Merge trunk version 193672 into gupc branch.
[official-gcc.git] / gcc / stor-layout.c
blob4a12272b8e7e9213f79825f5d07f3200e8801ee4
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "diagnostic-core.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37 #include "regs.h"
38 #include "params.h"
39 #include "cgraph.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimple.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
53 in the address spaces' address_mode, not pointer_mode. Set only by
54 internal_reference_types called only by a front end. */
55 static int reference_types_internal = 0;
57 static tree self_referential_size (tree);
58 static void finalize_record_size (record_layout_info);
59 static void finalize_type_size (tree);
60 static void place_union_field (record_layout_info, tree);
61 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
62 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
63 HOST_WIDE_INT, tree);
64 #endif
65 extern void debug_rli (record_layout_info);
67 /* Show that REFERENCE_TYPES are internal and should use address_mode.
68 Called only by front end. */
70 void
71 internal_reference_types (void)
73 reference_types_internal = 1;
76 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
77 to serve as the actual size-expression for a type or decl. */
79 tree
80 variable_size (tree size)
82 /* Obviously. */
83 if (TREE_CONSTANT (size))
84 return size;
86 /* If the size is self-referential, we can't make a SAVE_EXPR (see
87 save_expr for the rationale). But we can do something else. */
88 if (CONTAINS_PLACEHOLDER_P (size))
89 return self_referential_size (size);
91 /* If we are in the global binding level, we can't make a SAVE_EXPR
92 since it may end up being shared across functions, so it is up
93 to the front-end to deal with this case. */
94 if (lang_hooks.decls.global_bindings_p ())
95 return size;
97 return save_expr (size);
100 /* An array of functions used for self-referential size computation. */
101 static GTY(()) vec<tree, va_gc> *size_functions;
103 /* Look inside EXPR into simple arithmetic operations involving constants.
104 Return the outermost non-arithmetic or non-constant node. */
106 static tree
107 skip_simple_constant_arithmetic (tree expr)
109 while (true)
111 if (UNARY_CLASS_P (expr))
112 expr = TREE_OPERAND (expr, 0);
113 else if (BINARY_CLASS_P (expr))
115 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
116 expr = TREE_OPERAND (expr, 0);
117 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
118 expr = TREE_OPERAND (expr, 1);
119 else
120 break;
122 else
123 break;
126 return expr;
129 /* Similar to copy_tree_r but do not copy component references involving
130 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
131 and substituted in substitute_in_expr. */
133 static tree
134 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
136 enum tree_code code = TREE_CODE (*tp);
138 /* Stop at types, decls, constants like copy_tree_r. */
139 if (TREE_CODE_CLASS (code) == tcc_type
140 || TREE_CODE_CLASS (code) == tcc_declaration
141 || TREE_CODE_CLASS (code) == tcc_constant)
143 *walk_subtrees = 0;
144 return NULL_TREE;
147 /* This is the pattern built in ada/make_aligning_type. */
148 else if (code == ADDR_EXPR
149 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
151 *walk_subtrees = 0;
152 return NULL_TREE;
155 /* Default case: the component reference. */
156 else if (code == COMPONENT_REF)
158 tree inner;
159 for (inner = TREE_OPERAND (*tp, 0);
160 REFERENCE_CLASS_P (inner);
161 inner = TREE_OPERAND (inner, 0))
164 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
166 *walk_subtrees = 0;
167 return NULL_TREE;
171 /* We're not supposed to have them in self-referential size trees
172 because we wouldn't properly control when they are evaluated.
173 However, not creating superfluous SAVE_EXPRs requires accurate
174 tracking of readonly-ness all the way down to here, which we
175 cannot always guarantee in practice. So punt in this case. */
176 else if (code == SAVE_EXPR)
177 return error_mark_node;
179 else if (code == STATEMENT_LIST)
180 gcc_unreachable ();
182 return copy_tree_r (tp, walk_subtrees, data);
185 /* Given a SIZE expression that is self-referential, return an equivalent
186 expression to serve as the actual size expression for a type. */
188 static tree
189 self_referential_size (tree size)
191 static unsigned HOST_WIDE_INT fnno = 0;
192 vec<tree> self_refs = vec<tree>();
193 tree param_type_list = NULL, param_decl_list = NULL;
194 tree t, ref, return_type, fntype, fnname, fndecl;
195 unsigned int i;
196 char buf[128];
197 vec<tree, va_gc> *args = NULL;
199 /* Do not factor out simple operations. */
200 t = skip_simple_constant_arithmetic (size);
201 if (TREE_CODE (t) == CALL_EXPR)
202 return size;
204 /* Collect the list of self-references in the expression. */
205 find_placeholder_in_expr (size, &self_refs);
206 gcc_assert (self_refs.length () > 0);
208 /* Obtain a private copy of the expression. */
209 t = size;
210 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
211 return size;
212 size = t;
214 /* Build the parameter and argument lists in parallel; also
215 substitute the former for the latter in the expression. */
216 vec_alloc (args, self_refs.length ());
217 FOR_EACH_VEC_ELT (self_refs, i, ref)
219 tree subst, param_name, param_type, param_decl;
221 if (DECL_P (ref))
223 /* We shouldn't have true variables here. */
224 gcc_assert (TREE_READONLY (ref));
225 subst = ref;
227 /* This is the pattern built in ada/make_aligning_type. */
228 else if (TREE_CODE (ref) == ADDR_EXPR)
229 subst = ref;
230 /* Default case: the component reference. */
231 else
232 subst = TREE_OPERAND (ref, 1);
234 sprintf (buf, "p%d", i);
235 param_name = get_identifier (buf);
236 param_type = TREE_TYPE (ref);
237 param_decl
238 = build_decl (input_location, PARM_DECL, param_name, param_type);
239 if (targetm.calls.promote_prototypes (NULL_TREE)
240 && INTEGRAL_TYPE_P (param_type)
241 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
242 DECL_ARG_TYPE (param_decl) = integer_type_node;
243 else
244 DECL_ARG_TYPE (param_decl) = param_type;
245 DECL_ARTIFICIAL (param_decl) = 1;
246 TREE_READONLY (param_decl) = 1;
248 size = substitute_in_expr (size, subst, param_decl);
250 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
251 param_decl_list = chainon (param_decl, param_decl_list);
252 args->quick_push (ref);
255 self_refs.release ();
257 /* Append 'void' to indicate that the number of parameters is fixed. */
258 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
260 /* The 3 lists have been created in reverse order. */
261 param_type_list = nreverse (param_type_list);
262 param_decl_list = nreverse (param_decl_list);
264 /* Build the function type. */
265 return_type = TREE_TYPE (size);
266 fntype = build_function_type (return_type, param_type_list);
268 /* Build the function declaration. */
269 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
270 fnname = get_file_function_name (buf);
271 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
272 for (t = param_decl_list; t; t = DECL_CHAIN (t))
273 DECL_CONTEXT (t) = fndecl;
274 DECL_ARGUMENTS (fndecl) = param_decl_list;
275 DECL_RESULT (fndecl)
276 = build_decl (input_location, RESULT_DECL, 0, return_type);
277 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
279 /* The function has been created by the compiler and we don't
280 want to emit debug info for it. */
281 DECL_ARTIFICIAL (fndecl) = 1;
282 DECL_IGNORED_P (fndecl) = 1;
284 /* It is supposed to be "const" and never throw. */
285 TREE_READONLY (fndecl) = 1;
286 TREE_NOTHROW (fndecl) = 1;
288 /* We want it to be inlined when this is deemed profitable, as
289 well as discarded if every call has been integrated. */
290 DECL_DECLARED_INLINE_P (fndecl) = 1;
292 /* It is made up of a unique return statement. */
293 DECL_INITIAL (fndecl) = make_node (BLOCK);
294 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
295 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
296 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
297 TREE_STATIC (fndecl) = 1;
299 /* Put it onto the list of size functions. */
300 vec_safe_push (size_functions, fndecl);
302 /* Replace the original expression with a call to the size function. */
303 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
306 /* Take, queue and compile all the size functions. It is essential that
307 the size functions be gimplified at the very end of the compilation
308 in order to guarantee transparent handling of self-referential sizes.
