* stmt.c (parse_output_constraint): New function, split out
[official-gcc.git] / gcc / stmt.c
blob425c18541a1f54f679601cf92ad6dd9908445a52
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
36 #include "config.h"
37 #include "system.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-config.h"
46 #include "expr.h"
47 #include "hard-reg-set.h"
48 #include "obstack.h"
49 #include "loop.h"
50 #include "recog.h"
51 #include "machmode.h"
52 #include "toplev.h"
53 #include "output.h"
54 #include "ggc.h"
56 #define obstack_chunk_alloc xmalloc
57 #define obstack_chunk_free free
58 struct obstack stmt_obstack;
60 /* Assume that case vectors are not pc-relative. */
61 #ifndef CASE_VECTOR_PC_RELATIVE
62 #define CASE_VECTOR_PC_RELATIVE 0
63 #endif
65 /* Functions and data structures for expanding case statements. */
67 /* Case label structure, used to hold info on labels within case
68 statements. We handle "range" labels; for a single-value label
69 as in C, the high and low limits are the same.
71 An AVL tree of case nodes is initially created, and later transformed
72 to a list linked via the RIGHT fields in the nodes. Nodes with
73 higher case values are later in the list.
75 Switch statements can be output in one of two forms. A branch table
76 is used if there are more than a few labels and the labels are dense
77 within the range between the smallest and largest case value. If a
78 branch table is used, no further manipulations are done with the case
79 node chain.
81 The alternative to the use of a branch table is to generate a series
82 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
83 and PARENT fields to hold a binary tree. Initially the tree is
84 totally unbalanced, with everything on the right. We balance the tree
85 with nodes on the left having lower case values than the parent
86 and nodes on the right having higher values. We then output the tree
87 in order. */
89 struct case_node
91 struct case_node *left; /* Left son in binary tree */
92 struct case_node *right; /* Right son in binary tree; also node chain */
93 struct case_node *parent; /* Parent of node in binary tree */
94 tree low; /* Lowest index value for this label */
95 tree high; /* Highest index value for this label */
96 tree code_label; /* Label to jump to when node matches */
97 int balance;
100 typedef struct case_node case_node;
101 typedef struct case_node *case_node_ptr;
103 /* These are used by estimate_case_costs and balance_case_nodes. */
105 /* This must be a signed type, and non-ANSI compilers lack signed char. */
106 static short cost_table_[129];
107 static int use_cost_table;
108 static int cost_table_initialized;
110 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
111 is unsigned. */
112 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT)((I) + 1)]
114 /* Stack of control and binding constructs we are currently inside.
116 These constructs begin when you call `expand_start_WHATEVER'
117 and end when you call `expand_end_WHATEVER'. This stack records
118 info about how the construct began that tells the end-function
119 what to do. It also may provide information about the construct
120 to alter the behavior of other constructs within the body.
121 For example, they may affect the behavior of C `break' and `continue'.
123 Each construct gets one `struct nesting' object.
124 All of these objects are chained through the `all' field.
125 `nesting_stack' points to the first object (innermost construct).
126 The position of an entry on `nesting_stack' is in its `depth' field.
128 Each type of construct has its own individual stack.
129 For example, loops have `loop_stack'. Each object points to the
130 next object of the same type through the `next' field.
132 Some constructs are visible to `break' exit-statements and others
133 are not. Which constructs are visible depends on the language.
134 Therefore, the data structure allows each construct to be visible
135 or not, according to the args given when the construct is started.
136 The construct is visible if the `exit_label' field is non-null.
137 In that case, the value should be a CODE_LABEL rtx. */
139 struct nesting
141 struct nesting *all;
142 struct nesting *next;
143 int depth;
144 rtx exit_label;
145 union
147 /* For conds (if-then and if-then-else statements). */
148 struct
150 /* Label for the end of the if construct.
151 There is none if EXITFLAG was not set
152 and no `else' has been seen yet. */
153 rtx endif_label;
154 /* Label for the end of this alternative.
155 This may be the end of the if or the next else/elseif. */
156 rtx next_label;
157 } cond;
158 /* For loops. */
159 struct
161 /* Label at the top of the loop; place to loop back to. */
162 rtx start_label;
163 /* Label at the end of the whole construct. */
164 rtx end_label;
165 /* Label before a jump that branches to the end of the whole
166 construct. This is where destructors go if any. */
167 rtx alt_end_label;
168 /* Label for `continue' statement to jump to;
169 this is in front of the stepper of the loop. */
170 rtx continue_label;
171 } loop;
172 /* For variable binding contours. */
173 struct
175 /* Sequence number of this binding contour within the function,
176 in order of entry. */
177 int block_start_count;
178 /* Nonzero => value to restore stack to on exit. */
179 rtx stack_level;
180 /* The NOTE that starts this contour.
181 Used by expand_goto to check whether the destination
182 is within each contour or not. */
183 rtx first_insn;
184 /* Innermost containing binding contour that has a stack level. */
185 struct nesting *innermost_stack_block;
186 /* List of cleanups to be run on exit from this contour.
187 This is a list of expressions to be evaluated.
188 The TREE_PURPOSE of each link is the ..._DECL node
189 which the cleanup pertains to. */
190 tree cleanups;
191 /* List of cleanup-lists of blocks containing this block,
192 as they were at the locus where this block appears.
193 There is an element for each containing block,
194 ordered innermost containing block first.
195 The tail of this list can be 0,
196 if all remaining elements would be empty lists.
197 The element's TREE_VALUE is the cleanup-list of that block,
198 which may be null. */
199 tree outer_cleanups;
200 /* Chain of labels defined inside this binding contour.
201 For contours that have stack levels or cleanups. */
202 struct label_chain *label_chain;
203 /* Number of function calls seen, as of start of this block. */
204 int n_function_calls;
205 /* Nonzero if this is associated with a EH region. */
206 int exception_region;
207 /* The saved target_temp_slot_level from our outer block.
208 We may reset target_temp_slot_level to be the level of
209 this block, if that is done, target_temp_slot_level
210 reverts to the saved target_temp_slot_level at the very
211 end of the block. */
212 int block_target_temp_slot_level;
213 /* True if we are currently emitting insns in an area of
214 output code that is controlled by a conditional
215 expression. This is used by the cleanup handling code to
216 generate conditional cleanup actions. */
217 int conditional_code;
218 /* A place to move the start of the exception region for any
219 of the conditional cleanups, must be at the end or after
220 the start of the last unconditional cleanup, and before any
221 conditional branch points. */
222 rtx last_unconditional_cleanup;
223 /* When in a conditional context, this is the specific
224 cleanup list associated with last_unconditional_cleanup,
225 where we place the conditionalized cleanups. */
226 tree *cleanup_ptr;
227 } block;
228 /* For switch (C) or case (Pascal) statements,
229 and also for dummies (see `expand_start_case_dummy'). */
230 struct
232 /* The insn after which the case dispatch should finally
233 be emitted. Zero for a dummy. */
234 rtx start;
235 /* A list of case labels; it is first built as an AVL tree.
236 During expand_end_case, this is converted to a list, and may be
237 rearranged into a nearly balanced binary tree. */
238 struct case_node *case_list;
239 /* Label to jump to if no case matches. */
240 tree default_label;
241 /* The expression to be dispatched on. */
242 tree index_expr;
243 /* Type that INDEX_EXPR should be converted to. */
244 tree nominal_type;
245 /* Name of this kind of statement, for warnings. */
246 const char *printname;
247 /* Used to save no_line_numbers till we see the first case label.
248 We set this to -1 when we see the first case label in this
249 case statement. */
250 int line_number_status;
251 } case_stmt;
252 } data;
255 /* Allocate and return a new `struct nesting'. */
257 #define ALLOC_NESTING() \
258 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
260 /* Pop the nesting stack element by element until we pop off
261 the element which is at the top of STACK.
262 Update all the other stacks, popping off elements from them
263 as we pop them from nesting_stack. */
265 #define POPSTACK(STACK) \
266 do { struct nesting *target = STACK; \
267 struct nesting *this; \
268 do { this = nesting_stack; \
269 if (loop_stack == this) \
270 loop_stack = loop_stack->next; \
271 if (cond_stack == this) \
272 cond_stack = cond_stack->next; \
273 if (block_stack == this) \
274 block_stack = block_stack->next; \
275 if (stack_block_stack == this) \
276 stack_block_stack = stack_block_stack->next; \
277 if (case_stack == this) \
278 case_stack = case_stack->next; \
279 nesting_depth = nesting_stack->depth - 1; \
280 nesting_stack = this->all; \
281 obstack_free (&stmt_obstack, this); } \
282 while (this != target); } while (0)
284 /* In some cases it is impossible to generate code for a forward goto
285 until the label definition is seen. This happens when it may be necessary
286 for the goto to reset the stack pointer: we don't yet know how to do that.
287 So expand_goto puts an entry on this fixup list.
288 Each time a binding contour that resets the stack is exited,
289 we check each fixup.
290 If the target label has now been defined, we can insert the proper code. */
292 struct goto_fixup
294 /* Points to following fixup. */
295 struct goto_fixup *next;
296 /* Points to the insn before the jump insn.
297 If more code must be inserted, it goes after this insn. */
298 rtx before_jump;
299 /* The LABEL_DECL that this jump is jumping to, or 0
300 for break, continue or return. */
301 tree target;
302 /* The BLOCK for the place where this goto was found. */
303 tree context;
304 /* The CODE_LABEL rtx that this is jumping to. */
305 rtx target_rtl;
306 /* Number of binding contours started in current function
307 before the label reference. */
308 int block_start_count;
309 /* The outermost stack level that should be restored for this jump.
310 Each time a binding contour that resets the stack is exited,
311 if the target label is *not* yet defined, this slot is updated. */
312 rtx stack_level;
313 /* List of lists of cleanup expressions to be run by this goto.
314 There is one element for each block that this goto is within.
315 The tail of this list can be 0,
316 if all remaining elements would be empty.
317 The TREE_VALUE contains the cleanup list of that block as of the
318 time this goto was seen.
319 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
320 tree cleanup_list_list;
323 /* Within any binding contour that must restore a stack level,
324 all labels are recorded with a chain of these structures. */
326 struct label_chain
328 /* Points to following fixup. */
329 struct label_chain *next;
330 tree label;
333 struct stmt_status
335 /* Chain of all pending binding contours. */
336 struct nesting *x_block_stack;
338 /* If any new stacks are added here, add them to POPSTACKS too. */
340 /* Chain of all pending binding contours that restore stack levels
341 or have cleanups. */
342 struct nesting *x_stack_block_stack;
344 /* Chain of all pending conditional statements. */
345 struct nesting *x_cond_stack;
347 /* Chain of all pending loops. */
348 struct nesting *x_loop_stack;
350 /* Chain of all pending case or switch statements. */
351 struct nesting *x_case_stack;
353 /* Separate chain including all of the above,
354 chained through the `all' field. */
355 struct nesting *x_nesting_stack;
357 /* Number of entries on nesting_stack now. */
358 int x_nesting_depth;
360 /* Number of binding contours started so far in this function. */
361 int x_block_start_count;
363 /* Each time we expand an expression-statement,
364 record the expr's type and its RTL value here. */
365 tree x_last_expr_type;
366 rtx x_last_expr_value;
368 /* Nonzero if within a ({...}) grouping, in which case we must
369 always compute a value for each expr-stmt in case it is the last one. */
370 int x_expr_stmts_for_value;
372 /* Filename and line number of last line-number note,
373 whether we actually emitted it or not. */
374 const char *x_emit_filename;
375 int x_emit_lineno;
377 struct goto_fixup *x_goto_fixup_chain;
380 #define block_stack (cfun->stmt->x_block_stack)
381 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
382 #define cond_stack (cfun->stmt->x_cond_stack)
383 #define loop_stack (cfun->stmt->x_loop_stack)
384 #define case_stack (cfun->stmt->x_case_stack)
385 #define nesting_stack (cfun->stmt->x_nesting_stack)
386 #define nesting_depth (cfun->stmt->x_nesting_depth)
387 #define current_block_start_count (cfun->stmt->x_block_start_count)
388 #define last_expr_type (cfun->stmt->x_last_expr_type)
389 #define last_expr_value (cfun->stmt->x_last_expr_value)
390 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
391 #define emit_filename (cfun->stmt->x_emit_filename)
392 #define emit_lineno (cfun->stmt->x_emit_lineno)
393 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
395 /* Non-zero if we are using EH to handle cleanus. */
396 static int using_eh_for_cleanups_p = 0;
398 static int n_occurrences PARAMS ((int, const char *));
399 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
400 static int expand_fixup PARAMS ((tree, rtx, rtx));
401 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
402 static void expand_nl_goto_receiver PARAMS ((void));
403 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
404 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
405 rtx, int));
406 static void expand_null_return_1 PARAMS ((rtx, int));
407 static void expand_value_return PARAMS ((rtx));
408 static int tail_recursion_args PARAMS ((tree, tree));
409 static void expand_cleanups PARAMS ((tree, tree, int, int));
410 static void check_seenlabel PARAMS ((void));
411 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
412 static int estimate_case_costs PARAMS ((case_node_ptr));
413 static void group_case_nodes PARAMS ((case_node_ptr));
414 static void balance_case_nodes PARAMS ((case_node_ptr *,
415 case_node_ptr));
416 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
417 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
418 static int node_is_bounded PARAMS ((case_node_ptr, tree));
419 static void emit_jump_if_reachable PARAMS ((rtx));
420 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
421 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
422 static void mark_cond_nesting PARAMS ((struct nesting *));
423 static void mark_loop_nesting PARAMS ((struct nesting *));
424 static void mark_block_nesting PARAMS ((struct nesting *));
425 static void mark_case_nesting PARAMS ((struct nesting *));
426 static void mark_case_node PARAMS ((struct case_node *));
427 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
428 static void free_case_nodes PARAMS ((case_node_ptr));
430 void
431 using_eh_for_cleanups ()
433 using_eh_for_cleanups_p = 1;
436 /* Mark N (known to be a cond-nesting) for GC. */
438 static void
439 mark_cond_nesting (n)
440 struct nesting *n;
442 while (n)
444 ggc_mark_rtx (n->exit_label);
445 ggc_mark_rtx (n->data.cond.endif_label);
446 ggc_mark_rtx (n->data.cond.next_label);
448 n = n->next;
452 /* Mark N (known to be a loop-nesting) for GC. */
454 static void
455 mark_loop_nesting (n)
456 struct nesting *n;
459 while (n)
461 ggc_mark_rtx (n->exit_label);
462 ggc_mark_rtx (n->data.loop.start_label);
463 ggc_mark_rtx (n->data.loop.end_label);
464 ggc_mark_rtx (n->data.loop.alt_end_label);
465 ggc_mark_rtx (n->data.loop.continue_label);
467 n = n->next;
471 /* Mark N (known to be a block-nesting) for GC. */
473 static void
474 mark_block_nesting (n)
475 struct nesting *n;
477 while (n)
479 struct label_chain *l;
481 ggc_mark_rtx (n->exit_label);
482 ggc_mark_rtx (n->data.block.stack_level);
483 ggc_mark_rtx (n->data.block.first_insn);
484 ggc_mark_tree (n->data.block.cleanups);
485 ggc_mark_tree (n->data.block.outer_cleanups);
487 for (l = n->data.block.label_chain; l != NULL; l = l->next)
489 ggc_mark (l);
490 ggc_mark_tree (l->label);
493 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
495 /* ??? cleanup_ptr never points outside the stack, does it? */
497 n = n->next;
501 /* Mark N (known to be a case-nesting) for GC. */
503 static void
504 mark_case_nesting (n)
505 struct nesting *n;
507 while (n)
509 ggc_mark_rtx (n->exit_label);
510 ggc_mark_rtx (n->data.case_stmt.start);
512 ggc_mark_tree (n->data.case_stmt.default_label);
513 ggc_mark_tree (n->data.case_stmt.index_expr);
514 ggc_mark_tree (n->data.case_stmt.nominal_type);
516 mark_case_node (n->data.case_stmt.case_list);
517 n = n->next;
521 /* Mark C for GC. */
523 static void
524 mark_case_node (c)
525 struct case_node *c;
527 if (c != 0)
529 ggc_mark_tree (c->low);
530 ggc_mark_tree (c->high);
531 ggc_mark_tree (c->code_label);
533 mark_case_node (c->right);
534 mark_case_node (c->left);
538 /* Mark G for GC. */
540 static void
541 mark_goto_fixup (g)
542 struct goto_fixup *g;
544 while (g)
546 ggc_mark (g);
547 ggc_mark_rtx (g->before_jump);
548 ggc_mark_tree (g->target);
549 ggc_mark_tree (g->context);
550 ggc_mark_rtx (g->target_rtl);
551 ggc_mark_rtx (g->stack_level);
552 ggc_mark_tree (g->cleanup_list_list);
554 g = g->next;
558 /* Clear out all parts of the state in F that can safely be discarded
559 after the function has been compiled, to let garbage collection
560 reclaim the memory. */
562 void
563 free_stmt_status (f)
564 struct function *f;
566 /* We're about to free the function obstack. If we hold pointers to
567 things allocated there, then we'll try to mark them when we do
568 GC. So, we clear them out here explicitly. */
569 if (f->stmt)
570 free (f->stmt);
571 f->stmt = NULL;
574 /* Mark P for GC. */
576 void
577 mark_stmt_status (p)
578 struct stmt_status *p;
580 if (p == 0)
581 return;
583 mark_block_nesting (p->x_block_stack);
584 mark_cond_nesting (p->x_cond_stack);
585 mark_loop_nesting (p->x_loop_stack);
586 mark_case_nesting (p->x_case_stack);
588 ggc_mark_tree (p->x_last_expr_type);
589 /* last_epxr_value is only valid if last_expr_type is nonzero. */
590 if (p->x_last_expr_type)
591 ggc_mark_rtx (p->x_last_expr_value);
593 mark_goto_fixup (p->x_goto_fixup_chain);
596 void
597 init_stmt ()
599 gcc_obstack_init (&stmt_obstack);
602 void
603 init_stmt_for_function ()
605 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
607 /* We are not currently within any block, conditional, loop or case. */
608 block_stack = 0;
609 stack_block_stack = 0;
610 loop_stack = 0;
611 case_stack = 0;
612 cond_stack = 0;
613 nesting_stack = 0;
614 nesting_depth = 0;
616 current_block_start_count = 0;
618 /* No gotos have been expanded yet. */
619 goto_fixup_chain = 0;
621 /* We are not processing a ({...}) grouping. */
622 expr_stmts_for_value = 0;
623 last_expr_type = 0;
624 last_expr_value = NULL_RTX;
627 /* Return nonzero if anything is pushed on the loop, condition, or case
628 stack. */
630 in_control_zone_p ()
632 return cond_stack || loop_stack || case_stack;
635 /* Record the current file and line. Called from emit_line_note. */
636 void
637 set_file_and_line_for_stmt (file, line)
638 const char *file;
639 int line;
641 /* If we're outputting an inline function, and we add a line note,
642 there may be no CFUN->STMT information. So, there's no need to
643 update it. */
644 if (cfun->stmt)
646 emit_filename = file;
647 emit_lineno = line;
651 /* Emit a no-op instruction. */
653 void
654 emit_nop ()
656 rtx last_insn;
658 last_insn = get_last_insn ();
659 if (!optimize
660 && (GET_CODE (last_insn) == CODE_LABEL
661 || (GET_CODE (last_insn) == NOTE
662 && prev_real_insn (last_insn) == 0)))
663 emit_insn (gen_nop ());
666 /* Return the rtx-label that corresponds to a LABEL_DECL,
667 creating it if necessary. */
670 label_rtx (label)
671 tree label;
673 if (TREE_CODE (label) != LABEL_DECL)
674 abort ();
676 if (!DECL_RTL_SET_P (label))
677 SET_DECL_RTL (label, gen_label_rtx ());
679 return DECL_RTL (label);
683 /* Add an unconditional jump to LABEL as the next sequential instruction. */
685 void
686 emit_jump (label)
687 rtx label;
689 do_pending_stack_adjust ();
690 emit_jump_insn (gen_jump (label));
691 emit_barrier ();
694 /* Emit code to jump to the address
695 specified by the pointer expression EXP. */
697 void
698 expand_computed_goto (exp)
699 tree exp;
701 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
703 #ifdef POINTERS_EXTEND_UNSIGNED
704 x = convert_memory_address (Pmode, x);
705 #endif
707 emit_queue ();
708 /* Be sure the function is executable. */
709 if (current_function_check_memory_usage)
710 emit_library_call (chkr_check_exec_libfunc, LCT_CONST_MAKE_BLOCK,
711 VOIDmode, 1, x, ptr_mode);
713 do_pending_stack_adjust ();
714 emit_indirect_jump (x);
716 current_function_has_computed_jump = 1;
719 /* Handle goto statements and the labels that they can go to. */
721 /* Specify the location in the RTL code of a label LABEL,
722 which is a LABEL_DECL tree node.
724 This is used for the kind of label that the user can jump to with a
725 goto statement, and for alternatives of a switch or case statement.
726 RTL labels generated for loops and conditionals don't go through here;
727 they are generated directly at the RTL level, by other functions below.
729 Note that this has nothing to do with defining label *names*.
730 Languages vary in how they do that and what that even means. */
732 void
733 expand_label (label)
734 tree label;
736 struct label_chain *p;
738 do_pending_stack_adjust ();
739 emit_label (label_rtx (label));
740 if (DECL_NAME (label))
741 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
743 if (stack_block_stack != 0)
745 p = (struct label_chain *) ggc_alloc (sizeof (struct label_chain));
746 p->next = stack_block_stack->data.block.label_chain;
747 stack_block_stack->data.block.label_chain = p;
748 p->label = label;
752 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
753 from nested functions. */
755 void
756 declare_nonlocal_label (label)
757 tree label;
759 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
761 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
762 LABEL_PRESERVE_P (label_rtx (label)) = 1;
763 if (nonlocal_goto_handler_slots == 0)
765 emit_stack_save (SAVE_NONLOCAL,
766 &nonlocal_goto_stack_level,
767 PREV_INSN (tail_recursion_reentry));
769 nonlocal_goto_handler_slots
770 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
773 /* Generate RTL code for a `goto' statement with target label LABEL.
