[ARM] PR target/71436: Restrict *load_multiple pattern till after LRA
[official-gcc.git] / gcc / tree-ssa-uninit.c
blobe019ecc9d29e019af64fdf2b077fb7b4c80fb4a1
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-ssa.h"
34 #include "params.h"
35 #include "tree-cfg.h"
37 /* This implements the pass that does predicate aware warning on uses of
38 possibly uninitialized variables. The pass first collects the set of
39 possibly uninitialized SSA names. For each such name, it walks through
40 all its immediate uses. For each immediate use, it rebuilds the condition
41 expression (the predicate) that guards the use. The predicate is then
42 examined to see if the variable is always defined under that same condition.
43 This is done either by pruning the unrealizable paths that lead to the
44 default definitions or by checking if the predicate set that guards the
45 defining paths is a superset of the use predicate. */
47 /* Max PHI args we can handle in pass. */
48 const unsigned max_phi_args = 32;
50 /* Pointer set of potentially undefined ssa names, i.e.,
51 ssa names that are defined by phi with operands that
52 are not defined or potentially undefined. */
53 static hash_set<tree> *possibly_undefined_names = 0;
55 /* Bit mask handling macros. */
56 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
57 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
58 #define MASK_EMPTY(mask) (mask == 0)
60 /* Returns the first bit position (starting from LSB)
61 in mask that is non zero. Returns -1 if the mask is empty. */
62 static int
63 get_mask_first_set_bit (unsigned mask)
65 int pos = 0;
66 if (mask == 0)
67 return -1;
69 while ((mask & (1 << pos)) == 0)
70 pos++;
72 return pos;
74 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
76 /* Return true if T, an SSA_NAME, has an undefined value. */
77 static bool
78 has_undefined_value_p (tree t)
80 return (ssa_undefined_value_p (t)
81 || (possibly_undefined_names
82 && possibly_undefined_names->contains (t)));
85 /* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
86 is set on SSA_NAME_VAR. */
88 static inline bool
89 uninit_undefined_value_p (tree t)
91 if (!has_undefined_value_p (t))
92 return false;
93 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
94 return false;
95 return true;
98 /* Emit warnings for uninitialized variables. This is done in two passes.
100 The first pass notices real uses of SSA names with undefined values.
101 Such uses are unconditionally uninitialized, and we can be certain that
102 such a use is a mistake. This pass is run before most optimizations,
103 so that we catch as many as we can.
105 The second pass follows PHI nodes to find uses that are potentially
106 uninitialized. In this case we can't necessarily prove that the use
107 is really uninitialized. This pass is run after most optimizations,
108 so that we thread as many jumps and possible, and delete as much dead
109 code as possible, in order to reduce false positives. We also look
110 again for plain uninitialized variables, since optimization may have
111 changed conditionally uninitialized to unconditionally uninitialized. */
113 /* Emit a warning for EXPR based on variable VAR at the point in the
114 program T, an SSA_NAME, is used being uninitialized. The exact
115 warning text is in MSGID and DATA is the gimple stmt with info about
116 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
117 gives which argument of the phi node to take the location from. WC
118 is the warning code. */
120 static void
121 warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
122 const char *gmsgid, void *data, location_t phiarg_loc)
124 gimple *context = (gimple *) data;
125 location_t location, cfun_loc;
126 expanded_location xloc, floc;
128 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
129 turns in a COMPLEX_EXPR with the not initialized part being
130 set to its previous (undefined) value. */
131 if (is_gimple_assign (context)
132 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
133 return;
134 if (!has_undefined_value_p (t))
135 return;
137 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
138 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
139 created for conversion from scalar to complex. Use the underlying var of
140 the COMPLEX_EXPRs real part in that case. See PR71581. */
141 if (expr == NULL_TREE
142 && var == NULL_TREE
143 && SSA_NAME_VAR (t) == NULL_TREE
144 && is_gimple_assign (SSA_NAME_DEF_STMT (t))
145 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
147 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
148 if (TREE_CODE (v) == SSA_NAME
149 && has_undefined_value_p (v)
150 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
152 expr = SSA_NAME_VAR (v);
153 var = expr;
157 if (expr == NULL_TREE)
158 return;
160 /* TREE_NO_WARNING either means we already warned, or the front end
161 wishes to suppress the warning. */
162 if ((context
163 && (gimple_no_warning_p (context)
164 || (gimple_assign_single_p (context)
165 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
166 || TREE_NO_WARNING (expr))
167 return;
169 if (context != NULL && gimple_has_location (context))
170 location = gimple_location (context);
171 else if (phiarg_loc != UNKNOWN_LOCATION)
172 location = phiarg_loc;
173 else
174 location = DECL_SOURCE_LOCATION (var);
175 location = linemap_resolve_location (line_table, location,
176 LRK_SPELLING_LOCATION, NULL);
177 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
178 xloc = expand_location (location);
179 floc = expand_location (cfun_loc);
180 if (warning_at (location, wc, gmsgid, expr))
182 TREE_NO_WARNING (expr) = 1;
184 if (location == DECL_SOURCE_LOCATION (var))
185 return;
186 if (xloc.file != floc.file
187 || linemap_location_before_p (line_table, location, cfun_loc)
188 || linemap_location_before_p (line_table, cfun->function_end_locus,
189 location))
190 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
194 struct check_defs_data
196 /* If we found any may-defs besides must-def clobbers. */
197 bool found_may_defs;
200 /* Callback for walk_aliased_vdefs. */
202 static bool
203 check_defs (ao_ref *ref, tree vdef, void *data_)
205 check_defs_data *data = (check_defs_data *)data_;
206 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
207 /* If this is a clobber then if it is not a kill walk past it. */
208 if (gimple_clobber_p (def_stmt))
210 if (stmt_kills_ref_p (def_stmt, ref))
211 return true;
212 return false;
214 /* Found a may-def on this path. */
215 data->found_may_defs = true;
216 return true;
219 static unsigned int
220 warn_uninitialized_vars (bool warn_possibly_uninitialized)
222 gimple_stmt_iterator gsi;
223 basic_block bb;
224 unsigned int vdef_cnt = 0;
225 unsigned int oracle_cnt = 0;
226 unsigned limit = 0;
228 FOR_EACH_BB_FN (bb, cfun)
230 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
231 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
232 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
234 gimple *stmt = gsi_stmt (gsi);
235 use_operand_p use_p;
236 ssa_op_iter op_iter;
237 tree use;
239 if (is_gimple_debug (stmt))
240 continue;
242 /* We only do data flow with SSA_NAMEs, so that's all we
243 can warn about. */
244 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
246 /* BIT_INSERT_EXPR first operand should not be considered
247 a use for the purpose of uninit warnings. */
248 if (gassign *ass = dyn_cast <gassign *> (stmt))
250 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
251 && use_p->use == gimple_assign_rhs1_ptr (ass))
252 continue;
254 use = USE_FROM_PTR (use_p);
255 if (always_executed)
256 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
257 SSA_NAME_VAR (use),
258 "%qD is used uninitialized in this function", stmt,
259 UNKNOWN_LOCATION);
260 else if (warn_possibly_uninitialized)
261 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
262 SSA_NAME_VAR (use),
263 "%qD may be used uninitialized in this function",
264 stmt, UNKNOWN_LOCATION);
267 /* For limiting the alias walk below we count all
268 vdefs in the function. */
269 if (gimple_vdef (stmt))
270 vdef_cnt++;
272 if (gimple_assign_load_p (stmt)
273 && gimple_has_location (stmt))
275 tree rhs = gimple_assign_rhs1 (stmt);
276 if (TREE_NO_WARNING (rhs))
277 continue;
279 ao_ref ref;
280 ao_ref_init (&ref, rhs);
282 /* Do not warn if it can be initialized outside this function. */
283 tree base = ao_ref_base (&ref);
