Update powerpc64-linux-gnu/baseline_symbols.txt
[official-gcc.git] / gcc / final.c
bloba17a3a67b5426e579ca65b8ad5b472dd0aa9582f
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
119 /* Line number of last NOTE. */
120 static int last_linenum;
122 /* Column number of last NOTE. */
123 static int last_columnnum;
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
128 /* Discriminator of current block. */
129 static int discriminator;
131 /* Highest line number in current block. */
132 static int high_block_linenum;
134 /* Likewise for function. */
135 static int high_function_linenum;
137 /* Filename of last NOTE. */
138 static const char *last_filename;
140 /* Override filename, line and column number. */
141 static const char *override_filename;
142 static int override_linenum;
143 static int override_columnnum;
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 const rtx_insn *this_is_asm_operands;
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
158 /* Compare optimization flag. */
160 static rtx last_ignored_compare = 0;
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
165 static int insn_counter = 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
171 CC_STATUS cc_status;
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx_sequence *final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 #if HAVE_cc0
219 static int alter_cond (rtx);
220 #endif
221 static int align_fuzz (rtx, rtx, int, unsigned);
222 static void collect_fn_hard_reg_usage (void);
223 static tree get_call_fndecl (rtx_insn *);
225 /* Initialize data in final at the beginning of a compilation. */
227 void
228 init_final (const char *filename ATTRIBUTE_UNUSED)
230 app_on = 0;
231 final_sequence = 0;
233 #ifdef ASSEMBLER_DIALECT
234 dialect_number = ASSEMBLER_DIALECT;
235 #endif
238 /* Default target function prologue and epilogue assembler output.
240 If not overridden for epilogue code, then the function body itself
241 contains return instructions wherever needed. */
242 void
243 default_function_pro_epilogue (FILE *)
247 void
248 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
249 tree decl ATTRIBUTE_UNUSED,
250 bool new_is_cold ATTRIBUTE_UNUSED)
254 /* Default target hook that outputs nothing to a stream. */
255 void
256 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
263 void
264 app_enable (void)
266 if (! app_on)
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
276 void
277 app_disable (void)
279 if (app_on)
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
291 dbr_sequence_length (void)
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
299 /* The next two pages contain routines used to compute the length of an insn
300 and to shorten branches. */
302 /* Arrays for insn lengths, and addresses. The latter is referenced by
303 `insn_current_length'. */
305 static int *insn_lengths;
307 vec<int> insn_addresses_;
309 /* Max uid for which the above arrays are valid. */
310 static int insn_lengths_max_uid;
312 /* Address of insn being processed. Used by `insn_current_length'. */
313 int insn_current_address;
315 /* Address of insn being processed in previous iteration. */
316 int insn_last_address;
318 /* known invariant alignment of insn being processed. */
319 int insn_current_align;
321 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
322 gives the next following alignment insn that increases the known
323 alignment, or NULL_RTX if there is no such insn.
324 For any alignment obtained this way, we can again index uid_align with
325 its uid to obtain the next following align that in turn increases the
326 alignment, till we reach NULL_RTX; the sequence obtained this way
327 for each insn we'll call the alignment chain of this insn in the following
328 comments. */
330 struct label_alignment
332 short alignment;
333 short max_skip;
336 static rtx *uid_align;
337 static int *uid_shuid;
338 static struct label_alignment *label_align;
340 /* Indicate that branch shortening hasn't yet been done. */
342 void
343 init_insn_lengths (void)
345 if (uid_shuid)
347 free (uid_shuid);
348 uid_shuid = 0;
350 if (insn_lengths)
352 free (insn_lengths);
353 insn_lengths = 0;
354 insn_lengths_max_uid = 0;
356 if (HAVE_ATTR_length)
357 INSN_ADDRESSES_FREE ();
358 if (uid_align)
360 free (uid_align);
361 uid_align = 0;
365 /* Obtain the current length of an insn. If branch shortening has been done,
366 get its actual length. Otherwise, use FALLBACK_FN to calculate the
367 length. */
368 static int
369 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
371 rtx body;
372 int i;
373 int length = 0;
375 if (!HAVE_ATTR_length)
376 return 0;
378 if (insn_lengths_max_uid > INSN_UID (insn))
379 return insn_lengths[INSN_UID (insn)];
380 else
381 switch (GET_CODE (insn))
383 case NOTE:
384 case BARRIER:
385 case CODE_LABEL:
386 case DEBUG_INSN:
387 return 0;
389 case CALL_INSN:
390 case JUMP_INSN:
391 length = fallback_fn (insn);
392 break;
394 case INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
397 return 0;
399 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
400 length = asm_insn_count (body) * fallback_fn (insn);
401 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
402 for (i = 0; i < seq->len (); i++)
403 length += get_attr_length_1 (seq->insn (i), fallback_fn);
404 else
405 length = fallback_fn (insn);
406 break;
408 default:
409 break;
412 #ifdef ADJUST_INSN_LENGTH
413 ADJUST_INSN_LENGTH (insn, length);
414 #endif
415 return length;
418 /* Obtain the current length of an insn. If branch shortening has been done,
419 get its actual length. Otherwise, get its maximum length. */
421 get_attr_length (rtx_insn *insn)
423 return get_attr_length_1 (insn, insn_default_length);
426 /* Obtain the current length of an insn. If branch shortening has been done,
427 get its actual length. Otherwise, get its minimum length. */
429 get_attr_min_length (rtx_insn *insn)
431 return get_attr_length_1 (insn, insn_min_length);
434 /* Code to handle alignment inside shorten_branches. */
436 /* Here is an explanation how the algorithm in align_fuzz can give
437 proper results:
439 Call a sequence of instructions beginning with alignment point X
440 and continuing until the next alignment point `block X'. When `X'
441 is used in an expression, it means the alignment value of the
442 alignment point.
444 Call the distance between the start of the first insn of block X, and
445 the end of the last insn of block X `IX', for the `inner size of X'.
446 This is clearly the sum of the instruction lengths.
448 Likewise with the next alignment-delimited block following X, which we
449 shall call block Y.
451 Call the distance between the start of the first insn of block X, and
452 the start of the first insn of block Y `OX', for the `outer size of X'.
454 The estimated padding is then OX - IX.
456 OX can be safely estimated as
458 if (X >= Y)
459 OX = round_up(IX, Y)
460 else
461 OX = round_up(IX, X) + Y - X
463 Clearly est(IX) >= real(IX), because that only depends on the
464 instruction lengths, and those being overestimated is a given.
466 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
467 we needn't worry about that when thinking about OX.
469 When X >= Y, the alignment provided by Y adds no uncertainty factor
470 for branch ranges starting before X, so we can just round what we have.
471 But when X < Y, we don't know anything about the, so to speak,
472 `middle bits', so we have to assume the worst when aligning up from an
473 address mod X to one mod Y, which is Y - X. */
475 #ifndef LABEL_ALIGN
476 #define LABEL_ALIGN(LABEL) align_labels_log
477 #endif
479 #ifndef LOOP_ALIGN
480 #define LOOP_ALIGN(LABEL) align_loops_log
481 #endif
483 #ifndef LABEL_ALIGN_AFTER_BARRIER
484 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
485 #endif
487 #ifndef JUMP_ALIGN
488 #define JUMP_ALIGN(LABEL) align_jumps_log
489 #endif
492 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
494 return 0;
498 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
500 return align_loops_max_skip;
504 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
506 return align_labels_max_skip;
510 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
512 return align_jumps_max_skip;
515 #ifndef ADDR_VEC_ALIGN
516 static int
517 final_addr_vec_align (rtx_jump_table_data *addr_vec)
519 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
521 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
522 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
523 return exact_log2 (align);
527 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #endif
530 #ifndef INSN_LENGTH_ALIGNMENT
531 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #endif
534 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
536 static int min_labelno, max_labelno;
538 #define LABEL_TO_ALIGNMENT(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
541 #define LABEL_TO_MAX_SKIP(LABEL) \
542 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
544 /* For the benefit of port specific code do this also as a function. */
547 label_to_alignment (rtx label)
549 if (CODE_LABEL_NUMBER (label) <= max_labelno)
550 return LABEL_TO_ALIGNMENT (label);
551 return 0;
555 label_to_max_skip (rtx label)
557 if (CODE_LABEL_NUMBER (label) <= max_labelno)
558 return LABEL_TO_MAX_SKIP (label);
559 return 0;
562 /* The differences in addresses
563 between a branch and its target might grow or shrink depending on
564 the alignment the start insn of the range (the branch for a forward
565 branch or the label for a backward branch) starts out on; if these
566 differences are used naively, they can even oscillate infinitely.
567 We therefore want to compute a 'worst case' address difference that
568 is independent of the alignment the start insn of the range end
569 up on, and that is at least as large as the actual difference.
570 The function align_fuzz calculates the amount we have to add to the
571 naively computed difference, by traversing the part of the alignment
572 chain of the start insn of the range that is in front of the end insn
573 of the range, and considering for each alignment the maximum amount
574 that it might contribute to a size increase.
576 For casesi tables, we also want to know worst case minimum amounts of
577 address difference, in case a machine description wants to introduce
578 some common offset that is added to all offsets in a table.
579 For this purpose, align_fuzz with a growth argument of 0 computes the
580 appropriate adjustment. */
582 /* Compute the maximum delta by which the difference of the addresses of
583 START and END might grow / shrink due to a different address for start
584 which changes the size of alignment insns between START and END.
585 KNOWN_ALIGN_LOG is the alignment known for START.
586 GROWTH should be ~0 if the objective is to compute potential code size
587 increase, and 0 if the objective is to compute potential shrink.
588 The return value is undefined for any other value of GROWTH. */
590 static int
591 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
593 int uid = INSN_UID (start);
594 rtx align_label;
595 int known_align = 1 << known_align_log;
596 int end_shuid = INSN_SHUID (end);
597 int fuzz = 0;
599 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
601 int align_addr, new_align;
603 uid = INSN_UID (align_label);
604 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
605 if (uid_shuid[uid] > end_shuid)
606 break;
607 known_align_log = LABEL_TO_ALIGNMENT (align_label);
608 new_align = 1 << known_align_log;
609 if (new_align < known_align)
610 continue;
611 fuzz += (-align_addr ^ growth) & (new_align - known_align);
612 known_align = new_align;
614 return fuzz;
617 /* Compute a worst-case reference address of a branch so that it
618 can be safely used in the presence of aligned labels. Since the
619 size of the branch itself is unknown, the size of the branch is
620 not included in the range. I.e. for a forward branch, the reference
621 address is the end address of the branch as known from the previous
622 branch shortening pass, minus a value to account for possible size
623 increase due to alignment. For a backward branch, it is the start
624 address of the branch as known from the current pass, plus a value
625 to account for possible size increase due to alignment.
626 NB.: Therefore, the maximum offset allowed for backward branches needs
627 to exclude the branch size. */
630 insn_current_reference_address (rtx_insn *branch)
632 rtx dest;
633 int seq_uid;
635 if (! INSN_ADDRESSES_SET_P ())
636 return 0;
638 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
639 seq_uid = INSN_UID (seq);
640 if (!JUMP_P (branch))
641 /* This can happen for example on the PA; the objective is to know the
642 offset to address something in front of the start of the function.
643 Thus, we can treat it like a backward branch.
644 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
645 any alignment we'd encounter, so we skip the call to align_fuzz. */
646 return insn_current_address;
647 dest = JUMP_LABEL (branch);
649 /* BRANCH has no proper alignment chain set, so use SEQ.
650 BRANCH also has no INSN_SHUID. */
651 if (INSN_SHUID (seq) < INSN_SHUID (dest))
653 /* Forward branch. */
654 return (insn_last_address + insn_lengths[seq_uid]
655 - align_fuzz (seq, dest, length_unit_log, ~0));
657 else
659 /* Backward branch. */
660 return (insn_current_address
661 + align_fuzz (dest, seq, length_unit_log, ~0));
665 /* Compute branch alignments based on CFG profile. */
667 unsigned int
668 compute_alignments (void)
670 int log, max_skip, max_log;
671 basic_block bb;
673 if (label_align)
675 free (label_align);
676 label_align = 0;
679 max_labelno = max_label_num ();
680 min_labelno = get_first_label_num ();
681 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
683 /* If not optimizing or optimizing for size, don't assign any alignments. */
684 if (! optimize || optimize_function_for_size_p (cfun))
685 return 0;
687 if (dump_file)
689 dump_reg_info (dump_file);
690 dump_flow_info (dump_file, TDF_DETAILS);
691 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 profile_count count_threshold = cfun->cfg->count_max.apply_scale
695 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
697 if (dump_file)
699 fprintf (dump_file, "count_max: ");
700 cfun->cfg->count_max.dump (dump_file);
701 fprintf (dump_file, "\n");
703 FOR_EACH_BB_FN (bb, cfun)
705 rtx_insn *label = BB_HEAD (bb);
706 bool has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
710 if (!LABEL_P (label)
711 || optimize_bb_for_size_p (bb))
713 if (dump_file)
714 fprintf (dump_file,
715 "BB %4i loop %2i loop_depth %2i skipped.\n",
716 bb->index,
717 bb->loop_father->num,
718 bb_loop_depth (bb));
719 continue;
721 max_log = LABEL_ALIGN (label);
722 max_skip = targetm.asm_out.label_align_max_skip (label);
723 profile_count fallthru_count = profile_count::zero ();
724 profile_count branch_count = profile_count::zero ();
726 FOR_EACH_EDGE (e, ei, bb->preds)
728 if (e->flags & EDGE_FALLTHRU)
729 has_fallthru = 1, fallthru_count += e->count ();
730 else
731 branch_count += e->count ();
733 if (dump_file)
735 fprintf (dump_file, "BB %4i loop %2i loop_depth"
736 " %2i fall ",
737 bb->index, bb->loop_father->num,
738 bb_loop_depth (bb));
739 fallthru_count.dump (dump_file);
740 fprintf (dump_file, " branch ");
741 branch_count.dump (dump_file);
742 if (!bb->loop_father->inner && bb->loop_father->num)
743 fprintf (dump_file, " inner_loop");
744 if (bb->loop_father->header == bb)
745 fprintf (dump_file, " loop_header");
746 fprintf (dump_file, "\n");
748 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
749 continue;
751 /* There are two purposes to align block with no fallthru incoming edge:
752 1) to avoid fetch stalls when branch destination is near cache boundary
753 2) to improve cache efficiency in case the previous block is not executed
754 (so it does not need to be in the cache).
