* doc/c-tree.texi (Function Bodies): Update HANDLER documentation.
[official-gcc.git] / gcc / ggc-page.c
blob12b1f17b26583195521b9263ce04b07f4fb2c8cc
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #ifdef ENABLE_VALGRIND_CHECKING
34 # ifdef HAVE_VALGRIND_MEMCHECK_H
35 # include <valgrind/memcheck.h>
36 # elif defined HAVE_MEMCHECK_H
37 # include <memcheck.h>
38 # else
39 # include <valgrind.h>
40 # endif
41 #else
42 /* Avoid #ifdef:s when we can help it. */
43 #define VALGRIND_DISCARD(x)
44 #endif
46 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
47 file open. Prefer either to valloc. */
48 #ifdef HAVE_MMAP_ANON
49 # undef HAVE_MMAP_DEV_ZERO
51 # include <sys/mman.h>
52 # ifndef MAP_FAILED
53 # define MAP_FAILED -1
54 # endif
55 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
56 # define MAP_ANONYMOUS MAP_ANON
57 # endif
58 # define USING_MMAP
60 #endif
62 #ifdef HAVE_MMAP_DEV_ZERO
64 # include <sys/mman.h>
65 # ifndef MAP_FAILED
66 # define MAP_FAILED -1
67 # endif
68 # define USING_MMAP
70 #endif
72 #ifndef USING_MMAP
73 #define USING_MALLOC_PAGE_GROUPS
74 #endif
76 /* Stategy:
78 This garbage-collecting allocator allocates objects on one of a set
79 of pages. Each page can allocate objects of a single size only;
80 available sizes are powers of two starting at four bytes. The size
81 of an allocation request is rounded up to the next power of two
82 (`order'), and satisfied from the appropriate page.
84 Each page is recorded in a page-entry, which also maintains an
85 in-use bitmap of object positions on the page. This allows the
86 allocation state of a particular object to be flipped without
87 touching the page itself.
89 Each page-entry also has a context depth, which is used to track
90 pushing and popping of allocation contexts. Only objects allocated
91 in the current (highest-numbered) context may be collected.
93 Page entries are arranged in an array of singly-linked lists. The
94 array is indexed by the allocation size, in bits, of the pages on
95 it; i.e. all pages on a list allocate objects of the same size.
96 Pages are ordered on the list such that all non-full pages precede
97 all full pages, with non-full pages arranged in order of decreasing
98 context depth.
100 Empty pages (of all orders) are kept on a single page cache list,
101 and are considered first when new pages are required; they are
102 deallocated at the start of the next collection if they haven't
103 been recycled by then. */
105 /* Define GGC_DEBUG_LEVEL to print debugging information.
106 0: No debugging output.
107 1: GC statistics only.
108 2: Page-entry allocations/deallocations as well.
109 3: Object allocations as well.
110 4: Object marks as well. */
111 #define GGC_DEBUG_LEVEL (0)
113 #ifndef HOST_BITS_PER_PTR
114 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
115 #endif
118 /* A two-level tree is used to look up the page-entry for a given
119 pointer. Two chunks of the pointer's bits are extracted to index
120 the first and second levels of the tree, as follows:
122 HOST_PAGE_SIZE_BITS
123 32 | |
124 msb +----------------+----+------+------+ lsb
125 | | |
126 PAGE_L1_BITS |
128 PAGE_L2_BITS
130 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
131 pages are aligned on system page boundaries. The next most
132 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
133 index values in the lookup table, respectively.
135 For 32-bit architectures and the settings below, there are no
136 leftover bits. For architectures with wider pointers, the lookup
137 tree points to a list of pages, which must be scanned to find the
138 correct one. */
140 #define PAGE_L1_BITS (8)
141 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
142 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
143 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
145 #define LOOKUP_L1(p) \
146 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
148 #define LOOKUP_L2(p) \
149 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
151 /* The number of objects per allocation page, for objects on a page of
152 the indicated ORDER. */
153 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
155 /* The number of objects in P. */
156 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
158 /* The size of an object on a page of the indicated ORDER. */
159 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161 /* For speed, we avoid doing a general integer divide to locate the
162 offset in the allocation bitmap, by precalculating numbers M, S
163 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
164 within the page which is evenly divisible by the object size Z. */
165 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
166 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
167 #define OFFSET_TO_BIT(OFFSET, ORDER) \
168 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
170 /* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
173 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
175 #define RTL_SIZE(NSLOTS) \
176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
178 #define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
181 /* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
185 static const size_t extra_order_size_table[] = {
186 sizeof (struct tree_decl),
187 sizeof (struct tree_list),
188 TREE_EXP_SIZE (2),
189 RTL_SIZE (2), /* MEM, PLUS, etc. */
190 RTL_SIZE (9), /* INSN, CALL_INSN, JUMP_INSN */
193 /* The total number of orders. */
195 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
197 /* We use this structure to determine the alignment required for
198 allocations. For power-of-two sized allocations, that's not a
199 problem, but it does matter for odd-sized allocations. */
201 struct max_alignment {
202 char c;
203 union {
204 HOST_WIDEST_INT i;
205 long double d;
206 } u;
209 /* The biggest alignment required. */
211 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
213 /* Compute the smallest nonnegative number which when added to X gives
214 a multiple of F. */
216 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
218 /* Compute the smallest multiple of F that is >= X. */
220 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
222 /* The Ith entry is the number of objects on a page or order I. */
224 static unsigned objects_per_page_table[NUM_ORDERS];
226 /* The Ith entry is the size of an object on a page of order I. */
228 static size_t object_size_table[NUM_ORDERS];
230 /* The Ith entry is a pair of numbers (mult, shift) such that
231 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
232 for all k evenly divisible by OBJECT_SIZE(I). */
234 static struct
236 size_t mult;
237 unsigned int shift;
239 inverse_table[NUM_ORDERS];
241 /* A page_entry records the status of an allocation page. This
242 structure is dynamically sized to fit the bitmap in_use_p. */
243 typedef struct page_entry
245 /* The next page-entry with objects of the same size, or NULL if
246 this is the last page-entry. */
247 struct page_entry *next;
249 /* The number of bytes allocated. (This will always be a multiple
250 of the host system page size.) */
251 size_t bytes;
253 /* The address at which the memory is allocated. */
254 char *page;
256 #ifdef USING_MALLOC_PAGE_GROUPS
257 /* Back pointer to the page group this page came from. */
258 struct page_group *group;
259 #endif
261 /* This is the index in the by_depth varray where this page table
262 can be found. */
263 unsigned long index_by_depth;
265 /* Context depth of this page. */
266 unsigned short context_depth;
268 /* The number of free objects remaining on this page. */
269 unsigned short num_free_objects;
271 /* A likely candidate for the bit position of a free object for the
272 next allocation from this page. */
273 unsigned short next_bit_hint;
275 /* The lg of size of objects allocated from this page. */
276 unsigned char order;
278 /* A bit vector indicating whether or not objects are in use. The
279 Nth bit is one if the Nth object on this page is allocated. This
280 array is dynamically sized. */
281 unsigned long in_use_p[1];
282 } page_entry;
284 #ifdef USING_MALLOC_PAGE_GROUPS
285 /* A page_group describes a large allocation from malloc, from which
286 we parcel out aligned pages. */
287 typedef struct page_group
289 /* A linked list of all extant page groups. */
290 struct page_group *next;
292 /* The address we received from malloc. */
293 char *allocation;
295 /* The size of the block. */
296 size_t alloc_size;
298 /* A bitmask of pages in use. */
299 unsigned int in_use;
300 } page_group;
301 #endif
303 #if HOST_BITS_PER_PTR <= 32
305 /* On 32-bit hosts, we use a two level page table, as pictured above. */
306 typedef page_entry **page_table[PAGE_L1_SIZE];
308 #else
310 /* On 64-bit hosts, we use the same two level page tables plus a linked
311 list that disambiguates the top 32-bits. There will almost always be
312 exactly one entry in the list. */
313 typedef struct page_table_chain
315 struct page_table_chain *next;
316 size_t high_bits;
317 page_entry **table[PAGE_L1_SIZE];
318 } *page_table;
320 #endif
322 /* The rest of the global variables. */
323 static struct globals
325 /* The Nth element in this array is a page with objects of size 2^N.
