1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1997, 1998 Free Software Foundation, Inc.
4 Contributed by Jason Merrill <jason@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* As a special exception, if you link this library with other files,
24 some of which are compiled with GCC, to produce an executable,
25 this library does not by itself cause the resulting executable
26 to be covered by the GNU General Public License.
27 This exception does not however invalidate any other reasons why
28 the executable file might be covered by the GNU General Public License. */
30 /* It is incorrect to include config.h here, because this file is being
31 compiled for the target, and hence definitions concerning only the host
36 /* We disable this when inhibit_libc, so that gcc can still be built without
37 needing header files first. */
38 /* ??? This is not a good solution, since prototypes may be required in
39 some cases for correct code. See also libgcc2.c. */
41 /* fixproto guarantees these system headers exist. */
48 #ifdef DWARF2_UNWIND_INFO
49 #include "gansidecl.h"
55 #ifdef __GTHREAD_MUTEX_INIT
56 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
58 static __gthread_mutex_t object_mutex
;
61 /* Don't use `fancy_abort' here even if config.h says to use it. */
66 /* Some types used by the DWARF 2 spec. */
68 typedef int sword
__attribute__ ((mode (SI
)));
69 typedef unsigned int uword
__attribute__ ((mode (SI
)));
70 typedef unsigned int uaddr
__attribute__ ((mode (pointer
)));
71 typedef int saddr
__attribute__ ((mode (pointer
)));
72 typedef unsigned char ubyte
;
74 /* The first few fields of a CIE. The CIE_id field is 0 for a CIE,
75 to distinguish it from a valid FDE. FDEs are aligned to an addressing
76 unit boundary, but the fields within are unaligned. */
83 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
85 /* The first few fields of an FDE. */
92 } __attribute__ ((packed
, aligned (__alignof__ (void *))));
94 typedef struct dwarf_fde fde
;
96 /* Objects to be searched for frame unwind info. */
98 static struct object
*objects
;
100 /* The information we care about from a CIE. */
110 /* The current unwind state, plus a saved copy for DW_CFA_remember_state. */
112 struct frame_state_internal
114 struct frame_state s
;
115 struct frame_state_internal
*saved_state
;
118 /* This is undefined below if we need it to be an actual function. */
119 #define init_object_mutex_once()
122 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
124 /* Helper for init_object_mutex_once. */
127 init_object_mutex (void)
129 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
132 /* Call this to arrange to initialize the object mutex. */
134 #undef init_object_mutex_once
136 init_object_mutex_once (void)
138 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
139 __gthread_once (&once
, init_object_mutex
);
142 #endif /* __GTHREAD_MUTEX_INIT_FUNCTION */
143 #endif /* __GTHREADS */
145 /* Decode the unsigned LEB128 constant at BUF into the variable pointed to
146 by R, and return the new value of BUF. */
149 decode_uleb128 (unsigned char *buf
, unsigned *r
)
156 unsigned byte
= *buf
++;
157 result
|= (byte
& 0x7f) << shift
;
158 if ((byte
& 0x80) == 0)
166 /* Decode the signed LEB128 constant at BUF into the variable pointed to
167 by R, and return the new value of BUF. */
170 decode_sleb128 (unsigned char *buf
, int *r
)
179 result
|= (byte
& 0x7f) << shift
;
181 if ((byte
& 0x80) == 0)
184 if (shift
< (sizeof (*r
) * 8) && (byte
& 0x40) != 0)
185 result
|= - (1 << shift
);
191 /* Read unaligned data from the instruction buffer. */
195 unsigned b2
__attribute__ ((mode (HI
)));
196 unsigned b4
__attribute__ ((mode (SI
)));
197 unsigned b8
__attribute__ ((mode (DI
)));
198 } __attribute__ ((packed
));
200 read_pointer (void *p
)
201 { union unaligned
*up
= p
; return up
->p
; }
202 static inline unsigned
204 { return *(unsigned char *)p
; }
205 static inline unsigned
207 { union unaligned
*up
= p
; return up
->b2
; }
208 static inline unsigned
210 { union unaligned
*up
= p
; return up
->b4
; }
211 static inline unsigned long
213 { union unaligned
*up
= p
; return up
->b8
; }
215 /* Ordering function for FDEs. Functions can't overlap, so we just compare
216 their starting addresses. */
219 fde_compare (fde
*x
, fde
*y
)
221 return (saddr
)x
->pc_begin
- (saddr
)y
->pc_begin
;
224 /* Return the address of the FDE after P. */
229 return (fde
*)(((char *)p
) + p
->length
+ sizeof (p
->length
));
232 /* Sorting an array of FDEs by address.