756 We to catch first case, we align frequently executed blocks.
757 To catch the second, we align blocks that are executed more frequently
758 than the predecessor and the predecessor is likely to not be executed
759 when function is called. */
761 if (!has_fallthru
762 && (branch_count > count_threshold
763 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
764 && (bb->prev_bb->count
765 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
766 ->count.apply_scale (1, 2)))))
768 log = JUMP_ALIGN (label);
769 if (dump_file)
770 fprintf (dump_file, " jump alignment added.\n");
771 if (max_log < log)
773 max_log = log;
774 max_skip = targetm.asm_out.jump_align_max_skip (label);
777 /* In case block is frequent and reached mostly by non-fallthru edge,
778 align it. It is most likely a first block of loop. */
779 if (has_fallthru
780 && !(single_succ_p (bb)
781 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
782 && optimize_bb_for_speed_p (bb)
783 && branch_count + fallthru_count > count_threshold
784 && (branch_count
785 > fallthru_count.apply_scale
786 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
788 log = LOOP_ALIGN (label);
789 if (dump_file)
790 fprintf (dump_file, " internal loop alignment added.\n");
791 if (max_log < log)
793 max_log = log;
794 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 LABEL_TO_ALIGNMENT (label) = max_log;
798 LABEL_TO_MAX_SKIP (label) = max_skip;
801 loop_optimizer_finalize ();
802 free_dominance_info (CDI_DOMINATORS);
803 return 0;
806 /* Grow the LABEL_ALIGN array after new labels are created. */
808 static void
809 grow_label_align (void)
811 int old = max_labelno;
812 int n_labels;
813 int n_old_labels;
815 max_labelno = max_label_num ();
817 n_labels = max_labelno - min_labelno + 1;
818 n_old_labels = old - min_labelno + 1;
820 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
822 /* Range of labels grows monotonically in the function. Failing here
823 means that the initialization of array got lost. */
824 gcc_assert (n_old_labels <= n_labels);
826 memset (label_align + n_old_labels, 0,
827 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 /* Update the already computed alignment information. LABEL_PAIRS is a vector
831 made up of pairs of labels for which the alignment information of the first
832 element will be copied from that of the second element. */
834 void
835 update_alignments (vec<rtx> &label_pairs)
837 unsigned int i = 0;
838 rtx iter, label = NULL_RTX;
840 if (max_labelno != max_label_num ())
841 grow_label_align ();
843 FOR_EACH_VEC_ELT (label_pairs, i, iter)
844 if (i & 1)
846 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
847 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
849 else
850 label = iter;
853 namespace {
855 const pass_data pass_data_compute_alignments =
857 RTL_PASS, /* type */
858 "alignments", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_NONE, /* tv_id */
861 0, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
868 class pass_compute_alignments : public rtl_opt_pass
870 public:
871 pass_compute_alignments (gcc::context *ctxt)
872 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 /* opt_pass methods: */
876 virtual unsigned int execute (function *) { return compute_alignments (); }
878 }; // class pass_compute_alignments
880 } // anon namespace
882 rtl_opt_pass *
883 make_pass_compute_alignments (gcc::context *ctxt)
885 return new pass_compute_alignments (ctxt);
889 /* Make a pass over all insns and compute their actual lengths by shortening
890 any branches of variable length if possible. */
892 /* shorten_branches might be called multiple times: for example, the SH
893 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
894 In order to do this, it needs proper length information, which it obtains
895 by calling shorten_branches. This cannot be collapsed with
896 shorten_branches itself into a single pass unless we also want to integrate
897 reorg.c, since the branch splitting exposes new instructions with delay
898 slots. */
900 void
901 shorten_branches (rtx_insn *first)
903 rtx_insn *insn;
904 int max_uid;
905 int i;
906 int max_log;
907 int max_skip;
908 #define MAX_CODE_ALIGN 16
909 rtx_insn *seq;
910 int something_changed = 1;
911 char *varying_length;
912 rtx body;
913 int uid;
914 rtx align_tab[MAX_CODE_ALIGN + 1];
916 /* Compute maximum UID and allocate label_align / uid_shuid. */
917 max_uid = get_max_uid ();
919 /* Free uid_shuid before reallocating it. */
920 free (uid_shuid);
922 uid_shuid = XNEWVEC (int, max_uid);
924 if (max_labelno != max_label_num ())
925 grow_label_align ();
927 /* Initialize label_align and set up uid_shuid to be strictly
928 monotonically rising with insn order. */
929 /* We use max_log here to keep track of the maximum alignment we want to
930 impose on the next CODE_LABEL (or the current one if we are processing
931 the CODE_LABEL itself). */
933 max_log = 0;
934 max_skip = 0;
936 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
938 int log;
940 INSN_SHUID (insn) = i++;
941 if (INSN_P (insn))
942 continue;
944 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
946 /* Merge in alignments computed by compute_alignments. */
947 log = LABEL_TO_ALIGNMENT (label);
948 if (max_log < log)
950 max_log = log;
951 max_skip = LABEL_TO_MAX_SKIP (label);
954 rtx_jump_table_data *table = jump_table_for_label (label);
955 if (!table)
957 log = LABEL_ALIGN (label);
958 if (max_log < log)
960 max_log = log;
961 max_skip = targetm.asm_out.label_align_max_skip (label);
964 /* ADDR_VECs only take room if read-only data goes into the text
965 section. */
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section == text_section)
968 && table)
970 log = ADDR_VEC_ALIGN (table);
971 if (max_log < log)
973 max_log = log;
974 max_skip = targetm.asm_out.label_align_max_skip (label);
977 LABEL_TO_ALIGNMENT (label) = max_log;
978 LABEL_TO_MAX_SKIP (label) = max_skip;
979 max_log = 0;
980 max_skip = 0;
982 else if (BARRIER_P (insn))
984 rtx_insn *label;
986 for (label = insn; label && ! INSN_P (label);
987 label = NEXT_INSN (label))
988 if (LABEL_P (label))
990 log = LABEL_ALIGN_AFTER_BARRIER (insn);
991 if (max_log < log)
993 max_log = log;
994 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
996 break;
1000 if (!HAVE_ATTR_length)
1001 return;
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths = XNEWVEC (int, max_uid);
1005 insn_lengths_max_uid = max_uid;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid);
1010 varying_length = XCNEWVEC (char, max_uid);
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1016 alignment of n. */
1017 uid_align = XCNEWVEC (rtx, max_uid);
1019 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
1020 align_tab[i] = NULL_RTX;
1021 seq = get_last_insn ();
1022 for (; seq; seq = PREV_INSN (seq))
1024 int uid = INSN_UID (seq);
1025 int log;
1026 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1027 uid_align[uid] = align_tab[0];
1028 if (log)
1030 /* Found an alignment label. */
1031 uid_align[uid] = align_tab[log];
1032 for (i = log - 1; i >= 0; i--)
1033 align_tab[i] = seq;
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing = optimize != 0;
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 if (optimize)
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 label fields. */
1049 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1051 int rel;
1053 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1055 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1056 int len, i, min, max, insn_shuid;
1057 int min_align;
1058 addr_diff_vec_flags flags;
1060 if (! JUMP_TABLE_DATA_P (insn)
1061 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1062 continue;
1063 pat = PATTERN (insn);
1064 len = XVECLEN (pat, 1);
1065 gcc_assert (len > 0);
1066 min_align = MAX_CODE_ALIGN;
1067 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1069 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1070 int shuid = INSN_SHUID (lab);
1071 if (shuid < min)
1073 min = shuid;
1074 min_lab = lab;
1076 if (shuid > max)
1078 max = shuid;
1079 max_lab = lab;
1081 if (min_align > LABEL_TO_ALIGNMENT (lab))
1082 min_align = LABEL_TO_ALIGNMENT (lab);
1084 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1085 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1086 insn_shuid = INSN_SHUID (insn);
1087 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1088 memset (&flags, 0, sizeof (flags));
1089 flags.min_align = min_align;
1090 flags.base_after_vec = rel > insn_shuid;
1091 flags.min_after_vec = min > insn_shuid;
1092 flags.max_after_vec = max > insn_shuid;
1093 flags.min_after_base = min > rel;
1094 flags.max_after_base = max > rel;
1095 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1097 if (increasing)
1098 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1106 for (insn_current_address = 0, insn = first;
1107 insn != 0;
1108 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1110 uid = INSN_UID (insn);
1112 insn_lengths[uid] = 0;
1114 if (LABEL_P (insn))
1116 int log = LABEL_TO_ALIGNMENT (insn);
1117 if (log)
1119 int align = 1 << log;
1120 int new_address = (insn_current_address + align - 1) & -align;
1121 insn_lengths[uid] = new_address - insn_current_address;
1125 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1127 if (NOTE_P (insn) || BARRIER_P (insn)
1128 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1129 continue;
1130 if (insn->deleted ())
1131 continue;
1133 body = PATTERN (insn);
1134 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1136 /* This only takes room if read-only data goes into the text
1137 section. */
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section == text_section)
1140 insn_lengths[uid] = (XVECLEN (body,
1141 GET_CODE (body) == ADDR_DIFF_VEC)
1142 * GET_MODE_SIZE (table->get_data_mode ()));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1145 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1146 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1147 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1149 int i;
1150 int const_delay_slots;
1151 if (DELAY_SLOTS)
1152 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1153 else
1154 const_delay_slots = 0;
1156 int (*inner_length_fun) (rtx_insn *)
1157 = const_delay_slots ? length_fun : insn_default_length;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1160 of the branch. */
1161 for (i = 0; i < body_seq->len (); i++)
1163 rtx_insn *inner_insn = body_seq->insn (i);
1164 int inner_uid = INSN_UID (inner_insn);
1165 int inner_length;
1167 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1168 || asm_noperands (PATTERN (inner_insn)) >= 0)
1169 inner_length = (asm_insn_count (PATTERN (inner_insn))
1170 * insn_default_length (inner_insn));
1171 else
1172 inner_length = inner_length_fun (inner_insn);
1174 insn_lengths[inner_uid] = inner_length;
1175 if (const_delay_slots)
1177 if ((varying_length[inner_uid]
1178 = insn_variable_length_p (inner_insn)) != 0)
1179 varying_length[uid] = 1;
1180 INSN_ADDRESSES (inner_uid) = (insn_current_address
1181 + insn_lengths[uid]);
1183 else
1184 varying_length[inner_uid] = 0;
1185 insn_lengths[uid] += inner_length;
1188 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1190 insn_lengths[uid] = length_fun (insn);
1191 varying_length[uid] = insn_variable_length_p (insn);
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1197 if (insn_lengths[uid] < 0)
1198 fatal_insn ("negative insn length", insn);
1199 #endif
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1206 while (something_changed)
1208 something_changed = 0;
1209 insn_current_align = MAX_CODE_ALIGN - 1;
1210 for (insn_current_address = 0, insn = first;
1211 insn != 0;
1212 insn = NEXT_INSN (insn))
1214 int new_length;
1215 #ifdef ADJUST_INSN_LENGTH
1216 int tmp_length;
1217 #endif
1218 int length_align;
1220 uid = INSN_UID (insn);
1222 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1224 int log = LABEL_TO_ALIGNMENT (label);
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1230 if (JUMP_TABLES_IN_TEXT_SECTION
1231 || readonly_data_section == text_section)
1233 rtx_jump_table_data *table = jump_table_for_label (label);
1234 if (table)
1236 int newlog = ADDR_VEC_ALIGN (table);
1237 if (newlog != log)
1239 log = newlog;
1240 LABEL_TO_ALIGNMENT (insn) = log;
1241 something_changed = 1;
1245 #endif
1247 if (log > insn_current_align)
1249 int align = 1 << log;
1250 int new_address= (insn_current_address + align - 1) & -align;
1251 insn_lengths[uid] = new_address - insn_current_address;
1252 insn_current_align = log;
1253 insn_current_address = new_address;
1255 else
1256 insn_lengths[uid] = 0;
1257 INSN_ADDRESSES (uid) = insn_current_address;
1258 continue;
1261 length_align = INSN_LENGTH_ALIGNMENT (insn);
1262 if (length_align < insn_current_align)
1263 insn_current_align = length_align;
1265 insn_last_address = INSN_ADDRESSES (uid);
1266 INSN_ADDRESSES (uid) = insn_current_address;
1268 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 if (optimize
1270 && JUMP_TABLE_DATA_P (insn)
1271 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1273 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1274 rtx body = PATTERN (insn);
1275 int old_length = insn_lengths[uid];
1276 rtx_insn *rel_lab =
1277 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1278 rtx min_lab = XEXP (XEXP (body, 2), 0);
1279 rtx max_lab = XEXP (XEXP (body, 3), 0);
1280 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1281 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1282 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1283 rtx_insn *prev;
1284 int rel_align = 0;
1285 addr_diff_vec_flags flags;
1286 scalar_int_mode vec_mode;
1288 /* Avoid automatic aggregate initialization. */
1289 flags = ADDR_DIFF_VEC_FLAGS (body);
1291 /* Try to find a known alignment for rel_lab. */
1292 for (prev = rel_lab;
1293 prev
1294 && ! insn_lengths[INSN_UID (prev)]
1295 && ! (varying_length[INSN_UID (prev)] & 1);
1296 prev = PREV_INSN (prev))
1297 if (varying_length[INSN_UID (prev)] & 2)
1299 rel_align = LABEL_TO_ALIGNMENT (prev);
1300 break;
1303 /* See the comment on addr_diff_vec_flags in rtl.h for the
1304 meaning of the flags values. base: REL_LAB vec: INSN */
1305 /* Anything after INSN has still addresses from the last
1306 pass; adjust these so that they reflect our current
1307 estimate for this pass. */
1308 if (flags.base_after_vec)
1309 rel_addr += insn_current_address - insn_last_address;
1310 if (flags.min_after_vec)
1311 min_addr += insn_current_address - insn_last_address;
1312 if (flags.max_after_vec)
1313 max_addr += insn_current_address - insn_last_address;
1314 /* We want to know the worst case, i.e. lowest possible value
1315 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1316 its offset is positive, and we have to be wary of code shrink;
1317 otherwise, it is negative, and we have to be vary of code
1318 size increase. */
1319 if (flags.min_after_base)
1321 /* If INSN is between REL_LAB and MIN_LAB, the size
1322 changes we are about to make can change the alignment
1323 within the observed offset, therefore we have to break
1324 it up into two parts that are independent. */
1325 if (! flags.base_after_vec && flags.min_after_vec)
1327 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1328 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1330 else
1331 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1333 else
1335 if (flags.base_after_vec && ! flags.min_after_vec)
1337 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1338 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1340 else
1341 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1343 /* Likewise, determine the highest lowest possible value
1344 for the offset of MAX_LAB. */
1345 if (flags.max_after_base)
1347 if (! flags.base_after_vec && flags.max_after_vec)
1349 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1350 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1352 else
1353 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1355 else
1357 if (flags.base_after_vec && ! flags.max_after_vec)
1359 max_addr += align_fuzz (max_lab, insn, 0, 0);
1360 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1362 else
1363 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1365 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1366 max_addr - rel_addr, body);
1367 if (!increasing
1368 || (GET_MODE_SIZE (vec_mode)
1369 >= GET_MODE_SIZE (table->get_data_mode ())))
1370 PUT_MODE (body, vec_mode);
1371 if (JUMP_TABLES_IN_TEXT_SECTION
1372 || readonly_data_section == text_section)
1374 insn_lengths[uid]
1375 = (XVECLEN (body, 1)
1376 * GET_MODE_SIZE (table->get_data_mode ()));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1382 continue;
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1386 if (! (varying_length[uid]))
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1391 int i;
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1401 insn_current_address += insn_lengths[inner_uid];
1404 else
1405 insn_current_address += insn_lengths[uid];
1407 continue;
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1412 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1413 int i;
1415 body = PATTERN (insn);
1416 new_length = 0;
1417 for (i = 0; i < seqn->len (); i++)
1419 rtx_insn *inner_insn = seqn->insn (i);
1420 int inner_uid = INSN_UID (inner_insn);
1421 int inner_length;
1423 INSN_ADDRESSES (inner_uid) = insn_current_address;
1425 /* insn_current_length returns 0 for insns with a
1426 non-varying length. */
1427 if (! varying_length[inner_uid])
1428 inner_length = insn_lengths[inner_uid];
1429 else
1430 inner_length = insn_current_length (inner_insn);
1432 if (inner_length != insn_lengths[inner_uid])
1434 if (!increasing || inner_length > insn_lengths[inner_uid])
1436 insn_lengths[inner_uid] = inner_length;
1437 something_changed = 1;
1439 else
1440 inner_length = insn_lengths[inner_uid];
1442 insn_current_address += inner_length;
1443 new_length += inner_length;
1446 else
1448 new_length = insn_current_length (insn);
1449 insn_current_address += new_length;
1452 #ifdef ADJUST_INSN_LENGTH
1453 /* If needed, do any adjustment. */
1454 tmp_length = new_length;
1455 ADJUST_INSN_LENGTH (insn, new_length);
1456 insn_current_address += (new_length - tmp_length);
1457 #endif
1459 if (new_length != insn_lengths[uid]
1460 && (!increasing || new_length > insn_lengths[uid]))
1462 insn_lengths[uid] = new_length;
1463 something_changed = 1;
1465 else
1466 insn_current_address += insn_lengths[uid] - new_length;
1468 /* For a non-optimizing compile, do only a single pass. */
1469 if (!increasing)
1470 break;
1472 crtl->max_insn_address = insn_current_address;
1473 free (varying_length);
1476 /* Given the body of an INSN known to be generated by an ASM statement, return
1477 the number of machine instructions likely to be generated for this insn.