326 If there are any pages with free objects, they will be at the
327 head of the list. NULL if there are no page-entries for this
328 object size. */
329 page_entry *pages[NUM_ORDERS];
331 /* The Nth element in this array is the last page with objects of
332 size 2^N. NULL if there are no page-entries for this object
333 size. */
334 page_entry *page_tails[NUM_ORDERS];
336 /* Lookup table for associating allocation pages with object addresses. */
337 page_table lookup;
339 /* The system's page size. */
340 size_t pagesize;
341 size_t lg_pagesize;
343 /* Bytes currently allocated. */
344 size_t allocated;
346 /* Bytes currently allocated at the end of the last collection. */
347 size_t allocated_last_gc;
349 /* Total amount of memory mapped. */
350 size_t bytes_mapped;
352 /* Bit N set if any allocations have been done at context depth N. */
353 unsigned long context_depth_allocations;
355 /* Bit N set if any collections have been done at context depth N. */
356 unsigned long context_depth_collections;
358 /* The current depth in the context stack. */
359 unsigned short context_depth;
361 /* A file descriptor open to /dev/zero for reading. */
362 #if defined (HAVE_MMAP_DEV_ZERO)
363 int dev_zero_fd;
364 #endif
366 /* A cache of free system pages. */
367 page_entry *free_pages;
369 #ifdef USING_MALLOC_PAGE_GROUPS
370 page_group *page_groups;
371 #endif
373 /* The file descriptor for debugging output. */
374 FILE *debug_file;
376 /* Current number of elements in use in depth below. */
377 unsigned int depth_in_use;
379 /* Maximum number of elements that can be used before resizing. */
380 unsigned int depth_max;
382 /* Each element of this arry is an index in by_depth where the given
383 depth starts. This structure is indexed by that given depth we
384 are interested in. */
385 unsigned int *depth;
387 /* Current number of elements in use in by_depth below. */
388 unsigned int by_depth_in_use;
390 /* Maximum number of elements that can be used before resizing. */
391 unsigned int by_depth_max;
393 /* Each element of this array is a pointer to a page_entry, all
394 page_entries can be found in here by increasing depth.
395 index_by_depth in the page_entry is the index into this data
396 structure where that page_entry can be found. This is used to
397 speed up finding all page_entries at a particular depth. */
398 page_entry **by_depth;
400 /* Each element is a pointer to the saved in_use_p bits, if any,
401 zero otherwise. We allocate them all together, to enable a
402 better runtime data access pattern. */
403 unsigned long **save_in_use;
405 #ifdef GATHER_STATISTICS
406 struct
408 /* Total memory allocated with ggc_alloc */
409 unsigned long long total_allocated;
410 /* Total overhead for memory to be allocated with ggc_alloc */
411 unsigned long long total_overhead;
413 /* Total allocations and overhead for sizes less than 32, 64 and 128.
414 These sizes are interesting because they are typical cache line
415 sizes. */
417 unsigned long long total_allocated_under32;
418 unsigned long long total_overhead_under32;
420 unsigned long long total_allocated_under64;
421 unsigned long long total_overhead_under64;
423 unsigned long long total_allocated_under128;
424 unsigned long long total_overhead_under128;
426 /* The overhead for each of the allocation orders. */
427 unsigned long long total_overhead_per_order[NUM_ORDERS];
428 } stats;
429 #endif
430 } G;
432 /* The size in bytes required to maintain a bitmap for the objects
433 on a page-entry. */
434 #define BITMAP_SIZE(Num_objects) \
435 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
437 /* Allocate pages in chunks of this size, to throttle calls to memory
438 allocation routines. The first page is used, the rest go onto the
439 free list. This cannot be larger than HOST_BITS_PER_INT for the
440 in_use bitmask for page_group. */
441 #define GGC_QUIRE_SIZE 16
443 /* Initial guess as to how many page table entries we might need. */
444 #define INITIAL_PTE_COUNT 128
446 static int ggc_allocated_p (const void *);
447 static page_entry *lookup_page_table_entry (const void *);
448 static void set_page_table_entry (void *, page_entry *);
449 #ifdef USING_MMAP
450 static char *alloc_anon (char *, size_t);
451 #endif
452 #ifdef USING_MALLOC_PAGE_GROUPS
453 static size_t page_group_index (char *, char *);
454 static void set_page_group_in_use (page_group *, char *);
455 static void clear_page_group_in_use (page_group *, char *);
456 #endif
457 static struct page_entry * alloc_page (unsigned);
458 static void free_page (struct page_entry *);
459 static void release_pages (void);
460 static void clear_marks (void);
461 static void sweep_pages (void);
462 static void ggc_recalculate_in_use_p (page_entry *);
463 static void compute_inverse (unsigned);
464 static inline void adjust_depth (void);
465 static void move_ptes_to_front (int, int);
467 #ifdef ENABLE_GC_CHECKING
468 static void poison_pages (void);
469 #endif
471 void debug_print_page_list (int);
472 static void push_depth (unsigned int);
473 static void push_by_depth (page_entry *, unsigned long *);
474 struct alloc_zone *rtl_zone = NULL;
475 struct alloc_zone *tree_zone = NULL;
476 struct alloc_zone *garbage_zone = NULL;
478 /* Push an entry onto G.depth. */
480 inline static void
481 push_depth (unsigned int i)
483 if (G.depth_in_use >= G.depth_max)
485 G.depth_max *= 2;
486 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
488 G.depth[G.depth_in_use++] = i;
491 /* Push an entry onto G.by_depth and G.save_in_use. */
493 inline static void
494 push_by_depth (page_entry *p, unsigned long *s)
496 if (G.by_depth_in_use >= G.by_depth_max)
498 G.by_depth_max *= 2;
499 G.by_depth = xrealloc (G.by_depth,
500 G.by_depth_max * sizeof (page_entry *));
501 G.save_in_use = xrealloc (G.save_in_use,
502 G.by_depth_max * sizeof (unsigned long *));
504 G.by_depth[G.by_depth_in_use] = p;
505 G.save_in_use[G.by_depth_in_use++] = s;
508 #if (GCC_VERSION < 3001)
509 #define prefetch(X) ((void) X)
510 #else
511 #define prefetch(X) __builtin_prefetch (X)
512 #endif
514 #define save_in_use_p_i(__i) \
515 (G.save_in_use[__i])
516 #define save_in_use_p(__p) \
517 (save_in_use_p_i (__p->index_by_depth))
519 /* Returns nonzero if P was allocated in GC'able memory. */
521 static inline int
522 ggc_allocated_p (const void *p)
524 page_entry ***base;
525 size_t L1, L2;
527 #if HOST_BITS_PER_PTR <= 32
528 base = &G.lookup[0];
529 #else
530 page_table table = G.lookup;
531 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
532 while (1)
534 if (table == NULL)
535 return 0;
536 if (table->high_bits == high_bits)
537 break;
538 table = table->next;
540 base = &table->table[0];
541 #endif
543 /* Extract the level 1 and 2 indices. */
544 L1 = LOOKUP_L1 (p);
545 L2 = LOOKUP_L2 (p);
547 return base[L1] && base[L1][L2];
550 /* Traverse the page table and find the entry for a page.
