1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
43 #include "insn-config.h"
51 #include "cfglayout.h"
53 #include "tree-pass.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass
;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured
;
68 static bool try_crossjump_to_edge (int, edge
, edge
);
69 static bool try_crossjump_bb (int, basic_block
);
70 static bool outgoing_edges_match (int, basic_block
, basic_block
);
71 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
72 static bool old_insns_match_p (int, rtx
, rtx
);
74 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
75 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
76 static bool try_optimize_cfg (int);
77 static bool try_simplify_condjump (basic_block
);
78 static bool try_forward_edges (int, basic_block
);
79 static edge
thread_jump (edge
, basic_block
);
80 static bool mark_effect (rtx
, bitmap
);
81 static void notice_new_block (basic_block
);
82 static void update_forwarder_flag (basic_block
);
83 static int mentions_nonequal_regs (rtx
*, void *);
84 static void merge_memattrs (rtx
, rtx
);
86 /* Set flags for newly created block. */
89 notice_new_block (basic_block bb
)
94 if (forwarder_block_p (bb
))
95 bb
->flags
|= BB_FORWARDER_BLOCK
;
98 /* Recompute forwarder flag after block has been modified. */
101 update_forwarder_flag (basic_block bb
)
103 if (forwarder_block_p (bb
))
104 bb
->flags
|= BB_FORWARDER_BLOCK
;
106 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
113 try_simplify_condjump (basic_block cbranch_block
)
115 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
116 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
123 /* Verify that we've got a normal conditional branch at the end
125 cbranch_insn
= BB_END (cbranch_block
);
126 if (!any_condjump_p (cbranch_insn
))
129 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
130 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block
= cbranch_fallthru_edge
->dest
;
136 if (!single_pred_p (jump_block
)
137 || jump_block
->next_bb
== EXIT_BLOCK_PTR
138 || !FORWARDER_BLOCK_P (jump_block
))
140 jump_dest_block
= single_succ (jump_block
);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
153 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block
= cbranch_jump_edge
->dest
;
160 if (cbranch_dest_block
== EXIT_BLOCK_PTR
161 || !can_fallthru (jump_block
, cbranch_dest_block
))
164 /* Invert the conditional branch. */
165 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
169 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
170 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
172 /* Success. Update the CFG to match. Note that after this point
173 the edge variable names appear backwards; the redirection is done
174 this way to preserve edge profile data. */
175 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
177 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
179 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
180 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
181 update_br_prob_note (cbranch_block
);
183 /* Delete the block with the unconditional jump, and clean up the mess. */
184 delete_basic_block (jump_block
);
185 tidy_fallthru_edge (cbranch_jump_edge
);
186 update_forwarder_flag (cbranch_block
);
191 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
192 on register. Used by jump threading. */
195 mark_effect (rtx exp
, regset nonequal
)
199 switch (GET_CODE (exp
))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
204 if (REG_P (XEXP (exp
, 0)))
206 dest
= XEXP (exp
, 0);
207 regno
= REGNO (dest
);
208 CLEAR_REGNO_REG_SET (nonequal
, regno
);
209 if (regno
< FIRST_PSEUDO_REGISTER
)
211 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
213 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
219 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
221 dest
= SET_DEST (exp
);
226 regno
= REGNO (dest
);
227 SET_REGNO_REG_SET (nonequal
, regno
);
228 if (regno
< FIRST_PSEUDO_REGISTER
)
230 int n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
232 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
241 /* Return nonzero if X is a register set in regset DATA.
242 Called via for_each_rtx. */
244 mentions_nonequal_regs (rtx
*x
, void *data
)
246 regset nonequal
= (regset
) data
;
252 if (REGNO_REG_SET_P (nonequal
, regno
))
254 if (regno
< FIRST_PSEUDO_REGISTER
)
256 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
258 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
264 /* Attempt to prove that the basic block B will have no side effects and
265 always continues in the same edge if reached via E. Return the edge
266 if exist, NULL otherwise. */
269 thread_jump (edge e
, basic_block b
)
271 rtx set1
, set2
, cond1
, cond2
, insn
;
272 enum rtx_code code1
, code2
, reversed_code2
;
273 bool reverse1
= false;
277 reg_set_iterator rsi
;
279 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
282 /* At the moment, we do handle only conditional jumps, but later we may
283 want to extend this code to tablejumps and others. */
284 if (EDGE_COUNT (e
->src
->succs
) != 2)
286 if (EDGE_COUNT (b
->succs
) != 2)
288 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
292 /* Second branch must end with onlyjump, as we will eliminate the jump. */
293 if (!any_condjump_p (BB_END (e
->src
)))
296 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
298 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
302 set1
= pc_set (BB_END (e
->src
));
303 set2
= pc_set (BB_END (b
));
304 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
305 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
308 cond1
= XEXP (SET_SRC (set1
), 0);
309 cond2
= XEXP (SET_SRC (set2
), 0);
311 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
313 code1
= GET_CODE (cond1
);
315 code2
= GET_CODE (cond2
);
316 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
318 if (!comparison_dominates_p (code1
, code2
)
319 && !comparison_dominates_p (code1
, reversed_code2
))
322 /* Ensure that the comparison operators are equivalent.
323 ??? This is far too pessimistic. We should allow swapped operands,
324 different CCmodes, or for example comparisons for interval, that
325 dominate even when operands are not equivalent. */
326 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
327 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
330 /* Short circuit cases where block B contains some side effects, as we can't
332 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
333 insn
= NEXT_INSN (insn
))
334 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
336 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
342 /* First process all values computed in the source basic block. */
343 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
344 insn
!= NEXT_INSN (BB_END (e
->src
));
345 insn
= NEXT_INSN (insn
))
347 cselib_process_insn (insn
);
349 nonequal
= BITMAP_ALLOC (NULL
);
350 CLEAR_REG_SET (nonequal
);
352 /* Now assume that we've continued by the edge E to B and continue
353 processing as if it were same basic block.
