2009-06-12 Andrew Pinski <andrew_pinski@playstation.sony.com>
[official-gcc.git] / gcc / tree-ssa-dce.c
blobb252ece37f449d82c98e0b88f8fe1db525dac862
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Dead code elimination.
26 References:
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
70 static struct stmt_stats
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
78 #define STMT_NECESSARY GF_PLF_1
80 static VEC(gimple,heap) *worklist;
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
90 /* Before we can determine whether a control branch is dead, we need to
91 compute which blocks are control dependent on which edges.
93 We expect each block to be control dependent on very few edges so we
94 use a bitmap for each block recording its edges. An array holds the
95 bitmap. The Ith bit in the bitmap is set if that block is dependent
96 on the Ith edge. */
97 static bitmap *control_dependence_map;
99 /* Vector indicating that a basic block has already had all the edges
100 processed that it is control dependent on. */
101 static sbitmap visited_control_parents;
103 /* TRUE if this pass alters the CFG (by removing control statements).
104 FALSE otherwise.
106 If this pass alters the CFG, then it will arrange for the dominators
107 to be recomputed. */
108 static bool cfg_altered;
110 /* Execute code that follows the macro for each edge (given number
111 EDGE_NUMBER within the CODE) for which the block with index N is
112 control dependent. */
113 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
115 (EDGE_NUMBER), (BI))
118 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
119 static inline void
120 set_control_dependence_map_bit (basic_block bb, int edge_index)
122 if (bb == ENTRY_BLOCK_PTR)
123 return;
124 gcc_assert (bb != EXIT_BLOCK_PTR);
125 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
128 /* Clear all control dependences for block BB. */
129 static inline void
130 clear_control_dependence_bitmap (basic_block bb)
132 bitmap_clear (control_dependence_map[bb->index]);
136 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
137 This function is necessary because some blocks have negative numbers. */
139 static inline basic_block
140 find_pdom (basic_block block)
142 gcc_assert (block != ENTRY_BLOCK_PTR);
144 if (block == EXIT_BLOCK_PTR)
145 return EXIT_BLOCK_PTR;
146 else
148 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
149 if (! bb)
150 return EXIT_BLOCK_PTR;
151 return bb;
156 /* Determine all blocks' control dependences on the given edge with edge_list
157 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
159 static void
160 find_control_dependence (struct edge_list *el, int edge_index)
162 basic_block current_block;
163 basic_block ending_block;
165 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
167 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
168 ending_block = single_succ (ENTRY_BLOCK_PTR);
169 else
170 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
172 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
173 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
174 current_block = find_pdom (current_block))
176 edge e = INDEX_EDGE (el, edge_index);
178 /* For abnormal edges, we don't make current_block control
179 dependent because instructions that throw are always necessary
180 anyway. */
181 if (e->flags & EDGE_ABNORMAL)
182 continue;
184 set_control_dependence_map_bit (current_block, edge_index);
189 /* Record all blocks' control dependences on all edges in the edge
190 list EL, ala Morgan, Section 3.6. */
192 static void
193 find_all_control_dependences (struct edge_list *el)
195 int i;
197 for (i = 0; i < NUM_EDGES (el); ++i)
198 find_control_dependence (el, i);
201 /* If STMT is not already marked necessary, mark it, and add it to the
202 worklist if ADD_TO_WORKLIST is true. */
203 static inline void
204 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
206 gcc_assert (stmt);
208 if (gimple_plf (stmt, STMT_NECESSARY))
209 return;
211 if (dump_file && (dump_flags & TDF_DETAILS))
213 fprintf (dump_file, "Marking useful stmt: ");
214 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
215 fprintf (dump_file, "\n");
218 gimple_set_plf (stmt, STMT_NECESSARY, true);
219 if (add_to_worklist)
220 VEC_safe_push (gimple, heap, worklist, stmt);
224 /* Mark the statement defining operand OP as necessary. */
226 static inline void
227 mark_operand_necessary (tree op)
229 gimple stmt;
230 int ver;
232 gcc_assert (op);
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
242 SET_BIT (processed, ver);
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
250 if (dump_file && (dump_flags & TDF_DETAILS))
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 VEC_safe_push (gimple, heap, worklist, stmt);
263 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
264 it can make other statements necessary.