309 Otherwise the GENERIC inliner would not be able to inline them back
310 at each of their call sites, thus creating artificial non-constant
311 size expressions which would trigger nasty problems later on. */
313 void
314 finalize_size_functions (void)
316 unsigned int i;
317 tree fndecl;
319 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
321 dump_function (TDI_original, fndecl);
322 gimplify_function_tree (fndecl);
323 dump_function (TDI_generic, fndecl);
324 cgraph_finalize_function (fndecl, false);
327 vec_free (size_functions);
330 /* Return the machine mode to use for a nonscalar of SIZE bits. The
331 mode must be in class MCLASS, and have exactly that many value bits;
332 it may have padding as well. If LIMIT is nonzero, modes of wider
333 than MAX_FIXED_MODE_SIZE will not be used. */
335 enum machine_mode
336 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
338 enum machine_mode mode;
340 if (limit && size > MAX_FIXED_MODE_SIZE)
341 return BLKmode;
343 /* Get the first mode which has this size, in the specified class. */
344 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
345 mode = GET_MODE_WIDER_MODE (mode))
346 if (GET_MODE_PRECISION (mode) == size)
347 return mode;
349 return BLKmode;
352 /* Similar, except passed a tree node. */
354 enum machine_mode
355 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
357 unsigned HOST_WIDE_INT uhwi;
358 unsigned int ui;
360 if (!host_integerp (size, 1))
361 return BLKmode;
362 uhwi = tree_low_cst (size, 1);
363 ui = uhwi;
364 if (uhwi != ui)
365 return BLKmode;
366 return mode_for_size (ui, mclass, limit);
369 /* Similar, but never return BLKmode; return the narrowest mode that
370 contains at least the requested number of value bits. */
372 enum machine_mode
373 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
375 enum machine_mode mode;
377 /* Get the first mode which has at least this size, in the
378 specified class. */
379 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
380 mode = GET_MODE_WIDER_MODE (mode))
381 if (GET_MODE_PRECISION (mode) >= size)
382 return mode;
384 gcc_unreachable ();
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
389 enum machine_mode
390 int_mode_for_mode (enum machine_mode mode)
392 switch (GET_MODE_CLASS (mode))
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
401 case MODE_DECIMAL_FLOAT:
402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
412 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
413 break;
415 case MODE_RANDOM:
416 if (mode == BLKmode)
417 break;
419 /* ... fall through ... */
421 case MODE_CC:
422 default:
423 gcc_unreachable ();
426 return mode;
429 /* Find a mode that is suitable for representing a vector with
430 NUNITS elements of mode INNERMODE. Returns BLKmode if there
431 is no suitable mode. */
433 enum machine_mode
434 mode_for_vector (enum machine_mode innermode, unsigned nunits)
436 enum machine_mode mode;
438 /* First, look for a supported vector type. */
439 if (SCALAR_FLOAT_MODE_P (innermode))
440 mode = MIN_MODE_VECTOR_FLOAT;
441 else if (SCALAR_FRACT_MODE_P (innermode))
442 mode = MIN_MODE_VECTOR_FRACT;
443 else if (SCALAR_UFRACT_MODE_P (innermode))
444 mode = MIN_MODE_VECTOR_UFRACT;
445 else if (SCALAR_ACCUM_MODE_P (innermode))
446 mode = MIN_MODE_VECTOR_ACCUM;
447 else if (SCALAR_UACCUM_MODE_P (innermode))
448 mode = MIN_MODE_VECTOR_UACCUM;
449 else
450 mode = MIN_MODE_VECTOR_INT;
452 /* Do not check vector_mode_supported_p here. We'll do that
453 later in vector_type_mode. */
454 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
455 if (GET_MODE_NUNITS (mode) == nunits
456 && GET_MODE_INNER (mode) == innermode)
457 break;
459 /* For integers, try mapping it to a same-sized scalar mode. */
460 if (mode == VOIDmode
461 && GET_MODE_CLASS (innermode) == MODE_INT)
462 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
463 MODE_INT, 0);
465 if (mode == VOIDmode
466 || (GET_MODE_CLASS (mode) == MODE_INT
467 && !have_regs_of_mode[mode]))
468 return BLKmode;
470 return mode;
473 /* Return the alignment of MODE. This will be bounded by 1 and
474 BIGGEST_ALIGNMENT. */
476 unsigned int
477 get_mode_alignment (enum machine_mode mode)
479 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
482 /* Return the natural mode of an array, given that it is SIZE bytes in
483 total and has elements of type ELEM_TYPE. */
485 static enum machine_mode
486 mode_for_array (tree elem_type, tree size)
488 tree elem_size;
489 unsigned HOST_WIDE_INT int_size, int_elem_size;
490 bool limit_p;
492 /* One-element arrays get the component type's mode. */
493 elem_size = TYPE_SIZE (elem_type);
494 if (simple_cst_equal (size, elem_size))
495 return TYPE_MODE (elem_type);
497 limit_p = true;
498 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
500 int_size = tree_low_cst (size, 1);
501 int_elem_size = tree_low_cst (elem_size, 1);
502 if (int_elem_size > 0
503 && int_size % int_elem_size == 0
504 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
505 int_size / int_elem_size))
506 limit_p = false;
508 return mode_for_size_tree (size, MODE_INT, limit_p);
511 /* Hook for a front-end function that tests to see if a declared
512 object's size needs to be calculated in a language defined way */
514 int (*lang_layout_decl_p)(tree, tree) = 0;
516 void
517 set_lang_layout_decl_p (int (*f)(tree, tree))
519 lang_layout_decl_p = f;
522 /* Hook for a front-end function that can size a declared
523 object, when the size is unknown at the time that
524 `layout_type' is called. */
526 void (*lang_layout_decl) (tree, tree) = 0;
528 void
529 set_lang_layout_decl (void (*f) (tree, tree))
531 lang_layout_decl = f;
534 /* Subroutine of layout_decl: Force alignment required for the data type.
535 But if the decl itself wants greater alignment, don't override that. */
537 static inline void
538 do_type_align (tree type, tree decl)
540 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
542 DECL_ALIGN (decl) = TYPE_ALIGN (type);
543 if (TREE_CODE (decl) == FIELD_DECL)
544 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
548 /* Set the size, mode and alignment of a ..._DECL node.
549 TYPE_DECL does need this for C++.
550 Note that LABEL_DECL and CONST_DECL nodes do not need this,
551 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
552 Don't call layout_decl for them.
554 KNOWN_ALIGN is the amount of alignment we can assume this
555 decl has with no special effort. It is relevant only for FIELD_DECLs
556 and depends on the previous fields.
557 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
558 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
559 the record will be aligned to suit. */
561 void
562 layout_decl (tree decl, unsigned int known_align)
564 tree type = TREE_TYPE (decl);
565 enum tree_code code = TREE_CODE (decl);
566 rtx rtl = NULL_RTX;
567 location_t loc = DECL_SOURCE_LOCATION (decl);
569 if (code == CONST_DECL)
570 return;
572 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
573 || code == TYPE_DECL ||code == FIELD_DECL);
575 rtl = DECL_RTL_IF_SET (decl);
577 if (type == error_mark_node)
578 type = void_type_node;
580 /* Usually the size and mode come from the data type without change,
581 however, the front-end may set the explicit width of the field, so its
582 size may not be the same as the size of its type. This happens with
583 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
584 also happens with other fields. For example, the C++ front-end creates
585 zero-sized fields corresponding to empty base classes, and depends on
586 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
587 size in bytes from the size in bits. If we have already set the mode,
588 don't set it again since we can be called twice for FIELD_DECLs. */
590 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
591 if (DECL_MODE (decl) == VOIDmode)
592 DECL_MODE (decl) = TYPE_MODE (type);
594 if (lang_layout_decl_p && (*lang_layout_decl_p) (decl, type))
596 (*lang_layout_decl) (decl, type);
598 else if (DECL_SIZE (decl) == 0)
600 DECL_SIZE (decl) = TYPE_SIZE (type);
601 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
603 else if (DECL_SIZE_UNIT (decl) == 0)
604 DECL_SIZE_UNIT (decl)
605 = fold_convert_loc (loc, sizetype,
606 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
607 bitsize_unit_node));
609 if (code != FIELD_DECL)
610 /* For non-fields, update the alignment from the type. */
611 do_type_align (type, decl);
612 else
613 /* For fields, it's a bit more complicated... */
615 bool old_user_align = DECL_USER_ALIGN (decl);
616 bool zero_bitfield = false;
617 bool packed_p = DECL_PACKED (decl);
618 unsigned int mfa;
620 if (DECL_BIT_FIELD (decl))
622 DECL_BIT_FIELD_TYPE (decl) = type;
624 /* A zero-length bit-field affects the alignment of the next
625 field. In essence such bit-fields are not influenced by
626 any packing due to #pragma pack or attribute packed. */
627 if (integer_zerop (DECL_SIZE (decl))
628 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
630 zero_bitfield = true;
631 packed_p = false;
632 #ifdef PCC_BITFIELD_TYPE_MATTERS
633 if (PCC_BITFIELD_TYPE_MATTERS)
634 do_type_align (type, decl);
635 else
636 #endif
638 #ifdef EMPTY_FIELD_BOUNDARY
639 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
641 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
642 DECL_USER_ALIGN (decl) = 0;
644 #endif
648 /* See if we can use an ordinary integer mode for a bit-field.
649 Conditions are: a fixed size that is correct for another mode,
650 occupying a complete byte or bytes on proper boundary,
651 and not -fstrict-volatile-bitfields. If the latter is set,
652 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
653 may make a volatile object later. */
654 if (TYPE_SIZE (type) != 0
655 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
656 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
657 && flag_strict_volatile_bitfields <= 0)
659 enum machine_mode xmode
660 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
661 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
663 if (xmode != BLKmode
664 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
665 && (known_align == 0 || known_align >= xalign))
667 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
668 DECL_MODE (decl) = xmode;
669 DECL_BIT_FIELD (decl) = 0;
673 /* Turn off DECL_BIT_FIELD if we won't need it set. */
674 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
675 && known_align >= TYPE_ALIGN (type)
676 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
677 DECL_BIT_FIELD (decl) = 0;
679 else if (packed_p && DECL_USER_ALIGN (decl))
680 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
681 round up; we'll reduce it again below. We want packing to
682 supersede USER_ALIGN inherited from the type, but defer to
683 alignment explicitly specified on the field decl. */;
684 else
685 do_type_align (type, decl);
687 /* If the field is packed and not explicitly aligned, give it the
688 minimum alignment. Note that do_type_align may set
689 DECL_USER_ALIGN, so we need to check old_user_align instead. */
690 if (packed_p
691 && !old_user_align)
692 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
694 if (! packed_p && ! DECL_USER_ALIGN (decl))
696 /* Some targets (i.e. i386, VMS) limit struct field alignment
697 to a lower boundary than alignment of variables unless
698 it was overridden by attribute aligned. */
699 #ifdef BIGGEST_FIELD_ALIGNMENT
700 DECL_ALIGN (decl)
701 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
702 #endif
703 #ifdef ADJUST_FIELD_ALIGN
704 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
705 #endif
708 if (zero_bitfield)
709 mfa = initial_max_fld_align * BITS_PER_UNIT;
710 else
711 mfa = maximum_field_alignment;
712 /* Should this be controlled by DECL_USER_ALIGN, too? */
713 if (mfa != 0)
714 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
717 /* Evaluate nonconstant size only once, either now or as soon as safe. */
718 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
719 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
720 if (DECL_SIZE_UNIT (decl) != 0
721 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
722 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
724 /* If requested, warn about definitions of large data objects. */
725 if (warn_larger_than
726 && (code == VAR_DECL || code == PARM_DECL)
727 && ! DECL_EXTERNAL (decl))
729 tree size = DECL_SIZE_UNIT (decl);
731 if (size != 0 && TREE_CODE (size) == INTEGER_CST
732 && compare_tree_int (size, larger_than_size) > 0)
734 int size_as_int = TREE_INT_CST_LOW (size);
736 if (compare_tree_int (size, size_as_int) == 0)
737 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
738 else
739 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
740 decl, larger_than_size);
744 /* If the RTL was already set, update its mode and mem attributes. */
745 if (rtl)
747 PUT_MODE (rtl, DECL_MODE (decl));
748 SET_DECL_RTL (decl, 0);
749 set_mem_attributes (rtl, decl, 1);
750 SET_DECL_RTL (decl, rtl);
754 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
755 a previous call to layout_decl and calls it again. */
757 void
758 relayout_decl (tree decl)
760 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
761 DECL_MODE (decl) = VOIDmode;
762 if (!DECL_USER_ALIGN (decl))
763 DECL_ALIGN (decl) = 0;
764 SET_DECL_RTL (decl, 0);
766 layout_decl (decl, 0);
769 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
770 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
771 is to be passed to all other layout functions for this record. It is the
772 responsibility of the caller to call `free' for the storage returned.