284 if (!VAR_P (base)
285 || DECL_HARD_REGISTER (base)
286 || is_global_var (base)
287 || TREE_NO_WARNING (base))
288 continue;
290 /* Do not warn if the access is fully outside of the
291 variable. */
292 if (ref.size != -1
293 && ref.max_size == ref.size
294 && (ref.offset + ref.size <= 0
295 || (ref.offset >= 0
296 && TREE_CODE (DECL_SIZE (base)) == INTEGER_CST
297 && compare_tree_int (DECL_SIZE (base),
298 ref.offset) <= 0)))
299 continue;
301 /* Limit the walking to a constant number of stmts after
302 we overcommit quadratic behavior for small functions
303 and O(n) behavior. */
304 if (oracle_cnt > 128 * 128
305 && oracle_cnt > vdef_cnt * 2)
306 limit = 32;
307 check_defs_data data;
308 data.found_may_defs = false;
309 use = gimple_vuse (stmt);
310 int res = walk_aliased_vdefs (&ref, use,
311 check_defs, &data, NULL,
312 NULL, limit);
313 if (res == -1)
315 oracle_cnt += limit;
316 continue;
318 oracle_cnt += res;
319 if (data.found_may_defs)
320 continue;
322 /* We didn't find any may-defs so on all paths either
323 reached function entry or a killing clobber. */
324 location_t location
325 = linemap_resolve_location (line_table, gimple_location (stmt),
326 LRK_SPELLING_LOCATION, NULL);
327 if (always_executed)
329 if (warning_at (location, OPT_Wuninitialized,
330 "%qE is used uninitialized in this function",
331 rhs))
332 /* ??? This is only effective for decls as in
333 gcc.dg/uninit-B-O0.c. Avoid doing this for
334 maybe-uninit uses as it may hide important
335 locations. */
336 TREE_NO_WARNING (rhs) = 1;
338 else if (warn_possibly_uninitialized)
339 warning_at (location, OPT_Wmaybe_uninitialized,
340 "%qE may be used uninitialized in this function",
341 rhs);
346 return 0;
349 /* Checks if the operand OPND of PHI is defined by
350 another phi with one operand defined by this PHI,
351 but the rest operands are all defined. If yes,
352 returns true to skip this operand as being
353 redundant. Can be enhanced to be more general. */
355 static bool
356 can_skip_redundant_opnd (tree opnd, gimple *phi)
358 gimple *op_def;
359 tree phi_def;
360 int i, n;
362 phi_def = gimple_phi_result (phi);
363 op_def = SSA_NAME_DEF_STMT (opnd);
364 if (gimple_code (op_def) != GIMPLE_PHI)
365 return false;
366 n = gimple_phi_num_args (op_def);
367 for (i = 0; i < n; ++i)
369 tree op = gimple_phi_arg_def (op_def, i);
370 if (TREE_CODE (op) != SSA_NAME)
371 continue;
372 if (op != phi_def && uninit_undefined_value_p (op))
373 return false;
376 return true;
379 /* Returns a bit mask holding the positions of arguments in PHI
380 that have empty (or possibly empty) definitions. */
382 static unsigned
383 compute_uninit_opnds_pos (gphi *phi)
385 size_t i, n;
386 unsigned uninit_opnds = 0;
388 n = gimple_phi_num_args (phi);
389 /* Bail out for phi with too many args. */
390 if (n > max_phi_args)
391 return 0;
393 for (i = 0; i < n; ++i)
395 tree op = gimple_phi_arg_def (phi, i);
396 if (TREE_CODE (op) == SSA_NAME
397 && uninit_undefined_value_p (op)
398 && !can_skip_redundant_opnd (op, phi))
400 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
402 /* Ignore SSA_NAMEs that appear on abnormal edges
403 somewhere. */
404 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
405 continue;
407 MASK_SET_BIT (uninit_opnds, i);
410 return uninit_opnds;
413 /* Find the immediate postdominator PDOM of the specified
414 basic block BLOCK. */
416 static inline basic_block
417 find_pdom (basic_block block)
419 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
420 return EXIT_BLOCK_PTR_FOR_FN (cfun);
421 else
423 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
424 if (!bb)
425 return EXIT_BLOCK_PTR_FOR_FN (cfun);
426 return bb;
430 /* Find the immediate DOM of the specified basic block BLOCK. */
432 static inline basic_block
433 find_dom (basic_block block)
435 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
436 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
437 else
439 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
440 if (!bb)
441 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
442 return bb;
446 /* Returns true if BB1 is postdominating BB2 and BB1 is
447 not a loop exit bb. The loop exit bb check is simple and does
448 not cover all cases. */
450 static bool
451 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
453 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
454 return false;
456 if (single_pred_p (bb1) && !single_succ_p (bb2))
457 return false;
459 return true;
462 /* Find the closest postdominator of a specified BB, which is control
463 equivalent to BB. */
465 static inline basic_block
466 find_control_equiv_block (basic_block bb)
468 basic_block pdom;
470 pdom = find_pdom (bb);
472 /* Skip the postdominating bb that is also loop exit. */
473 if (!is_non_loop_exit_postdominating (pdom, bb))
474 return NULL;
476 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
477 return pdom;
479 return NULL;
482 #define MAX_NUM_CHAINS 8
483 #define MAX_CHAIN_LEN 5
484 #define MAX_POSTDOM_CHECK 8
485 #define MAX_SWITCH_CASES 40
487 /* Computes the control dependence chains (paths of edges)
488 for DEP_BB up to the dominating basic block BB (the head node of a
489 chain should be dominated by it). CD_CHAINS is pointer to an
490 array holding the result chains. CUR_CD_CHAIN is the current
491 chain being computed. *NUM_CHAINS is total number of chains. The
492 function returns true if the information is successfully computed,
493 return false if there is no control dependence or not computed. */
495 static bool
496 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
497 vec<edge> *cd_chains,
498 size_t *num_chains,
499 vec<edge> *cur_cd_chain,
500 int *num_calls)
502 edge_iterator ei;
503 edge e;
504 size_t i;
505 bool found_cd_chain = false;
506 size_t cur_chain_len = 0;
508 if (EDGE_COUNT (bb->succs) < 2)
509 return false;
511 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
512 return false;
513 ++*num_calls;
515 /* Could use a set instead. */
516 cur_chain_len = cur_cd_chain->length ();
517 if (cur_chain_len > MAX_CHAIN_LEN)
518 return false;
520 for (i = 0; i < cur_chain_len; i++)
522 edge e = (*cur_cd_chain)[i];
523 /* Cycle detected. */
524 if (e->src == bb)
525 return false;
528 FOR_EACH_EDGE (e, ei, bb->succs)
530 basic_block cd_bb;
531 int post_dom_check = 0;
532 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
533 continue;
535 cd_bb = e->dest;
536 cur_cd_chain->safe_push (e);
537 while (!is_non_loop_exit_postdominating (cd_bb, bb))
539 if (cd_bb == dep_bb)
541 /* Found a direct control dependence. */
542 if (*num_chains < MAX_NUM_CHAINS)
544 cd_chains[*num_chains] = cur_cd_chain->copy ();
545 (*num_chains)++;
547 found_cd_chain = true;
548 /* Check path from next edge. */
549 break;
552 /* Now check if DEP_BB is indirectly control dependent on BB. */
553 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
554 cur_cd_chain, num_calls))
556 found_cd_chain = true;
557 break;
560 cd_bb = find_pdom (cd_bb);
561 post_dom_check++;
562 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
563 || post_dom_check > MAX_POSTDOM_CHECK)
564 break;
566 cur_cd_chain->pop ();
567 gcc_assert (cur_cd_chain->length () == cur_chain_len);
569 gcc_assert (cur_cd_chain->length () == cur_chain_len);
571 return found_cd_chain;
574 /* The type to represent a simple predicate. */
576 struct pred_info
578 tree pred_lhs;
579 tree pred_rhs;
580 enum tree_code cond_code;
581 bool invert;
584 /* The type to represent a sequence of predicates grouped
585 with .AND. operation. */
587 typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
589 /* The type to represent a sequence of pred_chains grouped
590 with .OR. operation. */
592 typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
594 /* Converts the chains of control dependence edges into a set of
595 predicates. A control dependence chain is represented by a vector
596 edges. DEP_CHAINS points to an array of dependence chains.
597 NUM_CHAINS is the size of the chain array. One edge in a dependence
598 chain is mapped to predicate expression represented by pred_info
599 type. One dependence chain is converted to a composite predicate that
600 is the result of AND operation of pred_info mapped to each edge.
601 A composite predicate is presented by a vector of pred_info. On
602 return, *PREDS points to the resulting array of composite predicates.
