Merge trunk version 193672 into gupc branch.
[official-gcc.git] / gcc / tree-chrec.c
blobc9c3f7f0275e265cdd1b0b94c0112d70352226fa
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tree-pretty-print.h"
31 #include "cfgloop.h"
32 #include "tree-flow.h"
33 #include "tree-chrec.h"
34 #include "dumpfile.h"
35 #include "params.h"
36 #include "tree-scalar-evolution.h"
38 /* Extended folder for chrecs. */
40 /* Determines whether CST is not a constant evolution. */
42 static inline bool
43 is_not_constant_evolution (const_tree cst)
45 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
48 /* Fold CODE for a polynomial function and a constant. */
50 static inline tree
51 chrec_fold_poly_cst (enum tree_code code,
52 tree type,
53 tree poly,
54 tree cst)
56 gcc_assert (poly);
57 gcc_assert (cst);
58 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
59 gcc_assert (!is_not_constant_evolution (cst));
60 gcc_assert (type == chrec_type (poly));
62 switch (code)
64 case PLUS_EXPR:
65 return build_polynomial_chrec
66 (CHREC_VARIABLE (poly),
67 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
68 CHREC_RIGHT (poly));
70 case MINUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MULT_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
80 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
82 default:
83 return chrec_dont_know;
87 /* Fold the addition of two polynomial functions. */
89 static inline tree
90 chrec_fold_plus_poly_poly (enum tree_code code,
91 tree type,
92 tree poly0,
93 tree poly1)
95 tree left, right;
96 struct loop *loop0 = get_chrec_loop (poly0);
97 struct loop *loop1 = get_chrec_loop (poly1);
98 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
100 gcc_assert (poly0);
101 gcc_assert (poly1);
102 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
103 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
104 if (POINTER_TYPE_P (chrec_type (poly0)))
105 gcc_assert (ptrofftype_p (chrec_type (poly1)));
106 else
107 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
108 gcc_assert (type == chrec_type (poly0));
111 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
112 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
113 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
114 if (flow_loop_nested_p (loop0, loop1))
116 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
117 return build_polynomial_chrec
118 (CHREC_VARIABLE (poly1),
119 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
120 CHREC_RIGHT (poly1));
121 else
122 return build_polynomial_chrec
123 (CHREC_VARIABLE (poly1),
124 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
125 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
126 SCALAR_FLOAT_TYPE_P (type)
127 ? build_real (type, dconstm1)
128 : build_int_cst_type (type, -1)));
131 if (flow_loop_nested_p (loop1, loop0))
133 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
134 return build_polynomial_chrec
135 (CHREC_VARIABLE (poly0),
136 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
137 CHREC_RIGHT (poly0));
138 else
139 return build_polynomial_chrec
140 (CHREC_VARIABLE (poly0),
141 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
142 CHREC_RIGHT (poly0));
145 /* This function should never be called for chrecs of loops that
146 do not belong to the same loop nest. */
147 gcc_assert (loop0 == loop1);
149 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
151 left = chrec_fold_plus
152 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
153 right = chrec_fold_plus
154 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
156 else
158 left = chrec_fold_minus
159 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
160 right = chrec_fold_minus
161 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 if (chrec_zerop (right))
165 return left;
166 else
167 return build_polynomial_chrec
168 (CHREC_VARIABLE (poly0), left, right);
173 /* Fold the multiplication of two polynomial functions. */
175 static inline tree
176 chrec_fold_multiply_poly_poly (tree type,
177 tree poly0,
178 tree poly1)
180 tree t0, t1, t2;
181 int var;
182 struct loop *loop0 = get_chrec_loop (poly0);
183 struct loop *loop1 = get_chrec_loop (poly1);
185 gcc_assert (poly0);
186 gcc_assert (poly1);
187 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
188 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
189 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
190 gcc_assert (type == chrec_type (poly0));
192 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
193 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
194 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