773 Note that garbage collection is not permitted until we finish laying
774 out the record. */
776 record_layout_info
777 start_record_layout (tree t)
779 record_layout_info rli = XNEW (struct record_layout_info_s);
781 rli->t = t;
783 /* If the type has a minimum specified alignment (via an attribute
784 declaration, for example) use it -- otherwise, start with a
785 one-byte alignment. */
786 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
787 rli->unpacked_align = rli->record_align;
788 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
790 #ifdef STRUCTURE_SIZE_BOUNDARY
791 /* Packed structures don't need to have minimum size. */
792 if (! TYPE_PACKED (t))
794 unsigned tmp;
796 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
797 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
798 if (maximum_field_alignment != 0)
799 tmp = MIN (tmp, maximum_field_alignment);
800 rli->record_align = MAX (rli->record_align, tmp);
802 #endif
804 rli->offset = size_zero_node;
805 rli->bitpos = bitsize_zero_node;
806 rli->prev_field = 0;
807 rli->pending_statics = 0;
808 rli->packed_maybe_necessary = 0;
809 rli->remaining_in_alignment = 0;
811 return rli;
814 /* Return the combined bit position for the byte offset OFFSET and the
815 bit position BITPOS.
817 These functions operate on byte and bit positions present in FIELD_DECLs
818 and assume that these expressions result in no (intermediate) overflow.
819 This assumption is necessary to fold the expressions as much as possible,
820 so as to avoid creating artificially variable-sized types in languages
821 supporting variable-sized types like Ada. */
823 tree
824 bit_from_pos (tree offset, tree bitpos)
826 if (TREE_CODE (offset) == PLUS_EXPR)
827 offset = size_binop (PLUS_EXPR,
828 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
829 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
830 else
831 offset = fold_convert (bitsizetype, offset);
832 return size_binop (PLUS_EXPR, bitpos,
833 size_binop (MULT_EXPR, offset, bitsize_unit_node));
836 /* Return the combined truncated byte position for the byte offset OFFSET and
837 the bit position BITPOS. */
839 tree
840 byte_from_pos (tree offset, tree bitpos)
842 tree bytepos;
843 if (TREE_CODE (bitpos) == MULT_EXPR
844 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
845 bytepos = TREE_OPERAND (bitpos, 0);
846 else
847 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
848 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
851 /* Split the bit position POS into a byte offset *POFFSET and a bit
852 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
854 void
855 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
856 tree pos)
858 tree toff_align = bitsize_int (off_align);
859 if (TREE_CODE (pos) == MULT_EXPR
860 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
862 *poffset = size_binop (MULT_EXPR,
863 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
864 size_int (off_align / BITS_PER_UNIT));
865 *pbitpos = bitsize_zero_node;
867 else
869 *poffset = size_binop (MULT_EXPR,
870 fold_convert (sizetype,
871 size_binop (FLOOR_DIV_EXPR, pos,
872 toff_align)),
873 size_int (off_align / BITS_PER_UNIT));
874 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
878 /* Given a pointer to bit and byte offsets and an offset alignment,
879 normalize the offsets so they are within the alignment. */
881 void
882 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
884 /* If the bit position is now larger than it should be, adjust it
885 downwards. */
886 if (compare_tree_int (*pbitpos, off_align) >= 0)
888 tree offset, bitpos;
889 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
890 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
891 *pbitpos = bitpos;
895 /* Print debugging information about the information in RLI. */
897 DEBUG_FUNCTION void
898 debug_rli (record_layout_info rli)
900 print_node_brief (stderr, "type", rli->t, 0);
901 print_node_brief (stderr, "\noffset", rli->offset, 0);
902 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
904 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
905 rli->record_align, rli->unpacked_align,
906 rli->offset_align);
908 /* The ms_struct code is the only that uses this. */
909 if (targetm.ms_bitfield_layout_p (rli->t))
910 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
912 if (rli->packed_maybe_necessary)
913 fprintf (stderr, "packed may be necessary\n");
915 if (!vec_safe_is_empty (rli->pending_statics))
917 fprintf (stderr, "pending statics:\n");
918 debug_vec_tree (rli->pending_statics);
922 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
923 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
925 void
926 normalize_rli (record_layout_info rli)
928 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
931 /* Returns the size in bytes allocated so far. */
933 tree
934 rli_size_unit_so_far (record_layout_info rli)
936 return byte_from_pos (rli->offset, rli->bitpos);
939 /* Returns the size in bits allocated so far. */
941 tree
942 rli_size_so_far (record_layout_info rli)
944 return bit_from_pos (rli->offset, rli->bitpos);
947 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
948 the next available location within the record is given by KNOWN_ALIGN.
949 Update the variable alignment fields in RLI, and return the alignment
950 to give the FIELD. */
952 unsigned int
953 update_alignment_for_field (record_layout_info rli, tree field,
954 unsigned int known_align)
956 /* The alignment required for FIELD. */
957 unsigned int desired_align;
958 /* The type of this field. */
959 tree type = TREE_TYPE (field);
960 /* True if the field was explicitly aligned by the user. */
961 bool user_align;
962 bool is_bitfield;
964 /* Do not attempt to align an ERROR_MARK node */
965 if (TREE_CODE (type) == ERROR_MARK)
966 return 0;
968 /* Lay out the field so we know what alignment it needs. */
969 layout_decl (field, known_align);
970 desired_align = DECL_ALIGN (field);
971 user_align = DECL_USER_ALIGN (field);
973 is_bitfield = (type != error_mark_node
974 && DECL_BIT_FIELD_TYPE (field)
975 && ! integer_zerop (TYPE_SIZE (type)));
977 /* Record must have at least as much alignment as any field.
978 Otherwise, the alignment of the field within the record is
979 meaningless. */
980 if (targetm.ms_bitfield_layout_p (rli->t))
982 /* Here, the alignment of the underlying type of a bitfield can
983 affect the alignment of a record; even a zero-sized field
984 can do this. The alignment should be to the alignment of
985 the type, except that for zero-size bitfields this only
986 applies if there was an immediately prior, nonzero-size
987 bitfield. (That's the way it is, experimentally.) */
988 if ((!is_bitfield && !DECL_PACKED (field))
989 || ((DECL_SIZE (field) == NULL_TREE
990 || !integer_zerop (DECL_SIZE (field)))
991 ? !DECL_PACKED (field)
992 : (rli->prev_field
993 && DECL_BIT_FIELD_TYPE (rli->prev_field)
994 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
996 unsigned int type_align = TYPE_ALIGN (type);
997 type_align = MAX (type_align, desired_align);
998 if (maximum_field_alignment != 0)
999 type_align = MIN (type_align, maximum_field_alignment);
1000 rli->record_align = MAX (rli->record_align, type_align);
1001 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1004 #ifdef PCC_BITFIELD_TYPE_MATTERS
1005 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1007 /* Named bit-fields cause the entire structure to have the
1008 alignment implied by their type. Some targets also apply the same
1009 rules to unnamed bitfields. */
1010 if (DECL_NAME (field) != 0
1011 || targetm.align_anon_bitfield ())
1013 unsigned int type_align = TYPE_ALIGN (type);
1015 #ifdef ADJUST_FIELD_ALIGN
1016 if (! TYPE_USER_ALIGN (type))
1017 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1018 #endif
1020 /* Targets might chose to handle unnamed and hence possibly
1021 zero-width bitfield. Those are not influenced by #pragmas
1022 or packed attributes. */
1023 if (integer_zerop (DECL_SIZE (field)))
1025 if (initial_max_fld_align)
1026 type_align = MIN (type_align,
1027 initial_max_fld_align * BITS_PER_UNIT);
1029 else if (maximum_field_alignment != 0)
1030 type_align = MIN (type_align, maximum_field_alignment);
1031 else if (DECL_PACKED (field))
1032 type_align = MIN (type_align, BITS_PER_UNIT);
1034 /* The alignment of the record is increased to the maximum
1035 of the current alignment, the alignment indicated on the
1036 field (i.e., the alignment specified by an __aligned__
1037 attribute), and the alignment indicated by the type of
1038 the field. */
1039 rli->record_align = MAX (rli->record_align, desired_align);
1040 rli->record_align = MAX (rli->record_align, type_align);
1042 if (warn_packed)
1043 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1044 user_align |= TYPE_USER_ALIGN (type);
1047 #endif
1048 else
1050 rli->record_align = MAX (rli->record_align, desired_align);
1051 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1054 TYPE_USER_ALIGN (rli->t) |= user_align;
1056 return desired_align;
1059 /* Called from place_field to handle unions. */
1061 static void
1062 place_union_field (record_layout_info rli, tree field)
1064 update_alignment_for_field (rli, field, /*known_align=*/0);
1066 DECL_FIELD_OFFSET (field) = size_zero_node;
1067 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1068 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1070 /* If this is an ERROR_MARK return *after* having set the
1071 field at the start of the union. This helps when parsing
1072 invalid fields. */
1073 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1074 return;
1076 /* We assume the union's size will be a multiple of a byte so we don't
1077 bother with BITPOS. */
1078 if (TREE_CODE (rli->t) == UNION_TYPE)
1079 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1080 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1081 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1082 DECL_SIZE_UNIT (field), rli->offset);
1085 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1086 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1087 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1088 units of alignment than the underlying TYPE. */
1089 static int
1090 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1091 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1093 /* Note that the calculation of OFFSET might overflow; we calculate it so
1094 that we still get the right result as long as ALIGN is a power of two. */
1095 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1097 offset = offset % align;
1098 return ((offset + size + align - 1) / align
1099 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1100 / align));
1102 #endif
1104 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1105 is a FIELD_DECL to be added after those fields already present in
1106 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1107 callers that desire that behavior must manually perform that step.) */
1109 void
1110 place_field (record_layout_info rli, tree field)
1112 /* The alignment required for FIELD. */
1113 unsigned int desired_align;
1114 /* The alignment FIELD would have if we just dropped it into the
1115 record as it presently stands. */
1116 unsigned int known_align;
1117 unsigned int actual_align;
1118 /* The type of this field. */
1119 tree type = TREE_TYPE (field);
1121 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1123 /* If FIELD is static, then treat it like a separate variable, not
1124 really like a structure field. If it is a FUNCTION_DECL, it's a
1125 method. In both cases, all we do is lay out the decl, and we do
1126 it *after* the record is laid out. */
1127 if (TREE_CODE (field) == VAR_DECL)
1129 vec_safe_push (rli->pending_statics, field);
1130 return;
1133 /* Enumerators and enum types which are local to this class need not
1134 be laid out. Likewise for initialized constant fields. */
1135 else if (TREE_CODE (field) != FIELD_DECL)
1136 return;
1138 /* Unions are laid out very differently than records, so split
1139 that code off to another function. */
1140 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1142 place_union_field (rli, field);
1143 return;
1146 else if (TREE_CODE (type) == ERROR_MARK)
1148 /* Place this field at the current allocation position, so we
1149 maintain monotonicity. */
1150 DECL_FIELD_OFFSET (field) = rli->offset;
1151 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1152 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1153 return;
1156 /* Work out the known alignment so far. Note that A & (-A) is the
1157 value of the least-significant bit in A that is one. */
1158 if (! integer_zerop (rli->bitpos))
1159 known_align = (tree_low_cst (rli->bitpos, 1)
1160 & - tree_low_cst (rli->bitpos, 1));
1161 else if (integer_zerop (rli->offset))
1162 known_align = 0;
1163 else if (host_integerp (rli->offset, 1))
1164 known_align = (BITS_PER_UNIT
1165 * (tree_low_cst (rli->offset, 1)
1166 & - tree_low_cst (rli->offset, 1)));
1167 else
1168 known_align = rli->offset_align;
1170 desired_align = update_alignment_for_field (rli, field, known_align);
1171 if (known_align == 0)
1172 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1174 if (warn_packed && DECL_PACKED (field))
1176 if (known_align >= TYPE_ALIGN (type))
1178 if (TYPE_ALIGN (type) > desired_align)
1180 if (STRICT_ALIGNMENT)
1181 warning (OPT_Wattributes, "packed attribute causes "
1182 "inefficient alignment for %q+D", field);
1183 /* Don't warn if DECL_PACKED was set by the type. */
1184 else if (!TYPE_PACKED (rli->t))
1185 warning (OPT_Wattributes, "packed attribute is "
1186 "unnecessary for %q+D", field);
1189 else
1190 rli->packed_maybe_necessary = 1;
1193 /* Does this field automatically have alignment it needs by virtue
1194 of the fields that precede it and the record's own alignment? */
1195 if (known_align < desired_align)
1197 /* No, we need to skip space before this field.