233 (Ideally we would have the linker sort the FDEs so we don't have to do
234 it at run time. But the linkers are not yet prepared for this.) */
236 /* This is a special mix of insertion sort and heap sort, optimized for
237 the data sets that actually occur. They look like
238 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
239 I.e. a linearly increasing sequence (coming from functions in the text
240 section), with additionally a few unordered elements (coming from functions
241 in gnu_linkonce sections) whose values are higher than the values in the
242 surrounding linear sequence (but not necessarily higher than the values
243 at the end of the linear sequence!).
244 The worst-case total run time is O(N) + O(n log (n)), where N is the
245 total number of FDEs and n is the number of erratic ones. */
247 typedef struct fde_vector
253 typedef struct fde_accumulator
260 start_fde_sort (fde_accumulator
*accu
, size_t count
)
262 accu
->linear
.array
= (fde
**) malloc (sizeof (fde
*) * count
);
263 accu
->erratic
.array
= (fde
**) malloc (sizeof (fde
*) * count
);
264 accu
->linear
.count
= 0;
265 accu
->erratic
.count
= 0;
269 fde_insert (fde_accumulator
*accu
, fde
*this_fde
)
271 accu
->linear
.array
[accu
->linear
.count
++] = this_fde
;
274 /* Split LINEAR into a linear sequence with low values and an erratic
275 sequence with high values, put the linear one (of longest possible
276 length) into LINEAR and the erratic one into ERRATIC. This is O(N). */
278 fde_split (fde_vector
*linear
, fde_vector
*erratic
)
280 size_t count
= linear
->count
;
281 size_t linear_max
= (size_t) -1;
282 size_t previous_max
[count
];
285 for (i
= 0; i
< count
; i
++)
289 && fde_compare (linear
->array
[i
], linear
->array
[j
]) < 0;
292 erratic
->array
[erratic
->count
++] = linear
->array
[j
];
293 linear
->array
[j
] = (fde
*) NULL
;
299 for (i
= 0, j
= 0; i
< count
; i
++)
300 if (linear
->array
[i
] != (fde
*) NULL
)
301 linear
->array
[j
++] = linear
->array
[i
];
305 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
306 use a name that does not conflict. */
308 frame_heapsort (fde_vector
*erratic
)
310 /* For a description of this algorithm, see:
311 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
313 fde
** a
= erratic
->array
;
314 /* A portion of the array is called a "heap" if for all i>=0:
315 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
316 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
317 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
318 size_t n
= erratic
->count
;
324 /* Invariant: a[m..n-1] is a heap. */
326 for (i
= m
; 2*i
+1 < n
; )
329 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
330 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
332 SWAP (a
[i
], a
[2*i
+2]);
335 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
337 SWAP (a
[i
], a
[2*i
+1]);
346 /* Invariant: a[0..n-1] is a heap. */
349 for (i
= 0; 2*i
+1 < n
; )
352 && fde_compare (a
[2*i
+2], a
[2*i
+1]) > 0
353 && fde_compare (a
[2*i
+2], a
[i
]) > 0)
355 SWAP (a
[i
], a
[2*i
+2]);
358 else if (fde_compare (a
[2*i
+1], a
[i
]) > 0)
360 SWAP (a
[i
], a
[2*i
+1]);
370 /* Merge V1 and V2, both sorted, and put the result into V1. */
372 fde_merge (fde_vector
*v1
, const fde_vector
*v2
)
383 fde2
= v2
->array
[i2
];
384 while (i1
> 0 && fde_compare (v1
->array
[i1
-1], fde2
) > 0)
386 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
