CST:
13821 return tree_int_cst_sgn (t) >= 0;
13823 case REAL_CST:
13824 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13826 case FIXED_CST:
13827 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
13829 case POINTER_PLUS_EXPR:
13830 case PLUS_EXPR:
13831 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13832 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13833 strict_overflow_p)
13834 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13835 strict_overflow_p));
13837 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13838 both unsigned and at least 2 bits shorter than the result. */
13839 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13840 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13841 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13843 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13844 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13845 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13846 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13848 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13849 TYPE_PRECISION (inner2)) + 1;
13850 return prec < TYPE_PRECISION (TREE_TYPE (t));
13853 break;
13855 case MULT_EXPR:
13856 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13858 /* x * x for floating point x is always non-negative. */
13859 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
13860 return true;
13861 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13862 strict_overflow_p)
13863 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13864 strict_overflow_p));
13867 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13868 both unsigned and their total bits is shorter than the result. */
13869 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13870 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13871 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13873 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13874 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13875 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13876 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13877 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
13878 < TYPE_PRECISION (TREE_TYPE (t));
13880 return false;
13882 case BIT_AND_EXPR:
13883 case MAX_EXPR:
13884 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13885 strict_overflow_p)
13886 || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13887 strict_overflow_p));
13889 case BIT_IOR_EXPR:
13890 case BIT_XOR_EXPR:
13891 case MIN_EXPR:
13892 case RDIV_EXPR:
13893 case TRUNC_DIV_EXPR:
13894 case CEIL_DIV_EXPR:
13895 case FLOOR_DIV_EXPR:
13896 case ROUND_DIV_EXPR:
13897 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13898 strict_overflow_p)
13899 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13900 strict_overflow_p));
13902 case TRUNC_MOD_EXPR:
13903 case CEIL_MOD_EXPR:
13904 case FLOOR_MOD_EXPR:
13905 case ROUND_MOD_EXPR:
13906 case SAVE_EXPR:
13907 case NON_LVALUE_EXPR:
13908 case FLOAT_EXPR:
13909 case FIX_TRUNC_EXPR:
13910 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13911 strict_overflow_p);
13913 case COMPOUND_EXPR:
13914 case MODIFY_EXPR:
13915 case GIMPLE_MODIFY_STMT:
13916 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
13917 strict_overflow_p);
13919 case BIND_EXPR:
13920 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13921 strict_overflow_p);
13923 case COND_EXPR:
13924 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13925 strict_overflow_p)
13926 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13927 strict_overflow_p));
13929 case NOP_EXPR:
13931 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
13932 tree outer_type = TREE_TYPE (t);
13934 if (TREE_CODE (outer_type) == REAL_TYPE)
13936 if (TREE_CODE (inner_type) == REAL_TYPE)
13937 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13938 strict_overflow_p);
13939 if (TREE_CODE (inner_type) == INTEGER_TYPE)
13941 if (TYPE_UNSIGNED (inner_type))
13942 return true;
13943 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13944 strict_overflow_p);
13947 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
13949 if (TREE_CODE (inner_type) == REAL_TYPE)
13950 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t,0),
13951 strict_overflow_p);
13952 if (TREE_CODE (inner_type) == INTEGER_TYPE)
13953 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13954 && TYPE_UNSIGNED (inner_type);
13957 break;
13959 case TARGET_EXPR:
13961 tree temp = TARGET_EXPR_SLOT (t);
13962 t = TARGET_EXPR_INITIAL (t);
13964 /* If the initializer is non-void, then it's a normal expression
13965 that will be assigned to the slot. */
13966 if (!VOID_TYPE_P (t))