551 Die (probably) if the object wasn't allocated via GC. */
553 static inline page_entry *
554 lookup_page_table_entry (const void *p)
556 page_entry ***base;
557 size_t L1, L2;
559 #if HOST_BITS_PER_PTR <= 32
560 base = &G.lookup[0];
561 #else
562 page_table table = G.lookup;
563 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
564 while (table->high_bits != high_bits)
565 table = table->next;
566 base = &table->table[0];
567 #endif
569 /* Extract the level 1 and 2 indices. */
570 L1 = LOOKUP_L1 (p);
571 L2 = LOOKUP_L2 (p);
573 return base[L1][L2];
576 /* Set the page table entry for a page. */
578 static void
579 set_page_table_entry (void *p, page_entry *entry)
581 page_entry ***base;
582 size_t L1, L2;
584 #if HOST_BITS_PER_PTR <= 32
585 base = &G.lookup[0];
586 #else
587 page_table table;
588 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
589 for (table = G.lookup; table; table = table->next)
590 if (table->high_bits == high_bits)
591 goto found;
593 /* Not found -- allocate a new table. */
594 table = xcalloc (1, sizeof(*table));
595 table->next = G.lookup;
596 table->high_bits = high_bits;
597 G.lookup = table;
598 found:
599 base = &table->table[0];
600 #endif
602 /* Extract the level 1 and 2 indices. */
603 L1 = LOOKUP_L1 (p);
604 L2 = LOOKUP_L2 (p);
606 if (base[L1] == NULL)
607 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
609 base[L1][L2] = entry;
612 /* Prints the page-entry for object size ORDER, for debugging. */
614 void
615 debug_print_page_list (int order)
617 page_entry *p;
618 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
619 (void *) G.page_tails[order]);
620 p = G.pages[order];
621 while (p != NULL)
623 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
624 p->num_free_objects);
625 p = p->next;
627 printf ("NULL\n");
628 fflush (stdout);
631 #ifdef USING_MMAP
632 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
633 (if non-null). The ifdef structure here is intended to cause a
634 compile error unless exactly one of the HAVE_* is defined. */
636 static inline char *
637 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
639 #ifdef HAVE_MMAP_ANON
640 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
641 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
642 #endif
643 #ifdef HAVE_MMAP_DEV_ZERO
644 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
645 MAP_PRIVATE, G.dev_zero_fd, 0);
646 #endif
648 if (page == (char *) MAP_FAILED)
650 perror ("virtual memory exhausted");
651 exit (FATAL_EXIT_CODE);
654 /* Remember that we allocated this memory. */
655 G.bytes_mapped += size;
657 /* Pretend we don't have access to the allocated pages. We'll enable
658 access to smaller pieces of the area in ggc_alloc. Discard the
659 handle to avoid handle leak. */
660 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
662 return page;
664 #endif
665 #ifdef USING_MALLOC_PAGE_GROUPS
666 /* Compute the index for this page into the page group. */
668 static inline size_t
669 page_group_index (char *allocation, char *page)
671 return (size_t) (page - allocation) >> G.lg_pagesize;
674 /* Set and clear the in_use bit for this page in the page group. */
676 static inline void
677 set_page_group_in_use (page_group *group, char *page)
679 group->in_use |= 1 << page_group_index (group->allocation, page);
682 static inline void
683 clear_page_group_in_use (page_group *group, char *page)
685 group->in_use &= ~(1 << page_group_index (group->allocation, page));
687 #endif
689 /* Allocate a new page for allocating objects of size 2^ORDER,
690 and return an entry for it. The entry is not added to the
691 appropriate page_table list. */
693 static inline struct page_entry *
694 alloc_page (unsigned order)
696 struct page_entry *entry, *p, **pp;
697 char *page;
698 size_t num_objects;
699 size_t bitmap_size;
700 size_t page_entry_size;
701 size_t entry_size;
702 #ifdef USING_MALLOC_PAGE_GROUPS
703 page_group *group;
704 #endif
706 num_objects = OBJECTS_PER_PAGE (order);
707 bitmap_size = BITMAP_SIZE (num_objects + 1);
708 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
709 entry_size = num_objects * OBJECT_SIZE (order);
710 if (entry_size < G.pagesize)
711 entry_size = G.pagesize;
713 entry = NULL;
714 page = NULL;
716 /* Check the list of free pages for one we can use. */
717 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
718 if (p->bytes == entry_size)
719 break;
721 if (p != NULL)
723 /* Recycle the allocated memory from this page ... */
724 *pp = p->next;
725 page = p->page;
727 #ifdef USING_MALLOC_PAGE_GROUPS
728 group = p->group;
729 #endif
731 /* ... and, if possible, the page entry itself. */
732 if (p->order == order)
734 entry = p;
735 memset (entry, 0, page_entry_size);
737 else
738 free (p);
740 #ifdef USING_MMAP
741 else if (entry_size == G.pagesize)
743 /* We want just one page. Allocate a bunch of them and put the
744 extras on the freelist. (Can only do this optimization with
745 mmap for backing store.) */
746 struct page_entry *e, *f = G.free_pages;
747 int i;
749 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
751 /* This loop counts down so that the chain will be in ascending
752 memory order. */
753 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
755 e = xcalloc (1, page_entry_size);
756 e->order = order;
757 e->bytes = G.pagesize;
758 e->page = page + (i << G.lg_pagesize);
759 e->next = f;
760 f = e;
763 G.free_pages = f;
765 else
766 page = alloc_anon (NULL, entry_size);
767 #endif
768 #ifdef USING_MALLOC_PAGE_GROUPS
769 else
771 /* Allocate a large block of memory and serve out the aligned
772 pages therein. This results in much less memory wastage
773 than the traditional implementation of valloc. */
775 char *allocation, *a, *enda;
776 size_t alloc_size, head_slop, tail_slop;
777 int multiple_pages = (entry_size == G.pagesize);
779 if (multiple_pages)
780 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
781 else
782 alloc_size = entry_size + G.pagesize - 1;
783 allocation = xmalloc (alloc_size);
785 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
786 head_slop = page - allocation;
787 if (multiple_pages)
788 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
789 else
790 tail_slop = alloc_size - entry_size - head_slop;
791 enda = allocation + alloc_size - tail_slop;
793 /* We allocated N pages, which are likely not aligned, leaving
794 us with N-1 usable pages. We plan to place the page_group
795 structure somewhere in the slop. */
796 if (head_slop >= sizeof (page_group))
797 group = (page_group *)page - 1;
798 else
800 /* We magically got an aligned allocation. Too bad, we have
801 to waste a page anyway. */
802 if (tail_slop == 0)
804 enda -= G.pagesize;
805 tail_slop += G.pagesize;
807 if (tail_slop < sizeof (page_group))
808 abort ();
809 group = (page_group *)enda;
810 tail_slop -= sizeof (page_group);
813 /* Remember that we allocated this memory. */
814 group->next = G.page_groups;
815 group->allocation = allocation;
816 group->alloc_size = alloc_size;
817 group->in_use = 0;
818 G.page_groups = group;
819 G.bytes_mapped += alloc_size;
821 /* If we allocated multiple pages, put the rest on the free list. */
822 if (multiple_pages)
824 struct page_entry *e, *f = G.free_pages;
825 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
827 e = xcalloc (1, page_entry_size);