603 *NUM_PREDS is the number of composite predictes. */
605 static bool
606 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
607 size_t num_chains,
608 pred_chain_union *preds)
610 bool has_valid_pred = false;
611 size_t i, j;
612 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
613 return false;
615 /* Now convert the control dep chain into a set
616 of predicates. */
617 preds->reserve (num_chains);
619 for (i = 0; i < num_chains; i++)
621 vec<edge> one_cd_chain = dep_chains[i];
623 has_valid_pred = false;
624 pred_chain t_chain = vNULL;
625 for (j = 0; j < one_cd_chain.length (); j++)
627 gimple *cond_stmt;
628 gimple_stmt_iterator gsi;
629 basic_block guard_bb;
630 pred_info one_pred;
631 edge e;
633 e = one_cd_chain[j];
634 guard_bb = e->src;
635 gsi = gsi_last_bb (guard_bb);
636 if (gsi_end_p (gsi))
638 has_valid_pred = false;
639 break;
641 cond_stmt = gsi_stmt (gsi);
642 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
643 /* Ignore EH edge. Can add assertion on the other edge's flag. */
644 continue;
645 /* Skip if there is essentially one succesor. */
646 if (EDGE_COUNT (e->src->succs) == 2)
648 edge e1;
649 edge_iterator ei1;
650 bool skip = false;
652 FOR_EACH_EDGE (e1, ei1, e->src->succs)
654 if (EDGE_COUNT (e1->dest->succs) == 0)
656 skip = true;
657 break;
660 if (skip)
661 continue;
663 if (gimple_code (cond_stmt) == GIMPLE_COND)
665 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
666 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
667 one_pred.cond_code = gimple_cond_code (cond_stmt);
668 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
669 t_chain.safe_push (one_pred);
670 has_valid_pred = true;
672 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
674 /* Avoid quadratic behavior. */
675 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
677 has_valid_pred = false;
678 break;
680 /* Find the case label. */
681 tree l = NULL_TREE;
682 unsigned idx;
683 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
685 tree tl = gimple_switch_label (gs, idx);
686 if (e->dest == label_to_block (CASE_LABEL (tl)))
688 if (!l)
689 l = tl;
690 else
692 l = NULL_TREE;
693 break;
697 /* If more than one label reaches this block or the case
698 label doesn't have a single value (like the default one)
699 fail. */
700 if (!l
701 || !CASE_LOW (l)
702 || (CASE_HIGH (l)
703 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
705 has_valid_pred = false;
706 break;
708 one_pred.pred_lhs = gimple_switch_index (gs);
709 one_pred.pred_rhs = CASE_LOW (l);
710 one_pred.cond_code = EQ_EXPR;
711 one_pred.invert = false;
712 t_chain.safe_push (one_pred);
713 has_valid_pred = true;
715 else
717 has_valid_pred = false;
718 break;
722 if (!has_valid_pred)
723 break;
724 else
725 preds->safe_push (t_chain);
727 return has_valid_pred;
730 /* Computes all control dependence chains for USE_BB. The control
731 dependence chains are then converted to an array of composite
732 predicates pointed to by PREDS. PHI_BB is the basic block of
733 the phi whose result is used in USE_BB. */
735 static bool
736 find_predicates (pred_chain_union *preds,
737 basic_block phi_bb,
738 basic_block use_bb)
740 size_t num_chains = 0, i;
741 int num_calls = 0;
742 vec<edge> dep_chains[MAX_NUM_CHAINS];
743 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
744 bool has_valid_pred = false;
745 basic_block cd_root = 0;
747 /* First find the closest bb that is control equivalent to PHI_BB
748 that also dominates USE_BB. */
749 cd_root = phi_bb;
750 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
752 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
753 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
754 cd_root = ctrl_eq_bb;
755 else
756 break;
759 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
760 &cur_chain, &num_calls);
762 has_valid_pred
763 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
764 for (i = 0; i < num_chains; i++)
765 dep_chains[i].release ();
766 return has_valid_pred;
769 /* Computes the set of incoming edges of PHI that have non empty
770 definitions of a phi chain. The collection will be done
771 recursively on operands that are defined by phis. CD_ROOT
772 is the control dependence root. *EDGES holds the result, and
773 VISITED_PHIS is a pointer set for detecting cycles. */
775 static void
776 collect_phi_def_edges (gphi *phi, basic_block cd_root,
777 auto_vec<edge> *edges,
778 hash_set<gimple *> *visited_phis)
780 size_t i, n;
781 edge opnd_edge;
782 tree opnd;
784 if (visited_phis->add (phi))
785 return;
787 n = gimple_phi_num_args (phi);
788 for (i = 0; i < n; i++)
790 opnd_edge = gimple_phi_arg_edge (phi, i);
791 opnd = gimple_phi_arg_def (phi, i);
793 if (TREE_CODE (opnd) != SSA_NAME)
795 if (dump_file && (dump_flags & TDF_DETAILS))
797 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
798 print_gimple_stmt (dump_file, phi, 0, 0);
800 edges->safe_push (opnd_edge);
802 else
804 gimple *def = SSA_NAME_DEF_STMT (opnd);
806 if (gimple_code (def) == GIMPLE_PHI
807 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
808 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
809 visited_phis);
810 else if (!uninit_undefined_value_p (opnd))
812 if (dump_file && (dump_flags & TDF_DETAILS))
814 fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
815 (int) i);
816 print_gimple_stmt (dump_file, phi, 0, 0);
818 edges->safe_push (opnd_edge);
824 /* For each use edge of PHI, computes all control dependence chains.
825 The control dependence chains are then converted to an array of
826 composite predicates pointed to by PREDS. */
828 static bool
829 find_def_preds (pred_chain_union *preds, gphi *phi)
831 size_t num_chains = 0, i, n;
832 vec<edge> dep_chains[MAX_NUM_CHAINS];
833 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
834 auto_vec<edge> def_edges;
835 bool has_valid_pred = false;
836 basic_block phi_bb, cd_root = 0;
838 phi_bb = gimple_bb (phi);
839 /* First find the closest dominating bb to be
840 the control dependence root. */
841 cd_root = find_dom (phi_bb);
842 if (!cd_root)
843 return false;
845 hash_set<gimple *> visited_phis;
846 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
848 n = def_edges.length ();
849 if (n == 0)
850 return false;
852 for (i = 0; i < n; i++)
854 size_t prev_nc, j;
855 int num_calls = 0;
856 edge opnd_edge;
858 opnd_edge = def_edges[i];
859 prev_nc = num_chains;
860 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
861 &num_chains, &cur_chain, &num_calls);
863 /* Now update the newly added chains with
864 the phi operand edge: */
865 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
867 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
868 dep_chains[num_chains++] = vNULL;
869 for (j = prev_nc; j < num_chains; j++)
870 dep_chains[j].safe_push (opnd_edge);
874 has_valid_pred
875 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
876 for (i = 0; i < num_chains; i++)
877 dep_chains[i].release ();
878 return has_valid_pred;
881 /* Dumps the predicates (PREDS) for USESTMT. */
883 static void
884 dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
886 size_t i, j;
887 pred_chain one_pred_chain = vNULL;
888 fprintf (dump_file, "%s", msg);
889 print_gimple_stmt (dump_file, usestmt, 0, 0);
890 fprintf (dump_file, "is guarded by :\n\n");
891 size_t num_preds = preds.length ();
892 /* Do some dumping here: */
893 for (i = 0; i < num_preds; i++)
895 size_t np;
897 one_pred_chain = preds[i];
898 np = one_pred_chain.length ();
900 for (j = 0; j < np; j++)
902 pred_info one_pred = one_pred_chain[j];
903 if (one_pred.invert)
904 fprintf (dump_file, " (.NOT.) ");
905 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
906 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
907 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
908 if (j < np - 1)
909 fprintf (dump_file, " (.AND.) ");
910 else
911 fprintf (dump_file, "\n");
913 if (i < num_preds - 1)
914 fprintf (dump_file, "(.OR.)\n");
915 else
916 fprintf (dump_file, "\n\n");
920 /* Destroys the predicate set *PREDS. */
922 static void
923 destroy_predicate_vecs (pred_chain_union *preds)
925 size_t i;
927 size_t n = preds->length ();
928 for (i = 0; i < n; i++)
929 (*preds)[i].release ();
930 preds->release ();
933 /* Computes the 'normalized' conditional code with operand
934 swapping and condition inversion. */
936 static enum tree_code
937 get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
939 enum tree_code tc = orig_cmp_code;
941 if (swap_cond)
942 tc = swap_tree_comparison (orig_cmp_code);
943 if (invert)
944 tc = invert_tree_comparison (tc, false);
946 switch (tc)
948 case LT_EXPR:
949 case LE_EXPR:
950 case GT_EXPR:
951 case GE_EXPR:
952 case EQ_EXPR:
953 case NE_EXPR:
954 break;
955 default:
956 return ERROR_MARK;
958 return tc;
961 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
962 all values in the range satisfies (x CMPC BOUNDARY) == true. */
964 static bool
965 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
967 bool inverted = false;
968 bool is_unsigned;
969 bool result;
971 /* Only handle integer constant here. */
972 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
973 return true;
975 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
977 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
979 cmpc = invert_tree_comparison (cmpc, false);
980 inverted = true;
983 if (is_unsigned)
985 if (cmpc == EQ_EXPR)
986 result = tree_int_cst_equal (val, boundary);
987 else if (cmpc == LT_EXPR)
988 result = tree_int_cst_lt (val, boundary);
989 else
991 gcc_assert (cmpc == LE_EXPR);
992 result = tree_int_cst_le (val, boundary);
995 else
997 if (cmpc == EQ_EXPR)
998 result = tree_int_cst_equal (val, boundary);
999 else if (cmpc == LT_EXPR)
1000 result = tree_int_cst_lt (val, boundary);
1001 else
1003 gcc_assert (cmpc == LE_EXPR);
1004 result = (tree_int_cst_equal (val, boundary)
1005 || tree_int_cst_lt (val, boundary));
1009 if (inverted)
1010 result ^= 1;
1012 return result;
1015 /* Returns true if PRED is common among all the predicate
1016 chains (PREDS) (and therefore can be factored out).