195 if (flow_loop_nested_p (loop0, loop1))
196 /* poly0 is a constant wrt. poly1. */
197 return build_polynomial_chrec
198 (CHREC_VARIABLE (poly1),
199 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
200 CHREC_RIGHT (poly1));
202 if (flow_loop_nested_p (loop1, loop0))
203 /* poly1 is a constant wrt. poly0. */
204 return build_polynomial_chrec
205 (CHREC_VARIABLE (poly0),
206 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
207 CHREC_RIGHT (poly0));
209 gcc_assert (loop0 == loop1);
211 /* poly0 and poly1 are two polynomials in the same variable,
212 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
214 /* "a*c". */
215 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
217 /* "a*d + b*c". */
218 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
219 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
220 CHREC_RIGHT (poly0),
221 CHREC_LEFT (poly1)));
222 /* "b*d". */
223 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
224 /* "a*d + b*c + b*d". */
225 t1 = chrec_fold_plus (type, t1, t2);
226 /* "2*b*d". */
227 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
228 ? build_real (type, dconst2)
229 : build_int_cst (type, 2), t2);
231 var = CHREC_VARIABLE (poly0);
232 return build_polynomial_chrec (var, t0,
233 build_polynomial_chrec (var, t1, t2));
236 /* When the operands are automatically_generated_chrec_p, the fold has
237 to respect the semantics of the operands. */
239 static inline tree
240 chrec_fold_automatically_generated_operands (tree op0,
241 tree op1)
243 if (op0 == chrec_dont_know
244 || op1 == chrec_dont_know)
245 return chrec_dont_know;
247 if (op0 == chrec_known
248 || op1 == chrec_known)
249 return chrec_known;
251 if (op0 == chrec_not_analyzed_yet
252 || op1 == chrec_not_analyzed_yet)
253 return chrec_not_analyzed_yet;
255 /* The default case produces a safe result. */
256 return chrec_dont_know;
259 /* Fold the addition of two chrecs. */
261 static tree
262 chrec_fold_plus_1 (enum tree_code code, tree type,
263 tree op0, tree op1)
265 if (automatically_generated_chrec_p (op0)
266 || automatically_generated_chrec_p (op1))
267 return chrec_fold_automatically_generated_operands (op0, op1);
269 switch (TREE_CODE (op0))
271 case POLYNOMIAL_CHREC:
272 switch (TREE_CODE (op1))
274 case POLYNOMIAL_CHREC:
275 return chrec_fold_plus_poly_poly (code, type, op0, op1);
277 CASE_CONVERT:
278 if (tree_contains_chrecs (op1, NULL))
279 return chrec_dont_know;
281 default:
282 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
283 return build_polynomial_chrec
284 (CHREC_VARIABLE (op0),
285 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
286 CHREC_RIGHT (op0));
287 else
288 return build_polynomial_chrec
289 (CHREC_VARIABLE (op0),
290 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
291 CHREC_RIGHT (op0));
294 CASE_CONVERT:
295 if (tree_contains_chrecs (op0, NULL))
296 return chrec_dont_know;
298 default:
299 switch (TREE_CODE (op1))
301 case POLYNOMIAL_CHREC:
302 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
303 return build_polynomial_chrec
304 (CHREC_VARIABLE (op1),
305 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
306 CHREC_RIGHT (op1));
307 else
308 return build_polynomial_chrec
309 (CHREC_VARIABLE (op1),
310 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
311 chrec_fold_multiply (type, CHREC_RIGHT (op1),
312 SCALAR_FLOAT_TYPE_P (type)
313 ? build_real (type, dconstm1)
314 : build_int_cst_type (type, -1)));
316 CASE_CONVERT:
317 if (tree_contains_chrecs (op1, NULL))
318 return chrec_dont_know;
320 default:
322 int size = 0;
323 if ((tree_contains_chrecs (op0, &size)
324 || tree_contains_chrecs (op1, &size))
325 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
326 return build2 (code, type, op0, op1);
327 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
329 if (code == POINTER_PLUS_EXPR)
330 return fold_build_pointer_plus (fold_convert (type, op0),
331 op1);
332 else
333 return fold_build2 (code, type,
334 fold_convert (type, op0),
335 fold_convert (type, op1));
337 else
338 return chrec_dont_know;
344 /* Fold the addition of two chrecs. */
346 tree
347 chrec_fold_plus (tree type,
348 tree op0,
349 tree op1)
351 enum tree_code code;
352 if (automatically_generated_chrec_p (op0)
353 || automatically_generated_chrec_p (op1))
354 return chrec_fold_automatically_generated_operands (op0, op1);
356 if (integer_zerop (op0))
357 return chrec_convert (type, op1, NULL);
358 if (integer_zerop (op1))
359 return chrec_convert (type, op0, NULL);
361 if (POINTER_TYPE_P (type))
362 code = POINTER_PLUS_EXPR;
363 else
364 code = PLUS_EXPR;
366 return chrec_fold_plus_1 (code, type, op0, op1);