774 LABEL should be a LABEL_DECL tree node that was or will later be
775 defined with `expand_label'. */
777 void
778 expand_goto (label)
779 tree label;
781 tree context;
783 /* Check for a nonlocal goto to a containing function. */
784 context = decl_function_context (label);
785 if (context != 0 && context != current_function_decl)
787 struct function *p = find_function_data (context);
788 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
789 rtx handler_slot, static_chain, save_area, insn;
790 tree link;
792 /* Find the corresponding handler slot for this label. */
793 handler_slot = p->x_nonlocal_goto_handler_slots;
794 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
795 link = TREE_CHAIN (link))
796 handler_slot = XEXP (handler_slot, 1);
797 handler_slot = XEXP (handler_slot, 0);
799 p->has_nonlocal_label = 1;
800 current_function_has_nonlocal_goto = 1;
801 LABEL_REF_NONLOCAL_P (label_ref) = 1;
803 /* Copy the rtl for the slots so that they won't be shared in
804 case the virtual stack vars register gets instantiated differently
805 in the parent than in the child. */
807 static_chain = copy_to_reg (lookup_static_chain (label));
809 /* Get addr of containing function's current nonlocal goto handler,
810 which will do any cleanups and then jump to the label. */
811 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
812 virtual_stack_vars_rtx,
813 static_chain));
815 /* Get addr of containing function's nonlocal save area. */
816 save_area = p->x_nonlocal_goto_stack_level;
817 if (save_area)
818 save_area = replace_rtx (copy_rtx (save_area),
819 virtual_stack_vars_rtx, static_chain);
821 #if HAVE_nonlocal_goto
822 if (HAVE_nonlocal_goto)
823 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
824 save_area, label_ref));
825 else
826 #endif
828 /* Restore frame pointer for containing function.
829 This sets the actual hard register used for the frame pointer
830 to the location of the function's incoming static chain info.
831 The non-local goto handler will then adjust it to contain the
832 proper value and reload the argument pointer, if needed. */
833 emit_move_insn (hard_frame_pointer_rtx, static_chain);
834 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
836 /* USE of hard_frame_pointer_rtx added for consistency;
837 not clear if really needed. */
838 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
839 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
840 emit_indirect_jump (handler_slot);
843 /* Search backwards to the jump insn and mark it as a
844 non-local goto. */
845 for (insn = get_last_insn ();
846 GET_CODE (insn) != JUMP_INSN;
847 insn = PREV_INSN (insn))
848 continue;
849 REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO, const0_rtx,
850 REG_NOTES (insn));
852 else
853 expand_goto_internal (label, label_rtx (label), NULL_RTX);
856 /* Generate RTL code for a `goto' statement with target label BODY.
857 LABEL should be a LABEL_REF.
858 LAST_INSN, if non-0, is the rtx we should consider as the last
859 insn emitted (for the purposes of cleaning up a return). */
861 static void
862 expand_goto_internal (body, label, last_insn)
863 tree body;
864 rtx label;
865 rtx last_insn;
867 struct nesting *block;
868 rtx stack_level = 0;
870 if (GET_CODE (label) != CODE_LABEL)
871 abort ();
873 /* If label has already been defined, we can tell now
874 whether and how we must alter the stack level. */
876 if (PREV_INSN (label) != 0)
878 /* Find the innermost pending block that contains the label.
879 (Check containment by comparing insn-uids.)
880 Then restore the outermost stack level within that block,
881 and do cleanups of all blocks contained in it. */
882 for (block = block_stack; block; block = block->next)
884 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
885 break;
886 if (block->data.block.stack_level != 0)
887 stack_level = block->data.block.stack_level;
888 /* Execute the cleanups for blocks we are exiting. */
889 if (block->data.block.cleanups != 0)
891 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
892 do_pending_stack_adjust ();
896 if (stack_level)
898 /* Ensure stack adjust isn't done by emit_jump, as this
899 would clobber the stack pointer. This one should be
900 deleted as dead by flow. */
901 clear_pending_stack_adjust ();
902 do_pending_stack_adjust ();
904 /* Don't do this adjust if it's to the end label and this function
905 is to return with a depressed stack pointer. */
906 if (label == return_label
907 && (((TREE_CODE (TREE_TYPE (current_function_decl))
908 == FUNCTION_TYPE)
909 && (TYPE_RETURNS_STACK_DEPRESSED
910 (TREE_TYPE (current_function_decl))))))
912 else
913 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
916 if (body != 0 && DECL_TOO_LATE (body))
917 error ("jump to `%s' invalidly jumps into binding contour",
918 IDENTIFIER_POINTER (DECL_NAME (body)));
920 /* Label not yet defined: may need to put this goto
921 on the fixup list. */
922 else if (! expand_fixup (body, label, last_insn))
924 /* No fixup needed. Record that the label is the target
925 of at least one goto that has no fixup. */
926 if (body != 0)
927 TREE_ADDRESSABLE (body) = 1;
930 emit_jump (label);
933 /* Generate if necessary a fixup for a goto
934 whose target label in tree structure (if any) is TREE_LABEL
935 and whose target in rtl is RTL_LABEL.
937 If LAST_INSN is nonzero, we pretend that the jump appears
938 after insn LAST_INSN instead of at the current point in the insn stream.
940 The fixup will be used later to insert insns just before the goto.
941 Those insns will restore the stack level as appropriate for the
942 target label, and will (in the case of C++) also invoke any object
943 destructors which have to be invoked when we exit the scopes which
944 are exited by the goto.
946 Value is nonzero if a fixup is made. */
948 static int
949 expand_fixup (tree_label, rtl_label, last_insn)
950 tree tree_label;
951 rtx rtl_label;
952 rtx last_insn;
954 struct nesting *block, *end_block;
956 /* See if we can recognize which block the label will be output in.
957 This is possible in some very common cases.
958 If we succeed, set END_BLOCK to that block.
959 Otherwise, set it to 0. */
961 if (cond_stack
962 && (rtl_label == cond_stack->data.cond.endif_label
963 || rtl_label == cond_stack->data.cond.next_label))
964 end_block = cond_stack;
965 /* If we are in a loop, recognize certain labels which
966 are likely targets. This reduces the number of fixups
967 we need to create. */
968 else if (loop_stack
969 && (rtl_label == loop_stack->data.loop.start_label
970 || rtl_label == loop_stack->data.loop.end_label
971 || rtl_label == loop_stack->data.loop.continue_label))
972 end_block = loop_stack;
973 else
974 end_block = 0;
976 /* Now set END_BLOCK to the binding level to which we will return. */
978 if (end_block)
980 struct nesting *next_block = end_block->all;
981 block = block_stack;
983 /* First see if the END_BLOCK is inside the innermost binding level.
984 If so, then no cleanups or stack levels are relevant. */
985 while (next_block && next_block != block)
986 next_block = next_block->all;
988 if (next_block)
989 return 0;
991 /* Otherwise, set END_BLOCK to the innermost binding level
992 which is outside the relevant control-structure nesting. */
993 next_block = block_stack->next;
994 for (block = block_stack; block != end_block; block = block->all)
995 if (block == next_block)
996 next_block = next_block->next;
997 end_block = next_block;
1000 /* Does any containing block have a stack level or cleanups?
1001 If not, no fixup is needed, and that is the normal case
1002 (the only case, for standard C). */
1003 for (block = block_stack; block != end_block; block = block->next)
1004 if (block->data.block.stack_level != 0
1005 || block->data.block.cleanups != 0)
1006 break;
1008 if (block != end_block)
1010 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1011 struct goto_fixup *fixup
1012 = (struct goto_fixup *) ggc_alloc (sizeof (struct goto_fixup));
1013 /* In case an old stack level is restored, make sure that comes
1014 after any pending stack adjust. */
1015 /* ?? If the fixup isn't to come at the present position,
1016 doing the stack adjust here isn't useful. Doing it with our
1017 settings at that location isn't useful either. Let's hope
1018 someone does it! */
1019 if (last_insn == 0)
1020 do_pending_stack_adjust ();
1021 fixup->target = tree_label;
1022 fixup->target_rtl = rtl_label;
1024 /* Create a BLOCK node and a corresponding matched set of
1025 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1026 this point. The notes will encapsulate any and all fixup
1027 code which we might later insert at this point in the insn
1028 stream. Also, the BLOCK node will be the parent (i.e. the
1029 `SUPERBLOCK') of any other BLOCK nodes which we might create
1030 later on when we are expanding the fixup code.
1032 Note that optimization passes (including expand_end_loop)
1033 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1034 as a placeholder. */
1037 register rtx original_before_jump
1038 = last_insn ? last_insn : get_last_insn ();
1039 rtx start;
1040 rtx end;
1041 tree block;
1043 block = make_node (BLOCK);
1044 TREE_USED (block) = 1;
1046 if (!cfun->x_whole_function_mode_p)
1047 insert_block (block);
1048 else
1050 BLOCK_CHAIN (block)
1051 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1052 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1053 = block;
1056 start_sequence ();
1057 start = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
1058 if (cfun->x_whole_function_mode_p)
1059 NOTE_BLOCK (start) = block;
1060 fixup->before_jump = emit_note (NULL, NOTE_INSN_DELETED);
1061 end = emit_note (NULL, NOTE_INSN_BLOCK_END);
1062 if (cfun->x_whole_function_mode_p)
1063 NOTE_BLOCK (end) = block;
1064 fixup->context = block;
1065 end_sequence ();
1066 emit_insns_after (start, original_before_jump);
1069 fixup->block_start_count = current_block_start_count;
1070 fixup->stack_level = 0;
1071 fixup->cleanup_list_list
1072 = ((block->data.block.outer_cleanups
1073 || block->data.block.cleanups)
1074 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1075 block->data.block.outer_cleanups)
1076 : 0);
1077 fixup->next = goto_fixup_chain;
1078 goto_fixup_chain = fixup;
1081 return block != 0;
1084 /* Expand any needed fixups in the outputmost binding level of the
1085 function. FIRST_INSN is the first insn in the function. */
1087 void
1088 expand_fixups (first_insn)
1089 rtx first_insn;
1091 fixup_gotos (NULL, NULL_RTX, NULL_TREE, first_insn, 0);
1094 /* When exiting a binding contour, process all pending gotos requiring fixups.
1095 THISBLOCK is the structure that describes the block being exited.
1096 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1097 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1098 FIRST_INSN is the insn that began this contour.
1100 Gotos that jump out of this contour must restore the
1101 stack level and do the cleanups before actually jumping.
1103 DONT_JUMP_IN nonzero means report error there is a jump into this
1104 contour from before the beginning of the contour.
1105 This is also done if STACK_LEVEL is nonzero. */
1107 static void
1108 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1109 struct nesting *thisblock;
1110 rtx stack_level;
1111 tree cleanup_list;
1112 rtx first_insn;
1113 int dont_jump_in;
1115 register struct goto_fixup *f, *prev;
1117 /* F is the fixup we are considering; PREV is the previous one. */
1118 /* We run this loop in two passes so that cleanups of exited blocks
1119 are run first, and blocks that are exited are marked so
1120 afterwards. */
1122 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1124 /* Test for a fixup that is inactive because it is already handled. */
1125 if (f->before_jump == 0)
1127 /* Delete inactive fixup from the chain, if that is easy to do. */
1128 if (prev != 0)
1129 prev->next = f->next;
1131 /* Has this fixup's target label been defined?
1132 If so, we can finalize it. */
1133 else if (PREV_INSN (f->target_rtl) != 0)
1135 register rtx cleanup_insns;
1137 /* If this fixup jumped into this contour from before the beginning
1138 of this contour, report an error. This code used to use
1139 the first non-label insn after f->target_rtl, but that's
1140 wrong since such can be added, by things like put_var_into_stack
1141 and have INSN_UIDs that are out of the range of the block. */
1142 /* ??? Bug: this does not detect jumping in through intermediate
1143 blocks that have stack levels or cleanups.
1144 It detects only a problem with the innermost block
1145 around the label. */
1146 if (f->target != 0
1147 && (dont_jump_in || stack_level || cleanup_list)
1148 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1149 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1150 && ! DECL_ERROR_ISSUED (f->target))
1152 error_with_decl (f->target,
1153 "label `%s' used before containing binding contour");
1154 /* Prevent multiple errors for one label. */
1155 DECL_ERROR_ISSUED (f->target) = 1;
1158 /* We will expand the cleanups into a sequence of their own and
1159 then later on we will attach this new sequence to the insn
1160 stream just ahead of the actual jump insn. */
1162 start_sequence ();
1164 /* Temporarily restore the lexical context where we will
1165 logically be inserting the fixup code. We do this for the
1166 sake of getting the debugging information right. */
1168 pushlevel (0);
1169 set_block (f->context);
1171 /* Expand the cleanups for blocks this jump exits. */
1172 if (f->cleanup_list_list)
1174 tree lists;
1175 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1176 /* Marked elements correspond to blocks that have been closed.
1177 Do their cleanups. */
1178 if (TREE_ADDRESSABLE (lists)
1179 && TREE_VALUE (lists) != 0)
1181 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1182 /* Pop any pushes done in the cleanups,
1183 in case function is about to return. */
1184 do_pending_stack_adjust ();
1188 /* Restore stack level for the biggest contour that this
1189 jump jumps out of. */
1190 if (f->stack_level
1191 && ! (f->target_rtl == return_label
1192 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1193 == FUNCTION_TYPE)
1194 && (TYPE_RETURNS_STACK_DEPRESSED
1195 (TREE_TYPE (current_function_decl))))))
1196 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1198 /* Finish up the sequence containing the insns which implement the
1199 necessary cleanups, and then attach that whole sequence to the
1200 insn stream just ahead of the actual jump insn. Attaching it
1201 at that point insures that any cleanups which are in fact
1202 implicit C++ object destructions (which must be executed upon
1203 leaving the block) appear (to the debugger) to be taking place
1204 in an area of the generated code where the object(s) being
1205 destructed are still "in scope". */
1207 cleanup_insns = get_insns ();
1208 poplevel (1, 0, 0);
1210 end_sequence ();
1211 emit_insns_after (cleanup_insns, f->before_jump);
1213 f->before_jump = 0;
1217 /* For any still-undefined labels, do the cleanups for this block now.
1218 We must do this now since items in the cleanup list may go out
1219 of scope when the block ends. */
1220 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1221 if (f->before_jump != 0
1222 && PREV_INSN (f->target_rtl) == 0
1223 /* Label has still not appeared. If we are exiting a block with
1224 a stack level to restore, that started before the fixup,
1225 mark this stack level as needing restoration
1226 when the fixup is later finalized. */
1227 && thisblock != 0
1228 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1229 means the label is undefined. That's erroneous, but possible. */
1230 && (thisblock->data.block.block_start_count
1231 <= f->block_start_count))
1233 tree lists = f->cleanup_list_list;
1234 rtx cleanup_insns;
1236 for (; lists; lists = TREE_CHAIN (lists))
1237 /* If the following elt. corresponds to our containing block
1238 then the elt. must be for this block. */
1239 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1241 start_sequence ();
1242 pushlevel (0);
1243 set_block (f->context);
1244 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1245 do_pending_stack_adjust ();
1246 cleanup_insns = get_insns ();
1247 poplevel (1, 0, 0);
1248 end_sequence ();
1249 if (cleanup_insns != 0)
1250 f->before_jump
1251 = emit_insns_after (cleanup_insns, f->before_jump);
1253 f->cleanup_list_list = TREE_CHAIN (lists);
1256 if (stack_level)
1257 f->stack_level = stack_level;
1261 /* Return the number of times character C occurs in string S. */
1262 static int
1263 n_occurrences (c, s)
1264 int c;
1265 const char *s;
1267 int n = 0;
1268 while (*s)
1269 n += (*s++ == c);
1270 return n;
1273 /* Generate RTL for an asm statement (explicit assembler code).
1274 BODY is a STRING_CST node containing the assembler code text,
1275 or an ADDR_EXPR containing a STRING_CST. */
1277 void
1278 expand_asm (body)
1279 tree body;
1281 if (current_function_check_memory_usage)
1283 error ("`asm' cannot be used in function where memory usage is checked");
1284 return;
1287 if (TREE_CODE (body) == ADDR_EXPR)
1288 body = TREE_OPERAND (body, 0);
1290 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1291 TREE_STRING_POINTER (body)));
1292 last_expr_type = 0;
1295 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
1296 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
1297 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
1298 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
1299 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
1300 constraint allows the use of a register operand. And, *IS_INOUT
1301 will be true if the operand is read-write, i.e., if it is used as
1302 an input as well as an output. If *CONSTRAINT_P is not in
1303 canonical form, it will be made canonical. (Note that `+' will be
1304 rpelaced with `=' as part of this process.)
1306 Returns TRUE if all went well; FALSE if an error occurred. */
1308 bool
1309 parse_output_constraint (constraint_p,
1310 operand_num,
1311 ninputs,
1312 noutputs,
1313 allows_mem,
1314 allows_reg,
1315 is_inout)
1316 const char **constraint_p;
1317 int operand_num;
1318 int ninputs;
1319 int noutputs;
1320 bool *allows_mem;
1321 bool *allows_reg;
1322 bool *is_inout;
1324 const char *constraint = *constraint_p;
1325 const char *p;
1327 /* Assume the constraint doesn't allow the use of either a register
1328 or memory. */
1329 *allows_mem = false;
1330 *allows_reg = false;
1332 /* Allow the `=' or `+' to not be at the beginning of the string,
1333 since it wasn't explicitly documented that way, and there is a
1334 large body of code that puts it last. Swap the character to
1335 the front, so as not to uglify any place else. */
1336 p = strchr (constraint, '=');
1337 if (!p)
1338 p = strchr (constraint, '+');
1340 /* If the string doesn't contain an `=', issue an error
1341 message. */
1342 if (!p)
1344 error ("output operand constraint lacks `='");
1345 return false;
1348 /* If the constraint begins with `+', then the operand is both read
1349 from and written to. */
1350 *is_inout = (*p == '+');
1352 /* Make sure we can specify the matching operand. */
1353 if (*is_inout && operand_num > 9)
1355 error ("output operand constraint %d contains `+'",
1356 operand_num);
1357 return false;
1360 /* Canonicalize the output constraint so that it begins with `='. */
1361 if (p != constraint || is_inout)
1363 char *buf;
1364 size_t c_len = strlen (constraint);
1366 if (p != constraint)
1367 warning ("output constraint `%c' for operand %d is not at the beginning",
1368 *p, operand_num);
1370 /* Make a copy of the constraint. */
1371 buf = alloca (c_len + 1);
1372 strcpy (buf, constraint);
1373 /* Swap the first character and the `=' or `+'. */
1374 buf[p - constraint] = buf[0];
1375 /* Make sure the first character is an `='. (Until we do this,
1376 it might be a `+'.) */
1377 buf[0] = '=';
1378 /* Replace the constraint with the canonicalized string. */
1379 *constraint_p = ggc_alloc_string (buf, c_len);
1380 constraint = *constraint_p;
1383 /* Loop through the constraint string. */
1384 for (p = constraint + 1; *p; ++p)
1385 switch (*p)
1387 case '+':
1388 case '=':
1389 error ("operand constraint contains '+' or '=' at illegal position.");
1390 return false;
1392 case '%':
1393 if (operand_num + 1 == ninputs + noutputs)
1395 error ("`%%' constraint used with last operand");
1396 return false;
1398 break;
1400 case 'V': case 'm': case 'o':
1401 *allows_mem = true;
1402 break;
1404 case '?': case '!': case '*': case '&': case '#':
1405 case 'E': case 'F': case 'G': case 'H':
1406 case 's': case 'i': case 'n':
1407 case 'I': case 'J': case 'K': case 'L': case 'M':
1408 case 'N': case 'O': case 'P': case ',':
1409 break;
1411 case '0': case '1': case '2': case '3': case '4':
1412 case '5': case '6': case '7': case '8': case '9':
1413 error ("matching constraint not valid in output operand");
1414 return false;
1416 case '<': case '>':
1417 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1418 excepting those that expand_call created. So match memory
1419 and hope. */
1420 *allows_mem = true;
1421 break;
1423 case 'g': case 'X':
1424 *allows_reg = true;
1425 *allows_mem = true;
1426 break;
1428 case 'p': case 'r':
1429 *allows_reg = true;
1430 break;
1432 default:
1433 if (!ISALPHA (*p))
1434 break;
1435 if (REG_CLASS_FROM_LETTER (*p) != NO_REGS)
1436 *allows_reg = true;
1437 #ifdef EXTRA_CONSTRAINT
1438 else
1440 /* Otherwise we can't assume anything about the nature of
1441 the constraint except that it isn't purely registers.
1442 Treat it like "g" and hope for the best. */
1443 *allows_reg = true;
1444 *allows_mem = true;
1446 #endif
1447 break;
1450 return true;
1453 /* Generate RTL for an asm statement with arguments.
1454 STRING is the instruction template.
1455 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1456 Each output or input has an expression in the TREE_VALUE and
1457 a constraint-string in the TREE_PURPOSE.
1458 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1459 that is clobbered by this insn.
1461 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1462 Some elements of OUTPUTS may be replaced with trees representing temporary
1463 values. The caller should copy those temporary values to the originally
1464 specified lvalues.
1466 VOL nonzero means the insn is volatile; don't optimize it. */
1468 void
1469 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1470 tree string, outputs, inputs, clobbers;
1471 int vol;
1472 const char *filename;
1473 int line;
1475 rtvec argvec, constraints;
1476 rtx body;
1477 int ninputs = list_length (inputs);
1478 int noutputs = list_length (outputs);
1479 int ninout = 0;
1480 int nclobbers;
1481 tree tail;
1482 register int i;
1483 /* Vector of RTX's of evaluated output operands. */
1484 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1485 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1486 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1487 enum machine_mode *inout_mode
1488 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1489 const char **output_constraints
1490 = alloca (noutputs * sizeof (const char *));
1491 /* The insn we have emitted. */
1492 rtx insn;
1493 int old_generating_concat_p = generating_concat_p;
1495 /* An ASM with no outputs needs to be treated as volatile, for now. */
1496 if (noutputs == 0)
1497 vol = 1;
1499 if (current_function_check_memory_usage)
1501 error ("`asm' cannot be used with `-fcheck-memory-usage'");
1502 return;
1505 #ifdef MD_ASM_CLOBBERS
1506 /* Sometimes we wish to automatically clobber registers across an asm.
