* config/arm/arm.c (arm_compute_save_reg0_reg12_mask): Save PIC
[official-gcc.git] / gcc / flow.c
blob2ccd7554ca9316c726455b87b5c79e09bac56800
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* Nonzero if the second flow pass has completed. */
169 int flow2_completed;
171 /* Maximum register number used in this function, plus one. */
173 int max_regno;
175 /* Indexed by n, giving various register information */
177 varray_type reg_n_info;
179 /* Size of a regset for the current function,
180 in (1) bytes and (2) elements. */
182 int regset_bytes;
183 int regset_size;
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
188 regset regs_live_at_setjmp;
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
199 static HARD_REG_SET elim_reg_set;
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
220 struct propagate_block_info
222 /* The basic block we're considering. */
223 basic_block bb;
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
268 /* Number of dead insns removed. */
269 static int ndead;
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and liferanges are increased same way so liverange of global
278 registers are computed correctly.
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
284 static int *reg_deaths;
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
333 static void allocate_bb_life_data (void);
335 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
336 note associated with the BLOCK. */
339 first_insn_after_basic_block_note (basic_block block)
341 rtx insn;
343 /* Get the first instruction in the block. */
344 insn = BB_HEAD (block);
346 if (insn == NULL_RTX)
347 return NULL_RTX;
348 if (LABEL_P (insn))
349 insn = NEXT_INSN (insn);
350 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
352 return NEXT_INSN (insn);
355 /* Perform data flow analysis for the whole control flow graph.
356 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
358 void
359 life_analysis (FILE *file, int flags)
361 #ifdef ELIMINABLE_REGS
362 int i;
363 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
364 #endif
366 /* Record which registers will be eliminated. We use this in
367 mark_used_regs. */
369 CLEAR_HARD_REG_SET (elim_reg_set);
371 #ifdef ELIMINABLE_REGS
372 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
373 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
374 #else
375 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
376 #endif
379 #ifdef CANNOT_CHANGE_MODE_CLASS
380 if (flags & PROP_REG_INFO)
381 init_subregs_of_mode ();
382 #endif
384 if (! optimize)
385 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
387 /* The post-reload life analysis have (on a global basis) the same
388 registers live as was computed by reload itself. elimination
389 Otherwise offsets and such may be incorrect.
391 Reload will make some registers as live even though they do not
392 appear in the rtl.
394 We don't want to create new auto-incs after reload, since they
395 are unlikely to be useful and can cause problems with shared
396 stack slots. */
397 if (reload_completed)
398 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
400 /* We want alias analysis information for local dead store elimination. */
401 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
402 init_alias_analysis ();
404 /* Always remove no-op moves. Do this before other processing so
405 that we don't have to keep re-scanning them. */
406 delete_noop_moves ();
408 /* Some targets can emit simpler epilogues if they know that sp was
409 not ever modified during the function. After reload, of course,
410 we've already emitted the epilogue so there's no sense searching. */
411 if (! reload_completed)
412 notice_stack_pointer_modification ();
414 /* Allocate and zero out data structures that will record the
415 data from lifetime analysis. */
416 allocate_reg_life_data ();
417 allocate_bb_life_data ();
419 /* Find the set of registers live on function exit. */
420 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
422 /* "Update" life info from zero. It'd be nice to begin the
423 relaxation with just the exit and noreturn blocks, but that set
424 is not immediately handy. */
426 if (flags & PROP_REG_INFO)
428 memset (regs_ever_live, 0, sizeof (regs_ever_live));
429 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
431 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
432 if (reg_deaths)
434 free (reg_deaths);
435 reg_deaths = NULL;
438 /* Clean up. */
439 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
440 end_alias_analysis ();
442 if (file)
443 dump_flow_info (file);
445 /* Removing dead insns should have made jumptables really dead. */
446 delete_dead_jumptables ();
449 /* A subroutine of verify_wide_reg, called through for_each_rtx.
450 Search for REGNO. If found, return 2 if it is not wider than
451 word_mode. */
453 static int
454 verify_wide_reg_1 (rtx *px, void *pregno)
456 rtx x = *px;
457 unsigned int regno = *(int *) pregno;
459 if (REG_P (x) && REGNO (x) == regno)
461 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
462 return 2;
463 return 1;
465 return 0;
468 /* A subroutine of verify_local_live_at_start. Search through insns
469 of BB looking for register REGNO. */
471 static void
472 verify_wide_reg (int regno, basic_block bb)
474 rtx head = BB_HEAD (bb), end = BB_END (bb);
476 while (1)
478 if (INSN_P (head))
480 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
481 if (r == 1)
482 return;
483 if (r == 2)
484 break;
486 if (head == end)
487 break;
488 head = NEXT_INSN (head);
490 if (dump_file)
492 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
493 dump_bb (bb, dump_file, 0);
495 fatal_error ("internal consistency failure");
498 /* A subroutine of update_life_info. Verify that there are no untoward
499 changes in live_at_start during a local update. */
501 static void
502 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
504 if (reload_completed)
506 /* After reload, there are no pseudos, nor subregs of multi-word
507 registers. The regsets should exactly match. */
508 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
510 if (dump_file)
512 fprintf (dump_file,
513 "live_at_start mismatch in bb %d, aborting\nNew:\n",
514 bb->index);
515 debug_bitmap_file (dump_file, new_live_at_start);
516 fputs ("Old:\n", dump_file);
517 dump_bb (bb, dump_file, 0);
519 fatal_error ("internal consistency failure");
522 else
524 unsigned i;
525 reg_set_iterator rsi;
527 /* Find the set of changed registers. */
528 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
530 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
532 /* No registers should die. */
533 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
535 if (dump_file)
537 fprintf (dump_file,
538 "Register %d died unexpectedly.\n", i);
539 dump_bb (bb, dump_file, 0);
541 fatal_error ("internal consistency failure");
543 /* Verify that the now-live register is wider than word_mode. */
544 verify_wide_reg (i, bb);
549 /* Updates life information starting with the basic blocks set in BLOCKS.
550 If BLOCKS is null, consider it to be the universal set.
552 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
553 we are only expecting local modifications to basic blocks. If we find
554 extra registers live at the beginning of a block, then we either killed
555 useful data, or we have a broken split that wants data not provided.
556 If we find registers removed from live_at_start, that means we have
557 a broken peephole that is killing a register it shouldn't.
559 ??? This is not true in one situation -- when a pre-reload splitter
560 generates subregs of a multi-word pseudo, current life analysis will
561 lose the kill. So we _can_ have a pseudo go live. How irritating.
563 It is also not true when a peephole decides that it doesn't need one
564 or more of the inputs.
566 Including PROP_REG_INFO does not properly refresh regs_ever_live
567 unless the caller resets it to zero. */
570 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
572 regset tmp;
573 regset_head tmp_head;
574 unsigned i;
575 int stabilized_prop_flags = prop_flags;
576 basic_block bb;
578 tmp = INITIALIZE_REG_SET (tmp_head);
579 ndead = 0;
581 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
582 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
584 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
585 ? TV_LIFE_UPDATE : TV_LIFE);
587 /* Changes to the CFG are only allowed when
588 doing a global update for the entire CFG. */
589 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
590 || (extent != UPDATE_LIFE_LOCAL && !blocks));
592 /* For a global update, we go through the relaxation process again. */
593 if (extent != UPDATE_LIFE_LOCAL)
595 for ( ; ; )
597 int changed = 0;
599 calculate_global_regs_live (blocks, blocks,
600 prop_flags & (PROP_SCAN_DEAD_CODE
601 | PROP_SCAN_DEAD_STORES
602 | PROP_ALLOW_CFG_CHANGES));
604 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
606 break;
608 /* Removing dead code may allow the CFG to be simplified which
609 in turn may allow for further dead code detection / removal. */
610 FOR_EACH_BB_REVERSE (bb)
612 COPY_REG_SET (tmp, bb->global_live_at_end);
613 changed |= propagate_block (bb, tmp, NULL, NULL,
614 prop_flags & (PROP_SCAN_DEAD_CODE
615 | PROP_SCAN_DEAD_STORES
616 | PROP_KILL_DEAD_CODE));
619 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
620 subsequent propagate_block calls, since removing or acting as
621 removing dead code can affect global register liveness, which
622 is supposed to be finalized for this call after this loop. */
623 stabilized_prop_flags
624 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
625 | PROP_KILL_DEAD_CODE);
627 if (! changed)
628 break;
630 /* We repeat regardless of what cleanup_cfg says. If there were
631 instructions deleted above, that might have been only a
632 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
633 Further improvement may be possible. */
634 cleanup_cfg (CLEANUP_EXPENSIVE);
636 /* Zap the life information from the last round. If we don't
637 do this, we can wind up with registers that no longer appear
638 in the code being marked live at entry. */
639 FOR_EACH_BB (bb)
641 CLEAR_REG_SET (bb->global_live_at_start);
642 CLEAR_REG_SET (bb->global_live_at_end);
646 /* If asked, remove notes from the blocks we'll update. */
647 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
648 count_or_remove_death_notes (blocks, 1);
651 /* Clear log links in case we are asked to (re)compute them. */
652 if (prop_flags & PROP_LOG_LINKS)
653 clear_log_links (blocks);
655 if (blocks)
657 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
659 bb = BASIC_BLOCK (i);
661 COPY_REG_SET (tmp, bb->global_live_at_end);
662 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
664 if (extent == UPDATE_LIFE_LOCAL)
665 verify_local_live_at_start (tmp, bb);
668 else
670 FOR_EACH_BB_REVERSE (bb)
672 COPY_REG_SET (tmp, bb->global_live_at_end);
674 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
676 if (extent == UPDATE_LIFE_LOCAL)
677 verify_local_live_at_start (tmp, bb);
681 FREE_REG_SET (tmp);
683 if (prop_flags & PROP_REG_INFO)
685 reg_set_iterator rsi;
687 /* The only pseudos that are live at the beginning of the function
688 are those that were not set anywhere in the function. local-alloc
689 doesn't know how to handle these correctly, so mark them as not
690 local to any one basic block. */
691 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
692 FIRST_PSEUDO_REGISTER, i, rsi)
693 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
695 /* We have a problem with any pseudoreg that lives across the setjmp.
696 ANSI says that if a user variable does not change in value between
697 the setjmp and the longjmp, then the longjmp preserves it. This
698 includes longjmp from a place where the pseudo appears dead.
699 (In principle, the value still exists if it is in scope.)
700 If the pseudo goes in a hard reg, some other value may occupy
701 that hard reg where this pseudo is dead, thus clobbering the pseudo.
702 Conclusion: such a pseudo must not go in a hard reg. */
703 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
704 FIRST_PSEUDO_REGISTER, i, rsi)
706 if (regno_reg_rtx[i] != 0)
708 REG_LIVE_LENGTH (i) = -1;
709 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
713 if (reg_deaths)
715 free (reg_deaths);
716 reg_deaths = NULL;
718 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
719 ? TV_LIFE_UPDATE : TV_LIFE);
720 if (ndead && dump_file)
721 fprintf (dump_file, "deleted %i dead insns\n", ndead);
722 return ndead;
725 /* Update life information in all blocks where BB_DIRTY is set. */
728 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
730 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
731 int n = 0;
732 basic_block bb;
733 int retval = 0;
735 sbitmap_zero (update_life_blocks);
736 FOR_EACH_BB (bb)
738 if (extent == UPDATE_LIFE_LOCAL)
740 if (bb->flags & BB_DIRTY)
742 SET_BIT (update_life_blocks, bb->index);
743 n++;
746 else
748 /* ??? Bootstrap with -march=pentium4 fails to terminate
749 with only a partial life update. */
750 SET_BIT (update_life_blocks, bb->index);
751 if (bb->flags & BB_DIRTY)
752 n++;
756 if (n)
757 retval = update_life_info (update_life_blocks, extent, prop_flags);
759 sbitmap_free (update_life_blocks);
760 return retval;
763 /* Free the variables allocated by find_basic_blocks. */
765 void
766 free_basic_block_vars (void)
768 if (basic_block_info)
770 clear_edges ();
771 basic_block_info = NULL;
773 n_basic_blocks = 0;
774 last_basic_block = 0;
776 ENTRY_BLOCK_PTR->aux = NULL;
777 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
778 EXIT_BLOCK_PTR->aux = NULL;
779 EXIT_BLOCK_PTR->global_live_at_start = NULL;
782 /* Delete any insns that copy a register to itself. */
785 delete_noop_moves (void)
787 rtx insn, next;
788 basic_block bb;
789 int nnoops = 0;
791 FOR_EACH_BB (bb)
793 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
795 next = NEXT_INSN (insn);
796 if (INSN_P (insn) && noop_move_p (insn))
798 rtx note;
800 /* If we're about to remove the first insn of a libcall
801 then move the libcall note to the next real insn and
802 update the retval note. */
803 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
804 && XEXP (note, 0) != insn)
806 rtx new_libcall_insn = next_real_insn (insn);
807 rtx retval_note = find_reg_note (XEXP (note, 0),
808 REG_RETVAL, NULL_RTX);
809 REG_NOTES (new_libcall_insn)
810 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
811 REG_NOTES (new_libcall_insn));
812 XEXP (retval_note, 0) = new_libcall_insn;
815 delete_insn_and_edges (insn);
816 nnoops++;
820 if (nnoops && dump_file)
821 fprintf (dump_file, "deleted %i noop moves", nnoops);
822 return nnoops;
825 /* Delete any jump tables never referenced. We can't delete them at the
826 time of removing tablejump insn as they are referenced by the preceding
827 insns computing the destination, so we delay deleting and garbagecollect
828 them once life information is computed. */
829 void
830 delete_dead_jumptables (void)
832 rtx insn, next;
833 for (insn = get_insns (); insn; insn = next)
835 next = NEXT_INSN (insn);
836 if (LABEL_P (insn)
837 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
838 && JUMP_P (next)
839 && (GET_CODE (PATTERN (next)) == ADDR_VEC
840 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
842 if (dump_file)
843 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
844 delete_insn (NEXT_INSN (insn));
845 delete_insn (insn);
846 next = NEXT_INSN (next);
851 /* Determine if the stack pointer is constant over the life of the function.