1478 This is used to compute its length. */
1480 static int
1481 asm_insn_count (rtx body)
1483 const char *templ;
1485 if (GET_CODE (body) == ASM_INPUT)
1486 templ = XSTR (body, 0);
1487 else
1488 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1490 return asm_str_count (templ);
1493 /* Return the number of machine instructions likely to be generated for the
1494 inline-asm template. */
1496 asm_str_count (const char *templ)
1498 int count = 1;
1500 if (!*templ)
1501 return 0;
1503 for (; *templ; templ++)
1504 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1505 || *templ == '\n')
1506 count++;
1508 return count;
1511 /* Return true if DWARF2 debug info can be emitted for DECL. */
1513 static bool
1514 dwarf2_debug_info_emitted_p (tree decl)
1516 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1517 return false;
1519 if (DECL_IGNORED_P (decl))
1520 return false;
1522 return true;
1525 /* Return scope resulting from combination of S1 and S2. */
1526 static tree
1527 choose_inner_scope (tree s1, tree s2)
1529 if (!s1)
1530 return s2;
1531 if (!s2)
1532 return s1;
1533 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1534 return s1;
1535 return s2;
1538 /* Emit lexical block notes needed to change scope from S1 to S2. */
1540 static void
1541 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1543 rtx_insn *insn = orig_insn;
1544 tree com = NULL_TREE;
1545 tree ts1 = s1, ts2 = s2;
1546 tree s;
1548 while (ts1 != ts2)
1550 gcc_assert (ts1 && ts2);
1551 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1552 ts1 = BLOCK_SUPERCONTEXT (ts1);
1553 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1554 ts2 = BLOCK_SUPERCONTEXT (ts2);
1555 else
1557 ts1 = BLOCK_SUPERCONTEXT (ts1);
1558 ts2 = BLOCK_SUPERCONTEXT (ts2);
1561 com = ts1;
1563 /* Close scopes. */
1564 s = s1;
1565 while (s != com)
1567 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1568 NOTE_BLOCK (note) = s;
1569 s = BLOCK_SUPERCONTEXT (s);
1572 /* Open scopes. */
1573 s = s2;
1574 while (s != com)
1576 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1577 NOTE_BLOCK (insn) = s;
1578 s = BLOCK_SUPERCONTEXT (s);
1582 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1583 on the scope tree and the newly reordered instructions. */
1585 static void
1586 reemit_insn_block_notes (void)
1588 tree cur_block = DECL_INITIAL (cfun->decl);
1589 rtx_insn *insn;
1591 insn = get_insns ();
1592 for (; insn; insn = NEXT_INSN (insn))
1594 tree this_block;
1596 /* Prevent lexical blocks from straddling section boundaries. */
1597 if (NOTE_P (insn))
1598 switch (NOTE_KIND (insn))
1600 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1602 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1603 s = BLOCK_SUPERCONTEXT (s))
1605 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1606 NOTE_BLOCK (note) = s;
1607 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1608 NOTE_BLOCK (note) = s;
1611 break;
1613 case NOTE_INSN_BEGIN_STMT:
1614 case NOTE_INSN_INLINE_ENTRY:
1615 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1616 goto set_cur_block_to_this_block;
1618 default:
1619 continue;
1622 if (!active_insn_p (insn))
1623 continue;
1625 /* Avoid putting scope notes between jump table and its label. */
1626 if (JUMP_TABLE_DATA_P (insn))
1627 continue;
1629 this_block = insn_scope (insn);
1630 /* For sequences compute scope resulting from merging all scopes
1631 of instructions nested inside. */
1632 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1634 int i;
1636 this_block = NULL;
1637 for (i = 0; i < body->len (); i++)
1638 this_block = choose_inner_scope (this_block,
1639 insn_scope (body->insn (i)));
1641 set_cur_block_to_this_block:
1642 if (! this_block)
1644 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1645 continue;
1646 else
1647 this_block = DECL_INITIAL (cfun->decl);
1650 if (this_block != cur_block)
1652 change_scope (insn, cur_block, this_block);
1653 cur_block = this_block;
1657 /* change_scope emits before the insn, not after. */
1658 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1659 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1660 delete_insn (note);
1662 reorder_blocks ();
1665 static const char *some_local_dynamic_name;
1667 /* Locate some local-dynamic symbol still in use by this function
1668 so that we can print its name in local-dynamic base patterns.
1669 Return null if there are no local-dynamic references. */
1671 const char *
1672 get_some_local_dynamic_name ()
1674 subrtx_iterator::array_type array;
1675 rtx_insn *insn;
1677 if (some_local_dynamic_name)
1678 return some_local_dynamic_name;
1680 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1681 if (NONDEBUG_INSN_P (insn))
1682 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1684 const_rtx x = *iter;
1685 if (GET_CODE (x) == SYMBOL_REF)
1687 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1688 return some_local_dynamic_name = XSTR (x, 0);
1689 if (CONSTANT_POOL_ADDRESS_P (x))
1690 iter.substitute (get_pool_constant (x));
1694 return 0;
1697 /* Arrange for us to emit a source location note before any further
1698 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1699 *SEEN, as long as we are keeping track of location views. The bit
1700 indicates we have referenced the next view at the current PC, so we
1701 have to emit it. This should be called next to the var_location
1702 debug hook. */
1704 static inline void
1705 set_next_view_needed (int *seen)
1707 if (debug_variable_location_views)
1708 *seen |= SEEN_NEXT_VIEW;
1711 /* Clear the flag in *SEEN indicating we need to emit the next view.
1712 This should be called next to the source_line debug hook. */
1714 static inline void
1715 clear_next_view_needed (int *seen)
1717 *seen &= ~SEEN_NEXT_VIEW;
1720 /* Test whether we have a pending request to emit the next view in
1721 *SEEN, and emit it if needed, clearing the request bit. */
1723 static inline void
1724 maybe_output_next_view (int *seen)
1726 if ((*seen & SEEN_NEXT_VIEW) != 0)
1728 clear_next_view_needed (seen);
1729 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1730 last_filename, last_discriminator,
1731 false);
1735 /* We want to emit param bindings (before the first begin_stmt) in the
1736 initial view, if we are emitting views. To that end, we may
1737 consume initial notes in the function, processing them in
1738 final_start_function, before signaling the beginning of the
1739 prologue, rather than in final.
1741 We don't test whether the DECLs are PARM_DECLs: the assumption is
1742 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1743 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1744 there, we'll just have more variable locations bound in the initial
1745 view, which is consistent with their being bound without any code
1746 that would give them a value. */
1748 static inline bool
1749 in_initial_view_p (rtx_insn *insn)
1751 return (!DECL_IGNORED_P (current_function_decl)
1752 && debug_variable_location_views
1753 && insn && GET_CODE (insn) == NOTE
1754 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1755 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1758 /* Output assembler code for the start of a function,
1759 and initialize some of the variables in this file
1760 for the new function. The label for the function and associated
1761 assembler pseudo-ops have already been output in `assemble_start_function'.
1763 FIRST is the first insn of the rtl for the function being compiled.
1764 FILE is the file to write assembler code to.
1765 SEEN should be initially set to zero, and it may be updated to
1766 indicate we have references to the next location view, that would
1767 require us to emit it at the current PC.
1768 OPTIMIZE_P is nonzero if we should eliminate redundant
1769 test and compare insns. */
1771 static void
1772 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1773 int optimize_p ATTRIBUTE_UNUSED)
1775 block_depth = 0;
1777 this_is_asm_operands = 0;
1779 need_profile_function = false;
1781 last_filename = LOCATION_FILE (prologue_location);
1782 last_linenum = LOCATION_LINE (prologue_location);
1783 last_columnnum = LOCATION_COLUMN (prologue_location);
1784 last_discriminator = discriminator = 0;
1786 high_block_linenum = high_function_linenum = last_linenum;
1788 if (flag_sanitize & SANITIZE_ADDRESS)
1789 asan_function_start ();
1791 rtx_insn *first = *firstp;
1792 if (in_initial_view_p (first))
1796 final_scan_insn (first, file, 0, 0, seen);
1797 first = NEXT_INSN (first);
1799 while (in_initial_view_p (first));
1800 *firstp = first;
1803 if (!DECL_IGNORED_P (current_function_decl))
1804 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1805 last_filename);
1807 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1808 dwarf2out_begin_prologue (0, 0, NULL);
1810 #ifdef LEAF_REG_REMAP
1811 if (crtl->uses_only_leaf_regs)
1812 leaf_renumber_regs (first);
1813 #endif
1815 /* The Sun386i and perhaps other machines don't work right
1816 if the profiling code comes after the prologue. */
1817 if (targetm.profile_before_prologue () && crtl->profile)
1819 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1820 && targetm.have_prologue ())
1822 rtx_insn *insn;
1823 for (insn = first; insn; insn = NEXT_INSN (insn))
1824 if (!NOTE_P (insn))
1826 insn = NULL;
1827 break;
1829 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1830 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1831 break;
1832 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1833 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1834 continue;
1835 else
1837 insn = NULL;
1838 break;
1841 if (insn)
1842 need_profile_function = true;
1843 else
1844 profile_function (file);
1846 else
1847 profile_function (file);
1850 /* If debugging, assign block numbers to all of the blocks in this
1851 function. */
1852 if (write_symbols)
1854 reemit_insn_block_notes ();
1855 number_blocks (current_function_decl);
1856 /* We never actually put out begin/end notes for the top-level
1857 block in the function. But, conceptually, that block is
1858 always needed. */
1859 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1862 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1863 if (warn_frame_larger_than
1864 && min_frame_size > frame_larger_than_size)
1866 /* Issue a warning */
1867 warning (OPT_Wframe_larger_than_,
1868 "the frame size of %wd bytes is larger than %wd bytes",
1869 min_frame_size, frame_larger_than_size);
1872 /* First output the function prologue: code to set up the stack frame. */
1873 targetm.asm_out.function_prologue (file);
1875 /* If the machine represents the prologue as RTL, the profiling code must
1876 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1877 if (! targetm.have_prologue ())
1878 profile_after_prologue (file);
1881 /* This is an exported final_start_function_1, callable without SEEN. */
1883 void
1884 final_start_function (rtx_insn *first, FILE *file,
1885 int optimize_p ATTRIBUTE_UNUSED)
1887 int seen = 0;
1888 final_start_function_1 (&first, file, &seen, optimize_p);
1889 gcc_assert (seen == 0);
1892 static void
1893 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1895 if (!targetm.profile_before_prologue () && crtl->profile)
1896 profile_function (file);
1899 static void
1900 profile_function (FILE *file ATTRIBUTE_UNUSED)
1902 #ifndef NO_PROFILE_COUNTERS
1903 # define NO_PROFILE_COUNTERS 0
1904 #endif
1905 #ifdef ASM_OUTPUT_REG_PUSH
1906 rtx sval = NULL, chain = NULL;
1908 if (cfun->returns_struct)
1909 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1910 true);
1911 if (cfun->static_chain_decl)
1912 chain = targetm.calls.static_chain (current_function_decl, true);
1913 #endif /* ASM_OUTPUT_REG_PUSH */
1915 if (! NO_PROFILE_COUNTERS)
1917 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1918 switch_to_section (data_section);
1919 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1920 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1921 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1924 switch_to_section (current_function_section ());
1926 #ifdef ASM_OUTPUT_REG_PUSH
1927 if (sval && REG_P (sval))
1928 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1929 if (chain && REG_P (chain))
1930 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1931 #endif
1933 FUNCTION_PROFILER (file, current_function_funcdef_no);
1935 #ifdef ASM_OUTPUT_REG_PUSH
1936 if (chain && REG_P (chain))
1937 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1938 if (sval && REG_P (sval))
1939 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1940 #endif
1943 /* Output assembler code for the end of a function.
1944 For clarity, args are same as those of `final_start_function'
1945 even though not all of them are needed. */
1947 void
1948 final_end_function (void)
1950 app_disable ();
1952 if (!DECL_IGNORED_P (current_function_decl))
1953 debug_hooks->end_function (high_function_linenum);
1955 /* Finally, output the function epilogue:
1956 code to restore the stack frame and return to the caller. */
1957 targetm.asm_out.function_epilogue (asm_out_file);
1959 /* And debug output. */
1960 if (!DECL_IGNORED_P (current_function_decl))
1961 debug_hooks->end_epilogue (last_linenum, last_filename);
1963 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1964 && dwarf2out_do_frame ())
1965 dwarf2out_end_epilogue (last_linenum, last_filename);
1967 some_local_dynamic_name = 0;
1971 /* Dumper helper for basic block information. FILE is the assembly
1972 output file, and INSN is the instruction being emitted. */
1974 static void
1975 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1976 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1978 basic_block bb;
1980 if (!flag_debug_asm)
1981 return;
1983 if (INSN_UID (insn) < bb_map_size
1984 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1986 edge e;
1987 edge_iterator ei;
1989 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1990 if (bb->count.initialized_p ())
1992 fprintf (file, ", count:");
1993 bb->count.dump (file);
1995 fprintf (file, " seq:%d", (*bb_seqn)++);
1996 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1997 FOR_EACH_EDGE (e, ei, bb->preds)
1999 dump_edge_info (file, e, TDF_DETAILS, 0);
2001 fprintf (file, "\n");
2003 if (INSN_UID (insn) < bb_map_size
2004 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2006 edge e;
2007 edge_iterator ei;
2009 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2010 FOR_EACH_EDGE (e, ei, bb->succs)
2012 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2014 fprintf (file, "\n");
2018 /* Output assembler code for some insns: all or part of a function.
2019 For description of args, see `final_start_function', above. */
2021 static void
2022 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
2024 rtx_insn *insn, *next;
2026 /* Used for -dA dump. */
2027 basic_block *start_to_bb = NULL;
2028 basic_block *end_to_bb = NULL;
2029 int bb_map_size = 0;
2030 int bb_seqn = 0;
2032 last_ignored_compare = 0;
2034 if (HAVE_cc0)
2035 for (insn = first; insn; insn = NEXT_INSN (insn))
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p && JUMP_P (insn))
2041 rtx lab = JUMP_LABEL (insn);
2042 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2044 LABEL_REFS (lab) = insn;
2049 init_recog ();
2051 CC_STATUS_INIT;
2053 if (flag_debug_asm)
2055 basic_block bb;
2057 bb_map_size = get_max_uid () + 1;
2058 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2059 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2061 /* There is no cfg for a thunk. */
2062 if (!cfun->is_thunk)
2063 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2065 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2066 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2070 /* Output the insns. */
2071 for (insn = first; insn;)
2073 if (HAVE_ATTR_length)
2075 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2077 /* This can be triggered by bugs elsewhere in the compiler if
2078 new insns are created after init_insn_lengths is called. */
2079 gcc_assert (NOTE_P (insn));
2080 insn_current_address = -1;
2082 else
2083 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2084 /* final can be seen as an iteration of shorten_branches that
2085 does nothing (since a fixed point has already been reached). */
2086 insn_last_address = insn_current_address;
2089 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2090 bb_map_size, &bb_seqn);
2091 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2094 maybe_output_next_view (&seen);
2096 if (flag_debug_asm)
2098 free (start_to_bb);
2099 free (end_to_bb);
2102 /* Remove CFI notes, to avoid compare-debug failures. */
2103 for (insn = first; insn; insn = next)
2105 next = NEXT_INSN (insn);
2106 if (NOTE_P (insn)
2107 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2108 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2109 delete_insn (insn);
2113 /* This is an exported final_1, callable without SEEN. */
2115 void
2116 final (rtx_insn *first, FILE *file, int optimize_p)
2118 /* Those that use the internal final_start_function_1/final_1 API
2119 skip initial debug bind notes in final_start_function_1, and pass
2120 the modified FIRST to final_1. But those that use the public
2121 final_start_function/final APIs, final_start_function can't move
2122 FIRST because it's not passed by reference, so if they were
2123 skipped there, skip them again here. */
2124 while (in_initial_view_p (first))
2125 first = NEXT_INSN (first);
2127 final_1 (first, file, 0, optimize_p);
2130 const char *
2131 get_insn_template (int code, rtx_insn *insn)
2133 switch (insn_data[code].output_format)
2135 case INSN_OUTPUT_FORMAT_SINGLE:
2136 return insn_data[code].output.single;
2137 case INSN_OUTPUT_FORMAT_MULTI:
2138 return insn_data[code].output.multi[which_alternative];
2139 case INSN_OUTPUT_FORMAT_FUNCTION:
2140 gcc_assert (insn);
2141 return (*insn_data[code].output.function) (recog_data.operand, insn);
2143 default:
2144 gcc_unreachable ();
2148 /* Emit the appropriate declaration for an alternate-entry-point
2149 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2150 LABEL_KIND != LABEL_NORMAL.
