* doc/c-tree.texi (Function Bodies): Update HANDLER documentation.
[official-gcc.git] / gcc / emit-rtl.c
blob0f7e677e3efd063a02c16a838d430aa9cd8af974
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "tm.h"
42 #include "toplev.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "real.h"
55 #include "bitmap.h"
56 #include "basic-block.h"
57 #include "ggc.h"
58 #include "debug.h"
59 #include "langhooks.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
78 static int last_label_num;
80 /* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
83 static int base_label_num;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconst3;
114 REAL_VALUE_TYPE dconst10;
115 REAL_VALUE_TYPE dconstm1;
116 REAL_VALUE_TYPE dconstm2;
117 REAL_VALUE_TYPE dconsthalf;
118 REAL_VALUE_TYPE dconstthird;
119 REAL_VALUE_TYPE dconstpi;
120 REAL_VALUE_TYPE dconste;
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
136 same.
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
151 integers. */
153 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
159 htab_t const_int_htab;
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
163 htab_t mem_attrs_htab;
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
167 htab_t reg_attrs_htab;
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
171 htab_t const_double_htab;
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
179 static rtx make_jump_insn_raw (rtx);
180 static rtx make_call_insn_raw (rtx);
181 static rtx find_line_note (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void unshare_all_decls (tree);
184 static void reset_used_decls (tree);
185 static void mark_label_nuses (rtx);
186 static hashval_t const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx lookup_const_double (rtx);
191 static hashval_t mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
194 enum machine_mode);
195 static hashval_t reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs *get_reg_attrs (tree, int);
198 static tree component_ref_for_mem_expr (tree);
199 static rtx gen_const_vector_0 (enum machine_mode);
200 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
202 /* Probability of the conditional branch currently proceeded by try_split.
203 Set to -1 otherwise. */
204 int split_branch_probability = -1;
206 /* Returns a hash code for X (which is a really a CONST_INT). */
208 static hashval_t
209 const_int_htab_hash (const void *x)
211 return (hashval_t) INTVAL ((rtx) x);
214 /* Returns nonzero if the value represented by X (which is really a
215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
218 static int
219 const_int_htab_eq (const void *x, const void *y)
221 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
224 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
225 static hashval_t
226 const_double_htab_hash (const void *x)
228 rtx value = (rtx) x;
229 hashval_t h;
231 if (GET_MODE (value) == VOIDmode)
232 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
233 else
235 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
236 /* MODE is used in the comparison, so it should be in the hash. */
237 h ^= GET_MODE (value);
239 return h;
242 /* Returns nonzero if the value represented by X (really a ...)
243 is the same as that represented by Y (really a ...) */
244 static int
245 const_double_htab_eq (const void *x, const void *y)
247 rtx a = (rtx)x, b = (rtx)y;
249 if (GET_MODE (a) != GET_MODE (b))
250 return 0;
251 if (GET_MODE (a) == VOIDmode)
252 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
253 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
254 else
255 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
256 CONST_DOUBLE_REAL_VALUE (b));
259 /* Returns a hash code for X (which is a really a mem_attrs *). */
261 static hashval_t
262 mem_attrs_htab_hash (const void *x)
264 mem_attrs *p = (mem_attrs *) x;
266 return (p->alias ^ (p->align * 1000)
267 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
268 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
269 ^ (size_t) p->expr);
272 /* Returns nonzero if the value represented by X (which is really a
273 mem_attrs *) is the same as that given by Y (which is also really a
274 mem_attrs *). */
276 static int
277 mem_attrs_htab_eq (const void *x, const void *y)
279 mem_attrs *p = (mem_attrs *) x;
280 mem_attrs *q = (mem_attrs *) y;
282 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
283 && p->size == q->size && p->align == q->align);
286 /* Allocate a new mem_attrs structure and insert it into the hash table if
287 one identical to it is not already in the table. We are doing this for
288 MEM of mode MODE. */
290 static mem_attrs *
291 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
292 unsigned int align, enum machine_mode mode)
294 mem_attrs attrs;
295 void **slot;
297 /* If everything is the default, we can just return zero.