852 Only useful before prologues have been emitted. */
854 static void
855 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
856 void *data ATTRIBUTE_UNUSED)
858 if (x == stack_pointer_rtx
859 /* The stack pointer is only modified indirectly as the result
860 of a push until later in flow. See the comments in rtl.texi
861 regarding Embedded Side-Effects on Addresses. */
862 || (MEM_P (x)
863 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
864 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
865 current_function_sp_is_unchanging = 0;
868 static void
869 notice_stack_pointer_modification (void)
871 basic_block bb;
872 rtx insn;
874 /* Assume that the stack pointer is unchanging if alloca hasn't
875 been used. */
876 current_function_sp_is_unchanging = !current_function_calls_alloca;
877 if (! current_function_sp_is_unchanging)
878 return;
880 FOR_EACH_BB (bb)
881 FOR_BB_INSNS (bb, insn)
883 if (INSN_P (insn))
885 /* Check if insn modifies the stack pointer. */
886 note_stores (PATTERN (insn),
887 notice_stack_pointer_modification_1,
888 NULL);
889 if (! current_function_sp_is_unchanging)
890 return;
895 /* Mark a register in SET. Hard registers in large modes get all
896 of their component registers set as well. */
898 static void
899 mark_reg (rtx reg, void *xset)
901 regset set = (regset) xset;
902 int regno = REGNO (reg);
904 gcc_assert (GET_MODE (reg) != BLKmode);
906 SET_REGNO_REG_SET (set, regno);
907 if (regno < FIRST_PSEUDO_REGISTER)
909 int n = hard_regno_nregs[regno][GET_MODE (reg)];
910 while (--n > 0)
911 SET_REGNO_REG_SET (set, regno + n);
915 /* Mark those regs which are needed at the end of the function as live
916 at the end of the last basic block. */
918 static void
919 mark_regs_live_at_end (regset set)
921 unsigned int i;
923 /* If exiting needs the right stack value, consider the stack pointer
924 live at the end of the function. */
925 if ((HAVE_epilogue && epilogue_completed)
926 || ! EXIT_IGNORE_STACK
927 || (! FRAME_POINTER_REQUIRED
928 && ! current_function_calls_alloca
929 && flag_omit_frame_pointer)
930 || current_function_sp_is_unchanging)
932 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
935 /* Mark the frame pointer if needed at the end of the function. If
936 we end up eliminating it, it will be removed from the live list
937 of each basic block by reload. */
939 if (! reload_completed || frame_pointer_needed)
941 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 /* If they are different, also mark the hard frame pointer as live. */
944 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
945 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
946 #endif
949 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
950 /* Many architectures have a GP register even without flag_pic.
951 Assume the pic register is not in use, or will be handled by
952 other means, if it is not fixed. */
953 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
954 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
955 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
956 #endif
958 /* Mark all global registers, and all registers used by the epilogue
959 as being live at the end of the function since they may be
960 referenced by our caller. */
961 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
962 if (global_regs[i] || EPILOGUE_USES (i))
963 SET_REGNO_REG_SET (set, i);
965 if (HAVE_epilogue && epilogue_completed)
967 /* Mark all call-saved registers that we actually used. */
968 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
969 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
970 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
971 SET_REGNO_REG_SET (set, i);
974 #ifdef EH_RETURN_DATA_REGNO
975 /* Mark the registers that will contain data for the handler. */
976 if (reload_completed && current_function_calls_eh_return)
977 for (i = 0; ; ++i)
979 unsigned regno = EH_RETURN_DATA_REGNO(i);
980 if (regno == INVALID_REGNUM)
981 break;
982 SET_REGNO_REG_SET (set, regno);
984 #endif
985 #ifdef EH_RETURN_STACKADJ_RTX
986 if ((! HAVE_epilogue || ! epilogue_completed)
987 && current_function_calls_eh_return)
989 rtx tmp = EH_RETURN_STACKADJ_RTX;
990 if (tmp && REG_P (tmp))
991 mark_reg (tmp, set);
993 #endif
994 #ifdef EH_RETURN_HANDLER_RTX
995 if ((! HAVE_epilogue || ! epilogue_completed)
996 && current_function_calls_eh_return)
998 rtx tmp = EH_RETURN_HANDLER_RTX;
999 if (tmp && REG_P (tmp))
1000 mark_reg (tmp, set);
1002 #endif
1004 /* Mark function return value. */
1005 diddle_return_value (mark_reg, set);
1008 /* Propagate global life info around the graph of basic blocks. Begin
1009 considering blocks with their corresponding bit set in BLOCKS_IN.
1010 If BLOCKS_IN is null, consider it the universal set.
1012 BLOCKS_OUT is set for every block that was changed. */
1014 static void
1015 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1017 basic_block *queue, *qhead, *qtail, *qend, bb;
1018 regset tmp, new_live_at_end, invalidated_by_call;
1019 regset_head tmp_head, invalidated_by_call_head;
1020 regset_head new_live_at_end_head;
1022 /* The registers that are modified within this in block. */
1023 regset *local_sets;
1025 /* The registers that are conditionally modified within this block.
1026 In other words, regs that are set only as part of a COND_EXEC. */
1027 regset *cond_local_sets;
1029 int i;
1031 /* Some passes used to forget clear aux field of basic block causing
1032 sick behavior here. */
1033 #ifdef ENABLE_CHECKING
1034 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1035 gcc_assert (!bb->aux);
1036 #endif
1038 tmp = INITIALIZE_REG_SET (tmp_head);
1039 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1040 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1042 /* Inconveniently, this is only readily available in hard reg set form. */
1043 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1044 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1045 SET_REGNO_REG_SET (invalidated_by_call, i);
1047 /* Allocate space for the sets of local properties. */
1048 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1049 sizeof (regset));
1050 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1051 sizeof (regset));
1053 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1054 because the `head == tail' style test for an empty queue doesn't
1055 work with a full queue. */
1056 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1057 qtail = queue;
1058 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1060 /* Queue the blocks set in the initial mask. Do this in reverse block
1061 number order so that we are more likely for the first round to do
1062 useful work. We use AUX non-null to flag that the block is queued. */
1063 if (blocks_in)
1065 FOR_EACH_BB (bb)
1066 if (TEST_BIT (blocks_in, bb->index))
1068 *--qhead = bb;
1069 bb->aux = bb;
1072 else
1074 FOR_EACH_BB (bb)
1076 *--qhead = bb;
1077 bb->aux = bb;
1081 /* We clean aux when we remove the initially-enqueued bbs, but we
1082 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1083 unconditionally. */
1084 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1086 if (blocks_out)
1087 sbitmap_zero (blocks_out);
1089 /* We work through the queue until there are no more blocks. What
1090 is live at the end of this block is precisely the union of what
1091 is live at the beginning of all its successors. So, we set its
1092 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1093 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1094 this block by walking through the instructions in this block in
1095 reverse order and updating as we go. If that changed
1096 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1097 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1099 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1100 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1101 must either be live at the end of the block, or used within the
1102 block. In the latter case, it will certainly never disappear
1103 from GLOBAL_LIVE_AT_START. In the former case, the register
1104 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1105 for one of the successor blocks. By induction, that cannot
1106 occur. */
1107 while (qhead != qtail)
1109 int rescan, changed;
1110 basic_block bb;
1111 edge e;
1112 edge_iterator ei;
1114 bb = *qhead++;
1115 if (qhead == qend)
1116 qhead = queue;
1117 bb->aux = NULL;
1119 /* Begin by propagating live_at_start from the successor blocks. */
1120 CLEAR_REG_SET (new_live_at_end);
1122 if (EDGE_COUNT (bb->succs) > 0)
1123 FOR_EACH_EDGE (e, ei, bb->succs)
1125 basic_block sb = e->dest;
1127 /* Call-clobbered registers die across exception and
1128 call edges. */
1129 /* ??? Abnormal call edges ignored for the moment, as this gets
1130 confused by sibling call edges, which crashes reg-stack. */
1131 if (e->flags & EDGE_EH)
1132 bitmap_ior_and_compl_into (new_live_at_end,
1133 sb->global_live_at_start,
1134 invalidated_by_call);
1135 else
1136 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1138 /* If a target saves one register in another (instead of on
1139 the stack) the save register will need to be live for EH. */
1140 if (e->flags & EDGE_EH)
1141 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1142 if (EH_USES (i))
1143 SET_REGNO_REG_SET (new_live_at_end, i);
1145 else
1147 /* This might be a noreturn function that throws. And
1148 even if it isn't, getting the unwind info right helps
1149 debugging. */
1150 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1151 if (EH_USES (i))
1152 SET_REGNO_REG_SET (new_live_at_end, i);
1155 /* The all-important stack pointer must always be live. */
1156 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1158 /* Before reload, there are a few registers that must be forced
1159 live everywhere -- which might not already be the case for
1160 blocks within infinite loops. */
1161 if (! reload_completed)
1163 /* Any reference to any pseudo before reload is a potential
1164 reference of the frame pointer. */
1165 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1167 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1168 /* Pseudos with argument area equivalences may require
1169 reloading via the argument pointer. */
1170 if (fixed_regs[ARG_POINTER_REGNUM])
1171 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1172 #endif
1174 /* Any constant, or pseudo with constant equivalences, may
1175 require reloading from memory using the pic register. */
1176 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1177 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1178 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1181 if (bb == ENTRY_BLOCK_PTR)
1183 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1184 continue;
1187 /* On our first pass through this block, we'll go ahead and continue.
1188 Recognize first pass by checking if local_set is NULL for this
1189 basic block. On subsequent passes, we get to skip out early if
1190 live_at_end wouldn't have changed. */
1192 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1194 local_sets[bb->index - (INVALID_BLOCK + 1)] = XMALLOC_REG_SET ();
1195 cond_local_sets[bb->index - (INVALID_BLOCK + 1)] = XMALLOC_REG_SET ();
1196 rescan = 1;
1198 else
1200 /* If any bits were removed from live_at_end, we'll have to
1201 rescan the block. This wouldn't be necessary if we had
1202 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1203 local_live is really dependent on live_at_end. */
1204 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1205 new_live_at_end);
1207 if (!rescan)
1209 regset cond_local_set;
1211 /* If any of the registers in the new live_at_end set are
1212 conditionally set in this basic block, we must rescan.
1213 This is because conditional lifetimes at the end of the
1214 block do not just take the live_at_end set into
1215 account, but also the liveness at the start of each
1216 successor block. We can miss changes in those sets if
1217 we only compare the new live_at_end against the
1218 previous one. */
1219 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1220 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1223 if (!rescan)
1225 regset local_set;
1227 /* Find the set of changed bits. Take this opportunity
1228 to notice that this set is empty and early out. */
1229 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1230 if (bitmap_empty_p (tmp))
1231 continue;
1233 /* If any of the changed bits overlap with local_sets[bb],
1234 we'll have to rescan the block. */
1235 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1236 rescan = bitmap_intersect_p (tmp, local_set);
1240 /* Let our caller know that BB changed enough to require its
1241 death notes updated. */
1242 if (blocks_out)
1243 SET_BIT (blocks_out, bb->index);
1245 if (! rescan)
1247 /* Add to live_at_start the set of all registers in
1248 new_live_at_end that aren't in the old live_at_end. */
1250 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1251 new_live_at_end,
1252 bb->global_live_at_end);
1253 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1254 if (! changed)
1255 continue;
1257 else
1259 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1261 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1262 into live_at_start. */
1263 propagate_block (bb, new_live_at_end,
1264 local_sets[bb->index - (INVALID_BLOCK + 1)],
1265 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1266 flags);
1268 /* If live_at start didn't change, no need to go farther. */
1269 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1270 continue;
1272 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1275 /* Queue all predecessors of BB so that we may re-examine
1276 their live_at_end. */
1277 FOR_EACH_EDGE (e, ei, bb->preds)
1279 basic_block pb = e->src;
1280 if (pb->aux == NULL)
1282 *qtail++ = pb;
1283 if (qtail == qend)
1284 qtail = queue;
1285 pb->aux = pb;
1290 FREE_REG_SET (tmp);
1291 FREE_REG_SET (new_live_at_end);
1292 FREE_REG_SET (invalidated_by_call);
1294 if (blocks_out)
1296 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1298 basic_block bb = BASIC_BLOCK (i);
1299 XFREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1300 XFREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1303 else
1305 FOR_EACH_BB (bb)
1307 XFREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1308 XFREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1312 free (queue);
1313 free (cond_local_sets);
1314 free (local_sets);
1318 /* This structure is used to pass parameters to and from the
1319 the function find_regno_partial(). It is used to pass in the
1320 register number we are looking, as well as to return any rtx
1321 we find. */
1323 typedef struct {
1324 unsigned regno_to_find;
1325 rtx retval;
1326 } find_regno_partial_param;
1329 /* Find the rtx for the reg numbers specified in 'data' if it is
1330 part of an expression which only uses part of the register. Return
1331 it in the structure passed in. */
1332 static int
1333 find_regno_partial (rtx *ptr, void *data)
1335 find_regno_partial_param *param = (find_regno_partial_param *)data;
1336 unsigned reg = param->regno_to_find;
1337 param->retval = NULL_RTX;
1339 if (*ptr == NULL_RTX)
1340 return 0;
1342 switch (GET_CODE (*ptr))
1344 case ZERO_EXTRACT:
1345 case SIGN_EXTRACT:
1346 case STRICT_LOW_PART:
1347 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1349 param->retval = XEXP (*ptr, 0);
1350 return 1;
1352 break;
1354 case SUBREG:
1355 if (REG_P (SUBREG_REG (*ptr))
1356 && REGNO (SUBREG_REG (*ptr)) == reg)
1358 param->retval = SUBREG_REG (*ptr);
1359 return 1;
1361 break;
1363 default:
1364 break;
1367 return 0;
1370 /* Process all immediate successors of the entry block looking for pseudo
1371 registers which are live on entry. Find all of those whose first
1372 instance is a partial register reference of some kind, and initialize
1373 them to 0 after the entry block. This will prevent bit sets within
1374 registers whose value is unknown, and may contain some kind of sticky
1375 bits we don't want. */
1378 initialize_uninitialized_subregs (void)
1380 rtx insn;
1381 edge e;
1382 unsigned reg, did_something = 0;
1383 find_regno_partial_param param;
1384 edge_iterator ei;
1386 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1388 basic_block bb = e->dest;
1389 regset map = bb->global_live_at_start;
1390 reg_set_iterator rsi;
1392 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1394 int uid = REGNO_FIRST_UID (reg);
1395 rtx i;
1397 /* Find an insn which mentions the register we are looking for.