266 If AGGRESSIVE is false, control statements are conservatively marked as
267 necessary. */
269 static void
270 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
272 tree lhs = NULL_TREE;
273 /* With non-call exceptions, we have to assume that all statements could
274 throw. If a statement may throw, it is inherently necessary. */
275 if (flag_non_call_exceptions
276 && stmt_could_throw_p (stmt))
278 mark_stmt_necessary (stmt, true);
279 return;
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
301 case GIMPLE_CALL:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (gimple_has_side_effects (stmt))
307 mark_stmt_necessary (stmt, true);
308 return;
310 if (!gimple_call_lhs (stmt))
311 return;
312 lhs = gimple_call_lhs (stmt);
313 /* Fall through */
315 case GIMPLE_ASSIGN:
316 if (!lhs)
317 lhs = gimple_assign_lhs (stmt);
318 /* These values are mildly magic bits of the EH runtime. We can't
319 see the entire lifetime of these values until landing pads are
320 generated. */
321 if (TREE_CODE (lhs) == EXC_PTR_EXPR
322 || TREE_CODE (lhs) == FILTER_EXPR)
324 mark_stmt_necessary (stmt, true);
325 return;
327 break;
329 case GIMPLE_GOTO:
330 gcc_assert (!simple_goto_p (stmt));
331 mark_stmt_necessary (stmt, true);
332 return;
334 case GIMPLE_COND:
335 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
336 /* Fall through. */
338 case GIMPLE_SWITCH:
339 if (! aggressive)
340 mark_stmt_necessary (stmt, true);
341 break;
343 default:
344 break;
347 /* If the statement has volatile operands, it needs to be preserved.
348 Same for statements that can alter control flow in unpredictable
349 ways. */
350 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
352 mark_stmt_necessary (stmt, true);
353 return;
356 if (is_hidden_global_store (stmt))
358 mark_stmt_necessary (stmt, true);
359 return;
362 return;
366 /* Make corresponding control dependent edges necessary. We only
367 have to do this once for each basic block, so we clear the bitmap
368 after we're done. */
369 static void
370 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
372 bitmap_iterator bi;
373 unsigned edge_number;
375 gcc_assert (bb != EXIT_BLOCK_PTR);
377 if (bb == ENTRY_BLOCK_PTR)
378 return;
380 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
382 gimple stmt;
383 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
385 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
386 continue;
387 SET_BIT (last_stmt_necessary, cd_bb->index);
389 stmt = last_stmt (cd_bb);
390 if (stmt && is_ctrl_stmt (stmt))
391 mark_stmt_necessary (stmt, true);
396 /* Find obviously necessary statements. These are things like most function
397 calls, and stores to file level variables.
399 If EL is NULL, control statements are conservatively marked as
400 necessary. Otherwise it contains the list of edges used by control
401 dependence analysis. */
403 static void
404 find_obviously_necessary_stmts (struct edge_list *el)
406 basic_block bb;
407 gimple_stmt_iterator gsi;
408 edge e;
409 gimple phi, stmt;
411 FOR_EACH_BB (bb)
413 /* PHI nodes are never inherently necessary. */
414 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
416 phi = gsi_stmt (gsi);
417 gimple_set_plf (phi, STMT_NECESSARY, false);
420 /* Check all statements in the block. */
421 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 stmt = gsi_stmt (gsi);
424 gimple_set_plf (stmt, STMT_NECESSARY, false);
425 mark_stmt_if_obviously_necessary (stmt, el != NULL);
429 if (el)
431 /* Prevent the loops from being removed. We must keep the infinite loops,
432 and we currently do not have a means to recognize the finite ones. */
433 FOR_EACH_BB (bb)
435 edge_iterator ei;
436 FOR_EACH_EDGE (e, ei, bb->succs)
437 if (e->flags & EDGE_DFS_BACK)
438 mark_control_dependent_edges_necessary (e->dest, el);
444 /* Return true if REF is based on an aliased base, otherwise false. */
446 static bool
447 ref_may_be_aliased (tree ref)