298 This must match what the corresponding MEM_* macros return when the
299 field is not present. */
300 if (alias == 0 && expr == 0 && offset == 0
301 && (size == 0
302 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
303 && (STRICT_ALIGNMENT && mode != BLKmode
304 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
305 return 0;
307 attrs.alias = alias;
308 attrs.expr = expr;
309 attrs.offset = offset;
310 attrs.size = size;
311 attrs.align = align;
313 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
314 if (*slot == 0)
316 *slot = ggc_alloc (sizeof (mem_attrs));
317 memcpy (*slot, &attrs, sizeof (mem_attrs));
320 return *slot;
323 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 static hashval_t
326 reg_attrs_htab_hash (const void *x)
328 reg_attrs *p = (reg_attrs *) x;
330 return ((p->offset * 1000) ^ (long) p->decl);
333 /* Returns nonzero if the value represented by X (which is really a
334 reg_attrs *) is the same as that given by Y (which is also really a
335 reg_attrs *). */
337 static int
338 reg_attrs_htab_eq (const void *x, const void *y)
340 reg_attrs *p = (reg_attrs *) x;
341 reg_attrs *q = (reg_attrs *) y;
343 return (p->decl == q->decl && p->offset == q->offset);
345 /* Allocate a new reg_attrs structure and insert it into the hash table if
346 one identical to it is not already in the table. We are doing this for
347 MEM of mode MODE. */
349 static reg_attrs *
350 get_reg_attrs (tree decl, int offset)
352 reg_attrs attrs;
353 void **slot;
355 /* If everything is the default, we can just return zero. */
356 if (decl == 0 && offset == 0)
357 return 0;
359 attrs.decl = decl;
360 attrs.offset = offset;
362 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
363 if (*slot == 0)
365 *slot = ggc_alloc (sizeof (reg_attrs));
366 memcpy (*slot, &attrs, sizeof (reg_attrs));
369 return *slot;
372 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
373 don't attempt to share with the various global pieces of rtl (such as
374 frame_pointer_rtx). */
377 gen_raw_REG (enum machine_mode mode, int regno)
379 rtx x = gen_rtx_raw_REG (mode, regno);
380 ORIGINAL_REGNO (x) = regno;
381 return x;
384 /* There are some RTL codes that require special attention; the generation
385 functions do the raw handling. If you add to this list, modify
386 special_rtx in gengenrtl.c as well. */
389 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
391 void **slot;
393 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
394 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
396 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
397 if (const_true_rtx && arg == STORE_FLAG_VALUE)
398 return const_true_rtx;
399 #endif
401 /* Look up the CONST_INT in the hash table. */
402 slot = htab_find_slot_with_hash (const_int_htab, &arg,
403 (hashval_t) arg, INSERT);
404 if (*slot == 0)
405 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
407 return (rtx) *slot;
411 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
413 return GEN_INT (trunc_int_for_mode (c, mode));
416 /* CONST_DOUBLEs might be created from pairs of integers, or from
417 REAL_VALUE_TYPEs. Also, their length is known only at run time,
418 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
420 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
421 hash table. If so, return its counterpart; otherwise add it
422 to the hash table and return it. */
423 static rtx
424 lookup_const_double (rtx real)
426 void **slot = htab_find_slot (const_double_htab, real, INSERT);
427 if (*slot == 0)
428 *slot = real;
430 return (rtx) *slot;
433 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
434 VALUE in mode MODE. */
436 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
438 rtx real = rtx_alloc (CONST_DOUBLE);
439 PUT_MODE (real, mode);
441 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
443 return lookup_const_double (real);
446 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
447 of ints: I0 is the low-order word and I1 is the high-order word.
448 Do not use this routine for non-integer modes; convert to
449 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
452 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
454 rtx value;
455 unsigned int i;
457 if (mode != VOIDmode)
459 int width;
460 if (GET_MODE_CLASS (mode) != MODE_INT
461 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
462 /* We can get a 0 for an error mark. */
463 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
464 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
465 abort ();
467 /* We clear out all bits that don't belong in MODE, unless they and
468 our sign bit are all one. So we get either a reasonable negative
469 value or a reasonable unsigned value for this mode. */
470 width = GET_MODE_BITSIZE (mode);
471 if (width < HOST_BITS_PER_WIDE_INT
472 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
473 != ((HOST_WIDE_INT) (-1) << (width - 1))))
474 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
475 else if (width == HOST_BITS_PER_WIDE_INT
476 && ! (i1 == ~0 && i0 < 0))
477 i1 = 0;
478 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
479 /* We cannot represent this value as a constant. */
480 abort ();
482 /* If this would be an entire word for the target, but is not for
483 the host, then sign-extend on the host so that the number will
484 look the same way on the host that it would on the target.
486 For example, when building a 64 bit alpha hosted 32 bit sparc
487 targeted compiler, then we want the 32 bit unsigned value -1 to be
488 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
489 The latter confuses the sparc backend. */
491 if (width < HOST_BITS_PER_WIDE_INT
492 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
493 i0 |= ((HOST_WIDE_INT) (-1) << width);
495 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
496 CONST_INT.
498 ??? Strictly speaking, this is wrong if we create a CONST_INT for
499 a large unsigned constant with the size of MODE being
500 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
501 in a wider mode. In that case we will mis-interpret it as a
502 negative number.