1398 Its preferable to have an instance of the register's rtl since
1399 there may be various flags set which we need to duplicate.
1400 If we can't find it, its probably an automatic whose initial
1401 value doesn't matter, or hopefully something we don't care about. */
1402 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1404 if (i != NULL_RTX)
1406 /* Found the insn, now get the REG rtx, if we can. */
1407 param.regno_to_find = reg;
1408 for_each_rtx (&i, find_regno_partial, &param);
1409 if (param.retval != NULL_RTX)
1411 start_sequence ();
1412 emit_move_insn (param.retval,
1413 CONST0_RTX (GET_MODE (param.retval)));
1414 insn = get_insns ();
1415 end_sequence ();
1416 insert_insn_on_edge (insn, e);
1417 did_something = 1;
1423 if (did_something)
1424 commit_edge_insertions ();
1425 return did_something;
1429 /* Subroutines of life analysis. */
1431 /* Allocate the permanent data structures that represent the results
1432 of life analysis. */
1434 static void
1435 allocate_bb_life_data (void)
1437 basic_block bb;
1439 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1441 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1442 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1445 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1448 void
1449 allocate_reg_life_data (void)
1451 int i;
1453 max_regno = max_reg_num ();
1454 gcc_assert (!reg_deaths);
1455 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1457 /* Recalculate the register space, in case it has grown. Old style
1458 vector oriented regsets would set regset_{size,bytes} here also. */
1459 allocate_reg_info (max_regno, FALSE, FALSE);
1461 /* Reset all the data we'll collect in propagate_block and its
1462 subroutines. */
1463 for (i = 0; i < max_regno; i++)
1465 REG_N_SETS (i) = 0;
1466 REG_N_REFS (i) = 0;
1467 REG_N_DEATHS (i) = 0;
1468 REG_N_CALLS_CROSSED (i) = 0;
1469 REG_LIVE_LENGTH (i) = 0;
1470 REG_FREQ (i) = 0;
1471 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1475 /* Delete dead instructions for propagate_block. */
1477 static void
1478 propagate_block_delete_insn (rtx insn)
1480 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1482 /* If the insn referred to a label, and that label was attached to
1483 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1484 pretty much mandatory to delete it, because the ADDR_VEC may be
1485 referencing labels that no longer exist.
1487 INSN may reference a deleted label, particularly when a jump
1488 table has been optimized into a direct jump. There's no
1489 real good way to fix up the reference to the deleted label
1490 when the label is deleted, so we just allow it here. */
1492 if (inote && LABEL_P (inote))
1494 rtx label = XEXP (inote, 0);
1495 rtx next;
1497 /* The label may be forced if it has been put in the constant
1498 pool. If that is the only use we must discard the table
1499 jump following it, but not the label itself. */
1500 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1501 && (next = next_nonnote_insn (label)) != NULL
1502 && JUMP_P (next)
1503 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1504 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1506 rtx pat = PATTERN (next);
1507 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1508 int len = XVECLEN (pat, diff_vec_p);
1509 int i;
1511 for (i = 0; i < len; i++)
1512 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1514 delete_insn_and_edges (next);
1515 ndead++;
1519 delete_insn_and_edges (insn);
1520 ndead++;
1523 /* Delete dead libcalls for propagate_block. Return the insn
1524 before the libcall. */
1526 static rtx
1527 propagate_block_delete_libcall (rtx insn, rtx note)
1529 rtx first = XEXP (note, 0);
1530 rtx before = PREV_INSN (first);
1532 delete_insn_chain_and_edges (first, insn);
1533 ndead++;
1534 return before;
1537 /* Update the life-status of regs for one insn. Return the previous insn. */
1540 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1542 rtx prev = PREV_INSN (insn);
1543 int flags = pbi->flags;
1544 int insn_is_dead = 0;
1545 int libcall_is_dead = 0;
1546 rtx note;
1547 unsigned i;
1549 if (! INSN_P (insn))
1550 return prev;
1552 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1553 if (flags & PROP_SCAN_DEAD_CODE)
1555 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1556 libcall_is_dead = (insn_is_dead && note != 0
1557 && libcall_dead_p (pbi, note, insn));
1560 /* If an instruction consists of just dead store(s) on final pass,
1561 delete it. */
1562 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1564 /* If we're trying to delete a prologue or epilogue instruction
1565 that isn't flagged as possibly being dead, something is wrong.
1566 But if we are keeping the stack pointer depressed, we might well
1567 be deleting insns that are used to compute the amount to update
1568 it by, so they are fine. */
1569 if (reload_completed
1570 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1571 && (TYPE_RETURNS_STACK_DEPRESSED
1572 (TREE_TYPE (current_function_decl))))
1573 && (((HAVE_epilogue || HAVE_prologue)
1574 && prologue_epilogue_contains (insn))
1575 || (HAVE_sibcall_epilogue
1576 && sibcall_epilogue_contains (insn)))
1577 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1578 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1580 /* Record sets. Do this even for dead instructions, since they
1581 would have killed the values if they hadn't been deleted. */
1582 mark_set_regs (pbi, PATTERN (insn), insn);
1584 /* CC0 is now known to be dead. Either this insn used it,
1585 in which case it doesn't anymore, or clobbered it,
1586 so the next insn can't use it. */
1587 pbi->cc0_live = 0;
1589 if (libcall_is_dead)
1590 prev = propagate_block_delete_libcall ( insn, note);
1591 else
1594 /* If INSN contains a RETVAL note and is dead, but the libcall
1595 as a whole is not dead, then we want to remove INSN, but
1596 not the whole libcall sequence.
1598 However, we need to also remove the dangling REG_LIBCALL
1599 note so that we do not have mis-matched LIBCALL/RETVAL
1600 notes. In theory we could find a new location for the
1601 REG_RETVAL note, but it hardly seems worth the effort.
1603 NOTE at this point will be the RETVAL note if it exists. */
1604 if (note)
1606 rtx libcall_note;
1608 libcall_note
1609 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1610 remove_note (XEXP (note, 0), libcall_note);
1613 /* Similarly if INSN contains a LIBCALL note, remove the
1614 dangling REG_RETVAL note. */
1615 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1616 if (note)
1618 rtx retval_note;
1620 retval_note
1621 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1622 remove_note (XEXP (note, 0), retval_note);
1625 /* Now delete INSN. */
1626 propagate_block_delete_insn (insn);
1629 return prev;
1632 /* See if this is an increment or decrement that can be merged into
1633 a following memory address. */
1634 #ifdef AUTO_INC_DEC
1636 rtx x = single_set (insn);
1638 /* Does this instruction increment or decrement a register? */
1639 if ((flags & PROP_AUTOINC)
1640 && x != 0
1641 && REG_P (SET_DEST (x))
1642 && (GET_CODE (SET_SRC (x)) == PLUS
1643 || GET_CODE (SET_SRC (x)) == MINUS)
1644 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1645 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1646 /* Ok, look for a following memory ref we can combine with.
1647 If one is found, change the memory ref to a PRE_INC
1648 or PRE_DEC, cancel this insn, and return 1.
1649 Return 0 if nothing has been done. */
1650 && try_pre_increment_1 (pbi, insn))
1651 return prev;
1653 #endif /* AUTO_INC_DEC */
1655 CLEAR_REG_SET (pbi->new_set);
1657 /* If this is not the final pass, and this insn is copying the value of
1658 a library call and it's dead, don't scan the insns that perform the
1659 library call, so that the call's arguments are not marked live. */
1660 if (libcall_is_dead)
1662 /* Record the death of the dest reg. */
1663 mark_set_regs (pbi, PATTERN (insn), insn);
1665 insn = XEXP (note, 0);
1666 return PREV_INSN (insn);
1668 else if (GET_CODE (PATTERN (insn)) == SET
1669 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1670 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1671 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1672 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1674 /* We have an insn to pop a constant amount off the stack.
1675 (Such insns use PLUS regardless of the direction of the stack,
1676 and any insn to adjust the stack by a constant is always a pop
1677 or part of a push.)
1678 These insns, if not dead stores, have no effect on life, though
1679 they do have an effect on the memory stores we are tracking. */
1680 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1681 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1682 concludes that the stack pointer is not modified. */
1683 mark_set_regs (pbi, PATTERN (insn), insn);
1685 else
1687 rtx note;
1688 /* Any regs live at the time of a call instruction must not go
1689 in a register clobbered by calls. Find all regs now live and
1690 record this for them. */
1692 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1694 reg_set_iterator rsi;
1695 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1696 REG_N_CALLS_CROSSED (i)++;
1699 /* Record sets. Do this even for dead instructions, since they
1700 would have killed the values if they hadn't been deleted. */
1701 mark_set_regs (pbi, PATTERN (insn), insn);
1703 if (CALL_P (insn))
1705 regset live_at_end;
1706 bool sibcall_p;
1707 rtx note, cond;
1708 int i;
1710 cond = NULL_RTX;
1711 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1712 cond = COND_EXEC_TEST (PATTERN (insn));
1714 /* Non-constant calls clobber memory, constant calls do not
1715 clobber memory, though they may clobber outgoing arguments
1716 on the stack. */
1717 if (! CONST_OR_PURE_CALL_P (insn))
1719 free_EXPR_LIST_list (&pbi->mem_set_list);
1720 pbi->mem_set_list_len = 0;
1722 else
1723 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1725 /* There may be extra registers to be clobbered. */
1726 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1727 note;
1728 note = XEXP (note, 1))
1729 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1730 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1731 cond, insn, pbi->flags);
1733 /* Calls change all call-used and global registers; sibcalls do not
1734 clobber anything that must be preserved at end-of-function,
1735 except for return values. */
1737 sibcall_p = SIBLING_CALL_P (insn);
1738 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1739 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1740 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1741 && ! (sibcall_p
1742 && REGNO_REG_SET_P (live_at_end, i)
1743 && ! refers_to_regno_p (i, i+1,
1744 current_function_return_rtx,
1745 (rtx *) 0)))
1747 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1748 /* We do not want REG_UNUSED notes for these registers. */
1749 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1750 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1754 /* If an insn doesn't use CC0, it becomes dead since we assume
1755 that every insn clobbers it. So show it dead here;
1756 mark_used_regs will set it live if it is referenced. */
1757 pbi->cc0_live = 0;
1759 /* Record uses. */
1760 if (! insn_is_dead)
1761 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1762 if ((flags & PROP_EQUAL_NOTES)
1763 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1764 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1765 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1767 /* Sometimes we may have inserted something before INSN (such as a move)
1768 when we make an auto-inc. So ensure we will scan those insns. */
1769 #ifdef AUTO_INC_DEC
1770 prev = PREV_INSN (insn);
1771 #endif
1773 if (! insn_is_dead && CALL_P (insn))
1775 int i;
1776 rtx note, cond;
1778 cond = NULL_RTX;
1779 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1780 cond = COND_EXEC_TEST (PATTERN (insn));
1782 /* Calls use their arguments, and may clobber memory which
1783 address involves some register. */
1784 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1785 note;
1786 note = XEXP (note, 1))
1787 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1788 of which mark_used_regs knows how to handle. */
1789 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1791 /* The stack ptr is used (honorarily) by a CALL insn. */
1792 if ((flags & PROP_REG_INFO)
1793 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1794 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1795 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1797 /* Calls may also reference any of the global registers,
1798 so they are made live. */
1799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1800 if (global_regs[i])
1801 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1805 pbi->insn_num++;
1807 return prev;
1810 /* Initialize a propagate_block_info struct for public consumption.