828 e->order = order;
829 e->bytes = G.pagesize;
830 e->page = a;
831 e->group = group;
832 e->next = f;
833 f = e;
835 G.free_pages = f;
838 #endif
840 if (entry == NULL)
841 entry = xcalloc (1, page_entry_size);
843 entry->bytes = entry_size;
844 entry->page = page;
845 entry->context_depth = G.context_depth;
846 entry->order = order;
847 entry->num_free_objects = num_objects;
848 entry->next_bit_hint = 1;
850 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
852 #ifdef USING_MALLOC_PAGE_GROUPS
853 entry->group = group;
854 set_page_group_in_use (group, page);
855 #endif
857 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
858 increment the hint. */
859 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
860 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
862 set_page_table_entry (page, entry);
864 if (GGC_DEBUG_LEVEL >= 2)
865 fprintf (G.debug_file,
866 "Allocating page at %p, object size=%lu, data %p-%p\n",
867 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
868 page + entry_size - 1);
870 return entry;
873 /* Adjust the size of G.depth so that no index greater than the one
874 used by the top of the G.by_depth is used. */
876 static inline void
877 adjust_depth (void)
879 page_entry *top;
881 if (G.by_depth_in_use)
883 top = G.by_depth[G.by_depth_in_use-1];
885 /* Peel back indices in depth that index into by_depth, so that
886 as new elements are added to by_depth, we note the indices
887 of those elements, if they are for new context depths. */
888 while (G.depth_in_use > (size_t)top->context_depth+1)
889 --G.depth_in_use;
893 /* For a page that is no longer needed, put it on the free page list. */
895 static inline void
896 free_page (page_entry *entry)
898 if (GGC_DEBUG_LEVEL >= 2)
899 fprintf (G.debug_file,
900 "Deallocating page at %p, data %p-%p\n", (void *) entry,
901 entry->page, entry->page + entry->bytes - 1);
903 /* Mark the page as inaccessible. Discard the handle to avoid handle
904 leak. */
905 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
907 set_page_table_entry (entry->page, NULL);
909 #ifdef USING_MALLOC_PAGE_GROUPS
910 clear_page_group_in_use (entry->group, entry->page);
911 #endif
913 if (G.by_depth_in_use > 1)
915 page_entry *top = G.by_depth[G.by_depth_in_use-1];
917 /* If they are at the same depth, put top element into freed
918 slot. */
919 if (entry->context_depth == top->context_depth)
921 int i = entry->index_by_depth;
922 G.by_depth[i] = top;
923 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
924 top->index_by_depth = i;
926 else
928 /* We cannot free a page from a context deeper than the
929 current one. */
930 abort ();
933 --G.by_depth_in_use;
935 adjust_depth ();
937 entry->next = G.free_pages;
938 G.free_pages = entry;
941 /* Release the free page cache to the system. */
943 static void
944 release_pages (void)
946 #ifdef USING_MMAP
947 page_entry *p, *next;
948 char *start;
949 size_t len;
951 /* Gather up adjacent pages so they are unmapped together. */
952 p = G.free_pages;
954 while (p)
956 start = p->page;
957 next = p->next;
958 len = p->bytes;
959 free (p);
960 p = next;
962 while (p && p->page == start + len)
964 next = p->next;
965 len += p->bytes;
966 free (p);
967 p = next;
970 munmap (start, len);
971 G.bytes_mapped -= len;
974 G.free_pages = NULL;
975 #endif
976 #ifdef USING_MALLOC_PAGE_GROUPS
977 page_entry **pp, *p;
978 page_group **gp, *g;
980 /* Remove all pages from free page groups from the list. */
981 pp = &G.free_pages;
982 while ((p = *pp) != NULL)
983 if (p->group->in_use == 0)
985 *pp = p->next;
986 free (p);
988 else
989 pp = &p->next;
991 /* Remove all free page groups, and release the storage. */
992 gp = &G.page_groups;
993 while ((g = *gp) != NULL)
994 if (g->in_use == 0)
996 *gp = g->next;
997 G.bytes_mapped -= g->alloc_size;
998 free (g->allocation);
1000 else
1001 gp = &g->next;
1002 #endif
1005 /* This table provides a fast way to determine ceil(log_2(size)) for
1006 allocation requests. The minimum allocation size is eight bytes. */
1008 static unsigned char size_lookup[257] =
1010 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1011 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1012 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1013 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1014 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1015 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1016 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1017 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1018 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1019 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1020 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1021 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1022 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1023 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1024 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1025 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1029 /* Typed allocation function. Does nothing special in this collector. */
1031 void *
1032 ggc_alloc_typed (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size)
1034 return ggc_alloc (size);
1037 /* Zone allocation function. Does nothing special in this collector. */
1039 void *
1040 ggc_alloc_zone (size_t size, struct alloc_zone *zone ATTRIBUTE_UNUSED)
1042 return ggc_alloc (size);
1045 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1047 void *
1048 ggc_alloc (size_t size)
1050 unsigned order, word, bit, object_offset;
1051 struct page_entry *entry;
1052 void *result;
1054 if (size <= 256)
1055 order = size_lookup[size];
1056 else
1058 order = 9;
1059 while (size > OBJECT_SIZE (order))
1060 order++;
1063 /* If there are non-full pages for this size allocation, they are at
1064 the head of the list. */
1065 entry = G.pages[order];
1067 /* If there is no page for this object size, or all pages in this
1068 context are full, allocate a new page. */
1069 if (entry == NULL || entry->num_free_objects == 0)
1071 struct page_entry *new_entry;
1072 new_entry = alloc_page (order);
1074 new_entry->index_by_depth = G.by_depth_in_use;
1075 push_by_depth (new_entry, 0);
1077 /* We can skip context depths, if we do, make sure we go all the
1078 way to the new depth. */
1079 while (new_entry->context_depth >= G.depth_in_use)
1080 push_depth (G.by_depth_in_use-1);
1082 /* If this is the only entry, it's also the tail. */
1083 if (entry == NULL)
1084 G.page_tails[order] = new_entry;
1086 /* Put new pages at the head of the page list. */
1087 new_entry->next = entry;
1088 entry = new_entry;
1089 G.pages[order] = new_entry;
1091 /* For a new page, we know the word and bit positions (in the
1092 in_use bitmap) of the first available object -- they're zero. */
1093 new_entry->next_bit_hint = 1;
1094 word = 0;
1095 bit = 0;
1096 object_offset = 0;
1098 else
1100 /* First try to use the hint left from the previous allocation
1101 to locate a clear bit in the in-use bitmap. We've made sure
1102 that the one-past-the-end bit is always set, so if the hint
1103 has run over, this test will fail. */
1104 unsigned hint = entry->next_bit_hint;
1105 word = hint / HOST_BITS_PER_LONG;
1106 bit = hint % HOST_BITS_PER_LONG;
1108 /* If the hint didn't work, scan the bitmap from the beginning. */