1017 NUM_PRED_CHAIN is the size of array PREDS. */
1019 static bool
1020 find_matching_predicate_in_rest_chains (pred_info pred,
1021 pred_chain_union preds,
1022 size_t num_pred_chains)
1024 size_t i, j, n;
1026 /* Trival case. */
1027 if (num_pred_chains == 1)
1028 return true;
1030 for (i = 1; i < num_pred_chains; i++)
1032 bool found = false;
1033 pred_chain one_chain = preds[i];
1034 n = one_chain.length ();
1035 for (j = 0; j < n; j++)
1037 pred_info pred2 = one_chain[j];
1038 /* Can relax the condition comparison to not
1039 use address comparison. However, the most common
1040 case is that multiple control dependent paths share
1041 a common path prefix, so address comparison should
1042 be ok. */
1044 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
1045 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
1046 && pred2.invert == pred.invert)
1048 found = true;
1049 break;
1052 if (!found)
1053 return false;
1055 return true;
1058 /* Forward declaration. */
1059 static bool is_use_properly_guarded (gimple *use_stmt,
1060 basic_block use_bb,
1061 gphi *phi,
1062 unsigned uninit_opnds,
1063 pred_chain_union *def_preds,
1064 hash_set<gphi *> *visited_phis);
1066 /* Returns true if all uninitialized opnds are pruned. Returns false
1067 otherwise. PHI is the phi node with uninitialized operands,
1068 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
1069 FLAG_DEF is the statement defining the flag guarding the use of the
1070 PHI output, BOUNDARY_CST is the const value used in the predicate
1071 associated with the flag, CMP_CODE is the comparison code used in
1072 the predicate, VISITED_PHIS is the pointer set of phis visited, and
1073 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
1074 that are also phis.
1076 Example scenario:
1078 BB1:
1079 flag_1 = phi <0, 1> // (1)
1080 var_1 = phi <undef, some_val>
1083 BB2:
1084 flag_2 = phi <0, flag_1, flag_1> // (2)
1085 var_2 = phi <undef, var_1, var_1>
1086 if (flag_2 == 1)
1087 goto BB3;
1089 BB3:
1090 use of var_2 // (3)
1092 Because some flag arg in (1) is not constant, if we do not look into the
1093 flag phis recursively, it is conservatively treated as unknown and var_1
1094 is thought to be flowed into use at (3). Since var_1 is potentially
1095 uninitialized a false warning will be emitted.
1096 Checking recursively into (1), the compiler can find out that only some_val
1097 (which is defined) can flow into (3) which is OK. */
1099 static bool
1100 prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
1101 tree boundary_cst, enum tree_code cmp_code,
1102 hash_set<gphi *> *visited_phis,
1103 bitmap *visited_flag_phis)
1105 unsigned i;
1107 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
1109 tree flag_arg;
1111 if (!MASK_TEST_BIT (uninit_opnds, i))
1112 continue;
1114 flag_arg = gimple_phi_arg_def (flag_def, i);
1115 if (!is_gimple_constant (flag_arg))
1117 gphi *flag_arg_def, *phi_arg_def;
1118 tree phi_arg;
1119 unsigned uninit_opnds_arg_phi;
1121 if (TREE_CODE (flag_arg) != SSA_NAME)
1122 return false;
1123 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1124 if (!flag_arg_def)
1125 return false;
1127 phi_arg = gimple_phi_arg_def (phi, i);
1128 if (TREE_CODE (phi_arg) != SSA_NAME)
1129 return false;
1131 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1132 if (!phi_arg_def)
1133 return false;
1135 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1136 return false;
1138 if (!*visited_flag_phis)
1139 *visited_flag_phis = BITMAP_ALLOC (NULL);
1141 tree phi_result = gimple_phi_result (flag_arg_def);
1142 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
1143 return false;
1145 bitmap_set_bit (*visited_flag_phis,
1146 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1148 /* Now recursively prune the uninitialized phi args. */
1149 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
1150 if (!prune_uninit_phi_opnds
1151 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
1152 cmp_code, visited_phis, visited_flag_phis))
1153 return false;
1155 phi_result = gimple_phi_result (flag_arg_def);
1156 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
1157 continue;
1160 /* Now check if the constant is in the guarded range. */
1161 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1163 tree opnd;
1164 gimple *opnd_def;
1166 /* Now that we know that this undefined edge is not
1167 pruned. If the operand is defined by another phi,
1168 we can further prune the incoming edges of that
1169 phi by checking the predicates of this operands. */
1171 opnd = gimple_phi_arg_def (phi, i);
1172 opnd_def = SSA_NAME_DEF_STMT (opnd);
1173 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1175 edge opnd_edge;
1176 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
1177 if (!MASK_EMPTY (uninit_opnds2))
1179 pred_chain_union def_preds = vNULL;
1180 bool ok;
1181 opnd_edge = gimple_phi_arg_edge (phi, i);
1182 ok = is_use_properly_guarded (phi,
1183 opnd_edge->src,
1184 opnd_def_phi,
1185 uninit_opnds2,
1186 &def_preds,
1187 visited_phis);
1188 destroy_predicate_vecs (&def_preds);
1189 if (!ok)
1190 return false;
1193 else
1194 return false;
1198 return true;
1201 /* A helper function that determines if the predicate set
1202 of the use is not overlapping with that of the uninit paths.
1203 The most common senario of guarded use is in Example 1:
1204 Example 1:
1205 if (some_cond)
1207 x = ...;
1208 flag = true;
1211 ... some code ...
1213 if (flag)
1214 use (x);
1216 The real world examples are usually more complicated, but similar
1217 and usually result from inlining:
1219 bool init_func (int * x)
1221 if (some_cond)
1222 return false;
1223 *x = ..
1224 return true;
1227 void foo (..)
1229 int x;
1231 if (!init_func (&x))
1232 return;
1234 .. some_code ...
1235 use (x);
1238 Another possible use scenario is in the following trivial example:
1240 Example 2:
1241 if (n > 0)
1242 x = 1;
1244 if (n > 0)
1246 if (m < 2)
1247 .. = x;
1250 Predicate analysis needs to compute the composite predicate:
1252 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1253 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1254 (the predicate chain for phi operand defs can be computed
1255 starting from a bb that is control equivalent to the phi's
1256 bb and is dominating the operand def.)
1258 and check overlapping:
1259 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1260 <==> false
1262 This implementation provides framework that can handle
1263 scenarios. (Note that many simple cases are handled properly
1264 without the predicate analysis -- this is due to jump threading
1265 transformation which eliminates the merge point thus makes
1266 path sensitive analysis unnecessary.)