1811 Note that the structure itself is opaque to this file, but that
1812 the user can use the regsets provided here. */
1814 struct propagate_block_info *
1815 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1816 regset cond_local_set, int flags)
1818 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1820 pbi->bb = bb;
1821 pbi->reg_live = live;
1822 pbi->mem_set_list = NULL_RTX;
1823 pbi->mem_set_list_len = 0;
1824 pbi->local_set = local_set;
1825 pbi->cond_local_set = cond_local_set;
1826 pbi->cc0_live = 0;
1827 pbi->flags = flags;
1828 pbi->insn_num = 0;
1830 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1831 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1832 else
1833 pbi->reg_next_use = NULL;
1835 pbi->new_set = BITMAP_XMALLOC ();
1837 #ifdef HAVE_conditional_execution
1838 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1839 free_reg_cond_life_info);
1840 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1842 /* If this block ends in a conditional branch, for each register
1843 live from one side of the branch and not the other, record the
1844 register as conditionally dead. */
1845 if (JUMP_P (BB_END (bb))
1846 && any_condjump_p (BB_END (bb)))
1848 regset_head diff_head;
1849 regset diff = INITIALIZE_REG_SET (diff_head);
1850 basic_block bb_true, bb_false;
1851 unsigned i;
1853 /* Identify the successor blocks. */
1854 bb_true = EDGE_SUCC (bb, 0)->dest;
1855 if (EDGE_COUNT (bb->succs) > 1)
1857 bb_false = EDGE_SUCC (bb, 1)->dest;
1859 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1861 basic_block t = bb_false;
1862 bb_false = bb_true;
1863 bb_true = t;
1865 else
1866 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1868 else
1870 /* This can happen with a conditional jump to the next insn. */
1871 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1873 /* Simplest way to do nothing. */
1874 bb_false = bb_true;
1877 /* Compute which register lead different lives in the successors. */
1878 bitmap_xor (diff, bb_true->global_live_at_start,
1879 bb_false->global_live_at_start);
1881 if (!bitmap_empty_p (diff))
1883 /* Extract the condition from the branch. */
1884 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1885 rtx cond_true = XEXP (set_src, 0);
1886 rtx reg = XEXP (cond_true, 0);
1887 enum rtx_code inv_cond;
1889 if (GET_CODE (reg) == SUBREG)
1890 reg = SUBREG_REG (reg);
1892 /* We can only track conditional lifetimes if the condition is
1893 in the form of a reversible comparison of a register against
1894 zero. If the condition is more complex than that, then it is
1895 safe not to record any information. */
1896 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
1897 if (inv_cond != UNKNOWN
1898 && REG_P (reg)
1899 && XEXP (cond_true, 1) == const0_rtx)
1901 rtx cond_false
1902 = gen_rtx_fmt_ee (inv_cond,
1903 GET_MODE (cond_true), XEXP (cond_true, 0),
1904 XEXP (cond_true, 1));
1905 reg_set_iterator rsi;
1907 if (GET_CODE (XEXP (set_src, 1)) == PC)
1909 rtx t = cond_false;
1910 cond_false = cond_true;
1911 cond_true = t;
1914 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1916 /* For each such register, mark it conditionally dead. */
1917 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
1919 struct reg_cond_life_info *rcli;
1920 rtx cond;
1922 rcli = xmalloc (sizeof (*rcli));
1924 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1925 cond = cond_false;
1926 else
1927 cond = cond_true;
1928 rcli->condition = cond;
1929 rcli->stores = const0_rtx;
1930 rcli->orig_condition = cond;
1932 splay_tree_insert (pbi->reg_cond_dead, i,
1933 (splay_tree_value) rcli);
1938 FREE_REG_SET (diff);
1940 #endif
1942 /* If this block has no successors, any stores to the frame that aren't
1943 used later in the block are dead. So make a pass over the block
1944 recording any such that are made and show them dead at the end. We do
1945 a very conservative and simple job here. */
1946 if (optimize
1947 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1948 && (TYPE_RETURNS_STACK_DEPRESSED
1949 (TREE_TYPE (current_function_decl))))
1950 && (flags & PROP_SCAN_DEAD_STORES)
1951 && (EDGE_COUNT (bb->succs) == 0
1952 || (EDGE_COUNT (bb->succs) == 1
1953 && EDGE_SUCC (bb, 0)->dest == EXIT_BLOCK_PTR
1954 && ! current_function_calls_eh_return)))
1956 rtx insn, set;
1957 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1958 if (NONJUMP_INSN_P (insn)
1959 && (set = single_set (insn))
1960 && MEM_P (SET_DEST (set)))
1962 rtx mem = SET_DEST (set);
1963 rtx canon_mem = canon_rtx (mem);
1965 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1966 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1967 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1968 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1969 add_to_mem_set_list (pbi, canon_mem);
1973 return pbi;
1976 /* Release a propagate_block_info struct. */
1978 void
1979 free_propagate_block_info (struct propagate_block_info *pbi)
1981 free_EXPR_LIST_list (&pbi->mem_set_list);
1983 BITMAP_XFREE (pbi->new_set);
1985 #ifdef HAVE_conditional_execution
1986 splay_tree_delete (pbi->reg_cond_dead);
1987 BITMAP_XFREE (pbi->reg_cond_reg);
1988 #endif
1990 if (pbi->flags & PROP_REG_INFO)
1992 int num = pbi->insn_num;
1993 unsigned i;
1994 reg_set_iterator rsi;
1996 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1998 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
1999 reg_deaths[i] = 0;
2002 if (pbi->reg_next_use)
2003 free (pbi->reg_next_use);
2005 free (pbi);
2008 /* Compute the registers live at the beginning of a basic block BB from
2009 those live at the end.
2011 When called, REG_LIVE contains those live at the end. On return, it
2012 contains those live at the beginning.
2014 LOCAL_SET, if non-null, will be set with all registers killed
2015 unconditionally by this basic block.
2016 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2017 killed conditionally by this basic block. If there is any unconditional
2018 set of a register, then the corresponding bit will be set in LOCAL_SET
2019 and cleared in COND_LOCAL_SET.
2020 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2021 case, the resulting set will be equal to the union of the two sets that
2022 would otherwise be computed.
2024 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2027 propagate_block (basic_block bb, regset live, regset local_set,
2028 regset cond_local_set, int flags)
2030 struct propagate_block_info *pbi;
2031 rtx insn, prev;
2032 int changed;
2034 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2036 if (flags & PROP_REG_INFO)
2038 unsigned i;
2039 reg_set_iterator rsi;
2041 /* Process the regs live at the end of the block.
2042 Mark them as not local to any one basic block. */
2043 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2044 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2047 /* Scan the block an insn at a time from end to beginning. */
2049 changed = 0;
2050 for (insn = BB_END (bb); ; insn = prev)
2052 /* If this is a call to `setjmp' et al, warn if any
2053 non-volatile datum is live. */
2054 if ((flags & PROP_REG_INFO)
2055 && CALL_P (insn)
2056 && find_reg_note (insn, REG_SETJMP, NULL))
2057 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2059 prev = propagate_one_insn (pbi, insn);
2060 if (!prev)
2061 changed |= insn != get_insns ();
2062 else
2063 changed |= NEXT_INSN (prev) != insn;
2065 if (insn == BB_HEAD (bb))
2066 break;
2069 free_propagate_block_info (pbi);
2071 return changed;
2074 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2075 (SET expressions whose destinations are registers dead after the insn).
2076 NEEDED is the regset that says which regs are alive after the insn.
2078 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2080 If X is the entire body of an insn, NOTES contains the reg notes
2081 pertaining to the insn. */
2083 static int
2084 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2085 rtx notes ATTRIBUTE_UNUSED)
2087 enum rtx_code code = GET_CODE (x);
2089 /* Don't eliminate insns that may trap. */
2090 if (flag_non_call_exceptions && may_trap_p (x))
2091 return 0;
2093 #ifdef AUTO_INC_DEC
2094 /* As flow is invoked after combine, we must take existing AUTO_INC
2095 expressions into account. */
2096 for (; notes; notes = XEXP (notes, 1))
2098 if (REG_NOTE_KIND (notes) == REG_INC)
2100 int regno = REGNO (XEXP (notes, 0));
2102 /* Don't delete insns to set global regs. */
2103 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2104 || REGNO_REG_SET_P (pbi->reg_live, regno))
2105 return 0;
2108 #endif
2110 /* If setting something that's a reg or part of one,
2111 see if that register's altered value will be live. */
2113 if (code == SET)
2115 rtx r = SET_DEST (x);
2117 #ifdef HAVE_cc0
2118 if (GET_CODE (r) == CC0)
2119 return ! pbi->cc0_live;
2120 #endif
2122 /* A SET that is a subroutine call cannot be dead. */
2123 if (GET_CODE (SET_SRC (x)) == CALL)
2125 if (! call_ok)
2126 return 0;
2129 /* Don't eliminate loads from volatile memory or volatile asms. */
2130 else if (volatile_refs_p (SET_SRC (x)))
2131 return 0;
2133 if (MEM_P (r))
2135 rtx temp, canon_r;
2137 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2138 return 0;
2140 canon_r = canon_rtx (r);
2142 /* Walk the set of memory locations we are currently tracking
2143 and see if one is an identical match to this memory location.
2144 If so, this memory write is dead (remember, we're walking
2145 backwards from the end of the block to the start). Since
2146 rtx_equal_p does not check the alias set or flags, we also
2147 must have the potential for them to conflict (anti_dependence). */
2148 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2149 if (anti_dependence (r, XEXP (temp, 0)))
2151 rtx mem = XEXP (temp, 0);
2153 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2154 && (GET_MODE_SIZE (GET_MODE (canon_r))
2155 <= GET_MODE_SIZE (GET_MODE (mem))))
2156 return 1;
2158 #ifdef AUTO_INC_DEC
2159 /* Check if memory reference matches an auto increment. Only
2160 post increment/decrement or modify are valid. */
2161 if (GET_MODE (mem) == GET_MODE (r)
2162 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2163 || GET_CODE (XEXP (mem, 0)) == POST_INC
2164 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2165 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2166 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2167 return 1;
2168 #endif
2171 else
2173 while (GET_CODE (r) == SUBREG
2174 || GET_CODE (r) == STRICT_LOW_PART
2175 || GET_CODE (r) == ZERO_EXTRACT)
2176 r = XEXP (r, 0);
2178 if (REG_P (r))
2180 int regno = REGNO (r);
2182 /* Obvious. */
2183 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2184 return 0;
2186 /* If this is a hard register, verify that subsequent
2187 words are not needed. */
2188 if (regno < FIRST_PSEUDO_REGISTER)
2190 int n = hard_regno_nregs[regno][GET_MODE (r)];
2192 while (--n > 0)
2193 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2194 return 0;
2197 /* Don't delete insns to set global regs. */
2198 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2199 return 0;
2201 /* Make sure insns to set the stack pointer aren't deleted. */
2202 if (regno == STACK_POINTER_REGNUM)
2203 return 0;
2205 /* ??? These bits might be redundant with the force live bits
2206 in calculate_global_regs_live. We would delete from
2207 sequential sets; whether this actually affects real code
2208 for anything but the stack pointer I don't know. */
2209 /* Make sure insns to set the frame pointer aren't deleted. */
2210 if (regno == FRAME_POINTER_REGNUM
2211 && (! reload_completed || frame_pointer_needed))
2212 return 0;
2213 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2214 if (regno == HARD_FRAME_POINTER_REGNUM
2215 && (! reload_completed || frame_pointer_needed))
2216 return 0;
2217 #endif
2219 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2220 /* Make sure insns to set arg pointer are never deleted
2221 (if the arg pointer isn't fixed, there will be a USE
2222 for it, so we can treat it normally). */
2223 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2224 return 0;
2225 #endif
2227 /* Otherwise, the set is dead. */
2228 return 1;
2233 /* If performing several activities, insn is dead if each activity
2234 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2235 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2236 worth keeping. */
2237 else if (code == PARALLEL)
2239 int i = XVECLEN (x, 0);
2241 for (i--; i >= 0; i--)
2242 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2243 && GET_CODE (XVECEXP (x, 0, i)) != USE
2244 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2245 return 0;
2247 return 1;
2250 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2251 is not necessarily true for hard registers until after reload. */
2252 else if (code == CLOBBER)
2254 if (REG_P (XEXP (x, 0))
2255 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2256 || reload_completed)
2257 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2258 return 1;
2261 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2262 Instances where it is still used are either (1) temporary and the USE
2263 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2264 or (3) hiding bugs elsewhere that are not properly representing data
2265 flow. */
2267 return 0;
2270 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2271 return 1 if the entire library call is dead.
2272 This is true if INSN copies a register (hard or pseudo)
2273 and if the hard return reg of the call insn is dead.
2274 (The caller should have tested the destination of the SET inside
2275 INSN already for death.)
2277 If this insn doesn't just copy a register, then we don't
2278 have an ordinary libcall. In that case, cse could not have
2279 managed to substitute the source for the dest later on,
2280 so we can assume the libcall is dead.
2282 PBI is the block info giving pseudoregs live before this insn.
2283 NOTE is the REG_RETVAL note of the insn. */
2285 static int
2286 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2288 rtx x = single_set (insn);
2290 if (x)
2292 rtx r = SET_SRC (x);
2294 if (REG_P (r))
2296 rtx call = XEXP (note, 0);
2297 rtx call_pat;
2298 int i;
2300 /* Find the call insn. */
2301 while (call != insn && !CALL_P (call))
2302 call = NEXT_INSN (call);
2304 /* If there is none, do nothing special,
2305 since ordinary death handling can understand these insns. */
2306 if (call == insn)
2307 return 0;
2309 /* See if the hard reg holding the value is dead.
2310 If this is a PARALLEL, find the call within it. */
2311 call_pat = PATTERN (call);
2312 if (GET_CODE (call_pat) == PARALLEL)
2314 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2315 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2316 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2317 break;
2319 /* This may be a library call that is returning a value
2320 via invisible pointer. Do nothing special, since
2321 ordinary death handling can understand these insns. */
2322 if (i < 0)
2323 return 0;
2325 call_pat = XVECEXP (call_pat, 0, i);
2328 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2331 return 1;
2334 /* 1 if register REGNO was alive at a place where `setjmp' was called
2335 and was set more than once or is an argument.