13967 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13969 /* Otherwise, the initializer sets the slot in some way. One common
13970 way is an assignment statement at the end of the initializer. */
13971 while (1)
13973 if (TREE_CODE (t) == BIND_EXPR)
13974 t = expr_last (BIND_EXPR_BODY (t));
13975 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13976 || TREE_CODE (t) == TRY_CATCH_EXPR)
13977 t = expr_last (TREE_OPERAND (t, 0));
13978 else if (TREE_CODE (t) == STATEMENT_LIST)
13979 t = expr_last (t);
13980 else
13981 break;
13983 if ((TREE_CODE (t) == MODIFY_EXPR
13984 || TREE_CODE (t) == GIMPLE_MODIFY_STMT)
13985 && GENERIC_TREE_OPERAND (t, 0) == temp)
13986 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
13987 strict_overflow_p);
13989 return false;
13992 case CALL_EXPR:
13994 tree fndecl = get_callee_fndecl (t);
13995 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13996 switch (DECL_FUNCTION_CODE (fndecl))
13998 CASE_FLT_FN (BUILT_IN_ACOS):
13999 CASE_FLT_FN (BUILT_IN_ACOSH):
14000 CASE_FLT_FN (BUILT_IN_CABS):
14001 CASE_FLT_FN (BUILT_IN_COSH):
14002 CASE_FLT_FN (BUILT_IN_ERFC):
14003 CASE_FLT_FN (BUILT_IN_EXP):
14004 CASE_FLT_FN (BUILT_IN_EXP10):
14005 CASE_FLT_FN (BUILT_IN_EXP2):
14006 CASE_FLT_FN (BUILT_IN_FABS):
14007 CASE_FLT_FN (BUILT_IN_FDIM):
14008 CASE_FLT_FN (BUILT_IN_HYPOT):
14009 CASE_FLT_FN (BUILT_IN_POW10):
14010 CASE_INT_FN (BUILT_IN_FFS):
14011 CASE_INT_FN (BUILT_IN_PARITY):
14012 CASE_INT_FN (BUILT_IN_POPCOUNT):
14013 case BUILT_IN_BSWAP32:
14014 case BUILT_IN_BSWAP64:
14015 /* Always true. */
14016 return true;
14018 CASE_FLT_FN (BUILT_IN_SQRT):
14019 /* sqrt(-0.0) is -0.0. */
14020 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
14021 return true;
14022 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14023 strict_overflow_p);
14025 CASE_FLT_FN (BUILT_IN_ASINH):
14026 CASE_FLT_FN (BUILT_IN_ATAN):
14027 CASE_FLT_FN (BUILT_IN_ATANH):
14028 CASE_FLT_FN (BUILT_IN_CBRT):
14029 CASE_FLT_FN (BUILT_IN_CEIL):
14030 CASE_FLT_FN (BUILT_IN_ERF):
14031 CASE_FLT_FN (BUILT_IN_EXPM1):
14032 CASE_FLT_FN (BUILT_IN_FLOOR):
14033 CASE_FLT_FN (BUILT_IN_FMOD):
14034 CASE_FLT_FN (BUILT_IN_FREXP):
14035 CASE_FLT_FN (BUILT_IN_LCEIL):
14036 CASE_FLT_FN (BUILT_IN_LDEXP):
14037 CASE_FLT_FN (BUILT_IN_LFLOOR):
14038 CASE_FLT_FN (BUILT_IN_LLCEIL):
14039 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14040 CASE_FLT_FN (BUILT_IN_LLRINT):
14041 CASE_FLT_FN (BUILT_IN_LLROUND):
14042 CASE_FLT_FN (BUILT_IN_LRINT):
14043 CASE_FLT_FN (BUILT_IN_LROUND):
14044 CASE_FLT_FN (BUILT_IN_MODF):
14045 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14046 CASE_FLT_FN (BUILT_IN_RINT):
14047 CASE_FLT_FN (BUILT_IN_ROUND):
14048 CASE_FLT_FN (BUILT_IN_SCALB):
14049 CASE_FLT_FN (BUILT_IN_SCALBLN):
14050 CASE_FLT_FN (BUILT_IN_SCALBN):
14051 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14052 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14053 CASE_FLT_FN (BUILT_IN_SINH):
14054 CASE_FLT_FN (BUILT_IN_TANH):
14055 CASE_FLT_FN (BUILT_IN_TRUNC):
14056 /* True if the 1st argument is nonnegative. */
14057 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14058 strict_overflow_p);
14060 CASE_FLT_FN (BUILT_IN_FMAX):
14061 /* True if the 1st OR 2nd arguments are nonnegative. */
14062 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14063 strict_overflow_p)
14064 || (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14065 strict_overflow_p)));
14067 CASE_FLT_FN (BUILT_IN_FMIN):
14068 /* True if the 1st AND 2nd arguments are nonnegative. */
14069 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14070 strict_overflow_p)
14071 && (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14072 strict_overflow_p)));
14074 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14075 /* True if the 2nd argument is nonnegative. */
14076 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
14077 strict_overflow_p);
14079 CASE_FLT_FN (BUILT_IN_POWI):
14080 /* True if the 1st argument is nonnegative or the second
14081 argument is an even integer. */
14082 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == INTEGER_CST)
14084 tree arg1 = CALL_EXPR_ARG (t, 1);
14085 if ((TREE_INT_CST_LOW (arg1) & 1) == 0)
14086 return true;
14088 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14089 strict_overflow_p);
14091 CASE_FLT_FN (BUILT_IN_POW):
14092 /* True if the 1st argument is nonnegative or the second
14093 argument is an even integer valued real. */
14094 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == REAL_CST)
14096 REAL_VALUE_TYPE c;
14097 HOST_WIDE_INT n;
14099 c = TREE_REAL_CST (CALL_EXPR_ARG (t, 1));
14100 n = real_to_integer (&c);
14101 if ((n & 1) == 0)
14103 REAL_VALUE_TYPE cint;
14104 real_from_integer (&cint, VOIDmode, n,
14105 n < 0 ? -1 : 0, 0);