1109 if ((entry->in_use_p[word] >> bit) & 1)
1111 word = bit = 0;
1112 while (~entry->in_use_p[word] == 0)
1113 ++word;
1114 while ((entry->in_use_p[word] >> bit) & 1)
1115 ++bit;
1116 hint = word * HOST_BITS_PER_LONG + bit;
1119 /* Next time, try the next bit. */
1120 entry->next_bit_hint = hint + 1;
1122 object_offset = hint * OBJECT_SIZE (order);
1125 /* Set the in-use bit. */
1126 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1128 /* Keep a running total of the number of free objects. If this page
1129 fills up, we may have to move it to the end of the list if the
1130 next page isn't full. If the next page is full, all subsequent
1131 pages are full, so there's no need to move it. */
1132 if (--entry->num_free_objects == 0
1133 && entry->next != NULL
1134 && entry->next->num_free_objects > 0)
1136 G.pages[order] = entry->next;
1137 entry->next = NULL;
1138 G.page_tails[order]->next = entry;
1139 G.page_tails[order] = entry;
1142 /* Calculate the object's address. */
1143 result = entry->page + object_offset;
1145 #ifdef ENABLE_GC_CHECKING
1146 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1147 exact same semantics in presence of memory bugs, regardless of
1148 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1149 handle to avoid handle leak. */
1150 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, OBJECT_SIZE (order)));
1152 /* `Poison' the entire allocated object, including any padding at
1153 the end. */
1154 memset (result, 0xaf, OBJECT_SIZE (order));
1156 /* Make the bytes after the end of the object unaccessible. Discard the
1157 handle to avoid handle leak. */
1158 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1159 OBJECT_SIZE (order) - size));
1160 #endif
1162 /* Tell Valgrind that the memory is there, but its content isn't
1163 defined. The bytes at the end of the object are still marked
1164 unaccessible. */
1165 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1167 /* Keep track of how many bytes are being allocated. This
1168 information is used in deciding when to collect. */
1169 G.allocated += OBJECT_SIZE (order);
1171 #ifdef GATHER_STATISTICS
1173 G.stats.total_overhead += OBJECT_SIZE (order) - size;
1174 G.stats.total_overhead_per_order[order] += OBJECT_SIZE (order) - size;
1175 G.stats.total_allocated += OBJECT_SIZE(order);
1177 if (size <= 32){
1178 G.stats.total_overhead_under32 += OBJECT_SIZE (order) - size;
1179 G.stats.total_allocated_under32 += OBJECT_SIZE(order);
1182 if (size <= 64){
1183 G.stats.total_overhead_under64 += OBJECT_SIZE (order) - size;
1184 G.stats.total_allocated_under64 += OBJECT_SIZE(order);
1187 if (size <= 128){
1188 G.stats.total_overhead_under128 += OBJECT_SIZE (order) - size;
1189 G.stats.total_allocated_under128 += OBJECT_SIZE(order);
1193 #endif
1195 if (GGC_DEBUG_LEVEL >= 3)
1196 fprintf (G.debug_file,
1197 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1198 (unsigned long) size, (unsigned long) OBJECT_SIZE (order), result,
1199 (void *) entry);
1201 return result;
1204 /* If P is not marked, marks it and return false. Otherwise return true.
1205 P must have been allocated by the GC allocator; it mustn't point to
1206 static objects, stack variables, or memory allocated with malloc. */
1209 ggc_set_mark (const void *p)
1211 page_entry *entry;
1212 unsigned bit, word;
1213 unsigned long mask;
1215 /* Look up the page on which the object is alloced. If the object
1216 wasn't allocated by the collector, we'll probably die. */
1217 entry = lookup_page_table_entry (p);
1218 #ifdef ENABLE_CHECKING
1219 if (entry == NULL)
1220 abort ();
1221 #endif
1223 /* Calculate the index of the object on the page; this is its bit
1224 position in the in_use_p bitmap. */
1225 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1226 word = bit / HOST_BITS_PER_LONG;
1227 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1229 /* If the bit was previously set, skip it. */
1230 if (entry->in_use_p[word] & mask)
1231 return 1;
1233 /* Otherwise set it, and decrement the free object count. */
1234 entry->in_use_p[word] |= mask;
1235 entry->num_free_objects -= 1;
1237 if (GGC_DEBUG_LEVEL >= 4)
1238 fprintf (G.debug_file, "Marking %p\n", p);
1240 return 0;
1243 /* Return 1 if P has been marked, zero otherwise.
1244 P must have been allocated by the GC allocator; it mustn't point to
1245 static objects, stack variables, or memory allocated with malloc. */
1248 ggc_marked_p (const void *p)
1250 page_entry *entry;
1251 unsigned bit, word;
1252 unsigned long mask;
1254 /* Look up the page on which the object is alloced. If the object
1255 wasn't allocated by the collector, we'll probably die. */
1256 entry = lookup_page_table_entry (p);
1257 #ifdef ENABLE_CHECKING
1258 if (entry == NULL)
1259 abort ();
1260 #endif
1262 /* Calculate the index of the object on the page; this is its bit
1263 position in the in_use_p bitmap. */
1264 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1265 word = bit / HOST_BITS_PER_LONG;
1266 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1268 return (entry->in_use_p[word] & mask) != 0;
1271 /* Return the size of the gc-able object P. */
1273 size_t
1274 ggc_get_size (const void *p)
1276 page_entry *pe = lookup_page_table_entry (p);
1277 return OBJECT_SIZE (pe->order);
1280 /* Subroutine of init_ggc which computes the pair of numbers used to
1281 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1283 This algorithm is taken from Granlund and Montgomery's paper
1284 "Division by Invariant Integers using Multiplication"
1285 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1286 constants). */
1288 static void
1289 compute_inverse (unsigned order)
1291 size_t size, inv;
1292 unsigned int e;
1294 size = OBJECT_SIZE (order);
1295 e = 0;
1296 while (size % 2 == 0)
1298 e++;
1299 size >>= 1;
1302 inv = size;
1303 while (inv * size != 1)
1304 inv = inv * (2 - inv*size);
1306 DIV_MULT (order) = inv;
1307 DIV_SHIFT (order) = e;
1310 /* Initialize the ggc-mmap allocator. */
1311 void
1312 init_ggc (void)
1314 unsigned order;
1316 G.pagesize = getpagesize();
1317 G.lg_pagesize = exact_log2 (G.pagesize);
1319 #ifdef HAVE_MMAP_DEV_ZERO
1320 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1321 if (G.dev_zero_fd == -1)
1322 internal_error ("open /dev/zero: %m");
1323 #endif
1325 #if 0
1326 G.debug_file = fopen ("ggc-mmap.debug", "w");
1327 #else
1328 G.debug_file = stdout;
1329 #endif
1331 #ifdef USING_MMAP
1332 /* StunOS has an amazing off-by-one error for the first mmap allocation
1333 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1334 believe, is an unaligned page allocation, which would cause us to
1335 hork badly if we tried to use it. */
1337 char *p = alloc_anon (NULL, G.pagesize);
1338 struct page_entry *e;
1339 if ((size_t)p & (G.pagesize - 1))
1341 /* How losing. Discard this one and try another. If we still
1342 can't get something useful, give up. */
1344 p = alloc_anon (NULL, G.pagesize);
1345 if ((size_t)p & (G.pagesize - 1))
1346 abort ();
1349 /* We have a good page, might as well hold onto it... */
1350 e = xcalloc (1, sizeof (struct page_entry));
1351 e->bytes = G.pagesize;
1352 e->page = p;
1353 e->next = G.free_pages;
1354 G.free_pages = e;
1356 #endif
1358 /* Initialize the object size table. */