354 Our goal is to prove that whole block is an NOOP. */
356 for (insn
= NEXT_INSN (BB_HEAD (b
));
357 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
358 insn
= NEXT_INSN (insn
))
362 rtx pat
= PATTERN (insn
);
364 if (GET_CODE (pat
) == PARALLEL
)
366 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
367 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
370 failed
|= mark_effect (pat
, nonequal
);
373 cselib_process_insn (insn
);
376 /* Later we should clear nonequal of dead registers. So far we don't
377 have life information in cfg_cleanup. */
380 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
384 /* cond2 must not mention any register that is not equal to the
386 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
389 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
392 BITMAP_FREE (nonequal
);
394 if ((comparison_dominates_p (code1
, code2
) != 0)
395 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
396 return BRANCH_EDGE (b
);
398 return FALLTHRU_EDGE (b
);
401 BITMAP_FREE (nonequal
);
406 /* Attempt to forward edges leaving basic block B.
407 Return true if successful. */
410 try_forward_edges (int mode
, basic_block b
)
412 bool changed
= false;
414 edge e
, *threaded_edges
= NULL
;
416 /* If we are partitioning hot/cold basic blocks, we don't want to
417 mess up unconditional or indirect jumps that cross between hot
420 Basic block partitioning may result in some jumps that appear to
421 be optimizable (or blocks that appear to be mergeable), but which really
422 must be left untouched (they are required to make it safely across
423 partition boundaries). See the comments at the top of
424 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
426 if (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
429 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
431 basic_block target
, first
;
432 int counter
, goto_locus
;
433 bool threaded
= false;
434 int nthreaded_edges
= 0;
435 bool may_thread
= first_pass
| df_get_bb_dirty (b
);
437 /* Skip complex edges because we don't know how to update them.
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e
->flags
& EDGE_COMPLEX
)
448 target
= first
= e
->dest
;
449 counter
= NUM_FIXED_BLOCKS
;
450 goto_locus
= e
->goto_locus
;
452 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
453 up jumps that cross between hot/cold sections.
455 Basic block partitioning may result in some jumps that appear
456 to be optimizable (or blocks that appear to be mergeable), but which
457 really must be left untouched (they are required to make it safely
458 across partition boundaries). See the comments at the top of
459 bb-reorder.c:partition_hot_cold_basic_blocks for complete
462 if (first
!= EXIT_BLOCK_PTR
463 && find_reg_note (BB_END (first
), REG_CROSSING_JUMP
, NULL_RTX
))
466 while (counter
< n_basic_blocks
)
468 basic_block new_target
= NULL
;
469 bool new_target_threaded
= false;
470 may_thread
|= df_get_bb_dirty (target
);
472 if (FORWARDER_BLOCK_P (target
)
473 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
474 && single_succ (target
) != EXIT_BLOCK_PTR
)
476 /* Bypass trivial infinite loops. */
477 new_target
= single_succ (target
);
478 if (target
== new_target
)
479 counter
= n_basic_blocks
;
482 /* When not optimizing, ensure that edges or forwarder
483 blocks with different locus are not optimized out. */
484 int locus
= single_succ_edge (target
)->goto_locus
;
486 if (locus
&& goto_locus
&& !locator_eq (locus
, goto_locus
))
487 counter
= n_basic_blocks
;
491 if (INSN_P (BB_END (target
)))
493 locus
= INSN_LOCATOR (BB_END (target
));
495 if (locus
&& goto_locus
496 && !locator_eq (locus
, goto_locus
))
497 counter
= n_basic_blocks
;
504 /* Allow to thread only over one edge at time to simplify updating
506 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
508 edge t
= thread_jump (e
, target
);
512 threaded_edges
= XNEWVEC (edge
, n_basic_blocks
);
517 /* Detect an infinite loop across blocks not
518 including the start block. */
519 for (i
= 0; i
< nthreaded_edges
; ++i
)
520 if (threaded_edges
[i
] == t
)
522 if (i
< nthreaded_edges
)
524 counter
= n_basic_blocks
;
529 /* Detect an infinite loop across the start block. */
533 gcc_assert (nthreaded_edges
< n_basic_blocks
- NUM_FIXED_BLOCKS
);
534 threaded_edges
[nthreaded_edges
++] = t
;
536 new_target
= t
->dest
;
537 new_target_threaded
= true;
546 threaded
|= new_target_threaded
;
549 if (counter
>= n_basic_blocks
)
552 fprintf (dump_file
, "Infinite loop in BB %i.\n",
555 else if (target
== first
)
556 ; /* We didn't do anything. */
559 /* Save the values now, as the edge may get removed. */
560 gcov_type edge_count
= e
->count
;
561 int edge_probability
= e
->probability
;
565 e
->goto_locus
= goto_locus
;
567 /* Don't force if target is exit block. */
568 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
570 notice_new_block (redirect_edge_and_branch_force (e
, target
));
572 fprintf (dump_file
, "Conditionals threaded.\n");
574 else if (!redirect_edge_and_branch (e
, target
))
578 "Forwarding edge %i->%i to %i failed.\n",
579 b
->index
, e
->dest
->index
, target
->index
);
584 /* We successfully forwarded the edge. Now update profile
585 data: for each edge we traversed in the chain, remove
586 the original edge's execution count. */
587 edge_frequency
= ((edge_probability
* b
->frequency
588 + REG_BR_PROB_BASE
/ 2)
591 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
592 b
->flags
|= BB_FORWARDER_BLOCK
;
598 if (!single_succ_p (first
))
600 gcc_assert (n
< nthreaded_edges
);
601 t
= threaded_edges
[n
++];
602 gcc_assert (t
->src
== first
);
603 update_bb_profile_for_threading (first
, edge_frequency
,
605 update_br_prob_note (first
);
609 first
->count
-= edge_count
;
610 if (first
->count
< 0)
612 first
->frequency
-= edge_frequency
;
613 if (first
->frequency
< 0)
614 first
->frequency
= 0;
615 /* It is possible that as the result of
616 threading we've removed edge as it is
617 threaded to the fallthru edge. Avoid
618 getting out of sync. */
619 if (n
< nthreaded_edges
620 && first
== threaded_edges
[n
]->src
)
622 t
= single_succ_edge (first
);
625 t
->count
-= edge_count
;
630 while (first
!= target
);
639 free (threaded_edges
);
644 /* Blocks A and B are to be merged into a single block. A has no incoming
645 fallthru edge, so it can be moved before B without adding or modifying
646 any jumps (aside from the jump from A to B). */
649 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
653 /* If we are partitioning hot/cold basic blocks, we don't want to
654 mess up unconditional or indirect jumps that cross between hot
657 Basic block partitioning may result in some jumps that appear to
658 be optimizable (or blocks that appear to be mergeable), but which really
659 must be left untouched (they are required to make it safely across
660 partition boundaries). See the comments at the top of
661 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
663 if (BB_PARTITION (a
) != BB_PARTITION (b
))
666 barrier
= next_nonnote_insn (BB_END (a
));
667 gcc_assert (BARRIER_P (barrier