14106 if (real_identical (&c, &cint))
14107 return true;
14110 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
14111 strict_overflow_p);
14113 default:
14114 break;
14118 /* ... fall through ... */
14120 default:
14122 tree type = TREE_TYPE (t);
14123 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14124 && truth_value_p (TREE_CODE (t)))
14125 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14126 have a signed:1 type (where the value is -1 and 0). */
14127 return true;
14131 /* We don't know sign of `t', so be conservative and return false. */
14132 return false;
14135 /* Return true if `t' is known to be non-negative. Handle warnings
14136 about undefined signed overflow. */
14138 bool
14139 tree_expr_nonnegative_p (tree t)
14141 bool ret, strict_overflow_p;
14143 strict_overflow_p = false;
14144 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14145 if (strict_overflow_p)
14146 fold_overflow_warning (("assuming signed overflow does not occur when "
14147 "determining that expression is always "
14148 "non-negative"),
14149 WARN_STRICT_OVERFLOW_MISC);
14150 return ret;
14153 /* Return true when T is an address and is known to be nonzero.
14154 For floating point we further ensure that T is not denormal.
14155 Similar logic is present in nonzero_address in rtlanal.h.
14157 If the return value is based on the assumption that signed overflow
14158 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14159 change *STRICT_OVERFLOW_P. */
14161 bool
14162 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14164 tree type = TREE_TYPE (t);
14165 bool sub_strict_overflow_p;
14167 /* Doing something useful for floating point would need more work. */
14168 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
14169 return false;
14171 switch (TREE_CODE (t))
14173 case SSA_NAME:
14174 /* Query VRP to see if it has recorded any information about
14175 the range of this object. */
14176 return ssa_name_nonzero_p (t);
14178 case ABS_EXPR:
14179 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14180 strict_overflow_p);
14182 case INTEGER_CST:
14183 return !integer_zerop (t);
14185 case POINTER_PLUS_EXPR:
14186 case PLUS_EXPR:
14187 if (TYPE_OVERFLOW_UNDEFINED (type))
14189 /* With the presence of negative values it is hard
14190 to say something. */
14191 sub_strict_overflow_p = false;
14192 if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14193 &sub_strict_overflow_p)
14194 || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14195 &sub_strict_overflow_p))
14196 return false;
14197 /* One of operands must be positive and the other non-negative. */
14198 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14199 overflows, on a twos-complement machine the sum of two
14200 nonnegative numbers can never be zero. */
14201 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14202 strict_overflow_p)
14203 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14204 strict_overflow_p));
14206 break;
14208 case MULT_EXPR:
14209 if (TYPE_OVERFLOW_UNDEFINED (type))
14211 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14212 strict_overflow_p)
14213 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14214 strict_overflow_p))
14216 *strict_overflow_p = true;
14217 return true;
14220 break;
14222 case NOP_EXPR:
14224 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
14225 tree outer_type = TREE_TYPE (t);
14227 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14228 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14229 strict_overflow_p));
14231 break;
14233 case ADDR_EXPR:
14235 tree base = get_base_address (TREE_OPERAND (t, 0));
14237 if (!base)
14238 return false;
14240 /* Weak declarations may link to NULL. */
14241 if (VAR_OR_FUNCTION_DECL_P (base))
14242 return !DECL_WEAK (base);
14244 /* Constants are never weak. */
14245 if (CONSTANT_CLASS_P (base))
14246 return true;
14248 return false;
14251 case COND_EXPR:
14252 sub_strict_overflow_p = false;
14253 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14254 &sub_strict_overflow_p)
14255 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
14256 &sub_strict_overflow_p))
14258 if (sub_strict_overflow_p)
14259 *strict_overflow_p = true;
14260 return true;
14262 break;
14264 case MIN_EXPR:
14265 sub_strict_overflow_p = false;
14266 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14267 &sub_strict_overflow_p)
14268 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14269 &sub_strict_overflow_p))
14271 if (sub_strict_overflow_p)
14272 *strict_overflow_p = true;
14274 break;
14276 case MAX_EXPR:
14277 sub_strict_overflow_p = false;
14278 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14279 &sub_strict_overflow_p))
14281 if (sub_strict_overflow_p)