1359 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1360 object_size_table[order] = (size_t) 1 << order;
1361 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1363 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1365 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1366 so that we're sure of getting aligned memory. */
1367 s = ROUND_UP (s, MAX_ALIGNMENT);
1368 object_size_table[order] = s;
1371 /* Initialize the objects-per-page and inverse tables. */
1372 for (order = 0; order < NUM_ORDERS; ++order)
1374 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1375 if (objects_per_page_table[order] == 0)
1376 objects_per_page_table[order] = 1;
1377 compute_inverse (order);
1380 /* Reset the size_lookup array to put appropriately sized objects in
1381 the special orders. All objects bigger than the previous power
1382 of two, but no greater than the special size, should go in the
1383 new order. */
1384 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1386 int o;
1387 int i;
1389 o = size_lookup[OBJECT_SIZE (order)];
1390 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1391 size_lookup[i] = order;
1394 G.depth_in_use = 0;
1395 G.depth_max = 10;
1396 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1398 G.by_depth_in_use = 0;
1399 G.by_depth_max = INITIAL_PTE_COUNT;
1400 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1401 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1404 /* Increment the `GC context'. Objects allocated in an outer context
1405 are never freed, eliminating the need to register their roots. */
1407 void
1408 ggc_push_context (void)
1410 ++G.context_depth;
1412 /* Die on wrap. */
1413 if (G.context_depth >= HOST_BITS_PER_LONG)
1414 abort ();
1417 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1418 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1420 static void
1421 ggc_recalculate_in_use_p (page_entry *p)
1423 unsigned int i;
1424 size_t num_objects;
1426 /* Because the past-the-end bit in in_use_p is always set, we
1427 pretend there is one additional object. */
1428 num_objects = OBJECTS_IN_PAGE (p) + 1;
1430 /* Reset the free object count. */
1431 p->num_free_objects = num_objects;
1433 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1434 for (i = 0;
1435 i < CEIL (BITMAP_SIZE (num_objects),
1436 sizeof (*p->in_use_p));
1437 ++i)
1439 unsigned long j;
1441 /* Something is in use if it is marked, or if it was in use in a
1442 context further down the context stack. */
1443 p->in_use_p[i] |= save_in_use_p (p)[i];
1445 /* Decrement the free object count for every object allocated. */
1446 for (j = p->in_use_p[i]; j; j >>= 1)
1447 p->num_free_objects -= (j & 1);
1450 if (p->num_free_objects >= num_objects)
1451 abort ();
1454 /* Decrement the `GC context'. All objects allocated since the
1455 previous ggc_push_context are migrated to the outer context. */
1457 void
1458 ggc_pop_context (void)
1460 unsigned long omask;
1461 unsigned int depth, i, e;
1462 #ifdef ENABLE_CHECKING
1463 unsigned int order;
1464 #endif
1466 depth = --G.context_depth;
1467 omask = (unsigned long)1 << (depth + 1);
1469 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1470 return;
1472 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1473 G.context_depth_allocations &= omask - 1;
1474 G.context_depth_collections &= omask - 1;
1476 /* The G.depth array is shortened so that the last index is the
1477 context_depth of the top element of by_depth. */
1478 if (depth+1 < G.depth_in_use)
1479 e = G.depth[depth+1];
1480 else
1481 e = G.by_depth_in_use;
1483 /* We might not have any PTEs of depth depth. */
1484 if (depth < G.depth_in_use)
1487 /* First we go through all the pages at depth depth to
1488 recalculate the in use bits. */
1489 for (i = G.depth[depth]; i < e; ++i)
1491 page_entry *p;
1493 #ifdef ENABLE_CHECKING
1494 p = G.by_depth[i];
1496 /* Check that all of the pages really are at the depth that
1497 we expect. */
1498 if (p->context_depth != depth)
1499 abort ();
1500 if (p->index_by_depth != i)
1501 abort ();
1502 #endif
1504 prefetch (&save_in_use_p_i (i+8));
1505 prefetch (&save_in_use_p_i (i+16));
1506 if (save_in_use_p_i (i))
1508 p = G.by_depth[i];
1509 ggc_recalculate_in_use_p (p);
1510 free (save_in_use_p_i (i));
1511 save_in_use_p_i (i) = 0;
1516 /* Then, we reset all page_entries with a depth greater than depth
1517 to be at depth. */
1518 for (i = e; i < G.by_depth_in_use; ++i)
1520 page_entry *p = G.by_depth[i];
1522 /* Check that all of the pages really are at the depth we
1523 expect. */
1524 #ifdef ENABLE_CHECKING
1525 if (p->context_depth <= depth)
1526 abort ();
1527 if (p->index_by_depth != i)
1528 abort ();
1529 #endif
1530 p->context_depth = depth;
1533 adjust_depth ();
1535 #ifdef ENABLE_CHECKING
1536 for (order = 2; order < NUM_ORDERS; order++)
1538 page_entry *p;
1540 for (p = G.pages[order]; p != NULL; p = p->next)
1542 if (p->context_depth > depth)
1543 abort ();
1544 else if (p->context_depth == depth && save_in_use_p (p))
1545 abort ();
1548 #endif
1551 /* Unmark all objects. */
1553 static inline void
1554 clear_marks (void)
1556 unsigned order;
1558 for (order = 2; order < NUM_ORDERS; order++)
1560 page_entry *p;
1562 for (p = G.pages[order]; p != NULL; p = p->next)
1564 size_t num_objects = OBJECTS_IN_PAGE (p);
1565 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1567 #ifdef ENABLE_CHECKING
1568 /* The data should be page-aligned. */
1569 if ((size_t) p->page & (G.pagesize - 1))
1570 abort ();
1571 #endif
1573 /* Pages that aren't in the topmost context are not collected;
1574 nevertheless, we need their in-use bit vectors to store GC
1575 marks. So, back them up first. */
1576 if (p->context_depth < G.context_depth)
1578 if (! save_in_use_p (p))
1579 save_in_use_p (p) = xmalloc (bitmap_size);
1580 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1583 /* Reset reset the number of free objects and clear the
1584 in-use bits. These will be adjusted by mark_obj. */
1585 p->num_free_objects = num_objects;
1586 memset (p->in_use_p, 0, bitmap_size);
1588 /* Make sure the one-past-the-end bit is always set. */
1589 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1590 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1595 /* Free all empty pages. Partially empty pages need no attention
1596 because the `mark' bit doubles as an `unused' bit. */
1598 static inline void
1599 sweep_pages (void)
1601 unsigned order;
1603 for (order = 2; order < NUM_ORDERS; order++)
1605 /* The last page-entry to consider, regardless of entries
1606 placed at the end of the list. */
1607 page_entry * const last = G.page_tails[order];
1609 size_t num_objects;
1610 size_t live_objects;
1611 page_entry *p, *previous;
1612 int done;
1614 p = G.pages[order];
1615 if (p == NULL)
1616 continue;
1618 previous = NULL;
1621 page_entry *next = p->next;
1623 /* Loop until all entries have been examined. */
1624 done = (p == last);
1626 num_objects = OBJECTS_IN_PAGE (p);
1628 /* Add all live objects on this page to the count of
1629 allocated memory. */
1630 live_objects = num_objects - p->num_free_objects;
1632 G.allocated += OBJECT_SIZE (order) * live_objects;
1634 /* Only objects on pages in the topmost context should get
1635 collected. */
1636 if (p->context_depth < G.context_depth)
1639 /* Remove the page if it's empty. */