2336 Such regs may be clobbered by `longjmp'. */
2339 regno_clobbered_at_setjmp (int regno)
2341 if (n_basic_blocks == 0)
2342 return 0;
2344 return ((REG_N_SETS (regno) > 1
2345 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2346 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2349 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2350 maximal list size; look for overlaps in mode and select the largest. */
2351 static void
2352 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2354 rtx i;
2356 /* We don't know how large a BLKmode store is, so we must not
2357 take them into consideration. */
2358 if (GET_MODE (mem) == BLKmode)
2359 return;
2361 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2363 rtx e = XEXP (i, 0);
2364 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2366 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2368 #ifdef AUTO_INC_DEC
2369 /* If we must store a copy of the mem, we can just modify
2370 the mode of the stored copy. */
2371 if (pbi->flags & PROP_AUTOINC)
2372 PUT_MODE (e, GET_MODE (mem));
2373 else
2374 #endif
2375 XEXP (i, 0) = mem;
2377 return;
2381 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2383 #ifdef AUTO_INC_DEC
2384 /* Store a copy of mem, otherwise the address may be
2385 scrogged by find_auto_inc. */
2386 if (pbi->flags & PROP_AUTOINC)
2387 mem = shallow_copy_rtx (mem);
2388 #endif
2389 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2390 pbi->mem_set_list_len++;
2394 /* INSN references memory, possibly using autoincrement addressing modes.
2395 Find any entries on the mem_set_list that need to be invalidated due
2396 to an address change. */
2398 static int
2399 invalidate_mems_from_autoinc (rtx *px, void *data)
2401 rtx x = *px;
2402 struct propagate_block_info *pbi = data;
2404 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2406 invalidate_mems_from_set (pbi, XEXP (x, 0));
2407 return -1;
2410 return 0;
2413 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2415 static void
2416 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2418 rtx temp = pbi->mem_set_list;
2419 rtx prev = NULL_RTX;
2420 rtx next;
2422 while (temp)
2424 next = XEXP (temp, 1);
2425 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2427 /* Splice this entry out of the list. */
2428 if (prev)
2429 XEXP (prev, 1) = next;
2430 else
2431 pbi->mem_set_list = next;
2432 free_EXPR_LIST_node (temp);
2433 pbi->mem_set_list_len--;
2435 else
2436 prev = temp;
2437 temp = next;
2441 /* Process the registers that are set within X. Their bits are set to
2442 1 in the regset DEAD, because they are dead prior to this insn.
2444 If INSN is nonzero, it is the insn being processed.
2446 FLAGS is the set of operations to perform. */
2448 static void
2449 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2451 rtx cond = NULL_RTX;
2452 rtx link;
2453 enum rtx_code code;
2454 int flags = pbi->flags;
2456 if (insn)
2457 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2459 if (REG_NOTE_KIND (link) == REG_INC)
2460 mark_set_1 (pbi, SET, XEXP (link, 0),
2461 (GET_CODE (x) == COND_EXEC
2462 ? COND_EXEC_TEST (x) : NULL_RTX),
2463 insn, flags);
2465 retry:
2466 switch (code = GET_CODE (x))
2468 case SET:
2469 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2470 flags |= PROP_ASM_SCAN;
2471 /* Fall through */
2472 case CLOBBER:
2473 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2474 return;
2476 case COND_EXEC:
2477 cond = COND_EXEC_TEST (x);
2478 x = COND_EXEC_CODE (x);
2479 goto retry;
2481 case PARALLEL:
2483 int i;
2485 /* We must scan forwards. If we have an asm, we need to set
2486 the PROP_ASM_SCAN flag before scanning the clobbers. */
2487 for (i = 0; i < XVECLEN (x, 0); i++)
2489 rtx sub = XVECEXP (x, 0, i);
2490 switch (code = GET_CODE (sub))
2492 case COND_EXEC:
2493 gcc_assert (!cond);
2495 cond = COND_EXEC_TEST (sub);
2496 sub = COND_EXEC_CODE (sub);
2497 if (GET_CODE (sub) == SET)
2498 goto mark_set;
2499 if (GET_CODE (sub) == CLOBBER)
2500 goto mark_clob;
2501 break;
2503 case SET:
2504 mark_set:
2505 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2506 flags |= PROP_ASM_SCAN;
2507 /* Fall through */
2508 case CLOBBER:
2509 mark_clob:
2510 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2511 break;
2513 case ASM_OPERANDS:
2514 flags |= PROP_ASM_SCAN;
2515 break;
2517 default:
2518 break;
2521 break;
2524 default:
2525 break;
2529 /* Process a single set, which appears in INSN. REG (which may not
2530 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2531 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2532 If the set is conditional (because it appear in a COND_EXEC), COND
2533 will be the condition. */
2535 static void
2536 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2538 int regno_first = -1, regno_last = -1;
2539 unsigned long not_dead = 0;
2540 int i;
2542 /* Modifying just one hardware register of a multi-reg value or just a
2543 byte field of a register does not mean the value from before this insn
2544 is now dead. Of course, if it was dead after it's unused now. */
2546 switch (GET_CODE (reg))
2548 case PARALLEL:
2549 /* Some targets place small structures in registers for return values of
2550 functions. We have to detect this case specially here to get correct
2551 flow information. */
2552 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2553 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2554 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2555 flags);
2556 return;
2558 case ZERO_EXTRACT:
2559 case SIGN_EXTRACT:
2560 case STRICT_LOW_PART:
2561 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2563 reg = XEXP (reg, 0);
2564 while (GET_CODE (reg) == SUBREG
2565 || GET_CODE (reg) == ZERO_EXTRACT
2566 || GET_CODE (reg) == SIGN_EXTRACT
2567 || GET_CODE (reg) == STRICT_LOW_PART);
2568 if (MEM_P (reg))
2569 break;
2570 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2571 /* Fall through. */
2573 case REG:
2574 regno_last = regno_first = REGNO (reg);
2575 if (regno_first < FIRST_PSEUDO_REGISTER)
2576 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2577 break;
2579 case SUBREG:
2580 if (REG_P (SUBREG_REG (reg)))
2582 enum machine_mode outer_mode = GET_MODE (reg);
2583 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2585 /* Identify the range of registers affected. This is moderately
2586 tricky for hard registers. See alter_subreg. */
2588 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2589 if (regno_first < FIRST_PSEUDO_REGISTER)
2591 regno_first += subreg_regno_offset (regno_first, inner_mode,
2592 SUBREG_BYTE (reg),
2593 outer_mode);
2594 regno_last = (regno_first
2595 + hard_regno_nregs[regno_first][outer_mode] - 1);
2597 /* Since we've just adjusted the register number ranges, make
2598 sure REG matches. Otherwise some_was_live will be clear
2599 when it shouldn't have been, and we'll create incorrect
2600 REG_UNUSED notes. */
2601 reg = gen_rtx_REG (outer_mode, regno_first);
2603 else
2605 /* If the number of words in the subreg is less than the number
2606 of words in the full register, we have a well-defined partial
2607 set. Otherwise the high bits are undefined.
2609 This is only really applicable to pseudos, since we just took
2610 care of multi-word hard registers. */
2611 if (((GET_MODE_SIZE (outer_mode)
2612 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2613 < ((GET_MODE_SIZE (inner_mode)
2614 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2615 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2616 regno_first);
2618 reg = SUBREG_REG (reg);
2621 else
2622 reg = SUBREG_REG (reg);
2623 break;
2625 default:
2626 break;
2629 /* If this set is a MEM, then it kills any aliased writes.
2630 If this set is a REG, then it kills any MEMs which use the reg. */
2631 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2633 if (REG_P (reg))
2634 invalidate_mems_from_set (pbi, reg);
2636 /* If the memory reference had embedded side effects (autoincrement
2637 address modes. Then we may need to kill some entries on the
2638 memory set list. */
2639 if (insn && MEM_P (reg))
2640 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2642 if (MEM_P (reg) && ! side_effects_p (reg)
2643 /* ??? With more effort we could track conditional memory life. */
2644 && ! cond)
2645 add_to_mem_set_list (pbi, canon_rtx (reg));
2648 if (REG_P (reg)
2649 && ! (regno_first == FRAME_POINTER_REGNUM
2650 && (! reload_completed || frame_pointer_needed))
2651 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2652 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2653 && (! reload_completed || frame_pointer_needed))
2654 #endif
2655 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2656 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2657 #endif
2660 int some_was_live = 0, some_was_dead = 0;
2662 for (i = regno_first; i <= regno_last; ++i)
2664 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2665 if (pbi->local_set)
2667 /* Order of the set operation matters here since both
2668 sets may be the same. */
2669 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2670 if (cond != NULL_RTX
2671 && ! REGNO_REG_SET_P (pbi->local_set, i))
2672 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2673 else
2674 SET_REGNO_REG_SET (pbi->local_set, i);
2676 if (code != CLOBBER)
2677 SET_REGNO_REG_SET (pbi->new_set, i);
2679 some_was_live |= needed_regno;
2680 some_was_dead |= ! needed_regno;
2683 #ifdef HAVE_conditional_execution
2684 /* Consider conditional death in deciding that the register needs
2685 a death note. */
2686 if (some_was_live && ! not_dead
2687 /* The stack pointer is never dead. Well, not strictly true,
2688 but it's very difficult to tell from here. Hopefully
2689 combine_stack_adjustments will fix up the most egregious
2690 errors. */
2691 && regno_first != STACK_POINTER_REGNUM)
2693 for (i = regno_first; i <= regno_last; ++i)
2694 if (! mark_regno_cond_dead (pbi, i, cond))
2695 not_dead |= ((unsigned long) 1) << (i - regno_first);
2697 #endif
2699 /* Additional data to record if this is the final pass. */
2700 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2701 | PROP_DEATH_NOTES | PROP_AUTOINC))
2703 rtx y;
2704 int blocknum = pbi->bb->index;
2706 y = NULL_RTX;
2707 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2709 y = pbi->reg_next_use[regno_first];
2711 /* The next use is no longer next, since a store intervenes. */
2712 for (i = regno_first; i <= regno_last; ++i)
2713 pbi->reg_next_use[i] = 0;
2716 if (flags & PROP_REG_INFO)
2718 for (i = regno_first; i <= regno_last; ++i)
2720 /* Count (weighted) references, stores, etc. This counts a
2721 register twice if it is modified, but that is correct. */
2722 REG_N_SETS (i) += 1;
2723 REG_N_REFS (i) += 1;
2724 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2726 /* The insns where a reg is live are normally counted
2727 elsewhere, but we want the count to include the insn
2728 where the reg is set, and the normal counting mechanism
2729 would not count it. */
2730 REG_LIVE_LENGTH (i) += 1;
2733 /* If this is a hard reg, record this function uses the reg. */
2734 if (regno_first < FIRST_PSEUDO_REGISTER)
2736 for (i = regno_first; i <= regno_last; i++)
2737 regs_ever_live[i] = 1;
2738 if (flags & PROP_ASM_SCAN)
2739 for (i = regno_first; i <= regno_last; i++)
2740 regs_asm_clobbered[i] = 1;
2742 else
2744 /* Keep track of which basic blocks each reg appears in. */
2745 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2746 REG_BASIC_BLOCK (regno_first) = blocknum;
2747 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2748 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2752 if (! some_was_dead)
2754 if (flags & PROP_LOG_LINKS)
2756 /* Make a logical link from the next following insn
2757 that uses this register, back to this insn.
2758 The following insns have already been processed.
2760 We don't build a LOG_LINK for hard registers containing
2761 in ASM_OPERANDs. If these registers get replaced,
2762 we might wind up changing the semantics of the insn,
2763 even if reload can make what appear to be valid
2764 assignments later.
2766 We don't build a LOG_LINK for global registers to
2767 or from a function call. We don't want to let
2768 combine think that it knows what is going on with
2769 global registers. */
2770 if (y && (BLOCK_NUM (y) == blocknum)
2771 && (regno_first >= FIRST_PSEUDO_REGISTER
2772 || (asm_noperands (PATTERN (y)) < 0
2773 && ! ((CALL_P (insn)
2774 || CALL_P (y))
2775 && global_regs[regno_first]))))
2776 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2779 else if (not_dead)
2781 else if (! some_was_live)
2783 if (flags & PROP_REG_INFO)
2784 REG_N_DEATHS (regno_first) += 1;
2786 if (flags & PROP_DEATH_NOTES)
2788 /* Note that dead stores have already been deleted
2789 when possible. If we get here, we have found a
2790 dead store that cannot be eliminated (because the
2791 same insn does something useful). Indicate this
2792 by marking the reg being set as dying here. */
2793 REG_NOTES (insn)
2794 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2797 else
2799 if (flags & PROP_DEATH_NOTES)
2801 /* This is a case where we have a multi-word hard register
2802 and some, but not all, of the words of the register are
2803 needed in subsequent insns. Write REG_UNUSED notes
2804 for those parts that were not needed. This case should
2805 be rare. */
2807 for (i = regno_first; i <= regno_last; ++i)
2808 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2809 REG_NOTES (insn)
2810 = alloc_EXPR_LIST (REG_UNUSED,
2811 regno_reg_rtx[i],
2812 REG_NOTES (insn));
2817 /* Mark the register as being dead. */
2818 if (some_was_live
2819 /* The stack pointer is never dead. Well, not strictly true,
2820 but it's very difficult to tell from here. Hopefully
2821 combine_stack_adjustments will fix up the most egregious
2822 errors. */
2823 && regno_first != STACK_POINTER_REGNUM)
2825 for (i = regno_first; i <= regno_last; ++i)
2826 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2828 if ((pbi->flags & PROP_REG_INFO)
2829 && REGNO_REG_SET_P (pbi->reg_live, i))
2831 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2832 reg_deaths[i] = 0;
2834 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2838 else if (REG_P (reg))
2840 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2841 pbi->reg_next_use[regno_first] = 0;
2843 if ((flags & PROP_REG_INFO) != 0
2844 && (flags & PROP_ASM_SCAN) != 0
2845 && regno_first < FIRST_PSEUDO_REGISTER)
2847 for (i = regno_first; i <= regno_last; i++)
2848 regs_asm_clobbered[i] = 1;
2852 /* If this is the last pass and this is a SCRATCH, show it will be dying
2853 here and count it. */
2854 else if (GET_CODE (reg) == SCRATCH)
2856 if (flags & PROP_DEATH_NOTES)
2857 REG_NOTES (insn)
2858 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2862 #ifdef HAVE_conditional_execution
2863 /* Mark REGNO conditionally dead.