1507 Case in point is when the i386 backend moved from cc0 to a hard reg --
1508 maintaining source-level compatability means automatically clobbering
1509 the flags register. */
1510 MD_ASM_CLOBBERS (clobbers);
1511 #endif
1513 if (current_function_check_memory_usage)
1515 error ("`asm' cannot be used in function where memory usage is checked");
1516 return;
1519 /* Count the number of meaningful clobbered registers, ignoring what
1520 we would ignore later. */
1521 nclobbers = 0;
1522 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1524 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1526 i = decode_reg_name (regname);
1527 if (i >= 0 || i == -4)
1528 ++nclobbers;
1529 else if (i == -2)
1530 error ("unknown register name `%s' in `asm'", regname);
1533 last_expr_type = 0;
1535 /* Check that the number of alternatives is constant across all
1536 operands. */
1537 if (outputs || inputs)
1539 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1540 int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp));
1541 tree next = inputs;
1543 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1545 error ("too many alternatives in `asm'");
1546 return;
1549 tmp = outputs;
1550 while (tmp)
1552 const char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp));
1554 if (n_occurrences (',', constraint) != nalternatives)
1556 error ("operand constraints for `asm' differ in number of alternatives");
1557 return;
1560 if (TREE_CHAIN (tmp))
1561 tmp = TREE_CHAIN (tmp);
1562 else
1563 tmp = next, next = 0;
1567 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1569 tree val = TREE_VALUE (tail);
1570 tree type = TREE_TYPE (val);
1571 const char *constraint;
1572 bool is_inout;
1573 bool allows_reg;
1574 bool allows_mem;
1576 /* If there's an erroneous arg, emit no insn. */
1577 if (type == error_mark_node)
1578 return;
1580 /* Make sure constraint has `=' and does not have `+'. Also, see
1581 if it allows any register. Be liberal on the latter test, since
1582 the worst that happens if we get it wrong is we issue an error
1583 message. */
1585 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1586 output_constraints[i] = constraint;
1588 /* Try to parse the output constraint. If that fails, there's
1589 no point in going further. */
1590 if (!parse_output_constraint (&output_constraints[i],
1592 ninputs,
1593 noutputs,
1594 &allows_mem,
1595 &allows_reg,
1596 &is_inout))
1597 return;
1599 /* If an output operand is not a decl or indirect ref and our constraint
1600 allows a register, make a temporary to act as an intermediate.
1601 Make the asm insn write into that, then our caller will copy it to
1602 the real output operand. Likewise for promoted variables. */
1604 generating_concat_p = 0;
1606 real_output_rtx[i] = NULL_RTX;
1607 if ((TREE_CODE (val) == INDIRECT_REF
1608 && allows_mem)
1609 || (DECL_P (val)
1610 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1611 && ! (GET_CODE (DECL_RTL (val)) == REG
1612 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1613 || ! allows_reg
1614 || is_inout)
1616 if (! allows_reg)
1617 mark_addressable (TREE_VALUE (tail));
1619 output_rtx[i]
1620 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1621 EXPAND_MEMORY_USE_WO);
1623 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1624 error ("output number %d not directly addressable", i);
1625 if ((! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1626 || GET_CODE (output_rtx[i]) == CONCAT)
1628 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1629 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1630 if (is_inout)
1631 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1634 else
1636 output_rtx[i] = assign_temp (type, 0, 0, 1);
1637 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1640 generating_concat_p = old_generating_concat_p;
1642 if (is_inout)
1644 inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1645 inout_opnum[ninout++] = i;
1649 ninputs += ninout;
1650 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1652 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1653 return;
1656 /* Make vectors for the expression-rtx and constraint strings. */
1658 argvec = rtvec_alloc (ninputs);
1659 constraints = rtvec_alloc (ninputs);
1661 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1662 : GET_MODE (output_rtx[0])),
1663 TREE_STRING_POINTER (string),
1664 empty_string, 0, argvec, constraints,
1665 filename, line);
1667 MEM_VOLATILE_P (body) = vol;
1669 /* Eval the inputs and put them into ARGVEC.
1670 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1672 i = 0;
1673 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1675 int j;
1676 int allows_reg = 0, allows_mem = 0;
1677 const char *constraint, *orig_constraint;
1678 int c_len;
1679 rtx op;
1681 /* If there's an erroneous arg, emit no insn,
1682 because the ASM_INPUT would get VOIDmode
1683 and that could cause a crash in reload. */
1684 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1685 return;
1687 /* ??? Can this happen, and does the error message make any sense? */
1688 if (TREE_PURPOSE (tail) == NULL_TREE)
1690 error ("hard register `%s' listed as input operand to `asm'",
1691 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1692 return;
1695 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1696 c_len = strlen (constraint);
1697 orig_constraint = constraint;
1699 /* Make sure constraint has neither `=', `+', nor '&'. */
1701 for (j = 0; j < c_len; j++)
1702 switch (constraint[j])
1704 case '+': case '=': case '&':
1705 if (constraint == orig_constraint)
1707 error ("input operand constraint contains `%c'",
1708 constraint[j]);
1709 return;
1711 break;
1713 case '%':
1714 if (constraint == orig_constraint
1715 && i + 1 == ninputs - ninout)
1717 error ("`%%' constraint used with last operand");
1718 return;
1720 break;
1722 case 'V': case 'm': case 'o':
1723 allows_mem = 1;
1724 break;
1726 case '<': case '>':
1727 case '?': case '!': case '*': case '#':
1728 case 'E': case 'F': case 'G': case 'H':
1729 case 's': case 'i': case 'n':
1730 case 'I': case 'J': case 'K': case 'L': case 'M':
1731 case 'N': case 'O': case 'P': case ',':
1732 break;
1734 /* Whether or not a numeric constraint allows a register is
1735 decided by the matching constraint, and so there is no need
1736 to do anything special with them. We must handle them in
1737 the default case, so that we don't unnecessarily force
1738 operands to memory. */
1739 case '0': case '1': case '2': case '3': case '4':
1740 case '5': case '6': case '7': case '8': case '9':
1741 if (constraint[j] >= '0' + noutputs)
1743 error
1744 ("matching constraint references invalid operand number");
1745 return;
1748 /* Try and find the real constraint for this dup. */
1749 if ((j == 0 && c_len == 1)
1750 || (j == 1 && c_len == 2 && constraint[0] == '%'))
1752 tree o = outputs;
1754 for (j = constraint[j] - '0'; j > 0; --j)
1755 o = TREE_CHAIN (o);
1757 constraint = TREE_STRING_POINTER (TREE_PURPOSE (o));
1758 c_len = strlen (constraint);
1759 j = 0;
1760 break;
1763 /* Fall through. */
1765 case 'p': case 'r':
1766 allows_reg = 1;
1767 break;
1769 case 'g': case 'X':
1770 allows_reg = 1;
1771 allows_mem = 1;
1772 break;
1774 default:
1775 if (! ISALPHA (constraint[j]))
1777 error ("invalid punctuation `%c' in constraint",
1778 constraint[j]);
1779 return;
1781 if (REG_CLASS_FROM_LETTER (constraint[j]) != NO_REGS)
1782 allows_reg = 1;
1783 #ifdef EXTRA_CONSTRAINT
1784 else
1786 /* Otherwise we can't assume anything about the nature of
1787 the constraint except that it isn't purely registers.
1788 Treat it like "g" and hope for the best. */
1789 allows_reg = 1;
1790 allows_mem = 1;
1792 #endif
1793 break;
1796 if (! allows_reg && allows_mem)
1797 mark_addressable (TREE_VALUE (tail));
1799 op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1801 /* Never pass a CONCAT to an ASM. */
1802 generating_concat_p = 0;
1803 if (GET_CODE (op) == CONCAT)
1804 op = force_reg (GET_MODE (op), op);
1806 if (asm_operand_ok (op, constraint) <= 0)
1808 if (allows_reg)
1809 op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1810 else if (!allows_mem)
1811 warning ("asm operand %d probably doesn't match constraints", i);
1812 else if (CONSTANT_P (op))
1813 op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1814 op);
1815 else if (GET_CODE (op) == REG
1816 || GET_CODE (op) == SUBREG
1817 || GET_CODE (op) == ADDRESSOF
1818 || GET_CODE (op) == CONCAT)
1820 tree type = TREE_TYPE (TREE_VALUE (tail));
1821 tree qual_type = build_qualified_type (type,
1822 (TYPE_QUALS (type)
1823 | TYPE_QUAL_CONST));
1824 rtx memloc = assign_temp (qual_type, 1, 1, 1);
1826 emit_move_insn (memloc, op);
1827 op = memloc;
1830 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1831 /* We won't recognize volatile memory as available a
1832 memory_operand at this point. Ignore it. */
1834 else if (queued_subexp_p (op))
1836 else
1837 /* ??? Leave this only until we have experience with what
1838 happens in combine and elsewhere when constraints are
1839 not satisfied. */
1840 warning ("asm operand %d probably doesn't match constraints", i);
1842 generating_concat_p = old_generating_concat_p;
1843 ASM_OPERANDS_INPUT (body, i) = op;
1845 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1846 = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1847 orig_constraint);
1848 i++;
1851 /* Protect all the operands from the queue now that they have all been
1852 evaluated. */
1854 generating_concat_p = 0;
1856 for (i = 0; i < ninputs - ninout; i++)
1857 ASM_OPERANDS_INPUT (body, i)
1858 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1860 for (i = 0; i < noutputs; i++)
1861 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1863 /* For in-out operands, copy output rtx to input rtx. */
1864 for (i = 0; i < ninout; i++)
1866 int j = inout_opnum[i];
1868 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1869 = output_rtx[j];
1870 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1871 = gen_rtx_ASM_INPUT (inout_mode[i], digit_string (j));
1874 generating_concat_p = old_generating_concat_p;
1876 /* Now, for each output, construct an rtx
1877 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1878 ARGVEC CONSTRAINTS))
1879 If there is more than one, put them inside a PARALLEL. */
1881 if (noutputs == 1 && nclobbers == 0)
1883 ASM_OPERANDS_OUTPUT_CONSTRAINT (body)
1884 = output_constraints[0];
1885 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1888 else if (noutputs == 0 && nclobbers == 0)
1890 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1891 insn = emit_insn (body);
1894 else
1896 rtx obody = body;
1897 int num = noutputs;
1899 if (num == 0)
1900 num = 1;
1902 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1904 /* For each output operand, store a SET. */
1905 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1907 XVECEXP (body, 0, i)
1908 = gen_rtx_SET (VOIDmode,
1909 output_rtx[i],
1910 gen_rtx_ASM_OPERANDS
1911 (GET_MODE (output_rtx[i]),
1912 TREE_STRING_POINTER (string),
1913 output_constraints[i],
1914 i, argvec, constraints,
1915 filename, line));
1917 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1920 /* If there are no outputs (but there are some clobbers)
1921 store the bare ASM_OPERANDS into the PARALLEL. */
1923 if (i == 0)
1924 XVECEXP (body, 0, i++) = obody;
1926 /* Store (clobber REG) for each clobbered register specified. */
1928 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1930 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1931 int j = decode_reg_name (regname);
1933 if (j < 0)
1935 if (j == -3) /* `cc', which is not a register */
1936 continue;
1938 if (j == -4) /* `memory', don't cache memory across asm */
1940 XVECEXP (body, 0, i++)
1941 = gen_rtx_CLOBBER (VOIDmode,
1942 gen_rtx_MEM
1943 (BLKmode,
1944 gen_rtx_SCRATCH (VOIDmode)));
1945 continue;
1948 /* Ignore unknown register, error already signaled. */
1949 continue;
1952 /* Use QImode since that's guaranteed to clobber just one reg. */
1953 XVECEXP (body, 0, i++)
1954 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1957 insn = emit_insn (body);
1960 /* For any outputs that needed reloading into registers, spill them
1961 back to where they belong. */
1962 for (i = 0; i < noutputs; ++i)
1963 if (real_output_rtx[i])
1964 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1966 free_temp_slots ();
1969 /* Generate RTL to evaluate the expression EXP
1970 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1972 void
1973 expand_expr_stmt (exp)
1974 tree exp;
1976 /* If -W, warn about statements with no side effects,
1977 except for an explicit cast to void (e.g. for assert()), and
1978 except inside a ({...}) where they may be useful. */
1979 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1981 if (! TREE_SIDE_EFFECTS (exp))
1983 if ((extra_warnings || warn_unused_value)
1984 && !(TREE_CODE (exp) == CONVERT_EXPR
1985 && VOID_TYPE_P (TREE_TYPE (exp))))
1986 warning_with_file_and_line (emit_filename, emit_lineno,
1987 "statement with no effect");
1989 else if (warn_unused_value)
1990 warn_if_unused_value (exp);
1993 /* If EXP is of function type and we are expanding statements for
1994 value, convert it to pointer-to-function. */
1995 if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
1996 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
1998 /* The call to `expand_expr' could cause last_expr_type and
1999 last_expr_value to get reset. Therefore, we set last_expr_value
2000 and last_expr_type *after* calling expand_expr. */
2001 last_expr_value = expand_expr (exp,
2002 (expr_stmts_for_value
2003 ? NULL_RTX : const0_rtx),
2004 VOIDmode, 0);
2005 last_expr_type = TREE_TYPE (exp);
2007 /* If all we do is reference a volatile value in memory,
2008 copy it to a register to be sure it is actually touched. */
2009 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
2010 && TREE_THIS_VOLATILE (exp))
2012 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
2014 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
2015 copy_to_reg (last_expr_value);
2016 else
2018 rtx lab = gen_label_rtx ();
2020 /* Compare the value with itself to reference it. */
2021 emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
2022 expand_expr (TYPE_SIZE (last_expr_type),
2023 NULL_RTX, VOIDmode, 0),
2024 BLKmode, 0,
2025 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT,
2026 lab);
2027 emit_label (lab);
2031 /* If this expression is part of a ({...}) and is in memory, we may have
2032 to preserve temporaries. */
2033 preserve_temp_slots (last_expr_value);
2035 /* Free any temporaries used to evaluate this expression. Any temporary
2036 used as a result of this expression will already have been preserved
2037 above. */
2038 free_temp_slots ();
2040 emit_queue ();
2043 /* Warn if EXP contains any computations whose results are not used.
2044 Return 1 if a warning is printed; 0 otherwise. */
2047 warn_if_unused_value (exp)
2048 tree exp;
2050 if (TREE_USED (exp))
2051 return 0;
2053 /* Don't warn about void constructs. This includes casting to void,
2054 void function calls, and statement expressions with a final cast
2055 to void. */
2056 if (VOID_TYPE_P (TREE_TYPE (exp)))
2057 return 0;
2059 /* If this is an expression with side effects, don't warn. */
2060 if (TREE_SIDE_EFFECTS (exp))
2061 return 0;
2063 switch (TREE_CODE (exp))
2065 case PREINCREMENT_EXPR:
2066 case POSTINCREMENT_EXPR:
2067 case PREDECREMENT_EXPR:
2068 case POSTDECREMENT_EXPR:
2069 case MODIFY_EXPR:
2070 case INIT_EXPR:
2071 case TARGET_EXPR:
2072 case CALL_EXPR:
2073 case METHOD_CALL_EXPR:
2074 case RTL_EXPR:
2075 case TRY_CATCH_EXPR:
2076 case WITH_CLEANUP_EXPR:
2077 case EXIT_EXPR:
2078 return 0;
2080 case BIND_EXPR:
2081 /* For a binding, warn if no side effect within it. */
2082 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2084 case SAVE_EXPR:
2085 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2087 case TRUTH_ORIF_EXPR:
2088 case TRUTH_ANDIF_EXPR:
2089 /* In && or ||, warn if 2nd operand has no side effect. */
2090 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2092 case COMPOUND_EXPR:
2093 if (TREE_NO_UNUSED_WARNING (exp))
2094 return 0;
2095 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2096 return 1;
2097 /* Let people do `(foo (), 0)' without a warning. */
2098 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2099 return 0;
2100 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2102 case NOP_EXPR:
2103 case CONVERT_EXPR:
2104 case NON_LVALUE_EXPR:
2105 /* Don't warn about conversions not explicit in the user's program. */
2106 if (TREE_NO_UNUSED_WARNING (exp))
2107 return 0;
2108 /* Assignment to a cast usually results in a cast of a modify.
2109 Don't complain about that. There can be an arbitrary number of
2110 casts before the modify, so we must loop until we find the first
2111 non-cast expression and then test to see if that is a modify. */
2113 tree tem = TREE_OPERAND (exp, 0);
2115 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2116 tem = TREE_OPERAND (tem, 0);
2118 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2119 || TREE_CODE (tem) == CALL_EXPR)
2120 return 0;
2122 goto warn;
2124 case INDIRECT_REF:
2125 /* Don't warn about automatic dereferencing of references, since
2126 the user cannot control it. */
2127 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2128 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2129 /* Fall through. */
2131 default:
2132 /* Referencing a volatile value is a side effect, so don't warn. */
2133 if ((DECL_P (exp)
2134 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2135 && TREE_THIS_VOLATILE (exp))
2136 return 0;
2138 /* If this is an expression which has no operands, there is no value
2139 to be unused. There are no such language-independent codes,
2140 but front ends may define such. */
2141 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2142 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2143 return 0;
2145 warn:
2146 warning_with_file_and_line (emit_filename, emit_lineno,
2147 "value computed is not used");
2148 return 1;
2152 /* Clear out the memory of the last expression evaluated. */
2154 void
2155 clear_last_expr ()
2157 last_expr_type = 0;
2160 /* Begin a statement which will return a value.
2161 Return the RTL_EXPR for this statement expr.
2162 The caller must save that value and pass it to expand_end_stmt_expr. */
2164 tree
2165 expand_start_stmt_expr ()
2167 tree t;
2169 /* Make the RTL_EXPR node temporary, not momentary,
2170 so that rtl_expr_chain doesn't become garbage. */
2171 t = make_node (RTL_EXPR);
2172 do_pending_stack_adjust ();
2173 start_sequence_for_rtl_expr (t);
2174 NO_DEFER_POP;
2175 expr_stmts_for_value++;
2176 return t;
2179 /* Restore the previous state at the end of a statement that returns a value.
2180 Returns a tree node representing the statement's value and the
2181 insns to compute the value.
2183 The nodes of that expression have been freed by now, so we cannot use them.
2184 But we don't want to do that anyway; the expression has already been
2185 evaluated and now we just want to use the value. So generate a RTL_EXPR
2186 with the proper type and RTL value.
2188 If the last substatement was not an expression,
2189 return something with type `void'. */
2191 tree
2192 expand_end_stmt_expr (t)
2193 tree t;
2195 OK_DEFER_POP;
2197 if (last_expr_type == 0)
2199 last_expr_type = void_type_node;
2200 last_expr_value = const0_rtx;
2202 else if (last_expr_value == 0)
2203 /* There are some cases where this can happen, such as when the
2204 statement is void type. */
2205 last_expr_value = const0_rtx;
2206 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2207 /* Remove any possible QUEUED. */
2208 last_expr_value = protect_from_queue (last_expr_value, 0);
2210 emit_queue ();
2212 TREE_TYPE (t) = last_expr_type;
2213 RTL_EXPR_RTL (t) = last_expr_value;
2214 RTL_EXPR_SEQUENCE (t) = get_insns ();
2216 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2218 end_sequence ();
2220 /* Don't consider deleting this expr or containing exprs at tree level. */
2221 TREE_SIDE_EFFECTS (t) = 1;
2222 /* Propagate volatility of the actual RTL expr. */
2223 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2225 last_expr_type = 0;
2226 expr_stmts_for_value--;
2228 return t;
2231 /* Generate RTL for the start of an if-then. COND is the expression
2232 whose truth should be tested.
2234 If EXITFLAG is nonzero, this conditional is visible to
2235 `exit_something'. */
2237 void
2238 expand_start_cond (cond, exitflag)
2239 tree cond;
2240 int exitflag;
2242 struct nesting *thiscond = ALLOC_NESTING ();
2244 /* Make an entry on cond_stack for the cond we are entering. */
2246 thiscond->next = cond_stack;
2247 thiscond->all = nesting_stack;
2248 thiscond->depth = ++nesting_depth;
2249 thiscond->data.cond.next_label = gen_label_rtx ();
2250 /* Before we encounter an `else', we don't need a separate exit label
2251 unless there are supposed to be exit statements
2252 to exit this conditional. */
2253 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2254 thiscond->data.cond.endif_label = thiscond->exit_label;
2255 cond_stack = thiscond;
2256 nesting_stack = thiscond;
2258 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2261 /* Generate RTL between then-clause and the elseif-clause
2262 of an if-then-elseif-.... */
2264 void
2265 expand_start_elseif (cond)
2266 tree cond;
2268 if (cond_stack->data.cond.endif_label == 0)
2269 cond_stack->data.cond.endif_label = gen_label_rtx ();
2270 emit_jump (cond_stack->data.cond.endif_label);
2271 emit_label (cond_stack->data.cond.next_label);
2272 cond_stack->data.cond.next_label = gen_label_rtx ();
2273 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2276 /* Generate RTL between the then-clause and the else-clause
2277 of an if-then-else. */
2279 void
2280 expand_start_else ()
2282 if (cond_stack->data.cond.endif_label == 0)
2283 cond_stack->data.cond.endif_label = gen_label_rtx ();
2285 emit_jump (cond_stack->data.cond.endif_label);
2286 emit_label (cond_stack->data.cond.next_label);
2287 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2290 /* After calling expand_start_else, turn this "else" into an "else if"
2291 by providing another condition. */
2293 void
2294 expand_elseif (cond)
2295 tree cond;
2297 cond_stack->data.cond.next_label = gen_label_rtx ();
2298 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2301 /* Generate RTL for the end of an if-then.
2302 Pop the record for it off of cond_stack. */
2304 void
2305 expand_end_cond ()
2307 struct nesting *thiscond = cond_stack;
2309 do_pending_stack_adjust ();
2310 if (thiscond->data.cond.next_label)
2311 emit_label (thiscond->data.cond.next_label);
2312 if (thiscond->data.cond.endif_label)
2313 emit_label (thiscond->data.cond.endif_label);
2315 POPSTACK (cond_stack);
2316 last_expr_type = 0;
2319 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2320 loop should be exited by `exit_something'. This is a loop for which
2321 `expand_continue' will jump to the top of the loop.
2323 Make an entry on loop_stack to record the labels associated with
2324 this loop. */
2326 struct nesting *
2327 expand_start_loop (exit_flag)
2328 int exit_flag;
2330 register struct nesting *thisloop = ALLOC_NESTING ();
2332 /* Make an entry on loop_stack for the loop we are entering. */
2334 thisloop->next = loop_stack;
2335 thisloop->all = nesting_stack;
2336 thisloop->depth = ++nesting_depth;
2337 thisloop->data.loop.start_label = gen_label_rtx ();
2338 thisloop->data.loop.end_label = gen_label_rtx ();
2339 thisloop->data.loop.alt_end_label = 0;
2340 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2341 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2342 loop_stack = thisloop;
2343 nesting_stack = thisloop;
2345 do_pending_stack_adjust ();
2346 emit_queue ();
2347 emit_note (NULL, NOTE_INSN_LOOP_BEG);
2348 emit_label (thisloop->data.loop.start_label);
2350 return thisloop;
2353 /* Like expand_start_loop but for a loop where the continuation point
2354 (for expand_continue_loop) will be specified explicitly. */
2356 struct nesting *
2357 expand_start_loop_continue_elsewhere (exit_flag)
2358 int exit_flag;
2360 struct nesting *thisloop = expand_start_loop (exit_flag);
2361 loop_stack->data.loop.continue_label = gen_label_rtx ();
2362 return thisloop;
2365 /* Begin a null, aka do { } while (0) "loop". But since the contents
2366 of said loop can still contain a break, we must frob the loop nest. */
2368 struct nesting *
2369 expand_start_null_loop ()
2371 register struct nesting *thisloop = ALLOC_NESTING ();
2373 /* Make an entry on loop_stack for the loop we are entering. */
2375 thisloop->next = loop_stack;
2376 thisloop->all = nesting_stack;
2377 thisloop->depth = ++nesting_depth;
2378 thisloop->data.loop.start_label = emit_note (NULL, NOTE_INSN_DELETED);
2379 thisloop->data.loop.end_label = gen_label_rtx ();
2380 thisloop->data.loop.alt_end_label = NULL_RTX;
2381 thisloop->data.loop.continue_label = thisloop->data.loop.end_label;
2382 thisloop->exit_label = thisloop->data.loop.end_label;
2383 loop_stack = thisloop;
2384 nesting_stack = thisloop;
2386 return thisloop;
2389 /* Specify the continuation point for a loop started with
2390 expand_start_loop_continue_elsewhere.