14282 *strict_overflow_p = true;
14284 /* When both operands are nonzero, then MAX must be too. */
14285 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14286 strict_overflow_p))
14287 return true;
14289 /* MAX where operand 0 is positive is positive. */
14290 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14291 strict_overflow_p);
14293 /* MAX where operand 1 is positive is positive. */
14294 else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14295 &sub_strict_overflow_p)
14296 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14297 &sub_strict_overflow_p))
14299 if (sub_strict_overflow_p)
14300 *strict_overflow_p = true;
14301 return true;
14303 break;
14305 case COMPOUND_EXPR:
14306 case MODIFY_EXPR:
14307 case GIMPLE_MODIFY_STMT:
14308 case BIND_EXPR:
14309 return tree_expr_nonzero_warnv_p (GENERIC_TREE_OPERAND (t, 1),
14310 strict_overflow_p);
14312 case SAVE_EXPR:
14313 case NON_LVALUE_EXPR:
14314 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14315 strict_overflow_p);
14317 case BIT_IOR_EXPR:
14318 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
14319 strict_overflow_p)
14320 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
14321 strict_overflow_p));
14323 case CALL_EXPR:
14324 return alloca_call_p (t);
14326 default:
14327 break;
14329 return false;
14332 /* Return true when T is an address and is known to be nonzero.
14333 Handle warnings about undefined signed overflow. */
14335 bool
14336 tree_expr_nonzero_p (tree t)
14338 bool ret, strict_overflow_p;
14340 strict_overflow_p = false;
14341 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
14342 if (strict_overflow_p)
14343 fold_overflow_warning (("assuming signed overflow does not occur when "
14344 "determining that expression is always "
14345 "non-zero"),
14346 WARN_STRICT_OVERFLOW_MISC);
14347 return ret;
14350 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
14351 attempt to fold the expression to a constant without modifying TYPE,
14352 OP0 or OP1.
14354 If the expression could be simplified to a constant, then return
14355 the constant. If the expression would not be simplified to a
14356 constant, then return NULL_TREE. */
14358 tree
14359 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
14361 tree tem = fold_binary (code, type, op0, op1);
14362 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14365 /* Given the components of a unary expression CODE, TYPE and OP0,
14366 attempt to fold the expression to a constant without modifying
14367 TYPE or OP0.
14369 If the expression could be simplified to a constant, then return
14370 the constant. If the expression would not be simplified to a
14371 constant, then return NULL_TREE. */
14373 tree
14374 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
14376 tree tem = fold_unary (code, type, op0);
14377 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
14380 /* If EXP represents referencing an element in a constant string
14381 (either via pointer arithmetic or array indexing), return the
14382 tree representing the value accessed, otherwise return NULL. */
14384 tree
14385 fold_read_from_constant_string (tree exp)
14387 if ((TREE_CODE (exp) == INDIRECT_REF
14388 || TREE_CODE (exp) == ARRAY_REF)
14389 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
14391 tree exp1 = TREE_OPERAND (exp, 0);
14392 tree index;
14393 tree string;
14395 if (TREE_CODE (exp) == INDIRECT_REF)
14396 string = string_constant (exp1, &index);
14397 else
14399 tree low_bound = array_ref_low_bound (exp);
14400 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
14402 /* Optimize the special-case of a zero lower bound.
14404 We convert the low_bound to sizetype to avoid some problems
14405 with constant folding. (E.g. suppose the lower bound is 1,
14406 and its mode is QI. Without the conversion,l (ARRAY
14407 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
14408 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
14409 if (! integer_zerop (low_bound))
14410 index = size_diffop (index, fold_convert (sizetype, low_bound));
14412 string = exp1;
14415 if (string
14416 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
14417 && TREE_CODE (string) == STRING_CST
14418 && TREE_CODE (index) == INTEGER_CST
14419 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
14420 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
14421 == MODE_INT)
14422 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
14423 return build_int_cst_type (TREE_TYPE (exp),
14424 (TREE_STRING_POINTER (string)
14425 [TREE_INT_CST_LOW (index)]));
14427 return NULL;
14430 /* Return the tree for neg (ARG0) when ARG0 is known to be either
14431 an integer constant, real, or fixed-point constant.