2152 The case fall-through in this function is intentional. */
2153 static void
2154 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2156 const char *name = LABEL_NAME (insn);
2158 switch (LABEL_KIND (insn))
2160 case LABEL_WEAK_ENTRY:
2161 #ifdef ASM_WEAKEN_LABEL
2162 ASM_WEAKEN_LABEL (file, name);
2163 gcc_fallthrough ();
2164 #endif
2165 case LABEL_GLOBAL_ENTRY:
2166 targetm.asm_out.globalize_label (file, name);
2167 gcc_fallthrough ();
2168 case LABEL_STATIC_ENTRY:
2169 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2170 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2171 #endif
2172 ASM_OUTPUT_LABEL (file, name);
2173 break;
2175 case LABEL_NORMAL:
2176 default:
2177 gcc_unreachable ();
2181 /* Given a CALL_INSN, find and return the nested CALL. */
2182 static rtx
2183 call_from_call_insn (rtx_call_insn *insn)
2185 rtx x;
2186 gcc_assert (CALL_P (insn));
2187 x = PATTERN (insn);
2189 while (GET_CODE (x) != CALL)
2191 switch (GET_CODE (x))
2193 default:
2194 gcc_unreachable ();
2195 case COND_EXEC:
2196 x = COND_EXEC_CODE (x);
2197 break;
2198 case PARALLEL:
2199 x = XVECEXP (x, 0, 0);
2200 break;
2201 case SET:
2202 x = XEXP (x, 1);
2203 break;
2206 return x;
2209 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2210 corresponding source line, if available. */
2212 static void
2213 asm_show_source (const char *filename, int linenum)
2215 if (!filename)
2216 return;
2218 char_span line = location_get_source_line (filename, linenum);
2219 if (!line)
2220 return;
2222 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2223 /* "line" is not 0-terminated, so we must use its length. */
2224 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2225 fputc ('\n', asm_out_file);
2228 /* The final scan for one insn, INSN.
2229 Args are same as in `final', except that INSN
2230 is the insn being scanned.
2231 Value returned is the next insn to be scanned.
2233 NOPEEPHOLES is the flag to disallow peephole processing (currently
2234 used for within delayed branch sequence output).
2236 SEEN is used to track the end of the prologue, for emitting
2237 debug information. We force the emission of a line note after
2238 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2240 static rtx_insn *
2241 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2242 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2244 #if HAVE_cc0
2245 rtx set;
2246 #endif
2247 rtx_insn *next;
2248 rtx_jump_table_data *table;
2250 insn_counter++;
2252 /* Ignore deleted insns. These can occur when we split insns (due to a
2253 template of "#") while not optimizing. */
2254 if (insn->deleted ())
2255 return NEXT_INSN (insn);
2257 switch (GET_CODE (insn))
2259 case NOTE:
2260 switch (NOTE_KIND (insn))
2262 case NOTE_INSN_DELETED:
2263 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2264 break;
2266 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2267 maybe_output_next_view (seen);
2269 output_function_exception_table (0);
2271 if (targetm.asm_out.unwind_emit)
2272 targetm.asm_out.unwind_emit (asm_out_file, insn);
2274 in_cold_section_p = !in_cold_section_p;
2276 if (in_cold_section_p)
2277 cold_function_name
2278 = clone_function_name (current_function_decl, "cold");
2280 if (dwarf2out_do_frame ())
2282 dwarf2out_switch_text_section ();
2283 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2284 && !DECL_IGNORED_P (current_function_decl))
2285 debug_hooks->switch_text_section ();
2287 else if (!DECL_IGNORED_P (current_function_decl))
2288 debug_hooks->switch_text_section ();
2290 switch_to_section (current_function_section ());
2291 targetm.asm_out.function_switched_text_sections (asm_out_file,
2292 current_function_decl,
2293 in_cold_section_p);
2294 /* Emit a label for the split cold section. Form label name by
2295 suffixing "cold" to the original function's name. */
2296 if (in_cold_section_p)
2298 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2299 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2300 IDENTIFIER_POINTER
2301 (cold_function_name),
2302 current_function_decl);
2303 #else
2304 ASM_OUTPUT_LABEL (asm_out_file,
2305 IDENTIFIER_POINTER (cold_function_name));
2306 #endif
2308 break;
2310 case NOTE_INSN_BASIC_BLOCK:
2311 if (need_profile_function)
2313 profile_function (asm_out_file);
2314 need_profile_function = false;
2317 if (targetm.asm_out.unwind_emit)
2318 targetm.asm_out.unwind_emit (asm_out_file, insn);
2320 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2322 break;
2324 case NOTE_INSN_EH_REGION_BEG:
2325 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2326 NOTE_EH_HANDLER (insn));
2327 break;
2329 case NOTE_INSN_EH_REGION_END:
2330 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2331 NOTE_EH_HANDLER (insn));
2332 break;
2334 case NOTE_INSN_PROLOGUE_END:
2335 targetm.asm_out.function_end_prologue (file);
2336 profile_after_prologue (file);
2338 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2340 *seen |= SEEN_EMITTED;
2341 force_source_line = true;
2343 else
2344 *seen |= SEEN_NOTE;
2346 break;
2348 case NOTE_INSN_EPILOGUE_BEG:
2349 if (!DECL_IGNORED_P (current_function_decl))
2350 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2351 targetm.asm_out.function_begin_epilogue (file);
2352 break;
2354 case NOTE_INSN_CFI:
2355 dwarf2out_emit_cfi (NOTE_CFI (insn));
2356 break;
2358 case NOTE_INSN_CFI_LABEL:
2359 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2360 NOTE_LABEL_NUMBER (insn));
2361 break;
2363 case NOTE_INSN_FUNCTION_BEG:
2364 if (need_profile_function)
2366 profile_function (asm_out_file);
2367 need_profile_function = false;
2370 app_disable ();
2371 if (!DECL_IGNORED_P (current_function_decl))
2372 debug_hooks->end_prologue (last_linenum, last_filename);
2374 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2376 *seen |= SEEN_EMITTED;
2377 force_source_line = true;
2379 else
2380 *seen |= SEEN_NOTE;
2382 break;
2384 case NOTE_INSN_BLOCK_BEG:
2385 if (debug_info_level == DINFO_LEVEL_NORMAL
2386 || debug_info_level == DINFO_LEVEL_VERBOSE
2387 || write_symbols == DWARF2_DEBUG
2388 || write_symbols == VMS_AND_DWARF2_DEBUG
2389 || write_symbols == VMS_DEBUG)
2391 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2393 app_disable ();
2394 ++block_depth;
2395 high_block_linenum = last_linenum;
2397 /* Output debugging info about the symbol-block beginning. */
2398 if (!DECL_IGNORED_P (current_function_decl))
2399 debug_hooks->begin_block (last_linenum, n);
2401 /* Mark this block as output. */
2402 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2403 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2405 if (write_symbols == DBX_DEBUG)
2407 location_t *locus_ptr
2408 = block_nonartificial_location (NOTE_BLOCK (insn));
2410 if (locus_ptr != NULL)
2412 override_filename = LOCATION_FILE (*locus_ptr);
2413 override_linenum = LOCATION_LINE (*locus_ptr);
2414 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2417 break;
2419 case NOTE_INSN_BLOCK_END:
2420 maybe_output_next_view (seen);
2422 if (debug_info_level == DINFO_LEVEL_NORMAL
2423 || debug_info_level == DINFO_LEVEL_VERBOSE
2424 || write_symbols == DWARF2_DEBUG
2425 || write_symbols == VMS_AND_DWARF2_DEBUG
2426 || write_symbols == VMS_DEBUG)
2428 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2430 app_disable ();
2432 /* End of a symbol-block. */
2433 --block_depth;
2434 gcc_assert (block_depth >= 0);
2436 if (!DECL_IGNORED_P (current_function_decl))
2437 debug_hooks->end_block (high_block_linenum, n);
2438 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2439 == in_cold_section_p);
2441 if (write_symbols == DBX_DEBUG)
2443 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2444 location_t *locus_ptr
2445 = block_nonartificial_location (outer_block);
2447 if (locus_ptr != NULL)
2449 override_filename = LOCATION_FILE (*locus_ptr);
2450 override_linenum = LOCATION_LINE (*locus_ptr);
2451 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2453 else
2455 override_filename = NULL;
2456 override_linenum = 0;
2457 override_columnnum = 0;
2460 break;
2462 case NOTE_INSN_DELETED_LABEL:
2463 /* Emit the label. We may have deleted the CODE_LABEL because
2464 the label could be proved to be unreachable, though still
2465 referenced (in the form of having its address taken. */
2466 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2467 break;
2469 case NOTE_INSN_DELETED_DEBUG_LABEL:
2470 /* Similarly, but need to use different namespace for it. */
2471 if (CODE_LABEL_NUMBER (insn) != -1)
2472 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2473 break;
2475 case NOTE_INSN_VAR_LOCATION:
2476 if (!DECL_IGNORED_P (current_function_decl))
2478 debug_hooks->var_location (insn);
2479 set_next_view_needed (seen);
2481 break;
2483 case NOTE_INSN_BEGIN_STMT:
2484 gcc_checking_assert (cfun->debug_nonbind_markers);
2485 if (!DECL_IGNORED_P (current_function_decl)
2486 && notice_source_line (insn, NULL))
2488 output_source_line:
2489 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2490 last_filename, last_discriminator,
2491 true);
2492 clear_next_view_needed (seen);
2494 break;
2496 case NOTE_INSN_INLINE_ENTRY:
2497 gcc_checking_assert (cfun->debug_nonbind_markers);
2498 if (!DECL_IGNORED_P (current_function_decl))
2500 if (!notice_source_line (insn, NULL))
2501 break;
2502 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2503 (NOTE_MARKER_LOCATION (insn)));
2504 goto output_source_line;
2506 break;
2508 default:
2509 gcc_unreachable ();
2510 break;
2512 break;
2514 case BARRIER:
2515 break;
2517 case CODE_LABEL:
2518 /* The target port might emit labels in the output function for
2519 some insn, e.g. sh.c output_branchy_insn. */
2520 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2522 int align = LABEL_TO_ALIGNMENT (insn);
2523 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2524 int max_skip = LABEL_TO_MAX_SKIP (insn);
2525 #endif
2527 if (align && NEXT_INSN (insn))
2529 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2530 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2531 #else
2532 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2533 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2534 #else
2535 ASM_OUTPUT_ALIGN (file, align);
2536 #endif
2537 #endif
2540 CC_STATUS_INIT;
2542 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2543 debug_hooks->label (as_a <rtx_code_label *> (insn));
2545 app_disable ();
2547 /* If this label is followed by a jump-table, make sure we put
2548 the label in the read-only section. Also possibly write the
2549 label and jump table together. */
2550 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2551 if (table)
2553 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2554 /* In this case, the case vector is being moved by the
2555 target, so don't output the label at all. Leave that
2556 to the back end macros. */
2557 #else
2558 if (! JUMP_TABLES_IN_TEXT_SECTION)
2560 int log_align;
2562 switch_to_section (targetm.asm_out.function_rodata_section
2563 (current_function_decl));
2565 #ifdef ADDR_VEC_ALIGN
2566 log_align = ADDR_VEC_ALIGN (table);
2567 #else
2568 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2569 #endif
2570 ASM_OUTPUT_ALIGN (file, log_align);
2572 else
2573 switch_to_section (current_function_section ());
2575 #ifdef ASM_OUTPUT_CASE_LABEL
2576 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2577 #else
2578 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2579 #endif
2580 #endif
2581 break;
2583 if (LABEL_ALT_ENTRY_P (insn))
2584 output_alternate_entry_point (file, insn);
2585 else
2586 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2587 break;
2589 default:
2591 rtx body = PATTERN (insn);
2592 int insn_code_number;
2593 const char *templ;
2594 bool is_stmt, *is_stmt_p;
2596 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2598 is_stmt = false;
2599 is_stmt_p = NULL;
2601 else
2602 is_stmt_p = &is_stmt;
2604 /* Reset this early so it is correct for ASM statements. */
2605 current_insn_predicate = NULL_RTX;
2607 /* An INSN, JUMP_INSN or CALL_INSN.