2391 Use this at the point in the code to which a continue statement
2392 should jump. */
2394 void
2395 expand_loop_continue_here ()
2397 do_pending_stack_adjust ();
2398 emit_note (NULL, NOTE_INSN_LOOP_CONT);
2399 emit_label (loop_stack->data.loop.continue_label);
2402 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2403 Pop the block off of loop_stack. */
2405 void
2406 expand_end_loop ()
2408 rtx start_label = loop_stack->data.loop.start_label;
2409 rtx insn = get_last_insn ();
2410 int needs_end_jump = 1;
2412 /* Mark the continue-point at the top of the loop if none elsewhere. */
2413 if (start_label == loop_stack->data.loop.continue_label)
2414 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2416 do_pending_stack_adjust ();
2418 /* If optimizing, perhaps reorder the loop.
2419 First, try to use a condjump near the end.
2420 expand_exit_loop_if_false ends loops with unconditional jumps,
2421 like this:
2423 if (test) goto label;
2424 optional: cleanup
2425 goto loop_stack->data.loop.end_label
2426 barrier
2427 label:
2429 If we find such a pattern, we can end the loop earlier. */
2431 if (optimize
2432 && GET_CODE (insn) == CODE_LABEL
2433 && LABEL_NAME (insn) == NULL
2434 && GET_CODE (PREV_INSN (insn)) == BARRIER)
2436 rtx label = insn;
2437 rtx jump = PREV_INSN (PREV_INSN (label));
2439 if (GET_CODE (jump) == JUMP_INSN
2440 && GET_CODE (PATTERN (jump)) == SET
2441 && SET_DEST (PATTERN (jump)) == pc_rtx
2442 && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2443 && (XEXP (SET_SRC (PATTERN (jump)), 0)
2444 == loop_stack->data.loop.end_label))
2446 rtx prev;
2448 /* The test might be complex and reference LABEL multiple times,
2449 like the loop in loop_iterations to set vtop. To handle this,
2450 we move LABEL. */
2451 insn = PREV_INSN (label);
2452 reorder_insns (label, label, start_label);
2454 for (prev = PREV_INSN (jump);; prev = PREV_INSN (prev))
2456 /* We ignore line number notes, but if we see any other note,
2457 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2458 NOTE_INSN_LOOP_*, we disable this optimization. */
2459 if (GET_CODE (prev) == NOTE)
2461 if (NOTE_LINE_NUMBER (prev) < 0)
2462 break;
2463 continue;
2465 if (GET_CODE (prev) == CODE_LABEL)
2466 break;
2467 if (GET_CODE (prev) == JUMP_INSN)
2469 if (GET_CODE (PATTERN (prev)) == SET
2470 && SET_DEST (PATTERN (prev)) == pc_rtx
2471 && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2472 && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2473 == LABEL_REF)
2474 && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2476 XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2477 = start_label;
2478 emit_note_after (NOTE_INSN_LOOP_END, prev);
2479 needs_end_jump = 0;
2481 break;
2487 /* If the loop starts with a loop exit, roll that to the end where
2488 it will optimize together with the jump back.
2490 We look for the conditional branch to the exit, except that once
2491 we find such a branch, we don't look past 30 instructions.
2493 In more detail, if the loop presently looks like this (in pseudo-C):
2495 start_label:
2496 if (test) goto end_label;
2497 body;
2498 goto start_label;
2499 end_label:
2501 transform it to look like:
2503 goto start_label;
2504 newstart_label:
2505 body;
2506 start_label:
2507 if (test) goto end_label;
2508 goto newstart_label;
2509 end_label:
2511 Here, the `test' may actually consist of some reasonably complex
2512 code, terminating in a test. */
2514 if (optimize
2515 && needs_end_jump
2517 ! (GET_CODE (insn) == JUMP_INSN
2518 && GET_CODE (PATTERN (insn)) == SET
2519 && SET_DEST (PATTERN (insn)) == pc_rtx
2520 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2522 int eh_regions = 0;
2523 int num_insns = 0;
2524 rtx last_test_insn = NULL_RTX;
2526 /* Scan insns from the top of the loop looking for a qualified
2527 conditional exit. */
2528 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2529 insn = NEXT_INSN (insn))
2531 if (GET_CODE (insn) == NOTE)
2533 if (optimize < 2
2534 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2535 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2536 /* The code that actually moves the exit test will
2537 carefully leave BLOCK notes in their original
2538 location. That means, however, that we can't debug
2539 the exit test itself. So, we refuse to move code
2540 containing BLOCK notes at low optimization levels. */
2541 break;
2543 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2544 ++eh_regions;
2545 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2547 --eh_regions;
2548 if (eh_regions < 0)
2549 /* We've come to the end of an EH region, but
2550 never saw the beginning of that region. That
2551 means that an EH region begins before the top
2552 of the loop, and ends in the middle of it. The
2553 existence of such a situation violates a basic
2554 assumption in this code, since that would imply
2555 that even when EH_REGIONS is zero, we might
2556 move code out of an exception region. */
2557 abort ();
2560 /* We must not walk into a nested loop. */
2561 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2562 break;
2564 /* We already know this INSN is a NOTE, so there's no
2565 point in looking at it to see if it's a JUMP. */
2566 continue;
2569 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2570 num_insns++;
2572 if (last_test_insn && num_insns > 30)
2573 break;
2575 if (eh_regions > 0)
2576 /* We don't want to move a partial EH region. Consider:
2578 while ( ( { try {
2579 if (cond ()) 0;
2580 else {
2581 bar();
2584 } catch (...) {
2586 } )) {
2587 body;
2590 This isn't legal C++, but here's what it's supposed to
2591 mean: if cond() is true, stop looping. Otherwise,
2592 call bar, and keep looping. In addition, if cond
2593 throws an exception, catch it and keep looping. Such
2594 constructs are certainy legal in LISP.
2596 We should not move the `if (cond()) 0' test since then
2597 the EH-region for the try-block would be broken up.
2598 (In this case we would the EH_BEG note for the `try'
2599 and `if cond()' but not the call to bar() or the
2600 EH_END note.)
2602 So we don't look for tests within an EH region. */
2603 continue;
2605 if (GET_CODE (insn) == JUMP_INSN
2606 && GET_CODE (PATTERN (insn)) == SET
2607 && SET_DEST (PATTERN (insn)) == pc_rtx)
2609 /* This is indeed a jump. */
2610 rtx dest1 = NULL_RTX;
2611 rtx dest2 = NULL_RTX;
2612 rtx potential_last_test;
2613 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2615 /* A conditional jump. */
2616 dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2617 dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2618 potential_last_test = insn;
2620 else
2622 /* An unconditional jump. */
2623 dest1 = SET_SRC (PATTERN (insn));
2624 /* Include the BARRIER after the JUMP. */
2625 potential_last_test = NEXT_INSN (insn);
2628 do {
2629 if (dest1 && GET_CODE (dest1) == LABEL_REF
2630 && ((XEXP (dest1, 0)
2631 == loop_stack->data.loop.alt_end_label)
2632 || (XEXP (dest1, 0)
2633 == loop_stack->data.loop.end_label)))
2635 last_test_insn = potential_last_test;
2636 break;
2639 /* If this was a conditional jump, there may be
2640 another label at which we should look. */
2641 dest1 = dest2;
2642 dest2 = NULL_RTX;
2643 } while (dest1);
2647 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2649 /* We found one. Move everything from there up
2650 to the end of the loop, and add a jump into the loop
2651 to jump to there. */
2652 register rtx newstart_label = gen_label_rtx ();
2653 register rtx start_move = start_label;
2654 rtx next_insn;
2656 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2657 then we want to move this note also. */
2658 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2659 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2660 == NOTE_INSN_LOOP_CONT))
2661 start_move = PREV_INSN (start_move);
2663 emit_label_after (newstart_label, PREV_INSN (start_move));
2665 /* Actually move the insns. Start at the beginning, and
2666 keep copying insns until we've copied the
2667 last_test_insn. */
2668 for (insn = start_move; insn; insn = next_insn)
2670 /* Figure out which insn comes after this one. We have
2671 to do this before we move INSN. */
2672 if (insn == last_test_insn)
2673 /* We've moved all the insns. */
2674 next_insn = NULL_RTX;
2675 else
2676 next_insn = NEXT_INSN (insn);
2678 if (GET_CODE (insn) == NOTE
2679 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2680 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2681 /* We don't want to move NOTE_INSN_BLOCK_BEGs or
2682 NOTE_INSN_BLOCK_ENDs because the correct generation
2683 of debugging information depends on these appearing
2684 in the same order in the RTL and in the tree
2685 structure, where they are represented as BLOCKs.
2686 So, we don't move block notes. Of course, moving
2687 the code inside the block is likely to make it
2688 impossible to debug the instructions in the exit
2689 test, but such is the price of optimization. */
2690 continue;
2692 /* Move the INSN. */
2693 reorder_insns (insn, insn, get_last_insn ());
2696 emit_jump_insn_after (gen_jump (start_label),
2697 PREV_INSN (newstart_label));
2698 emit_barrier_after (PREV_INSN (newstart_label));
2699 start_label = newstart_label;
2703 if (needs_end_jump)
2705 emit_jump (start_label);
2706 emit_note (NULL, NOTE_INSN_LOOP_END);
2708 emit_label (loop_stack->data.loop.end_label);
2710 POPSTACK (loop_stack);
2712 last_expr_type = 0;
2715 /* Finish a null loop, aka do { } while (0). */
2717 void
2718 expand_end_null_loop ()
2720 do_pending_stack_adjust ();
2721 emit_label (loop_stack->data.loop.end_label);
2723 POPSTACK (loop_stack);
2725 last_expr_type = 0;
2728 /* Generate a jump to the current loop's continue-point.
2729 This is usually the top of the loop, but may be specified
2730 explicitly elsewhere. If not currently inside a loop,
2731 return 0 and do nothing; caller will print an error message. */
2734 expand_continue_loop (whichloop)
2735 struct nesting *whichloop;
2737 last_expr_type = 0;
2738 if (whichloop == 0)
2739 whichloop = loop_stack;
2740 if (whichloop == 0)
2741 return 0;
2742 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2743 NULL_RTX);
2744 return 1;
2747 /* Generate a jump to exit the current loop. If not currently inside a loop,
2748 return 0 and do nothing; caller will print an error message. */
2751 expand_exit_loop (whichloop)
2752 struct nesting *whichloop;
2754 last_expr_type = 0;
2755 if (whichloop == 0)
2756 whichloop = loop_stack;
2757 if (whichloop == 0)
2758 return 0;
2759 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2760 return 1;
2763 /* Generate a conditional jump to exit the current loop if COND
2764 evaluates to zero. If not currently inside a loop,
2765 return 0 and do nothing; caller will print an error message. */
2768 expand_exit_loop_if_false (whichloop, cond)
2769 struct nesting *whichloop;
2770 tree cond;
2772 rtx label = gen_label_rtx ();
2773 rtx last_insn;
2774 last_expr_type = 0;
2776 if (whichloop == 0)
2777 whichloop = loop_stack;
2778 if (whichloop == 0)
2779 return 0;
2780 /* In order to handle fixups, we actually create a conditional jump
2781 around a unconditional branch to exit the loop. If fixups are
2782 necessary, they go before the unconditional branch. */
2784 do_jump (cond, NULL_RTX, label);
2785 last_insn = get_last_insn ();
2786 if (GET_CODE (last_insn) == CODE_LABEL)
2787 whichloop->data.loop.alt_end_label = last_insn;
2788 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2789 NULL_RTX);
2790 emit_label (label);
2792 return 1;
2795 /* Return nonzero if the loop nest is empty. Else return zero. */
2798 stmt_loop_nest_empty ()
2800 /* cfun->stmt can be NULL if we are building a call to get the
2801 EH context for a setjmp/longjmp EH target and the current
2802 function was a deferred inline function. */
2803 return (cfun->stmt == NULL || loop_stack == NULL);
2806 /* Return non-zero if we should preserve sub-expressions as separate
2807 pseudos. We never do so if we aren't optimizing. We always do so
2808 if -fexpensive-optimizations.
2810 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2811 the loop may still be a small one. */
2814 preserve_subexpressions_p ()
2816 rtx insn;
2818 if (flag_expensive_optimizations)
2819 return 1;
2821 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2822 return 0;
2824 insn = get_last_insn_anywhere ();
2826 return (insn
2827 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2828 < n_non_fixed_regs * 3));
2832 /* Generate a jump to exit the current loop, conditional, binding contour
2833 or case statement. Not all such constructs are visible to this function,
2834 only those started with EXIT_FLAG nonzero. Individual languages use
2835 the EXIT_FLAG parameter to control which kinds of constructs you can
2836 exit this way.
2838 If not currently inside anything that can be exited,
2839 return 0 and do nothing; caller will print an error message. */
2842 expand_exit_something ()
2844 struct nesting *n;
2845 last_expr_type = 0;
2846 for (n = nesting_stack; n; n = n->all)
2847 if (n->exit_label != 0)
2849 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2850 return 1;
2853 return 0;
2856 /* Generate RTL to return from the current function, with no value.
2857 (That is, we do not do anything about returning any value.) */
2859 void
2860 expand_null_return ()
2862 struct nesting *block = block_stack;
2863 rtx last_insn = get_last_insn ();
2865 /* If this function was declared to return a value, but we
2866 didn't, clobber the return registers so that they are not
2867 propogated live to the rest of the function. */
2868 clobber_return_register ();
2870 /* Does any pending block have cleanups? */
2871 while (block && block->data.block.cleanups == 0)
2872 block = block->next;
2874 /* If yes, use a goto to return, since that runs cleanups. */
2876 expand_null_return_1 (last_insn, block != 0);
2879 /* Generate RTL to return from the current function, with value VAL. */
2881 static void
2882 expand_value_return (val)
2883 rtx val;
2885 struct nesting *block = block_stack;
2886 rtx last_insn = get_last_insn ();
2887 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2889 /* Copy the value to the return location
2890 unless it's already there. */
2892 if (return_reg != val)
2894 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2895 #ifdef PROMOTE_FUNCTION_RETURN
2896 int unsignedp = TREE_UNSIGNED (type);
2897 enum machine_mode old_mode
2898 = DECL_MODE (DECL_RESULT (current_function_decl));
2899 enum machine_mode mode
2900 = promote_mode (type, old_mode, &unsignedp, 1);
2902 if (mode != old_mode)
2903 val = convert_modes (mode, old_mode, val, unsignedp);
2904 #endif
2905 if (GET_CODE (return_reg) == PARALLEL)
2906 emit_group_load (return_reg, val, int_size_in_bytes (type),
2907 TYPE_ALIGN (type));
2908 else
2909 emit_move_insn (return_reg, val);
2912 /* Does any pending block have cleanups? */
2914 while (block && block->data.block.cleanups == 0)
2915 block = block->next;
2917 /* If yes, use a goto to return, since that runs cleanups.
2918 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2920 expand_null_return_1 (last_insn, block != 0);
2923 /* Output a return with no value. If LAST_INSN is nonzero,
2924 pretend that the return takes place after LAST_INSN.
2925 If USE_GOTO is nonzero then don't use a return instruction;
2926 go to the return label instead. This causes any cleanups
2927 of pending blocks to be executed normally. */
2929 static void
2930 expand_null_return_1 (last_insn, use_goto)
2931 rtx last_insn;
2932 int use_goto;
2934 rtx end_label = cleanup_label ? cleanup_label : return_label;
2936 clear_pending_stack_adjust ();
2937 do_pending_stack_adjust ();
2938 last_expr_type = 0;
2940 /* PCC-struct return always uses an epilogue. */
2941 if (current_function_returns_pcc_struct || use_goto)
2943 if (end_label == 0)
2944 end_label = return_label = gen_label_rtx ();
2945 expand_goto_internal (NULL_TREE, end_label, last_insn);
2946 return;
2949 /* Otherwise output a simple return-insn if one is available,
2950 unless it won't do the job. */
2951 #ifdef HAVE_return
2952 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2954 emit_jump_insn (gen_return ());
2955 emit_barrier ();
2956 return;
2958 #endif
2960 /* Otherwise jump to the epilogue. */
2961 expand_goto_internal (NULL_TREE, end_label, last_insn);
2964 /* Generate RTL to evaluate the expression RETVAL and return it
2965 from the current function. */
2967 void
2968 expand_return (retval)
2969 tree retval;
2971 /* If there are any cleanups to be performed, then they will
2972 be inserted following LAST_INSN. It is desirable
2973 that the last_insn, for such purposes, should be the
2974 last insn before computing the return value. Otherwise, cleanups
2975 which call functions can clobber the return value. */
2976 /* ??? rms: I think that is erroneous, because in C++ it would
2977 run destructors on variables that might be used in the subsequent
2978 computation of the return value. */
2979 rtx last_insn = 0;
2980 rtx result_rtl;
2981 register rtx val = 0;
2982 tree retval_rhs;
2984 /* If function wants no value, give it none. */
2985 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2987 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2988 emit_queue ();
2989 expand_null_return ();
2990 return;
2993 if (retval == error_mark_node)
2995 /* Treat this like a return of no value from a function that
2996 returns a value. */
2997 expand_null_return ();
2998 return;
3000 else if (TREE_CODE (retval) == RESULT_DECL)
3001 retval_rhs = retval;
3002 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
3003 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
3004 retval_rhs = TREE_OPERAND (retval, 1);
3005 else if (VOID_TYPE_P (TREE_TYPE (retval)))
3006 /* Recognize tail-recursive call to void function. */
3007 retval_rhs = retval;
3008 else
3009 retval_rhs = NULL_TREE;
3011 last_insn = get_last_insn ();
3013 /* Distribute return down conditional expr if either of the sides
3014 may involve tail recursion (see test below). This enhances the number
3015 of tail recursions we see. Don't do this always since it can produce
3016 sub-optimal code in some cases and we distribute assignments into
3017 conditional expressions when it would help. */
3019 if (optimize && retval_rhs != 0
3020 && frame_offset == 0
3021 && TREE_CODE (retval_rhs) == COND_EXPR
3022 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
3023 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
3025 rtx label = gen_label_rtx ();
3026 tree expr;
3028 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
3029 start_cleanup_deferral ();
3030 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3031 DECL_RESULT (current_function_decl),
3032 TREE_OPERAND (retval_rhs, 1));
3033 TREE_SIDE_EFFECTS (expr) = 1;
3034 expand_return (expr);
3035 emit_label (label);
3037 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3038 DECL_RESULT (current_function_decl),
3039 TREE_OPERAND (retval_rhs, 2));
3040 TREE_SIDE_EFFECTS (expr) = 1;
3041 expand_return (expr);
3042 end_cleanup_deferral ();
3043 return;
3046 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
3048 /* If the result is an aggregate that is being returned in one (or more)
3049 registers, load the registers here. The compiler currently can't handle
3050 copying a BLKmode value into registers. We could put this code in a
3051 more general area (for use by everyone instead of just function
3052 call/return), but until this feature is generally usable it is kept here
3053 (and in expand_call). The value must go into a pseudo in case there
3054 are cleanups that will clobber the real return register. */
3056 if (retval_rhs != 0
3057 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
3058 && GET_CODE (result_rtl) == REG)
3060 int i;
3061 unsigned HOST_WIDE_INT bitpos, xbitpos;
3062 unsigned HOST_WIDE_INT big_endian_correction = 0;
3063 unsigned HOST_WIDE_INT bytes
3064 = int_size_in_bytes (TREE_TYPE (retval_rhs));
3065 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3066 unsigned int bitsize
3067 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
3068 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
3069 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
3070 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
3071 enum machine_mode tmpmode, result_reg_mode;
3073 if (bytes == 0)
3075 expand_null_return ();
3076 return;
3079 /* Structures whose size is not a multiple of a word are aligned
3080 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
3081 machine, this means we must skip the empty high order bytes when
3082 calculating the bit offset. */
3083 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
3084 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3085 * BITS_PER_UNIT));
3087 /* Copy the structure BITSIZE bits at a time. */
3088 for (bitpos = 0, xbitpos = big_endian_correction;
3089 bitpos < bytes * BITS_PER_UNIT;
3090 bitpos += bitsize, xbitpos += bitsize)
3092 /* We need a new destination pseudo each time xbitpos is
3093 on a word boundary and when xbitpos == big_endian_correction
3094 (the first time through). */
3095 if (xbitpos % BITS_PER_WORD == 0
3096 || xbitpos == big_endian_correction)
3098 /* Generate an appropriate register. */
3099 dst = gen_reg_rtx (word_mode);
3100 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3102 /* Clobber the destination before we move anything into it. */
3103 emit_insn (gen_rtx_CLOBBER (VOIDmode, dst));
3106 /* We need a new source operand each time bitpos is on a word
3107 boundary. */
3108 if (bitpos % BITS_PER_WORD == 0)
3109 src = operand_subword_force (result_val,
3110 bitpos / BITS_PER_WORD,
3111 BLKmode);
3113 /* Use bitpos for the source extraction (left justified) and
3114 xbitpos for the destination store (right justified). */
3115 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3116 extract_bit_field (src, bitsize,
3117 bitpos % BITS_PER_WORD, 1,
3118 NULL_RTX, word_mode, word_mode,
3119 bitsize, BITS_PER_WORD),
3120 bitsize, BITS_PER_WORD);
3123 /* Find the smallest integer mode large enough to hold the
3124 entire structure and use that mode instead of BLKmode
3125 on the USE insn for the return register. */
3126 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3127 tmpmode != VOIDmode;
3128 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3129 /* Have we found a large enough mode? */
3130 if (GET_MODE_SIZE (tmpmode) >= bytes)
3131 break;
3133 /* No suitable mode found. */
3134 if (tmpmode == VOIDmode)
3135 abort ();
3137 PUT_MODE (result_rtl, tmpmode);
3139 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3140 result_reg_mode = word_mode;
3141 else
3142 result_reg_mode = tmpmode;
3143 result_reg = gen_reg_rtx (result_reg_mode);
3145 emit_queue ();
3146 for (i = 0; i < n_regs; i++)
3147 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3148 result_pseudos[i]);
3150 if (tmpmode != result_reg_mode)
3151 result_reg = gen_lowpart (tmpmode, result_reg);
3153 expand_value_return (result_reg);
3155 else if (retval_rhs != 0
3156 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3157 && (GET_CODE (result_rtl) == REG
3158 || (GET_CODE (result_rtl) == PARALLEL)))
3160 /* Calculate the return value into a temporary (usually a pseudo
3161 reg). */
3162 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
3163 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
3165 val = assign_temp (nt, 0, 0, 1);
3166 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3167 val = force_not_mem (val);
3168 emit_queue ();
3169 /* Return the calculated value, doing cleanups first. */
3170 expand_value_return (val);
3172 else
3174 /* No cleanups or no hard reg used;
3175 calculate value into hard return reg. */
3176 expand_expr (retval, const0_rtx, VOIDmode, 0);
3177 emit_queue ();
3178 expand_value_return (result_rtl);
3182 /* Return 1 if the end of the generated RTX is not a barrier.