));
668 delete_insn (barrier
);
670 /* Scramble the insn chain. */
671 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
672 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
676 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
679 /* Swap the records for the two blocks around. */
682 link_block (a
, b
->prev_bb
);
684 /* Now blocks A and B are contiguous. Merge them. */
688 /* Blocks A and B are to be merged into a single block. B has no outgoing
689 fallthru edge, so it can be moved after A without adding or modifying
690 any jumps (aside from the jump from A to B). */
693 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
695 rtx barrier
, real_b_end
;
698 /* If we are partitioning hot/cold basic blocks, we don't want to
699 mess up unconditional or indirect jumps that cross between hot
702 Basic block partitioning may result in some jumps that appear to
703 be optimizable (or blocks that appear to be mergeable), but which really
704 must be left untouched (they are required to make it safely across
705 partition boundaries). See the comments at the top of
706 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
708 if (BB_PARTITION (a
) != BB_PARTITION (b
))
711 real_b_end
= BB_END (b
);
713 /* If there is a jump table following block B temporarily add the jump table
714 to block B so that it will also be moved to the correct location. */
715 if (tablejump_p (BB_END (b
), &label
, &table
)
716 && prev_active_insn (label
) == BB_END (b
))
721 /* There had better have been a barrier there. Delete it. */
722 barrier
= NEXT_INSN (BB_END (b
));
723 if (barrier
&& BARRIER_P (barrier
))
724 delete_insn (barrier
);
727 /* Scramble the insn chain. */
728 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
730 /* Restore the real end of b. */
731 BB_END (b
) = real_b_end
;
734 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
737 /* Now blocks A and B are contiguous. Merge them. */
741 /* Attempt to merge basic blocks that are potentially non-adjacent.
742 Return NULL iff the attempt failed, otherwise return basic block
743 where cleanup_cfg should continue. Because the merging commonly
744 moves basic block away or introduces another optimization
745 possibility, return basic block just before B so cleanup_cfg don't
748 It may be good idea to return basic block before C in the case
749 C has been moved after B and originally appeared earlier in the
750 insn sequence, but we have no information available about the
751 relative ordering of these two. Hopefully it is not too common. */
754 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
758 /* If we are partitioning hot/cold basic blocks, we don't want to
759 mess up unconditional or indirect jumps that cross between hot
762 Basic block partitioning may result in some jumps that appear to
763 be optimizable (or blocks that appear to be mergeable), but which really
764 must be left untouched (they are required to make it safely across
765 partition boundaries). See the comments at the top of
766 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
768 if (BB_PARTITION (b
) != BB_PARTITION (c
))
771 /* If B has a fallthru edge to C, no need to move anything. */
772 if (e
->flags
& EDGE_FALLTHRU
)
774 int b_index
= b
->index
, c_index
= c
->index
;
776 update_forwarder_flag (b
);
779 fprintf (dump_file
, "Merged %d and %d without moving.\n",
782 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
785 /* Otherwise we will need to move code around. Do that only if expensive
786 transformations are allowed. */
787 else if (mode
& CLEANUP_EXPENSIVE
)
789 edge tmp_edge
, b_fallthru_edge
;
790 bool c_has_outgoing_fallthru
;
791 bool b_has_incoming_fallthru
;
794 /* Avoid overactive code motion, as the forwarder blocks should be
795 eliminated by edge redirection instead. One exception might have
796 been if B is a forwarder block and C has no fallthru edge, but
797 that should be cleaned up by bb-reorder instead. */
798 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
801 /* We must make sure to not munge nesting of lexical blocks,
802 and loop notes. This is done by squeezing out all the notes
803 and leaving them there to lie. Not ideal, but functional. */
805 FOR_EACH_EDGE (tmp_edge
, ei
, c
->succs
)
806 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
809 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
811 FOR_EACH_EDGE (tmp_edge
, ei
, b
->preds
)
812 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
815 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
816 b_fallthru_edge
= tmp_edge
;
819 next
= next
->prev_bb
;
821 /* Otherwise, we're going to try to move C after B. If C does
822 not have an outgoing fallthru, then it can be moved
823 immediately after B without introducing or modifying jumps. */
824 if (! c_has_outgoing_fallthru
)
826 merge_blocks_move_successor_nojumps (b
, c
);
827 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
830 /* If B does not have an incoming fallthru, then it can be moved
831 immediately before C without introducing or modifying jumps.
832 C cannot be the first block, so we do not have to worry about
833 accessing a non-existent block. */
835 if (b_has_incoming_fallthru
)
839 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
841 bb
= force_nonfallthru (b_fallthru_edge
);
843 notice_new_block (bb
);
846 merge_blocks_move_predecessor_nojumps (b
, c
);
847 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
854 /* Removes the memory attributes of MEM expression
855 if they are not equal. */
858 merge_memattrs (rtx x
, rtx y
)
867 if (x
== 0 || y
== 0)
872 if (code
!= GET_CODE (y
))
875 if (GET_MODE (x
) != GET_MODE (y
))
878 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
882 else if (! MEM_ATTRS (y
))
888 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
890 set_mem_alias_set (x
, 0);
891 set_mem_alias_set (y
, 0);
894 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
898 set_mem_offset (x
, 0);
899 set_mem_offset (y
, 0);
901 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
903 set_mem_offset (x
, 0);
904 set_mem_offset (y
, 0);
909 else if (!MEM_SIZE (y
))
912 mem_size
= GEN_INT (MAX (INTVAL (MEM_SIZE (x
)),
913 INTVAL (MEM_SIZE (y
))));
914 set_mem_size (x
, mem_size
);
915 set_mem_size (y
, mem_size
);
917 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
918 set_mem_align (y
, MEM_ALIGN (x
));
922 fmt
= GET_RTX_FORMAT (code
);
923 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
928 /* Two vectors must have the same length. */
929 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
932 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
933 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
938 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
945 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
948 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
952 /* Verify that I1 and I2 are equivalent. */
953 if (GET_CODE (i1
) != GET_CODE (i2
))
959 if (GET_CODE (p1
) != GET_CODE (p2
))
962 /* If this is a CALL_INSN, compare register usage information.