389 v1
->array
[i1
+i2
] = fde2
;
391 v1
->count
+= v2
->count
;
396 end_fde_sort (fde_accumulator
*accu
, size_t count
)
398 if (accu
->linear
.count
!= count
)
400 fde_split (&accu
->linear
, &accu
->erratic
);
401 if (accu
->linear
.count
+ accu
->erratic
.count
!= count
)
403 frame_heapsort (&accu
->erratic
);
404 fde_merge (&accu
->linear
, &accu
->erratic
);
405 free (accu
->erratic
.array
);
406 return accu
->linear
.array
;
410 count_fdes (fde
*this_fde
)
414 for (count
= 0; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
416 /* Skip CIEs and linked once FDE entries. */
417 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
427 add_fdes (fde
*this_fde
, fde_accumulator
*accu
, void **beg_ptr
, void **end_ptr
)
429 void *pc_begin
= *beg_ptr
;
430 void *pc_end
= *end_ptr
;
432 for (; this_fde
->length
!= 0; this_fde
= next_fde (this_fde
))
434 /* Skip CIEs and linked once FDE entries. */
435 if (this_fde
->CIE_delta
== 0 || this_fde
->pc_begin
== 0)
438 fde_insert (accu
, this_fde
);
440 if (this_fde
->pc_begin
< pc_begin
)
441 pc_begin
= this_fde
->pc_begin
;
442 if (this_fde
->pc_begin
+ this_fde
->pc_range
> pc_end
)
443 pc_end
= this_fde
->pc_begin
+ this_fde
->pc_range
;
450 /* Set up a sorted array of pointers to FDEs for a loaded object. We
451 count up the entries before allocating the array because it's likely to
455 frame_init (struct object
* ob
)
458 fde_accumulator accu
;
459 void *pc_begin
, *pc_end
;
463 fde
**p
= ob
->fde_array
;
464 for (count
= 0; *p
; ++p
)
465 count
+= count_fdes (*p
);
468 count
= count_fdes (ob
->fde_begin
);
472 start_fde_sort (&accu
, count
);
473 pc_begin
= (void*)(uaddr
)-1;
478 fde
**p
= ob
->fde_array
;
480 add_fdes (*p
, &accu
, &pc_begin
, &pc_end
);
483 add_fdes (ob
->fde_begin
, &accu
, &pc_begin
, &pc_end
);
485 ob
->fde_array
= end_fde_sort (&accu
, count
);
486 ob
->pc_begin
= pc_begin
;
490 /* Return a pointer to the FDE for the function containing PC. */
498 init_object_mutex_once ();
499 __gthread_mutex_lock (&object_mutex
);
501 for (ob
= objects
; ob
; ob
= ob
->next
)
503 if (ob
->pc_begin
== 0)
505 if (pc
>= ob
->pc_begin
&& pc
< ob
->pc_end
)
509 __gthread_mutex_unlock (&object_mutex
);
514 /* Standard binary search algorithm. */
515 for (lo
= 0, hi
= ob
->count
; lo
< hi
; )
517 size_t i
= (lo
+ hi
) / 2;
518 fde
*f
= ob
->fde_array
[i
];
520 if (pc
< f
->pc_begin
)
522 else if (pc
>= f
->pc_begin
+ f
->pc_range
)
531 static inline struct dwarf_cie
*
534 return ((void *)&f
->CIE_delta
) - f
->CIE_delta
;
537 /* Extract any interesting information from the CIE for the translation
538 unit F belongs to. */
541 extract_cie_info (fde
*f
, struct cie_info
*c
)
546 c
->augmentation
= get_cie (f
)->augmentation
;
548 if (strcmp (c
->augmentation
, "") != 0
549 && strcmp (c
->augmentation
, "eh") != 0
550 && c
->augmentation
[0] != 'z')
553 p
= c
->augmentation
+ strlen (c
->augmentation
) + 1;
555 if (strcmp (c
->augmentation
, "eh") == 0)
557 c
->eh_ptr
= read_pointer (p
);
558 p
+= sizeof (void *);
563 p
= decode_uleb128 (p
, &c
->code_align
);
564 p
= decode_sleb128 (p
, &c
->data_align
);
565 c
->ra_regno
= *(unsigned char *)p
++;
567 /* If the augmentation starts with 'z', we now see the length of the
568 augmentation fields. */
569 if (c
->augmentation
[0] == 'z')
571 p
= decode_uleb128 (p
, &i
);
578 /* Decode one instruction's worth of DWARF 2 call frame information.