3183 This means code already compiled can drop through. */
3186 drop_through_at_end_p ()
3188 rtx insn = get_last_insn ();
3189 while (insn && GET_CODE (insn) == NOTE)
3190 insn = PREV_INSN (insn);
3191 return insn && GET_CODE (insn) != BARRIER;
3194 /* Attempt to optimize a potential tail recursion call into a goto.
3195 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3196 where to place the jump to the tail recursion label.
3198 Return TRUE if the call was optimized into a goto. */
3201 optimize_tail_recursion (arguments, last_insn)
3202 tree arguments;
3203 rtx last_insn;
3205 /* Finish checking validity, and if valid emit code to set the
3206 argument variables for the new call. */
3207 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3209 if (tail_recursion_label == 0)
3211 tail_recursion_label = gen_label_rtx ();
3212 emit_label_after (tail_recursion_label,
3213 tail_recursion_reentry);
3215 emit_queue ();
3216 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3217 emit_barrier ();
3218 return 1;
3220 return 0;
3223 /* Emit code to alter this function's formal parms for a tail-recursive call.
3224 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3225 FORMALS is the chain of decls of formals.
3226 Return 1 if this can be done;
3227 otherwise return 0 and do not emit any code. */
3229 static int
3230 tail_recursion_args (actuals, formals)
3231 tree actuals, formals;
3233 register tree a = actuals, f = formals;
3234 register int i;
3235 register rtx *argvec;
3237 /* Check that number and types of actuals are compatible
3238 with the formals. This is not always true in valid C code.
3239 Also check that no formal needs to be addressable
3240 and that all formals are scalars. */
3242 /* Also count the args. */
3244 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3246 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3247 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3248 return 0;
3249 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3250 return 0;
3252 if (a != 0 || f != 0)
3253 return 0;
3255 /* Compute all the actuals. */
3257 argvec = (rtx *) alloca (i * sizeof (rtx));
3259 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3260 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3262 /* Find which actual values refer to current values of previous formals.
3263 Copy each of them now, before any formal is changed. */
3265 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3267 int copy = 0;
3268 register int j;
3269 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3270 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3272 copy = 1;
3273 break;
3275 if (copy)
3276 argvec[i] = copy_to_reg (argvec[i]);
3279 /* Store the values of the actuals into the formals. */
3281 for (f = formals, a = actuals, i = 0; f;
3282 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3284 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3285 emit_move_insn (DECL_RTL (f), argvec[i]);
3286 else
3287 convert_move (DECL_RTL (f), argvec[i],
3288 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3291 free_temp_slots ();
3292 return 1;
3295 /* Generate the RTL code for entering a binding contour.
3296 The variables are declared one by one, by calls to `expand_decl'.
3298 FLAGS is a bitwise or of the following flags:
3300 1 - Nonzero if this construct should be visible to
3301 `exit_something'.
3303 2 - Nonzero if this contour does not require a
3304 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3305 language-independent code should set this flag because they
3306 will not create corresponding BLOCK nodes. (There should be
3307 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3308 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3309 when expand_end_bindings is called.
3311 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3312 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3313 note. */
3315 void
3316 expand_start_bindings_and_block (flags, block)
3317 int flags;
3318 tree block;
3320 struct nesting *thisblock = ALLOC_NESTING ();
3321 rtx note;
3322 int exit_flag = ((flags & 1) != 0);
3323 int block_flag = ((flags & 2) == 0);
3325 /* If a BLOCK is supplied, then the caller should be requesting a
3326 NOTE_INSN_BLOCK_BEG note. */
3327 if (!block_flag && block)
3328 abort ();
3330 /* Create a note to mark the beginning of the block. */
3331 if (block_flag)
3333 note = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
3334 NOTE_BLOCK (note) = block;
3336 else
3337 note = emit_note (NULL, NOTE_INSN_DELETED);
3339 /* Make an entry on block_stack for the block we are entering. */
3341 thisblock->next = block_stack;
3342 thisblock->all = nesting_stack;
3343 thisblock->depth = ++nesting_depth;
3344 thisblock->data.block.stack_level = 0;
3345 thisblock->data.block.cleanups = 0;
3346 thisblock->data.block.n_function_calls = 0;
3347 thisblock->data.block.exception_region = 0;
3348 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3350 thisblock->data.block.conditional_code = 0;
3351 thisblock->data.block.last_unconditional_cleanup = note;
3352 /* When we insert instructions after the last unconditional cleanup,
3353 we don't adjust last_insn. That means that a later add_insn will
3354 clobber the instructions we've just added. The easiest way to
3355 fix this is to just insert another instruction here, so that the
3356 instructions inserted after the last unconditional cleanup are
3357 never the last instruction. */
3358 emit_note (NULL, NOTE_INSN_DELETED);
3359 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3361 if (block_stack
3362 && !(block_stack->data.block.cleanups == NULL_TREE
3363 && block_stack->data.block.outer_cleanups == NULL_TREE))
3364 thisblock->data.block.outer_cleanups
3365 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3366 block_stack->data.block.outer_cleanups);
3367 else
3368 thisblock->data.block.outer_cleanups = 0;
3369 thisblock->data.block.label_chain = 0;
3370 thisblock->data.block.innermost_stack_block = stack_block_stack;
3371 thisblock->data.block.first_insn = note;
3372 thisblock->data.block.block_start_count = ++current_block_start_count;
3373 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3374 block_stack = thisblock;
3375 nesting_stack = thisblock;
3377 /* Make a new level for allocating stack slots. */
3378 push_temp_slots ();
3381 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3382 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3383 expand_expr are made. After we end the region, we know that all
3384 space for all temporaries that were created by TARGET_EXPRs will be
3385 destroyed and their space freed for reuse. */
3387 void
3388 expand_start_target_temps ()
3390 /* This is so that even if the result is preserved, the space
3391 allocated will be freed, as we know that it is no longer in use. */
3392 push_temp_slots ();
3394 /* Start a new binding layer that will keep track of all cleanup
3395 actions to be performed. */
3396 expand_start_bindings (2);
3398 target_temp_slot_level = temp_slot_level;
3401 void
3402 expand_end_target_temps ()
3404 expand_end_bindings (NULL_TREE, 0, 0);
3406 /* This is so that even if the result is preserved, the space
3407 allocated will be freed, as we know that it is no longer in use. */
3408 pop_temp_slots ();
3411 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3412 in question represents the outermost pair of curly braces (i.e. the "body
3413 block") of a function or method.
3415 For any BLOCK node representing a "body block" of a function or method, the
3416 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3417 represents the outermost (function) scope for the function or method (i.e.
3418 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3419 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3422 is_body_block (stmt)
3423 register tree stmt;
3425 if (TREE_CODE (stmt) == BLOCK)
3427 tree parent = BLOCK_SUPERCONTEXT (stmt);
3429 if (parent && TREE_CODE (parent) == BLOCK)
3431 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3433 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3434 return 1;
3438 return 0;
3441 /* True if we are currently emitting insns in an area of output code
3442 that is controlled by a conditional expression. This is used by
3443 the cleanup handling code to generate conditional cleanup actions. */
3446 conditional_context ()
3448 return block_stack && block_stack->data.block.conditional_code;
3451 /* Return an opaque pointer to the current nesting level, so frontend code
3452 can check its own sanity. */
3454 struct nesting *
3455 current_nesting_level ()
3457 return cfun ? block_stack : 0;
3460 /* Emit a handler label for a nonlocal goto handler.
3461 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3463 static rtx
3464 expand_nl_handler_label (slot, before_insn)
3465 rtx slot, before_insn;
3467 rtx insns;
3468 rtx handler_label = gen_label_rtx ();
3470 /* Don't let jump_optimize delete the handler. */
3471 LABEL_PRESERVE_P (handler_label) = 1;
3473 start_sequence ();
3474 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3475 insns = get_insns ();
3476 end_sequence ();
3477 emit_insns_before (insns, before_insn);
3479 emit_label (handler_label);
3481 return handler_label;
3484 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3485 handler. */
3486 static void
3487 expand_nl_goto_receiver ()
3489 #ifdef HAVE_nonlocal_goto
3490 if (! HAVE_nonlocal_goto)
3491 #endif
3492 /* First adjust our frame pointer to its actual value. It was
3493 previously set to the start of the virtual area corresponding to
3494 the stacked variables when we branched here and now needs to be
3495 adjusted to the actual hardware fp value.
3497 Assignments are to virtual registers are converted by
3498 instantiate_virtual_regs into the corresponding assignment
3499 to the underlying register (fp in this case) that makes
3500 the original assignment true.
3501 So the following insn will actually be
3502 decrementing fp by STARTING_FRAME_OFFSET. */
3503 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3505 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3506 if (fixed_regs[ARG_POINTER_REGNUM])
3508 #ifdef ELIMINABLE_REGS
3509 /* If the argument pointer can be eliminated in favor of the
3510 frame pointer, we don't need to restore it. We assume here
3511 that if such an elimination is present, it can always be used.
3512 This is the case on all known machines; if we don't make this
3513 assumption, we do unnecessary saving on many machines. */
3514 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
3515 size_t i;
3517 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3518 if (elim_regs[i].from == ARG_POINTER_REGNUM
3519 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3520 break;
3522 if (i == ARRAY_SIZE (elim_regs))
3523 #endif
3525 /* Now restore our arg pointer from the address at which it
3526 was saved in our stack frame.
3527 If there hasn't be space allocated for it yet, make
3528 some now. */
3529 if (arg_pointer_save_area == 0)
3530 arg_pointer_save_area
3531 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
3532 emit_move_insn (virtual_incoming_args_rtx,
3533 /* We need a pseudo here, or else
3534 instantiate_virtual_regs_1 complains. */
3535 copy_to_reg (arg_pointer_save_area));
3538 #endif
3540 #ifdef HAVE_nonlocal_goto_receiver
3541 if (HAVE_nonlocal_goto_receiver)
3542 emit_insn (gen_nonlocal_goto_receiver ());
3543 #endif
3546 /* Make handlers for nonlocal gotos taking place in the function calls in
3547 block THISBLOCK. */
3549 static void
3550 expand_nl_goto_receivers (thisblock)
3551 struct nesting *thisblock;
3553 tree link;
3554 rtx afterward = gen_label_rtx ();
3555 rtx insns, slot;
3556 rtx label_list;
3557 int any_invalid;
3559 /* Record the handler address in the stack slot for that purpose,
3560 during this block, saving and restoring the outer value. */
3561 if (thisblock->next != 0)
3562 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3564 rtx save_receiver = gen_reg_rtx (Pmode);
3565 emit_move_insn (XEXP (slot, 0), save_receiver);
3567 start_sequence ();
3568 emit_move_insn (save_receiver, XEXP (slot, 0));
3569 insns = get_insns ();
3570 end_sequence ();
3571 emit_insns_before (insns, thisblock->data.block.first_insn);
3574 /* Jump around the handlers; they run only when specially invoked. */
3575 emit_jump (afterward);
3577 /* Make a separate handler for each label. */
3578 link = nonlocal_labels;
3579 slot = nonlocal_goto_handler_slots;
3580 label_list = NULL_RTX;
3581 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3582 /* Skip any labels we shouldn't be able to jump to from here,
3583 we generate one special handler for all of them below which just calls
3584 abort. */
3585 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3587 rtx lab;
3588 lab = expand_nl_handler_label (XEXP (slot, 0),
3589 thisblock->data.block.first_insn);
3590 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3592 expand_nl_goto_receiver ();
3594 /* Jump to the "real" nonlocal label. */
3595 expand_goto (TREE_VALUE (link));
3598 /* A second pass over all nonlocal labels; this time we handle those
3599 we should not be able to jump to at this point. */
3600 link = nonlocal_labels;
3601 slot = nonlocal_goto_handler_slots;
3602 any_invalid = 0;
3603 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3604 if (DECL_TOO_LATE (TREE_VALUE (link)))
3606 rtx lab;
3607 lab = expand_nl_handler_label (XEXP (slot, 0),
3608 thisblock->data.block.first_insn);
3609 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3610 any_invalid = 1;
3613 if (any_invalid)
3615 expand_nl_goto_receiver ();
3616 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0,
3617 VOIDmode, 0);
3618 emit_barrier ();
3621 nonlocal_goto_handler_labels = label_list;
3622 emit_label (afterward);
3625 /* Warn about any unused VARS (which may contain nodes other than
3626 VAR_DECLs, but such nodes are ignored). The nodes are connected
3627 via the TREE_CHAIN field. */
3629 void
3630 warn_about_unused_variables (vars)
3631 tree vars;
3633 tree decl;
3635 if (warn_unused_variable)
3636 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3637 if (TREE_CODE (decl) == VAR_DECL
3638 && ! TREE_USED (decl)
3639 && ! DECL_IN_SYSTEM_HEADER (decl)
3640 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3641 warning_with_decl (decl, "unused variable `%s'");
3644 /* Generate RTL code to terminate a binding contour.
3646 VARS is the chain of VAR_DECL nodes for the variables bound in this
3647 contour. There may actually be other nodes in this chain, but any
3648 nodes other than VAR_DECLS are ignored.
3650 MARK_ENDS is nonzero if we should put a note at the beginning
3651 and end of this binding contour.
3653 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3654 (That is true automatically if the contour has a saved stack level.) */
3656 void
3657 expand_end_bindings (vars, mark_ends, dont_jump_in)
3658 tree vars;
3659 int mark_ends;
3660 int dont_jump_in;
3662 register struct nesting *thisblock = block_stack;
3664 /* If any of the variables in this scope were not used, warn the
3665 user. */
3666 warn_about_unused_variables (vars);
3668 if (thisblock->exit_label)
3670 do_pending_stack_adjust ();
3671 emit_label (thisblock->exit_label);
3674 /* If necessary, make handlers for nonlocal gotos taking
3675 place in the function calls in this block. */
3676 if (function_call_count != thisblock->data.block.n_function_calls
3677 && nonlocal_labels
3678 /* Make handler for outermost block
3679 if there were any nonlocal gotos to this function. */
3680 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3681 /* Make handler for inner block if it has something
3682 special to do when you jump out of it. */
3683 : (thisblock->data.block.cleanups != 0
3684 || thisblock->data.block.stack_level != 0)))
3685 expand_nl_goto_receivers (thisblock);
3687 /* Don't allow jumping into a block that has a stack level.
3688 Cleanups are allowed, though. */
3689 if (dont_jump_in
3690 || thisblock->data.block.stack_level != 0)
3692 struct label_chain *chain;
3694 /* Any labels in this block are no longer valid to go to.
3695 Mark them to cause an error message. */
3696 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3698 DECL_TOO_LATE (chain->label) = 1;
3699 /* If any goto without a fixup came to this label,
3700 that must be an error, because gotos without fixups
3701 come from outside all saved stack-levels. */
3702 if (TREE_ADDRESSABLE (chain->label))
3703 error_with_decl (chain->label,
3704 "label `%s' used before containing binding contour");
3708 /* Restore stack level in effect before the block
3709 (only if variable-size objects allocated). */
3710 /* Perform any cleanups associated with the block. */
3712 if (thisblock->data.block.stack_level != 0
3713 || thisblock->data.block.cleanups != 0)
3715 int reachable;
3716 rtx insn;
3718 /* Don't let cleanups affect ({...}) constructs. */
3719 int old_expr_stmts_for_value = expr_stmts_for_value;
3720 rtx old_last_expr_value = last_expr_value;
3721 tree old_last_expr_type = last_expr_type;
3722 expr_stmts_for_value = 0;
3724 /* Only clean up here if this point can actually be reached. */
3725 insn = get_last_insn ();
3726 if (GET_CODE (insn) == NOTE)
3727 insn = prev_nonnote_insn (insn);
3728 reachable = (! insn || GET_CODE (insn) != BARRIER);
3730 /* Do the cleanups. */
3731 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3732 if (reachable)
3733 do_pending_stack_adjust ();
3735 expr_stmts_for_value = old_expr_stmts_for_value;
3736 last_expr_value = old_last_expr_value;
3737 last_expr_type = old_last_expr_type;
3739 /* Restore the stack level. */
3741 if (reachable && thisblock->data.block.stack_level != 0)
3743 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3744 thisblock->data.block.stack_level, NULL_RTX);
3745 if (nonlocal_goto_handler_slots != 0)
3746 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3747 NULL_RTX);
3750 /* Any gotos out of this block must also do these things.
3751 Also report any gotos with fixups that came to labels in this
3752 level. */
3753 fixup_gotos (thisblock,
3754 thisblock->data.block.stack_level,
3755 thisblock->data.block.cleanups,
3756 thisblock->data.block.first_insn,
3757 dont_jump_in);
3760 /* Mark the beginning and end of the scope if requested.
3761 We do this now, after running cleanups on the variables
3762 just going out of scope, so they are in scope for their cleanups. */
3764 if (mark_ends)
3766 rtx note = emit_note (NULL, NOTE_INSN_BLOCK_END);
3767 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3769 else
3770 /* Get rid of the beginning-mark if we don't make an end-mark. */
3771 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3773 /* Restore the temporary level of TARGET_EXPRs. */
3774 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3776 /* Restore block_stack level for containing block. */
3778 stack_block_stack = thisblock->data.block.innermost_stack_block;
3779 POPSTACK (block_stack);
3781 /* Pop the stack slot nesting and free any slots at this level. */
3782 pop_temp_slots ();
3785 /* Generate code to save the stack pointer at the start of the current block
3786 and set up to restore it on exit. */
3788 void
3789 save_stack_pointer ()
3791 struct nesting *thisblock = block_stack;
3793 if (thisblock->data.block.stack_level == 0)
3795 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3796 &thisblock->data.block.stack_level,
3797 thisblock->data.block.first_insn);
3798 stack_block_stack = thisblock;
3802 /* Generate RTL for the automatic variable declaration DECL.
3803 (Other kinds of declarations are simply ignored if seen here.) */
3805 void
3806 expand_decl (decl)
3807 register tree decl;
3809 struct nesting *thisblock;
3810 tree type;
3812 type = TREE_TYPE (decl);
3814 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
3815 type in case this node is used in a reference. */
3816 if (TREE_CODE (decl) == CONST_DECL)
3818 DECL_MODE (decl) = TYPE_MODE (type);
3819 DECL_ALIGN (decl) = TYPE_ALIGN (type);
3820 DECL_SIZE (decl) = TYPE_SIZE (type);
3821 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
3822 return;
3825 /* Otherwise, only automatic variables need any expansion done. Static and
3826 external variables, and external functions, will be handled by
3827 `assemble_variable' (called from finish_decl). TYPE_DECL requires
3828 nothing. PARM_DECLs are handled in `assign_parms'. */
3829 if (TREE_CODE (decl) != VAR_DECL)
3830 return;
3832 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3833 return;
3835 thisblock = block_stack;
3837 /* Create the RTL representation for the variable. */
3839 if (type == error_mark_node)
3840 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3842 else if (DECL_SIZE (decl) == 0)
3843 /* Variable with incomplete type. */
3845 if (DECL_INITIAL (decl) == 0)
3846 /* Error message was already done; now avoid a crash. */
3847 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3848 else
3849 /* An initializer is going to decide the size of this array.
3850 Until we know the size, represent its address with a reg. */
3851 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode)));
3853 set_mem_attributes (DECL_RTL (decl), decl, 1);
3855 else if (DECL_MODE (decl) != BLKmode
3856 /* If -ffloat-store, don't put explicit float vars
3857 into regs. */
3858 && !(flag_float_store
3859 && TREE_CODE (type) == REAL_TYPE)
3860 && ! TREE_THIS_VOLATILE (decl)
3861 && (DECL_REGISTER (decl) || optimize)
3862 /* if -fcheck-memory-usage, check all variables. */
3863 && ! current_function_check_memory_usage)
3865 /* Automatic variable that can go in a register. */
3866 int unsignedp = TREE_UNSIGNED (type);
3867 enum machine_mode reg_mode
3868 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3870 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
3871 mark_user_reg (DECL_RTL (decl));
3873 if (POINTER_TYPE_P (type))
3874 mark_reg_pointer (DECL_RTL (decl),
3875 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3877 maybe_set_unchanging (DECL_RTL (decl), decl);
3879 /* If something wants our address, try to use ADDRESSOF. */
3880 if (TREE_ADDRESSABLE (decl))
3881 put_var_into_stack (decl);
3884 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3885 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3886 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3887 STACK_CHECK_MAX_VAR_SIZE)))
3889 /* Variable of fixed size that goes on the stack. */
3890 rtx oldaddr = 0;
3891 rtx addr;
3893 /* If we previously made RTL for this decl, it must be an array
3894 whose size was determined by the initializer.