1268 PHI is the phi node whose incoming (undefined) paths need to be
1269 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
1270 positions. VISITED_PHIS is the pointer set of phi stmts being
1271 checked. */
1273 static bool
1274 use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
1275 gphi *phi, unsigned uninit_opnds,
1276 hash_set<gphi *> *visited_phis)
1278 unsigned int i, n;
1279 gimple *flag_def = 0;
1280 tree boundary_cst = 0;
1281 enum tree_code cmp_code;
1282 bool swap_cond = false;
1283 bool invert = false;
1284 pred_chain the_pred_chain = vNULL;
1285 bitmap visited_flag_phis = NULL;
1286 bool all_pruned = false;
1287 size_t num_preds = preds.length ();
1289 gcc_assert (num_preds > 0);
1290 /* Find within the common prefix of multiple predicate chains
1291 a predicate that is a comparison of a flag variable against
1292 a constant. */
1293 the_pred_chain = preds[0];
1294 n = the_pred_chain.length ();
1295 for (i = 0; i < n; i++)
1297 tree cond_lhs, cond_rhs, flag = 0;
1299 pred_info the_pred = the_pred_chain[i];
1301 invert = the_pred.invert;
1302 cond_lhs = the_pred.pred_lhs;
1303 cond_rhs = the_pred.pred_rhs;
1304 cmp_code = the_pred.cond_code;
1306 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1307 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1309 boundary_cst = cond_rhs;
1310 flag = cond_lhs;
1312 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1313 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1315 boundary_cst = cond_lhs;
1316 flag = cond_rhs;
1317 swap_cond = true;
1320 if (!flag)
1321 continue;
1323 flag_def = SSA_NAME_DEF_STMT (flag);
1325 if (!flag_def)
1326 continue;
1328 if ((gimple_code (flag_def) == GIMPLE_PHI)
1329 && (gimple_bb (flag_def) == gimple_bb (phi))
1330 && find_matching_predicate_in_rest_chains (the_pred, preds,
1331 num_preds))
1332 break;
1334 flag_def = 0;
1337 if (!flag_def)
1338 return false;
1340 /* Now check all the uninit incoming edge has a constant flag value
1341 that is in conflict with the use guard/predicate. */
1342 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1344 if (cmp_code == ERROR_MARK)
1345 return false;
1347 all_pruned = prune_uninit_phi_opnds
1348 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
1349 visited_phis, &visited_flag_phis);
1351 if (visited_flag_phis)
1352 BITMAP_FREE (visited_flag_phis);
1354 return all_pruned;
1357 /* The helper function returns true if two predicates X1 and X2
1358 are equivalent. It assumes the expressions have already
1359 properly re-associated. */
1361 static inline bool
1362 pred_equal_p (pred_info x1, pred_info x2)
1364 enum tree_code c1, c2;
1365 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1366 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1367 return false;
1369 c1 = x1.cond_code;
1370 if (x1.invert != x2.invert
1371 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
1372 c2 = invert_tree_comparison (x2.cond_code, false);
1373 else
1374 c2 = x2.cond_code;
1376 return c1 == c2;
1379 /* Returns true if the predication is testing !=. */
1381 static inline bool
1382 is_neq_relop_p (pred_info pred)
1385 return ((pred.cond_code == NE_EXPR && !pred.invert)
1386 || (pred.cond_code == EQ_EXPR && pred.invert));
1389 /* Returns true if pred is of the form X != 0. */
1391 static inline bool
1392 is_neq_zero_form_p (pred_info pred)
1394 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1395 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1396 return false;
1397 return true;
1400 /* The helper function returns true if two predicates X1
1401 is equivalent to X2 != 0. */
1403 static inline bool
1404 pred_expr_equal_p (pred_info x1, tree x2)
1406 if (!is_neq_zero_form_p (x1))
1407 return false;
1409 return operand_equal_p (x1.pred_lhs, x2, 0);
1412 /* Returns true of the domain of single predicate expression
1413 EXPR1 is a subset of that of EXPR2. Returns false if it
1414 can not be proved. */
1416 static bool
1417 is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
1419 enum tree_code code1, code2;
1421 if (pred_equal_p (expr1, expr2))
1422 return true;
1424 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1425 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1426 return false;
1428 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1429 return false;
1431 code1 = expr1.cond_code;
1432 if (expr1.invert)
1433 code1 = invert_tree_comparison (code1, false);
1434 code2 = expr2.cond_code;
1435 if (expr2.invert)
1436 code2 = invert_tree_comparison (code2, false);
1438 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR)
1439 return wi::eq_p (expr1.pred_rhs,
1440 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1442 if (code1 != code2 && code2 != NE_EXPR)
1443 return false;
1445 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1446 return true;
1448 return false;
1451 /* Returns true if the domain of PRED1 is a subset
1452 of that of PRED2. Returns false if it can not be proved so. */
1454 static bool
1455 is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
1457 size_t np1, np2, i1, i2;
1459 np1 = pred1.length ();
1460 np2 = pred2.length ();
1462 for (i2 = 0; i2 < np2; i2++)
1464 bool found = false;
1465 pred_info info2 = pred2[i2];
1466 for (i1 = 0; i1 < np1; i1++)
1468 pred_info info1 = pred1[i1];
1469 if (is_pred_expr_subset_of (info1, info2))
1471 found = true;
1472 break;
1475 if (!found)
1476 return false;
1478 return true;
1481 /* Returns true if the domain defined by
1482 one pred chain ONE_PRED is a subset of the domain
1483 of *PREDS. It returns false if ONE_PRED's domain is
1484 not a subset of any of the sub-domains of PREDS
1485 (corresponding to each individual chains in it), even
1486 though it may be still be a subset of whole domain
1487 of PREDS which is the union (ORed) of all its subdomains.
1488 In other words, the result is conservative. */
1490 static bool
1491 is_included_in (pred_chain one_pred, pred_chain_union preds)
1493 size_t i;
1494 size_t n = preds.length ();
1496 for (i = 0; i < n; i++)
1498 if (is_pred_chain_subset_of (one_pred, preds[i]))
1499 return true;
1502 return false;
1505 /* Compares two predicate sets PREDS1 and PREDS2 and returns
1506 true if the domain defined by PREDS1 is a superset
1507 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1508 PREDS2 respectively. The implementation chooses not to build
1509 generic trees (and relying on the folding capability of the
1510 compiler), but instead performs brute force comparison of
1511 individual predicate chains (won't be a compile time problem
1512 as the chains are pretty short). When the function returns
1513 false, it does not necessarily mean *PREDS1 is not a superset
1514 of *PREDS2, but mean it may not be so since the analysis can
1515 not prove it. In such cases, false warnings may still be
1516 emitted. */
1518 static bool
1519 is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
1521 size_t i, n2;
1522 pred_chain one_pred_chain = vNULL;
1524 n2 = preds2.length ();
1526 for (i = 0; i < n2; i++)
1528 one_pred_chain = preds2[i];
1529 if (!is_included_in (one_pred_chain, preds1))
1530 return false;
1533 return true;
1536 /* Returns true if TC is AND or OR. */
1538 static inline bool
1539 is_and_or_or_p (enum tree_code tc, tree type)
1541 return (tc == BIT_IOR_EXPR
1542 || (tc == BIT_AND_EXPR
1543 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1546 /* Returns true if X1 is the negate of X2. */
1548 static inline bool
1549 pred_neg_p (pred_info x1, pred_info x2)
1551 enum tree_code c1, c2;
1552 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1553 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1554 return false;
1556 c1 = x1.cond_code;
1557 if (x1.invert == x2.invert)
1558 c2 = invert_tree_comparison (x2.cond_code, false);
1559 else
1560 c2 = x2.cond_code;
1562 return c1 == c2;
1565 /* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1566 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1567 3) X OR (!X AND Y) is equivalent to (X OR Y);
1568 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1569 (x != 0 AND y != 0)
1570 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1571 (X AND Y) OR Z
1573 PREDS is the predicate chains, and N is the number of chains. */
1575 /* Helper function to implement rule 1 above. ONE_CHAIN is
1576 the AND predication to be simplified. */
1578 static void
1579 simplify_pred (pred_chain *one_chain)
1581 size_t i, j, n;
1582 bool simplified = false;
1583 pred_chain s_chain = vNULL;
1585 n = one_chain->length ();
1587 for (i = 0; i < n; i++)
1589 pred_info *a_pred = &(*one_chain)[i];
1591 if (!a_pred->pred_lhs)
1592 continue;
1593 if (!is_neq_zero_form_p (*a_pred))
1594 continue;
1596 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1597 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1598 continue;
1599 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
1601 for (j = 0; j < n; j++)
1603 pred_info *b_pred = &(*one_chain)[j];
1605 if (!b_pred->pred_lhs)
1606 continue;
1607 if (!is_neq_zero_form_p (*b_pred))
1608 continue;
1610 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1611 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1613 /* Mark a_pred for removal. */
1614 a_pred->pred_lhs = NULL;
1615 a_pred->pred_rhs = NULL;
1616 simplified = true;
1617 break;
1623 if (!simplified)
1624 return;
1626 for (i = 0; i < n; i++)
1628 pred_info *a_pred = &(*one_chain)[i];
1629 if (!a_pred->pred_lhs)
1630 continue;
1631 s_chain.safe_push (*a_pred);
1634 one_chain->release ();
1635 *one_chain = s_chain;
1638 /* The helper function implements the rule 2 for the
1639 OR predicate PREDS.
1641 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
1643 static bool
1644 simplify_preds_2 (pred_chain_union *preds)
1646 size_t i, j, n;
1647 bool simplified = false;
1648 pred_chain_union s_preds = vNULL;
1650 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1651 (X AND Y) OR (X AND !Y) is equivalent to X. */
1653 n = preds->length ();
1654 for (i = 0; i < n; i++)
1656 pred_info x, y;
1657 pred_chain *a_chain = &(*preds)[i];
1659 if (a_chain->length () != 2)
1660 continue;
1662 x = (*a_chain)[0];
1663 y = (*a_chain)[1];
1665 for (j = 0; j < n; j++)
1667 pred_chain *b_chain;
1668 pred_info x2, y2;
1670 if (j == i)
1671 continue;
1673 b_chain = &(*preds)[j];
1674 if (b_chain->length () != 2)
1675 continue;
1677 x2 = (*b_chain)[0];
1678 y2 = (*b_chain)[1];
1680 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1682 /* Kill a_chain. */
1683 a_chain->release ();
1684 b_chain->release ();
1685 b_chain->safe_push (x);
1686 simplified = true;
1687 break;
1689 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1691 /* Kill a_chain. */
1692 a_chain->release ();
1693 b_chain->release ();
1694 b_chain->safe_push (y);
1695 simplified = true;
1696 break;
1700 /* Now clean up the chain. */
1701 if (simplified)
1703 for (i = 0; i < n; i++)
1705 if ((*preds)[i].is_empty ())
1706 continue;
1707 s_preds.safe_push ((*preds)[i]);
1709 preds->release ();
1710 (*preds) = s_preds;
1711 s_preds = vNULL;
1714 return simplified;
1717 /* The helper function implements the rule 2 for the
1718 OR predicate PREDS.
1720 3) x OR (!x AND y) is equivalent to x OR y. */
1722 static bool
1723 simplify_preds_3 (pred_chain_union *preds)
1725 size_t i, j, n;
1726 bool simplified = false;
1728 /* Now iteratively simplify X OR (!X AND Z ..)