963 If we don't check this on stack register machines, the two
964 CALL_INSNs might be merged leaving reg-stack.c with mismatching
965 numbers of stack registers in the same basic block.
966 If we don't check this on machines with delay slots, a delay slot may
967 be filled that clobbers a parameter expected by the subroutine.
969 ??? We take the simple route for now and assume that if they're
970 equal, they were constructed identically. */
973 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
974 CALL_INSN_FUNCTION_USAGE (i2
))
975 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
979 /* If cross_jump_death_matters is not 0, the insn's mode
980 indicates whether or not the insn contains any stack-like
983 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
985 /* If register stack conversion has already been done, then
986 death notes must also be compared before it is certain that
987 the two instruction streams match. */
990 HARD_REG_SET i1_regset
, i2_regset
;
992 CLEAR_HARD_REG_SET (i1_regset
);
993 CLEAR_HARD_REG_SET (i2_regset
);
995 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
996 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
997 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
999 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1000 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1001 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1003 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1008 if (reload_completed
1009 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1012 /* Do not do EQUIV substitution after reload. First, we're undoing the
1013 work of reload_cse. Second, we may be undoing the work of the post-
1014 reload splitting pass. */
1015 /* ??? Possibly add a new phase switch variable that can be used by
1016 targets to disallow the troublesome insns after splitting. */
1017 if (!reload_completed
)
1019 /* The following code helps take care of G++ cleanups. */
1020 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1021 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1023 if (equiv1
&& equiv2
1024 /* If the equivalences are not to a constant, they may
1025 reference pseudos that no longer exist, so we can't
1027 && (! reload_completed
1028 || (CONSTANT_P (XEXP (equiv1
, 0))
1029 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
1031 rtx s1
= single_set (i1
);
1032 rtx s2
= single_set (i2
);
1033 if (s1
!= 0 && s2
!= 0
1034 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
1036 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
1037 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
1038 if (! rtx_renumbered_equal_p (p1
, p2
))
1040 else if (apply_change_group ())
1049 /* Look through the insns at the end of BB1 and BB2 and find the longest
1050 sequence that are equivalent. Store the first insns for that sequence
1051 in *F1 and *F2 and return the sequence length.
1053 To simplify callers of this function, if the blocks match exactly,
1054 store the head of the blocks in *F1 and *F2. */
1057 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1058 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1060 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1063 /* Skip simple jumps at the end of the blocks. Complex jumps still
1064 need to be compared for equivalence, which we'll do below. */
1067 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1069 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1072 i1
= PREV_INSN (i1
);
1077 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1080 /* Count everything except for unconditional jump as insn. */
1081 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1083 i2
= PREV_INSN (i2
);
1089 while (!INSN_P (i1
) && i1
!= BB_HEAD (bb1
))
1090 i1
= PREV_INSN (i1
);
1092 while (!INSN_P (i2
) && i2
!= BB_HEAD (bb2
))
1093 i2
= PREV_INSN (i2
);
1095 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1098 if (!old_insns_match_p (mode
, i1
, i2
))
1101 merge_memattrs (i1
, i2
);
1103 /* Don't begin a cross-jump with a NOTE insn. */
1106 /* If the merged insns have different REG_EQUAL notes, then
1108 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1109 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1111 if (equiv1
&& !equiv2
)
1112 remove_note (i1
, equiv1
);
1113 else if (!equiv1
&& equiv2
)
1114 remove_note (i2
, equiv2
);
1115 else if (equiv1
&& equiv2
1116 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1118 remove_note (i1
, equiv1
);
1119 remove_note (i2
, equiv2
);
1122 afterlast1
= last1
, afterlast2
= last2
;
1123 last1
= i1
, last2
= i2
;
1127 i1
= PREV_INSN (i1
);
1128 i2
= PREV_INSN (i2
);
1132 /* Don't allow the insn after a compare to be shared by
1133 cross-jumping unless the compare is also shared. */
1134 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1135 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1138 /* Include preceding notes and labels in the cross-jump. One,
1139 this may bring us to the head of the blocks as requested above.
1140 Two, it keeps line number notes as matched as may be. */
1143 while (last1
!= BB_HEAD (bb1
) && !INSN_P (PREV_INSN (last1
)))
1144 last1
= PREV_INSN (last1
);
1146 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1147 last1
= PREV_INSN (last1
);
1149 while (last2
!= BB_HEAD (bb2
) && !INSN_P (PREV_INSN (last2
)))
1150 last2
= PREV_INSN (last2
);
1152 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1153 last2
= PREV_INSN (last2
);
1162 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1163 the branch instruction. This means that if we commonize the control
1164 flow before end of the basic block, the semantic remains unchanged.
1166 We may assume that there exists one edge with a common destination. */
1169 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1171 int nehedges1
= 0, nehedges2
= 0;
1172 edge fallthru1
= 0, fallthru2
= 0;
1176 /* If BB1 has only one successor, we may be looking at either an
1177 unconditional jump, or a fake edge to exit. */
1178 if (single_succ_p (bb1
)
1179 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1180 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1181 return (single_succ_p (bb2
)
1182 && (single_succ_edge (bb2
)->flags
1183 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1184 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1186 /* Match conditional jumps - this may get tricky when fallthru and branch
1187 edges are crossed. */
1188 if (EDGE_COUNT (bb1
->succs
) == 2
1189 && any_condjump_p (BB_END (bb1
))
1190 && onlyjump_p (BB_END (bb1
)))
1192 edge b1
, f1
, b2
, f2
;
1193 bool reverse
, match
;
1194 rtx set1
, set2
, cond1
, cond2
;
1195 enum rtx_code code1
, code2
;
1197 if (EDGE_COUNT (bb2
->succs
) != 2
1198 || !any_condjump_p (BB_END (bb2
))
1199 || !onlyjump_p (BB_END (bb2
)))
1202 b1
= BRANCH_EDGE (bb1
);
1203 b2
= BRANCH_EDGE (bb2
);
1204 f1
= FALLTHRU_EDGE (bb1
);
1205 f2
= FALLTHRU_EDGE (bb2
);
1207 /* Get around possible forwarders on fallthru edges. Other cases
1208 should be optimized out already. */
1209 if (FORWARDER_BLOCK_P (f1
->dest
))
1210 f1
= single_succ_edge (f1
->dest
);
1212 if (FORWARDER_BLOCK_P (f2
->dest
))
1213 f2
= single_succ_edge (f2
->dest
);
1215 /* To simplify use of this function, return false if there are
1216 unneeded forwarder blocks. These will get eliminated later
1217 during cleanup_cfg. */
1218 if (FORWARDER_BLOCK_P (f1
->dest
)
1219 || FORWARDER_BLOCK_P (f2
->dest
)
1220 || FORWARDER_BLOCK_P (b1
->dest
)
1221 || FORWARDER_BLOCK_P (b2
->dest
))
1224 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1226 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1231 set1
= pc_set (BB_END (bb1
));
1232 set2
= pc_set (BB_END (bb2
));
1233 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1234 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1237 cond1
= XEXP (SET_SRC (set1
), 0);
1238 cond2
= XEXP (SET_SRC (set2
), 0);
1239 code1
= GET_CODE (cond1
);
1241 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1243 code2
= GET_CODE (cond2
);
1245 if (code2
== UNKNOWN
)
1248 /* Verify codes and operands match. */
1249 match
= ((code1
== code2
1250 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1251 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1252 || (code1
== swap_condition (code2
)
1253 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1255 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1258 /* If we return true, we will join the blocks. Which means that
1259 we will only have one branch prediction bit to work with. Thus
1260 we require the existing branches to have probabilities that are
1263 && optimize_bb_for_speed_p (bb1
)
1264 && optimize_bb_for_speed_p (bb2
))
1268 if (b1
->dest
== b2
->dest
)
1269 prob2
= b2
->probability
;
1271 /* Do not use f2 probability as f2 may be forwarded. */
1272 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1274 /* Fail if the difference in probabilities is greater than 50%.