1198 Bump the cumulative size to multiple of field alignment. */
1200 if (!targetm.ms_bitfield_layout_p (rli->t)
1201 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1202 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1204 /* If the alignment is still within offset_align, just align
1205 the bit position. */
1206 if (desired_align < rli->offset_align)
1207 rli->bitpos = round_up (rli->bitpos, desired_align);
1208 else
1210 /* First adjust OFFSET by the partial bits, then align. */
1211 rli->offset
1212 = size_binop (PLUS_EXPR, rli->offset,
1213 fold_convert (sizetype,
1214 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1215 bitsize_unit_node)));
1216 rli->bitpos = bitsize_zero_node;
1218 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1221 if (! TREE_CONSTANT (rli->offset))
1222 rli->offset_align = desired_align;
1223 if (targetm.ms_bitfield_layout_p (rli->t))
1224 rli->prev_field = NULL;
1227 /* Handle compatibility with PCC. Note that if the record has any
1228 variable-sized fields, we need not worry about compatibility. */
1229 #ifdef PCC_BITFIELD_TYPE_MATTERS
1230 if (PCC_BITFIELD_TYPE_MATTERS
1231 && ! targetm.ms_bitfield_layout_p (rli->t)
1232 && TREE_CODE (field) == FIELD_DECL
1233 && type != error_mark_node
1234 && DECL_BIT_FIELD (field)
1235 && (! DECL_PACKED (field)
1236 /* Enter for these packed fields only to issue a warning. */
1237 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1238 && maximum_field_alignment == 0
1239 && ! integer_zerop (DECL_SIZE (field))
1240 && host_integerp (DECL_SIZE (field), 1)
1241 && host_integerp (rli->offset, 1)
1242 && host_integerp (TYPE_SIZE (type), 1))
1244 unsigned int type_align = TYPE_ALIGN (type);
1245 tree dsize = DECL_SIZE (field);
1246 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1247 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1248 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1250 #ifdef ADJUST_FIELD_ALIGN
1251 if (! TYPE_USER_ALIGN (type))
1252 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1253 #endif
1255 /* A bit field may not span more units of alignment of its type
1256 than its type itself. Advance to next boundary if necessary. */
1257 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1259 if (DECL_PACKED (field))
1261 if (warn_packed_bitfield_compat == 1)
1262 inform
1263 (input_location,
1264 "offset of packed bit-field %qD has changed in GCC 4.4",
1265 field);
1267 else
1268 rli->bitpos = round_up (rli->bitpos, type_align);
1271 if (! DECL_PACKED (field))
1272 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1274 #endif
1276 #ifdef BITFIELD_NBYTES_LIMITED
1277 if (BITFIELD_NBYTES_LIMITED
1278 && ! targetm.ms_bitfield_layout_p (rli->t)
1279 && TREE_CODE (field) == FIELD_DECL
1280 && type != error_mark_node
1281 && DECL_BIT_FIELD_TYPE (field)
1282 && ! DECL_PACKED (field)
1283 && ! integer_zerop (DECL_SIZE (field))
1284 && host_integerp (DECL_SIZE (field), 1)
1285 && host_integerp (rli->offset, 1)
1286 && host_integerp (TYPE_SIZE (type), 1))
1288 unsigned int type_align = TYPE_ALIGN (type);
1289 tree dsize = DECL_SIZE (field);
1290 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1291 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1292 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1294 #ifdef ADJUST_FIELD_ALIGN
1295 if (! TYPE_USER_ALIGN (type))
1296 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1297 #endif
1299 if (maximum_field_alignment != 0)
1300 type_align = MIN (type_align, maximum_field_alignment);
1301 /* ??? This test is opposite the test in the containing if
1302 statement, so this code is unreachable currently. */
1303 else if (DECL_PACKED (field))
1304 type_align = MIN (type_align, BITS_PER_UNIT);
1306 /* A bit field may not span the unit of alignment of its type.
1307 Advance to next boundary if necessary. */
1308 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1309 rli->bitpos = round_up (rli->bitpos, type_align);
1311 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1313 #endif
1315 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1316 A subtlety:
1317 When a bit field is inserted into a packed record, the whole
1318 size of the underlying type is used by one or more same-size
1319 adjacent bitfields. (That is, if its long:3, 32 bits is
1320 used in the record, and any additional adjacent long bitfields are
1321 packed into the same chunk of 32 bits. However, if the size
1322 changes, a new field of that size is allocated.) In an unpacked
1323 record, this is the same as using alignment, but not equivalent
1324 when packing.
1326 Note: for compatibility, we use the type size, not the type alignment
1327 to determine alignment, since that matches the documentation */
1329 if (targetm.ms_bitfield_layout_p (rli->t))
1331 tree prev_saved = rli->prev_field;
1332 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1334 /* This is a bitfield if it exists. */
1335 if (rli->prev_field)
1337 /* If both are bitfields, nonzero, and the same size, this is
1338 the middle of a run. Zero declared size fields are special
1339 and handled as "end of run". (Note: it's nonzero declared
1340 size, but equal type sizes!) (Since we know that both
1341 the current and previous fields are bitfields by the
1342 time we check it, DECL_SIZE must be present for both.) */
1343 if (DECL_BIT_FIELD_TYPE (field)
1344 && !integer_zerop (DECL_SIZE (field))
1345 && !integer_zerop (DECL_SIZE (rli->prev_field))
1346 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1347 && host_integerp (TYPE_SIZE (type), 0)
1348 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1350 /* We're in the middle of a run of equal type size fields; make
1351 sure we realign if we run out of bits. (Not decl size,
1352 type size!) */
1353 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1355 if (rli->remaining_in_alignment < bitsize)
1357 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1359 /* out of bits; bump up to next 'word'. */
1360 rli->bitpos
1361 = size_binop (PLUS_EXPR, rli->bitpos,
1362 bitsize_int (rli->remaining_in_alignment));
1363 rli->prev_field = field;
1364 if (typesize < bitsize)
1365 rli->remaining_in_alignment = 0;
1366 else
1367 rli->remaining_in_alignment = typesize - bitsize;
1369 else
1370 rli->remaining_in_alignment -= bitsize;
1372 else
1374 /* End of a run: if leaving a run of bitfields of the same type
1375 size, we have to "use up" the rest of the bits of the type
1376 size.
1378 Compute the new position as the sum of the size for the prior
1379 type and where we first started working on that type.
1380 Note: since the beginning of the field was aligned then
1381 of course the end will be too. No round needed. */
1383 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1385 rli->bitpos
1386 = size_binop (PLUS_EXPR, rli->bitpos,
1387 bitsize_int (rli->remaining_in_alignment));
1389 else
1390 /* We "use up" size zero fields; the code below should behave
1391 as if the prior field was not a bitfield. */
1392 prev_saved = NULL;
1394 /* Cause a new bitfield to be captured, either this time (if
1395 currently a bitfield) or next time we see one. */
1396 if (!DECL_BIT_FIELD_TYPE(field)
1397 || integer_zerop (DECL_SIZE (field)))
1398 rli->prev_field = NULL;
1401 normalize_rli (rli);
1404 /* If we're starting a new run of same size type bitfields
1405 (or a run of non-bitfields), set up the "first of the run"
1406 fields.
1408 That is, if the current field is not a bitfield, or if there
1409 was a prior bitfield the type sizes differ, or if there wasn't
1410 a prior bitfield the size of the current field is nonzero.