1729 into X OR (Z ...). */
1731 n = preds->length ();
1732 if (n < 2)
1733 return false;
1735 for (i = 0; i < n; i++)
1737 pred_info x;
1738 pred_chain *a_chain = &(*preds)[i];
1740 if (a_chain->length () != 1)
1741 continue;
1743 x = (*a_chain)[0];
1745 for (j = 0; j < n; j++)
1747 pred_chain *b_chain;
1748 pred_info x2;
1749 size_t k;
1751 if (j == i)
1752 continue;
1754 b_chain = &(*preds)[j];
1755 if (b_chain->length () < 2)
1756 continue;
1758 for (k = 0; k < b_chain->length (); k++)
1760 x2 = (*b_chain)[k];
1761 if (pred_neg_p (x, x2))
1763 b_chain->unordered_remove (k);
1764 simplified = true;
1765 break;
1770 return simplified;
1773 /* The helper function implements the rule 4 for the
1774 OR predicate PREDS.
1776 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1777 (x != 0 ANd y != 0). */
1779 static bool
1780 simplify_preds_4 (pred_chain_union *preds)
1782 size_t i, j, n;
1783 bool simplified = false;
1784 pred_chain_union s_preds = vNULL;
1785 gimple *def_stmt;
1787 n = preds->length ();
1788 for (i = 0; i < n; i++)
1790 pred_info z;
1791 pred_chain *a_chain = &(*preds)[i];
1793 if (a_chain->length () != 1)
1794 continue;
1796 z = (*a_chain)[0];
1798 if (!is_neq_zero_form_p (z))
1799 continue;
1801 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1802 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1803 continue;
1805 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1806 continue;
1808 for (j = 0; j < n; j++)
1810 pred_chain *b_chain;
1811 pred_info x2, y2;
1813 if (j == i)
1814 continue;
1816 b_chain = &(*preds)[j];
1817 if (b_chain->length () != 2)
1818 continue;
1820 x2 = (*b_chain)[0];
1821 y2 = (*b_chain)[1];
1822 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
1823 continue;
1825 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1826 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1827 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1828 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1830 /* Kill a_chain. */
1831 a_chain->release ();
1832 simplified = true;
1833 break;
1837 /* Now clean up the chain. */
1838 if (simplified)
1840 for (i = 0; i < n; i++)
1842 if ((*preds)[i].is_empty ())
1843 continue;
1844 s_preds.safe_push ((*preds)[i]);
1847 preds->release ();
1848 (*preds) = s_preds;
1849 s_preds = vNULL;
1852 return simplified;
1855 /* This function simplifies predicates in PREDS. */
1857 static void
1858 simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
1860 size_t i, n;
1861 bool changed = false;
1863 if (dump_file && dump_flags & TDF_DETAILS)
1865 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1866 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
1869 for (i = 0; i < preds->length (); i++)
1870 simplify_pred (&(*preds)[i]);
1872 n = preds->length ();
1873 if (n < 2)
1874 return;
1878 changed = false;
1879 if (simplify_preds_2 (preds))
1880 changed = true;
1882 /* Now iteratively simplify X OR (!X AND Z ..)
1883 into X OR (Z ...). */
1884 if (simplify_preds_3 (preds))
1885 changed = true;
1887 if (simplify_preds_4 (preds))
1888 changed = true;
1890 while (changed);
1892 return;
1895 /* This is a helper function which attempts to normalize predicate chains
1896 by following UD chains. It basically builds up a big tree of either IOR
1897 operations or AND operations, and convert the IOR tree into a
1898 pred_chain_union or BIT_AND tree into a pred_chain.
1899 Example:
1901 _3 = _2 RELOP1 _1;
1902 _6 = _5 RELOP2 _4;
1903 _9 = _8 RELOP3 _7;
1904 _10 = _3 | _6;
1905 _12 = _9 | _0;
1906 _t = _10 | _12;
1908 then _t != 0 will be normalized into a pred_chain_union
1910 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1912 Similarly given,
1914 _3 = _2 RELOP1 _1;
1915 _6 = _5 RELOP2 _4;
1916 _9 = _8 RELOP3 _7;
1917 _10 = _3 & _6;
1918 _12 = _9 & _0;
1920 then _t != 0 will be normalized into a pred_chain:
1921 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1925 /* This is a helper function that stores a PRED into NORM_PREDS. */
1927 inline static void
1928 push_pred (pred_chain_union *norm_preds, pred_info pred)
1930 pred_chain pred_chain = vNULL;
1931 pred_chain.safe_push (pred);
1932 norm_preds->safe_push (pred_chain);
1935 /* A helper function that creates a predicate of the form
1936 OP != 0 and push it WORK_LIST. */
1938 inline static void
1939 push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
1940 hash_set<tree> *mark_set)
1942 if (mark_set->contains (op))
1943 return;
1944 mark_set->add (op);
1946 pred_info arg_pred;
1947 arg_pred.pred_lhs = op;
1948 arg_pred.pred_rhs = integer_zero_node;
1949 arg_pred.cond_code = NE_EXPR;
1950 arg_pred.invert = false;
1951 work_list->safe_push (arg_pred);
1954 /* A helper that generates a pred_info from a gimple assignment
1955 CMP_ASSIGN with comparison rhs. */
1957 static pred_info
1958 get_pred_info_from_cmp (gimple *cmp_assign)
1960 pred_info n_pred;
1961 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1962 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1963 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1964 n_pred.invert = false;
1965 return n_pred;
1968 /* Returns true if the PHI is a degenerated phi with
1969 all args with the same value (relop). In that case, *PRED
1970 will be updated to that value. */
1972 static bool
1973 is_degenerated_phi (gimple *phi, pred_info *pred_p)
1975 int i, n;
1976 tree op0;
1977 gimple *def0;
1978 pred_info pred0;
1980 n = gimple_phi_num_args (phi);
1981 op0 = gimple_phi_arg_def (phi, 0);
1983 if (TREE_CODE (op0) != SSA_NAME)
1984 return false;
1986 def0 = SSA_NAME_DEF_STMT (op0);
1987 if (gimple_code (def0) != GIMPLE_ASSIGN)
1988 return false;
1989 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
1990 return false;
1991 pred0 = get_pred_info_from_cmp (def0);
1993 for (i = 1; i < n; ++i)
1995 gimple *def;
1996 pred_info pred;
1997 tree op = gimple_phi_arg_def (phi, i);
1999 if (TREE_CODE (op) != SSA_NAME)
2000 return false;
2002 def = SSA_NAME_DEF_STMT (op);
2003 if (gimple_code (def) != GIMPLE_ASSIGN)
2004 return false;
2005 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
2006 return false;
2007 pred = get_pred_info_from_cmp (def);
2008 if (!pred_equal_p (pred, pred0))
2009 return false;
2012 *pred_p = pred0;
2013 return true;
2016 /* Normalize one predicate PRED
2017 1) if PRED can no longer be normlized, put it into NORM_PREDS.