369 /* Fold the subtraction of two chrecs. */
371 tree
372 chrec_fold_minus (tree type,
373 tree op0,
374 tree op1)
376 if (automatically_generated_chrec_p (op0)
377 || automatically_generated_chrec_p (op1))
378 return chrec_fold_automatically_generated_operands (op0, op1);
380 if (integer_zerop (op1))
381 return op0;
383 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
386 /* Fold the multiplication of two chrecs. */
388 tree
389 chrec_fold_multiply (tree type,
390 tree op0,
391 tree op1)
393 if (automatically_generated_chrec_p (op0)
394 || automatically_generated_chrec_p (op1))
395 return chrec_fold_automatically_generated_operands (op0, op1);
397 switch (TREE_CODE (op0))
399 case POLYNOMIAL_CHREC:
400 switch (TREE_CODE (op1))
402 case POLYNOMIAL_CHREC:
403 return chrec_fold_multiply_poly_poly (type, op0, op1);
405 CASE_CONVERT:
406 if (tree_contains_chrecs (op1, NULL))
407 return chrec_dont_know;
409 default:
410 if (integer_onep (op1))
411 return op0;
412 if (integer_zerop (op1))
413 return build_int_cst (type, 0);
415 return build_polynomial_chrec
416 (CHREC_VARIABLE (op0),
417 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
418 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
421 CASE_CONVERT:
422 if (tree_contains_chrecs (op0, NULL))
423 return chrec_dont_know;
425 default:
426 if (integer_onep (op0))
427 return op1;
429 if (integer_zerop (op0))
430 return build_int_cst (type, 0);
432 switch (TREE_CODE (op1))
434 case POLYNOMIAL_CHREC:
435 return build_polynomial_chrec
436 (CHREC_VARIABLE (op1),
437 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
438 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
440 CASE_CONVERT:
441 if (tree_contains_chrecs (op1, NULL))
442 return chrec_dont_know;
444 default:
445 if (integer_onep (op1))
446 return op0;
447 if (integer_zerop (op1))
448 return build_int_cst (type, 0);
449 return fold_build2 (MULT_EXPR, type, op0, op1);
456 /* Operations. */
458 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
459 calculation overflows, otherwise return C(n,k) with type TYPE. */
461 static tree
462 tree_fold_binomial (tree type, tree n, unsigned int k)
464 double_int num, denom, idx, di_res;
465 bool overflow;
466 unsigned int i;
467 tree res;
469 /* Handle the most frequent cases. */
470 if (k == 0)
471 return build_int_cst (type, 1);
472 if (k == 1)
473 return fold_convert (type, n);
475 /* Numerator = n. */
476 num = TREE_INT_CST (n);
478 /* Check that k <= n. */
479 if (num.ult (double_int::from_uhwi (k)))
480 return NULL_TREE;
482 /* Denominator = 2. */
483 denom = double_int::from_uhwi (2);
485 /* Index = Numerator-1. */
486 idx = num - double_int_one;
488 /* Numerator = Numerator*Index = n*(n-1). */
489 num = num.mul_with_sign (idx, false, &overflow);
490 if (overflow)
491 return NULL_TREE;
493 for (i = 3; i <= k; i++)
495 /* Index--. */
496 --idx;
498 /* Numerator *= Index. */
499 num = num.mul_with_sign (idx, false, &overflow);
500 if (overflow)
501 return NULL_TREE;
503 /* Denominator *= i. */
504 denom *= double_int::from_uhwi (i);
507 /* Result = Numerator / Denominator. */
508 di_res = num.div (denom, true, EXACT_DIV_EXPR);
509 res = build_int_cst_wide (type, di_res.low, di_res.high);
510 return int_fits_type_p (res, type) ? res : NULL_TREE;
513 /* Helper function. Use the Newton's interpolating formula for
514 evaluating the value of the evolution function. */
516 static tree
517 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
519 tree arg0, arg1, binomial_n_k;
520 tree type = TREE_TYPE (chrec);
521 struct loop *var_loop = get_loop (var);
523 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
524 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
525 chrec = CHREC_LEFT (chrec);
527 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
528 && CHREC_VARIABLE (chrec) == var)
530 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
531 if (arg1 == chrec_dont_know)
532 return chrec_dont_know;
533 binomial_n_k = tree_fold_binomial (type, n, k);
534 if (!binomial_n_k)
535 return chrec_dont_know;
536 arg0 = fold_build2 (MULT_EXPR, type,
537 CHREC_LEFT (chrec), binomial_n_k);
538 return chrec_fold_plus (type, arg0, arg1);
541 binomial_n_k = tree_fold_binomial (type, n, k);
542 if (!binomial_n_k)
543 return chrec_dont_know;
545 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
548 /* Evaluates "CHREC (X)" when the varying variable is VAR.
549 Example: Given the following parameters,
551 var = 1
552 chrec = {3, +, 4}_1
553 x = 10
555 The result is given by the Newton's interpolating formula:
556 3 * \binom{10}{0} + 4 * \binom{10}{1}.
