2009-03-10 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / libgfortran / runtime / in_unpack_generic.c
blobb15f4dd990340298e117efe7ba2589cae20d45b5
1 /* Generic helper function for repacking arrays.
2 Copyright 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <string.h>
36 extern void internal_unpack (gfc_array_char *, const void *);
37 export_proto(internal_unpack);
39 void
40 internal_unpack (gfc_array_char * d, const void * s)
42 index_type count[GFC_MAX_DIMENSIONS];
43 index_type extent[GFC_MAX_DIMENSIONS];
44 index_type stride[GFC_MAX_DIMENSIONS];
45 index_type stride0;
46 index_type dim;
47 index_type dsize;
48 char *dest;
49 const char *src;
50 int n;
51 int size;
52 int type_size;
54 dest = d->data;
55 /* This check may be redundant, but do it anyway. */
56 if (s == dest || !s)
57 return;
59 type_size = GFC_DTYPE_TYPE_SIZE (d);
60 switch (type_size)
62 case GFC_DTYPE_INTEGER_1:
63 case GFC_DTYPE_LOGICAL_1:
64 case GFC_DTYPE_DERIVED_1:
65 internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
66 return;
68 case GFC_DTYPE_INTEGER_2:
69 case GFC_DTYPE_LOGICAL_2:
70 internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
71 return;
73 case GFC_DTYPE_INTEGER_4:
74 case GFC_DTYPE_LOGICAL_4:
75 internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
76 return;
78 case GFC_DTYPE_INTEGER_8:
79 case GFC_DTYPE_LOGICAL_8:
80 internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
81 return;
83 #if defined (HAVE_GFC_INTEGER_16)
84 case GFC_DTYPE_INTEGER_16:
85 case GFC_DTYPE_LOGICAL_16:
86 internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
87 return;
88 #endif
89 case GFC_DTYPE_REAL_4:
90 internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
91 return;
93 case GFC_DTYPE_REAL_8:
94 internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
95 return;
97 #if defined(HAVE_GFC_REAL_10)
98 case GFC_DTYPE_REAL_10:
99 internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
100 return;
101 #endif
103 #if defined(HAVE_GFC_REAL_16)
104 case GFC_DTYPE_REAL_16:
105 internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
106 return;
107 #endif
108 case GFC_DTYPE_COMPLEX_4:
109 internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
110 return;
112 case GFC_DTYPE_COMPLEX_8:
113 internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
114 return;
116 #if defined(HAVE_GFC_COMPLEX_10)
117 case GFC_DTYPE_COMPLEX_10:
118 internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
119 return;
120 #endif
122 #if defined(HAVE_GFC_COMPLEX_16)
123 case GFC_DTYPE_COMPLEX_16:
124 internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
125 return;
126 #endif
127 case GFC_DTYPE_DERIVED_2:
128 if (GFC_UNALIGNED_2(d->data) || GFC_UNALIGNED_2(s))
129 break;
130 else
132 internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
133 return;
135 case GFC_DTYPE_DERIVED_4:
136 if (GFC_UNALIGNED_4(d->data) || GFC_UNALIGNED_4(s))
137 break;
138 else
140 internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
141 return;
144 case GFC_DTYPE_DERIVED_8:
145 if (GFC_UNALIGNED_8(d->data) || GFC_UNALIGNED_8(s))
146 break;
147 else
149 internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
150 return;
153 #ifdef HAVE_GFC_INTEGER_16
154 case GFC_DTYPE_DERIVED_16:
155 if (GFC_UNALIGNED_16(d->data) || GFC_UNALIGNED_16(s))
156 break;
157 else
159 internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
160 return;
162 #endif
164 default:
165 break;
168 size = GFC_DESCRIPTOR_SIZE (d);
170 if (d->dim[0].stride == 0)
171 d->dim[0].stride = 1;
173 dim = GFC_DESCRIPTOR_RANK (d);
174 dsize = 1;
175 for (n = 0; n < dim; n++)
177 count[n] = 0;
178 stride[n] = d->dim[n].stride;
179 extent[n] = d->dim[n].ubound + 1 - d->dim[n].lbound;
180 if (extent[n] <= 0)
181 return;
183 if (dsize == stride[n])
184 dsize *= extent[n];
185 else
186 dsize = 0;
189 src = s;
191 if (dsize != 0)
193 memcpy (dest, src, dsize * size);
194 return;
197 stride0 = stride[0] * size;
199 while (dest)
201 /* Copy the data. */
202 memcpy (dest, src, size);
203 /* Advance to the next element. */
204 src += size;
205 dest += stride0;
206 count[0]++;
207 /* Advance to the next source element. */
208 n = 0;
209 while (count[n] == extent[n])
211 /* When we get to the end of a dimension, reset it and increment
212 the next dimension. */
213 count[n] = 0;
214 /* We could precalculate these products, but this is a less
215 frequently used path so probably not worth it. */
216 dest -= stride[n] * extent[n] * size;
217 n++;
218 if (n == dim)
220 dest = NULL;
221 break;
223 else
225 count[n]++;
226 dest += stride[n] * size;