2018 2) otherwise if PRED is of the form x != 0, follow x's definition
2019 and put normalized predicates into WORK_LIST. */
2021 static void
2022 normalize_one_pred_1 (pred_chain_union *norm_preds,
2023 pred_chain *norm_chain,
2024 pred_info pred,
2025 enum tree_code and_or_code,
2026 vec<pred_info, va_heap, vl_ptr> *work_list,
2027 hash_set<tree> *mark_set)
2029 if (!is_neq_zero_form_p (pred))
2031 if (and_or_code == BIT_IOR_EXPR)
2032 push_pred (norm_preds, pred);
2033 else
2034 norm_chain->safe_push (pred);
2035 return;
2038 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2040 if (gimple_code (def_stmt) == GIMPLE_PHI
2041 && is_degenerated_phi (def_stmt, &pred))
2042 work_list->safe_push (pred);
2043 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
2045 int i, n;
2046 n = gimple_phi_num_args (def_stmt);
2048 /* If we see non zero constant, we should punt. The predicate
2049 * should be one guarding the phi edge. */
2050 for (i = 0; i < n; ++i)
2052 tree op = gimple_phi_arg_def (def_stmt, i);
2053 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
2055 push_pred (norm_preds, pred);
2056 return;
2060 for (i = 0; i < n; ++i)
2062 tree op = gimple_phi_arg_def (def_stmt, i);
2063 if (integer_zerop (op))
2064 continue;
2066 push_to_worklist (op, work_list, mark_set);
2069 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2071 if (and_or_code == BIT_IOR_EXPR)
2072 push_pred (norm_preds, pred);
2073 else
2074 norm_chain->safe_push (pred);
2076 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2078 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2079 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2081 /* But treat x & 3 as condition. */
2082 if (and_or_code == BIT_AND_EXPR)
2084 pred_info n_pred;
2085 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2086 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2087 n_pred.cond_code = and_or_code;
2088 n_pred.invert = false;
2089 norm_chain->safe_push (n_pred);
2092 else
2094 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2095 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2098 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2099 == tcc_comparison)
2101 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2102 if (and_or_code == BIT_IOR_EXPR)
2103 push_pred (norm_preds, n_pred);
2104 else
2105 norm_chain->safe_push (n_pred);
2107 else
2109 if (and_or_code == BIT_IOR_EXPR)
2110 push_pred (norm_preds, pred);
2111 else
2112 norm_chain->safe_push (pred);
2116 /* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2118 static void
2119 normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
2121 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2122 enum tree_code and_or_code = ERROR_MARK;
2123 pred_chain norm_chain = vNULL;
2125 if (!is_neq_zero_form_p (pred))
2127 push_pred (norm_preds, pred);
2128 return;
2131 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2132 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2133 and_or_code = gimple_assign_rhs_code (def_stmt);
2134 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
2136 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
2138 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2139 push_pred (norm_preds, n_pred);
2141 else
2142 push_pred (norm_preds, pred);
2143 return;
2146 work_list.safe_push (pred);
2147 hash_set<tree> mark_set;
2149 while (!work_list.is_empty ())
2151 pred_info a_pred = work_list.pop ();
2152 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
2153 &work_list, &mark_set);
2155 if (and_or_code == BIT_AND_EXPR)
2156 norm_preds->safe_push (norm_chain);
2158 work_list.release ();
2161 static void
2162 normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
2164 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2165 hash_set<tree> mark_set;
2166 pred_chain norm_chain = vNULL;
2167 size_t i;
2169 for (i = 0; i < one_chain.length (); i++)
2171 work_list.safe_push (one_chain[i]);
2172 mark_set.add (one_chain[i].pred_lhs);
2175 while (!work_list.is_empty ())
2177 pred_info a_pred = work_list.pop ();
2178 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
2179 &mark_set);
2182 norm_preds->safe_push (norm_chain);
2183 work_list.release ();
2186 /* Normalize predicate chains PREDS and returns the normalized one. */
2188 static pred_chain_union
2189 normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
2191 pred_chain_union norm_preds = vNULL;
2192 size_t n = preds.length ();
2193 size_t i;
2195 if (dump_file && dump_flags & TDF_DETAILS)
2197 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2198 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2201 for (i = 0; i < n; i++)
2203 if (preds[i].length () != 1)
2204 normalize_one_pred_chain (&norm_preds, preds[i]);
2205 else
2207 normalize_one_pred (&norm_preds, preds[i][0]);
2208 preds[i].release ();
2212 if (dump_file)
2214 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2215 dump_predicates (use_or_def, norm_preds,
2216 is_use ? "[USE]:\n" : "[DEF]:\n");
2219 destroy_predicate_vecs (&preds);
2220 return norm_preds;
2223 /* Return TRUE if PREDICATE can be invalidated by any individual
2224 predicate in WORKLIST. */
2226 static bool
2227 can_one_predicate_be_invalidated_p (pred_info predicate,
2228 pred_chain use_guard)
2230 for (size_t i = 0; i < use_guard.length (); ++i)
2232 /* NOTE: This is a very simple check, and only understands an
2233 exact opposite. So, [i == 0] is currently only invalidated
2234 by [.NOT. i == 0] or [i != 0]. Ideally we should also
2235 invalidate with say [i > 5] or [i == 8]. There is certainly
2236 room for improvement here. */
2237 if (pred_neg_p (predicate, use_guard[i]))
2238 return true;
2240 return false;
2243 /* Return TRUE if all predicates in UNINIT_PRED are invalidated by
2244 USE_GUARD being true. */
2246 static bool
2247 can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
2248 pred_chain use_guard)
2250 if (uninit_pred.is_empty ())
2251 return false;
2252 for (size_t i = 0; i < uninit_pred.length (); ++i)
2254 pred_chain c = uninit_pred[i];
2255 for (size_t j = 0; j < c.length (); ++j)
2256 if (!can_one_predicate_be_invalidated_p (c[j], use_guard))
2257 return false;
2259 return true;
2262 /* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
2263 can actually happen if we arrived at a use for PHI.
2265 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
2267 static bool
2268 uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
2269 pred_chain_union phi_use_guards)
2271 unsigned phi_args = gimple_phi_num_args (phi);
2272 if (phi_args > max_phi_args)
2273 return false;
2275 /* PHI_USE_GUARDS are OR'ed together. If we have more than one
2276 possible guard, there's no way of knowing which guard was true.
2277 Since we need to be absolutely sure that the uninitialized
2278 operands will be invalidated, bail. */
2279 if (phi_use_guards.length () != 1)
2280 return false;
2282 /* Look for the control dependencies of all the uninitialized
2283 operands and build guard predicates describing them. */
2284 pred_chain_union uninit_preds;
2285 bool ret = true;
2286 for (unsigned i = 0; i < phi_args; ++i)
2288 if (!MASK_TEST_BIT (uninit_opnds, i))
2289 continue;
2291 edge e = gimple_phi_arg_edge (phi, i);
2292 vec<edge> dep_chains[MAX_NUM_CHAINS];
2293 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
2294 size_t num_chains = 0;
2295 int num_calls = 0;
2297 /* Build the control dependency chain for uninit operand `i'... */
2298 uninit_preds = vNULL;
2299 if (!compute_control_dep_chain (find_dom (e->src),
2300 e->src, dep_chains, &num_chains,
2301 &cur_chain, &num_calls))
2303 ret = false;
2304 break;
2306 /* ...and convert it into a set of predicates. */
2307 convert_control_dep_chain_into_preds (dep_chains, num_chains,
2308 &uninit_preds);
2309 for (size_t j = 0; j < num_chains; ++j)
2310 dep_chains[j].release ();
2311 simplify_preds (&uninit_preds, NULL, false);
2312 uninit_preds = normalize_preds (uninit_preds, NULL, false);
2314 /* Can the guard for this uninitialized operand be invalidated
2315 by the PHI use? */
2316 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
2318 ret = false;
2319 break;
2322 destroy_predicate_vecs (&uninit_preds);
2323 return ret;
2326 /* Computes the predicates that guard the use and checks
2327 if the incoming paths that have empty (or possibly
2328 empty) definition can be pruned/filtered. The function returns
2329 true if it can be determined that the use of PHI's def in
2330 USE_STMT is guarded with a predicate set not overlapping with
2331 predicate sets of all runtime paths that do not have a definition.
2333 Returns false if it is not or it can not be determined. USE_BB is
2334 the bb of the use (for phi operand use, the bb is not the bb of
2335 the phi stmt, but the src bb of the operand edge).
2337 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2338 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2339 set of phis being visited.
2341 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2342 If *DEF_PREDS is the empty vector, the defining predicate chains of