2608 First check for special kinds that recog doesn't recognize. */
2610 if (GET_CODE (body) == USE /* These are just declarations. */
2611 || GET_CODE (body) == CLOBBER)
2612 break;
2614 #if HAVE_cc0
2616 /* If there is a REG_CC_SETTER note on this insn, it means that
2617 the setting of the condition code was done in the delay slot
2618 of the insn that branched here. So recover the cc status
2619 from the insn that set it. */
2621 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2622 if (note)
2624 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2625 NOTICE_UPDATE_CC (PATTERN (other), other);
2626 cc_prev_status = cc_status;
2629 #endif
2631 /* Detect insns that are really jump-tables
2632 and output them as such. */
2634 if (JUMP_TABLE_DATA_P (insn))
2636 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2637 int vlen, idx;
2638 #endif
2640 if (! JUMP_TABLES_IN_TEXT_SECTION)
2641 switch_to_section (targetm.asm_out.function_rodata_section
2642 (current_function_decl));
2643 else
2644 switch_to_section (current_function_section ());
2646 app_disable ();
2648 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2649 if (GET_CODE (body) == ADDR_VEC)
2651 #ifdef ASM_OUTPUT_ADDR_VEC
2652 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2653 #else
2654 gcc_unreachable ();
2655 #endif
2657 else
2659 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2660 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2661 #else
2662 gcc_unreachable ();
2663 #endif
2665 #else
2666 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2667 for (idx = 0; idx < vlen; idx++)
2669 if (GET_CODE (body) == ADDR_VEC)
2671 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2672 ASM_OUTPUT_ADDR_VEC_ELT
2673 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2674 #else
2675 gcc_unreachable ();
2676 #endif
2678 else
2680 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2681 ASM_OUTPUT_ADDR_DIFF_ELT
2682 (file,
2683 body,
2684 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2685 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2686 #else
2687 gcc_unreachable ();
2688 #endif
2691 #ifdef ASM_OUTPUT_CASE_END
2692 ASM_OUTPUT_CASE_END (file,
2693 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2694 insn);
2695 #endif
2696 #endif
2698 switch_to_section (current_function_section ());
2700 if (debug_variable_location_views
2701 && !DECL_IGNORED_P (current_function_decl))
2702 debug_hooks->var_location (insn);
2704 break;
2706 /* Output this line note if it is the first or the last line
2707 note in a row. */
2708 if (!DECL_IGNORED_P (current_function_decl)
2709 && notice_source_line (insn, is_stmt_p))
2711 if (flag_verbose_asm)
2712 asm_show_source (last_filename, last_linenum);
2713 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2714 last_filename, last_discriminator,
2715 is_stmt);
2716 clear_next_view_needed (seen);
2718 else
2719 maybe_output_next_view (seen);
2721 gcc_checking_assert (!DEBUG_INSN_P (insn));
2723 if (GET_CODE (body) == PARALLEL
2724 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2725 body = XVECEXP (body, 0, 0);
2727 if (GET_CODE (body) == ASM_INPUT)
2729 const char *string = XSTR (body, 0);
2731 /* There's no telling what that did to the condition codes. */
2732 CC_STATUS_INIT;
2734 if (string[0])
2736 expanded_location loc;
2738 app_enable ();
2739 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2740 if (*loc.file && loc.line)
2741 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2742 ASM_COMMENT_START, loc.line, loc.file);
2743 fprintf (asm_out_file, "\t%s\n", string);
2744 #if HAVE_AS_LINE_ZERO
2745 if (*loc.file && loc.line)
2746 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2747 #endif
2749 break;
2752 /* Detect `asm' construct with operands. */
2753 if (asm_noperands (body) >= 0)
2755 unsigned int noperands = asm_noperands (body);
2756 rtx *ops = XALLOCAVEC (rtx, noperands);
2757 const char *string;
2758 location_t loc;
2759 expanded_location expanded;
2761 /* There's no telling what that did to the condition codes. */
2762 CC_STATUS_INIT;
2764 /* Get out the operand values. */
2765 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2766 /* Inhibit dying on what would otherwise be compiler bugs. */
2767 insn_noperands = noperands;
2768 this_is_asm_operands = insn;
2769 expanded = expand_location (loc);
2771 #ifdef FINAL_PRESCAN_INSN
2772 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2773 #endif
2775 /* Output the insn using them. */
2776 if (string[0])
2778 app_enable ();
2779 if (expanded.file && expanded.line)
2780 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2781 ASM_COMMENT_START, expanded.line, expanded.file);
2782 output_asm_insn (string, ops);
2783 #if HAVE_AS_LINE_ZERO
2784 if (expanded.file && expanded.line)
2785 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2786 #endif
2789 if (targetm.asm_out.final_postscan_insn)
2790 targetm.asm_out.final_postscan_insn (file, insn, ops,
2791 insn_noperands);
2793 this_is_asm_operands = 0;
2794 break;
2797 app_disable ();
2799 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2801 /* A delayed-branch sequence */
2802 int i;
2804 final_sequence = seq;
2806 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2807 force the restoration of a comparison that was previously
2808 thought unnecessary. If that happens, cancel this sequence
2809 and cause that insn to be restored. */
2811 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2812 if (next != seq->insn (1))
2814 final_sequence = 0;
2815 return next;
2818 for (i = 1; i < seq->len (); i++)
2820 rtx_insn *insn = seq->insn (i);
2821 rtx_insn *next = NEXT_INSN (insn);
2822 /* We loop in case any instruction in a delay slot gets
2823 split. */
2825 insn = final_scan_insn (insn, file, 0, 1, seen);
2826 while (insn != next);
2828 #ifdef DBR_OUTPUT_SEQEND
2829 DBR_OUTPUT_SEQEND (file);
2830 #endif
2831 final_sequence = 0;
2833 /* If the insn requiring the delay slot was a CALL_INSN, the
2834 insns in the delay slot are actually executed before the
2835 called function. Hence we don't preserve any CC-setting
2836 actions in these insns and the CC must be marked as being
2837 clobbered by the function. */
2838 if (CALL_P (seq->insn (0)))
2840 CC_STATUS_INIT;
2842 break;
2845 /* We have a real machine instruction as rtl. */
2847 body = PATTERN (insn);
2849 #if HAVE_cc0
2850 set = single_set (insn);
2852 /* Check for redundant test and compare instructions
2853 (when the condition codes are already set up as desired).
2854 This is done only when optimizing; if not optimizing,
2855 it should be possible for the user to alter a variable
2856 with the debugger in between statements
2857 and the next statement should reexamine the variable
2858 to compute the condition codes. */
2860 if (optimize_p)
2862 if (set
2863 && GET_CODE (SET_DEST (set)) == CC0
2864 && insn != last_ignored_compare)
2866 rtx src1, src2;
2867 if (GET_CODE (SET_SRC (set)) == SUBREG)
2868 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2870 src1 = SET_SRC (set);
2871 src2 = NULL_RTX;
2872 if (GET_CODE (SET_SRC (set)) == COMPARE)
2874 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2875 XEXP (SET_SRC (set), 0)
2876 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2877 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2878 XEXP (SET_SRC (set), 1)
2879 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2880 if (XEXP (SET_SRC (set), 1)
2881 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2882 src2 = XEXP (SET_SRC (set), 0);
2884 if ((cc_status.value1 != 0
2885 && rtx_equal_p (src1, cc_status.value1))
2886 || (cc_status.value2 != 0
2887 && rtx_equal_p (src1, cc_status.value2))
2888 || (src2 != 0 && cc_status.value1 != 0
2889 && rtx_equal_p (src2, cc_status.value1))
2890 || (src2 != 0 && cc_status.value2 != 0
2891 && rtx_equal_p (src2, cc_status.value2)))
2893 /* Don't delete insn if it has an addressing side-effect. */
2894 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2895 /* or if anything in it is volatile. */
2896 && ! volatile_refs_p (PATTERN (insn)))
2898 /* We don't really delete the insn; just ignore it. */
2899 last_ignored_compare = insn;
2900 break;
2906 /* If this is a conditional branch, maybe modify it
2907 if the cc's are in a nonstandard state
2908 so that it accomplishes the same thing that it would
2909 do straightforwardly if the cc's were set up normally. */
2911 if (cc_status.flags != 0
2912 && JUMP_P (insn)
2913 && GET_CODE (body) == SET
2914 && SET_DEST (body) == pc_rtx
2915 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2916 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2917 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2919 /* This function may alter the contents of its argument
2920 and clear some of the cc_status.flags bits.
2921 It may also return 1 meaning condition now always true
2922 or -1 meaning condition now always false
2923 or 2 meaning condition nontrivial but altered. */
2924 int result = alter_cond (XEXP (SET_SRC (body), 0));
2925 /* If condition now has fixed value, replace the IF_THEN_ELSE
2926 with its then-operand or its else-operand. */
2927 if (result == 1)
2928 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2929 if (result == -1)
2930 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2932 /* The jump is now either unconditional or a no-op.
2933 If it has become a no-op, don't try to output it.
2934 (It would not be recognized.) */
2935 if (SET_SRC (body) == pc_rtx)
2937 delete_insn (insn);
2938 break;
2940 else if (ANY_RETURN_P (SET_SRC (body)))
2941 /* Replace (set (pc) (return)) with (return). */
2942 PATTERN (insn) = body = SET_SRC (body);
2944 /* Rerecognize the instruction if it has changed. */
2945 if (result != 0)
2946 INSN_CODE (insn) = -1;
2949 /* If this is a conditional trap, maybe modify it if the cc's
2950 are in a nonstandard state so that it accomplishes the same
2951 thing that it would do straightforwardly if the cc's were
2952 set up normally. */
2953 if (cc_status.flags != 0
2954 && NONJUMP_INSN_P (insn)
2955 && GET_CODE (body) == TRAP_IF
2956 && COMPARISON_P (TRAP_CONDITION (body))
2957 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2959 /* This function may alter the contents of its argument
2960 and clear some of the cc_status.flags bits.
2961 It may also return 1 meaning condition now always true
2962 or -1 meaning condition now always false
2963 or 2 meaning condition nontrivial but altered. */
2964 int result = alter_cond (TRAP_CONDITION (body));
2966 /* If TRAP_CONDITION has become always false, delete the
2967 instruction. */
2968 if (result == -1)
2970 delete_insn (insn);
2971 break;
2974 /* If TRAP_CONDITION has become always true, replace
2975 TRAP_CONDITION with const_true_rtx. */
2976 if (result == 1)
2977 TRAP_CONDITION (body) = const_true_rtx;
2979 /* Rerecognize the instruction if it has changed. */
2980 if (result != 0)
2981 INSN_CODE (insn) = -1;
2984 /* Make same adjustments to instructions that examine the
2985 condition codes without jumping and instructions that
2986 handle conditional moves (if this machine has either one). */
2988 if (cc_status.flags != 0
2989 && set != 0)
2991 rtx cond_rtx, then_rtx, else_rtx;
2993 if (!JUMP_P (insn)
2994 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2996 cond_rtx = XEXP (SET_SRC (set), 0);
2997 then_rtx = XEXP (SET_SRC (set), 1);
2998 else_rtx = XEXP (SET_SRC (set), 2);
3000 else
3002 cond_rtx = SET_SRC (set);
3003 then_rtx = const_true_rtx;
3004 else_rtx = const0_rtx;
3007 if (COMPARISON_P (cond_rtx)
3008 && XEXP (cond_rtx, 0) == cc0_rtx)
3010 int result;
3011 result = alter_cond (cond_rtx);
3012 if (result == 1)
3013 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3014 else if (result == -1)
3015 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3016 else if (result == 2)
3017 INSN_CODE (insn) = -1;
3018 if (SET_DEST (set) == SET_SRC (set))
3019 delete_insn (insn);
3023 #endif
3025 /* Do machine-specific peephole optimizations if desired. */
3027 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
3029 rtx_insn *next = peephole (insn);
3030 /* When peepholing, if there were notes within the peephole,
3031 emit them before the peephole. */
3032 if (next != 0 && next != NEXT_INSN (insn))
3034 rtx_insn *note, *prev = PREV_INSN (insn);
3036 for (note = NEXT_INSN (insn); note != next;
3037 note = NEXT_INSN (note))
3038 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3040 /* Put the notes in the proper position for a later
3041 rescan. For example, the SH target can do this
3042 when generating a far jump in a delayed branch
3043 sequence. */
3044 note = NEXT_INSN (insn);
3045 SET_PREV_INSN (note) = prev;
3046 SET_NEXT_INSN (prev) = note;
3047 SET_NEXT_INSN (PREV_INSN (next)) = insn;
3048 SET_PREV_INSN (insn) = PREV_INSN (next);
3049 SET_NEXT_INSN (insn) = next;
3050 SET_PREV_INSN (next) = insn;
3053 /* PEEPHOLE might have changed this. */
3054 body = PATTERN (insn);
3057 /* Try to recognize the instruction.
3058 If successful, verify that the operands satisfy the
3059 constraints for the instruction. Crash if they don't,
3060 since `reload' should have changed them so that they do. */
3062 insn_code_number = recog_memoized (insn);
3063 cleanup_subreg_operands (insn);
3065 /* Dump the insn in the assembly for debugging (-dAP).
3066 If the final dump is requested as slim RTL, dump slim
3067 RTL to the assembly file also. */
3068 if (flag_dump_rtl_in_asm)
3070 print_rtx_head = ASM_COMMENT_START;
3071 if (! (dump_flags & TDF_SLIM))
3072 print_rtl_single (asm_out_file, insn);
3073 else
3074 dump_insn_slim (asm_out_file, insn);
3075 print_rtx_head = "";
3078 if (! constrain_operands_cached (insn, 1))
3079 fatal_insn_not_found (insn);
3081 /* Some target machines need to prescan each insn before
3082 it is output. */
3084 #ifdef FINAL_PRESCAN_INSN
3085 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3086 #endif
3088 if (targetm.have_conditional_execution ()
3089 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3090 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3092 #if HAVE_cc0
3093 cc_prev_status = cc_status;
3095 /* Update `cc_status' for this instruction.
3096 The instruction's output routine may change it further.
3097 If the output routine for a jump insn needs to depend
3098 on the cc status, it should look at cc_prev_status. */
3100 NOTICE_UPDATE_CC (body, insn);
3101 #endif
3103 current_output_insn = debug_insn = insn;
3105 /* Find the proper template for this insn. */
3106 templ = get_insn_template (insn_code_number, insn);
3108 /* If the C code returns 0, it means that it is a jump insn
3109 which follows a deleted test insn, and that test insn
3110 needs to be reinserted. */
3111 if (templ == 0)
3113 rtx_insn *prev;
3115 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3117 /* We have already processed the notes between the setter and
3118 the user. Make sure we don't process them again, this is
3119 particularly important if one of the notes is a block
3120 scope note or an EH note. */
3121 for (prev = insn;
3122 prev != last_ignored_compare;
3123 prev = PREV_INSN (prev))
3125 if (NOTE_P (prev))
3126 delete_insn (prev); /* Use delete_note. */
3129 return prev;
3132 /* If the template is the string "#", it means that this insn must
3133 be split. */
3134 if (templ[0] == '#' && templ[1] == '\0')
3136 rtx_insn *new_rtx = try_split (body, insn, 0);
3138 /* If we didn't split the insn, go away. */
3139 if (new_rtx == insn && PATTERN (new_rtx) == body)
3140 fatal_insn ("could not split insn", insn);
3142 /* If we have a length attribute, this instruction should have
3143 been split in shorten_branches, to ensure that we would have
3144 valid length info for the splitees. */
3145 gcc_assert (!HAVE_ATTR_length);
3147 return new_rtx;
3150 /* ??? This will put the directives in the wrong place if
3151 get_insn_template outputs assembly directly. However calling it
3152 before get_insn_template breaks if the insns is split. */
3153 if (targetm.asm_out.unwind_emit_before_insn
3154 && targetm.asm_out.unwind_emit)
3155 targetm.asm_out.unwind_emit (asm_out_file, insn);
3157 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3158 if (call_insn != NULL)
3160 rtx x = call_from_call_insn (call_insn);
3161 x = XEXP (x, 0);
3162 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3164 tree t;
3165 x = XEXP (x, 0);
3166 t = SYMBOL_REF_DECL (x);
3167 if (t)
3168 assemble_external (t);
3172 /* Output assembler code from the template. */
3173 output_asm_insn (templ, recog_data.operand);
3175 /* Some target machines need to postscan each insn after
3176 it is output. */
3177 if (targetm.asm_out.final_postscan_insn)
3178 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3179 recog_data.n_operands);
3181 if (!targetm.asm_out.unwind_emit_before_insn
3182 && targetm.asm_out.unwind_emit)
3183 targetm.asm_out.unwind_emit (asm_out_file, insn);
3185 /* Let the debug info back-end know about this call. We do this only
3186 after the instruction has been emitted because labels that may be
3187 created to reference the call instruction must appear after it. */
3188 if ((debug_variable_location_views || call_insn != NULL)
3189 && !DECL_IGNORED_P (current_function_decl))
3190 debug_hooks->var_location (insn);
3192 current_output_insn = debug_insn = 0;
3195 return NEXT_INSN (insn);
3198 /* This is a wrapper around final_scan_insn_1 that allows ports to
3199 call it recursively without a known value for SEEN. The value is
3200 saved at the outermost call, and recovered for recursive calls.
3201 Recursive calls MUST pass NULL, or the same pointer if they can
3202 otherwise get to it. */
3204 rtx_insn *
3205 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3206 int nopeepholes, int *seen)
3208 static int *enclosing_seen;
3209 static int recursion_counter;
3211 gcc_assert (seen || recursion_counter);
3212 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3214 if (!recursion_counter++)
3215 enclosing_seen = seen;
3216 else if (!seen)
3217 seen = enclosing_seen;
3219 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3221 if (!--recursion_counter)
3222 enclosing_seen = NULL;
3224 return ret;
3228 /* Return whether a source line note needs to be emitted before INSN.