14433 TYPE is the type of the result. */
14435 static tree
14436 fold_negate_const (tree arg0, tree type)
14438 tree t = NULL_TREE;
14440 switch (TREE_CODE (arg0))
14442 case INTEGER_CST:
14444 unsigned HOST_WIDE_INT low;
14445 HOST_WIDE_INT high;
14446 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
14447 TREE_INT_CST_HIGH (arg0),
14448 &low, &high);
14449 t = force_fit_type_double (type, low, high, 1,
14450 (overflow | TREE_OVERFLOW (arg0))
14451 && !TYPE_UNSIGNED (type));
14452 break;
14455 case REAL_CST:
14456 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
14457 break;
14459 case FIXED_CST:
14461 FIXED_VALUE_TYPE f;
14462 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
14463 &(TREE_FIXED_CST (arg0)), NULL,
14464 TYPE_SATURATING (type));
14465 t = build_fixed (type, f);
14466 /* Propagate overflow flags. */
14467 if (overflow_p | TREE_OVERFLOW (arg0))
14469 TREE_OVERFLOW (t) = 1;
14470 TREE_CONSTANT_OVERFLOW (t) = 1;
14472 else if (TREE_CONSTANT_OVERFLOW (arg0))
14473 TREE_CONSTANT_OVERFLOW (t) = 1;
14474 break;
14477 default:
14478 gcc_unreachable ();
14481 return t;
14484 /* Return the tree for abs (ARG0) when ARG0 is known to be either
14485 an integer constant or real constant.
14487 TYPE is the type of the result. */
14489 tree
14490 fold_abs_const (tree arg0, tree type)
14492 tree t = NULL_TREE;
14494 switch (TREE_CODE (arg0))
14496 case INTEGER_CST:
14497 /* If the value is unsigned, then the absolute value is
14498 the same as the ordinary value. */
14499 if (TYPE_UNSIGNED (type))
14500 t = arg0;
14501 /* Similarly, if the value is non-negative. */
14502 else if (INT_CST_LT (integer_minus_one_node, arg0))
14503 t = arg0;
14504 /* If the value is negative, then the absolute value is
14505 its negation. */
14506 else
14508 unsigned HOST_WIDE_INT low;
14509 HOST_WIDE_INT high;
14510 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
14511 TREE_INT_CST_HIGH (arg0),
14512 &low, &high);
14513 t = force_fit_type_double (type, low, high, -1,
14514 overflow | TREE_OVERFLOW (arg0));
14516 break;
14518 case REAL_CST:
14519 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
14520 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
14521 else
14522 t = arg0;
14523 break;
14525 default:
14526 gcc_unreachable ();
14529 return t;
14532 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
14533 constant. TYPE is the type of the result. */
14535 static tree
14536 fold_not_const (tree arg0, tree type)
14538 tree t = NULL_TREE;
14540 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
14542 t = force_fit_type_double (type, ~TREE_INT_CST_LOW (arg0),
14543 ~TREE_INT_CST_HIGH (arg0), 0,
14544 TREE_OVERFLOW (arg0));
14546 return t;
14549 /* Given CODE, a relational operator, the target type, TYPE and two
14550 constant operands OP0 and OP1, return the result of the
14551 relational operation. If the result is not a compile time
14552 constant, then return NULL_TREE. */
14554 static tree
14555 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
14557 int result, invert;
14559 /* From here on, the only cases we handle are when the result is
14560 known to be a constant. */
14562 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
14564 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
14565 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
14567 /* Handle the cases where either operand is a NaN. */
14568 if (real_isnan (c0) || real_isnan (c1))
14570 switch (code)
14572 case EQ_EXPR:
14573 case ORDERED_EXPR:
14574 result = 0;
14575 break;
14577 case NE_EXPR:
14578 case UNORDERED_EXPR:
14579 case UNLT_EXPR:
14580 case UNLE_EXPR:
14581 case UNGT_EXPR:
14582 case UNGE_EXPR:
14583 case UNEQ_EXPR:
14584 result = 1;
14585 break;
14587 case LT_EXPR:
14588 case LE_EXPR:
14589 case GT_EXPR:
14590 case GE_EXPR:
14591 case LTGT_EXPR:
14592 if (flag_trapping_math)
14593 return NULL_TREE;
14594 result = 0;
14595 break;
14597 default:
14598 gcc_unreachable ();
14601 return constant_boolean_node (result, type);
14604 return constant_boolean_node (real_compare (code, c0, c1), type);
14607 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
14609 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
14610 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
14611 return constant_boolean_node (fixed_compare (code, c0, c1), type);
14614 /* Handle equality/inequality of complex constants. */
14615 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14617 tree rcond = fold_relational_const (code, type,
14618 TREE_REALPART (op0),
14619 TREE_REALPART (op1));
14620 tree icond = fold_relational_const (code, type,
14621 TREE_IMAGPART (op0),
14622 TREE_IMAGPART (op1));
14623 if (code == EQ_EXPR)
14624 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14625 else if (code == NE_EXPR)
14626 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14627 else
14628 return NULL_TREE;
14631 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14633 To compute GT, swap the arguments and do LT.