1640 else if (live_objects == 0)
1642 if (! previous)
1643 G.pages[order] = next;
1644 else
1645 previous->next = next;
1647 /* Are we removing the last element? */
1648 if (p == G.page_tails[order])
1649 G.page_tails[order] = previous;
1650 free_page (p);
1651 p = previous;
1654 /* If the page is full, move it to the end. */
1655 else if (p->num_free_objects == 0)
1657 /* Don't move it if it's already at the end. */
1658 if (p != G.page_tails[order])
1660 /* Move p to the end of the list. */
1661 p->next = NULL;
1662 G.page_tails[order]->next = p;
1664 /* Update the tail pointer... */
1665 G.page_tails[order] = p;
1667 /* ... and the head pointer, if necessary. */
1668 if (! previous)
1669 G.pages[order] = next;
1670 else
1671 previous->next = next;
1672 p = previous;
1676 /* If we've fallen through to here, it's a page in the
1677 topmost context that is neither full nor empty. Such a
1678 page must precede pages at lesser context depth in the
1679 list, so move it to the head. */
1680 else if (p != G.pages[order])
1682 previous->next = p->next;
1683 p->next = G.pages[order];
1684 G.pages[order] = p;
1685 /* Are we moving the last element? */
1686 if (G.page_tails[order] == p)
1687 G.page_tails[order] = previous;
1688 p = previous;
1691 previous = p;
1692 p = next;
1694 while (! done);
1696 /* Now, restore the in_use_p vectors for any pages from contexts
1697 other than the current one. */
1698 for (p = G.pages[order]; p; p = p->next)
1699 if (p->context_depth != G.context_depth)
1700 ggc_recalculate_in_use_p (p);
1704 #ifdef ENABLE_GC_CHECKING
1705 /* Clobber all free objects. */
1707 static inline void
1708 poison_pages (void)
1710 unsigned order;
1712 for (order = 2; order < NUM_ORDERS; order++)
1714 size_t size = OBJECT_SIZE (order);
1715 page_entry *p;
1717 for (p = G.pages[order]; p != NULL; p = p->next)
1719 size_t num_objects;
1720 size_t i;
1722 if (p->context_depth != G.context_depth)
1723 /* Since we don't do any collection for pages in pushed
1724 contexts, there's no need to do any poisoning. And
1725 besides, the IN_USE_P array isn't valid until we pop
1726 contexts. */
1727 continue;
1729 num_objects = OBJECTS_IN_PAGE (p);
1730 for (i = 0; i < num_objects; i++)
1732 size_t word, bit;
1733 word = i / HOST_BITS_PER_LONG;
1734 bit = i % HOST_BITS_PER_LONG;
1735 if (((p->in_use_p[word] >> bit) & 1) == 0)
1737 char *object = p->page + i * size;
1739 /* Keep poison-by-write when we expect to use Valgrind,
1740 so the exact same memory semantics is kept, in case
1741 there are memory errors. We override this request
1742 below. */
1743 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1744 memset (object, 0xa5, size);
1746 /* Drop the handle to avoid handle leak. */
1747 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1753 #endif
1755 /* Top level mark-and-sweep routine. */
1757 void
1758 ggc_collect (void)
1760 /* Avoid frequent unnecessary work by skipping collection if the
1761 total allocations haven't expanded much since the last
1762 collection. */
1763 float allocated_last_gc =
1764 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1766 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1768 if (G.allocated < allocated_last_gc + min_expand)
1769 return;
1771 timevar_push (TV_GC);
1772 if (!quiet_flag)
1773 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1775 /* Zero the total allocated bytes. This will be recalculated in the
1776 sweep phase. */
1777 G.allocated = 0;
1779 /* Release the pages we freed the last time we collected, but didn't
1780 reuse in the interim. */
1781 release_pages ();
1783 /* Indicate that we've seen collections at this context depth. */
1784 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1786 clear_marks ();
1787 ggc_mark_roots ();
1789 #ifdef ENABLE_GC_CHECKING
1790 poison_pages ();
1791 #endif
1793 sweep_pages ();
1795 G.allocated_last_gc = G.allocated;
1797 timevar_pop (TV_GC);
1799 if (!quiet_flag)
1800 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1803 /* Print allocation statistics. */
1804 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1805 ? (x) \
1806 : ((x) < 1024*1024*10 \
1807 ? (x) / 1024 \
1808 : (x) / (1024*1024))))
1809 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1811 void
1812 ggc_print_statistics (void)
1814 struct ggc_statistics stats;
1815 unsigned int i;
1816 size_t total_overhead = 0;
1818 /* Clear the statistics. */
1819 memset (&stats, 0, sizeof (stats));
1821 /* Make sure collection will really occur. */
1822 G.allocated_last_gc = 0;
1824 /* Collect and print the statistics common across collectors. */
1825 ggc_print_common_statistics (stderr, &stats);
1827 /* Release free pages so that we will not count the bytes allocated
1828 there as part of the total allocated memory. */
1829 release_pages ();
1831 /* Collect some information about the various sizes of
1832 allocation. */
1833 fprintf (stderr, "%-5s %10s %10s %10s\n",
1834 "Size", "Allocated", "Used", "Overhead");
1835 for (i = 0; i < NUM_ORDERS; ++i)
1837 page_entry *p;
1838 size_t allocated;
1839 size_t in_use;
1840 size_t overhead;
1842 /* Skip empty entries. */
1843 if (!G.pages[i])
1844 continue;
1846 overhead = allocated = in_use = 0;
1848 /* Figure out the total number of bytes allocated for objects of
1849 this size, and how many of them are actually in use. Also figure
1850 out how much memory the page table is using. */
1851 for (p = G.pages[i]; p; p = p->next)
1853 allocated += p->bytes;
1854 in_use +=
1855 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
1857 overhead += (sizeof (page_entry) - sizeof (long)
1858 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
1860 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1861 (unsigned long) OBJECT_SIZE (i),
1862 SCALE (allocated), LABEL (allocated),
1863 SCALE (in_use), LABEL (in_use),
1864 SCALE (overhead), LABEL (overhead));
1865 total_overhead += overhead;
1867 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1868 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1869 SCALE (G.allocated), LABEL(G.allocated),
1870 SCALE (total_overhead), LABEL (total_overhead));
1872 #ifdef GATHER_STATISTICS
1874 fprintf (stderr, "Total Overhead: %10lld\n",
1875 G.stats.total_overhead);
1876 fprintf (stderr, "Total Allocated: %10lld\n",
1877 G.stats.total_allocated);
1879 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
1880 G.stats.total_overhead_under32);
1881 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
1882 G.stats.total_allocated_under32);
1883 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
1884 G.stats.total_overhead_under64);
1885 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
1886 G.stats.total_allocated_under64);
1887 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
1888 G.stats.total_overhead_under128);
1889 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
1890 G.stats.total_allocated_under128);
1892 for (i = 0; i < NUM_ORDERS; i++)
1893 if (G.stats.total_overhead_per_order[i])
1894 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
1895 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
1897 #endif
1900 struct ggc_pch_data
1902 struct ggc_pch_ondisk
1904 unsigned totals[NUM_ORDERS];
1905 } d;
1906 size_t base[NUM_ORDERS];
1907 size_t written[NUM_ORDERS];
1910 struct ggc_pch_data *