3229 Sets IS_STMT to TRUE if the line should be marked as a possible
3230 breakpoint location. */
3232 static bool
3233 notice_source_line (rtx_insn *insn, bool *is_stmt)
3235 const char *filename;
3236 int linenum, columnnum;
3238 if (NOTE_MARKER_P (insn))
3240 location_t loc = NOTE_MARKER_LOCATION (insn);
3241 /* The inline entry markers (gimple, insn, note) carry the
3242 location of the call, because that's what we want to carry
3243 during compilation, but the location we want to output in
3244 debug information for the inline entry point is the location
3245 of the function itself. */
3246 if (NOTE_KIND (insn) == NOTE_INSN_INLINE_ENTRY)
3248 tree block = LOCATION_BLOCK (loc);
3249 tree fn = block_ultimate_origin (block);
3250 loc = DECL_SOURCE_LOCATION (fn);
3252 expanded_location xloc = expand_location (loc);
3253 if (xloc.line == 0)
3255 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3256 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3257 return false;
3259 filename = xloc.file;
3260 linenum = xloc.line;
3261 columnnum = xloc.column;
3262 force_source_line = true;
3264 else if (override_filename)
3266 filename = override_filename;
3267 linenum = override_linenum;
3268 columnnum = override_columnnum;
3270 else if (INSN_HAS_LOCATION (insn))
3272 expanded_location xloc = insn_location (insn);
3273 filename = xloc.file;
3274 linenum = xloc.line;
3275 columnnum = xloc.column;
3277 else
3279 filename = NULL;
3280 linenum = 0;
3281 columnnum = 0;
3284 if (filename == NULL)
3285 return false;
3287 if (force_source_line
3288 || filename != last_filename
3289 || last_linenum != linenum
3290 || (debug_column_info && last_columnnum != columnnum))
3292 force_source_line = false;
3293 last_filename = filename;
3294 last_linenum = linenum;
3295 last_columnnum = columnnum;
3296 last_discriminator = discriminator;
3297 if (is_stmt)
3298 *is_stmt = true;
3299 high_block_linenum = MAX (last_linenum, high_block_linenum);
3300 high_function_linenum = MAX (last_linenum, high_function_linenum);
3301 return true;
3304 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3306 /* If the discriminator changed, but the line number did not,
3307 output the line table entry with is_stmt false so the
3308 debugger does not treat this as a breakpoint location. */
3309 last_discriminator = discriminator;
3310 if (is_stmt)
3311 *is_stmt = false;
3312 return true;
3315 return false;
3318 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3319 directly to the desired hard register. */
3321 void
3322 cleanup_subreg_operands (rtx_insn *insn)
3324 int i;
3325 bool changed = false;
3326 extract_insn_cached (insn);
3327 for (i = 0; i < recog_data.n_operands; i++)
3329 /* The following test cannot use recog_data.operand when testing
3330 for a SUBREG: the underlying object might have been changed
3331 already if we are inside a match_operator expression that
3332 matches the else clause. Instead we test the underlying
3333 expression directly. */
3334 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3336 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3337 changed = true;
3339 else if (GET_CODE (recog_data.operand[i]) == PLUS
3340 || GET_CODE (recog_data.operand[i]) == MULT
3341 || MEM_P (recog_data.operand[i]))
3342 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3345 for (i = 0; i < recog_data.n_dups; i++)
3347 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3349 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3350 changed = true;
3352 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3353 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3354 || MEM_P (*recog_data.dup_loc[i]))
3355 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3357 if (changed)
3358 df_insn_rescan (insn);
3361 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3362 the thing it is a subreg of. Do it anyway if FINAL_P. */
3365 alter_subreg (rtx *xp, bool final_p)
3367 rtx x = *xp;
3368 rtx y = SUBREG_REG (x);
3370 /* simplify_subreg does not remove subreg from volatile references.
3371 We are required to. */
3372 if (MEM_P (y))
3374 poly_int64 offset = SUBREG_BYTE (x);
3376 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3377 contains 0 instead of the proper offset. See simplify_subreg. */
3378 if (paradoxical_subreg_p (x))
3379 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3381 if (final_p)
3382 *xp = adjust_address (y, GET_MODE (x), offset);
3383 else
3384 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3386 else if (REG_P (y) && HARD_REGISTER_P (y))
3388 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3389 SUBREG_BYTE (x));
3391 if (new_rtx != 0)
3392 *xp = new_rtx;
3393 else if (final_p && REG_P (y))
3395 /* Simplify_subreg can't handle some REG cases, but we have to. */
3396 unsigned int regno;
3397 poly_int64 offset;
3399 regno = subreg_regno (x);
3400 if (subreg_lowpart_p (x))
3401 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3402 else
3403 offset = SUBREG_BYTE (x);
3404 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3408 return *xp;
3411 /* Do alter_subreg on all the SUBREGs contained in X. */
3413 static rtx
3414 walk_alter_subreg (rtx *xp, bool *changed)
3416 rtx x = *xp;
3417 switch (GET_CODE (x))
3419 case PLUS:
3420 case MULT:
3421 case AND:
3422 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3423 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3424 break;
3426 case MEM:
3427 case ZERO_EXTEND:
3428 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3429 break;
3431 case SUBREG:
3432 *changed = true;
3433 return alter_subreg (xp, true);
3435 default:
3436 break;
3439 return *xp;
3442 #if HAVE_cc0
3444 /* Given BODY, the body of a jump instruction, alter the jump condition
3445 as required by the bits that are set in cc_status.flags.
3446 Not all of the bits there can be handled at this level in all cases.
3448 The value is normally 0.
3449 1 means that the condition has become always true.
3450 -1 means that the condition has become always false.
3451 2 means that COND has been altered. */
3453 static int
3454 alter_cond (rtx cond)
3456 int value = 0;
3458 if (cc_status.flags & CC_REVERSED)
3460 value = 2;
3461 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3464 if (cc_status.flags & CC_INVERTED)
3466 value = 2;
3467 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3470 if (cc_status.flags & CC_NOT_POSITIVE)
3471 switch (GET_CODE (cond))
3473 case LE:
3474 case LEU:
3475 case GEU:
3476 /* Jump becomes unconditional. */
3477 return 1;
3479 case GT:
3480 case GTU:
3481 case LTU:
3482 /* Jump becomes no-op. */
3483 return -1;
3485 case GE:
3486 PUT_CODE (cond, EQ);
3487 value = 2;
3488 break;
3490 case LT:
3491 PUT_CODE (cond, NE);
3492 value = 2;
3493 break;
3495 default:
3496 break;
3499 if (cc_status.flags & CC_NOT_NEGATIVE)
3500 switch (GET_CODE (cond))
3502 case GE:
3503 case GEU:
3504 /* Jump becomes unconditional. */
3505 return 1;
3507 case LT:
3508 case LTU:
3509 /* Jump becomes no-op. */
3510 return -1;
3512 case LE:
3513 case LEU:
3514 PUT_CODE (cond, EQ);
3515 value = 2;
3516 break;
3518 case GT:
3519 case GTU:
3520 PUT_CODE (cond, NE);
3521 value = 2;
3522 break;
3524 default:
3525 break;
3528 if (cc_status.flags & CC_NO_OVERFLOW)
3529 switch (GET_CODE (cond))
3531 case GEU:
3532 /* Jump becomes unconditional. */
3533 return 1;
3535 case LEU:
3536 PUT_CODE (cond, EQ);
3537 value = 2;
3538 break;
3540 case GTU:
3541 PUT_CODE (cond, NE);
3542 value = 2;
3543 break;
3545 case LTU:
3546 /* Jump becomes no-op. */
3547 return -1;
3549 default:
3550 break;
3553 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3554 switch (GET_CODE (cond))
3556 default:
3557 gcc_unreachable ();
3559 case NE:
3560 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3561 value = 2;
3562 break;
3564 case EQ:
3565 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3566 value = 2;
3567 break;
3570 if (cc_status.flags & CC_NOT_SIGNED)
3571 /* The flags are valid if signed condition operators are converted
3572 to unsigned. */
3573 switch (GET_CODE (cond))
3575 case LE:
3576 PUT_CODE (cond, LEU);
3577 value = 2;
3578 break;
3580 case LT:
3581 PUT_CODE (cond, LTU);
3582 value = 2;
3583 break;
3585 case GT:
3586 PUT_CODE (cond, GTU);
3587 value = 2;
3588 break;
3590 case GE:
3591 PUT_CODE (cond, GEU);
3592 value = 2;
3593 break;
3595 default:
3596 break;
3599 return value;
3601 #endif
3603 /* Report inconsistency between the assembler template and the operands.
3604 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3606 void
3607 output_operand_lossage (const char *cmsgid, ...)
3609 char *fmt_string;
3610 char *new_message;
3611 const char *pfx_str;
3612 va_list ap;
3614 va_start (ap, cmsgid);
3616 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3617 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3618 new_message = xvasprintf (fmt_string, ap);
3620 if (this_is_asm_operands)
3621 error_for_asm (this_is_asm_operands, "%s", new_message);
3622 else
3623 internal_error ("%s", new_message);
3625 free (fmt_string);
3626 free (new_message);
3627 va_end (ap);
3630 /* Output of assembler code from a template, and its subroutines. */
3632 /* Annotate the assembly with a comment describing the pattern and
3633 alternative used. */
3635 static void
3636 output_asm_name (void)
3638 if (debug_insn)
3640 fprintf (asm_out_file, "\t%s %d\t",
3641 ASM_COMMENT_START, INSN_UID (debug_insn));
3643 fprintf (asm_out_file, "[c=%d",
3644 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3645 if (HAVE_ATTR_length)
3646 fprintf (asm_out_file, " l=%d",
3647 get_attr_length (debug_insn));
3648 fprintf (asm_out_file, "] ");
3650 int num = INSN_CODE (debug_insn);
3651 fprintf (asm_out_file, "%s", insn_data[num].name);
3652 if (insn_data[num].n_alternatives > 1)
3653 fprintf (asm_out_file, "/%d", which_alternative);
3655 /* Clear this so only the first assembler insn
3656 of any rtl insn will get the special comment for -dp. */
3657 debug_insn = 0;
3661 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3662 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3663 corresponds to the address of the object and 0 if to the object. */
3665 static tree
3666 get_mem_expr_from_op (rtx op, int *paddressp)
3668 tree expr;
3669 int inner_addressp;
3671 *paddressp = 0;
3673 if (REG_P (op))
3674 return REG_EXPR (op);
3675 else if (!MEM_P (op))
3676 return 0;
3678 if (MEM_EXPR (op) != 0)
3679 return MEM_EXPR (op);
3681 /* Otherwise we have an address, so indicate it and look at the address. */
3682 *paddressp = 1;
3683 op = XEXP (op, 0);
3685 /* First check if we have a decl for the address, then look at the right side
3686 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3687 But don't allow the address to itself be indirect. */
3688 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3689 return expr;
3690 else if (GET_CODE (op) == PLUS
3691 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3692 return expr;
3694 while (UNARY_P (op)
3695 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3696 op = XEXP (op, 0);
3698 expr = get_mem_expr_from_op (op, &inner_addressp);
3699 return inner_addressp ? 0 : expr;
3702 /* Output operand names for assembler instructions. OPERANDS is the
3703 operand vector, OPORDER is the order to write the operands, and NOPS
3704 is the number of operands to write. */
3706 static void
3707 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3709 int wrote = 0;
3710 int i;
3712 for (i = 0; i < nops; i++)
3714 int addressp;
3715 rtx op = operands[oporder[i]];
3716 tree expr = get_mem_expr_from_op (op, &addressp);
3718 fprintf (asm_out_file, "%c%s",
3719 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3720 wrote = 1;
3721 if (expr)
3723 fprintf (asm_out_file, "%s",
3724 addressp ? "*" : "");
3725 print_mem_expr (asm_out_file, expr);
3726 wrote = 1;
3728 else if (REG_P (op) && ORIGINAL_REGNO (op)
3729 && ORIGINAL_REGNO (op) != REGNO (op))
3730 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3734 #ifdef ASSEMBLER_DIALECT
3735 /* Helper function to parse assembler dialects in the asm string.
3736 This is called from output_asm_insn and asm_fprintf. */
3737 static const char *
3738 do_assembler_dialects (const char *p, int *dialect)
3740 char c = *(p - 1);
3742 switch (c)
3744 case '{':
3746 int i;
3748 if (*dialect)
3749 output_operand_lossage ("nested assembly dialect alternatives");
3750 else
3751 *dialect = 1;
3753 /* If we want the first dialect, do nothing. Otherwise, skip
3754 DIALECT_NUMBER of strings ending with '|'. */
3755 for (i = 0; i < dialect_number; i++)
3757 while (*p && *p != '}')
3759 if (*p == '|')
3761 p++;
3762 break;
3765 /* Skip over any character after a percent sign. */
3766 if (*p == '%')
3767 p++;
3768 if (*p)
3769 p++;
3772 if (*p == '}')
3773 break;
3776 if (*p == '\0')
3777 output_operand_lossage ("unterminated assembly dialect alternative");
3779 break;
3781 case '|':
3782 if (*dialect)
3784 /* Skip to close brace. */
3787 if (*p == '\0')
3789 output_operand_lossage ("unterminated assembly dialect alternative");
3790 break;
3793 /* Skip over any character after a percent sign. */
3794 if (*p == '%' && p[1])
3796 p += 2;
3797 continue;
3800 if (*p++ == '}')
3801 break;
3803 while (1);
3805 *dialect = 0;
3807 else
3808 putc (c, asm_out_file);
3809 break;
3811 case '}':
3812 if (! *dialect)
3813 putc (c, asm_out_file);
3814 *dialect = 0;
3815 break;
3816 default:
3817 gcc_unreachable ();
3820 return p;
3822 #endif
3824 /* Output text from TEMPLATE to the assembler output file,
3825 obeying %-directions to substitute operands taken from
3826 the vector OPERANDS.
3828 %N (for N a digit) means print operand N in usual manner.
3829 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3830 and print the label name with no punctuation.
3831 %cN means require operand N to be a constant
3832 and print the constant expression with no punctuation.
3833 %aN means expect operand N to be a memory address
3834 (not a memory reference!) and print a reference
3835 to that address.
3836 %nN means expect operand N to be a constant
3837 and print a constant expression for minus the value
3838 of the operand, with no other punctuation. */
3840 void
3841 output_asm_insn (const char *templ, rtx *operands)
3843 const char *p;
3844 int c;
3845 #ifdef ASSEMBLER_DIALECT
3846 int dialect = 0;
3847 #endif
3848 int oporder[MAX_RECOG_OPERANDS];
3849 char opoutput[MAX_RECOG_OPERANDS];
3850 int ops = 0;
3852 /* An insn may return a null string template
3853 in a case where no assembler code is needed. */
3854 if (*templ == 0)
3855 return;
3857 memset (opoutput, 0, sizeof opoutput);
3858 p = templ;
3859 putc ('\t', asm_out_file);
3861 #ifdef ASM_OUTPUT_OPCODE
3862 ASM_OUTPUT_OPCODE (asm_out_file, p);
3863 #endif
3865 while ((c = *p++))
3866 switch (c)
3868 case '\n':
3869 if (flag_verbose_asm)
3870 output_asm_operand_names (operands, oporder, ops);
3871 if (flag_print_asm_name)
3872 output_asm_name ();
3874 ops = 0;
3875 memset (opoutput, 0, sizeof opoutput);
3877 putc (c, asm_out_file);
3878 #ifdef ASM_OUTPUT_OPCODE
3879 while ((c = *p) == '\t')
3881 putc (c, asm_out_file);
3882 p++;
3884 ASM_OUTPUT_OPCODE (asm_out_file, p);
3885 #endif
3886 break;
3888 #ifdef ASSEMBLER_DIALECT
3889 case '{':
3890 case '}':
3891 case '|':
3892 p = do_assembler_dialects (p, &dialect);
3893 break;
3894 #endif
3896 case '%':
3897 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3898 if ASSEMBLER_DIALECT defined and these characters have a special
3899 meaning as dialect delimiters.*/
3900 if (*p == '%'
3901 #ifdef ASSEMBLER_DIALECT
3902 || *p == '{' || *p == '}' || *p == '|'
3903 #endif
3906 putc (*p, asm_out_file);
3907 p++;
3909 /* %= outputs a number which is unique to each insn in the entire
3910 compilation. This is useful for making local labels that are
3911 referred to more than once in a given insn. */
3912 else if (*p == '=')
3914 p++;
3915 fprintf (asm_out_file, "%d", insn_counter);
3917 /* % followed by a letter and some digits
3918 outputs an operand in a special way depending on the letter.