559 tree
560 chrec_apply (unsigned var,
561 tree chrec,
562 tree x)
564 tree type = chrec_type (chrec);
565 tree res = chrec_dont_know;
567 if (automatically_generated_chrec_p (chrec)
568 || automatically_generated_chrec_p (x)
570 /* When the symbols are defined in an outer loop, it is possible
571 to symbolically compute the apply, since the symbols are
572 constants with respect to the varying loop. */
573 || chrec_contains_symbols_defined_in_loop (chrec, var))
574 return chrec_dont_know;
576 if (dump_file && (dump_flags & TDF_SCEV))
577 fprintf (dump_file, "(chrec_apply \n");
579 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
580 x = build_real_from_int_cst (type, x);
582 switch (TREE_CODE (chrec))
584 case POLYNOMIAL_CHREC:
585 if (evolution_function_is_affine_p (chrec))
587 if (CHREC_VARIABLE (chrec) != var)
588 return build_polynomial_chrec
589 (CHREC_VARIABLE (chrec),
590 chrec_apply (var, CHREC_LEFT (chrec), x),
591 chrec_apply (var, CHREC_RIGHT (chrec), x));
593 /* "{a, +, b} (x)" -> "a + b*x". */
594 x = chrec_convert_rhs (type, x, NULL);
595 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
596 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
598 else if (TREE_CODE (x) == INTEGER_CST
599 && tree_int_cst_sgn (x) == 1)
600 /* testsuite/.../ssa-chrec-38.c. */
601 res = chrec_evaluate (var, chrec, x, 0);
602 else
603 res = chrec_dont_know;
604 break;
606 CASE_CONVERT:
607 res = chrec_convert (TREE_TYPE (chrec),
608 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
609 NULL);
610 break;
612 default:
613 res = chrec;
614 break;
617 if (dump_file && (dump_flags & TDF_SCEV))
619 fprintf (dump_file, " (varying_loop = %d\n", var);
620 fprintf (dump_file, ")\n (chrec = ");
621 print_generic_expr (dump_file, chrec, 0);
622 fprintf (dump_file, ")\n (x = ");
623 print_generic_expr (dump_file, x, 0);
624 fprintf (dump_file, ")\n (res = ");
625 print_generic_expr (dump_file, res, 0);
626 fprintf (dump_file, "))\n");
629 return res;
632 /* For a given CHREC and an induction variable map IV_MAP that maps
633 (loop->num, expr) for every loop number of the current_loops an
634 expression, calls chrec_apply when the expression is not NULL. */
636 tree
637 chrec_apply_map (tree chrec, vec<tree> iv_map)
639 int i;
640 tree expr;
642 FOR_EACH_VEC_ELT (iv_map, i, expr)
643 if (expr)
644 chrec = chrec_apply (i, chrec, expr);
646 return chrec;
649 /* Replaces the initial condition in CHREC with INIT_COND. */
651 tree
652 chrec_replace_initial_condition (tree chrec,
653 tree init_cond)
655 if (automatically_generated_chrec_p (chrec))
656 return chrec;
658 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
660 switch (TREE_CODE (chrec))
662 case POLYNOMIAL_CHREC:
663 return build_polynomial_chrec
664 (CHREC_VARIABLE (chrec),
665 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
666 CHREC_RIGHT (chrec));
668 default:
669 return init_cond;
673 /* Returns the initial condition of a given CHREC. */
675 tree
676 initial_condition (tree chrec)
678 if (automatically_generated_chrec_p (chrec))
679 return chrec;
681 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
682 return initial_condition (CHREC_LEFT (chrec));
683 else
684 return chrec;
687 /* Returns a univariate function that represents the evolution in
688 LOOP_NUM. Mask the evolution of any other loop. */
690 tree
691 hide_evolution_in_other_loops_than_loop (tree chrec,
692 unsigned loop_num)
694 struct loop *loop = get_loop (loop_num), *chloop;
695 if (automatically_generated_chrec_p (chrec))
696 return chrec;
698 switch (TREE_CODE (chrec))
700 case POLYNOMIAL_CHREC:
701 chloop = get_chrec_loop (chrec);
703 if (chloop == loop)
704 return build_polynomial_chrec
705 (loop_num,
706 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
707 loop_num),
708 CHREC_RIGHT (chrec));
710 else if (flow_loop_nested_p (chloop, loop))
711 /* There is no evolution in this loop. */
712 return initial_condition (chrec);
714 else
716 gcc_assert (flow_loop_nested_p (loop, chloop));
717 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
718 loop_num);
721 default:
722 return chrec;
726 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
727 true, otherwise returns the initial condition in LOOP_NUM. */
729 static tree
730 chrec_component_in_loop_num (tree chrec,
731 unsigned loop_num,
732 bool right)
734 tree component;
735 struct loop *loop = get_loop (loop_num), *chloop;
737 if (automatically_generated_chrec_p (chrec))
738 return chrec;
740 switch (TREE_CODE (chrec))
742 case POLYNOMIAL_CHREC:
743 chloop = get_chrec_loop (chrec);
745 if (chloop == loop)
747 if (right)
748 component = CHREC_RIGHT (chrec);
749 else
750 component = CHREC_LEFT (chrec);
752 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
753 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
754 return component;
756 else
757 return build_polynomial_chrec
758 (loop_num,
759 chrec_component_in_loop_num (CHREC_LEFT (chrec),
760 loop_num,
761 right),
762 component);
765 else if (flow_loop_nested_p (chloop, loop))
766 /* There is no evolution part in this loop. */
767 return NULL_TREE;
769 else
771 gcc_assert (flow_loop_nested_p (loop, chloop));
772 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