2864 Return true if the register is now unconditionally dead. */
2866 static int
2867 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2869 /* If this is a store to a predicate register, the value of the
2870 predicate is changing, we don't know that the predicate as seen
2871 before is the same as that seen after. Flush all dependent
2872 conditions from reg_cond_dead. This will make all such
2873 conditionally live registers unconditionally live. */
2874 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2875 flush_reg_cond_reg (pbi, regno);
2877 /* If this is an unconditional store, remove any conditional
2878 life that may have existed. */
2879 if (cond == NULL_RTX)
2880 splay_tree_remove (pbi->reg_cond_dead, regno);
2881 else
2883 splay_tree_node node;
2884 struct reg_cond_life_info *rcli;
2885 rtx ncond;
2887 /* Otherwise this is a conditional set. Record that fact.
2888 It may have been conditionally used, or there may be a
2889 subsequent set with a complimentary condition. */
2891 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2892 if (node == NULL)
2894 /* The register was unconditionally live previously.
2895 Record the current condition as the condition under
2896 which it is dead. */
2897 rcli = xmalloc (sizeof (*rcli));
2898 rcli->condition = cond;
2899 rcli->stores = cond;
2900 rcli->orig_condition = const0_rtx;
2901 splay_tree_insert (pbi->reg_cond_dead, regno,
2902 (splay_tree_value) rcli);
2904 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2906 /* Not unconditionally dead. */
2907 return 0;
2909 else
2911 /* The register was conditionally live previously.
2912 Add the new condition to the old. */
2913 rcli = (struct reg_cond_life_info *) node->value;
2914 ncond = rcli->condition;
2915 ncond = ior_reg_cond (ncond, cond, 1);
2916 if (rcli->stores == const0_rtx)
2917 rcli->stores = cond;
2918 else if (rcli->stores != const1_rtx)
2919 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2921 /* If the register is now unconditionally dead, remove the entry
2922 in the splay_tree. A register is unconditionally dead if the
2923 dead condition ncond is true. A register is also unconditionally
2924 dead if the sum of all conditional stores is an unconditional
2925 store (stores is true), and the dead condition is identically the
2926 same as the original dead condition initialized at the end of
2927 the block. This is a pointer compare, not an rtx_equal_p
2928 compare. */
2929 if (ncond == const1_rtx
2930 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2931 splay_tree_remove (pbi->reg_cond_dead, regno);
2932 else
2934 rcli->condition = ncond;
2936 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2938 /* Not unconditionally dead. */
2939 return 0;
2944 return 1;
2947 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2949 static void
2950 free_reg_cond_life_info (splay_tree_value value)
2952 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2953 free (rcli);
2956 /* Helper function for flush_reg_cond_reg. */
2958 static int
2959 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2961 struct reg_cond_life_info *rcli;
2962 int *xdata = (int *) data;
2963 unsigned int regno = xdata[0];
2965 /* Don't need to search if last flushed value was farther on in
2966 the in-order traversal. */
2967 if (xdata[1] >= (int) node->key)
2968 return 0;
2970 /* Splice out portions of the expression that refer to regno. */
2971 rcli = (struct reg_cond_life_info *) node->value;
2972 rcli->condition = elim_reg_cond (rcli->condition, regno);
2973 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2974 rcli->stores = elim_reg_cond (rcli->stores, regno);
2976 /* If the entire condition is now false, signal the node to be removed. */
2977 if (rcli->condition == const0_rtx)
2979 xdata[1] = node->key;
2980 return -1;
2982 else
2983 gcc_assert (rcli->condition != const1_rtx);
2985 return 0;
2988 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2990 static void
2991 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2993 int pair[2];
2995 pair[0] = regno;
2996 pair[1] = -1;
2997 while (splay_tree_foreach (pbi->reg_cond_dead,
2998 flush_reg_cond_reg_1, pair) == -1)
2999 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3001 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3004 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3005 For ior/and, the ADD flag determines whether we want to add the new
3006 condition X to the old one unconditionally. If it is zero, we will
3007 only return a new expression if X allows us to simplify part of
3008 OLD, otherwise we return NULL to the caller.
3009 If ADD is nonzero, we will return a new condition in all cases. The
3010 toplevel caller of one of these functions should always pass 1 for
3011 ADD. */
3013 static rtx
3014 ior_reg_cond (rtx old, rtx x, int add)
3016 rtx op0, op1;
3018 if (COMPARISON_P (old))
3020 if (COMPARISON_P (x)
3021 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3022 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3023 return const1_rtx;
3024 if (GET_CODE (x) == GET_CODE (old)
3025 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3026 return old;
3027 if (! add)
3028 return NULL;
3029 return gen_rtx_IOR (0, old, x);
3032 switch (GET_CODE (old))
3034 case IOR:
3035 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3036 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3037 if (op0 != NULL || op1 != NULL)
3039 if (op0 == const0_rtx)
3040 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3041 if (op1 == const0_rtx)
3042 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3043 if (op0 == const1_rtx || op1 == const1_rtx)
3044 return const1_rtx;
3045 if (op0 == NULL)
3046 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3047 else if (rtx_equal_p (x, op0))
3048 /* (x | A) | x ~ (x | A). */
3049 return old;
3050 if (op1 == NULL)
3051 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3052 else if (rtx_equal_p (x, op1))
3053 /* (A | x) | x ~ (A | x). */
3054 return old;
3055 return gen_rtx_IOR (0, op0, op1);
3057 if (! add)
3058 return NULL;
3059 return gen_rtx_IOR (0, old, x);
3061 case AND:
3062 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3063 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3064 if (op0 != NULL || op1 != NULL)
3066 if (op0 == const1_rtx)
3067 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3068 if (op1 == const1_rtx)
3069 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3070 if (op0 == const0_rtx || op1 == const0_rtx)
3071 return const0_rtx;
3072 if (op0 == NULL)
3073 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3074 else if (rtx_equal_p (x, op0))
3075 /* (x & A) | x ~ x. */
3076 return op0;
3077 if (op1 == NULL)
3078 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3079 else if (rtx_equal_p (x, op1))
3080 /* (A & x) | x ~ x. */
3081 return op1;
3082 return gen_rtx_AND (0, op0, op1);
3084 if (! add)
3085 return NULL;
3086 return gen_rtx_IOR (0, old, x);
3088 case NOT:
3089 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3090 if (op0 != NULL)
3091 return not_reg_cond (op0);
3092 if (! add)
3093 return NULL;
3094 return gen_rtx_IOR (0, old, x);
3096 default:
3097 gcc_unreachable ();
3101 static rtx
3102 not_reg_cond (rtx x)
3104 if (x == const0_rtx)
3105 return const1_rtx;
3106 else if (x == const1_rtx)
3107 return const0_rtx;
3108 if (GET_CODE (x) == NOT)
3109 return XEXP (x, 0);
3110 if (COMPARISON_P (x)
3111 && REG_P (XEXP (x, 0)))
3113 gcc_assert (XEXP (x, 1) == const0_rtx);
3115 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3116 VOIDmode, XEXP (x, 0), const0_rtx);
3118 return gen_rtx_NOT (0, x);
3121 static rtx
3122 and_reg_cond (rtx old, rtx x, int add)
3124 rtx op0, op1;
3126 if (COMPARISON_P (old))
3128 if (COMPARISON_P (x)
3129 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3130 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3131 return const0_rtx;
3132 if (GET_CODE (x) == GET_CODE (old)
3133 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3134 return old;
3135 if (! add)
3136 return NULL;
3137 return gen_rtx_AND (0, old, x);
3140 switch (GET_CODE (old))
3142 case IOR:
3143 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3144 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3145 if (op0 != NULL || op1 != NULL)
3147 if (op0 == const0_rtx)
3148 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3149 if (op1 == const0_rtx)
3150 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3151 if (op0 == const1_rtx || op1 == const1_rtx)
3152 return const1_rtx;
3153 if (op0 == NULL)
3154 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3155 else if (rtx_equal_p (x, op0))
3156 /* (x | A) & x ~ x. */
3157 return op0;
3158 if (op1 == NULL)
3159 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3160 else if (rtx_equal_p (x, op1))
3161 /* (A | x) & x ~ x. */
3162 return op1;
3163 return gen_rtx_IOR (0, op0, op1);
3165 if (! add)
3166 return NULL;
3167 return gen_rtx_AND (0, old, x);
3169 case AND:
3170 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3171 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3172 if (op0 != NULL || op1 != NULL)
3174 if (op0 == const1_rtx)
3175 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3176 if (op1 == const1_rtx)
3177 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3178 if (op0 == const0_rtx || op1 == const0_rtx)
3179 return const0_rtx;
3180 if (op0 == NULL)
3181 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3182 else if (rtx_equal_p (x, op0))
3183 /* (x & A) & x ~ (x & A). */
3184 return old;
3185 if (op1 == NULL)
3186 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3187 else if (rtx_equal_p (x, op1))
3188 /* (A & x) & x ~ (A & x). */
3189 return old;
3190 return gen_rtx_AND (0, op0, op1);
3192 if (! add)
3193 return NULL;
3194 return gen_rtx_AND (0, old, x);
3196 case NOT:
3197 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3198 if (op0 != NULL)
3199 return not_reg_cond (op0);
3200 if (! add)
3201 return NULL;
3202 return gen_rtx_AND (0, old, x);
3204 default:
3205 gcc_unreachable ();
3209 /* Given a condition X, remove references to reg REGNO and return the
3210 new condition. The removal will be done so that all conditions
3211 involving REGNO are considered to evaluate to false. This function
3212 is used when the value of REGNO changes. */
3214 static rtx
3215 elim_reg_cond (rtx x, unsigned int regno)
3217 rtx op0, op1;
3219 if (COMPARISON_P (x))
3221 if (REGNO (XEXP (x, 0)) == regno)
3222 return const0_rtx;
3223 return x;
3226 switch (GET_CODE (x))
3228 case AND:
3229 op0 = elim_reg_cond (XEXP (x, 0), regno);
3230 op1 = elim_reg_cond (XEXP (x, 1), regno);
3231 if (op0 == const0_rtx || op1 == const0_rtx)
3232 return const0_rtx;
3233 if (op0 == const1_rtx)
3234 return op1;
3235 if (op1 == const1_rtx)
3236 return op0;
3237 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3238 return x;
3239 return gen_rtx_AND (0, op0, op1);
3241 case IOR:
3242 op0 = elim_reg_cond (XEXP (x, 0), regno);
3243 op1 = elim_reg_cond (XEXP (x, 1), regno);
3244 if (op0 == const1_rtx || op1 == const1_rtx)
3245 return const1_rtx;
3246 if (op0 == const0_rtx)
3247 return op1;
3248 if (op1 == const0_rtx)
3249 return op0;
3250 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3251 return x;
3252 return gen_rtx_IOR (0, op0, op1);
3254 case NOT:
3255 op0 = elim_reg_cond (XEXP (x, 0), regno);
3256 if (op0 == const0_rtx)
3257 return const1_rtx;
3258 if (op0 == const1_rtx)
3259 return const0_rtx;
3260 if (op0 != XEXP (x, 0))
3261 return not_reg_cond (op0);
3262 return x;
3264 default:
3265 gcc_unreachable ();
3268 #endif /* HAVE_conditional_execution */
3270 #ifdef AUTO_INC_DEC
3272 /* Try to substitute the auto-inc expression INC as the address inside
3273 MEM which occurs in INSN. Currently, the address of MEM is an expression
3274 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3275 that has a single set whose source is a PLUS of INCR_REG and something
3276 else. */
3278 static void
3279 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3280 rtx mem, rtx incr, rtx incr_reg)
3282 int regno = REGNO (incr_reg);
3283 rtx set = single_set (incr);
3284 rtx q = SET_DEST (set);
3285 rtx y = SET_SRC (set);
3286 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3287 int changed;
3289 /* Make sure this reg appears only once in this insn. */
3290 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3291 return;
3293 if (dead_or_set_p (incr, incr_reg)
3294 /* Mustn't autoinc an eliminable register. */
3295 && (regno >= FIRST_PSEUDO_REGISTER
3296 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3298 /* This is the simple case. Try to make the auto-inc. If
3299 we can't, we are done. Otherwise, we will do any
3300 needed updates below. */
3301 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3302 return;
3304 else if (REG_P (q)
3305 /* PREV_INSN used here to check the semi-open interval
3306 [insn,incr). */
3307 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3308 /* We must also check for sets of q as q may be
3309 a call clobbered hard register and there may
3310 be a call between PREV_INSN (insn) and incr. */
3311 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3313 /* We have *p followed sometime later by q = p+size.
3314 Both p and q must be live afterward,
3315 and q is not used between INSN and its assignment.