1412 Note: we must be sure to test ONLY the type size if there was
1413 a prior bitfield and ONLY for the current field being zero if
1414 there wasn't. */
1416 if (!DECL_BIT_FIELD_TYPE (field)
1417 || (prev_saved != NULL
1418 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1419 : !integer_zerop (DECL_SIZE (field)) ))
1421 /* Never smaller than a byte for compatibility. */
1422 unsigned int type_align = BITS_PER_UNIT;
1424 /* (When not a bitfield), we could be seeing a flex array (with
1425 no DECL_SIZE). Since we won't be using remaining_in_alignment
1426 until we see a bitfield (and come by here again) we just skip
1427 calculating it. */
1428 if (DECL_SIZE (field) != NULL
1429 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1430 && host_integerp (DECL_SIZE (field), 1))
1432 unsigned HOST_WIDE_INT bitsize
1433 = tree_low_cst (DECL_SIZE (field), 1);
1434 unsigned HOST_WIDE_INT typesize
1435 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1437 if (typesize < bitsize)
1438 rli->remaining_in_alignment = 0;
1439 else
1440 rli->remaining_in_alignment = typesize - bitsize;
1443 /* Now align (conventionally) for the new type. */
1444 type_align = TYPE_ALIGN (TREE_TYPE (field));
1446 if (maximum_field_alignment != 0)
1447 type_align = MIN (type_align, maximum_field_alignment);
1449 rli->bitpos = round_up (rli->bitpos, type_align);
1451 /* If we really aligned, don't allow subsequent bitfields
1452 to undo that. */
1453 rli->prev_field = NULL;
1457 /* Offset so far becomes the position of this field after normalizing. */
1458 normalize_rli (rli);
1459 DECL_FIELD_OFFSET (field) = rli->offset;
1460 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1461 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1463 /* If this field ended up more aligned than we thought it would be (we
1464 approximate this by seeing if its position changed), lay out the field
1465 again; perhaps we can use an integral mode for it now. */
1466 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1467 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1468 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1469 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1470 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1471 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1472 actual_align = (BITS_PER_UNIT
1473 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1474 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1475 else
1476 actual_align = DECL_OFFSET_ALIGN (field);
1477 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1478 store / extract bit field operations will check the alignment of the
1479 record against the mode of bit fields. */
1481 if (known_align != actual_align)
1482 layout_decl (field, actual_align);
1484 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1485 rli->prev_field = field;
1487 /* Now add size of this field to the size of the record. If the size is
1488 not constant, treat the field as being a multiple of bytes and just
1489 adjust the offset, resetting the bit position. Otherwise, apportion the
1490 size amongst the bit position and offset. First handle the case of an
1491 unspecified size, which can happen when we have an invalid nested struct
1492 definition, such as struct j { struct j { int i; } }. The error message
1493 is printed in finish_struct. */
1494 if (DECL_SIZE (field) == 0)
1495 /* Do nothing. */;
1496 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1497 || TREE_OVERFLOW (DECL_SIZE (field)))
1499 rli->offset
1500 = size_binop (PLUS_EXPR, rli->offset,
1501 fold_convert (sizetype,
1502 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1503 bitsize_unit_node)));
1504 rli->offset
1505 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1506 rli->bitpos = bitsize_zero_node;
1507 rli->offset_align = MIN (rli->offset_align, desired_align);
1509 else if (targetm.ms_bitfield_layout_p (rli->t))
1511 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1513 /* If we ended a bitfield before the full length of the type then
1514 pad the struct out to the full length of the last type. */
1515 if ((DECL_CHAIN (field) == NULL
1516 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1517 && DECL_BIT_FIELD_TYPE (field)
1518 && !integer_zerop (DECL_SIZE (field)))
1519 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1520 bitsize_int (rli->remaining_in_alignment));
1522 normalize_rli (rli);
1524 else
1526 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1527 normalize_rli (rli);
1531 /* Assuming that all the fields have been laid out, this function uses
1532 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1533 indicated by RLI. */
1535 static void
1536 finalize_record_size (record_layout_info rli)
1538 tree unpadded_size, unpadded_size_unit;
1540 /* Now we want just byte and bit offsets, so set the offset alignment
1541 to be a byte and then normalize. */
1542 rli->offset_align = BITS_PER_UNIT;
1543 normalize_rli (rli);
1545 /* Determine the desired alignment. */
1546 #ifdef ROUND_TYPE_ALIGN
1547 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1548 rli->record_align);
1549 #else
1550 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1551 #endif
1553 /* Compute the size so far. Be sure to allow for extra bits in the
1554 size in bytes. We have guaranteed above that it will be no more
1555 than a single byte. */
1556 unpadded_size = rli_size_so_far (rli);
1557 unpadded_size_unit = rli_size_unit_so_far (rli);
1558 if (! integer_zerop (rli->bitpos))
1559 unpadded_size_unit
1560 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1562 /* Round the size up to be a multiple of the required alignment. */
1563 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1564 TYPE_SIZE_UNIT (rli->t)
1565 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1567 if (TREE_CONSTANT (unpadded_size)
1568 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1569 && input_location != BUILTINS_LOCATION)
1570 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1572 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1573 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1574 && TREE_CONSTANT (unpadded_size))
1576 tree unpacked_size;
1578 #ifdef ROUND_TYPE_ALIGN
1579 rli->unpacked_align
1580 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1581 #else
1582 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1583 #endif
1585 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1586 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1588 if (TYPE_NAME (rli->t))
1590 tree name;
1592 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1593 name = TYPE_NAME (rli->t);
1594 else
1595 name = DECL_NAME (TYPE_NAME (rli->t));
1597 if (STRICT_ALIGNMENT)
1598 warning (OPT_Wpacked, "packed attribute causes inefficient "
1599 "alignment for %qE", name);
1600 else
1601 warning (OPT_Wpacked,
1602 "packed attribute is unnecessary for %qE", name);
1604 else
1606 if (STRICT_ALIGNMENT)
1607 warning (OPT_Wpacked,
1608 "packed attribute causes inefficient alignment");
1609 else
1610 warning (OPT_Wpacked, "packed attribute is unnecessary");
1616 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1618 void
1619 compute_record_mode (tree type)
1621 tree field;
1622 enum machine_mode mode = VOIDmode;
1624 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1625 However, if possible, we use a mode that fits in a register
1626 instead, in order to allow for better optimization down the
1627 line. */
1628 SET_TYPE_MODE (type, BLKmode);
1630 if (! host_integerp (TYPE_SIZE (type), 1))
1631 return;
1633 /* A record which has any BLKmode members must itself be
1634 BLKmode; it can't go in a register. Unless the member is
1635 BLKmode only because it isn't aligned. */
1636 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1638 if (TREE_CODE (field) != FIELD_DECL)
1639 continue;
1641 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1642 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1643 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1644 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1645 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1646 || ! host_integerp (bit_position (field), 1)
1647 || DECL_SIZE (field) == 0
1648 || ! host_integerp (DECL_SIZE (field), 1))
1649 return;
1651 /* If this field is the whole struct, remember its mode so
1652 that, say, we can put a double in a class into a DF
1653 register instead of forcing it to live in the stack. */
1654 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1655 mode = DECL_MODE (field);
1657 /* With some targets, it is sub-optimal to access an aligned
1658 BLKmode structure as a scalar. */
1659 if (targetm.member_type_forces_blk (field, mode))
1660 return;
1663 /* If we only have one real field; use its mode if that mode's size
1664 matches the type's size. This only applies to RECORD_TYPE. This
1665 does not apply to unions. */
1666 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1667 && host_integerp (TYPE_SIZE (type), 1)
1668 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1669 SET_TYPE_MODE (type, mode);
1670 else
1671 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1673 /* If structure's known alignment is less than what the scalar
1674 mode would need, and it matters, then stick with BLKmode. */
1675 if (TYPE_MODE (type) != BLKmode
1676 && STRICT_ALIGNMENT
1677 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1678 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1680 /* If this is the only reason this type is BLKmode, then
1681 don't force containing types to be BLKmode. */
1682 TYPE_NO_FORCE_BLK (type) = 1;
1683 SET_TYPE_MODE (type, BLKmode);
1687 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1688 out. */
1690 static void
1691 finalize_type_size (tree type)
1693 /* Normally, use the alignment corresponding to the mode chosen.
1694 However, where strict alignment is not required, avoid
1695 over-aligning structures, since most compilers do not do this
1696 alignment. */
1698 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1699 && (STRICT_ALIGNMENT
1700 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1701 && TREE_CODE (type) != QUAL_UNION_TYPE
1702 && TREE_CODE (type) != ARRAY_TYPE)))
1704 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1706 /* Don't override a larger alignment requirement coming from a user
1707 alignment of one of the fields. */
1708 if (mode_align >= TYPE_ALIGN (type))
1710 TYPE_ALIGN (type) = mode_align;
1711 TYPE_USER_ALIGN (type) = 0;
1715 /* Do machine-dependent extra alignment. */
1716 #ifdef ROUND_TYPE_ALIGN
1717 TYPE_ALIGN (type)
1718 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1719 #endif
1721 /* If we failed to find a simple way to calculate the unit size
1722 of the type, find it by division. */
1723 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1724 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1725 result will fit in sizetype. We will get more efficient code using
1726 sizetype, so we force a conversion. */
1727 TYPE_SIZE_UNIT (type)
1728 = fold_convert (sizetype,
1729 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1730 bitsize_unit_node));
1732 if (TYPE_SIZE (type) != 0)
1734 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1735 TYPE_SIZE_UNIT (type)
1736 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1739 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1740 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1741 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1742 if (TYPE_SIZE_UNIT (type) != 0
1743 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1744 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1746 /* Also layout any other variants of the type. */
1747 if (TYPE_NEXT_VARIANT (type)
1748 || type != TYPE_MAIN_VARIANT (type))
1750 tree variant;
1751 /* Record layout info of this variant. */
1752 tree size = TYPE_SIZE (type);
1753 tree size_unit = TYPE_SIZE_UNIT (type);
1754 unsigned int align = TYPE_ALIGN (type);
1755 unsigned int user_align = TYPE_USER_ALIGN (type);
1756 enum machine_mode mode = TYPE_MODE (type);
1758 /* Copy it into all variants. */
1759 for (variant = TYPE_MAIN_VARIANT (type);
1760 variant != 0;
1761 variant = TYPE_NEXT_VARIANT (variant))
1763 TYPE_SIZE (variant) = size;
1764 TYPE_SIZE_UNIT (variant) = size_unit;
1765 TYPE_ALIGN (variant) = align;
1766 TYPE_USER_ALIGN (variant) = user_align;
1767 SET_TYPE_MODE (variant, mode);
1772 /* Return a new underlying object for a bitfield started with FIELD. */
1774 static tree
1775 start_bitfield_representative (tree field)
1777 tree repr = make_node (FIELD_DECL);
1778 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1779 /* Force the representative to begin at a BITS_PER_UNIT aligned
1780 boundary - C++ may use tail-padding of a base object to
1781 continue packing bits so the bitfield region does not start
1782 at bit zero (see g++.dg/abi/bitfield5.C for example).