773 loop_num,
774 right);
777 default:
778 if (right)
779 return NULL_TREE;
780 else
781 return chrec;
785 /* Returns the evolution part in LOOP_NUM. Example: the call
786 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
787 {1, +, 2}_1 */
789 tree
790 evolution_part_in_loop_num (tree chrec,
791 unsigned loop_num)
793 return chrec_component_in_loop_num (chrec, loop_num, true);
796 /* Returns the initial condition in LOOP_NUM. Example: the call
797 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
798 {0, +, 1}_1 */
800 tree
801 initial_condition_in_loop_num (tree chrec,
802 unsigned loop_num)
804 return chrec_component_in_loop_num (chrec, loop_num, false);
807 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
808 This function is essentially used for setting the evolution to
809 chrec_dont_know, for example after having determined that it is
810 impossible to say how many times a loop will execute. */
812 tree
813 reset_evolution_in_loop (unsigned loop_num,
814 tree chrec,
815 tree new_evol)
817 struct loop *loop = get_loop (loop_num);
819 if (POINTER_TYPE_P (chrec_type (chrec)))
820 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
821 else
822 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
824 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
825 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
827 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
828 new_evol);
829 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
830 new_evol);
831 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
832 CHREC_VAR (chrec), left, right);
835 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
836 && CHREC_VARIABLE (chrec) == loop_num)
837 chrec = CHREC_LEFT (chrec);
839 return build_polynomial_chrec (loop_num, chrec, new_evol);
842 /* Merges two evolution functions that were found by following two
843 alternate paths of a conditional expression. */
845 tree
846 chrec_merge (tree chrec1,
847 tree chrec2)
849 if (chrec1 == chrec_dont_know
850 || chrec2 == chrec_dont_know)
851 return chrec_dont_know;
853 if (chrec1 == chrec_known
854 || chrec2 == chrec_known)
855 return chrec_known;
857 if (chrec1 == chrec_not_analyzed_yet)
858 return chrec2;
859 if (chrec2 == chrec_not_analyzed_yet)
860 return chrec1;
862 if (eq_evolutions_p (chrec1, chrec2))
863 return chrec1;
865 return chrec_dont_know;
870 /* Observers. */
872 /* Helper function for is_multivariate_chrec. */
874 static bool
875 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
877 if (chrec == NULL_TREE)
878 return false;
880 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
882 if (CHREC_VARIABLE (chrec) != rec_var)
883 return true;
884 else
885 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
886 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
888 else
889 return false;
892 /* Determine whether the given chrec is multivariate or not. */
894 bool
895 is_multivariate_chrec (const_tree chrec)
897 if (chrec == NULL_TREE)
898 return false;
900 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
901 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
902 CHREC_VARIABLE (chrec))
903 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
904 CHREC_VARIABLE (chrec)));
905 else
906 return false;
909 /* Determines whether the chrec contains symbolic names or not. */
911 bool
912 chrec_contains_symbols (const_tree chrec)
914 int i, n;
916 if (chrec == NULL_TREE)
917 return false;
919 if (TREE_CODE (chrec) == SSA_NAME
920 || TREE_CODE (chrec) == VAR_DECL
921 || TREE_CODE (chrec) == PARM_DECL
922 || TREE_CODE (chrec) == FUNCTION_DECL
923 || TREE_CODE (chrec) == LABEL_DECL
924 || TREE_CODE (chrec) == RESULT_DECL
925 || TREE_CODE (chrec) == FIELD_DECL)
926 return true;
928 n = TREE_OPERAND_LENGTH (chrec);
929 for (i = 0; i < n; i++)
930 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
931 return true;
932 return false;
935 /* Determines whether the chrec contains undetermined coefficients. */
937 bool
938 chrec_contains_undetermined (const_tree chrec)
940 int i, n;
942 if (chrec == chrec_dont_know)
943 return true;
945 if (chrec == NULL_TREE)
946 return false;
948 n = TREE_OPERAND_LENGTH (chrec);
949 for (i = 0; i < n; i++)
950 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
951 return true;
952 return false;
955 /* Determines whether the tree EXPR contains chrecs, and increment
956 SIZE if it is not a NULL pointer by an estimation of the depth of
957 the tree. */
959 bool
960 tree_contains_chrecs (const_tree expr, int *size)
962 int i, n;
964 if (expr == NULL_TREE)
965 return false;
967 if (size)
968 (*size)++;
970 if (tree_is_chrec (expr))
971 return true;
973 n = TREE_OPERAND_LENGTH (expr);
974 for (i = 0; i < n; i++)
975 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
976 return true;
977 return false;
980 /* Recursive helper function. */
982 static bool
983 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
985 if (evolution_function_is_constant_p (chrec))
986 return true;
988 if (TREE_CODE (chrec) == SSA_NAME
989 && (loopnum == 0
990 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
991 return true;
993 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