504 Unfortunately, the only alternative is to make a CONST_DOUBLE for
505 any constant in any mode if it is an unsigned constant larger
506 than the maximum signed integer in an int on the host. However,
507 doing this will break everyone that always expects to see a
508 CONST_INT for SImode and smaller.
510 We have always been making CONST_INTs in this case, so nothing
511 new is being broken. */
513 if (width <= HOST_BITS_PER_WIDE_INT)
514 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
517 /* If this integer fits in one word, return a CONST_INT. */
518 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
519 return GEN_INT (i0);
521 /* We use VOIDmode for integers. */
522 value = rtx_alloc (CONST_DOUBLE);
523 PUT_MODE (value, VOIDmode);
525 CONST_DOUBLE_LOW (value) = i0;
526 CONST_DOUBLE_HIGH (value) = i1;
528 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
529 XWINT (value, i) = 0;
531 return lookup_const_double (value);
535 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
537 /* In case the MD file explicitly references the frame pointer, have
538 all such references point to the same frame pointer. This is
539 used during frame pointer elimination to distinguish the explicit
540 references to these registers from pseudos that happened to be
541 assigned to them.
543 If we have eliminated the frame pointer or arg pointer, we will
544 be using it as a normal register, for example as a spill
545 register. In such cases, we might be accessing it in a mode that
546 is not Pmode and therefore cannot use the pre-allocated rtx.
548 Also don't do this when we are making new REGs in reload, since
549 we don't want to get confused with the real pointers. */
551 if (mode == Pmode && !reload_in_progress)
553 if (regno == FRAME_POINTER_REGNUM
554 && (!reload_completed || frame_pointer_needed))
555 return frame_pointer_rtx;
556 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
557 if (regno == HARD_FRAME_POINTER_REGNUM
558 && (!reload_completed || frame_pointer_needed))
559 return hard_frame_pointer_rtx;
560 #endif
561 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
562 if (regno == ARG_POINTER_REGNUM)
563 return arg_pointer_rtx;
564 #endif
565 #ifdef RETURN_ADDRESS_POINTER_REGNUM
566 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
567 return return_address_pointer_rtx;
568 #endif
569 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
570 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
571 return pic_offset_table_rtx;
572 if (regno == STACK_POINTER_REGNUM)
573 return stack_pointer_rtx;
576 #if 0
577 /* If the per-function register table has been set up, try to re-use
578 an existing entry in that table to avoid useless generation of RTL.
580 This code is disabled for now until we can fix the various backends
581 which depend on having non-shared hard registers in some cases. Long
582 term we want to re-enable this code as it can significantly cut down
583 on the amount of useless RTL that gets generated.
585 We'll also need to fix some code that runs after reload that wants to
586 set ORIGINAL_REGNO. */
588 if (cfun
589 && cfun->emit
590 && regno_reg_rtx
591 && regno < FIRST_PSEUDO_REGISTER
592 && reg_raw_mode[regno] == mode)
593 return regno_reg_rtx[regno];
594 #endif
596 return gen_raw_REG (mode, regno);
600 gen_rtx_MEM (enum machine_mode mode, rtx addr)
602 rtx rt = gen_rtx_raw_MEM (mode, addr);
604 /* This field is not cleared by the mere allocation of the rtx, so
605 we clear it here. */
606 MEM_ATTRS (rt) = 0;
608 return rt;
612 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
614 /* This is the most common failure type.
615 Catch it early so we can see who does it. */
616 if ((offset % GET_MODE_SIZE (mode)) != 0)
617 abort ();
619 /* This check isn't usable right now because combine will
620 throw arbitrary crap like a CALL into a SUBREG in
621 gen_lowpart_for_combine so we must just eat it. */
622 #if 0
623 /* Check for this too. */
624 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
625 abort ();
626 #endif
627 return gen_rtx_raw_SUBREG (mode, reg, offset);
630 /* Generate a SUBREG representing the least-significant part of REG if MODE
631 is smaller than mode of REG, otherwise paradoxical SUBREG. */
634 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
636 enum machine_mode inmode;
638 inmode = GET_MODE (reg);
639 if (inmode == VOIDmode)
640 inmode = mode;
641 return gen_rtx_SUBREG (mode, reg,
642 subreg_lowpart_offset (mode, inmode));
645 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
647 ** This routine generates an RTX of the size specified by
648 ** <code>, which is an RTX code. The RTX structure is initialized
649 ** from the arguments <element1> through <elementn>, which are
650 ** interpreted according to the specific RTX type's format. The
651 ** special machine mode associated with the rtx (if any) is specified
652 ** in <mode>.