1275 This rules out two well-predicted branches with opposite
1277 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1281 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1282 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1288 if (dump_file
&& match
)
1289 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1290 bb1
->index
, bb2
->index
);
1295 /* Generic case - we are seeing a computed jump, table jump or trapping
1298 /* Check whether there are tablejumps in the end of BB1 and BB2.
1299 Return true if they are identical. */
1304 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1305 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1306 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1308 /* The labels should never be the same rtx. If they really are same
1309 the jump tables are same too. So disable crossjumping of blocks BB1
1310 and BB2 because when deleting the common insns in the end of BB1
1311 by delete_basic_block () the jump table would be deleted too. */
1312 /* If LABEL2 is referenced in BB1->END do not do anything
1313 because we would loose information when replacing
1314 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1315 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1317 /* Set IDENTICAL to true when the tables are identical. */
1318 bool identical
= false;
1321 p1
= PATTERN (table1
);
1322 p2
= PATTERN (table2
);
1323 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1327 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1328 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1329 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1330 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1335 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1336 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1342 replace_label_data rr
;
1345 /* Temporarily replace references to LABEL1 with LABEL2
1346 in BB1->END so that we could compare the instructions. */
1349 rr
.update_label_nuses
= false;
1350 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1352 match
= old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
));
1353 if (dump_file
&& match
)
1355 "Tablejumps in bb %i and %i match.\n",
1356 bb1
->index
, bb2
->index
);
1358 /* Set the original label in BB1->END because when deleting
1359 a block whose end is a tablejump, the tablejump referenced
1360 from the instruction is deleted too. */
1363 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1372 /* First ensure that the instructions match. There may be many outgoing
1373 edges so this test is generally cheaper. */
1374 if (!old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)))
1377 /* Search the outgoing edges, ensure that the counts do match, find possible
1378 fallthru and exception handling edges since these needs more
1380 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1383 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1385 e2
= EDGE_SUCC (bb2
, ei
.index
);
1387 if (e1
->flags
& EDGE_EH
)
1390 if (e2
->flags
& EDGE_EH
)
1393 if (e1
->flags
& EDGE_FALLTHRU
)
1395 if (e2
->flags
& EDGE_FALLTHRU
)
1399 /* If number of edges of various types does not match, fail. */
1400 if (nehedges1
!= nehedges2
1401 || (fallthru1
!= 0) != (fallthru2
!= 0))
1404 /* fallthru edges must be forwarded to the same destination. */
1407 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1408 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1409 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1410 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1416 /* Ensure the same EH region. */
1418 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1419 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1424 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1428 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1429 version of sequence abstraction. */
1430 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1434 basic_block d1
= e1
->dest
;
1436 if (FORWARDER_BLOCK_P (d1
))
1437 d1
= EDGE_SUCC (d1
, 0)->dest
;
1439 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1441 basic_block d2
= e2
->dest
;
1442 if (FORWARDER_BLOCK_P (d2
))
1443 d2
= EDGE_SUCC (d2
, 0)->dest
;
1455 /* Returns true if BB basic block has a preserve label. */
1458 block_has_preserve_label (basic_block bb
)
1462 && LABEL_PRESERVE_P (block_label (bb
)));
1465 /* E1 and E2 are edges with the same destination block. Search their
1466 predecessors for common code. If found, redirect control flow from
1467 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1470 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1473 basic_block src1
= e1
->src
, src2
= e2
->src
;
1474 basic_block redirect_to
, redirect_from
, to_remove
;
1475 rtx newpos1
, newpos2
;
1479 newpos1
= newpos2
= NULL_RTX
;
1481 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1482 to try this optimization.