579 Used by __frame_state_for. Takes pointers P to the instruction to
580 decode, STATE to the current register unwind information, INFO to the
581 current CIE information, and PC to the current PC value. Returns a
582 pointer to the next instruction. */
585 execute_cfa_insn (void *p
, struct frame_state_internal
*state
,
586 struct cie_info
*info
, void **pc
)
588 unsigned insn
= *(unsigned char *)p
++;
592 if (insn
& DW_CFA_advance_loc
)
593 *pc
+= ((insn
& 0x3f) * info
->code_align
);
594 else if (insn
& DW_CFA_offset
)
597 p
= decode_uleb128 (p
, &offset
);
598 offset
*= info
->data_align
;
599 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
600 state
->s
.reg_or_offset
[reg
] = offset
;
602 else if (insn
& DW_CFA_restore
)
605 state
->s
.saved
[reg
] = REG_UNSAVED
;
610 *pc
= read_pointer (p
);
611 p
+= sizeof (void *);
613 case DW_CFA_advance_loc1
:
614 *pc
+= read_1byte (p
);
617 case DW_CFA_advance_loc2
:
618 *pc
+= read_2byte (p
);
621 case DW_CFA_advance_loc4
:
622 *pc
+= read_4byte (p
);
626 case DW_CFA_offset_extended
:
627 p
= decode_uleb128 (p
, ®
);
628 p
= decode_uleb128 (p
, &offset
);
629 offset
*= info
->data_align
;
630 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
631 state
->s
.reg_or_offset
[reg
] = offset
;
633 case DW_CFA_restore_extended
:
634 p
= decode_uleb128 (p
, ®
);
635 state
->s
.saved
[reg
] = REG_UNSAVED
;
638 case DW_CFA_undefined
:
639 case DW_CFA_same_value
:
643 case DW_CFA_register
:
646 p
= decode_uleb128 (p
, ®
);
647 p
= decode_uleb128 (p
, ®2
);
648 state
->s
.saved
[reg
] = REG_SAVED_REG
;
649 state
->s
.reg_or_offset
[reg
] = reg2
;
654 p
= decode_uleb128 (p
, ®
);
655 p
= decode_uleb128 (p
, &offset
);
656 state
->s
.cfa_reg
= reg
;
657 state
->s
.cfa_offset
= offset
;
659 case DW_CFA_def_cfa_register
:
660 p
= decode_uleb128 (p
, ®
);
661 state
->s
.cfa_reg
= reg
;
663 case DW_CFA_def_cfa_offset
:
664 p
= decode_uleb128 (p
, &offset
);
665 state
->s
.cfa_offset
= offset
;
668 case DW_CFA_remember_state
:
670 struct frame_state_internal
*save
=
671 (struct frame_state_internal
*)
672 malloc (sizeof (struct frame_state_internal
));
673 memcpy (save
, state
, sizeof (struct frame_state_internal
));
674 state
->saved_state
= save
;
677 case DW_CFA_restore_state
:
679 struct frame_state_internal
*save
= state
->saved_state
;
680 memcpy (state
, save
, sizeof (struct frame_state_internal
));
685 /* FIXME: Hardcoded for SPARC register window configuration. */
686 case DW_CFA_GNU_window_save
:
687 for (reg
= 16; reg
< 32; ++reg
)
689 state
->s
.saved
[reg
] = REG_SAVED_OFFSET
;
690 state
->s
.reg_or_offset
[reg
] = (reg
- 16) * sizeof (void *);
694 case DW_CFA_GNU_args_size
:
695 p
= decode_uleb128 (p