3895 The old address was a register; set that register now
3896 to the proper address. */
3897 if (DECL_RTL_SET_P (decl))
3899 if (GET_CODE (DECL_RTL (decl)) != MEM
3900 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3901 abort ();
3902 oldaddr = XEXP (DECL_RTL (decl), 0);
3905 SET_DECL_RTL (decl,
3906 assign_temp (TREE_TYPE (decl), 1, 1, 1));
3908 /* Set alignment we actually gave this decl. */
3909 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3910 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3911 DECL_USER_ALIGN (decl) = 0;
3913 if (oldaddr)
3915 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3916 if (addr != oldaddr)
3917 emit_move_insn (oldaddr, addr);
3920 else
3921 /* Dynamic-size object: must push space on the stack. */
3923 rtx address, size;
3925 /* Record the stack pointer on entry to block, if have
3926 not already done so. */
3927 do_pending_stack_adjust ();
3928 save_stack_pointer ();
3930 /* In function-at-a-time mode, variable_size doesn't expand this,
3931 so do it now. */
3932 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
3933 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
3934 const0_rtx, VOIDmode, 0);
3936 /* Compute the variable's size, in bytes. */
3937 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
3938 free_temp_slots ();
3940 /* Allocate space on the stack for the variable. Note that
3941 DECL_ALIGN says how the variable is to be aligned and we
3942 cannot use it to conclude anything about the alignment of
3943 the size. */
3944 address = allocate_dynamic_stack_space (size, NULL_RTX,
3945 TYPE_ALIGN (TREE_TYPE (decl)));
3947 /* Reference the variable indirect through that rtx. */
3948 SET_DECL_RTL (decl, gen_rtx_MEM (DECL_MODE (decl), address));
3950 set_mem_attributes (DECL_RTL (decl), decl, 1);
3952 /* Indicate the alignment we actually gave this variable. */
3953 #ifdef STACK_BOUNDARY
3954 DECL_ALIGN (decl) = STACK_BOUNDARY;
3955 #else
3956 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3957 #endif
3958 DECL_USER_ALIGN (decl) = 0;
3962 /* Emit code to perform the initialization of a declaration DECL. */
3964 void
3965 expand_decl_init (decl)
3966 tree decl;
3968 int was_used = TREE_USED (decl);
3970 /* If this is a CONST_DECL, we don't have to generate any code, but
3971 if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL
3972 to be set while in the obstack containing the constant. If we don't
3973 do this, we can lose if we have functions nested three deep and the middle
3974 function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while
3975 the innermost function is the first to expand that STRING_CST. */
3976 if (TREE_CODE (decl) == CONST_DECL)
3978 if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl)))
3979 expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
3980 EXPAND_INITIALIZER);
3981 return;
3984 if (TREE_STATIC (decl))
3985 return;
3987 /* Compute and store the initial value now. */
3989 if (DECL_INITIAL (decl) == error_mark_node)
3991 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3993 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3994 || code == POINTER_TYPE || code == REFERENCE_TYPE)
3995 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3996 0, 0);
3997 emit_queue ();
3999 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
4001 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
4002 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
4003 emit_queue ();
4006 /* Don't let the initialization count as "using" the variable. */
4007 TREE_USED (decl) = was_used;
4009 /* Free any temporaries we made while initializing the decl. */
4010 preserve_temp_slots (NULL_RTX);
4011 free_temp_slots ();
4014 /* CLEANUP is an expression to be executed at exit from this binding contour;
4015 for example, in C++, it might call the destructor for this variable.
4017 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
4018 CLEANUP multiple times, and have the correct semantics. This
4019 happens in exception handling, for gotos, returns, breaks that
4020 leave the current scope.
4022 If CLEANUP is nonzero and DECL is zero, we record a cleanup
4023 that is not associated with any particular variable. */
4026 expand_decl_cleanup (decl, cleanup)
4027 tree decl, cleanup;
4029 struct nesting *thisblock;
4031 /* Error if we are not in any block. */
4032 if (cfun == 0 || block_stack == 0)
4033 return 0;
4035 thisblock = block_stack;
4037 /* Record the cleanup if there is one. */
4039 if (cleanup != 0)
4041 tree t;
4042 rtx seq;
4043 tree *cleanups = &thisblock->data.block.cleanups;
4044 int cond_context = conditional_context ();
4046 if (cond_context)
4048 rtx flag = gen_reg_rtx (word_mode);
4049 rtx set_flag_0;
4050 tree cond;
4052 start_sequence ();
4053 emit_move_insn (flag, const0_rtx);
4054 set_flag_0 = get_insns ();
4055 end_sequence ();
4057 thisblock->data.block.last_unconditional_cleanup
4058 = emit_insns_after (set_flag_0,
4059 thisblock->data.block.last_unconditional_cleanup);
4061 emit_move_insn (flag, const1_rtx);
4063 cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
4064 SET_DECL_RTL (cond, flag);
4066 /* Conditionalize the cleanup. */
4067 cleanup = build (COND_EXPR, void_type_node,
4068 truthvalue_conversion (cond),
4069 cleanup, integer_zero_node);
4070 cleanup = fold (cleanup);
4072 cleanups = thisblock->data.block.cleanup_ptr;
4075 cleanup = unsave_expr (cleanup);
4077 t = *cleanups = tree_cons (decl, cleanup, *cleanups);
4079 if (! cond_context)
4080 /* If this block has a cleanup, it belongs in stack_block_stack. */
4081 stack_block_stack = thisblock;
4083 if (cond_context)
4085 start_sequence ();
4088 if (! using_eh_for_cleanups_p)
4089 TREE_ADDRESSABLE (t) = 1;
4090 else
4091 expand_eh_region_start ();
4093 if (cond_context)
4095 seq = get_insns ();
4096 end_sequence ();
4097 if (seq)
4098 thisblock->data.block.last_unconditional_cleanup
4099 = emit_insns_after (seq,
4100 thisblock->data.block.last_unconditional_cleanup);
4102 else
4104 thisblock->data.block.last_unconditional_cleanup
4105 = get_last_insn ();
4106 /* When we insert instructions after the last unconditional cleanup,
4107 we don't adjust last_insn. That means that a later add_insn will
4108 clobber the instructions we've just added. The easiest way to
4109 fix this is to just insert another instruction here, so that the
4110 instructions inserted after the last unconditional cleanup are
4111 never the last instruction. */
4112 emit_note (NULL, NOTE_INSN_DELETED);
4113 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4116 return 1;
4119 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4120 DECL_ELTS is the list of elements that belong to DECL's type.
4121 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4123 void
4124 expand_anon_union_decl (decl, cleanup, decl_elts)
4125 tree decl, cleanup, decl_elts;
4127 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4128 rtx x;
4129 tree t;
4131 /* If any of the elements are addressable, so is the entire union. */
4132 for (t = decl_elts; t; t = TREE_CHAIN (t))
4133 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4135 TREE_ADDRESSABLE (decl) = 1;
4136 break;
4139 expand_decl (decl);
4140 expand_decl_cleanup (decl, cleanup);
4141 x = DECL_RTL (decl);
4143 /* Go through the elements, assigning RTL to each. */
4144 for (t = decl_elts; t; t = TREE_CHAIN (t))
4146 tree decl_elt = TREE_VALUE (t);
4147 tree cleanup_elt = TREE_PURPOSE (t);
4148 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4150 /* Propagate the union's alignment to the elements. */
4151 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4152 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4154 /* If the element has BLKmode and the union doesn't, the union is
4155 aligned such that the element doesn't need to have BLKmode, so
4156 change the element's mode to the appropriate one for its size. */
4157 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4158 DECL_MODE (decl_elt) = mode
4159 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4161 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4162 instead create a new MEM rtx with the proper mode. */
4163 if (GET_CODE (x) == MEM)
4165 if (mode == GET_MODE (x))
4166 SET_DECL_RTL (decl_elt, x);
4167 else
4168 SET_DECL_RTL (decl_elt, adjust_address_nv (x, mode, 0));
4170 else if (GET_CODE (x) == REG)
4172 if (mode == GET_MODE (x))
4173 SET_DECL_RTL (decl_elt, x);
4174 else
4175 SET_DECL_RTL (decl_elt, gen_lowpart_SUBREG (mode, x));
4177 else
4178 abort ();
4180 /* Record the cleanup if there is one. */
4182 if (cleanup != 0)
4183 thisblock->data.block.cleanups
4184 = tree_cons (decl_elt, cleanup_elt,
4185 thisblock->data.block.cleanups);
4189 /* Expand a list of cleanups LIST.
4190 Elements may be expressions or may be nested lists.
4192 If DONT_DO is nonnull, then any list-element
4193 whose TREE_PURPOSE matches DONT_DO is omitted.
4194 This is sometimes used to avoid a cleanup associated with
4195 a value that is being returned out of the scope.
4197 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4198 goto and handle protection regions specially in that case.
4200 If REACHABLE, we emit code, otherwise just inform the exception handling
4201 code about this finalization. */
4203 static void
4204 expand_cleanups (list, dont_do, in_fixup, reachable)
4205 tree list;
4206 tree dont_do;
4207 int in_fixup;
4208 int reachable;
4210 tree tail;
4211 for (tail = list; tail; tail = TREE_CHAIN (tail))
4212 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4214 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4215 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4216 else
4218 if (! in_fixup && using_eh_for_cleanups_p)
4219 expand_eh_region_end_cleanup (TREE_VALUE (tail));
4221 if (reachable)
4223 /* Cleanups may be run multiple times. For example,
4224 when exiting a binding contour, we expand the
4225 cleanups associated with that contour. When a goto
4226 within that binding contour has a target outside that
4227 contour, it will expand all cleanups from its scope to
4228 the target. Though the cleanups are expanded multiple
4229 times, the control paths are non-overlapping so the
4230 cleanups will not be executed twice. */
4232 /* We may need to protect from outer cleanups. */
4233 if (in_fixup && using_eh_for_cleanups_p)
4235 expand_eh_region_start ();
4237 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4239 expand_eh_region_end_fixup (TREE_VALUE (tail));
4241 else
4242 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4244 free_temp_slots ();
4250 /* Mark when the context we are emitting RTL for as a conditional
4251 context, so that any cleanup actions we register with
4252 expand_decl_init will be properly conditionalized when those
4253 cleanup actions are later performed. Must be called before any
4254 expression (tree) is expanded that is within a conditional context. */
4256 void
4257 start_cleanup_deferral ()
4259 /* block_stack can be NULL if we are inside the parameter list. It is
4260 OK to do nothing, because cleanups aren't possible here. */
4261 if (block_stack)
4262 ++block_stack->data.block.conditional_code;
4265 /* Mark the end of a conditional region of code. Because cleanup
4266 deferrals may be nested, we may still be in a conditional region
4267 after we end the currently deferred cleanups, only after we end all
4268 deferred cleanups, are we back in unconditional code. */
4270 void
4271 end_cleanup_deferral ()
4273 /* block_stack can be NULL if we are inside the parameter list. It is
4274 OK to do nothing, because cleanups aren't possible here. */
4275 if (block_stack)
4276 --block_stack->data.block.conditional_code;
4279 /* Move all cleanups from the current block_stack
4280 to the containing block_stack, where they are assumed to
4281 have been created. If anything can cause a temporary to
4282 be created, but not expanded for more than one level of
4283 block_stacks, then this code will have to change. */
4285 void
4286 move_cleanups_up ()
4288 struct nesting *block = block_stack;
4289 struct nesting *outer = block->next;
4291 outer->data.block.cleanups
4292 = chainon (block->data.block.cleanups,
4293 outer->data.block.cleanups);
4294 block->data.block.cleanups = 0;
4297 tree
4298 last_cleanup_this_contour ()
4300 if (block_stack == 0)
4301 return 0;
4303 return block_stack->data.block.cleanups;
4306 /* Return 1 if there are any pending cleanups at this point.
4307 If THIS_CONTOUR is nonzero, check the current contour as well.
4308 Otherwise, look only at the contours that enclose this one. */
4311 any_pending_cleanups (this_contour)
4312 int this_contour;
4314 struct nesting *block;
4316 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4317 return 0;
4319 if (this_contour && block_stack->data.block.cleanups != NULL)
4320 return 1;
4321 if (block_stack->data.block.cleanups == 0
4322 && block_stack->data.block.outer_cleanups == 0)
4323 return 0;
4325 for (block = block_stack->next; block; block = block->next)
4326 if (block->data.block.cleanups != 0)
4327 return 1;
4329 return 0;
4332 /* Enter a case (Pascal) or switch (C) statement.
4333 Push a block onto case_stack and nesting_stack
4334 to accumulate the case-labels that are seen
4335 and to record the labels generated for the statement.
4337 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4338 Otherwise, this construct is transparent for `exit_something'.
4340 EXPR is the index-expression to be dispatched on.
4341 TYPE is its nominal type. We could simply convert EXPR to this type,
4342 but instead we take short cuts. */
4344 void
4345 expand_start_case (exit_flag, expr, type, printname)
4346 int exit_flag;
4347 tree expr;
4348 tree type;
4349 const char *printname;
4351 register struct nesting *thiscase = ALLOC_NESTING ();
4353 /* Make an entry on case_stack for the case we are entering. */
4355 thiscase->next = case_stack;
4356 thiscase->all = nesting_stack;
4357 thiscase->depth = ++nesting_depth;
4358 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4359 thiscase->data.case_stmt.case_list = 0;
4360 thiscase->data.case_stmt.index_expr = expr;
4361 thiscase->data.case_stmt.nominal_type = type;
4362 thiscase->data.case_stmt.default_label = 0;
4363 thiscase->data.case_stmt.printname = printname;
4364 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4365 case_stack = thiscase;
4366 nesting_stack = thiscase;
4368 do_pending_stack_adjust ();
4370 /* Make sure case_stmt.start points to something that won't
4371 need any transformation before expand_end_case. */
4372 if (GET_CODE (get_last_insn ()) != NOTE)
4373 emit_note (NULL, NOTE_INSN_DELETED);
4375 thiscase->data.case_stmt.start = get_last_insn ();
4377 start_cleanup_deferral ();
4380 /* Start a "dummy case statement" within which case labels are invalid
4381 and are not connected to any larger real case statement.
4382 This can be used if you don't want to let a case statement jump
4383 into the middle of certain kinds of constructs. */
4385 void
4386 expand_start_case_dummy ()
4388 register struct nesting *thiscase = ALLOC_NESTING ();
4390 /* Make an entry on case_stack for the dummy. */
4392 thiscase->next = case_stack;
4393 thiscase->all = nesting_stack;
4394 thiscase->depth = ++nesting_depth;
4395 thiscase->exit_label = 0;
4396 thiscase->data.case_stmt.case_list = 0;
4397 thiscase->data.case_stmt.start = 0;
4398 thiscase->data.case_stmt.nominal_type = 0;
4399 thiscase->data.case_stmt.default_label = 0;
4400 case_stack = thiscase;
4401 nesting_stack = thiscase;
4402 start_cleanup_deferral ();
4405 /* End a dummy case statement. */
4407 void
4408 expand_end_case_dummy ()
4410 end_cleanup_deferral ();
4411 POPSTACK (case_stack);
4414 /* Return the data type of the index-expression
4415 of the innermost case statement, or null if none. */
4417 tree
4418 case_index_expr_type ()
4420 if (case_stack)
4421 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4422 return 0;
4425 static void
4426 check_seenlabel ()
4428 /* If this is the first label, warn if any insns have been emitted. */
4429 if (case_stack->data.case_stmt.line_number_status >= 0)
4431 rtx insn;
4433 restore_line_number_status
4434 (case_stack->data.case_stmt.line_number_status);
4435 case_stack->data.case_stmt.line_number_status = -1;
4437 for (insn = case_stack->data.case_stmt.start;
4438 insn;
4439 insn = NEXT_INSN (insn))
4441 if (GET_CODE (insn) == CODE_LABEL)
4442 break;
4443 if (GET_CODE (insn) != NOTE
4444 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4447 insn = PREV_INSN (insn);
4448 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4450 /* If insn is zero, then there must have been a syntax error. */
4451 if (insn)
4452 warning_with_file_and_line (NOTE_SOURCE_FILE (insn),
4453 NOTE_LINE_NUMBER (insn),
4454 "unreachable code at beginning of %s",
4455 case_stack->data.case_stmt.printname);
4456 break;
4462 /* Accumulate one case or default label inside a case or switch statement.
4463 VALUE is the value of the case (a null pointer, for a default label).
4464 The function CONVERTER, when applied to arguments T and V,
4465 converts the value V to the type T.
4467 If not currently inside a case or switch statement, return 1 and do
4468 nothing. The caller will print a language-specific error message.
4469 If VALUE is a duplicate or overlaps, return 2 and do nothing
4470 except store the (first) duplicate node in *DUPLICATE.
4471 If VALUE is out of range, return 3 and do nothing.
4472 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4473 Return 0 on success.
4475 Extended to handle range statements. */
4478 pushcase (value, converter, label, duplicate)
4479 register tree value;
4480 tree (*converter) PARAMS ((tree, tree));
4481 register tree label;
4482 tree *duplicate;
4484 tree index_type;
4485 tree nominal_type;
4487 /* Fail if not inside a real case statement. */
4488 if (! (case_stack && case_stack->data.case_stmt.start))
4489 return 1;
4491 if (stack_block_stack
4492 && stack_block_stack->depth > case_stack->depth)
4493 return 5;
4495 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4496 nominal_type = case_stack->data.case_stmt.nominal_type;
4498 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4499 if (index_type == error_mark_node)
4500 return 0;
4502 /* Convert VALUE to the type in which the comparisons are nominally done. */
4503 if (value != 0)
4504 value = (*converter) (nominal_type, value);
4506 check_seenlabel ();
4508 /* Fail if this value is out of range for the actual type of the index
4509 (which may be narrower than NOMINAL_TYPE). */
4510 if (value != 0
4511 && (TREE_CONSTANT_OVERFLOW (value)
4512 || ! int_fits_type_p (value, index_type)))
4513 return 3;
4515 return add_case_node (value, value, label, duplicate);
4518 /* Like pushcase but this case applies to all values between VALUE1 and
4519 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4520 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4521 starts at VALUE1 and ends at the highest value of the index type.
4522 If both are NULL, this case applies to all values.
4524 The return value is the same as that of pushcase but there is one
4525 additional error code: 4 means the specified range was empty. */
4528 pushcase_range (value1, value2, converter, label, duplicate)
4529 register tree value1, value2;
4530 tree (*converter) PARAMS ((tree, tree));
4531 register tree label;
4532 tree *duplicate;
4534 tree index_type;
4535 tree nominal_type;
4537 /* Fail if not inside a real case statement. */
4538 if (! (case_stack && case_stack->data.case_stmt.start))
4539 return 1;
4541 if (stack_block_stack
4542 && stack_block_stack->depth > case_stack->depth)
4543 return 5;
4545 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4546 nominal_type = case_stack->data.case_stmt.nominal_type;
4548 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4549 if (index_type == error_mark_node)
4550 return 0;
4552 check_seenlabel ();
4554 /* Convert VALUEs to type in which the comparisons are nominally done
4555 and replace any unspecified value with the corresponding bound. */
4556 if (value1 == 0)
4557 value1 = TYPE_MIN_VALUE (index_type);
4558 if (value2 == 0)
4559 value2 = TYPE_MAX_VALUE (index_type);
4561 /* Fail if the range is empty. Do this before any conversion since
4562 we want to allow out-of-range empty ranges. */
4563 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4564 return 4;
4566 /* If the max was unbounded, use the max of the nominal_type we are
4567 converting to. Do this after the < check above to suppress false
4568 positives. */
4569 if (value2 == 0)
4570 value2 = TYPE_MAX_VALUE (nominal_type);
4572 value1 = (*converter) (nominal_type, value1);
4573 value2 = (*converter) (nominal_type, value2);
4575 /* Fail if these values are out of range. */
4576 if (TREE_CONSTANT_OVERFLOW (value1)
4577 || ! int_fits_type_p (value1, index_type))
4578 return 3;
4580 if (TREE_CONSTANT_OVERFLOW (value2)
4581 || ! int_fits_type_p (value2, index_type))
4582 return 3;
4584 return add_case_node (value1, value2, label, duplicate);
4587 /* Do the actual insertion of a case label for pushcase and pushcase_range
4588 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4589 slowdown for large switch statements. */
4592 add_case_node (low, high, label, duplicate)
4593 tree low, high;
4594 tree label;
4595 tree *duplicate;
4597 struct case_node *p, **q, *r;
4599 /* If there's no HIGH value, then this is not a case range; it's
4600 just a simple case label. But that's just a degenerate case
4601 range. */
4602 if (!high)
4603 high = low;
4605 /* Handle default labels specially. */
4606 if (!high && !low)
4608 if (case_stack->data.case_stmt.default_label != 0)
4610 *duplicate = case_stack->data.case_stmt.default_label;
4611 return 2;
4613 case_stack->data.case_stmt.default_label = label;
4614 expand_label (label);
4615 return 0;
4618 q = &case_stack->data.case_stmt.case_list;
4619 p = *q;
4621 while ((r = *q))
4623 p = r;
4625 /* Keep going past elements distinctly greater than HIGH. */
4626 if (tree_int_cst_lt (high, p->low))
4627 q = &p->left;
4629 /* or distinctly less than LOW. */
4630 else if (tree_int_cst_lt (p->high, low))
4631 q = &p->right;
4633 else
4635 /* We have an overlap; this is an error. */
4636 *duplicate = p->code_label;
4637 return 2;
4641 /* Add this label to the chain, and succeed. */
4643 r = (struct case_node *) xmalloc (sizeof (struct case_node));
4644 r->low = low;
4646 /* If the bounds are equal, turn this into the one-value case. */
4647 if (tree_int_cst_equal (low, high))
4648 r->high = r->low;
4649 else
4650 r->high = high;
4652 r->code_label = label;
4653 expand_label (label);
4655 *q = r;
4656 r->parent = p;
4657 r->left = 0;
4658 r->right = 0;
4659 r->balance = 0;
4661 while (p)
4663 struct case_node *s;
4665 if (r == p->left)
4667 int b;
4669 if (! (b = p->balance))
4670 /* Growth propagation from left side. */
4671 p->balance = -1;
4672 else if (b < 0)
4674 if (r->balance < 0)
4676 /* R-Rotation */
4677 if ((p->left = s = r->right))
4678 s->parent = p;
4680 r->right = p;
4681 p->balance = 0;
4682 r->balance = 0;
4683 s = p->parent;
4684 p->parent = r;
4686 if ((r->parent = s))
4688 if (s->left == p)
4689 s->left = r;
4690 else
4691 s->right = r;
4693 else
4694 case_stack->data.case_stmt.case_list = r;
4696 else
4697 /* r->balance == +1 */
4699 /* LR-Rotation */
4701 int b2;
4702 struct case_node *t = r->right;
4704 if ((p->left = s = t->right))
4705 s->parent = p;
4707 t->right = p;
4708 if ((r->right = s = t->left))
4709 s->parent = r;
4711 t->left = r;
4712 b = t->balance;
4713 b2 = b < 0;
4714 p->balance = b2;
4715 b2 = -b2 - b;
4716 r->balance = b2;
4717 t->balance = 0;
4718 s = p->parent;
4719 p->parent = t;
4720 r->parent = t;
4722 if ((t->parent = s))
4724 if (s->left == p)
4725 s->left = t;
4726 else
4727 s->right = t;
4729 else
4730 case_stack->data.case_stmt.case_list = t;
4732 break;
4735 else
4737 /* p->balance == +1; growth of left side balances the node. */
4738 p->balance = 0;
4739 break;
4742 else
4743 /* r == p->right */
4745 int b;
4747 if (! (b = p->balance))
4748 /* Growth propagation from right side. */
4749 p->balance++;
4750 else if (b > 0)
4752 if (r->balance > 0)
4754 /* L-Rotation */
4756 if ((p->right = s = r->left))
4757 s->parent = p;
4759 r->left = p;
4760 p->balance = 0;
4761 r->balance = 0;
4762 s = p->parent;
4763 p->parent = r;
4764 if ((r->parent = s))
4766 if (s->left == p)
4767 s->left = r;
4768 else
4769 s->right = r;
4772 else
4773 case_stack->data.case_stmt.case_list = r;
4776 else
4777 /* r->balance == -1 */
4779 /* RL-Rotation */
4780 int b2;
4781 struct case_node *t = r->left;
4783 if ((p->right = s = t->left))
4784 s->parent = p;
4786 t->left = p;
4788 if ((r->left = s = t->right))
4789 s->parent = r;
4791 t->right = r;
4792 b = t->balance;
4793 b2 = b < 0;
4794 r->balance = b2;
4795 b2 = -b2 - b;
4796 p->balance = b2;
4797 t->balance = 0;
4798 s = p->parent;
4799 p->parent = t;
4800 r->parent = t;
4802 if ((t->parent = s))
4804 if (s->left == p)
4805 s->left = t;
4806 else
4807 s->right = t;
4810 else
4811 case_stack->data.case_stmt.case_list = t;
4813 break;
4815 else
4817 /* p->balance == -1; growth of right side balances the node. */
4818 p->balance = 0;
4819 break;
4823 r = p;
4824 p = p->parent;
4827 return 0;
4830 /* Returns the number of possible values of TYPE.