654 ** gen_rtx can be invoked in a way which resembles the lisp-like
655 ** rtx it will generate. For example, the following rtx structure:
657 ** (plus:QI (mem:QI (reg:SI 1))
658 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
660 ** ...would be generated by the following C code:
662 ** gen_rtx (PLUS, QImode,
663 ** gen_rtx (MEM, QImode,
664 ** gen_rtx (REG, SImode, 1)),
665 ** gen_rtx (MEM, QImode,
666 ** gen_rtx (PLUS, SImode,
667 ** gen_rtx (REG, SImode, 2),
668 ** gen_rtx (REG, SImode, 3)))),
671 /*VARARGS2*/
673 gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
675 int i; /* Array indices... */
676 const char *fmt; /* Current rtx's format... */
677 rtx rt_val; /* RTX to return to caller... */
678 va_list p;
680 va_start (p, mode);
682 switch (code)
684 case CONST_INT:
685 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
686 break;
688 case CONST_DOUBLE:
690 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
691 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
693 rt_val = immed_double_const (arg0, arg1, mode);
695 break;
697 case REG:
698 rt_val = gen_rtx_REG (mode, va_arg (p, int));
699 break;
701 case MEM:
702 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
703 break;
705 default:
706 rt_val = rtx_alloc (code); /* Allocate the storage space. */
707 rt_val->mode = mode; /* Store the machine mode... */
709 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
710 for (i = 0; i < GET_RTX_LENGTH (code); i++)
712 switch (*fmt++)
714 case '0': /* Field with unknown use. Zero it. */
715 X0EXP (rt_val, i) = NULL_RTX;
716 break;
718 case 'i': /* An integer? */
719 XINT (rt_val, i) = va_arg (p, int);
720 break;
722 case 'w': /* A wide integer? */
723 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
724 break;
726 case 's': /* A string? */
727 XSTR (rt_val, i) = va_arg (p, char *);
728 break;
730 case 'e': /* An expression? */
731 case 'u': /* An insn? Same except when printing. */
732 XEXP (rt_val, i) = va_arg (p, rtx);
733 break;
735 case 'E': /* An RTX vector? */
736 XVEC (rt_val, i) = va_arg (p, rtvec);
737 break;
739 case 'b': /* A bitmap? */
740 XBITMAP (rt_val, i) = va_arg (p, bitmap);
741 break;
743 case 't': /* A tree? */
744 XTREE (rt_val, i) = va_arg (p, tree);
745 break;
747 default:
748 abort ();
751 break;
754 va_end (p);
755 return rt_val;
758 /* gen_rtvec (n, [rt1, ..., rtn])
760 ** This routine creates an rtvec and stores within it the
761 ** pointers to rtx's which are its arguments.
764 /*VARARGS1*/
765 rtvec
766 gen_rtvec (int n, ...)
768 int i, save_n;
769 rtx *vector;
770 va_list p;
772 va_start (p, n);
774 if (n == 0)
775 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
777 vector = alloca (n * sizeof (rtx));
779 for (i = 0; i < n; i++)
780 vector[i] = va_arg (p, rtx);
782 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
783 save_n = n;
784 va_end (p);
786 return gen_rtvec_v (save_n, vector);
789 rtvec
790 gen_rtvec_v (int n, rtx *argp)
792 int i;
793 rtvec rt_val;
795 if (n == 0)
796 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
798 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
800 for (i = 0; i < n; i++)
801 rt_val->elem[i] = *argp++;
803 return rt_val;
806 /* Generate a REG rtx for a new pseudo register of mode MODE.
807 This pseudo is assigned the next sequential register number. */
810 gen_reg_rtx (enum machine_mode mode)
812 struct function *f = cfun;
813 rtx val;
815 /* Don't let anything called after initial flow analysis create new
816 registers. */
817 if (no_new_pseudos)
818 abort ();
820 if (generating_concat_p
821 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
822 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
824 /* For complex modes, don't make a single pseudo.