1484 Basic block partitioning may result in some jumps that appear to
1485 be optimizable (or blocks that appear to be mergeable), but which really
1486 must be left untouched (they are required to make it safely across
1487 partition boundaries). See the comments at the top of
1488 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1490 if (flag_reorder_blocks_and_partition
&& reload_completed
)
1493 /* Search backward through forwarder blocks. We don't need to worry
1494 about multiple entry or chained forwarders, as they will be optimized
1495 away. We do this to look past the unconditional jump following a
1496 conditional jump that is required due to the current CFG shape. */
1497 if (single_pred_p (src1
)
1498 && FORWARDER_BLOCK_P (src1
))
1499 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1501 if (single_pred_p (src2
)
1502 && FORWARDER_BLOCK_P (src2
))
1503 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1505 /* Nothing to do if we reach ENTRY, or a common source block. */
1506 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1511 /* Seeing more than 1 forwarder blocks would confuse us later... */
1512 if (FORWARDER_BLOCK_P (e1
->dest
)
1513 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1516 if (FORWARDER_BLOCK_P (e2
->dest
)
1517 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1520 /* Likewise with dead code (possibly newly created by the other optimizations
1522 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1525 /* Look for the common insn sequence, part the first ... */
1526 if (!outgoing_edges_match (mode
, src1
, src2
))
1529 /* ... and part the second. */
1530 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1532 /* Don't proceed with the crossjump unless we found a sufficient number
1533 of matching instructions or the 'from' block was totally matched
1534 (such that its predecessors will hopefully be redirected and the
1536 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1537 && (newpos1
!= BB_HEAD (src1
)))
1540 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1541 if (block_has_preserve_label (e1
->dest
)
1542 && (e1
->flags
& EDGE_ABNORMAL
))
1545 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1547 If we have tablejumps in the end of SRC1 and SRC2
1548 they have been already compared for equivalence in outgoing_edges_match ()
1549 so replace the references to TABLE1 by references to TABLE2. */
1554 if (tablejump_p (BB_END (src1
), &label1
, &table1
)
1555 && tablejump_p (BB_END (src2
), &label2
, &table2
)
1556 && label1
!= label2
)
1558 replace_label_data rr
;
1561 /* Replace references to LABEL1 with LABEL2. */
1564 rr
.update_label_nuses
= true;
1565 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1567 /* Do not replace the label in SRC1->END because when deleting
1568 a block whose end is a tablejump, the tablejump referenced
1569 from the instruction is deleted too. */
1570 if (insn
!= BB_END (src1
))
1571 for_each_rtx (&insn
, replace_label
, &rr
);
1576 /* Avoid splitting if possible. We must always split when SRC2 has
1577 EH predecessor edges, or we may end up with basic blocks with both
1578 normal and EH predecessor edges. */
1579 if (newpos2
== BB_HEAD (src2
)
1580 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
1584 if (newpos2
== BB_HEAD (src2
))
1586 /* Skip possible basic block header. */
1587 if (LABEL_P (newpos2
))
1588 newpos2
= NEXT_INSN (newpos2
);
1589 if (NOTE_P (newpos2
))
1590 newpos2
= NEXT_INSN (newpos2
);
1594 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1595 src2
->index
, nmatch
);
1596 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1601 "Cross jumping from bb %i to bb %i; %i common insns\n",
1602 src1
->index
, src2
->index
, nmatch
);
1604 /* We may have some registers visible through the block. */
1605 df_set_bb_dirty (redirect_to
);
1607 /* Recompute the frequencies and counts of outgoing edges. */
1608 FOR_EACH_EDGE (s
, ei
, redirect_to
->succs
)
1612 basic_block d
= s
->dest
;
1614 if (FORWARDER_BLOCK_P (d
))
1615 d
= single_succ (d
);
1617 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
1619 basic_block d2
= s2
->dest
;
1620 if (FORWARDER_BLOCK_P (d2
))
1621 d2
= single_succ (d2
);
1626 s
->count
+= s2
->count
;
1628 /* Take care to update possible forwarder blocks. We verified
1629 that there is no more than one in the chain, so we can't run
1630 into infinite loop. */
1631 if (FORWARDER_BLOCK_P (s
->dest
))
1633 single_succ_edge (s
->dest
)->count
+= s2
->count
;
1634 s
->dest
->count
+= s2
->count
;
1635 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1638 if (FORWARDER_BLOCK_P (s2
->dest
))
1640 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
1641 if (single_succ_edge (s2
->dest
)->count
< 0)
1642 single_succ_edge (s2
->dest
)->count
= 0;
1643 s2
->dest
->count
-= s2
->count
;
1644 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1645 if (s2
->dest
->frequency
< 0)
1646 s2
->dest
->frequency
= 0;
1647 if (s2
->dest
->count
< 0)
1648 s2
->dest
->count
= 0;
1651 if (!redirect_to
->frequency
&& !src1
->frequency
)
1652 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1655 = ((s
->probability
* redirect_to
->frequency
+
1656 s2
->probability
* src1
->frequency
)
1657 / (redirect_to
->frequency
+ src1
->frequency
));
1660 /* Adjust count and frequency for the block. An earlier jump
1661 threading pass may have left the profile in an inconsistent
1662 state (see update_bb_profile_for_threading) so we must be
1663 prepared for overflows. */
1664 redirect_to
->count
+= src1
->count
;
1665 redirect_to
->frequency
+= src1
->frequency
;
1666 if (redirect_to
->frequency
> BB_FREQ_MAX
)
1667 redirect_to
->frequency
= BB_FREQ_MAX
;
1668 update_br_prob_note (redirect_to
);
1670 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1672 /* Skip possible basic block header. */
1673 if (LABEL_P (newpos1
))
1674 newpos1
= NEXT_INSN (newpos1
);
1675 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
1676 newpos1
= NEXT_INSN (newpos1
);
1678 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1679 to_remove
= single_succ (redirect_from
);
1681 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
1682 delete_basic_block (to_remove
);
1684 update_forwarder_flag (redirect_from
);
1685 if (redirect_to
!= src2
)
1686 update_forwarder_flag (src2
);
1691 /* Search the predecessors of BB for common insn sequences. When found,
1692 share code between them by redirecting control flow. Return true if
1693 any changes made. */
1696 try_crossjump_bb (int mode
, basic_block bb
)
1698 edge e
, e2
, fallthru
;
1700 unsigned max
, ix
, ix2
;
1701 basic_block ev
, ev2
;
1704 /* Nothing to do if there is not at least two incoming edges. */
1705 if (EDGE_COUNT (bb
->preds
) < 2)
1708 /* Don't crossjump if this block ends in a computed jump,
1709 unless we are optimizing for size. */
1710 if (optimize_bb_for_size_p (bb
)
1711 && bb
!= EXIT_BLOCK_PTR
1712 && computed_jump_p (BB_END (bb
)))
1715 /* If we are partitioning hot/cold basic blocks, we don't want to
1716 mess up unconditional or indirect jumps that cross between hot
1719 Basic block partitioning may result in some jumps that appear to
1720 be optimizable (or blocks that appear to be mergeable), but which really
1721 must be left untouched (they are required to make it safely across
1722 partition boundaries). See the comments at the top of
1723 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1725 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
1726 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
1727 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
1730 /* It is always cheapest to redirect a block that ends in a branch to
1731 a block that falls through into BB, as that adds no branches to the
1732 program. We'll try that combination first. */
1734 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1736 if (EDGE_COUNT (bb
->preds
) > max
)
1739 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1741 if (e
->flags
& EDGE_FALLTHRU
)
1749 for (ix
= 0, ev
= bb
; ix
< EDGE_COUNT (ev
->preds
); )
1751 e
= EDGE_PRED (ev
, ix
);
1754 /* As noted above, first try with the fallthru predecessor (or, a
1755 fallthru predecessor if we are in cfglayout mode). */
1758 /* Don't combine the fallthru edge into anything else.