, &offset
);
696 state
->s
.args_size
= offset
;
705 /* Called from crtbegin.o to register the unwind info for an object. */
708 __register_frame_info (void *begin
, struct object
*ob
)
710 ob
->fde_begin
= begin
;
712 ob
->pc_begin
= ob
->pc_end
= 0;
716 init_object_mutex_once ();
717 __gthread_mutex_lock (&object_mutex
);
722 __gthread_mutex_unlock (&object_mutex
);
726 __register_frame (void *begin
)
728 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
729 __register_frame_info (begin
, ob
);
732 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
733 for different translation units. Called from the file generated by
737 __register_frame_info_table (void *begin
, struct object
*ob
)
739 ob
->fde_begin
= begin
;
740 ob
->fde_array
= begin
;
742 ob
->pc_begin
= ob
->pc_end
= 0;
745 init_object_mutex_once ();
746 __gthread_mutex_lock (&object_mutex
);
751 __gthread_mutex_unlock (&object_mutex
);
755 __register_frame_table (void *begin
)
757 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
758 __register_frame_info_table (begin
, ob
);
761 /* Called from crtbegin.o to deregister the unwind info for an object. */
764 __deregister_frame_info (void *begin
)
768 init_object_mutex_once ();
769 __gthread_mutex_lock (&object_mutex
);
774 if ((*p
)->fde_begin
== begin
)
776 struct object
*ob
= *p
;
779 /* If we've run init_frame for this object, free the FDE array. */
781 free (ob
->fde_array
);
783 __gthread_mutex_unlock (&object_mutex
);
789 __gthread_mutex_unlock (&object_mutex
);
794 __deregister_frame (void *begin
)
796 free (__deregister_frame_info (begin
));
799 /* Called from __throw to find the registers to restore for a given
800 PC_TARGET. The caller should allocate a local variable of `struct
801 frame_state' (declared in frame.h) and pass its address to STATE_IN. */
804 __frame_state_for (void *pc_target
, struct frame_state
*state_in
)
807 void *insn
, *end
, *pc
;
808 struct cie_info info
;
809 struct frame_state_internal state
;
811 f
= find_fde (pc_target
);
815 insn
= extract_cie_info (f
, &info
);
819 memset (&state
, 0, sizeof (state
));
820 state
.s
.retaddr_column
= info
.ra_regno
;
821 state
.s
.eh_ptr
= info
.eh_ptr
;
823 /* First decode all the insns in the CIE. */
824 end
= next_fde ((fde
*) get_cie (f
));
826 insn
= execute_cfa_insn (insn
, &state
, &info
, 0);
828 insn
= ((fde
*)f
) + 1;
830 if (info
.augmentation
[0] == 'z')
833 insn
= decode_uleb128 (insn
, &i
);
837 /* Then the insns in the FDE up to our target PC. */
840 while (insn
< end
&& pc
<= pc_target
)
841 insn
= execute_cfa_insn (insn
, &state
, &info
, &pc
);
843 memcpy (state_in
, &state
.s
, sizeof (state
.s
));
846 #endif /* DWARF2_UNWIND_INFO */