2343 PHI will be computed and stored into *DEF_PREDS as needed.
2345 VISITED_PHIS is a pointer set of phis being visited. */
2347 static bool
2348 is_use_properly_guarded (gimple *use_stmt,
2349 basic_block use_bb,
2350 gphi *phi,
2351 unsigned uninit_opnds,
2352 pred_chain_union *def_preds,
2353 hash_set<gphi *> *visited_phis)
2355 basic_block phi_bb;
2356 pred_chain_union preds = vNULL;
2357 bool has_valid_preds = false;
2358 bool is_properly_guarded = false;
2360 if (visited_phis->add (phi))
2361 return false;
2363 phi_bb = gimple_bb (phi);
2365 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2366 return false;
2368 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
2370 if (!has_valid_preds)
2372 destroy_predicate_vecs (&preds);
2373 return false;
2376 /* Try to prune the dead incoming phi edges. */
2377 is_properly_guarded
2378 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2379 visited_phis);
2381 /* We might be able to prove that if the control dependencies
2382 for UNINIT_OPNDS are true, that the control dependencies for
2383 USE_STMT can never be true. */
2384 if (!is_properly_guarded)
2385 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
2386 preds);
2388 if (is_properly_guarded)
2390 destroy_predicate_vecs (&preds);
2391 return true;
2394 if (def_preds->is_empty ())
2396 has_valid_preds = find_def_preds (def_preds, phi);
2398 if (!has_valid_preds)
2400 destroy_predicate_vecs (&preds);
2401 return false;
2404 simplify_preds (def_preds, phi, false);
2405 *def_preds = normalize_preds (*def_preds, phi, false);
2408 simplify_preds (&preds, use_stmt, true);
2409 preds = normalize_preds (preds, use_stmt, true);
2411 is_properly_guarded = is_superset_of (*def_preds, preds);
2413 destroy_predicate_vecs (&preds);
2414 return is_properly_guarded;
2417 /* Searches through all uses of a potentially
2418 uninitialized variable defined by PHI and returns a use
2419 statement if the use is not properly guarded. It returns
2420 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2421 holding the position(s) of uninit PHI operands. WORKLIST
2422 is the vector of candidate phis that may be updated by this
2423 function. ADDED_TO_WORKLIST is the pointer set tracking
2424 if the new phi is already in the worklist. */
2426 static gimple *
2427 find_uninit_use (gphi *phi, unsigned uninit_opnds,
2428 vec<gphi *> *worklist,
2429 hash_set<gphi *> *added_to_worklist)
2431 tree phi_result;
2432 use_operand_p use_p;
2433 gimple *use_stmt;
2434 imm_use_iterator iter;
2435 pred_chain_union def_preds = vNULL;
2436 gimple *ret = NULL;
2438 phi_result = gimple_phi_result (phi);
2440 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2442 basic_block use_bb;
2444 use_stmt = USE_STMT (use_p);
2445 if (is_gimple_debug (use_stmt))
2446 continue;
2448 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
2449 use_bb = gimple_phi_arg_edge (use_phi,
2450 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2451 else
2452 use_bb = gimple_bb (use_stmt);
2454 hash_set<gphi *> visited_phis;
2455 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
2456 &def_preds, &visited_phis))
2457 continue;
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2461 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2462 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2464 /* Found one real use, return. */
2465 if (gimple_code (use_stmt) != GIMPLE_PHI)
2467 ret = use_stmt;
2468 break;
2471 /* Found a phi use that is not guarded,
2472 add the phi to the worklist. */
2473 if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
2475 if (dump_file && (dump_flags & TDF_DETAILS))
2477 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2478 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2481 worklist->safe_push (as_a<gphi *> (use_stmt));
2482 possibly_undefined_names->add (phi_result);
2486 destroy_predicate_vecs (&def_preds);
2487 return ret;
2490 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2491 and gives warning if there exists a runtime path from the entry to a
2492 use of the PHI def that does not contain a definition. In other words,
2493 the warning is on the real use. The more dead paths that can be pruned
2494 by the compiler, the fewer false positives the warning is. WORKLIST
2495 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2496 a pointer set tracking if the new phi is added to the worklist or not. */
2498 static void
2499 warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2500 hash_set<gphi *> *added_to_worklist)
2502 unsigned uninit_opnds;
2503 gimple *uninit_use_stmt = 0;
2504 tree uninit_op;
2505 int phiarg_index;
2506 location_t loc;
2508 /* Don't look at virtual operands. */
2509 if (virtual_operand_p (gimple_phi_result (phi)))
2510 return;
2512 uninit_opnds = compute_uninit_opnds_pos (phi);
2514 if (MASK_EMPTY (uninit_opnds))
2515 return;
2517 if (dump_file && (dump_flags & TDF_DETAILS))
2519 fprintf (dump_file, "[CHECK]: examining phi: ");
2520 print_gimple_stmt (dump_file, phi, 0, 0);
2523 /* Now check if we have any use of the value without proper guard. */
2524 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2525 worklist, added_to_worklist);
2527 /* All uses are properly guarded. */
2528 if (!uninit_use_stmt)
2529 return;
2531 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2532 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
2533 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2534 return;
2535 if (gimple_phi_arg_has_location (phi, phiarg_index))
2536 loc = gimple_phi_arg_location (phi, phiarg_index);
2537 else
2538 loc = UNKNOWN_LOCATION;
2539 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2540 SSA_NAME_VAR (uninit_op),
2541 "%qD may be used uninitialized in this function",
2542 uninit_use_stmt, loc);
2545 static bool
2546 gate_warn_uninitialized (void)
2548 return warn_uninitialized || warn_maybe_uninitialized;
2551 namespace {
2553 const pass_data pass_data_late_warn_uninitialized =
2555 GIMPLE_PASS, /* type */
2556 "uninit", /* name */
2557 OPTGROUP_NONE, /* optinfo_flags */
2558 TV_NONE, /* tv_id */
2559 PROP_ssa, /* properties_required */
2560 0, /* properties_provided */
2561 0, /* properties_destroyed */
2562 0, /* todo_flags_start */
2563 0, /* todo_flags_finish */
2566 class pass_late_warn_uninitialized : public gimple_opt_pass
2568 public:
2569 pass_late_warn_uninitialized (gcc::context *ctxt)
2570 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2573 /* opt_pass methods: */
2574 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2575 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2576 virtual unsigned int execute (function *);
2578 }; // class pass_late_warn_uninitialized
2580 unsigned int
2581 pass_late_warn_uninitialized::execute (function *fun)
2583 basic_block bb;
2584 gphi_iterator gsi;
2585 vec<gphi *> worklist = vNULL;
2587 calculate_dominance_info (CDI_DOMINATORS);
2588 calculate_dominance_info (CDI_POST_DOMINATORS);
2589 /* Re-do the plain uninitialized variable check, as optimization may have
2590 straightened control flow. Do this first so that we don't accidentally
2591 get a "may be" warning when we'd have seen an "is" warning later. */
2592 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2594 timevar_push (TV_TREE_UNINIT);
2596 possibly_undefined_names = new hash_set<tree>;
2597 hash_set<gphi *> added_to_worklist;
2599 /* Initialize worklist */
2600 FOR_EACH_BB_FN (bb, fun)
2601 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2603 gphi *phi = gsi.phi ();
2604 size_t n, i;
2606 n = gimple_phi_num_args (phi);
2608 /* Don't look at virtual operands. */
2609 if (virtual_operand_p (gimple_phi_result (phi)))
2610 continue;
2612 for (i = 0; i < n; ++i)
2614 tree op = gimple_phi_arg_def (phi, i);
2615 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
2617 worklist.safe_push (phi);
2618 added_to_worklist.add (phi);
2619 if (dump_file && (dump_flags & TDF_DETAILS))
2621 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2622 print_gimple_stmt (dump_file, phi, 0, 0);
2624 break;
2629 while (worklist.length () != 0)
2631 gphi *cur_phi = 0;
2632 cur_phi = worklist.pop ();
2633 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
2636 worklist.release ();
2637 delete possibly_undefined_names;
2638 possibly_undefined_names = NULL;
2639 free_dominance_info (CDI_POST_DOMINATORS);
2640 timevar_pop (TV_TREE_UNINIT);
2641 return 0;
2644 } // anon namespace
2646 gimple_opt_pass *
2647 make_pass_late_warn_uninitialized (gcc::context *ctxt)
2649 return new pass_late_warn_uninitialized (ctxt);
2652 static unsigned int
2653 execute_early_warn_uninitialized (void)
2655 /* Currently, this pass runs always but
2656 execute_late_warn_uninitialized only runs with optimization. With
2657 optimization we want to warn about possible uninitialized as late
2658 as possible, thus don't do it here. However, without
2659 optimization we need to warn here about "may be uninitialized". */
2660 calculate_dominance_info (CDI_POST_DOMINATORS);
2662 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2664 /* Post-dominator information can not be reliably updated. Free it
2665 after the use. */
2667 free_dominance_info (CDI_POST_DOMINATORS);
2668 return 0;
2671 namespace {
2673 const pass_data pass_data_early_warn_uninitialized =
2675 GIMPLE_PASS, /* type */
2676 "*early_warn_uninitialized", /* name */
2677 OPTGROUP_NONE, /* optinfo_flags */
2678 TV_TREE_UNINIT, /* tv_id */
2679 PROP_ssa, /* properties_required */
2680 0, /* properties_provided */
2681 0, /* properties_destroyed */
2682 0, /* todo_flags_start */
2683 0, /* todo_flags_finish */
2686 class pass_early_warn_uninitialized : public gimple_opt_pass
2688 public:
2689 pass_early_warn_uninitialized (gcc::context *ctxt)
2690 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
2693 /* opt_pass methods: */
2694 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2695 virtual unsigned int execute (function *)
2697 return execute_early_warn_uninitialized ();
2700 }; // class pass_early_warn_uninitialized
2702 } // anon namespace
2704 gimple_opt_pass *
2705 make_pass_early_warn_uninitialized (gcc::context *ctxt)
2707 return new pass_early_warn_uninitialized (ctxt);