1783 Unallocated bits may happen for other reasons as well,
1784 for example Ada which allows explicit bit-granular structure layout. */
1785 DECL_FIELD_BIT_OFFSET (repr)
1786 = size_binop (BIT_AND_EXPR,
1787 DECL_FIELD_BIT_OFFSET (field),
1788 bitsize_int (~(BITS_PER_UNIT - 1)));
1789 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1790 DECL_SIZE (repr) = DECL_SIZE (field);
1791 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1792 DECL_PACKED (repr) = DECL_PACKED (field);
1793 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1794 return repr;
1797 /* Finish up a bitfield group that was started by creating the underlying
1798 object REPR with the last field in the bitfield group FIELD. */
1800 static void
1801 finish_bitfield_representative (tree repr, tree field)
1803 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1804 enum machine_mode mode;
1805 tree nextf, size;
1807 size = size_diffop (DECL_FIELD_OFFSET (field),
1808 DECL_FIELD_OFFSET (repr));
1809 gcc_assert (host_integerp (size, 1));
1810 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1811 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1812 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1813 + tree_low_cst (DECL_SIZE (field), 1));
1815 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1816 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1818 /* Now nothing tells us how to pad out bitsize ... */
1819 nextf = DECL_CHAIN (field);
1820 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1821 nextf = DECL_CHAIN (nextf);
1822 if (nextf)
1824 tree maxsize;
1825 /* If there was an error, the field may be not laid out
1826 correctly. Don't bother to do anything. */
1827 if (TREE_TYPE (nextf) == error_mark_node)
1828 return;
1829 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1830 DECL_FIELD_OFFSET (repr));
1831 if (host_integerp (maxsize, 1))
1833 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1834 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1835 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1836 /* If the group ends within a bitfield nextf does not need to be
1837 aligned to BITS_PER_UNIT. Thus round up. */
1838 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1840 else
1841 maxbitsize = bitsize;
1843 else
1845 /* ??? If you consider that tail-padding of this struct might be
1846 re-used when deriving from it we cannot really do the following
1847 and thus need to set maxsize to bitsize? Also we cannot
1848 generally rely on maxsize to fold to an integer constant, so
1849 use bitsize as fallback for this case. */
1850 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1851 DECL_FIELD_OFFSET (repr));
1852 if (host_integerp (maxsize, 1))
1853 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1854 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1855 else
1856 maxbitsize = bitsize;
1859 /* Only if we don't artificially break up the representative in
1860 the middle of a large bitfield with different possibly
1861 overlapping representatives. And all representatives start
1862 at byte offset. */
1863 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1865 /* Find the smallest nice mode to use. */
1866 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1867 mode = GET_MODE_WIDER_MODE (mode))
1868 if (GET_MODE_BITSIZE (mode) >= bitsize)
1869 break;
1870 if (mode != VOIDmode
1871 && (GET_MODE_BITSIZE (mode) > maxbitsize
1872 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1873 mode = VOIDmode;
1875 if (mode == VOIDmode)
1877 /* We really want a BLKmode representative only as a last resort,
1878 considering the member b in
1879 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1880 Otherwise we simply want to split the representative up
1881 allowing for overlaps within the bitfield region as required for
1882 struct { int a : 7; int b : 7;
1883 int c : 10; int d; } __attribute__((packed));
1884 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1885 DECL_SIZE (repr) = bitsize_int (bitsize);
1886 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1887 DECL_MODE (repr) = BLKmode;
1888 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1889 bitsize / BITS_PER_UNIT);
1891 else
1893 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1894 DECL_SIZE (repr) = bitsize_int (modesize);
1895 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1896 DECL_MODE (repr) = mode;
1897 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1900 /* Remember whether the bitfield group is at the end of the
1901 structure or not. */
1902 DECL_CHAIN (repr) = nextf;
1905 /* Compute and set FIELD_DECLs for the underlying objects we should
1906 use for bitfield access for the structure laid out with RLI. */
1908 static void
1909 finish_bitfield_layout (record_layout_info rli)
1911 tree field, prev;
1912 tree repr = NULL_TREE;
1914 /* Unions would be special, for the ease of type-punning optimizations
1915 we could use the underlying type as hint for the representative
1916 if the bitfield would fit and the representative would not exceed
1917 the union in size. */
1918 if (TREE_CODE (rli->t) != RECORD_TYPE)
1919 return;
1921 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1922 field; field = DECL_CHAIN (field))
1924 if (TREE_CODE (field) != FIELD_DECL)
1925 continue;
1927 /* In the C++ memory model, consecutive bit fields in a structure are
1928 considered one memory location and updating a memory location
1929 may not store into adjacent memory locations. */
1930 if (!repr
1931 && DECL_BIT_FIELD_TYPE (field))
1933 /* Start new representative. */
1934 repr = start_bitfield_representative (field);
1936 else if (repr
1937 && ! DECL_BIT_FIELD_TYPE (field))
1939 /* Finish off new representative. */
1940 finish_bitfield_representative (repr, prev);
1941 repr = NULL_TREE;
1943 else if (DECL_BIT_FIELD_TYPE (field))
1945 gcc_assert (repr != NULL_TREE);
1947 /* Zero-size bitfields finish off a representative and
1948 do not have a representative themselves. This is
1949 required by the C++ memory model. */
1950 if (integer_zerop (DECL_SIZE (field)))
1952 finish_bitfield_representative (repr, prev);
1953 repr = NULL_TREE;
1956 /* We assume that either DECL_FIELD_OFFSET of the representative
1957 and each bitfield member is a constant or they are equal.
1958 This is because we need to be able to compute the bit-offset
1959 of each field relative to the representative in get_bit_range
1960 during RTL expansion.
1961 If these constraints are not met, simply force a new
1962 representative to be generated. That will at most
1963 generate worse code but still maintain correctness with
1964 respect to the C++ memory model. */
1965 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1966 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1967 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1968 DECL_FIELD_OFFSET (field), 0)))
1970 finish_bitfield_representative (repr, prev);
1971 repr = start_bitfield_representative (field);
1974 else
1975 continue;
1977 if (repr)
1978 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1980 prev = field;
1983 if (repr)
1984 finish_bitfield_representative (repr, prev);
1987 /* Do all of the work required to layout the type indicated by RLI,
1988 once the fields have been laid out. This function will call `free'
1989 for RLI, unless FREE_P is false. Passing a value other than false
1990 for FREE_P is bad practice; this option only exists to support the
1991 G++ 3.2 ABI. */
1993 void
1994 finish_record_layout (record_layout_info rli, int free_p)
1996 tree variant;
1998 /* Compute the final size. */
1999 finalize_record_size (rli);
2001 /* Compute the TYPE_MODE for the record. */
2002 compute_record_mode (rli->t);
2004 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2005 finalize_type_size (rli->t);
2007 /* Compute bitfield representatives. */
2008 finish_bitfield_layout (rli);
2010 /* Propagate TYPE_PACKED to variants. With C++ templates,
2011 handle_packed_attribute is too early to do this. */
2012 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2013 variant = TYPE_NEXT_VARIANT (variant))
2014 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2016 /* Lay out any static members. This is done now because their type
2017 may use the record's type. */
2018 while (!vec_safe_is_empty (rli->pending_statics))
2019 layout_decl (rli->pending_statics->pop (), 0);
2021 /* Clean up. */
2022 if (free_p)
2024 vec_free (rli->pending_statics);
2025 free (rli);
2030 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2031 NAME, its fields are chained in reverse on FIELDS.
2033 If ALIGN_TYPE is non-null, it is given the same alignment as
2034 ALIGN_TYPE. */
2036 void
2037 finish_builtin_struct (tree type, const char *name, tree fields,
2038 tree align_type)
2040 tree tail, next;
2042 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2044 DECL_FIELD_CONTEXT (fields) = type;
2045 next = DECL_CHAIN (fields);
2046 DECL_CHAIN (fields) = tail;
2048 TYPE_FIELDS (type) = tail;
2050 if (align_type)
2052 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2053 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2056 layout_type (type);
2057 #if 0 /* not yet, should get fixed properly later */
2058 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2059 #else
2060 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2061 TYPE_DECL, get_identifier (name), type);
2062 #endif
2063 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2064 layout_decl (TYPE_NAME (type), 0);
2067 /* Calculate the mode, size, and alignment for TYPE.
2068 For an array type, calculate the element separation as well.
2069 Record TYPE on the chain of permanent or temporary types
2070 so that dbxout will find out about it.
2072 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2073 layout_type does nothing on such a type.
2075 If the type is incomplete, its TYPE_SIZE remains zero. */
2077 void
2078 layout_type (tree type)
2080 gcc_assert (type);
2082 if (type == error_mark_node)
2083 return;
2085 /* Do nothing if type has been laid out before. */
2086 if (TYPE_SIZE (type))
2087 return;
2089 switch (TREE_CODE (type))
2091 case LANG_TYPE:
2092 /* This kind of type is the responsibility
2093 of the language-specific code. */
2094 gcc_unreachable ();
2096 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
2097 if (TYPE_PRECISION (type) == 0)
2098 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
2100 /* ... fall through ... */
2102 case INTEGER_TYPE:
2103 case ENUMERAL_TYPE:
2104 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
2105 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
2106 TYPE_UNSIGNED (type) = 1;
2108 SET_TYPE_MODE (type,
2109 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2110 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2111 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2112 break;
2114 case REAL_TYPE:
2115 SET_TYPE_MODE (type,
2116 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2117 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2118 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2119 break;
2121 case FIXED_POINT_TYPE:
2122 /* TYPE_MODE (type) has been set already. */
2123 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2124 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2125 break;
2127 case COMPLEX_TYPE:
2128 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2129 SET_TYPE_MODE (type,
2130 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2131 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2132 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2133 0));
2134 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2135 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2136 break;
2138 case VECTOR_TYPE:
2140 int nunits = TYPE_VECTOR_SUBPARTS (type);
2141 tree innertype = TREE_TYPE (type);
2143 gcc_assert (!(nunits & (nunits - 1)));
2145 /* Find an appropriate mode for the vector type. */
2146 if (TYPE_MODE (type) == VOIDmode)
2147 SET_TYPE_MODE (type,
2148 mode_for_vector (TYPE_MODE (innertype), nunits));
2150 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2151 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2152 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2153 TYPE_SIZE_UNIT (innertype),
2154 size_int (nunits));
2155 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2156 bitsize_int (nunits));
2158 /* For vector types, we do not default to the mode's alignment.