1911 init_ggc_pch (void)
1913 return xcalloc (sizeof (struct ggc_pch_data), 1);
1916 void
1917 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1918 size_t size, bool is_string ATTRIBUTE_UNUSED)
1920 unsigned order;
1922 if (size <= 256)
1923 order = size_lookup[size];
1924 else
1926 order = 9;
1927 while (size > OBJECT_SIZE (order))
1928 order++;
1931 d->d.totals[order]++;
1934 size_t
1935 ggc_pch_total_size (struct ggc_pch_data *d)
1937 size_t a = 0;
1938 unsigned i;
1940 for (i = 0; i < NUM_ORDERS; i++)
1941 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1942 return a;
1945 void
1946 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
1948 size_t a = (size_t) base;
1949 unsigned i;
1951 for (i = 0; i < NUM_ORDERS; i++)
1953 d->base[i] = a;
1954 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
1959 char *
1960 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1961 size_t size, bool is_string ATTRIBUTE_UNUSED)
1963 unsigned order;
1964 char *result;
1966 if (size <= 256)
1967 order = size_lookup[size];
1968 else
1970 order = 9;
1971 while (size > OBJECT_SIZE (order))
1972 order++;
1975 result = (char *) d->base[order];
1976 d->base[order] += OBJECT_SIZE (order);
1977 return result;
1980 void
1981 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
1982 FILE *f ATTRIBUTE_UNUSED)
1984 /* Nothing to do. */
1987 void
1988 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
1989 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
1990 size_t size, bool is_string ATTRIBUTE_UNUSED)
1992 unsigned order;
1993 static const char emptyBytes[256];
1995 if (size <= 256)
1996 order = size_lookup[size];
1997 else
1999 order = 9;
2000 while (size > OBJECT_SIZE (order))
2001 order++;
2004 if (fwrite (x, size, 1, f) != 1)
2005 fatal_error ("can't write PCH file: %m");
2007 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2008 object out to OBJECT_SIZE(order). This happens for strings. */
2010 if (size != OBJECT_SIZE (order))
2012 unsigned padding = OBJECT_SIZE(order) - size;
2014 /* To speed small writes, we use a nulled-out array that's larger
2015 than most padding requests as the source for our null bytes. This
2016 permits us to do the padding with fwrite() rather than fseek(), and
2017 limits the chance the the OS may try to flush any outstanding
2018 writes. */
2019 if (padding <= sizeof(emptyBytes))
2021 if (fwrite (emptyBytes, 1, padding, f) != padding)
2022 fatal_error ("can't write PCH file");
2024 else
2026 /* Larger than our buffer? Just default to fseek. */
2027 if (fseek (f, padding, SEEK_CUR) != 0)
2028 fatal_error ("can't write PCH file");
2032 d->written[order]++;
2033 if (d->written[order] == d->d.totals[order]
2034 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2035 G.pagesize),
2036 SEEK_CUR) != 0)
2037 fatal_error ("can't write PCH file: %m");
2040 void
2041 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2043 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2044 fatal_error ("can't write PCH file: %m");
2045 free (d);
2048 /* Move the PCH PTE entries just added to the end of by_depth, to the
2049 front. */
2051 static void
2052 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2054 unsigned i;
2056 /* First, we swap the new entries to the front of the varrays. */
2057 page_entry **new_by_depth;
2058 unsigned long **new_save_in_use;
2060 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2061 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2063 memcpy (&new_by_depth[0],
2064 &G.by_depth[count_old_page_tables],
2065 count_new_page_tables * sizeof (void *));
2066 memcpy (&new_by_depth[count_new_page_tables],
2067 &G.by_depth[0],
2068 count_old_page_tables * sizeof (void *));
2069 memcpy (&new_save_in_use[0],
2070 &G.save_in_use[count_old_page_tables],
2071 count_new_page_tables * sizeof (void *));
2072 memcpy (&new_save_in_use[count_new_page_tables],
2073 &G.save_in_use[0],
2074 count_old_page_tables * sizeof (void *));
2076 free (G.by_depth);
2077 free (G.save_in_use);
2079 G.by_depth = new_by_depth;
2080 G.save_in_use = new_save_in_use;
2082 /* Now update all the index_by_depth fields. */
2083 for (i = G.by_depth_in_use; i > 0; --i)
2085 page_entry *p = G.by_depth[i-1];
2086 p->index_by_depth = i-1;
2089 /* And last, we update the depth pointers in G.depth. The first
2090 entry is already 0, and context 0 entries always start at index
2091 0, so there is nothing to update in the first slot. We need a
2092 second slot, only if we have old ptes, and if we do, they start
2093 at index count_new_page_tables. */
2094 if (count_old_page_tables)
2095 push_depth (count_new_page_tables);
2098 void
2099 ggc_pch_read (FILE *f, void *addr)
2101 struct ggc_pch_ondisk d;
2102 unsigned i;
2103 char *offs = addr;
2104 unsigned long count_old_page_tables;
2105 unsigned long count_new_page_tables;
2107 count_old_page_tables = G.by_depth_in_use;
2109 /* We've just read in a PCH file. So, every object that used to be
2110 allocated is now free. */
2111 clear_marks ();
2112 #ifdef ENABLE_GC_CHECKING
2113 poison_pages ();
2114 #endif
2116 /* No object read from a PCH file should ever be freed. So, set the
2117 context depth to 1, and set the depth of all the currently-allocated
2118 pages to be 1 too. PCH pages will have depth 0. */
2119 if (G.context_depth != 0)
2120 abort ();
2121 G.context_depth = 1;
2122 for (i = 0; i < NUM_ORDERS; i++)
2124 page_entry *p;
2125 for (p = G.pages[i]; p != NULL; p = p->next)
2126 p->context_depth = G.context_depth;
2129 /* Allocate the appropriate page-table entries for the pages read from
2130 the PCH file. */
2131 if (fread (&d, sizeof (d), 1, f) != 1)
2132 fatal_error ("can't read PCH file: %m");
2134 for (i = 0; i < NUM_ORDERS; i++)
2136 struct page_entry *entry;
2137 char *pte;
2138 size_t bytes;
2139 size_t num_objs;
2140 size_t j;
2142 if (d.totals[i] == 0)
2143 continue;
2145 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2146 num_objs = bytes / OBJECT_SIZE (i);
2147 entry = xcalloc (1, (sizeof (struct page_entry)
2148 - sizeof (long)
2149 + BITMAP_SIZE (num_objs + 1)));
2150 entry->bytes = bytes;
2151 entry->page = offs;
2152 entry->context_depth = 0;
2153 offs += bytes;
2154 entry->num_free_objects = 0;
2155 entry->order = i;
2157 for (j = 0;
2158 j + HOST_BITS_PER_LONG <= num_objs + 1;
2159 j += HOST_BITS_PER_LONG)
2160 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2161 for (; j < num_objs + 1; j++)
2162 entry->in_use_p[j / HOST_BITS_PER_LONG]
2163 |= 1L << (j % HOST_BITS_PER_LONG);
2165 for (pte = entry->page;
2166 pte < entry->page + entry->bytes;
2167 pte += G.pagesize)
2168 set_page_table_entry (pte, entry);
2170 if (G.page_tails[i] != NULL)
2171 G.page_tails[i]->next = entry;
2172 else
2173 G.pages[i] = entry;
2174 G.page_tails[i] = entry;
2176 /* We start off by just adding all the new information to the
2177 end of the varrays, later, we will move the new information
2178 to the front of the varrays, as the PCH page tables are at
2179 context 0. */
2180 push_by_depth (entry, 0);
2183 /* Now, we update the various data structures that speed page table
2184 handling. */
2185 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2187 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2189 /* Update the statistics. */
2190 G.allocated = G.allocated_last_gc = offs - (char *)addr;