995 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
996 || flow_loop_nested_p (get_loop (loopnum),
997 get_loop (CHREC_VARIABLE (chrec)))
998 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
999 loopnum)
1000 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1001 loopnum))
1002 return false;
1003 return true;
1006 switch (TREE_OPERAND_LENGTH (chrec))
1008 case 2:
1009 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1010 loopnum))
1011 return false;
1013 case 1:
1014 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1015 loopnum))
1016 return false;
1017 return true;
1019 default:
1020 return false;
1023 return false;
1026 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1028 bool
1029 evolution_function_is_invariant_p (tree chrec, int loopnum)
1031 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1034 /* Determine whether the given tree is an affine multivariate
1035 evolution. */
1037 bool
1038 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1040 if (chrec == NULL_TREE)
1041 return false;
1043 switch (TREE_CODE (chrec))
1045 case POLYNOMIAL_CHREC:
1046 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1048 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1049 return true;
1050 else
1052 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1053 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1054 != CHREC_VARIABLE (chrec)
1055 && evolution_function_is_affine_multivariate_p
1056 (CHREC_RIGHT (chrec), loopnum))
1057 return true;
1058 else
1059 return false;
1062 else
1064 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1065 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1066 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1067 && evolution_function_is_affine_multivariate_p
1068 (CHREC_LEFT (chrec), loopnum))
1069 return true;
1070 else
1071 return false;
1074 default:
1075 return false;
1079 /* Determine whether the given tree is a function in zero or one
1080 variables. */
1082 bool
1083 evolution_function_is_univariate_p (const_tree chrec)
1085 if (chrec == NULL_TREE)
1086 return true;
1088 switch (TREE_CODE (chrec))
1090 case POLYNOMIAL_CHREC:
1091 switch (TREE_CODE (CHREC_LEFT (chrec)))
1093 case POLYNOMIAL_CHREC:
1094 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1095 return false;
1096 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1097 return false;
1098 break;
1100 default:
1101 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1102 return false;
1103 break;
1106 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1108 case POLYNOMIAL_CHREC:
1109 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1110 return false;
1111 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1112 return false;
1113 break;
1115 default:
1116 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1117 return false;
1118 break;
1121 default:
1122 return true;
1126 /* Returns the number of variables of CHREC. Example: the call
1127 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1129 unsigned
1130 nb_vars_in_chrec (tree chrec)
1132 if (chrec == NULL_TREE)
1133 return 0;
1135 switch (TREE_CODE (chrec))
1137 case POLYNOMIAL_CHREC:
1138 return 1 + nb_vars_in_chrec
1139 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1141 default:
1142 return 0;
1146 static tree chrec_convert_1 (tree, tree, gimple, bool);
1148 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1149 the scev corresponds to. AT_STMT is the statement at that the scev is
1150 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1151 the rules for overflow of the given language apply (e.g., that signed
1152 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1153 tests, but also to enforce that the result follows them. Returns true if the
1154 conversion succeeded, false otherwise. */
1156 bool
1157 convert_affine_scev (struct loop *loop, tree type,
1158 tree *base, tree *step, gimple at_stmt,
1159 bool use_overflow_semantics)
1161 tree ct = TREE_TYPE (*step);
1162 bool enforce_overflow_semantics;
1163 bool must_check_src_overflow, must_check_rslt_overflow;
1164 tree new_base, new_step;
1165 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1167 /* In general,
1168 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1169 but we must check some assumptions.
1171 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1172 of CT is smaller than the precision of TYPE. For example, when we
1173 cast unsigned char [254, +, 1] to unsigned, the values on left side
1174 are 254, 255, 0, 1, ..., but those on the right side are
1175 254, 255, 256, 257, ...
1176 2) In case that we must also preserve the fact that signed ivs do not
1177 overflow, we must additionally check that the new iv does not wrap.
1178 For example, unsigned char [125, +, 1] casted to signed char could
1179 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1180 which would confuse optimizers that assume that this does not
1181 happen. */
1182 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1184 enforce_overflow_semantics = (use_overflow_semantics
1185 && nowrap_type_p (type));
1186 if (enforce_overflow_semantics)
1188 /* We can avoid checking whether the result overflows in the following
1189 cases:
1191 -- must_check_src_overflow is true, and the range of TYPE is superset
1192 of the range of CT -- i.e., in all cases except if CT signed and
1193 TYPE unsigned.
1194 -- both CT and TYPE have the same precision and signedness, and we
1195 verify instead that the source does not overflow (this may be
1196 easier than verifying it for the result, as we may use the
1197 information about the semantics of overflow in CT). */
1198 if (must_check_src_overflow)
1200 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1201 must_check_rslt_overflow = true;
1202 else
1203 must_check_rslt_overflow = false;
1205 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1206 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1208 must_check_rslt_overflow = false;
1209 must_check_src_overflow = true;
1211 else
1212 must_check_rslt_overflow = true;
1214 else
1215 must_check_rslt_overflow = false;
1217 if (must_check_src_overflow
1218 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1219 use_overflow_semantics))
1220 return false;
1222 new_base = chrec_convert_1 (type, *base, at_stmt,
1223 use_overflow_semantics);
1224 /* The step must be sign extended, regardless of the signedness
1225 of CT and TYPE. This only needs to be handled specially when
1226 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1227 (with values 100, 99, 98, ...) from becoming signed or unsigned
1228 [100, +, 255] with values 100, 355, ...; the sign-extension is
1229 performed by default when CT is signed. */
1230 new_step = *step;
1231 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1233 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1234 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1235 use_overflow_semantics);
1237 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1239 if (automatically_generated_chrec_p (new_base)
1240 || automatically_generated_chrec_p (new_step))
1241 return false;
1243 if (must_check_rslt_overflow
1244 /* Note that in this case we cannot use the fact that signed variables
1245 do not overflow, as this is what we are verifying for the new iv. */
1246 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1247 return false;
1249 *base = new_base;
1250 *step = new_step;
1251 return true;
1255 /* Convert CHREC for the right hand side of a CHREC.
1256 The increment for a pointer type is always sizetype. */
1258 tree
1259 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1261 if (POINTER_TYPE_P (type))
1262 type = sizetype;
1264 return chrec_convert (type, chrec, at_stmt);
1267 /* Convert CHREC to TYPE. When the analyzer knows the context in
1268 which the CHREC is built, it sets AT_STMT to the statement that
1269 contains the definition of the analyzed variable, otherwise the
1270 conversion is less accurate: the information is used for
1271 determining a more accurate estimation of the number of iterations.
1272 By default AT_STMT could be safely set to NULL_TREE.
1274 The following rule is always true: TREE_TYPE (chrec) ==
1275 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1276 An example of what could happen when adding two chrecs and the type
1277 of the CHREC_RIGHT is different than CHREC_LEFT is:
1279 {(uint) 0, +, (uchar) 10} +
1280 {(uint) 0, +, (uchar) 250}
1282 that would produce a wrong result if CHREC_RIGHT is not (uint):
1284 {(uint) 0, +, (uchar) 4}
1286 instead of
1288 {(uint) 0, +, (uint) 260}
1291 tree
1292 chrec_convert (tree type, tree chrec, gimple at_stmt)
1294 return chrec_convert_1 (type, chrec, at_stmt, true);
1297 /* Convert CHREC to TYPE. When the analyzer knows the context in
1298 which the CHREC is built, it sets AT_STMT to the statement that
1299 contains the definition of the analyzed variable, otherwise the
1300 conversion is less accurate: the information is used for
1301 determining a more accurate estimation of the number of iterations.
1302 By default AT_STMT could be safely set to NULL_TREE.
1304 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1305 the rules for overflow of the given language apply (e.g., that signed
1306 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1307 tests, but also to enforce that the result follows them. */
1309 static tree
1310 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1311 bool use_overflow_semantics)
1313 tree ct, res;
1314 tree base, step;
1315 struct loop *loop;
1317 if (automatically_generated_chrec_p (chrec))
1318 return chrec;
1320 ct = chrec_type (chrec);
1321 if (ct == type)
1322 return chrec;
1324 if (!evolution_function_is_affine_p (chrec))
1325 goto keep_cast;
1327 loop = get_chrec_loop (chrec);
1328 base = CHREC_LEFT (chrec);
1329 step = CHREC_RIGHT (chrec);
1331 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1332 use_overflow_semantics))
1333 return build_polynomial_chrec (loop->num, base, step);
1335 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1336 keep_cast:
1337 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1338 may be more expensive. We do want to perform this optimization here
1339 though for canonicalization reasons. */
1340 if (use_overflow_semantics
1341 && (TREE_CODE (chrec) == PLUS_EXPR
1342 || TREE_CODE (chrec) == MINUS_EXPR)
1343 && TREE_CODE (type) == INTEGER_TYPE
1344 && TREE_CODE (ct) == INTEGER_TYPE
1345 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1346 && TYPE_OVERFLOW_UNDEFINED (ct))
1347 res = fold_build2 (TREE_CODE (chrec), type,
1348 fold_convert (type, TREE_OPERAND (chrec, 0)),
1349 fold_convert (type, TREE_OPERAND (chrec, 1)));
1350 /* Similar perform the trick that (signed char)((int)x + 2) can be
1351 narrowed to (signed char)((unsigned char)x + 2). */
1352 else if (use_overflow_semantics
1353 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1354 && TREE_CODE (ct) == INTEGER_TYPE
1355 && TREE_CODE (type) == INTEGER_TYPE
1356 && TYPE_OVERFLOW_UNDEFINED (type)
1357 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1359 tree utype = unsigned_type_for (type);
1360 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1361 fold_convert (utype,
1362 CHREC_LEFT (chrec)),
1363 fold_convert (utype,
1364 CHREC_RIGHT (chrec)));
1365 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1367 else
1368 res = fold_convert (type, chrec);
1370 /* Don't propagate overflows. */
1371 if (CONSTANT_CLASS_P (res))
1372 TREE_OVERFLOW (res) = 0;
1374 /* But reject constants that don't fit in their type after conversion.