4831 Returns -1 if the number is unknown, variable, or if the number does not
4832 fit in a HOST_WIDE_INT.
4833 Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4834 do not increase monotonically (there may be duplicates);
4835 to 1 if the values increase monotonically, but not always by 1;
4836 otherwise sets it to 0. */
4838 HOST_WIDE_INT
4839 all_cases_count (type, spareness)
4840 tree type;
4841 int *spareness;
4843 tree t;
4844 HOST_WIDE_INT count, minval, lastval;
4846 *spareness = 0;
4848 switch (TREE_CODE (type))
4850 case BOOLEAN_TYPE:
4851 count = 2;
4852 break;
4854 case CHAR_TYPE:
4855 count = 1 << BITS_PER_UNIT;
4856 break;
4858 default:
4859 case INTEGER_TYPE:
4860 if (TYPE_MAX_VALUE (type) != 0
4861 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4862 TYPE_MIN_VALUE (type))))
4863 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4864 convert (type, integer_zero_node))))
4865 && host_integerp (t, 1))
4866 count = tree_low_cst (t, 1);
4867 else
4868 return -1;
4869 break;
4871 case ENUMERAL_TYPE:
4872 /* Don't waste time with enumeral types with huge values. */
4873 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4874 || TYPE_MAX_VALUE (type) == 0
4875 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4876 return -1;
4878 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4879 count = 0;
4881 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4883 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4885 if (*spareness == 2 || thisval < lastval)
4886 *spareness = 2;
4887 else if (thisval != minval + count)
4888 *spareness = 1;
4890 count++;
4894 return count;
4897 #define BITARRAY_TEST(ARRAY, INDEX) \
4898 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4899 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4900 #define BITARRAY_SET(ARRAY, INDEX) \
4901 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4902 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4904 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4905 with the case values we have seen, assuming the case expression
4906 has the given TYPE.
4907 SPARSENESS is as determined by all_cases_count.
4909 The time needed is proportional to COUNT, unless
4910 SPARSENESS is 2, in which case quadratic time is needed. */
4912 void
4913 mark_seen_cases (type, cases_seen, count, sparseness)
4914 tree type;
4915 unsigned char *cases_seen;
4916 HOST_WIDE_INT count;
4917 int sparseness;
4919 tree next_node_to_try = NULL_TREE;
4920 HOST_WIDE_INT next_node_offset = 0;
4922 register struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4923 tree val = make_node (INTEGER_CST);
4925 TREE_TYPE (val) = type;
4926 if (! root)
4927 /* Do nothing. */
4929 else if (sparseness == 2)
4931 tree t;
4932 unsigned HOST_WIDE_INT xlo;
4934 /* This less efficient loop is only needed to handle
4935 duplicate case values (multiple enum constants
4936 with the same value). */
4937 TREE_TYPE (val) = TREE_TYPE (root->low);
4938 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
4939 t = TREE_CHAIN (t), xlo++)
4941 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
4942 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
4943 n = root;
4946 /* Keep going past elements distinctly greater than VAL. */
4947 if (tree_int_cst_lt (val, n->low))
4948 n = n->left;
4950 /* or distinctly less than VAL. */
4951 else if (tree_int_cst_lt (n->high, val))
4952 n = n->right;
4954 else
4956 /* We have found a matching range. */
4957 BITARRAY_SET (cases_seen, xlo);
4958 break;
4961 while (n);
4964 else
4966 if (root->left)
4967 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
4969 for (n = root; n; n = n->right)
4971 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
4972 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
4973 while (! tree_int_cst_lt (n->high, val))
4975 /* Calculate (into xlo) the "offset" of the integer (val).
4976 The element with lowest value has offset 0, the next smallest
4977 element has offset 1, etc. */
4979 unsigned HOST_WIDE_INT xlo;
4980 HOST_WIDE_INT xhi;
4981 tree t;
4983 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
4985 /* The TYPE_VALUES will be in increasing order, so
4986 starting searching where we last ended. */
4987 t = next_node_to_try;
4988 xlo = next_node_offset;
4989 xhi = 0;
4990 for (;;)
4992 if (t == NULL_TREE)
4994 t = TYPE_VALUES (type);
4995 xlo = 0;
4997 if (tree_int_cst_equal (val, TREE_VALUE (t)))
4999 next_node_to_try = TREE_CHAIN (t);
5000 next_node_offset = xlo + 1;
5001 break;
5003 xlo++;
5004 t = TREE_CHAIN (t);
5005 if (t == next_node_to_try)
5007 xlo = -1;
5008 break;
5012 else
5014 t = TYPE_MIN_VALUE (type);
5015 if (t)
5016 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5017 &xlo, &xhi);
5018 else
5019 xlo = xhi = 0;
5020 add_double (xlo, xhi,
5021 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5022 &xlo, &xhi);
5025 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5026 BITARRAY_SET (cases_seen, xlo);
5028 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5029 1, 0,
5030 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5036 /* Called when the index of a switch statement is an enumerated type
5037 and there is no default label.
5039 Checks that all enumeration literals are covered by the case
5040 expressions of a switch. Also, warn if there are any extra
5041 switch cases that are *not* elements of the enumerated type.
5043 If all enumeration literals were covered by the case expressions,
5044 turn one of the expressions into the default expression since it should
5045 not be possible to fall through such a switch. */
5047 void
5048 check_for_full_enumeration_handling (type)
5049 tree type;
5051 register struct case_node *n;
5052 register tree chain;
5053 #if 0 /* variable used by 'if 0'ed code below. */
5054 register struct case_node **l;
5055 int all_values = 1;
5056 #endif
5058 /* True iff the selector type is a numbered set mode. */
5059 int sparseness = 0;
5061 /* The number of possible selector values. */
5062 HOST_WIDE_INT size;
5064 /* For each possible selector value. a one iff it has been matched
5065 by a case value alternative. */
5066 unsigned char *cases_seen;
5068 /* The allocated size of cases_seen, in chars. */
5069 HOST_WIDE_INT bytes_needed;
5071 if (! warn_switch)
5072 return;
5074 size = all_cases_count (type, &sparseness);
5075 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5077 if (size > 0 && size < 600000
5078 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5079 this optimization if we don't have enough memory rather than
5080 aborting, as xmalloc would do. */
5081 && (cases_seen =
5082 (unsigned char *) really_call_calloc (bytes_needed, 1)) != NULL)
5084 HOST_WIDE_INT i;
5085 tree v = TYPE_VALUES (type);
5087 /* The time complexity of this code is normally O(N), where
5088 N being the number of members in the enumerated type.
5089 However, if type is a ENUMERAL_TYPE whose values do not
5090 increase monotonically, O(N*log(N)) time may be needed. */
5092 mark_seen_cases (type, cases_seen, size, sparseness);
5094 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5095 if (BITARRAY_TEST (cases_seen, i) == 0)
5096 warning ("enumeration value `%s' not handled in switch",
5097 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5099 free (cases_seen);
5102 /* Now we go the other way around; we warn if there are case
5103 expressions that don't correspond to enumerators. This can
5104 occur since C and C++ don't enforce type-checking of
5105 assignments to enumeration variables. */
5107 if (case_stack->data.case_stmt.case_list
5108 && case_stack->data.case_stmt.case_list->left)
5109 case_stack->data.case_stmt.case_list
5110 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5111 if (warn_switch)
5112 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5114 for (chain = TYPE_VALUES (type);
5115 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5116 chain = TREE_CHAIN (chain))
5119 if (!chain)
5121 if (TYPE_NAME (type) == 0)
5122 warning ("case value `%ld' not in enumerated type",
5123 (long) TREE_INT_CST_LOW (n->low));
5124 else
5125 warning ("case value `%ld' not in enumerated type `%s'",
5126 (long) TREE_INT_CST_LOW (n->low),
5127 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5128 == IDENTIFIER_NODE)
5129 ? TYPE_NAME (type)
5130 : DECL_NAME (TYPE_NAME (type))));
5132 if (!tree_int_cst_equal (n->low, n->high))
5134 for (chain = TYPE_VALUES (type);
5135 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5136 chain = TREE_CHAIN (chain))
5139 if (!chain)
5141 if (TYPE_NAME (type) == 0)
5142 warning ("case value `%ld' not in enumerated type",
5143 (long) TREE_INT_CST_LOW (n->high));
5144 else
5145 warning ("case value `%ld' not in enumerated type `%s'",
5146 (long) TREE_INT_CST_LOW (n->high),
5147 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5148 == IDENTIFIER_NODE)
5149 ? TYPE_NAME (type)
5150 : DECL_NAME (TYPE_NAME (type))));
5155 #if 0
5156 /* ??? This optimization is disabled because it causes valid programs to
5157 fail. ANSI C does not guarantee that an expression with enum type
5158 will have a value that is the same as one of the enumeration literals. */
5160 /* If all values were found as case labels, make one of them the default
5161 label. Thus, this switch will never fall through. We arbitrarily pick
5162 the last one to make the default since this is likely the most
5163 efficient choice. */
5165 if (all_values)
5167 for (l = &case_stack->data.case_stmt.case_list;
5168 (*l)->right != 0;
5169 l = &(*l)->right)
5172 case_stack->data.case_stmt.default_label = (*l)->code_label;
5173 *l = 0;
5175 #endif /* 0 */
5178 /* Free CN, and its children. */
5180 static void
5181 free_case_nodes (cn)
5182 case_node_ptr cn;
5184 if (cn)
5186 free_case_nodes (cn->left);
5187 free_case_nodes (cn->right);
5188 free (cn);
5193 /* Terminate a case (Pascal) or switch (C) statement
5194 in which ORIG_INDEX is the expression to be tested.
5195 Generate the code to test it and jump to the right place. */
5197 void
5198 expand_end_case (orig_index)
5199 tree orig_index;
5201 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE, orig_minval;
5202 rtx default_label = 0;
5203 register struct case_node *n;
5204 unsigned int count;
5205 rtx index;
5206 rtx table_label;
5207 int ncases;
5208 rtx *labelvec;
5209 register int i;
5210 rtx before_case;
5211 register struct nesting *thiscase = case_stack;
5212 tree index_expr, index_type;
5213 int unsignedp;
5215 /* Don't crash due to previous errors. */
5216 if (thiscase == NULL)
5217 return;
5219 table_label = gen_label_rtx ();
5220 index_expr = thiscase->data.case_stmt.index_expr;
5221 index_type = TREE_TYPE (index_expr);
5222 unsignedp = TREE_UNSIGNED (index_type);
5224 do_pending_stack_adjust ();
5226 /* This might get an spurious warning in the presence of a syntax error;
5227 it could be fixed by moving the call to check_seenlabel after the
5228 check for error_mark_node, and copying the code of check_seenlabel that
5229 deals with case_stack->data.case_stmt.line_number_status /
5230 restore_line_number_status in front of the call to end_cleanup_deferral;
5231 However, this might miss some useful warnings in the presence of
5232 non-syntax errors. */
5233 check_seenlabel ();
5235 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5236 if (index_type != error_mark_node)
5238 /* If switch expression was an enumerated type, check that all
5239 enumeration literals are covered by the cases.
5240 No sense trying this if there's a default case, however. */
5242 if (!thiscase->data.case_stmt.default_label
5243 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5244 && TREE_CODE (index_expr) != INTEGER_CST)
5245 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5247 /* If we don't have a default-label, create one here,
5248 after the body of the switch. */
5249 if (thiscase->data.case_stmt.default_label == 0)
5251 thiscase->data.case_stmt.default_label
5252 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5253 expand_label (thiscase->data.case_stmt.default_label);
5255 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5257 before_case = get_last_insn ();
5259 if (thiscase->data.case_stmt.case_list
5260 && thiscase->data.case_stmt.case_list->left)
5261 thiscase->data.case_stmt.case_list
5262 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5264 /* Simplify the case-list before we count it. */
5265 group_case_nodes (thiscase->data.case_stmt.case_list);
5267 /* Get upper and lower bounds of case values.
5268 Also convert all the case values to the index expr's data type. */
5270 count = 0;
5271 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5273 /* Check low and high label values are integers. */
5274 if (TREE_CODE (n->low) != INTEGER_CST)
5275 abort ();
5276 if (TREE_CODE (n->high) != INTEGER_CST)
5277 abort ();
5279 n->low = convert (index_type, n->low);
5280 n->high = convert (index_type, n->high);
5282 /* Count the elements and track the largest and smallest
5283 of them (treating them as signed even if they are not). */
5284 if (count++ == 0)
5286 minval = n->low;
5287 maxval = n->high;
5289 else
5291 if (INT_CST_LT (n->low, minval))
5292 minval = n->low;
5293 if (INT_CST_LT (maxval, n->high))
5294 maxval = n->high;
5296 /* A range counts double, since it requires two compares. */
5297 if (! tree_int_cst_equal (n->low, n->high))
5298 count++;
5301 orig_minval = minval;
5303 /* Compute span of values. */
5304 if (count != 0)
5305 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5307 end_cleanup_deferral ();
5309 if (count == 0)
5311 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5312 emit_queue ();
5313 emit_jump (default_label);
5316 /* If range of values is much bigger than number of values,
5317 make a sequence of conditional branches instead of a dispatch.
5318 If the switch-index is a constant, do it this way
5319 because we can optimize it. */
5321 #ifndef CASE_VALUES_THRESHOLD
5322 #ifdef HAVE_casesi
5323 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
5324 #else
5325 /* If machine does not have a case insn that compares the
5326 bounds, this means extra overhead for dispatch tables
5327 which raises the threshold for using them. */
5328 #define CASE_VALUES_THRESHOLD 5
5329 #endif /* HAVE_casesi */
5330 #endif /* CASE_VALUES_THRESHOLD */
5332 else if (count < CASE_VALUES_THRESHOLD
5333 || compare_tree_int (range, 10 * count) > 0
5334 /* RANGE may be signed, and really large ranges will show up
5335 as negative numbers. */
5336 || compare_tree_int (range, 0) < 0
5337 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5338 || flag_pic
5339 #endif
5340 || TREE_CODE (index_expr) == INTEGER_CST
5341 /* These will reduce to a constant. */
5342 || (TREE_CODE (index_expr) == CALL_EXPR
5343 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
5344 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
5345 && DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_NORMAL
5346 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
5347 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5348 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5350 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5352 /* If the index is a short or char that we do not have
5353 an insn to handle comparisons directly, convert it to
5354 a full integer now, rather than letting each comparison
5355 generate the conversion. */
5357 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5358 && (cmp_optab->handlers[(int) GET_MODE (index)].insn_code
5359 == CODE_FOR_nothing))
5361 enum machine_mode wider_mode;
5362 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5363 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5364 if (cmp_optab->handlers[(int) wider_mode].insn_code
5365 != CODE_FOR_nothing)
5367 index = convert_to_mode (wider_mode, index, unsignedp);
5368 break;
5372 emit_queue ();
5373 do_pending_stack_adjust ();
5375 index = protect_from_queue (index, 0);
5376 if (GET_CODE (index) == MEM)
5377 index = copy_to_reg (index);
5378 if (GET_CODE (index) == CONST_INT
5379 || TREE_CODE (index_expr) == INTEGER_CST)
5381 /* Make a tree node with the proper constant value
5382 if we don't already have one. */
5383 if (TREE_CODE (index_expr) != INTEGER_CST)
5385 index_expr
5386 = build_int_2 (INTVAL (index),
5387 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5388 index_expr = convert (index_type, index_expr);
5391 /* For constant index expressions we need only
5392 issue a unconditional branch to the appropriate
5393 target code. The job of removing any unreachable
5394 code is left to the optimisation phase if the
5395 "-O" option is specified. */
5396 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5397 if (! tree_int_cst_lt (index_expr, n->low)
5398 && ! tree_int_cst_lt (n->high, index_expr))
5399 break;
5401 if (n)
5402 emit_jump (label_rtx (n->code_label));
5403 else
5404 emit_jump (default_label);
5406 else
5408 /* If the index expression is not constant we generate
5409 a binary decision tree to select the appropriate
5410 target code. This is done as follows:
5412 The list of cases is rearranged into a binary tree,
5413 nearly optimal assuming equal probability for each case.
5415 The tree is transformed into RTL, eliminating
5416 redundant test conditions at the same time.
5418 If program flow could reach the end of the
5419 decision tree an unconditional jump to the
5420 default code is emitted. */
5422 use_cost_table
5423 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5424 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5425 balance_case_nodes (&thiscase->data.case_stmt.case_list, NULL);
5426 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5427 default_label, index_type);
5428 emit_jump_if_reachable (default_label);
5431 else
5433 int win = 0;
5434 #ifdef HAVE_casesi
5435 if (HAVE_casesi)
5437 enum machine_mode index_mode = SImode;
5438 int index_bits = GET_MODE_BITSIZE (index_mode);
5439 rtx op1, op2;
5440 enum machine_mode op_mode;
5442 /* Convert the index to SImode. */
5443 if (GET_MODE_BITSIZE (TYPE_MODE (index_type))
5444 > GET_MODE_BITSIZE (index_mode))
5446 enum machine_mode omode = TYPE_MODE (index_type);
5447 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
5449 /* We must handle the endpoints in the original mode. */
5450 index_expr = build (MINUS_EXPR, index_type,
5451 index_expr, minval);
5452 minval = integer_zero_node;
5453 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5454 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
5455 omode, 1, 0, default_label);
5456 /* Now we can safely truncate. */
5457 index = convert_to_mode (index_mode, index, 0);
5459 else
5461 if (TYPE_MODE (index_type) != index_mode)
5463 index_expr = convert (type_for_size (index_bits, 0),
5464 index_expr);
5465 index_type = TREE_TYPE (index_expr);
5468 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5470 emit_queue ();
5471 index = protect_from_queue (index, 0);
5472 do_pending_stack_adjust ();
5474 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
5475 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
5476 (index, op_mode))
5477 index = copy_to_mode_reg (op_mode, index);
5479 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
5481 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
5482 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
5483 op1, TREE_UNSIGNED (TREE_TYPE (minval)));
5484 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
5485 (op1, op_mode))
5486 op1 = copy_to_mode_reg (op_mode, op1);
5488 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
5490 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
5491 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
5492 op2, TREE_UNSIGNED (TREE_TYPE (range)));
5493 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
5494 (op2, op_mode))
5495 op2 = copy_to_mode_reg (op_mode, op2);
5497 emit_jump_insn (gen_casesi (index, op1, op2,
5498 table_label, default_label));
5499 win = 1;
5501 #endif
5502 #ifdef HAVE_tablejump
5503 if (! win && HAVE_tablejump)
5505 index_type = thiscase->data.case_stmt.nominal_type;
5506 index_expr = fold (build (MINUS_EXPR, index_type,
5507 convert (index_type, index_expr),
5508 convert (index_type, minval)));
5509 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5510 emit_queue ();
5511 index = protect_from_queue (index, 0);
5512 do_pending_stack_adjust ();
5514 do_tablejump (index, TYPE_MODE (index_type),
5515 convert_modes (TYPE_MODE (index_type),
5516 TYPE_MODE (TREE_TYPE (range)),
5517 expand_expr (range, NULL_RTX,
5518 VOIDmode, 0),
5519 TREE_UNSIGNED (TREE_TYPE (range))),
5520 table_label, default_label);
5521 win = 1;
5523 #endif
5524 if (! win)
5525 abort ();
5527 /* Get table of labels to jump to, in order of case index. */
5529 ncases = TREE_INT_CST_LOW (range) + 1;
5530 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5531 memset ((char *) labelvec, 0, ncases * sizeof (rtx));
5533 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5535 register HOST_WIDE_INT i
5536 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
5538 while (1)
5540 labelvec[i]
5541 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5542 if (i + TREE_INT_CST_LOW (orig_minval)
5543 == TREE_INT_CST_LOW (n->high))
5544 break;
5545 i++;
5549 /* Fill in the gaps with the default. */
5550 for (i = 0; i < ncases; i++)
5551 if (labelvec[i] == 0)
5552 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5554 /* Output the table */
5555 emit_label (table_label);
5557 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5558 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5559 gen_rtx_LABEL_REF (Pmode, table_label),
5560 gen_rtvec_v (ncases, labelvec),
5561 const0_rtx, const0_rtx));
5562 else
5563 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5564 gen_rtvec_v (ncases, labelvec)));
5566 /* If the case insn drops through the table,
5567 after the table we must jump to the default-label.
5568 Otherwise record no drop-through after the table. */
5569 #ifdef CASE_DROPS_THROUGH
5570 emit_jump (default_label);
5571 #else
5572 emit_barrier ();
5573 #endif
5576 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
5577 reorder_insns (before_case, get_last_insn (),
5578 thiscase->data.case_stmt.start);
5580 else
5581 end_cleanup_deferral ();
5583 if (thiscase->exit_label)
5584 emit_label (thiscase->exit_label);
5586 free_case_nodes (case_stack->data.case_stmt.case_list);
5587 POPSTACK (case_stack);
5589 free_temp_slots ();
5592 /* Convert the tree NODE into a list linked by the right field, with the left
5593 field zeroed. RIGHT is used for recursion; it is a list to be placed
5594 rightmost in the resulting list. */
5596 static struct case_node *
5597 case_tree2list (node, right)
5598 struct case_node *node, *right;
5600 struct case_node *left;
5602 if (node->right)
5603 right = case_tree2list (node->right, right);
5605 node->right = right;
5606 if ((left = node->left))
5608 node->left = 0;
5609 return case_tree2list (left, node);
5612 return node;
5615 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5617 static void
5618 do_jump_if_equal (op1, op2, label, unsignedp)
5619 rtx op1, op2, label;
5620 int unsignedp;
5622 if (GET_CODE (op1) == CONST_INT
5623 && GET_CODE (op2) == CONST_INT)
5625 if (INTVAL (op1) == INTVAL (op2))
5626 emit_jump (label);
5628 else
5630 enum machine_mode mode = GET_MODE (op1);
5631 if (mode == VOIDmode)
5632 mode = GET_MODE (op2);
5633 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp,
5634 0, label);
5638 /* Not all case values are encountered equally. This function
5639 uses a heuristic to weight case labels, in cases where that
5640 looks like a reasonable thing to do.