3919 Letters `acln' are implemented directly.
3920 Other letters are passed to `output_operand' so that
3921 the TARGET_PRINT_OPERAND hook can define them. */
3922 else if (ISALPHA (*p))
3924 int letter = *p++;
3925 unsigned long opnum;
3926 char *endptr;
3928 opnum = strtoul (p, &endptr, 10);
3930 if (endptr == p)
3931 output_operand_lossage ("operand number missing "
3932 "after %%-letter");
3933 else if (this_is_asm_operands && opnum >= insn_noperands)
3934 output_operand_lossage ("operand number out of range");
3935 else if (letter == 'l')
3936 output_asm_label (operands[opnum]);
3937 else if (letter == 'a')
3938 output_address (VOIDmode, operands[opnum]);
3939 else if (letter == 'c')
3941 if (CONSTANT_ADDRESS_P (operands[opnum]))
3942 output_addr_const (asm_out_file, operands[opnum]);
3943 else
3944 output_operand (operands[opnum], 'c');
3946 else if (letter == 'n')
3948 if (CONST_INT_P (operands[opnum]))
3949 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3950 - INTVAL (operands[opnum]));
3951 else
3953 putc ('-', asm_out_file);
3954 output_addr_const (asm_out_file, operands[opnum]);
3957 else
3958 output_operand (operands[opnum], letter);
3960 if (!opoutput[opnum])
3961 oporder[ops++] = opnum;
3962 opoutput[opnum] = 1;
3964 p = endptr;
3965 c = *p;
3967 /* % followed by a digit outputs an operand the default way. */
3968 else if (ISDIGIT (*p))
3970 unsigned long opnum;
3971 char *endptr;
3973 opnum = strtoul (p, &endptr, 10);
3974 if (this_is_asm_operands && opnum >= insn_noperands)
3975 output_operand_lossage ("operand number out of range");
3976 else
3977 output_operand (operands[opnum], 0);
3979 if (!opoutput[opnum])
3980 oporder[ops++] = opnum;
3981 opoutput[opnum] = 1;
3983 p = endptr;
3984 c = *p;
3986 /* % followed by punctuation: output something for that
3987 punctuation character alone, with no operand. The
3988 TARGET_PRINT_OPERAND hook decides what is actually done. */
3989 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3990 output_operand (NULL_RTX, *p++);
3991 else
3992 output_operand_lossage ("invalid %%-code");
3993 break;
3995 default:
3996 putc (c, asm_out_file);
3999 /* Try to keep the asm a bit more readable. */
4000 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
4001 putc ('\t', asm_out_file);
4003 /* Write out the variable names for operands, if we know them. */
4004 if (flag_verbose_asm)
4005 output_asm_operand_names (operands, oporder, ops);
4006 if (flag_print_asm_name)
4007 output_asm_name ();
4009 putc ('\n', asm_out_file);
4012 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4014 void
4015 output_asm_label (rtx x)
4017 char buf[256];
4019 if (GET_CODE (x) == LABEL_REF)
4020 x = label_ref_label (x);
4021 if (LABEL_P (x)
4022 || (NOTE_P (x)
4023 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4024 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4025 else
4026 output_operand_lossage ("'%%l' operand isn't a label");
4028 assemble_name (asm_out_file, buf);
4031 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4033 void
4034 mark_symbol_refs_as_used (rtx x)
4036 subrtx_iterator::array_type array;
4037 FOR_EACH_SUBRTX (iter, array, x, ALL)
4039 const_rtx x = *iter;
4040 if (GET_CODE (x) == SYMBOL_REF)
4041 if (tree t = SYMBOL_REF_DECL (x))
4042 assemble_external (t);
4046 /* Print operand X using machine-dependent assembler syntax.
4047 CODE is a non-digit that preceded the operand-number in the % spec,
4048 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4049 between the % and the digits.
4050 When CODE is a non-letter, X is 0.
4052 The meanings of the letters are machine-dependent and controlled
4053 by TARGET_PRINT_OPERAND. */
4055 void
4056 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4058 if (x && GET_CODE (x) == SUBREG)
4059 x = alter_subreg (&x, true);
4061 /* X must not be a pseudo reg. */
4062 if (!targetm.no_register_allocation)
4063 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4065 targetm.asm_out.print_operand (asm_out_file, x, code);
4067 if (x == NULL_RTX)
4068 return;
4070 mark_symbol_refs_as_used (x);
4073 /* Print a memory reference operand for address X using
4074 machine-dependent assembler syntax. */
4076 void
4077 output_address (machine_mode mode, rtx x)
4079 bool changed = false;
4080 walk_alter_subreg (&x, &changed);
4081 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4084 /* Print an integer constant expression in assembler syntax.
4085 Addition and subtraction are the only arithmetic
4086 that may appear in these expressions. */
4088 void
4089 output_addr_const (FILE *file, rtx x)
4091 char buf[256];
4093 restart:
4094 switch (GET_CODE (x))
4096 case PC:
4097 putc ('.', file);
4098 break;
4100 case SYMBOL_REF:
4101 if (SYMBOL_REF_DECL (x))
4102 assemble_external (SYMBOL_REF_DECL (x));
4103 #ifdef ASM_OUTPUT_SYMBOL_REF
4104 ASM_OUTPUT_SYMBOL_REF (file, x);
4105 #else
4106 assemble_name (file, XSTR (x, 0));
4107 #endif
4108 break;
4110 case LABEL_REF:
4111 x = label_ref_label (x);
4112 /* Fall through. */
4113 case CODE_LABEL:
4114 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4115 #ifdef ASM_OUTPUT_LABEL_REF
4116 ASM_OUTPUT_LABEL_REF (file, buf);
4117 #else
4118 assemble_name (file, buf);
4119 #endif
4120 break;
4122 case CONST_INT:
4123 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4124 break;
4126 case CONST:
4127 /* This used to output parentheses around the expression,
4128 but that does not work on the 386 (either ATT or BSD assembler). */
4129 output_addr_const (file, XEXP (x, 0));
4130 break;
4132 case CONST_WIDE_INT:
4133 /* We do not know the mode here so we have to use a round about
4134 way to build a wide-int to get it printed properly. */
4136 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4137 CONST_WIDE_INT_NUNITS (x),
4138 CONST_WIDE_INT_NUNITS (x)
4139 * HOST_BITS_PER_WIDE_INT,
4140 false);
4141 print_decs (w, file);
4143 break;
4145 case CONST_DOUBLE:
4146 if (CONST_DOUBLE_AS_INT_P (x))
4148 /* We can use %d if the number is one word and positive. */
4149 if (CONST_DOUBLE_HIGH (x))
4150 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4151 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4152 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4153 else if (CONST_DOUBLE_LOW (x) < 0)
4154 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4155 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4156 else
4157 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4159 else
4160 /* We can't handle floating point constants;
4161 PRINT_OPERAND must handle them. */
4162 output_operand_lossage ("floating constant misused");
4163 break;
4165 case CONST_FIXED:
4166 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4167 break;
4169 case PLUS:
4170 /* Some assemblers need integer constants to appear last (eg masm). */
4171 if (CONST_INT_P (XEXP (x, 0)))
4173 output_addr_const (file, XEXP (x, 1));
4174 if (INTVAL (XEXP (x, 0)) >= 0)
4175 fprintf (file, "+");
4176 output_addr_const (file, XEXP (x, 0));
4178 else
4180 output_addr_const (file, XEXP (x, 0));
4181 if (!CONST_INT_P (XEXP (x, 1))
4182 || INTVAL (XEXP (x, 1)) >= 0)
4183 fprintf (file, "+");
4184 output_addr_const (file, XEXP (x, 1));
4186 break;
4188 case MINUS:
4189 /* Avoid outputting things like x-x or x+5-x,
4190 since some assemblers can't handle that. */
4191 x = simplify_subtraction (x);
4192 if (GET_CODE (x) != MINUS)
4193 goto restart;
4195 output_addr_const (file, XEXP (x, 0));
4196 fprintf (file, "-");
4197 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4198 || GET_CODE (XEXP (x, 1)) == PC
4199 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4200 output_addr_const (file, XEXP (x, 1));
4201 else
4203 fputs (targetm.asm_out.open_paren, file);
4204 output_addr_const (file, XEXP (x, 1));
4205 fputs (targetm.asm_out.close_paren, file);
4207 break;
4209 case ZERO_EXTEND:
4210 case SIGN_EXTEND:
4211 case SUBREG:
4212 case TRUNCATE:
4213 output_addr_const (file, XEXP (x, 0));
4214 break;
4216 default:
4217 if (targetm.asm_out.output_addr_const_extra (file, x))
4218 break;
4220 output_operand_lossage ("invalid expression as operand");
4224 /* Output a quoted string. */
4226 void
4227 output_quoted_string (FILE *asm_file, const char *string)
4229 #ifdef OUTPUT_QUOTED_STRING
4230 OUTPUT_QUOTED_STRING (asm_file, string);
4231 #else
4232 char c;
4234 putc ('\"', asm_file);
4235 while ((c = *string++) != 0)
4237 if (ISPRINT (c))
4239 if (c == '\"' || c == '\\')
4240 putc ('\\', asm_file);
4241 putc (c, asm_file);
4243 else
4244 fprintf (asm_file, "\\%03o", (unsigned char) c);
4246 putc ('\"', asm_file);
4247 #endif
4250 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4252 void
4253 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4255 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4256 if (value == 0)
4257 putc ('0', f);
4258 else
4260 char *p = buf + sizeof (buf);
4262 *--p = "0123456789abcdef"[value % 16];
4263 while ((value /= 16) != 0);
4264 *--p = 'x';
4265 *--p = '0';
4266 fwrite (p, 1, buf + sizeof (buf) - p, f);
4270 /* Internal function that prints an unsigned long in decimal in reverse.
4271 The output string IS NOT null-terminated. */
4273 static int
4274 sprint_ul_rev (char *s, unsigned long value)
4276 int i = 0;
4279 s[i] = "0123456789"[value % 10];
4280 value /= 10;
4281 i++;
4282 /* alternate version, without modulo */
4283 /* oldval = value; */
4284 /* value /= 10; */
4285 /* s[i] = "0123456789" [oldval - 10*value]; */
4286 /* i++ */
4288 while (value != 0);
4289 return i;
4292 /* Write an unsigned long as decimal to a file, fast. */
4294 void
4295 fprint_ul (FILE *f, unsigned long value)
4297 /* python says: len(str(2**64)) == 20 */
4298 char s[20];
4299 int i;
4301 i = sprint_ul_rev (s, value);
4303 /* It's probably too small to bother with string reversal and fputs. */
4306 i--;
4307 putc (s[i], f);
4309 while (i != 0);
4312 /* Write an unsigned long as decimal to a string, fast.
4313 s must be wide enough to not overflow, at least 21 chars.
4314 Returns the length of the string (without terminating '\0'). */
4317 sprint_ul (char *s, unsigned long value)
4319 int len = sprint_ul_rev (s, value);
4320 s[len] = '\0';
4322 std::reverse (s, s + len);
4323 return len;
4326 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4327 %R prints the value of REGISTER_PREFIX.
4328 %L prints the value of LOCAL_LABEL_PREFIX.
4329 %U prints the value of USER_LABEL_PREFIX.
4330 %I prints the value of IMMEDIATE_PREFIX.
4331 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4332 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4334 We handle alternate assembler dialects here, just like output_asm_insn. */
4336 void
4337 asm_fprintf (FILE *file, const char *p, ...)
4339 char buf[10];
4340 char *q, c;
4341 #ifdef ASSEMBLER_DIALECT
4342 int dialect = 0;
4343 #endif
4344 va_list argptr;
4346 va_start (argptr, p);
4348 buf[0] = '%';
4350 while ((c = *p++))
4351 switch (c)
4353 #ifdef ASSEMBLER_DIALECT
4354 case '{':
4355 case '}':
4356 case '|':
4357 p = do_assembler_dialects (p, &dialect);
4358 break;
4359 #endif
4361 case '%':
4362 c = *p++;
4363 q = &buf[1];
4364 while (strchr ("-+ #0", c))
4366 *q++ = c;
4367 c = *p++;
4369 while (ISDIGIT (c) || c == '.')
4371 *q++ = c;
4372 c = *p++;
4374 switch (c)
4376 case '%':
4377 putc ('%', file);
4378 break;
4380 case 'd': case 'i': case 'u':
4381 case 'x': case 'X': case 'o':
4382 case 'c':
4383 *q++ = c;
4384 *q = 0;
4385 fprintf (file, buf, va_arg (argptr, int));
4386 break;
4388 case 'w':
4389 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4390 'o' cases, but we do not check for those cases. It
4391 means that the value is a HOST_WIDE_INT, which may be
4392 either `long' or `long long'. */
4393 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4394 q += strlen (HOST_WIDE_INT_PRINT);
4395 *q++ = *p++;
4396 *q = 0;
4397 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4398 break;
4400 case 'l':
4401 *q++ = c;
4402 #ifdef HAVE_LONG_LONG
4403 if (*p == 'l')
4405 *q++ = *p++;
4406 *q++ = *p++;
4407 *q = 0;
4408 fprintf (file, buf, va_arg (argptr, long long));
4410 else
4411 #endif
4413 *q++ = *p++;
4414 *q = 0;
4415 fprintf (file, buf, va_arg (argptr, long));
4418 break;
4420 case 's':
4421 *q++ = c;
4422 *q = 0;
4423 fprintf (file, buf, va_arg (argptr, char *));
4424 break;
4426 case 'O':
4427 #ifdef ASM_OUTPUT_OPCODE
4428 ASM_OUTPUT_OPCODE (asm_out_file, p);
4429 #endif
4430 break;
4432 case 'R':
4433 #ifdef REGISTER_PREFIX
4434 fprintf (file, "%s", REGISTER_PREFIX);
4435 #endif
4436 break;
4438 case 'I':
4439 #ifdef IMMEDIATE_PREFIX
4440 fprintf (file, "%s", IMMEDIATE_PREFIX);
4441 #endif
4442 break;
4444 case 'L':
4445 #ifdef LOCAL_LABEL_PREFIX
4446 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4447 #endif
4448 break;
4450 case 'U':
4451 fputs (user_label_prefix, file);
4452 break;
4454 #ifdef ASM_FPRINTF_EXTENSIONS
4455 /* Uppercase letters are reserved for general use by asm_fprintf
4456 and so are not available to target specific code. In order to
4457 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4458 they are defined here. As they get turned into real extensions
4459 to asm_fprintf they should be removed from this list. */
4460 case 'A': case 'B': case 'C': case 'D': case 'E':
4461 case 'F': case 'G': case 'H': case 'J': case 'K':
4462 case 'M': case 'N': case 'P': case 'Q': case 'S':
4463 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4464 break;
4466 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4467 #endif
4468 default:
4469 gcc_unreachable ();
4471 break;
4473 default:
4474 putc (c, file);
4476 va_end (argptr);
4479 /* Return nonzero if this function has no function calls. */
4482 leaf_function_p (void)
4484 rtx_insn *insn;
4486 /* Ensure we walk the entire function body. */
4487 gcc_assert (!in_sequence_p ());
4489 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4490 functions even if they call mcount. */
4491 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4492 return 0;
4494 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4496 if (CALL_P (insn)
4497 && ! SIBLING_CALL_P (insn))
4498 return 0;
4499 if (NONJUMP_INSN_P (insn)
4500 && GET_CODE (PATTERN (insn)) == SEQUENCE
4501 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4502 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4503 return 0;
4506 return 1;
4509 /* Return 1 if branch is a forward branch.