2159 Instead, query a target hook, defaulting to natural alignment.
2160 This prevents ABI changes depending on whether or not native
2161 vector modes are supported. */
2162 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2164 /* However, if the underlying mode requires a bigger alignment than
2165 what the target hook provides, we cannot use the mode. For now,
2166 simply reject that case. */
2167 gcc_assert (TYPE_ALIGN (type)
2168 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2169 break;
2172 case VOID_TYPE:
2173 /* This is an incomplete type and so doesn't have a size. */
2174 TYPE_ALIGN (type) = 1;
2175 TYPE_USER_ALIGN (type) = 0;
2176 SET_TYPE_MODE (type, VOIDmode);
2177 break;
2179 case OFFSET_TYPE:
2180 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2181 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2182 /* A pointer might be MODE_PARTIAL_INT,
2183 but ptrdiff_t must be integral. */
2184 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2185 TYPE_PRECISION (type) = POINTER_SIZE;
2186 break;
2188 case FUNCTION_TYPE:
2189 case METHOD_TYPE:
2190 /* It's hard to see what the mode and size of a function ought to
2191 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2192 make it consistent with that. */
2193 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2194 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2195 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2196 break;
2198 case POINTER_TYPE:
2199 case REFERENCE_TYPE:
2201 enum machine_mode mode = TYPE_MODE (type);
2202 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2204 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2205 mode = targetm.addr_space.address_mode (as);
2208 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2209 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2210 TYPE_UNSIGNED (type) = 1;
2211 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2213 break;
2215 case ARRAY_TYPE:
2217 tree index = TYPE_DOMAIN (type);
2218 tree element = TREE_TYPE (type);
2220 build_pointer_type (element);
2222 /* We need to know both bounds in order to compute the size. */
2223 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2224 && TYPE_SIZE (element))
2226 tree ub = TYPE_MAX_VALUE (index);
2227 tree lb = TYPE_MIN_VALUE (index);
2228 tree element_size = TYPE_SIZE (element);
2229 tree length;
2231 /* Make sure that an array of zero-sized element is zero-sized
2232 regardless of its extent. */
2233 if (integer_zerop (element_size))
2234 length = size_zero_node;
2236 /* The computation should happen in the original signedness so
2237 that (possible) negative values are handled appropriately
2238 when determining overflow. */
2239 else
2241 /* ??? When it is obvious that the range is signed
2242 represent it using ssizetype. */
2243 if (TREE_CODE (lb) == INTEGER_CST
2244 && TREE_CODE (ub) == INTEGER_CST
2245 && TYPE_UNSIGNED (TREE_TYPE (lb))
2246 && tree_int_cst_lt (ub, lb))
2248 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2249 lb = double_int_to_tree
2250 (ssizetype,
2251 tree_to_double_int (lb).sext (prec));
2252 ub = double_int_to_tree
2253 (ssizetype,
2254 tree_to_double_int (ub).sext (prec));
2256 length
2257 = fold_convert (sizetype,
2258 size_binop (PLUS_EXPR,
2259 build_int_cst (TREE_TYPE (lb), 1),
2260 size_binop (MINUS_EXPR, ub, lb)));
2263 /* If we arrived at a length of zero ignore any overflow
2264 that occurred as part of the calculation. There exists
2265 an association of the plus one where that overflow would
2266 not happen. */
2267 if (integer_zerop (length)
2268 && TREE_OVERFLOW (length))
2269 length = size_zero_node;
2271 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2272 fold_convert (bitsizetype,
2273 length));
2275 /* If we know the size of the element, calculate the total size
2276 directly, rather than do some division thing below. This
2277 optimization helps Fortran assumed-size arrays (where the
2278 size of the array is determined at runtime) substantially. */
2279 if (TYPE_SIZE_UNIT (element))
2280 TYPE_SIZE_UNIT (type)
2281 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2284 /* Now round the alignment and size,
2285 using machine-dependent criteria if any. */
2287 #ifdef ROUND_TYPE_ALIGN
2288 TYPE_ALIGN (type)
2289 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2290 #else
2291 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2292 #endif
2293 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2294 SET_TYPE_MODE (type, BLKmode);
2295 if (TYPE_SIZE (type) != 0
2296 && ! targetm.member_type_forces_blk (type, VOIDmode)
2297 /* BLKmode elements force BLKmode aggregate;
2298 else extract/store fields may lose. */
2299 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2300 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2302 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2303 TYPE_SIZE (type)));
2304 if (TYPE_MODE (type) != BLKmode
2305 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2306 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2308 TYPE_NO_FORCE_BLK (type) = 1;
2309 SET_TYPE_MODE (type, BLKmode);
2312 /* When the element size is constant, check that it is at least as
2313 large as the element alignment. */
2314 if (TYPE_SIZE_UNIT (element)
2315 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2316 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2317 TYPE_ALIGN_UNIT. */
2318 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2319 && !integer_zerop (TYPE_SIZE_UNIT (element))
2320 && compare_tree_int (TYPE_SIZE_UNIT (element),
2321 TYPE_ALIGN_UNIT (element)) < 0)
2322 error ("alignment of array elements is greater than element size");
2323 break;
2326 case RECORD_TYPE:
2327 case UNION_TYPE:
2328 case QUAL_UNION_TYPE:
2330 tree field;
2331 record_layout_info rli;
2333 /* Initialize the layout information. */
2334 rli = start_record_layout (type);
2336 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2337 in the reverse order in building the COND_EXPR that denotes
2338 its size. We reverse them again later. */
2339 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2340 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2342 /* Place all the fields. */
2343 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2344 place_field (rli, field);
2346 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2347 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2349 /* Finish laying out the record. */
2350 finish_record_layout (rli, /*free_p=*/true);
2352 break;
2354 default:
2355 gcc_unreachable ();
2358 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2359 records and unions, finish_record_layout already called this
2360 function. */
2361 if (TREE_CODE (type) != RECORD_TYPE
2362 && TREE_CODE (type) != UNION_TYPE
2363 && TREE_CODE (type) != QUAL_UNION_TYPE)
2364 finalize_type_size (type);
2366 /* We should never see alias sets on incomplete aggregates. And we
2367 should not call layout_type on not incomplete aggregates. */
2368 if (AGGREGATE_TYPE_P (type))
2369 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2372 /* Vector types need to re-check the target flags each time we report
2373 the machine mode. We need to do this because attribute target can
2374 change the result of vector_mode_supported_p and have_regs_of_mode
2375 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2376 change on a per-function basis. */
2377 /* ??? Possibly a better solution is to run through all the types
2378 referenced by a function and re-compute the TYPE_MODE once, rather
2379 than make the TYPE_MODE macro call a function. */
2381 enum machine_mode
2382 vector_type_mode (const_tree t)
2384 enum machine_mode mode;
2386 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2388 mode = t->type_common.mode;
2389 if (VECTOR_MODE_P (mode)
2390 && (!targetm.vector_mode_supported_p (mode)
2391 || !have_regs_of_mode[mode]))
2393 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2395 /* For integers, try mapping it to a same-sized scalar mode. */
2396 if (GET_MODE_CLASS (innermode) == MODE_INT)
2398 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2399 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2401 if (mode != VOIDmode && have_regs_of_mode[mode])
2402 return mode;
2405 return BLKmode;
2408 return mode;
2411 /* Create and return a type for signed integers of PRECISION bits. */
2413 tree
2414 make_signed_type (int precision)
2416 tree type = make_node (INTEGER_TYPE);
2418 TYPE_PRECISION (type) = precision;
2420 fixup_signed_type (type);
2421 return type;
2424 /* Create and return a type for unsigned integers of PRECISION bits. */
2426 tree
2427 make_unsigned_type (int precision)
2429 tree type = make_node (INTEGER_TYPE);
2431 TYPE_PRECISION (type) = precision;
2433 fixup_unsigned_type (type);
2434 return type;
2437 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2438 and SATP. */
2440 tree
2441 make_fract_type (int precision, int unsignedp, int satp)
2443 tree type = make_node (FIXED_POINT_TYPE);
2445 TYPE_PRECISION (type) = precision;
2447 if (satp)
2448 TYPE_SATURATING (type) = 1;
2450 /* Lay out the type: set its alignment, size, etc. */
2451 if (unsignedp)
2453 TYPE_UNSIGNED (type) = 1;
2454 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2456 else
2457 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2458 layout_type (type);
2460 return type;
2463 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2464 and SATP. */
2466 tree
2467 make_accum_type (int precision, int unsignedp, int satp)
2469 tree type = make_node (FIXED_POINT_TYPE);
2471 TYPE_PRECISION (type) = precision;
2473 if (satp)
2474 TYPE_SATURATING (type) = 1;
2476 /* Lay out the type: set its alignment, size, etc. */
2477 if (unsignedp)
2479 TYPE_UNSIGNED (type) = 1;
2480 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2482 else
2483 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2484 layout_type (type);
2486 return type;
2489 /* Initialize sizetypes so layout_type can use them. */
2491 void
2492 initialize_sizetypes (void)
2494 int precision, bprecision;
2496 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2497 if (strcmp (SIZETYPE, "unsigned int") == 0)
2498 precision = INT_TYPE_SIZE;
2499 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2500 precision = LONG_TYPE_SIZE;
2501 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2502 precision = LONG_LONG_TYPE_SIZE;
2503 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2504 precision = SHORT_TYPE_SIZE;
2505 else
2506 gcc_unreachable ();
2508 bprecision
2509 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2510 bprecision
2511 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2512 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2513 bprecision = HOST_BITS_PER_DOUBLE_INT;
2515 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2516 sizetype = make_node (INTEGER_TYPE);
2517 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2518 TYPE_PRECISION (sizetype) = precision;
2519 TYPE_UNSIGNED (sizetype) = 1;
2520 bitsizetype = make_node (INTEGER_TYPE);
2521 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2522 TYPE_PRECISION (bitsizetype) = bprecision;
2523 TYPE_UNSIGNED (bitsizetype) = 1;
2525 /* Now layout both types manually. */
2526 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2527 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2528 TYPE_SIZE (sizetype) = bitsize_int (precision);
2529 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2530 set_min_and_max_values_for_integral_type (sizetype, precision,
2531 /*is_unsigned=*/true);
2533 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2534 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2535 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2536 TYPE_SIZE_UNIT (bitsizetype)
2537 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2538 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2539 /*is_unsigned=*/true);
2541 /* Create the signed variants of *sizetype. */
2542 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2543 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2544 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2545 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2548 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2549 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2550 for TYPE, based on the PRECISION and whether or not the TYPE
2551 IS_UNSIGNED. PRECISION need not correspond to a width supported
2552 natively by the hardware; for example, on a machine with 8-bit,
2553 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2554 61. */
2556 void
2557 set_min_and_max_values_for_integral_type (tree type,
2558 int precision,
2559 bool is_unsigned)
2561 tree min_value;
2562 tree max_value;
2564 if (is_unsigned)
2566 min_value = build_int_cst (type, 0);
2567 max_value
2568 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2569 ? -1
2570 : ((HOST_WIDE_INT) 1 << precision) - 1,
2571 precision - HOST_BITS_PER_WIDE_INT > 0
2572 ? ((unsigned HOST_WIDE_INT) ~0
2573 >> (HOST_BITS_PER_WIDE_INT
2574 - (precision - HOST_BITS_PER_WIDE_INT)))
2575 : 0);
2577 else
2579 min_value
2580 = build_int_cst_wide (type,
2581 (precision - HOST_BITS_PER_WIDE_INT > 0
2583 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2584 (((HOST_WIDE_INT) (-1)
2585 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2586 ? precision - HOST_BITS_PER_WIDE_INT - 1
2587 : 0))));
2588 max_value
2589 = build_int_cst_wide (type,
2590 (precision - HOST_BITS_PER_WIDE_INT > 0
2591 ? -1
2592 : (HOST_WIDE_INT)
2593 (((unsigned HOST_WIDE_INT) 1
2594 << (precision - 1)) - 1)),
2595 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2596 ? (HOST_WIDE_INT)
2597 ((((unsigned HOST_WIDE_INT) 1
2598 << (precision - HOST_BITS_PER_WIDE_INT
2599 - 1))) - 1)
2600 : 0));
2603 TYPE_MIN_VALUE (type) = min_value;
2604 TYPE_MAX_VALUE (type) = max_value;
2607 /* Set the extreme values of TYPE based on its precision in bits,
2608 then lay it out. Used when make_signed_type won't do
2609 because the tree code is not INTEGER_TYPE.