1759 If there is a match, we'll do it the other way around. */
1762 /* If nothing changed since the last attempt, there is nothing
1765 && (!(df_get_bb_dirty (e
->src
))
1766 && !(df_get_bb_dirty (fallthru
->src
))))
1769 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1778 /* Non-obvious work limiting check: Recognize that we're going
1779 to call try_crossjump_bb on every basic block. So if we have
1780 two blocks with lots of outgoing edges (a switch) and they
1781 share lots of common destinations, then we would do the
1782 cross-jump check once for each common destination.
1784 Now, if the blocks actually are cross-jump candidates, then
1785 all of their destinations will be shared. Which means that
1786 we only need check them for cross-jump candidacy once. We
1787 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1788 choosing to do the check from the block for which the edge
1789 in question is the first successor of A. */
1790 if (EDGE_SUCC (e
->src
, 0) != e
)
1793 for (ix2
= 0, ev2
= bb
; ix2
< EDGE_COUNT (ev2
->preds
); )
1795 e2
= EDGE_PRED (ev2
, ix2
);
1801 /* We've already checked the fallthru edge above. */
1805 /* The "first successor" check above only prevents multiple
1806 checks of crossjump(A,B). In order to prevent redundant
1807 checks of crossjump(B,A), require that A be the block
1808 with the lowest index. */
1809 if (e
->src
->index
> e2
->src
->index
)
1812 /* If nothing changed since the last attempt, there is nothing
1815 && (!(df_get_bb_dirty (e
->src
))
1816 && !(df_get_bb_dirty (e2
->src
))))
1819 if (try_crossjump_to_edge (mode
, e
, e2
))
1830 crossjumps_occured
= true;
1835 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1836 instructions etc. Return nonzero if changes were made. */
1839 try_optimize_cfg (int mode
)
1841 bool changed_overall
= false;
1844 basic_block bb
, b
, next
;
1846 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
1849 crossjumps_occured
= false;
1852 update_forwarder_flag (bb
);
1854 if (! targetm
.cannot_modify_jumps_p ())
1857 /* Attempt to merge blocks as made possible by edge removal. If
1858 a block has only one successor, and the successor has only
1859 one predecessor, they may be combined. */
1867 "\n\ntry_optimize_cfg iteration %i\n\n",
1870 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1874 bool changed_here
= false;
1876 /* Delete trivially dead basic blocks. This is either
1877 blocks with no predecessors, or empty blocks with no
1878 successors. Empty blocks may result from expanding
1879 __builtin_unreachable (). */
1880 if (EDGE_COUNT (b
->preds
) == 0
1881 || (EDGE_COUNT (b
->succs
) == 0 && BB_HEAD (b
) == BB_END (b
)))
1885 fprintf (dump_file
, "Deleting block %i.\n",
1888 delete_basic_block (b
);
1889 if (!(mode
& CLEANUP_CFGLAYOUT
))
1891 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
1892 b
= (c
== ENTRY_BLOCK_PTR
? c
->next_bb
: c
);
1896 /* Remove code labels no longer used. */
1897 if (single_pred_p (b
)
1898 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
1899 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
1900 && LABEL_P (BB_HEAD (b
))
1901 /* If the previous block ends with a branch to this
1902 block, we can't delete the label. Normally this
1903 is a condjump that is yet to be simplified, but
1904 if CASE_DROPS_THRU, this can be a tablejump with
1905 some element going to the same place as the
1906 default (fallthru). */
1907 && (single_pred (b
) == ENTRY_BLOCK_PTR
1908 || !JUMP_P (BB_END (single_pred (b
)))
1909 || ! label_is_jump_target_p (BB_HEAD (b
),
1910 BB_END (single_pred (b
)))))
1912 rtx label
= BB_HEAD (b
);
1914 delete_insn_chain (label
, label
, false);
1915 /* If the case label is undeletable, move it after the
1916 BASIC_BLOCK note. */
1917 if (NOTE_KIND (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
1919 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
1921 reorder_insns_nobb (label
, label
, bb_note
);
1922 BB_HEAD (b
) = bb_note
;
1923 if (BB_END (b
) == bb_note
)
1927 fprintf (dump_file
, "Deleted label in block %i.\n",
1931 /* If we fall through an empty block, we can remove it. */
1932 if (!(mode
& CLEANUP_CFGLAYOUT
)
1933 && single_pred_p (b
)
1934 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
1935 && !LABEL_P (BB_HEAD (b
))
1936 && FORWARDER_BLOCK_P (b
)
1937 /* Note that forwarder_block_p true ensures that
1938 there is a successor for this block. */
1939 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
1940 && n_basic_blocks
> NUM_FIXED_BLOCKS
+ 1)
1944 "Deleting fallthru block %i.\n",
1947 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1948 redirect_edge_succ_nodup (single_pred_edge (b
),
1950 delete_basic_block (b
);
1955 if (single_succ_p (b
)
1956 && (s
= single_succ_edge (b
))
1957 && !(s
->flags
& EDGE_COMPLEX
)
1958 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1959 && single_pred_p (c
)
1962 /* When not in cfg_layout mode use code aware of reordering
1963 INSN. This code possibly creates new basic blocks so it
1964 does not fit merge_blocks interface and is kept here in
1965 hope that it will become useless once more of compiler
1966 is transformed to use cfg_layout mode. */
1968 if ((mode
& CLEANUP_CFGLAYOUT
)
1969 && can_merge_blocks_p (b
, c
))
1971 merge_blocks (b
, c
);
1972 update_forwarder_flag (b
);
1973 changed_here
= true;
1975 else if (!(mode
& CLEANUP_CFGLAYOUT
)
1976 /* If the jump insn has side effects,
1977 we can't kill the edge. */
1978 && (!JUMP_P (BB_END (b
))
1979 || (reload_completed
1980 ? simplejump_p (BB_END (b
))
1981 : (onlyjump_p (BB_END (b
))
1982 && !tablejump_p (BB_END (b
),
1984 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
1987 changed_here
= true;
1991 /* Simplify branch over branch. */
1992 if ((mode
& CLEANUP_EXPENSIVE
)
1993 && !(mode
& CLEANUP_CFGLAYOUT
)
1994 && try_simplify_condjump (b
))
1995 changed_here
= true;
1997 /* If B has a single outgoing edge, but uses a