3316 Change it to q = p, ...*q..., q = q+size.
3317 Then fall into the usual case. */
3318 rtx insns, temp;
3320 start_sequence ();
3321 emit_move_insn (q, incr_reg);
3322 insns = get_insns ();
3323 end_sequence ();
3325 /* If we can't make the auto-inc, or can't make the
3326 replacement into Y, exit. There's no point in making
3327 the change below if we can't do the auto-inc and doing
3328 so is not correct in the pre-inc case. */
3330 XEXP (inc, 0) = q;
3331 validate_change (insn, &XEXP (mem, 0), inc, 1);
3332 validate_change (incr, &XEXP (y, opnum), q, 1);
3333 if (! apply_change_group ())
3334 return;
3336 /* We now know we'll be doing this change, so emit the
3337 new insn(s) and do the updates. */
3338 emit_insn_before (insns, insn);
3340 if (BB_HEAD (pbi->bb) == insn)
3341 BB_HEAD (pbi->bb) = insns;
3343 /* INCR will become a NOTE and INSN won't contain a
3344 use of INCR_REG. If a use of INCR_REG was just placed in
3345 the insn before INSN, make that the next use.
3346 Otherwise, invalidate it. */
3347 if (NONJUMP_INSN_P (PREV_INSN (insn))
3348 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3349 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3350 pbi->reg_next_use[regno] = PREV_INSN (insn);
3351 else
3352 pbi->reg_next_use[regno] = 0;
3354 incr_reg = q;
3355 regno = REGNO (q);
3357 if ((pbi->flags & PROP_REG_INFO)
3358 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3359 reg_deaths[regno] = pbi->insn_num;
3361 /* REGNO is now used in INCR which is below INSN, but
3362 it previously wasn't live here. If we don't mark
3363 it as live, we'll put a REG_DEAD note for it
3364 on this insn, which is incorrect. */
3365 SET_REGNO_REG_SET (pbi->reg_live, regno);
3367 /* If there are any calls between INSN and INCR, show
3368 that REGNO now crosses them. */
3369 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3370 if (CALL_P (temp))
3371 REG_N_CALLS_CROSSED (regno)++;
3373 /* Invalidate alias info for Q since we just changed its value. */
3374 clear_reg_alias_info (q);
3376 else
3377 return;
3379 /* If we haven't returned, it means we were able to make the
3380 auto-inc, so update the status. First, record that this insn
3381 has an implicit side effect. */
3383 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3385 /* Modify the old increment-insn to simply copy
3386 the already-incremented value of our register. */
3387 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3388 gcc_assert (changed);
3390 /* If that makes it a no-op (copying the register into itself) delete
3391 it so it won't appear to be a "use" and a "set" of this
3392 register. */
3393 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3395 /* If the original source was dead, it's dead now. */
3396 rtx note;
3398 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3400 remove_note (incr, note);
3401 if (XEXP (note, 0) != incr_reg)
3403 unsigned int regno = REGNO (XEXP (note, 0));
3405 if ((pbi->flags & PROP_REG_INFO)
3406 && REGNO_REG_SET_P (pbi->reg_live, regno))
3408 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3409 reg_deaths[regno] = 0;
3411 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3415 SET_INSN_DELETED (incr);
3418 if (regno >= FIRST_PSEUDO_REGISTER)
3420 /* Count an extra reference to the reg. When a reg is
3421 incremented, spilling it is worse, so we want to make
3422 that less likely. */
3423 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3425 /* Count the increment as a setting of the register,
3426 even though it isn't a SET in rtl. */
3427 REG_N_SETS (regno)++;
3431 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3432 reference. */
3434 static void
3435 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3437 rtx addr = XEXP (x, 0);
3438 HOST_WIDE_INT offset = 0;
3439 rtx set, y, incr, inc_val;
3440 int regno;
3441 int size = GET_MODE_SIZE (GET_MODE (x));
3443 if (JUMP_P (insn))
3444 return;
3446 /* Here we detect use of an index register which might be good for
3447 postincrement, postdecrement, preincrement, or predecrement. */
3449 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3450 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3452 if (!REG_P (addr))
3453 return;
3455 regno = REGNO (addr);
3457 /* Is the next use an increment that might make auto-increment? */
3458 incr = pbi->reg_next_use[regno];
3459 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3460 return;
3461 set = single_set (incr);
3462 if (set == 0 || GET_CODE (set) != SET)
3463 return;
3464 y = SET_SRC (set);
3466 if (GET_CODE (y) != PLUS)
3467 return;
3469 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3470 inc_val = XEXP (y, 1);
3471 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3472 inc_val = XEXP (y, 0);
3473 else
3474 return;
3476 if (GET_CODE (inc_val) == CONST_INT)
3478 if (HAVE_POST_INCREMENT
3479 && (INTVAL (inc_val) == size && offset == 0))
3480 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3481 incr, addr);
3482 else if (HAVE_POST_DECREMENT
3483 && (INTVAL (inc_val) == -size && offset == 0))
3484 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3485 incr, addr);
3486 else if (HAVE_PRE_INCREMENT
3487 && (INTVAL (inc_val) == size && offset == size))
3488 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3489 incr, addr);
3490 else if (HAVE_PRE_DECREMENT
3491 && (INTVAL (inc_val) == -size && offset == -size))
3492 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3493 incr, addr);
3494 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3495 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3496 gen_rtx_PLUS (Pmode,
3497 addr,
3498 inc_val)),
3499 insn, x, incr, addr);
3500 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3501 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3502 gen_rtx_PLUS (Pmode,
3503 addr,
3504 inc_val)),
3505 insn, x, incr, addr);
3507 else if (REG_P (inc_val)
3508 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3509 NEXT_INSN (incr)))
3512 if (HAVE_POST_MODIFY_REG && offset == 0)
3513 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3514 gen_rtx_PLUS (Pmode,
3515 addr,
3516 inc_val)),
3517 insn, x, incr, addr);
3521 #endif /* AUTO_INC_DEC */
3523 static void
3524 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3525 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3527 unsigned int regno_first, regno_last, i;
3528 int some_was_live, some_was_dead, some_not_set;
3530 regno_last = regno_first = REGNO (reg);
3531 if (regno_first < FIRST_PSEUDO_REGISTER)
3532 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3534 /* Find out if any of this register is live after this instruction. */
3535 some_was_live = some_was_dead = 0;
3536 for (i = regno_first; i <= regno_last; ++i)
3538 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3539 some_was_live |= needed_regno;
3540 some_was_dead |= ! needed_regno;
3543 /* Find out if any of the register was set this insn. */
3544 some_not_set = 0;
3545 for (i = regno_first; i <= regno_last; ++i)
3546 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3548 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3550 /* Record where each reg is used, so when the reg is set we know
3551 the next insn that uses it. */
3552 pbi->reg_next_use[regno_first] = insn;
3555 if (pbi->flags & PROP_REG_INFO)
3557 if (regno_first < FIRST_PSEUDO_REGISTER)
3559 /* If this is a register we are going to try to eliminate,
3560 don't mark it live here. If we are successful in
3561 eliminating it, it need not be live unless it is used for
3562 pseudos, in which case it will have been set live when it
3563 was allocated to the pseudos. If the register will not
3564 be eliminated, reload will set it live at that point.
3566 Otherwise, record that this function uses this register. */
3567 /* ??? The PPC backend tries to "eliminate" on the pic
3568 register to itself. This should be fixed. In the mean
3569 time, hack around it. */
3571 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3572 && (regno_first == FRAME_POINTER_REGNUM
3573 || regno_first == ARG_POINTER_REGNUM)))
3574 for (i = regno_first; i <= regno_last; ++i)
3575 regs_ever_live[i] = 1;
3577 else
3579 /* Keep track of which basic block each reg appears in. */
3581 int blocknum = pbi->bb->index;
3582 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3583 REG_BASIC_BLOCK (regno_first) = blocknum;
3584 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3585 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3587 /* Count (weighted) number of uses of each reg. */
3588 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3589 REG_N_REFS (regno_first)++;
3591 for (i = regno_first; i <= regno_last; ++i)
3592 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3594 gcc_assert (!reg_deaths[i]);
3595 reg_deaths[i] = pbi->insn_num;
3599 /* Record and count the insns in which a reg dies. If it is used in
3600 this insn and was dead below the insn then it dies in this insn.
3601 If it was set in this insn, we do not make a REG_DEAD note;
3602 likewise if we already made such a note. */
3603 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3604 && some_was_dead
3605 && some_not_set)
3607 /* Check for the case where the register dying partially
3608 overlaps the register set by this insn. */
3609 if (regno_first != regno_last)
3610 for (i = regno_first; i <= regno_last; ++i)
3611 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3613 /* If none of the words in X is needed, make a REG_DEAD note.
3614 Otherwise, we must make partial REG_DEAD notes. */
3615 if (! some_was_live)
3617 if ((pbi->flags & PROP_DEATH_NOTES)
3618 && ! find_regno_note (insn, REG_DEAD, regno_first))
3619 REG_NOTES (insn)
3620 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3622 if (pbi->flags & PROP_REG_INFO)
3623 REG_N_DEATHS (regno_first)++;
3625 else
3627 /* Don't make a REG_DEAD note for a part of a register
3628 that is set in the insn. */
3629 for (i = regno_first; i <= regno_last; ++i)
3630 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3631 && ! dead_or_set_regno_p (insn, i))
3632 REG_NOTES (insn)
3633 = alloc_EXPR_LIST (REG_DEAD,
3634 regno_reg_rtx[i],
3635 REG_NOTES (insn));
3639 /* Mark the register as being live. */
3640 for (i = regno_first; i <= regno_last; ++i)
3642 #ifdef HAVE_conditional_execution
3643 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3644 #endif
3646 SET_REGNO_REG_SET (pbi->reg_live, i);
3648 #ifdef HAVE_conditional_execution
3649 /* If this is a conditional use, record that fact. If it is later
3650 conditionally set, we'll know to kill the register. */
3651 if (cond != NULL_RTX)
3653 splay_tree_node node;
3654 struct reg_cond_life_info *rcli;
3655 rtx ncond;
3657 if (this_was_live)
3659 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3660 if (node == NULL)
3662 /* The register was unconditionally live previously.
3663 No need to do anything. */
3665 else
3667 /* The register was conditionally live previously.
3668 Subtract the new life cond from the old death cond. */
3669 rcli = (struct reg_cond_life_info *) node->value;
3670 ncond = rcli->condition;
3671 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3673 /* If the register is now unconditionally live,
3674 remove the entry in the splay_tree. */
3675 if (ncond == const0_rtx)
3676 splay_tree_remove (pbi->reg_cond_dead, i);
3677 else
3679 rcli->condition = ncond;
3680 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3681 REGNO (XEXP (cond, 0)));
3685 else
3687 /* The register was not previously live at all. Record
3688 the condition under which it is still dead. */
3689 rcli = xmalloc (sizeof (*rcli));
3690 rcli->condition = not_reg_cond (cond);
3691 rcli->stores = const0_rtx;
3692 rcli->orig_condition = const0_rtx;
3693 splay_tree_insert (pbi->reg_cond_dead, i,
3694 (splay_tree_value) rcli);
3696 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3699 else if (this_was_live)
3701 /* The register may have been conditionally live previously, but
3702 is now unconditionally live. Remove it from the conditionally
3703 dead list, so that a conditional set won't cause us to think
3704 it dead. */
3705 splay_tree_remove (pbi->reg_cond_dead, i);
3707 #endif
3711 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3712 This is done assuming the registers needed from X are those that
3713 have 1-bits in PBI->REG_LIVE.
3715 INSN is the containing instruction. If INSN is dead, this function
3716 is not called. */
3718 static void
3719 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3721 RTX_CODE code;
3722 int regno;
3723 int flags = pbi->flags;
3725 retry:
3726 if (!x)
3727 return;
3728 code = GET_CODE (x);
3729 switch (code)
3731 case LABEL_REF:
3732 case SYMBOL_REF:
3733 case CONST_INT:
3734 case CONST:
3735 case CONST_DOUBLE:
3736 case CONST_VECTOR:
3737 case PC:
3738 case ADDR_VEC:
3739 case ADDR_DIFF_VEC:
3740 return;
3742 #ifdef HAVE_cc0
3743 case CC0:
3744 pbi->cc0_live = 1;
3745 return;
3746 #endif
3748 case CLOBBER:
3749 /* If we are clobbering a MEM, mark any registers inside the address
3750 as being used. */
3751 if (MEM_P (XEXP (x, 0)))
3752 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3753 return;
3755 case MEM:
3756 /* Don't bother watching stores to mems if this is not the
3757 final pass. We'll not be deleting dead stores this round. */
3758 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3760 /* Invalidate the data for the last MEM stored, but only if MEM is
3761 something that can be stored into. */
3762 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3763 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3764 /* Needn't clear the memory set list. */
3766 else
3768 rtx temp = pbi->mem_set_list;
3769 rtx prev = NULL_RTX;
3770 rtx next;
3772 while (temp)
3774 next = XEXP (temp, 1);
3775 if (anti_dependence (XEXP (temp, 0), x))
3777 /* Splice temp out of the list. */
3778 if (prev)
3779 XEXP (prev, 1) = next;
3780 else
3781 pbi->mem_set_list = next;
3782 free_EXPR_LIST_node (temp);
3783 pbi->mem_set_list_len--;
3785 else
3786 prev = temp;
3787 temp = next;
3791 /* If the memory reference had embedded side effects (autoincrement
3792 address modes. Then we may need to kill some entries on the
3793 memory set list. */
3794 if (insn)
3795 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3798 #ifdef AUTO_INC_DEC
3799 if (flags & PROP_AUTOINC)
3800 find_auto_inc (pbi, x, insn);
3801 #endif
3802 break;
3804 case SUBREG:
3805 #ifdef CANNOT_CHANGE_MODE_CLASS
3806 if (flags & PROP_REG_INFO)
3807 record_subregs_of_mode (x);
3808 #endif
3810 /* While we're here, optimize this case. */
3811 x = SUBREG_REG (x);
3812 if (!REG_P (x))
3813 goto retry;
3814 /* Fall through. */
3816 case REG:
3817 /* See a register other than being set => mark it as needed. */
3818 mark_used_reg (pbi, x, cond, insn);
3819 return;
3821 case SET:
3823 rtx testreg = SET_DEST (x);
3824 int mark_dest = 0;
3826 /* If storing into MEM, don't show it as being used. But do
3827 show the address as being used. */
3828 if (MEM_P (testreg))
3830 #ifdef AUTO_INC_DEC
3831 if (flags & PROP_AUTOINC)
3832 find_auto_inc (pbi, testreg, insn);
3833 #endif
3834 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3835 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3836 return;
3839 /* Storing in STRICT_LOW_PART is like storing in a reg
3840 in that this SET might be dead, so ignore it in TESTREG.