449 while (handled_component_p (ref))
450 ref = TREE_OPERAND (ref, 0);
451 return !(DECL_P (ref)
452 && !may_be_aliased (ref));
455 struct ref_data {
456 tree base;
457 HOST_WIDE_INT size;
458 HOST_WIDE_INT offset;
459 HOST_WIDE_INT max_size;
462 static bitmap visited = NULL;
463 static unsigned int longest_chain = 0;
464 static unsigned int total_chain = 0;
465 static bool chain_ovfl = false;
467 /* Worker for the walker that marks reaching definitions of REF,
468 which is based on a non-aliased decl, necessary. It returns
469 true whenever the defining statement of the current VDEF is
470 a kill for REF, as no dominating may-defs are necessary for REF
471 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
473 static bool
474 mark_aliased_reaching_defs_necessary_1 (tree ref, tree vdef, void *data)
476 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
477 struct ref_data *refd = (struct ref_data *)data;
479 /* All stmts we visit are necessary. */
480 mark_operand_necessary (vdef);
482 /* If the stmt lhs kills ref, then we can stop walking. */
483 if (gimple_has_lhs (def_stmt)
484 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
486 tree base, lhs = gimple_get_lhs (def_stmt);
487 HOST_WIDE_INT size, offset, max_size;
488 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
489 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
490 so base == refd->base does not always hold. */
491 if (base == refd->base)
493 /* For a must-alias check we need to be able to constrain
494 the accesses properly. */
495 if (size != -1 && size == max_size
496 && refd->max_size != -1)
498 if (offset <= refd->offset
499 && offset + size >= refd->offset + refd->max_size)
500 return true;
502 /* Or they need to be exactly the same. */
503 else if (operand_equal_p (ref, lhs, 0))
504 return true;
508 /* Otherwise keep walking. */
509 return false;
512 static void
513 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
515 struct ref_data refd;
516 unsigned int chain;
517 gcc_assert (!chain_ovfl);
518 refd.base = get_ref_base_and_extent (ref, &refd.offset, &refd.size,
519 &refd.max_size);
520 chain = walk_aliased_vdefs (ref, gimple_vuse (stmt),
521 mark_aliased_reaching_defs_necessary_1,
522 &refd, NULL);
523 if (chain > longest_chain)
524 longest_chain = chain;
525 total_chain += chain;
528 /* Worker for the walker that marks reaching definitions of REF, which
529 is not based on a non-aliased decl. For simplicity we need to end
530 up marking all may-defs necessary that are not based on a non-aliased
531 decl. The only job of this walker is to skip may-defs based on
532 a non-aliased decl. */
534 static bool
535 mark_all_reaching_defs_necessary_1 (tree ref ATTRIBUTE_UNUSED,
536 tree vdef, void *data ATTRIBUTE_UNUSED)
538 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
540 /* We have to skip already visited (and thus necessary) statements
541 to make the chaining work after we dropped back to simple mode. */
542 if (chain_ovfl
543 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
545 gcc_assert (gimple_nop_p (def_stmt)
546 || gimple_plf (def_stmt, STMT_NECESSARY));
547 return false;
550 /* We want to skip stores to non-aliased variables. */
551 if (!chain_ovfl
552 && gimple_assign_single_p (def_stmt))
554 tree lhs = gimple_assign_lhs (def_stmt);
555 if (!ref_may_be_aliased (lhs))
556 return false;
559 /* But can stop after the first necessary statement. */
560 mark_operand_necessary (vdef);
561 return true;
564 static void
565 mark_all_reaching_defs_necessary (gimple stmt)
567 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
568 mark_all_reaching_defs_necessary_1, NULL, &visited);
571 /* Propagate necessity using the operands of necessary statements.
572 Process the uses on each statement in the worklist, and add all
573 feeding statements which contribute to the calculation of this
574 value to the worklist.