14634 To compute GE, do LT and invert the result.
14635 To compute LE, swap the arguments, do LT and invert the result.
14636 To compute NE, do EQ and invert the result.
14638 Therefore, the code below must handle only EQ and LT. */
14640 if (code == LE_EXPR || code == GT_EXPR)
14642 tree tem = op0;
14643 op0 = op1;
14644 op1 = tem;
14645 code = swap_tree_comparison (code);
14648 /* Note that it is safe to invert for real values here because we
14649 have already handled the one case that it matters. */
14651 invert = 0;
14652 if (code == NE_EXPR || code == GE_EXPR)
14654 invert = 1;
14655 code = invert_tree_comparison (code, false);
14658 /* Compute a result for LT or EQ if args permit;
14659 Otherwise return T. */
14660 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14662 if (code == EQ_EXPR)
14663 result = tree_int_cst_equal (op0, op1);
14664 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
14665 result = INT_CST_LT_UNSIGNED (op0, op1);
14666 else
14667 result = INT_CST_LT (op0, op1);
14669 else
14670 return NULL_TREE;
14672 if (invert)
14673 result ^= 1;
14674 return constant_boolean_node (result, type);
14677 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14678 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14679 itself. */
14681 tree
14682 fold_build_cleanup_point_expr (tree type, tree expr)
14684 /* If the expression does not have side effects then we don't have to wrap
14685 it with a cleanup point expression. */
14686 if (!TREE_SIDE_EFFECTS (expr))
14687 return expr;
14689 /* If the expression is a return, check to see if the expression inside the
14690 return has no side effects or the right hand side of the modify expression
14691 inside the return. If either don't have side effects set we don't need to
14692 wrap the expression in a cleanup point expression. Note we don't check the
14693 left hand side of the modify because it should always be a return decl. */
14694 if (TREE_CODE (expr) == RETURN_EXPR)
14696 tree op = TREE_OPERAND (expr, 0);
14697 if (!op || !TREE_SIDE_EFFECTS (op))
14698 return expr;
14699 op = TREE_OPERAND (op, 1);
14700 if (!TREE_SIDE_EFFECTS (op))
14701 return expr;
14704 return build1 (CLEANUP_POINT_EXPR, type, expr);
14707 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14708 of an indirection through OP0, or NULL_TREE if no simplification is
14709 possible. */
14711 tree
14712 fold_indirect_ref_1 (tree type, tree op0)
14714 tree sub = op0;
14715 tree subtype;
14717 STRIP_NOPS (sub);
14718 subtype = TREE_TYPE (sub);
14719 if (!POINTER_TYPE_P (subtype))
14720 return NULL_TREE;
14722 if (TREE_CODE (sub) == ADDR_EXPR)
14724 tree op = TREE_OPERAND (sub, 0);
14725 tree optype = TREE_TYPE (op);
14726 /* *&CONST_DECL -> to the value of the const decl. */
14727 if (TREE_CODE (op) == CONST_DECL)
14728 return DECL_INITIAL (op);
14729 /* *&p => p; make sure to handle *&"str"[cst] here. */
14730 if (type == optype)
14732 tree fop = fold_read_from_constant_string (op);
14733 if (fop)
14734 return fop;
14735 else
14736 return op;
14738 /* *(foo *)&fooarray => fooarray[0] */
14739 else if (TREE_CODE (optype) == ARRAY_TYPE
14740 && type == TREE_TYPE (optype))
14742 tree type_domain = TYPE_DOMAIN (optype);
14743 tree min_val = size_zero_node;
14744 if (type_domain && TYPE_MIN_VALUE (type_domain))
14745 min_val = TYPE_MIN_VALUE (type_domain);
14746 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
14748 /* *(foo *)&complexfoo => __real__ complexfoo */
14749 else if (TREE_CODE (optype) == COMPLEX_TYPE
14750 && type == TREE_TYPE (optype))
14751 return fold_build1 (REALPART_EXPR, type, op);
14752 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14753 else if (TREE_CODE (optype) == VECTOR_TYPE
14754 && type == TREE_TYPE (optype))
14756 tree part_width = TYPE_SIZE (type);
14757 tree index = bitsize_int (0);
14758 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
14762 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14763 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14764 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14766 tree op00 = TREE_OPERAND (sub, 0);
14767 tree op01 = TREE_OPERAND (sub, 1);
14768 tree op00type;
14770 STRIP_NOPS (op00);
14771 op00type = TREE_TYPE (op00);
14772 if (TREE_CODE (op00) == ADDR_EXPR
14773 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
14774 && type == TREE_TYPE (TREE_TYPE (op00type)))
14776 tree size = TYPE_SIZE_UNIT (type);
14777 if (tree_int_cst_equal (size, op01))
14778 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