3841 but in some other ways it is like using the reg.
3843 Storing in a SUBREG or a bit field is like storing the entire
3844 register in that if the register's value is not used
3845 then this SET is not needed. */
3846 while (GET_CODE (testreg) == STRICT_LOW_PART
3847 || GET_CODE (testreg) == ZERO_EXTRACT
3848 || GET_CODE (testreg) == SIGN_EXTRACT
3849 || GET_CODE (testreg) == SUBREG)
3851 #ifdef CANNOT_CHANGE_MODE_CLASS
3852 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3853 record_subregs_of_mode (testreg);
3854 #endif
3856 /* Modifying a single register in an alternate mode
3857 does not use any of the old value. But these other
3858 ways of storing in a register do use the old value. */
3859 if (GET_CODE (testreg) == SUBREG
3860 && !((REG_BYTES (SUBREG_REG (testreg))
3861 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3862 > (REG_BYTES (testreg)
3863 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3865 else
3866 mark_dest = 1;
3868 testreg = XEXP (testreg, 0);
3871 /* If this is a store into a register or group of registers,
3872 recursively scan the value being stored. */
3874 if ((GET_CODE (testreg) == PARALLEL
3875 && GET_MODE (testreg) == BLKmode)
3876 || (REG_P (testreg)
3877 && (regno = REGNO (testreg),
3878 ! (regno == FRAME_POINTER_REGNUM
3879 && (! reload_completed || frame_pointer_needed)))
3880 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3881 && ! (regno == HARD_FRAME_POINTER_REGNUM
3882 && (! reload_completed || frame_pointer_needed))
3883 #endif
3884 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3885 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3886 #endif
3889 if (mark_dest)
3890 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3891 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3892 return;
3895 break;
3897 case ASM_OPERANDS:
3898 case UNSPEC_VOLATILE:
3899 case TRAP_IF:
3900 case ASM_INPUT:
3902 /* Traditional and volatile asm instructions must be considered to use
3903 and clobber all hard registers, all pseudo-registers and all of
3904 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3906 Consider for instance a volatile asm that changes the fpu rounding
3907 mode. An insn should not be moved across this even if it only uses
3908 pseudo-regs because it might give an incorrectly rounded result.
3910 ?!? Unfortunately, marking all hard registers as live causes massive
3911 problems for the register allocator and marking all pseudos as live
3912 creates mountains of uninitialized variable warnings.
3914 So for now, just clear the memory set list and mark any regs
3915 we can find in ASM_OPERANDS as used. */
3916 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3918 free_EXPR_LIST_list (&pbi->mem_set_list);
3919 pbi->mem_set_list_len = 0;
3922 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3923 We can not just fall through here since then we would be confused
3924 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3925 traditional asms unlike their normal usage. */
3926 if (code == ASM_OPERANDS)
3928 int j;
3930 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3931 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3933 break;
3936 case COND_EXEC:
3937 gcc_assert (!cond);
3939 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3941 cond = COND_EXEC_TEST (x);
3942 x = COND_EXEC_CODE (x);
3943 goto retry;
3945 default:
3946 break;
3949 /* Recursively scan the operands of this expression. */
3952 const char * const fmt = GET_RTX_FORMAT (code);
3953 int i;
3955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3957 if (fmt[i] == 'e')
3959 /* Tail recursive case: save a function call level. */
3960 if (i == 0)
3962 x = XEXP (x, 0);
3963 goto retry;
3965 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3967 else if (fmt[i] == 'E')
3969 int j;
3970 for (j = 0; j < XVECLEN (x, i); j++)
3971 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3977 #ifdef AUTO_INC_DEC
3979 static int
3980 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3982 /* Find the next use of this reg. If in same basic block,
3983 make it do pre-increment or pre-decrement if appropriate. */
3984 rtx x = single_set (insn);
3985 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3986 * INTVAL (XEXP (SET_SRC (x), 1)));
3987 int regno = REGNO (SET_DEST (x));
3988 rtx y = pbi->reg_next_use[regno];
3989 if (y != 0
3990 && SET_DEST (x) != stack_pointer_rtx
3991 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3992 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3993 mode would be better. */
3994 && ! dead_or_set_p (y, SET_DEST (x))
3995 && try_pre_increment (y, SET_DEST (x), amount))
3997 /* We have found a suitable auto-increment and already changed
3998 insn Y to do it. So flush this increment instruction. */
3999 propagate_block_delete_insn (insn);
4001 /* Count a reference to this reg for the increment insn we are
4002 deleting. When a reg is incremented, spilling it is worse,
4003 so we want to make that less likely. */
4004 if (regno >= FIRST_PSEUDO_REGISTER)
4006 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4007 REG_N_SETS (regno)++;
4010 /* Flush any remembered memories depending on the value of
4011 the incremented register. */
4012 invalidate_mems_from_set (pbi, SET_DEST (x));
4014 return 1;
4016 return 0;
4019 /* Try to change INSN so that it does pre-increment or pre-decrement
4020 addressing on register REG in order to add AMOUNT to REG.
4021 AMOUNT is negative for pre-decrement.
4022 Returns 1 if the change could be made.
4023 This checks all about the validity of the result of modifying INSN. */
4025 static int
4026 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4028 rtx use;
4030 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4031 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4032 int pre_ok = 0;
4033 /* Nonzero if we can try to make a post-increment or post-decrement.
4034 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4035 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4036 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4037 int post_ok = 0;
4039 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4040 int do_post = 0;
4042 /* From the sign of increment, see which possibilities are conceivable
4043 on this target machine. */
4044 if (HAVE_PRE_INCREMENT && amount > 0)
4045 pre_ok = 1;
4046 if (HAVE_POST_INCREMENT && amount > 0)
4047 post_ok = 1;
4049 if (HAVE_PRE_DECREMENT && amount < 0)
4050 pre_ok = 1;
4051 if (HAVE_POST_DECREMENT && amount < 0)
4052 post_ok = 1;
4054 if (! (pre_ok || post_ok))
4055 return 0;
4057 /* It is not safe to add a side effect to a jump insn
4058 because if the incremented register is spilled and must be reloaded
4059 there would be no way to store the incremented value back in memory. */
4061 if (JUMP_P (insn))
4062 return 0;
4064 use = 0;
4065 if (pre_ok)
4066 use = find_use_as_address (PATTERN (insn), reg, 0);
4067 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4069 use = find_use_as_address (PATTERN (insn), reg, -amount);
4070 do_post = 1;
4073 if (use == 0 || use == (rtx) (size_t) 1)
4074 return 0;
4076 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4077 return 0;
4079 /* See if this combination of instruction and addressing mode exists. */
4080 if (! validate_change (insn, &XEXP (use, 0),
4081 gen_rtx_fmt_e (amount > 0
4082 ? (do_post ? POST_INC : PRE_INC)
4083 : (do_post ? POST_DEC : PRE_DEC),
4084 Pmode, reg), 0))
4085 return 0;
4087 /* Record that this insn now has an implicit side effect on X. */
4088 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4089 return 1;
4092 #endif /* AUTO_INC_DEC */
4094 /* Find the place in the rtx X where REG is used as a memory address.
4095 Return the MEM rtx that so uses it.
4096 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4097 (plus REG (const_int PLUSCONST)).
4099 If such an address does not appear, return 0.
4100 If REG appears more than once, or is used other than in such an address,
4101 return (rtx) 1. */
4104 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4106 enum rtx_code code = GET_CODE (x);
4107 const char * const fmt = GET_RTX_FORMAT (code);
4108 int i;
4109 rtx value = 0;
4110 rtx tem;
4112 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4113 return x;
4115 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4116 && XEXP (XEXP (x, 0), 0) == reg
4117 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4118 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4119 return x;
4121 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4123 /* If REG occurs inside a MEM used in a bit-field reference,
4124 that is unacceptable. */
4125 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4126 return (rtx) (size_t) 1;
4129 if (x == reg)
4130 return (rtx) (size_t) 1;
4132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4134 if (fmt[i] == 'e')
4136 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4137 if (value == 0)
4138 value = tem;
4139 else if (tem != 0)
4140 return (rtx) (size_t) 1;
4142 else if (fmt[i] == 'E')
4144 int j;
4145 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4147 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4148 if (value == 0)
4149 value = tem;
4150 else if (tem != 0)
4151 return (rtx) (size_t) 1;
4156 return value;
4159 /* Write information about registers and basic blocks into FILE.
4160 This is part of making a debugging dump. */
4162 void
4163 dump_regset (regset r, FILE *outf)
4165 unsigned i;
4166 reg_set_iterator rsi;
4168 if (r == NULL)
4170 fputs (" (nil)", outf);
4171 return;
4174 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4176 fprintf (outf, " %d", i);
4177 if (i < FIRST_PSEUDO_REGISTER)
4178 fprintf (outf, " [%s]",
4179 reg_names[i]);
4183 /* Print a human-readable representation of R on the standard error
4184 stream. This function is designed to be used from within the
4185 debugger. */
4187 void
4188 debug_regset (regset r)
4190 dump_regset (r, stderr);
4191 putc ('\n', stderr);
4194 /* Recompute register set/reference counts immediately prior to register
4195 allocation.
4197 This avoids problems with set/reference counts changing to/from values
4198 which have special meanings to the register allocators.
4200 Additionally, the reference counts are the primary component used by the
4201 register allocators to prioritize pseudos for allocation to hard regs.
4202 More accurate reference counts generally lead to better register allocation.
4204 F is the first insn to be scanned.
4206 LOOP_STEP denotes how much loop_depth should be incremented per
4207 loop nesting level in order to increase the ref count more for
4208 references in a loop.
4210 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4211 possibly other information which is used by the register allocators. */
4213 void
4214 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4216 allocate_reg_life_data ();
4217 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4218 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4219 solve this update the DEATH_NOTES here. */
4220 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4223 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4224 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4225 of the number of registers that died. */
4228 count_or_remove_death_notes (sbitmap blocks, int kill)
4230 int count = 0;
4231 int i;
4232 basic_block bb;
4234 /* This used to be a loop over all the blocks with a membership test
4235 inside the loop. That can be amazingly expensive on a large CFG
4236 when only a small number of bits are set in BLOCKs (for example,
4237 the calls from the scheduler typically have very few bits set).
4239 For extra credit, someone should convert BLOCKS to a bitmap rather
4240 than an sbitmap. */
4241 if (blocks)
4243 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4245 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4248 else
4250 FOR_EACH_BB (bb)
4252 count += count_or_remove_death_notes_bb (bb, kill);
4256 return count;
4259 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4260 block BB. Returns a count of the number of registers that died. */
4262 static int
4263 count_or_remove_death_notes_bb (basic_block bb, int kill)
4265 int count = 0;
4266 rtx insn;
4268 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4270 if (INSN_P (insn))
4272 rtx *pprev = &REG_NOTES (insn);
4273 rtx link = *pprev;
4275 while (link)
4277 switch (REG_NOTE_KIND (link))
4279 case REG_DEAD:
4280 if (REG_P (XEXP (link, 0)))
4282 rtx reg = XEXP (link, 0);
4283 int n;
4285 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4286 n = 1;
4287 else
4288 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4289 count += n;
4292 /* Fall through. */
4294 case REG_UNUSED:
4295 if (kill)
4297 rtx next = XEXP (link, 1);
4298 free_EXPR_LIST_node (link);
4299 *pprev = link = next;
4300 break;
4302 /* Fall through. */
4304 default:
4305 pprev = &XEXP (link, 1);
4306 link = *pprev;
4307 break;
4312 if (insn == BB_END (bb))
4313 break;
4316 return count;
4319 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4320 if blocks is NULL. */
4322 static void
4323 clear_log_links (sbitmap blocks)
4325 rtx insn;
4326 int i;
4328 if (!blocks)
4330 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4331 if (INSN_P (insn))
4332 free_INSN_LIST_list (&LOG_LINKS (insn));
4334 else
4335 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4337 basic_block bb = BASIC_BLOCK (i);
4339 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4340 insn = NEXT_INSN (insn))
4341 if (INSN_P (insn))
4342 free_INSN_LIST_list (&LOG_LINKS (insn));
4346 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4347 correspond to the hard registers, if any, set in that map. This
4348 could be done far more efficiently by having all sorts of special-cases
4349 with moving single words, but probably isn't worth the trouble. */
4351 void
4352 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4354 unsigned i;
4355 bitmap_iterator bi;
4357 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4359 if (i >= FIRST_PSEUDO_REGISTER)
4360 return;
4361 SET_HARD_REG_BIT (*to, i);