576 In conservative mode, EL is NULL. */
578 static void
579 propagate_necessity (struct edge_list *el)
581 gimple stmt;
582 bool aggressive = (el ? true : false);
584 if (dump_file && (dump_flags & TDF_DETAILS))
585 fprintf (dump_file, "\nProcessing worklist:\n");
587 while (VEC_length (gimple, worklist) > 0)
589 /* Take STMT from worklist. */
590 stmt = VEC_pop (gimple, worklist);
592 if (dump_file && (dump_flags & TDF_DETAILS))
594 fprintf (dump_file, "processing: ");
595 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
596 fprintf (dump_file, "\n");
599 if (aggressive)
601 /* Mark the last statements of the basic blocks that the block
602 containing STMT is control dependent on, but only if we haven't
603 already done so. */
604 basic_block bb = gimple_bb (stmt);
605 if (bb != ENTRY_BLOCK_PTR
606 && ! TEST_BIT (visited_control_parents, bb->index))
608 SET_BIT (visited_control_parents, bb->index);
609 mark_control_dependent_edges_necessary (bb, el);
613 if (gimple_code (stmt) == GIMPLE_PHI
614 /* We do not process virtual PHI nodes nor do we track their
615 necessity. */
616 && is_gimple_reg (gimple_phi_result (stmt)))
618 /* PHI nodes are somewhat special in that each PHI alternative has
619 data and control dependencies. All the statements feeding the
620 PHI node's arguments are always necessary. In aggressive mode,
621 we also consider the control dependent edges leading to the
622 predecessor block associated with each PHI alternative as
623 necessary. */
624 size_t k;
626 for (k = 0; k < gimple_phi_num_args (stmt); k++)
628 tree arg = PHI_ARG_DEF (stmt, k);
629 if (TREE_CODE (arg) == SSA_NAME)
630 mark_operand_necessary (arg);
633 if (aggressive)
635 for (k = 0; k < gimple_phi_num_args (stmt); k++)
637 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
638 if (arg_bb != ENTRY_BLOCK_PTR
639 && ! TEST_BIT (visited_control_parents, arg_bb->index))
641 SET_BIT (visited_control_parents, arg_bb->index);
642 mark_control_dependent_edges_necessary (arg_bb, el);
647 else
649 /* Propagate through the operands. Examine all the USE, VUSE and
650 VDEF operands in this statement. Mark all the statements
651 which feed this statement's uses as necessary. */
652 ssa_op_iter iter;
653 tree use;
655 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
656 mark_operand_necessary (use);
658 use = gimple_vuse (stmt);
659 if (!use)
660 continue;
662 /* If we dropped to simple mode make all immediately
663 reachable definitions necessary. */
664 if (chain_ovfl)
666 mark_all_reaching_defs_necessary (stmt);
667 continue;
670 /* For statements that may load from memory (have a VUSE) we
671 have to mark all reaching (may-)definitions as necessary.
672 We partition this task into two cases:
673 1) explicit loads based on decls that are not aliased
674 2) implicit loads (like calls) and explicit loads not
675 based on decls that are not aliased (like indirect
676 references or loads from globals)
677 For 1) we mark all reaching may-defs as necessary, stopping
678 at dominating kills. For 2) we want to mark all dominating
679 references necessary, but non-aliased ones which we handle
680 in 1). Instead of doing so for each load we rely on the
681 worklist to eventually reach all dominating references and
682 instead just mark the immediately dominating references
683 as necessary (but skipping non-aliased ones). */
685 if (is_gimple_call (stmt))
687 unsigned i;
689 /* Calls implicitly load from memory, their arguments
690 in addition may explicitly perform memory loads.
691 This also ensures propagation for case 2 for stores. */
692 mark_all_reaching_defs_necessary (stmt);
693 for (i = 0; i < gimple_call_num_args (stmt); ++i)
695 tree arg = gimple_call_arg (stmt, i);
696 if (TREE_CODE (arg) == SSA_NAME
697 || is_gimple_min_invariant (arg))
698 continue;
699 if (!ref_may_be_aliased (arg))
700 mark_aliased_reaching_defs_necessary (stmt, arg);
703 else if (gimple_assign_single_p (stmt))
705 tree lhs, rhs;
706 bool rhs_aliased = false;
707 /* If this is a load mark things necessary. */
708 rhs = gimple_assign_rhs1 (stmt);
709 if (TREE_CODE (rhs) != SSA_NAME
710 && !is_gimple_min_invariant (rhs))
712 if (!ref_may_be_aliased (rhs))
713 mark_aliased_reaching_defs_necessary (stmt, rhs);
714 else
715 rhs_aliased = true;
717 /* If this is an aliased store, mark things necessary.