14782 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14783 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14784 && type == TREE_TYPE (TREE_TYPE (subtype)))
14786 tree type_domain;
14787 tree min_val = size_zero_node;
14788 sub = build_fold_indirect_ref (sub);
14789 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14790 if (type_domain && TYPE_MIN_VALUE (type_domain))
14791 min_val = TYPE_MIN_VALUE (type_domain);
14792 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
14795 return NULL_TREE;
14798 /* Builds an expression for an indirection through T, simplifying some
14799 cases. */
14801 tree
14802 build_fold_indirect_ref (tree t)
14804 tree type = TREE_TYPE (TREE_TYPE (t));
14805 tree sub = fold_indirect_ref_1 (type, t);
14807 if (sub)
14808 return sub;
14809 else
14810 return build1 (INDIRECT_REF, type, t);
14813 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14815 tree
14816 fold_indirect_ref (tree t)
14818 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
14820 if (sub)
14821 return sub;
14822 else
14823 return t;
14826 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14827 whose result is ignored. The type of the returned tree need not be
14828 the same as the original expression. */
14830 tree
14831 fold_ignored_result (tree t)
14833 if (!TREE_SIDE_EFFECTS (t))
14834 return integer_zero_node;
14836 for (;;)
14837 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14839 case tcc_unary:
14840 t = TREE_OPERAND (t, 0);
14841 break;
14843 case tcc_binary:
14844 case tcc_comparison:
14845 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14846 t = TREE_OPERAND (t, 0);
14847 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14848 t = TREE_OPERAND (t, 1);
14849 else
14850 return t;
14851 break;
14853 case tcc_expression:
14854 switch (TREE_CODE (t))
14856 case COMPOUND_EXPR:
14857 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14858 return t;
14859 t = TREE_OPERAND (t, 0);
14860 break;
14862 case COND_EXPR:
14863 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14864 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14865 return t;
14866 t = TREE_OPERAND (t, 0);
14867 break;
14869 default:
14870 return t;
14872 break;
14874 default:
14875 return t;
14879 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
14880 This can only be applied to objects of a sizetype. */
14882 tree
14883 round_up (tree value, int divisor)
14885 tree div = NULL_TREE;
14887 gcc_assert (divisor > 0);
14888 if (divisor == 1)
14889 return value;
14891 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14892 have to do anything. Only do this when we are not given a const,
14893 because in that case, this check is more expensive than just
14894 doing it. */
14895 if (TREE_CODE (value) != INTEGER_CST)
14897 div = build_int_cst (TREE_TYPE (value), divisor);
14899 if (multiple_of_p (TREE_TYPE (value), value, div))
14900 return value;
14903 /* If divisor is a power of two, simplify this to bit manipulation. */
14904 if (divisor == (divisor & -divisor))
14906 if (TREE_CODE (value) == INTEGER_CST)
14908 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (value);
14909 unsigned HOST_WIDE_INT high;
14910 bool overflow_p;
14912 if ((low & (divisor - 1)) == 0)
14913 return value;
14915 overflow_p = TREE_OVERFLOW (value);
14916 high = TREE_INT_CST_HIGH (value);
14917 low &= ~(divisor - 1);
14918 low += divisor;
14919 if (low == 0)
14921 high++;
14922 if (high == 0)
14923 overflow_p = true;
14926 return force_fit_type_double (TREE_TYPE (value), low, high,
14927 -1, overflow_p);
14929 else
14931 tree t;
14933 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14934 value = size_binop (PLUS_EXPR, value, t);
14935 t = build_int_cst (TREE_TYPE (value), -divisor);
14936 value = size_binop (BIT_AND_EXPR, value, t);
14939 else
14941 if (!div)
14942 div = build_int_cst (TREE_TYPE (value), divisor);
14943 value = size_binop (CEIL_DIV_EXPR, value, div);
14944 value = size_binop (MULT_EXPR, value, div);
14947 return value;
14950 /* Likewise, but round down. */
14952 tree
14953 round_down (tree value, int divisor)
14955 tree div = NULL_TREE;
14957 gcc_assert (divisor > 0);
14958 if (divisor == 1)
14959 return value;
14961 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14962 have to do anything. Only do this when we are not given a const,
14963 because in that case, this check is more expensive than just
14964 doing it. */
14965 if (TREE_CODE (value) != INTEGER_CST)
14967 div = build_int_cst (TREE_TYPE (value), divisor);
14969 if (multiple_of_p (TREE_TYPE (value), value, div))