1375 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1376 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1377 and can cause problems later when computing niters of loops. Note
1378 that we don't do the check before converting because we don't want
1379 to reject conversions of negative chrecs to unsigned types. */
1380 if (TREE_CODE (res) == INTEGER_CST
1381 && TREE_CODE (type) == INTEGER_TYPE
1382 && !int_fits_type_p (res, type))
1383 res = chrec_dont_know;
1385 return res;
1388 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1389 chrec if something else than what chrec_convert would do happens, NULL_TREE
1390 otherwise. */
1392 tree
1393 chrec_convert_aggressive (tree type, tree chrec)
1395 tree inner_type, left, right, lc, rc, rtype;
1397 if (automatically_generated_chrec_p (chrec)
1398 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1399 return NULL_TREE;
1401 inner_type = TREE_TYPE (chrec);
1402 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1403 return NULL_TREE;
1405 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1407 left = CHREC_LEFT (chrec);
1408 right = CHREC_RIGHT (chrec);
1409 lc = chrec_convert_aggressive (type, left);
1410 if (!lc)
1411 lc = chrec_convert (type, left, NULL);
1412 rc = chrec_convert_aggressive (rtype, right);
1413 if (!rc)
1414 rc = chrec_convert (rtype, right, NULL);
1416 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1419 /* Returns true when CHREC0 == CHREC1. */
1421 bool
1422 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1424 if (chrec0 == NULL_TREE
1425 || chrec1 == NULL_TREE
1426 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1427 return false;
1429 if (chrec0 == chrec1)
1430 return true;
1432 switch (TREE_CODE (chrec0))
1434 case INTEGER_CST:
1435 return operand_equal_p (chrec0, chrec1, 0);
1437 case POLYNOMIAL_CHREC:
1438 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1439 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1440 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1442 case PLUS_EXPR:
1443 case MULT_EXPR:
1444 case MINUS_EXPR:
1445 case POINTER_PLUS_EXPR:
1446 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1447 TREE_OPERAND (chrec1, 0))
1448 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1449 TREE_OPERAND (chrec1, 1));
1451 default:
1452 return false;
1456 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1457 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1458 which of these cases happens. */
1460 enum ev_direction
1461 scev_direction (const_tree chrec)
1463 const_tree step;
1465 if (!evolution_function_is_affine_p (chrec))
1466 return EV_DIR_UNKNOWN;
1468 step = CHREC_RIGHT (chrec);
1469 if (TREE_CODE (step) != INTEGER_CST)
1470 return EV_DIR_UNKNOWN;
1472 if (tree_int_cst_sign_bit (step))
1473 return EV_DIR_DECREASES;
1474 else
1475 return EV_DIR_GROWS;
1478 /* Iterates over all the components of SCEV, and calls CBCK. */
1480 void
1481 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1483 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1485 case 3:
1486 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1488 case 2:
1489 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1491 case 1:
1492 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1494 default:
1495 cbck (scev, data);
1496 break;
1500 /* Returns true when the operation can be part of a linear
1501 expression. */
1503 static inline bool
1504 operator_is_linear (tree scev)
1506 switch (TREE_CODE (scev))
1508 case INTEGER_CST:
1509 case POLYNOMIAL_CHREC:
1510 case PLUS_EXPR:
1511 case POINTER_PLUS_EXPR:
1512 case MULT_EXPR:
1513 case MINUS_EXPR:
1514 case NEGATE_EXPR:
1515 case SSA_NAME:
1516 case NON_LVALUE_EXPR:
1517 case BIT_NOT_EXPR:
1518 CASE_CONVERT:
1519 return true;
1521 default:
1522 return false;
1526 /* Return true when SCEV is a linear expression. Linear expressions
1527 can contain additions, substractions and multiplications.
1528 Multiplications are restricted to constant scaling: "cst * x". */
1530 bool
1531 scev_is_linear_expression (tree scev)
1533 if (scev == NULL
1534 || !operator_is_linear (scev))
1535 return false;
1537 if (TREE_CODE (scev) == MULT_EXPR)
1538 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1539 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1541 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1542 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1543 return false;
1545 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1547 case 3:
1548 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1549 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1550 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1552 case 2:
1553 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1554 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1556 case 1:
1557 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1559 case 0:
1560 return true;
1562 default:
1563 return false;
1567 /* Determines whether the expression CHREC contains only interger consts
1568 in the right parts. */
1570 bool
1571 evolution_function_right_is_integer_cst (const_tree chrec)
1573 if (chrec == NULL_TREE)
1574 return false;
1576 switch (TREE_CODE (chrec))
1578 case INTEGER_CST:
1579 return true;
1581 case POLYNOMIAL_CHREC:
1582 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1583 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1584 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1586 CASE_CONVERT:
1587 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1589 default:
1590 return false;