718 This is where we make sure to propagate for case 2. */
719 lhs = gimple_assign_lhs (stmt);
720 if (rhs_aliased
721 || (TREE_CODE (lhs) != SSA_NAME
722 && ref_may_be_aliased (lhs)))
723 mark_all_reaching_defs_necessary (stmt);
725 else if (gimple_code (stmt) == GIMPLE_RETURN)
727 tree rhs = gimple_return_retval (stmt);
728 /* A return statement may perform a load. */
729 if (TREE_CODE (rhs) != SSA_NAME
730 && !is_gimple_min_invariant (rhs))
732 if (!ref_may_be_aliased (rhs))
733 mark_aliased_reaching_defs_necessary (stmt, rhs);
734 else
735 mark_all_reaching_defs_necessary (stmt);
738 else if (gimple_code (stmt) == GIMPLE_ASM)
740 unsigned i;
741 mark_all_reaching_defs_necessary (stmt);
742 /* Inputs may perform loads. */
743 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
745 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
746 if (TREE_CODE (op) != SSA_NAME
747 && !is_gimple_min_invariant (op)
748 && !ref_may_be_aliased (op))
749 mark_aliased_reaching_defs_necessary (stmt, op);
752 else
753 gcc_unreachable ();
755 /* If we over-used our alias oracle budget drop to simple
756 mode. The cost metric allows quadratic behavior up to
757 a constant maximal chain and after that falls back to
758 super-linear complexity. */
759 if (longest_chain > 256
760 && total_chain > 256 * longest_chain)
762 chain_ovfl = true;
763 if (visited)
764 bitmap_clear (visited);
771 /* Remove dead PHI nodes from block BB. */
773 static bool
774 remove_dead_phis (basic_block bb)
776 bool something_changed = false;
777 gimple_seq phis;
778 gimple phi;
779 gimple_stmt_iterator gsi;
780 phis = phi_nodes (bb);
782 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
784 stats.total_phis++;
785 phi = gsi_stmt (gsi);
787 /* We do not track necessity of virtual PHI nodes. Instead do
788 very simple dead PHI removal here. */
789 if (!is_gimple_reg (gimple_phi_result (phi)))
791 unsigned i;
792 tree vuse;
794 /* Virtual PHI nodes with one or identical arguments
795 can be removed. */
796 vuse = gimple_phi_arg_def (phi, 0);
797 for (i = 1; i < gimple_phi_num_args (phi); ++i)
799 if (gimple_phi_arg_def (phi, i) != vuse)
801 vuse = NULL_TREE;
802 break;
805 if (vuse != NULL_TREE)
807 tree vdef = gimple_phi_result (phi);
808 use_operand_p use_p;
809 imm_use_iterator iter;
810 gimple use_stmt;
811 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
812 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
813 SET_USE (use_p, vuse);
814 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef))
815 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
817 else
818 gimple_set_plf (phi, STMT_NECESSARY, true);
821 if (!gimple_plf (phi, STMT_NECESSARY))
823 something_changed = true;
824 if (dump_file && (dump_flags & TDF_DETAILS))
826 fprintf (dump_file, "Deleting : ");
827 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
828 fprintf (dump_file, "\n");
831 remove_phi_node (&gsi, true);
832 stats.removed_phis++;
833 continue;
836 gsi_next (&gsi);
838 return something_changed;
842 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
843 containing I so that we don't have to look it up. */
845 static void
846 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
848 gimple stmt = gsi_stmt (*i);
850 if (dump_file && (dump_flags & TDF_DETAILS))
852 fprintf (dump_file, "Deleting : ");
853 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
854 fprintf (dump_file, "\n");
857 stats.removed++;
859 /* If we have determined that a conditional branch statement contributes
860 nothing to the program, then we not only remove it, but we also change
861 the flow graph so that the current block will simply fall-thru to its
862 immediate post-dominator. The blocks we are circumventing will be
863 removed by cleanup_tree_cfg if this change in the flow graph makes them
864 unreachable. */
865 if (is_ctrl_stmt (stmt))
867 basic_block post_dom_bb;
869 /* The post dominance info has to be up-to-date. */
870 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
871 /* Get the immediate post dominator of bb. */
872 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
874 /* There are three particularly problematical cases.
876 1. Blocks that do not have an immediate post dominator. This
877 can happen with infinite loops.
879 2. Blocks that are only post dominated by the exit block. These
880 can also happen for infinite loops as we create fake edges
881 in the dominator tree.
883 3. If the post dominator has PHI nodes we may be able to compute
884 the right PHI args for them.
886 In each of these cases we must remove the control statement
887 as it may reference SSA_NAMEs which are going to be removed and
888 we remove all but one outgoing edge from the block. */
889 if (! post_dom_bb
890 || post_dom_bb == EXIT_BLOCK_PTR
891 || phi_nodes (post_dom_bb))
893 else
895 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
896 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
897 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
899 /* It is not sufficient to set cfg_altered below during edge
900 removal, in case BB has two successors and one of them
901 is POST_DOM_BB. */
902 cfg_altered = true;
904 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
905 EDGE_SUCC (bb, 0)->count = bb->count;
907 /* The edge is no longer associated with a conditional, so it does
908 not have TRUE/FALSE flags. */
909 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
911 /* The lone outgoing edge from BB will be a fallthru edge. */
912 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
914 /* Remove the remaining the outgoing edges. */
915 while (!single_succ_p (bb))
917 /* FIXME. When we remove the edge, we modify the CFG, which
918 in turn modifies the dominator and post-dominator tree.