2610 E.g. for Pascal, when the -fsigned-char option is given. */
2612 void
2613 fixup_signed_type (tree type)
2615 int precision = TYPE_PRECISION (type);
2617 /* We can not represent properly constants greater then
2618 HOST_BITS_PER_DOUBLE_INT, still we need the types
2619 as they are used by i386 vector extensions and friends. */
2620 if (precision > HOST_BITS_PER_DOUBLE_INT)
2621 precision = HOST_BITS_PER_DOUBLE_INT;
2623 set_min_and_max_values_for_integral_type (type, precision,
2624 /*is_unsigned=*/false);
2626 /* Lay out the type: set its alignment, size, etc. */
2627 layout_type (type);
2630 /* Set the extreme values of TYPE based on its precision in bits,
2631 then lay it out. This is used both in `make_unsigned_type'
2632 and for enumeral types. */
2634 void
2635 fixup_unsigned_type (tree type)
2637 int precision = TYPE_PRECISION (type);
2639 /* We can not represent properly constants greater then
2640 HOST_BITS_PER_DOUBLE_INT, still we need the types
2641 as they are used by i386 vector extensions and friends. */
2642 if (precision > HOST_BITS_PER_DOUBLE_INT)
2643 precision = HOST_BITS_PER_DOUBLE_INT;
2645 TYPE_UNSIGNED (type) = 1;
2647 set_min_and_max_values_for_integral_type (type, precision,
2648 /*is_unsigned=*/true);
2650 /* Lay out the type: set its alignment, size, etc. */
2651 layout_type (type);
2654 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2655 starting at BITPOS.
2657 BITREGION_START is the bit position of the first bit in this
2658 sequence of bit fields. BITREGION_END is the last bit in this
2659 sequence. If these two fields are non-zero, we should restrict the
2660 memory access to that range. Otherwise, we are allowed to touch
2661 any adjacent non bit-fields.
2663 ALIGN is the alignment of the underlying object in bits.
2664 VOLATILEP says whether the bitfield is volatile. */
2666 bit_field_mode_iterator
2667 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2668 HOST_WIDE_INT bitregion_start,
2669 HOST_WIDE_INT bitregion_end,
2670 unsigned int align, bool volatilep)
2671 : mode_ (GET_CLASS_NARROWEST_MODE (MODE_INT)), bitsize_ (bitsize),
2672 bitpos_ (bitpos), bitregion_start_ (bitregion_start),
2673 bitregion_end_ (bitregion_end), align_ (MIN (align, BIGGEST_ALIGNMENT)),
2674 volatilep_ (volatilep), count_ (0)
2676 if (!bitregion_end_)
2678 /* We can assume that any aligned chunk of ALIGN_ bits that overlaps
2679 the bitfield is mapped and won't trap. */
2680 bitregion_end_ = bitpos + bitsize + align_ - 1;
2681 bitregion_end_ -= bitregion_end_ % align_ + 1;
2685 /* Calls to this function return successively larger modes that can be used
2686 to represent the bitfield. Return true if another bitfield mode is
2687 available, storing it in *OUT_MODE if so. */
2689 bool
2690 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2692 for (; mode_ != VOIDmode; mode_ = GET_MODE_WIDER_MODE (mode_))
2694 unsigned int unit = GET_MODE_BITSIZE (mode_);
2696 /* Skip modes that don't have full precision. */
2697 if (unit != GET_MODE_PRECISION (mode_))
2698 continue;
2700 /* Skip modes that are too small. */
2701 if ((bitpos_ % unit) + bitsize_ > unit)
2702 continue;
2704 /* Stop if the mode is too wide to handle efficiently. */
2705 if (unit > MAX_FIXED_MODE_SIZE)
2706 break;
2708 /* Don't deliver more than one multiword mode; the smallest one
2709 should be used. */
2710 if (count_ > 0 && unit > BITS_PER_WORD)
2711 break;
2713 /* Stop if the mode goes outside the bitregion. */
2714 HOST_WIDE_INT start = bitpos_ - (bitpos_ % unit);
2715 if (bitregion_start_ && start < bitregion_start_)
2716 break;
2717 if (start + unit > bitregion_end_ + 1)
2718 break;
2720 /* Stop if the mode requires too much alignment. */
2721 if (unit > align_ && SLOW_UNALIGNED_ACCESS (mode_, align_))
2722 break;
2724 *out_mode = mode_;
2725 mode_ = GET_MODE_WIDER_MODE (mode_);
2726 count_++;
2727 return true;
2729 return false;
2732 /* Return true if smaller modes are generally preferred for this kind
2733 of bitfield. */
2735 bool
2736 bit_field_mode_iterator::prefer_smaller_modes ()
2738 return (volatilep_
2739 ? targetm.narrow_volatile_bitfield ()
2740 : !SLOW_BYTE_ACCESS);
2743 /* Find the best machine mode to use when referencing a bit field of length
2744 BITSIZE bits starting at BITPOS.
2746 BITREGION_START is the bit position of the first bit in this
2747 sequence of bit fields. BITREGION_END is the last bit in this
2748 sequence. If these two fields are non-zero, we should restrict the
2749 memory access to that range. Otherwise, we are allowed to touch
2750 any adjacent non bit-fields.
2752 The underlying object is known to be aligned to a boundary of ALIGN bits.
2753 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2754 larger than LARGEST_MODE (usually SImode).
2756 If no mode meets all these conditions, we return VOIDmode.
2758 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2759 smallest mode meeting these conditions.
2761 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2762 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2763 all the conditions.
2765 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2766 decide which of the above modes should be used. */
2768 enum machine_mode
2769 get_best_mode (int bitsize, int bitpos,
2770 unsigned HOST_WIDE_INT bitregion_start,
2771 unsigned HOST_WIDE_INT bitregion_end,
2772 unsigned int align,
2773 enum machine_mode largest_mode, bool volatilep)
2775 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2776 bitregion_end, align, volatilep);
2777 enum machine_mode widest_mode = VOIDmode;
2778 enum machine_mode mode;
2779 while (iter.next_mode (&mode)
2780 /* ??? For historical reasons, reject modes that are wider than
2781 the alignment. This has both advantages and disadvantages.
2782 Removing this check means that something like:
2784 struct s { unsigned int x; unsigned int y; };
2785 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2787 can be implemented using a single load and compare on
2788 64-bit machines that have no alignment restrictions.
2789 For example, on powerpc64-linux-gnu, we would generate:
2791 ld 3,0(3)
2792 cntlzd 3,3
2793 srdi 3,3,6
2796 rather than:
2798 lwz 9,0(3)
2799 cmpwi 7,9,0
2800 bne 7,.L3
2801 lwz 3,4(3)
2802 cntlzw 3,3
2803 srwi 3,3,5
2804 extsw 3,3
2806 .p2align 4,,15
2807 .L3:
2808 li 3,0
2811 However, accessing more than one field can make life harder
2812 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2813 has a series of unsigned short copies followed by a series of
2814 unsigned short comparisons. With this check, both the copies
2815 and comparisons remain 16-bit accesses and FRE is able
2816 to eliminate the latter. Without the check, the comparisons
2817 can be done using 2 64-bit operations, which FRE isn't able
2818 to handle in the same way.
2820 Either way, it would probably be worth disabling this check
2821 during expand. One particular example where removing the
2822 check would help is the get_best_mode call in store_bit_field.
2823 If we are given a memory bitregion of 128 bits that is aligned
2824 to a 64-bit boundary, and the bitfield we want to modify is
2825 in the second half of the bitregion, this check causes
2826 store_bitfield to turn the memory into a 64-bit reference
2827 to the _first_ half of the region. We later use
2828 adjust_bitfield_address to get a reference to the correct half,
2829 but doing so looks to adjust_bitfield_address as though we are
2830 moving past the end of the original object, so it drops the
2831 associated MEM_EXPR and MEM_OFFSET. Removing the check
2832 causes store_bit_field to keep a 128-bit memory reference,
2833 so that the final bitfield reference still has a MEM_EXPR
2834 and MEM_OFFSET. */
2835 && GET_MODE_BITSIZE (mode) <= align
2836 && (largest_mode == VOIDmode
2837 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2839 widest_mode = mode;
2840 if (iter.prefer_smaller_modes ())
2841 break;
2843 return widest_mode;
2846 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2847 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2849 void
2850 get_mode_bounds (enum machine_mode mode, int sign,
2851 enum machine_mode target_mode,
2852 rtx *mmin, rtx *mmax)
2854 unsigned size = GET_MODE_BITSIZE (mode);
2855 unsigned HOST_WIDE_INT min_val, max_val;
2857 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2859 if (sign)
2861 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2862 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2864 else
2866 min_val = 0;
2867 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2870 *mmin = gen_int_mode (min_val, target_mode);
2871 *mmax = gen_int_mode (max_val, target_mode);
2874 #include "gt-stor-layout.h"