5642 Right now, all we try to guess is text, and we establish the
5643 following weights:
5645 chars above space: 16
5646 digits: 16
5647 default: 12
5648 space, punct: 8
5649 tab: 4
5650 newline: 2
5651 other "\" chars: 1
5652 remaining chars: 0
5654 If we find any cases in the switch that are not either -1 or in the range
5655 of valid ASCII characters, or are control characters other than those
5656 commonly used with "\", don't treat this switch scanning text.
5658 Return 1 if these nodes are suitable for cost estimation, otherwise
5659 return 0. */
5661 static int
5662 estimate_case_costs (node)
5663 case_node_ptr node;
5665 tree min_ascii = integer_minus_one_node;
5666 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5667 case_node_ptr n;
5668 int i;
5670 /* If we haven't already made the cost table, make it now. Note that the
5671 lower bound of the table is -1, not zero. */
5673 if (! cost_table_initialized)
5675 cost_table_initialized = 1;
5677 for (i = 0; i < 128; i++)
5679 if (ISALNUM (i))
5680 COST_TABLE (i) = 16;
5681 else if (ISPUNCT (i))
5682 COST_TABLE (i) = 8;
5683 else if (ISCNTRL (i))
5684 COST_TABLE (i) = -1;
5687 COST_TABLE (' ') = 8;
5688 COST_TABLE ('\t') = 4;
5689 COST_TABLE ('\0') = 4;
5690 COST_TABLE ('\n') = 2;
5691 COST_TABLE ('\f') = 1;
5692 COST_TABLE ('\v') = 1;
5693 COST_TABLE ('\b') = 1;
5696 /* See if all the case expressions look like text. It is text if the
5697 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5698 as signed arithmetic since we don't want to ever access cost_table with a
5699 value less than -1. Also check that none of the constants in a range
5700 are strange control characters. */
5702 for (n = node; n; n = n->right)
5704 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5705 return 0;
5707 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5708 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5709 if (COST_TABLE (i) < 0)
5710 return 0;
5713 /* All interesting values are within the range of interesting
5714 ASCII characters. */
5715 return 1;
5718 /* Scan an ordered list of case nodes
5719 combining those with consecutive values or ranges.
5721 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5723 static void
5724 group_case_nodes (head)
5725 case_node_ptr head;
5727 case_node_ptr node = head;
5729 while (node)
5731 rtx lb = next_real_insn (label_rtx (node->code_label));
5732 rtx lb2;
5733 case_node_ptr np = node;
5735 /* Try to group the successors of NODE with NODE. */
5736 while (((np = np->right) != 0)
5737 /* Do they jump to the same place? */
5738 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5739 || (lb != 0 && lb2 != 0
5740 && simplejump_p (lb)
5741 && simplejump_p (lb2)
5742 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5743 SET_SRC (PATTERN (lb2)))))
5744 /* Are their ranges consecutive? */
5745 && tree_int_cst_equal (np->low,
5746 fold (build (PLUS_EXPR,
5747 TREE_TYPE (node->high),
5748 node->high,
5749 integer_one_node)))
5750 /* An overflow is not consecutive. */
5751 && tree_int_cst_lt (node->high,
5752 fold (build (PLUS_EXPR,
5753 TREE_TYPE (node->high),
5754 node->high,
5755 integer_one_node))))
5757 node->high = np->high;
5759 /* NP is the first node after NODE which can't be grouped with it.
5760 Delete the nodes in between, and move on to that node. */
5761 node->right = np;
5762 node = np;
5766 /* Take an ordered list of case nodes
5767 and transform them into a near optimal binary tree,
5768 on the assumption that any target code selection value is as
5769 likely as any other.
5771 The transformation is performed by splitting the ordered
5772 list into two equal sections plus a pivot. The parts are
5773 then attached to the pivot as left and right branches. Each
5774 branch is then transformed recursively. */
5776 static void
5777 balance_case_nodes (head, parent)
5778 case_node_ptr *head;
5779 case_node_ptr parent;
5781 register case_node_ptr np;
5783 np = *head;
5784 if (np)
5786 int cost = 0;
5787 int i = 0;
5788 int ranges = 0;
5789 register case_node_ptr *npp;
5790 case_node_ptr left;
5792 /* Count the number of entries on branch. Also count the ranges. */
5794 while (np)
5796 if (!tree_int_cst_equal (np->low, np->high))
5798 ranges++;
5799 if (use_cost_table)
5800 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
5803 if (use_cost_table)
5804 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
5806 i++;
5807 np = np->right;
5810 if (i > 2)
5812 /* Split this list if it is long enough for that to help. */
5813 npp = head;
5814 left = *npp;
5815 if (use_cost_table)
5817 /* Find the place in the list that bisects the list's total cost,
5818 Here I gets half the total cost. */
5819 int n_moved = 0;
5820 i = (cost + 1) / 2;
5821 while (1)
5823 /* Skip nodes while their cost does not reach that amount. */
5824 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5825 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
5826 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
5827 if (i <= 0)
5828 break;
5829 npp = &(*npp)->right;
5830 n_moved += 1;
5832 if (n_moved == 0)
5834 /* Leave this branch lopsided, but optimize left-hand
5835 side and fill in `parent' fields for right-hand side. */
5836 np = *head;
5837 np->parent = parent;
5838 balance_case_nodes (&np->left, np);
5839 for (; np->right; np = np->right)
5840 np->right->parent = np;
5841 return;
5844 /* If there are just three nodes, split at the middle one. */
5845 else if (i == 3)
5846 npp = &(*npp)->right;
5847 else
5849 /* Find the place in the list that bisects the list's total cost,
5850 where ranges count as 2.
5851 Here I gets half the total cost. */
5852 i = (i + ranges + 1) / 2;
5853 while (1)
5855 /* Skip nodes while their cost does not reach that amount. */
5856 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5857 i--;
5858 i--;
5859 if (i <= 0)
5860 break;
5861 npp = &(*npp)->right;
5864 *head = np = *npp;
5865 *npp = 0;
5866 np->parent = parent;
5867 np->left = left;
5869 /* Optimize each of the two split parts. */
5870 balance_case_nodes (&np->left, np);
5871 balance_case_nodes (&np->right, np);
5873 else
5875 /* Else leave this branch as one level,
5876 but fill in `parent' fields. */
5877 np = *head;
5878 np->parent = parent;
5879 for (; np->right; np = np->right)
5880 np->right->parent = np;
5885 /* Search the parent sections of the case node tree
5886 to see if a test for the lower bound of NODE would be redundant.
5887 INDEX_TYPE is the type of the index expression.
5889 The instructions to generate the case decision tree are
5890 output in the same order as nodes are processed so it is
5891 known that if a parent node checks the range of the current
5892 node minus one that the current node is bounded at its lower
5893 span. Thus the test would be redundant. */
5895 static int
5896 node_has_low_bound (node, index_type)
5897 case_node_ptr node;
5898 tree index_type;
5900 tree low_minus_one;
5901 case_node_ptr pnode;
5903 /* If the lower bound of this node is the lowest value in the index type,
5904 we need not test it. */
5906 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5907 return 1;
5909 /* If this node has a left branch, the value at the left must be less
5910 than that at this node, so it cannot be bounded at the bottom and
5911 we need not bother testing any further. */
5913 if (node->left)
5914 return 0;
5916 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5917 node->low, integer_one_node));
5919 /* If the subtraction above overflowed, we can't verify anything.
5920 Otherwise, look for a parent that tests our value - 1. */
5922 if (! tree_int_cst_lt (low_minus_one, node->low))
5923 return 0;
5925 for (pnode = node->parent; pnode; pnode = pnode->parent)
5926 if (tree_int_cst_equal (low_minus_one, pnode->high))
5927 return 1;
5929 return 0;
5932 /* Search the parent sections of the case node tree
5933 to see if a test for the upper bound of NODE would be redundant.
5934 INDEX_TYPE is the type of the index expression.
5936 The instructions to generate the case decision tree are
5937 output in the same order as nodes are processed so it is
5938 known that if a parent node checks the range of the current
5939 node plus one that the current node is bounded at its upper
5940 span. Thus the test would be redundant. */
5942 static int
5943 node_has_high_bound (node, index_type)
5944 case_node_ptr node;
5945 tree index_type;
5947 tree high_plus_one;
5948 case_node_ptr pnode;
5950 /* If there is no upper bound, obviously no test is needed. */
5952 if (TYPE_MAX_VALUE (index_type) == NULL)
5953 return 1;
5955 /* If the upper bound of this node is the highest value in the type
5956 of the index expression, we need not test against it. */
5958 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
5959 return 1;
5961 /* If this node has a right branch, the value at the right must be greater
5962 than that at this node, so it cannot be bounded at the top and
5963 we need not bother testing any further. */
5965 if (node->right)
5966 return 0;
5968 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
5969 node->high, integer_one_node));
5971 /* If the addition above overflowed, we can't verify anything.
5972 Otherwise, look for a parent that tests our value + 1. */
5974 if (! tree_int_cst_lt (node->high, high_plus_one))
5975 return 0;
5977 for (pnode = node->parent; pnode; pnode = pnode->parent)
5978 if (tree_int_cst_equal (high_plus_one, pnode->low))
5979 return 1;
5981 return 0;
5984 /* Search the parent sections of the
5985 case node tree to see if both tests for the upper and lower
5986 bounds of NODE would be redundant. */
5988 static int
5989 node_is_bounded (node, index_type)
5990 case_node_ptr node;
5991 tree index_type;
5993 return (node_has_low_bound (node, index_type)
5994 && node_has_high_bound (node, index_type));
5997 /* Emit an unconditional jump to LABEL unless it would be dead code. */
5999 static void
6000 emit_jump_if_reachable (label)
6001 rtx label;
6003 if (GET_CODE (get_last_insn ()) != BARRIER)
6004 emit_jump (label);
6007 /* Emit step-by-step code to select a case for the value of INDEX.
6008 The thus generated decision tree follows the form of the
6009 case-node binary tree NODE, whose nodes represent test conditions.
6010 INDEX_TYPE is the type of the index of the switch.
6012 Care is taken to prune redundant tests from the decision tree
6013 by detecting any boundary conditions already checked by
6014 emitted rtx. (See node_has_high_bound, node_has_low_bound
6015 and node_is_bounded, above.)
6017 Where the test conditions can be shown to be redundant we emit
6018 an unconditional jump to the target code. As a further
6019 optimization, the subordinates of a tree node are examined to
6020 check for bounded nodes. In this case conditional and/or
6021 unconditional jumps as a result of the boundary check for the
6022 current node are arranged to target the subordinates associated
6023 code for out of bound conditions on the current node.
6025 We can assume that when control reaches the code generated here,
6026 the index value has already been compared with the parents
6027 of this node, and determined to be on the same side of each parent
6028 as this node is. Thus, if this node tests for the value 51,
6029 and a parent tested for 52, we don't need to consider
6030 the possibility of a value greater than 51. If another parent
6031 tests for the value 50, then this node need not test anything. */
6033 static void
6034 emit_case_nodes (index, node, default_label, index_type)
6035 rtx index;
6036 case_node_ptr node;
6037 rtx default_label;
6038 tree index_type;
6040 /* If INDEX has an unsigned type, we must make unsigned branches. */
6041 int unsignedp = TREE_UNSIGNED (index_type);
6042 enum machine_mode mode = GET_MODE (index);
6043 enum machine_mode imode = TYPE_MODE (index_type);
6045 /* See if our parents have already tested everything for us.
6046 If they have, emit an unconditional jump for this node. */
6047 if (node_is_bounded (node, index_type))
6048 emit_jump (label_rtx (node->code_label));
6050 else if (tree_int_cst_equal (node->low, node->high))
6052 /* Node is single valued. First see if the index expression matches
6053 this node and then check our children, if any. */
6055 do_jump_if_equal (index,
6056 convert_modes (mode, imode,
6057 expand_expr (node->low, NULL_RTX,
6058 VOIDmode, 0),
6059 unsignedp),
6060 label_rtx (node->code_label), unsignedp);
6062 if (node->right != 0 && node->left != 0)
6064 /* This node has children on both sides.
6065 Dispatch to one side or the other
6066 by comparing the index value with this node's value.
6067 If one subtree is bounded, check that one first,
6068 so we can avoid real branches in the tree. */
6070 if (node_is_bounded (node->right, index_type))
6072 emit_cmp_and_jump_insns (index,
6073 convert_modes
6074 (mode, imode,
6075 expand_expr (node->high, NULL_RTX,
6076 VOIDmode, 0),
6077 unsignedp),
6078 GT, NULL_RTX, mode, unsignedp, 0,
6079 label_rtx (node->right->code_label));
6080 emit_case_nodes (index, node->left, default_label, index_type);
6083 else if (node_is_bounded (node->left, index_type))
6085 emit_cmp_and_jump_insns (index,
6086 convert_modes
6087 (mode, imode,
6088 expand_expr (node->high, NULL_RTX,
6089 VOIDmode, 0),
6090 unsignedp),
6091 LT, NULL_RTX, mode, unsignedp, 0,
6092 label_rtx (node->left->code_label));
6093 emit_case_nodes (index, node->right, default_label, index_type);
6096 else
6098 /* Neither node is bounded. First distinguish the two sides;
6099 then emit the code for one side at a time. */
6101 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6103 /* See if the value is on the right. */
6104 emit_cmp_and_jump_insns (index,
6105 convert_modes
6106 (mode, imode,
6107 expand_expr (node->high, NULL_RTX,
6108 VOIDmode, 0),
6109 unsignedp),
6110 GT, NULL_RTX, mode, unsignedp, 0,
6111 label_rtx (test_label));
6113 /* Value must be on the left.
6114 Handle the left-hand subtree. */
6115 emit_case_nodes (index, node->left, default_label, index_type);
6116 /* If left-hand subtree does nothing,
6117 go to default. */
6118 emit_jump_if_reachable (default_label);
6120 /* Code branches here for the right-hand subtree. */
6121 expand_label (test_label);
6122 emit_case_nodes (index, node->right, default_label, index_type);
6126 else if (node->right != 0 && node->left == 0)
6128 /* Here we have a right child but no left so we issue conditional
6129 branch to default and process the right child.
6131 Omit the conditional branch to default if we it avoid only one
6132 right child; it costs too much space to save so little time. */
6134 if (node->right->right || node->right->left
6135 || !tree_int_cst_equal (node->right->low, node->right->high))
6137 if (!node_has_low_bound (node, index_type))
6139 emit_cmp_and_jump_insns (index,
6140 convert_modes
6141 (mode, imode,
6142 expand_expr (node->high, NULL_RTX,
6143 VOIDmode, 0),
6144 unsignedp),
6145 LT, NULL_RTX, mode, unsignedp, 0,
6146 default_label);
6149 emit_case_nodes (index, node->right, default_label, index_type);
6151 else
6152 /* We cannot process node->right normally
6153 since we haven't ruled out the numbers less than
6154 this node's value. So handle node->right explicitly. */
6155 do_jump_if_equal (index,
6156 convert_modes
6157 (mode, imode,
6158 expand_expr (node->right->low, NULL_RTX,
6159 VOIDmode, 0),
6160 unsignedp),
6161 label_rtx (node->right->code_label), unsignedp);
6164 else if (node->right == 0 && node->left != 0)
6166 /* Just one subtree, on the left. */
6168 #if 0 /* The following code and comment were formerly part
6169 of the condition here, but they didn't work
6170 and I don't understand what the idea was. -- rms. */
6171 /* If our "most probable entry" is less probable
6172 than the default label, emit a jump to
6173 the default label using condition codes
6174 already lying around. With no right branch,
6175 a branch-greater-than will get us to the default
6176 label correctly. */
6177 if (use_cost_table
6178 && COST_TABLE (TREE_INT_CST_LOW (node->high)) < 12)
6180 #endif /* 0 */
6181 if (node->left->left || node->left->right
6182 || !tree_int_cst_equal (node->left->low, node->left->high))
6184 if (!node_has_high_bound (node, index_type))
6186 emit_cmp_and_jump_insns (index,
6187 convert_modes
6188 (mode, imode,
6189 expand_expr (node->high, NULL_RTX,
6190 VOIDmode, 0),
6191 unsignedp),
6192 GT, NULL_RTX, mode, unsignedp, 0,
6193 default_label);
6196 emit_case_nodes (index, node->left, default_label, index_type);
6198 else
6199 /* We cannot process node->left normally
6200 since we haven't ruled out the numbers less than
6201 this node's value. So handle node->left explicitly. */
6202 do_jump_if_equal (index,
6203 convert_modes
6204 (mode, imode,
6205 expand_expr (node->left->low, NULL_RTX,
6206 VOIDmode, 0),
6207 unsignedp),
6208 label_rtx (node->left->code_label), unsignedp);
6211 else
6213 /* Node is a range. These cases are very similar to those for a single
6214 value, except that we do not start by testing whether this node
6215 is the one to branch to. */
6217 if (node->right != 0 && node->left != 0)
6219 /* Node has subtrees on both sides.
6220 If the right-hand subtree is bounded,
6221 test for it first, since we can go straight there.
6222 Otherwise, we need to make a branch in the control structure,
6223 then handle the two subtrees. */
6224 tree test_label = 0;
6226 if (node_is_bounded (node->right, index_type))
6227 /* Right hand node is fully bounded so we can eliminate any
6228 testing and branch directly to the target code. */
6229 emit_cmp_and_jump_insns (index,
6230 convert_modes
6231 (mode, imode,
6232 expand_expr (node->high, NULL_RTX,
6233 VOIDmode, 0),
6234 unsignedp),
6235 GT, NULL_RTX, mode, unsignedp, 0,
6236 label_rtx (node->right->code_label));
6237 else
6239 /* Right hand node requires testing.
6240 Branch to a label where we will handle it later. */
6242 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6243 emit_cmp_and_jump_insns (index,
6244 convert_modes
6245 (mode, imode,
6246 expand_expr (node->high, NULL_RTX,
6247 VOIDmode, 0),
6248 unsignedp),
6249 GT, NULL_RTX, mode, unsignedp, 0,
6250 label_rtx (test_label));
6253 /* Value belongs to this node or to the left-hand subtree. */
6255 emit_cmp_and_jump_insns (index,
6256 convert_modes
6257 (mode, imode,
6258 expand_expr (node->low, NULL_RTX,
6259 VOIDmode, 0),
6260 unsignedp),
6261 GE, NULL_RTX, mode, unsignedp, 0,
6262 label_rtx (node->code_label));
6264 /* Handle the left-hand subtree. */
6265 emit_case_nodes (index, node->left, default_label, index_type);
6267 /* If right node had to be handled later, do that now. */
6269 if (test_label)
6271 /* If the left-hand subtree fell through,
6272 don't let it fall into the right-hand subtree. */
6273 emit_jump_if_reachable (default_label);
6275 expand_label (test_label);
6276 emit_case_nodes (index, node->right, default_label, index_type);
6280 else if (node->right != 0 && node->left == 0)
6282 /* Deal with values to the left of this node,
6283 if they are possible. */
6284 if (!node_has_low_bound (node, index_type))
6286 emit_cmp_and_jump_insns (index,
6287 convert_modes
6288 (mode, imode,
6289 expand_expr (node->low, NULL_RTX,
6290 VOIDmode, 0),
6291 unsignedp),
6292 LT, NULL_RTX, mode, unsignedp, 0,
6293 default_label);
6296 /* Value belongs to this node or to the right-hand subtree. */
6298 emit_cmp_and_jump_insns (index,
6299 convert_modes
6300 (mode, imode,
6301 expand_expr (node->high, NULL_RTX,
6302 VOIDmode, 0),
6303 unsignedp),
6304 LE, NULL_RTX, mode, unsignedp, 0,
6305 label_rtx (node->code_label));
6307 emit_case_nodes (index, node->right, default_label, index_type);
6310 else if (node->right == 0 && node->left != 0)
6312 /* Deal with values to the right of this node,
6313 if they are possible. */
6314 if (!node_has_high_bound (node, index_type))
6316 emit_cmp_and_jump_insns (index,
6317 convert_modes
6318 (mode, imode,
6319 expand_expr (node->high, NULL_RTX,
6320 VOIDmode, 0),
6321 unsignedp),
6322 GT, NULL_RTX, mode, unsignedp, 0,
6323 default_label);
6326 /* Value belongs to this node or to the left-hand subtree. */
6328 emit_cmp_and_jump_insns (index,
6329 convert_modes
6330 (mode, imode,
6331 expand_expr (node->low, NULL_RTX,
6332 VOIDmode, 0),
6333 unsignedp),
6334 GE, NULL_RTX, mode, unsignedp, 0,
6335 label_rtx (node->code_label));
6337 emit_case_nodes (index, node->left, default_label, index_type);
6340 else
6342 /* Node has no children so we check low and high bounds to remove
6343 redundant tests. Only one of the bounds can exist,
6344 since otherwise this node is bounded--a case tested already. */
6345 int high_bound = node_has_high_bound (node, index_type);
6346 int low_bound = node_has_low_bound (node, index_type);
6348 if (!high_bound && low_bound)
6350 emit_cmp_and_jump_insns (index,
6351 convert_modes
6352 (mode, imode,
6353 expand_expr (node->high, NULL_RTX,
6354 VOIDmode, 0),
6355 unsignedp),
6356 GT, NULL_RTX, mode, unsignedp, 0,
6357 default_label);
6360 else if (!low_bound && high_bound)
6362 emit_cmp_and_jump_insns (index,
6363 convert_modes
6364 (mode, imode,
6365 expand_expr (node->low, NULL_RTX,
6366 VOIDmode, 0),
6367 unsignedp),
6368 LT, NULL_RTX, mode, unsignedp, 0,
6369 default_label);
6371 else if (!low_bound && !high_bound)
6373 /* Instead of doing two branches, emit
6374 (index-low) <= (high-low). */
6375 tree new_bound = fold (build (MINUS_EXPR, index_type, node->high,
6376 node->low));
6377 rtx new_index;
6379 new_index = expand_binop (mode, sub_optab, index,
6380 convert_modes (mode, imode,
6381 expand_expr (node->low, NULL_RTX,
6382 mode, 0),
6383 unsignedp),
6384 NULL_RTX, unsignedp, OPTAB_WIDEN);
6386 emit_cmp_and_jump_insns (new_index,
6387 convert_modes (mode, imode,
6388 expand_expr (new_bound, NULL_RTX,
6389 mode, 0),
6390 unsignedp),
6391 GT, NULL_RTX, mode, 1, 0,
6392 default_label);
6395 emit_jump (label_rtx (node->code_label));