919 Is it safe to postpone recomputing the dominator and
920 post-dominator tree until the end of this pass given that
921 the post-dominators are used above? */
922 cfg_altered = true;
923 remove_edge (EDGE_SUCC (bb, 1));
927 unlink_stmt_vdef (stmt);
928 gsi_remove (i, true);
929 release_defs (stmt);
933 /* Eliminate unnecessary statements. Any instruction not marked as necessary
934 contributes nothing to the program, and can be deleted. */
936 static bool
937 eliminate_unnecessary_stmts (void)
939 bool something_changed = false;
940 basic_block bb;
941 gimple_stmt_iterator gsi;
942 gimple stmt;
943 tree call;
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
948 clear_special_calls ();
950 FOR_EACH_BB (bb)
952 /* Remove dead statements. */
953 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
955 stmt = gsi_stmt (gsi);
957 stats.total++;
959 /* If GSI is not necessary then remove it. */
960 if (!gimple_plf (stmt, STMT_NECESSARY))
962 remove_dead_stmt (&gsi, bb);
963 something_changed = true;
965 else if (is_gimple_call (stmt))
967 call = gimple_call_fndecl (stmt);
968 if (call)
970 tree name;
972 /* When LHS of var = call (); is dead, simplify it into
973 call (); saving one operand. */
974 name = gimple_call_lhs (stmt);
975 if (name && TREE_CODE (name) == SSA_NAME
976 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
978 something_changed = true;
979 if (dump_file && (dump_flags & TDF_DETAILS))
981 fprintf (dump_file, "Deleting LHS of call: ");
982 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
983 fprintf (dump_file, "\n");
986 gimple_call_set_lhs (stmt, NULL_TREE);
987 maybe_clean_or_replace_eh_stmt (stmt, stmt);
988 update_stmt (stmt);
989 release_ssa_name (name);
991 notice_special_calls (stmt);
993 gsi_next (&gsi);
995 else
997 gsi_next (&gsi);
1002 FOR_EACH_BB (bb)
1004 /* Remove dead PHI nodes. */
1005 something_changed |= remove_dead_phis (bb);
1008 return something_changed;
1012 /* Print out removed statement statistics. */
1014 static void
1015 print_stats (void)
1017 float percg;
1019 percg = ((float) stats.removed / (float) stats.total) * 100;
1020 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1021 stats.removed, stats.total, (int) percg);
1023 if (stats.total_phis == 0)
1024 percg = 0;
1025 else
1026 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1028 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1029 stats.removed_phis, stats.total_phis, (int) percg);
1032 /* Initialization for this pass. Set up the used data structures. */
1034 static void
1035 tree_dce_init (bool aggressive)
1037 memset ((void *) &stats, 0, sizeof (stats));
1039 if (aggressive)
1041 int i;
1043 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1044 for (i = 0; i < last_basic_block; ++i)
1045 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1047 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1048 sbitmap_zero (last_stmt_necessary);
1051 processed = sbitmap_alloc (num_ssa_names + 1);
1052 sbitmap_zero (processed);
1054 worklist = VEC_alloc (gimple, heap, 64);
1055 cfg_altered = false;
1058 /* Cleanup after this pass. */
1060 static void
1061 tree_dce_done (bool aggressive)
1063 if (aggressive)
1065 int i;
1067 for (i = 0; i < last_basic_block; ++i)
1068 BITMAP_FREE (control_dependence_map[i]);
1069 free (control_dependence_map);
1071 sbitmap_free (visited_control_parents);
1072 sbitmap_free (last_stmt_necessary);
1075 sbitmap_free (processed);
1077 VEC_free (gimple, heap, worklist);
1080 /* Main routine to eliminate dead code.
1082 AGGRESSIVE controls the aggressiveness of the algorithm.
1083 In conservative mode, we ignore control dependence and simply declare
1084 all but the most trivially dead branches necessary. This mode is fast.
1085 In aggressive mode, control dependences are taken into account, which
1086 results in more dead code elimination, but at the cost of some time.