14970 return value;
14973 /* If divisor is a power of two, simplify this to bit manipulation. */
14974 if (divisor == (divisor & -divisor))
14976 tree t;
14978 t = build_int_cst (TREE_TYPE (value), -divisor);
14979 value = size_binop (BIT_AND_EXPR, value, t);
14981 else
14983 if (!div)
14984 div = build_int_cst (TREE_TYPE (value), divisor);
14985 value = size_binop (FLOOR_DIV_EXPR, value, div);
14986 value = size_binop (MULT_EXPR, value, div);
14989 return value;
14992 /* Returns the pointer to the base of the object addressed by EXP and
14993 extracts the information about the offset of the access, storing it
14994 to PBITPOS and POFFSET. */
14996 static tree
14997 split_address_to_core_and_offset (tree exp,
14998 HOST_WIDE_INT *pbitpos, tree *poffset)
15000 tree core;
15001 enum machine_mode mode;
15002 int unsignedp, volatilep;
15003 HOST_WIDE_INT bitsize;
15005 if (TREE_CODE (exp) == ADDR_EXPR)
15007 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15008 poffset, &mode, &unsignedp, &volatilep,
15009 false);
15010 core = fold_addr_expr (core);
15012 else
15014 core = exp;
15015 *pbitpos = 0;
15016 *poffset = NULL_TREE;
15019 return core;
15022 /* Returns true if addresses of E1 and E2 differ by a constant, false
15023 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15025 bool
15026 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15028 tree core1, core2;
15029 HOST_WIDE_INT bitpos1, bitpos2;
15030 tree toffset1, toffset2, tdiff, type;
15032 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15033 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15035 if (bitpos1 % BITS_PER_UNIT != 0
15036 || bitpos2 % BITS_PER_UNIT != 0
15037 || !operand_equal_p (core1, core2, 0))
15038 return false;
15040 if (toffset1 && toffset2)
15042 type = TREE_TYPE (toffset1);
15043 if (type != TREE_TYPE (toffset2))
15044 toffset2 = fold_convert (type, toffset2);
15046 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15047 if (!cst_and_fits_in_hwi (tdiff))
15048 return false;
15050 *diff = int_cst_value (tdiff);
15052 else if (toffset1 || toffset2)
15054 /* If only one of the offsets is non-constant, the difference cannot
15055 be a constant. */
15056 return false;
15058 else
15059 *diff = 0;
15061 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15062 return true;
15065 /* Simplify the floating point expression EXP when the sign of the
15066 result is not significant. Return NULL_TREE if no simplification
15067 is possible. */
15069 tree
15070 fold_strip_sign_ops (tree exp)
15072 tree arg0, arg1;
15074 switch (TREE_CODE (exp))
15076 case ABS_EXPR:
15077 case NEGATE_EXPR:
15078 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15079 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15081 case MULT_EXPR:
15082 case RDIV_EXPR:
15083 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15084 return NULL_TREE;
15085 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15086 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15087 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15088 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
15089 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15090 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15091 break;
15093 case COMPOUND_EXPR:
15094 arg0 = TREE_OPERAND (exp, 0);
15095 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15096 if (arg1)
15097 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15098 break;
15100 case COND_EXPR:
15101 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15102 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15103 if (arg0 || arg1)
15104 return fold_build3 (COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15105 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15106 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15107 break;
15109 case CALL_EXPR:
15111 const enum built_in_function fcode = builtin_mathfn_code (exp);
15112 switch (fcode)
15114 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15115 /* Strip copysign function call, return the 1st argument. */
15116 arg0 = CALL_EXPR_ARG (exp, 0);
15117 arg1 = CALL_EXPR_ARG (exp, 1);
15118 return omit_one_operand (TREE_TYPE (exp), arg0, arg1);
15120 default:
15121 /* Strip sign ops from the argument of "odd" math functions. */
15122 if (negate_mathfn_p (fcode))
15124 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15125 if (arg0)
15126 return build_call_expr (get_callee_fndecl (exp), 1, arg0);
15128 break;
15131 break;
15133 default:
15134 break;
15136 return NULL_TREE;