4510 Uses insn_shuid array, so it works only in the final pass. May be used by
4511 output templates to customary add branch prediction hints.
4514 final_forward_branch_p (rtx_insn *insn)
4516 int insn_id, label_id;
4518 gcc_assert (uid_shuid);
4519 insn_id = INSN_SHUID (insn);
4520 label_id = INSN_SHUID (JUMP_LABEL (insn));
4521 /* We've hit some insns that does not have id information available. */
4522 gcc_assert (insn_id && label_id);
4523 return insn_id < label_id;
4526 /* On some machines, a function with no call insns
4527 can run faster if it doesn't create its own register window.
4528 When output, the leaf function should use only the "output"
4529 registers. Ordinarily, the function would be compiled to use
4530 the "input" registers to find its arguments; it is a candidate
4531 for leaf treatment if it uses only the "input" registers.
4532 Leaf function treatment means renumbering so the function
4533 uses the "output" registers instead. */
4535 #ifdef LEAF_REGISTERS
4537 /* Return 1 if this function uses only the registers that can be
4538 safely renumbered. */
4541 only_leaf_regs_used (void)
4543 int i;
4544 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4546 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4547 if ((df_regs_ever_live_p (i) || global_regs[i])
4548 && ! permitted_reg_in_leaf_functions[i])
4549 return 0;
4551 if (crtl->uses_pic_offset_table
4552 && pic_offset_table_rtx != 0
4553 && REG_P (pic_offset_table_rtx)
4554 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4555 return 0;
4557 return 1;
4560 /* Scan all instructions and renumber all registers into those
4561 available in leaf functions. */
4563 static void
4564 leaf_renumber_regs (rtx_insn *first)
4566 rtx_insn *insn;
4568 /* Renumber only the actual patterns.
4569 The reg-notes can contain frame pointer refs,
4570 and renumbering them could crash, and should not be needed. */
4571 for (insn = first; insn; insn = NEXT_INSN (insn))
4572 if (INSN_P (insn))
4573 leaf_renumber_regs_insn (PATTERN (insn));
4576 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4577 available in leaf functions. */
4579 void
4580 leaf_renumber_regs_insn (rtx in_rtx)
4582 int i, j;
4583 const char *format_ptr;
4585 if (in_rtx == 0)
4586 return;
4588 /* Renumber all input-registers into output-registers.
4589 renumbered_regs would be 1 for an output-register;
4590 they */
4592 if (REG_P (in_rtx))
4594 int newreg;
4596 /* Don't renumber the same reg twice. */
4597 if (in_rtx->used)
4598 return;
4600 newreg = REGNO (in_rtx);
4601 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4602 to reach here as part of a REG_NOTE. */
4603 if (newreg >= FIRST_PSEUDO_REGISTER)
4605 in_rtx->used = 1;
4606 return;
4608 newreg = LEAF_REG_REMAP (newreg);
4609 gcc_assert (newreg >= 0);
4610 df_set_regs_ever_live (REGNO (in_rtx), false);
4611 df_set_regs_ever_live (newreg, true);
4612 SET_REGNO (in_rtx, newreg);
4613 in_rtx->used = 1;
4614 return;
4617 if (INSN_P (in_rtx))
4619 /* Inside a SEQUENCE, we find insns.
4620 Renumber just the patterns of these insns,
4621 just as we do for the top-level insns. */
4622 leaf_renumber_regs_insn (PATTERN (in_rtx));
4623 return;
4626 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4628 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4629 switch (*format_ptr++)
4631 case 'e':
4632 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4633 break;
4635 case 'E':
4636 if (XVEC (in_rtx, i) != NULL)
4637 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4638 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4639 break;
4641 case 'S':
4642 case 's':
4643 case '0':
4644 case 'i':
4645 case 'w':
4646 case 'p':
4647 case 'n':
4648 case 'u':
4649 break;
4651 default:
4652 gcc_unreachable ();
4655 #endif
4657 /* Turn the RTL into assembly. */
4658 static unsigned int
4659 rest_of_handle_final (void)
4661 const char *fnname = get_fnname_from_decl (current_function_decl);
4663 /* Turn debug markers into notes if the var-tracking pass has not
4664 been invoked. */
4665 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4666 delete_vta_debug_insns (false);
4668 assemble_start_function (current_function_decl, fnname);
4669 rtx_insn *first = get_insns ();
4670 int seen = 0;
4671 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4672 final_1 (first, asm_out_file, seen, optimize);
4673 if (flag_ipa_ra
4674 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4675 collect_fn_hard_reg_usage ();
4676 final_end_function ();
4678 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4679 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4680 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4681 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4683 assemble_end_function (current_function_decl, fnname);
4685 /* Free up reg info memory. */
4686 free_reg_info ();
4688 if (! quiet_flag)
4689 fflush (asm_out_file);
4691 /* Write DBX symbols if requested. */
4693 /* Note that for those inline functions where we don't initially
4694 know for certain that we will be generating an out-of-line copy,
4695 the first invocation of this routine (rest_of_compilation) will
4696 skip over this code by doing a `goto exit_rest_of_compilation;'.
4697 Later on, wrapup_global_declarations will (indirectly) call
4698 rest_of_compilation again for those inline functions that need
4699 to have out-of-line copies generated. During that call, we
4700 *will* be routed past here. */
4702 timevar_push (TV_SYMOUT);
4703 if (!DECL_IGNORED_P (current_function_decl))
4704 debug_hooks->function_decl (current_function_decl);
4705 timevar_pop (TV_SYMOUT);
4707 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4708 DECL_INITIAL (current_function_decl) = error_mark_node;
4710 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4711 && targetm.have_ctors_dtors)
4712 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4713 decl_init_priority_lookup
4714 (current_function_decl));
4715 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4716 && targetm.have_ctors_dtors)
4717 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4718 decl_fini_priority_lookup
4719 (current_function_decl));
4720 return 0;
4723 namespace {
4725 const pass_data pass_data_final =
4727 RTL_PASS, /* type */
4728 "final", /* name */
4729 OPTGROUP_NONE, /* optinfo_flags */
4730 TV_FINAL, /* tv_id */
4731 0, /* properties_required */
4732 0, /* properties_provided */
4733 0, /* properties_destroyed */
4734 0, /* todo_flags_start */
4735 0, /* todo_flags_finish */
4738 class pass_final : public rtl_opt_pass
4740 public:
4741 pass_final (gcc::context *ctxt)
4742 : rtl_opt_pass (pass_data_final, ctxt)
4745 /* opt_pass methods: */
4746 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4748 }; // class pass_final
4750 } // anon namespace
4752 rtl_opt_pass *
4753 make_pass_final (gcc::context *ctxt)
4755 return new pass_final (ctxt);
4759 static unsigned int
4760 rest_of_handle_shorten_branches (void)
4762 /* Shorten branches. */
4763 shorten_branches (get_insns ());
4764 return 0;
4767 namespace {
4769 const pass_data pass_data_shorten_branches =
4771 RTL_PASS, /* type */
4772 "shorten", /* name */
4773 OPTGROUP_NONE, /* optinfo_flags */
4774 TV_SHORTEN_BRANCH, /* tv_id */
4775 0, /* properties_required */
4776 0, /* properties_provided */
4777 0, /* properties_destroyed */
4778 0, /* todo_flags_start */
4779 0, /* todo_flags_finish */
4782 class pass_shorten_branches : public rtl_opt_pass
4784 public:
4785 pass_shorten_branches (gcc::context *ctxt)
4786 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4789 /* opt_pass methods: */
4790 virtual unsigned int execute (function *)
4792 return rest_of_handle_shorten_branches ();
4795 }; // class pass_shorten_branches
4797 } // anon namespace
4799 rtl_opt_pass *
4800 make_pass_shorten_branches (gcc::context *ctxt)
4802 return new pass_shorten_branches (ctxt);
4806 static unsigned int
4807 rest_of_clean_state (void)
4809 rtx_insn *insn, *next;
4810 FILE *final_output = NULL;
4811 int save_unnumbered = flag_dump_unnumbered;
4812 int save_noaddr = flag_dump_noaddr;
4814 if (flag_dump_final_insns)
4816 final_output = fopen (flag_dump_final_insns, "a");
4817 if (!final_output)
4819 error ("could not open final insn dump file %qs: %m",
4820 flag_dump_final_insns);
4821 flag_dump_final_insns = NULL;
4823 else
4825 flag_dump_noaddr = flag_dump_unnumbered = 1;
4826 if (flag_compare_debug_opt || flag_compare_debug)
4827 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4828 dump_function_header (final_output, current_function_decl,
4829 dump_flags);
4830 final_insns_dump_p = true;
4832 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4833 if (LABEL_P (insn))
4834 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4835 else
4837 if (NOTE_P (insn))
4838 set_block_for_insn (insn, NULL);
4839 INSN_UID (insn) = 0;
4844 /* It is very important to decompose the RTL instruction chain here:
4845 debug information keeps pointing into CODE_LABEL insns inside the function
4846 body. If these remain pointing to the other insns, we end up preserving
4847 whole RTL chain and attached detailed debug info in memory. */
4848 for (insn = get_insns (); insn; insn = next)
4850 next = NEXT_INSN (insn);
4851 SET_NEXT_INSN (insn) = NULL;
4852 SET_PREV_INSN (insn) = NULL;
4854 rtx_insn *call_insn = insn;
4855 if (NONJUMP_INSN_P (call_insn)
4856 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4858 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4859 call_insn = seq->insn (0);
4861 if (CALL_P (call_insn))
4863 rtx note
4864 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4865 if (note)
4866 remove_note (call_insn, note);
4869 if (final_output
4870 && (!NOTE_P (insn)
4871 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4872 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4873 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4874 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4875 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4876 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4877 print_rtl_single (final_output, insn);
4880 if (final_output)
4882 flag_dump_noaddr = save_noaddr;
4883 flag_dump_unnumbered = save_unnumbered;
4884 final_insns_dump_p = false;
4886 if (fclose (final_output))
4888 error ("could not close final insn dump file %qs: %m",
4889 flag_dump_final_insns);
4890 flag_dump_final_insns = NULL;
4894 flag_rerun_cse_after_global_opts = 0;
4895 reload_completed = 0;
4896 epilogue_completed = 0;
4897 #ifdef STACK_REGS
4898 regstack_completed = 0;
4899 #endif
4901 /* Clear out the insn_length contents now that they are no
4902 longer valid. */
4903 init_insn_lengths ();
4905 /* Show no temporary slots allocated. */
4906 init_temp_slots ();
4908 free_bb_for_insn ();
4910 if (cfun->gimple_df)
4911 delete_tree_ssa (cfun);
4913 /* We can reduce stack alignment on call site only when we are sure that
4914 the function body just produced will be actually used in the final
4915 executable. */
4916 if (decl_binds_to_current_def_p (current_function_decl))
4918 unsigned int pref = crtl->preferred_stack_boundary;
4919 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4920 pref = crtl->stack_alignment_needed;
4921 cgraph_node::rtl_info (current_function_decl)
4922 ->preferred_incoming_stack_boundary = pref;
4925 /* Make sure volatile mem refs aren't considered valid operands for
4926 arithmetic insns. We must call this here if this is a nested inline
4927 function, since the above code leaves us in the init_recog state,
4928 and the function context push/pop code does not save/restore volatile_ok.
4930 ??? Maybe it isn't necessary for expand_start_function to call this
4931 anymore if we do it here? */
4933 init_recog_no_volatile ();
4935 /* We're done with this function. Free up memory if we can. */
4936 free_after_parsing (cfun);
4937 free_after_compilation (cfun);
4938 return 0;
4941 namespace {
4943 const pass_data pass_data_clean_state =
4945 RTL_PASS, /* type */
4946 "*clean_state", /* name */
4947 OPTGROUP_NONE, /* optinfo_flags */
4948 TV_FINAL, /* tv_id */
4949 0, /* properties_required */
4950 0, /* properties_provided */
4951 PROP_rtl, /* properties_destroyed */
4952 0, /* todo_flags_start */
4953 0, /* todo_flags_finish */
4956 class pass_clean_state : public rtl_opt_pass
4958 public:
4959 pass_clean_state (gcc::context *ctxt)
4960 : rtl_opt_pass (pass_data_clean_state, ctxt)
4963 /* opt_pass methods: */
4964 virtual unsigned int execute (function *)
4966 return rest_of_clean_state ();
4969 }; // class pass_clean_state
4971 } // anon namespace
4973 rtl_opt_pass *
4974 make_pass_clean_state (gcc::context *ctxt)
4976 return new pass_clean_state (ctxt);
4979 /* Return true if INSN is a call to the current function. */
4981 static bool
4982 self_recursive_call_p (rtx_insn *insn)
4984 tree fndecl = get_call_fndecl (insn);
4985 return (fndecl == current_function_decl
4986 && decl_binds_to_current_def_p (fndecl));
4989 /* Collect hard register usage for the current function. */
4991 static void
4992 collect_fn_hard_reg_usage (void)
4994 rtx_insn *insn;
4995 #ifdef STACK_REGS
4996 int i;
4997 #endif
4998 struct cgraph_rtl_info *node;
4999 HARD_REG_SET function_used_regs;
5001 /* ??? To be removed when all the ports have been fixed. */
5002 if (!targetm.call_fusage_contains_non_callee_clobbers)
5003 return;
5005 CLEAR_HARD_REG_SET (function_used_regs);
5007 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5009 HARD_REG_SET insn_used_regs;
5011 if (!NONDEBUG_INSN_P (insn))
5012 continue;
5014 if (CALL_P (insn)
5015 && !self_recursive_call_p (insn))
5017 if (!get_call_reg_set_usage (insn, &insn_used_regs,
5018 call_used_reg_set))
5019 return;
5021 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5024 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5025 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5028 /* Be conservative - mark fixed and global registers as used. */
5029 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5031 #ifdef STACK_REGS
5032 /* Handle STACK_REGS conservatively, since the df-framework does not
5033 provide accurate information for them. */
5035 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5036 SET_HARD_REG_BIT (function_used_regs, i);
5037 #endif
5039 /* The information we have gathered is only interesting if it exposes a
5040 register from the call_used_regs that is not used in this function. */
5041 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5042 return;
5044 node = cgraph_node::rtl_info (current_function_decl);
5045 gcc_assert (node != NULL);
5047 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5048 node->function_used_regs_valid = 1;
5051 /* Get the declaration of the function called by INSN. */
5053 static tree
5054 get_call_fndecl (rtx_insn *insn)
5056 rtx note, datum;
5058 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5059 if (note == NULL_RTX)
5060 return NULL_TREE;
5062 datum = XEXP (note, 0);
5063 if (datum != NULL_RTX)
5064 return SYMBOL_REF_DECL (datum);
5066 return NULL_TREE;
5069 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5070 call targets that can be overwritten. */
5072 static struct cgraph_rtl_info *
5073 get_call_cgraph_rtl_info (rtx_insn *insn)
5075 tree fndecl;
5077 if (insn == NULL_RTX)
5078 return NULL;
5080 fndecl = get_call_fndecl (insn);
5081 if (fndecl == NULL_TREE
5082 || !decl_binds_to_current_def_p (fndecl))
5083 return NULL;
5085 return cgraph_node::rtl_info (fndecl);
5088 /* Find hard registers used by function call instruction INSN, and return them
5089 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5091 bool
5092 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5093 HARD_REG_SET default_set)
5095 if (flag_ipa_ra)
5097 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5098 if (node != NULL
5099 && node->function_used_regs_valid)
5101 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5102 AND_HARD_REG_SET (*reg_set, default_set);
5103 return true;
5107 COPY_HARD_REG_SET (*reg_set, default_set);
5108 return false;