1088 FIXME: Aggressive mode before PRE doesn't work currently because
1089 the dominance info is not invalidated after DCE1. This is
1090 not an issue right now because we only run aggressive DCE
1091 as the last tree SSA pass, but keep this in mind when you
1092 start experimenting with pass ordering. */
1094 static unsigned int
1095 perform_tree_ssa_dce (bool aggressive)
1097 struct edge_list *el = NULL;
1098 bool something_changed = 0;
1100 tree_dce_init (aggressive);
1102 if (aggressive)
1104 /* Compute control dependence. */
1105 timevar_push (TV_CONTROL_DEPENDENCES);
1106 calculate_dominance_info (CDI_POST_DOMINATORS);
1107 el = create_edge_list ();
1108 find_all_control_dependences (el);
1109 timevar_pop (TV_CONTROL_DEPENDENCES);
1111 visited_control_parents = sbitmap_alloc (last_basic_block);
1112 sbitmap_zero (visited_control_parents);
1114 mark_dfs_back_edges ();
1117 find_obviously_necessary_stmts (el);
1119 longest_chain = 0;
1120 total_chain = 0;
1121 chain_ovfl = false;
1122 propagate_necessity (el);
1123 BITMAP_FREE (visited);
1125 something_changed |= eliminate_unnecessary_stmts ();
1126 something_changed |= cfg_altered;
1128 /* We do not update postdominators, so free them unconditionally. */
1129 free_dominance_info (CDI_POST_DOMINATORS);
1131 /* If we removed paths in the CFG, then we need to update
1132 dominators as well. I haven't investigated the possibility
1133 of incrementally updating dominators. */
1134 if (cfg_altered)
1135 free_dominance_info (CDI_DOMINATORS);
1137 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1138 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1140 /* Debugging dumps. */
1141 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1142 print_stats ();
1144 tree_dce_done (aggressive);
1146 free_edge_list (el);
1148 if (something_changed)
1149 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1150 | TODO_remove_unused_locals);
1151 else
1152 return 0;
1155 /* Pass entry points. */
1156 static unsigned int
1157 tree_ssa_dce (void)
1159 return perform_tree_ssa_dce (/*aggressive=*/false);
1162 static unsigned int
1163 tree_ssa_dce_loop (void)
1165 unsigned int todo;
1166 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1167 if (todo)
1169 free_numbers_of_iterations_estimates ();
1170 scev_reset ();
1172 return todo;
1175 static unsigned int
1176 tree_ssa_cd_dce (void)
1178 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1181 static bool
1182 gate_dce (void)
1184 return flag_tree_dce != 0;
1187 struct gimple_opt_pass pass_dce =
1190 GIMPLE_PASS,
1191 "dce", /* name */
1192 gate_dce, /* gate */
1193 tree_ssa_dce, /* execute */
1194 NULL, /* sub */
1195 NULL, /* next */
1196 0, /* static_pass_number */
1197 TV_TREE_DCE, /* tv_id */
1198 PROP_cfg | PROP_ssa, /* properties_required */
1199 0, /* properties_provided */
1200 0, /* properties_destroyed */
1201 0, /* todo_flags_start */
1202 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1206 struct gimple_opt_pass pass_dce_loop =
1209 GIMPLE_PASS,
1210 "dceloop", /* name */
1211 gate_dce, /* gate */
1212 tree_ssa_dce_loop, /* execute */
1213 NULL, /* sub */
1214 NULL, /* next */
1215 0, /* static_pass_number */
1216 TV_TREE_DCE, /* tv_id */
1217 PROP_cfg | PROP_ssa, /* properties_required */
1218 0, /* properties_provided */
1219 0, /* properties_destroyed */
1220 0, /* todo_flags_start */
1221 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1225 struct gimple_opt_pass pass_cd_dce =
1228 GIMPLE_PASS,
1229 "cddce", /* name */
1230 gate_dce, /* gate */
1231 tree_ssa_cd_dce, /* execute */
1232 NULL, /* sub */
1233 NULL, /* next */
1234 0, /* static_pass_number */
1235 TV_TREE_CD_DCE, /* tv_id */
1236 PROP_cfg | PROP_ssa, /* properties_required */
1237 0, /* properties_provided */
1238 0, /* properties_destroyed */
1239 0, /* todo_flags_start */
1240 TODO_dump_func | TODO_verify_ssa
1241 | TODO_verify_flow /* todo_flags_finish */