1998 non-trivial jump instruction without side-effects, we
1999 can either delete the jump entirely, or replace it
2000 with a simple unconditional jump. */
2001 if (single_succ_p (b
)
2002 && single_succ (b
) != EXIT_BLOCK_PTR
2003 && onlyjump_p (BB_END (b
))
2004 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
2005 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2007 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2009 update_forwarder_flag (b
);
2010 changed_here
= true;
2013 /* Simplify branch to branch. */
2014 if (try_forward_edges (mode
, b
))
2015 changed_here
= true;
2017 /* Look for shared code between blocks. */
2018 if ((mode
& CLEANUP_CROSSJUMP
)
2019 && try_crossjump_bb (mode
, b
))
2020 changed_here
= true;
2022 /* Don't get confused by the index shift caused by
2030 if ((mode
& CLEANUP_CROSSJUMP
)
2031 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
2034 #ifdef ENABLE_CHECKING
2036 verify_flow_info ();
2039 changed_overall
|= changed
;
2046 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2048 return changed_overall
;
2051 /* Delete all unreachable basic blocks. */
2054 delete_unreachable_blocks (void)
2056 bool changed
= false;
2057 basic_block b
, next_bb
;
2059 find_unreachable_blocks ();
2061 /* Delete all unreachable basic blocks. */
2063 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
2065 next_bb
= b
->next_bb
;
2067 if (!(b
->flags
& BB_REACHABLE
))
2069 delete_basic_block (b
);
2075 tidy_fallthru_edges ();
2079 /* Delete any jump tables never referenced. We can't delete them at the
2080 time of removing tablejump insn as they are referenced by the preceding
2081 insns computing the destination, so we delay deleting and garbagecollect
2082 them once life information is computed. */
2084 delete_dead_jumptables (void)
2088 /* A dead jump table does not belong to any basic block. Scan insns
2089 between two adjacent basic blocks. */
2094 for (insn
= NEXT_INSN (BB_END (bb
));
2095 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
2098 next
= NEXT_INSN (insn
);
2100 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
2102 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
2103 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
2105 rtx label
= insn
, jump
= next
;
2108 fprintf (dump_file
, "Dead jumptable %i removed\n",
2111 next
= NEXT_INSN (next
);
2113 delete_insn (label
);
2120 /* Tidy the CFG by deleting unreachable code and whatnot. */
2123 cleanup_cfg (int mode
)
2125 bool changed
= false;
2127 /* Set the cfglayout mode flag here. We could update all the callers
2128 but that is just inconvenient, especially given that we eventually
2129 want to have cfglayout mode as the default. */
2130 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2131 mode
|= CLEANUP_CFGLAYOUT
;
2133 timevar_push (TV_CLEANUP_CFG
);
2134 if (delete_unreachable_blocks ())
2137 /* We've possibly created trivially dead code. Cleanup it right
2138 now to introduce more opportunities for try_optimize_cfg. */
2139 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
2140 && !reload_completed
)
2141 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2146 /* To tail-merge blocks ending in the same noreturn function (e.g.
2147 a call to abort) we have to insert fake edges to exit. Do this
2148 here once. The fake edges do not interfere with any other CFG
2150 if (mode
& CLEANUP_CROSSJUMP
)
2151 add_noreturn_fake_exit_edges ();
2153 if (!dbg_cnt (cfg_cleanup
))
2156 while (try_optimize_cfg (mode
))
2158 delete_unreachable_blocks (), changed
= true;
2159 if (!(mode
& CLEANUP_NO_INSN_DEL
))
2161 /* Try to remove some trivially dead insns when doing an expensive
2162 cleanup. But delete_trivially_dead_insns doesn't work after
2163 reload (it only handles pseudos) and run_fast_dce is too costly
2164 to run in every iteration.
2166 For effective cross jumping, we really want to run a fast DCE to
2167 clean up any dead conditions, or they get in the way of performing
2170 Other transformations in cleanup_cfg are not so sensitive to dead
2171 code, so delete_trivially_dead_insns or even doing nothing at all
2173 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
2174 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2176 else if ((mode
& CLEANUP_CROSSJUMP
)
2177 && crossjumps_occured
)
2184 if (mode
& CLEANUP_CROSSJUMP
)
2185 remove_fake_exit_edges ();
2187 /* Don't call delete_dead_jumptables in cfglayout mode, because
2188 that function assumes that jump tables are in the insns stream.
2189 But we also don't _have_ to delete dead jumptables in cfglayout
2190 mode because we shouldn't even be looking at things that are
2191 not in a basic block. Dead jumptables are cleaned up when
2192 going out of cfglayout mode. */
2193 if (!(mode
& CLEANUP_CFGLAYOUT
))
2194 delete_dead_jumptables ();
2196 timevar_pop (TV_CLEANUP_CFG
);
2202 rest_of_handle_jump (void)
2204 if (crtl
->tail_call_emit
)
2205 fixup_tail_calls ();
2209 struct rtl_opt_pass pass_jump
=
2213 "sibling", /* name */
2215 rest_of_handle_jump
, /* execute */
2218 0, /* static_pass_number */
2219 TV_JUMP
, /* tv_id */
2220 0, /* properties_required */
2221 0, /* properties_provided */
2222 0, /* properties_destroyed */
2223 TODO_ggc_collect
, /* todo_flags_start */
2224 TODO_verify_flow
, /* todo_flags_finish */
2230 rest_of_handle_jump2 (void)
2232 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2234 dump_flow_info (dump_file
, dump_flags
);
2235 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
2236 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
2241 struct rtl_opt_pass pass_jump2
=
2247 rest_of_handle_jump2
, /* execute */
2250 0, /* static_pass_number */
2251 TV_JUMP
, /* tv_id */
2252 0, /* properties_required */
2253 0, /* properties_provided */
2254 0, /* properties_destroyed */
2255 TODO_ggc_collect
, /* todo_flags_start */
2256 TODO_dump_func
| TODO_verify_rtl_sharing
,/* todo_flags_finish */