825 Instead, make a CONCAT of two pseudos.
826 This allows noncontiguous allocation of the real and imaginary parts,
827 which makes much better code. Besides, allocating DCmode
828 pseudos overstrains reload on some machines like the 386. */
829 rtx realpart, imagpart;
830 enum machine_mode partmode = GET_MODE_INNER (mode);
832 realpart = gen_reg_rtx (partmode);
833 imagpart = gen_reg_rtx (partmode);
834 return gen_rtx_CONCAT (mode, realpart, imagpart);
837 /* Make sure regno_pointer_align, and regno_reg_rtx are large
838 enough to have an element for this pseudo reg number. */
840 if (reg_rtx_no == f->emit->regno_pointer_align_length)
842 int old_size = f->emit->regno_pointer_align_length;
843 char *new;
844 rtx *new1;
846 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
847 memset (new + old_size, 0, old_size);
848 f->emit->regno_pointer_align = (unsigned char *) new;
850 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
851 old_size * 2 * sizeof (rtx));
852 memset (new1 + old_size, 0, old_size * sizeof (rtx));
853 regno_reg_rtx = new1;
855 f->emit->regno_pointer_align_length = old_size * 2;
858 val = gen_raw_REG (mode, reg_rtx_no);
859 regno_reg_rtx[reg_rtx_no++] = val;
860 return val;
863 /* Generate a register with same attributes as REG,
864 but offsetted by OFFSET. */
867 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
869 rtx new = gen_rtx_REG (mode, regno);
870 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
871 REG_OFFSET (reg) + offset);
872 return new;
875 /* Set the decl for MEM to DECL. */
877 void
878 set_reg_attrs_from_mem (rtx reg, rtx mem)
880 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
881 REG_ATTRS (reg)
882 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
885 /* Set the register attributes for registers contained in PARM_RTX.
886 Use needed values from memory attributes of MEM. */
888 void
889 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
891 if (GET_CODE (parm_rtx) == REG)
892 set_reg_attrs_from_mem (parm_rtx, mem);
893 else if (GET_CODE (parm_rtx) == PARALLEL)
895 /* Check for a NULL entry in the first slot, used to indicate that the
896 parameter goes both on the stack and in registers. */
897 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
898 for (; i < XVECLEN (parm_rtx, 0); i++)
900 rtx x = XVECEXP (parm_rtx, 0, i);
901 if (GET_CODE (XEXP (x, 0)) == REG)
902 REG_ATTRS (XEXP (x, 0))
903 = get_reg_attrs (MEM_EXPR (mem),
904 INTVAL (XEXP (x, 1)));
909 /* Assign the RTX X to declaration T. */
910 void
911 set_decl_rtl (tree t, rtx x)
913 DECL_CHECK (t)->decl.rtl = x;
915 if (!x)
916 return;
917 /* For register, we maintain the reverse information too. */
918 if (GET_CODE (x) == REG)
919 REG_ATTRS (x) = get_reg_attrs (t, 0);
920 else if (GET_CODE (x) == SUBREG)
921 REG_ATTRS (SUBREG_REG (x))
922 = get_reg_attrs (t, -SUBREG_BYTE (x));
923 if (GET_CODE (x) == CONCAT)
925 if (REG_P (XEXP (x, 0)))
926 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
927 if (REG_P (XEXP (x, 1)))
928 REG_ATTRS (XEXP (x, 1))
929 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
931 if (GET_CODE (x) == PARALLEL)
933 int i;
934 for (i = 0; i < XVECLEN (x, 0); i++)
936 rtx y = XVECEXP (x, 0, i);
937 if (REG_P (XEXP (y, 0)))
938 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
943 /* Identify REG (which may be a CONCAT) as a user register. */
945 void
946 mark_user_reg (rtx reg)
948 if (GET_CODE (reg) == CONCAT)
950 REG_USERVAR_P (XEXP (reg, 0)) = 1;
951 REG_USERVAR_P (XEXP (reg, 1)) = 1;
953 else if (GET_CODE (reg) == REG)
954 REG_USERVAR_P (reg) = 1;
955 else
956 abort ();
959 /* Identify REG as a probable pointer register and show its alignment
960 as ALIGN, if nonzero. */
962 void
963 mark_reg_pointer (rtx reg, int align)
965 if (! REG_POINTER (reg))
967 REG_POINTER (reg) = 1;
969 if (align)
970 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
972 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
973 /* We can no-longer be sure just how aligned this pointer is */
974 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
977 /* Return 1 plus largest pseudo reg number used in the current function. */
980 max_reg_num (void)
982 return reg_rtx_no;
985 /* Return 1 + the largest label number used so far in the current function. */
988 max_label_num (void)
990 if (last_label_num && label_num == base_label_num)
991 return last_label_num;
992 return label_num;
995 /* Return first label number used in this function (if any were used). */
998 get_first_label_num (void)
1000 return first_label_num;
1003 /* Return the final regno of X, which is a SUBREG of a hard
1004 register. */
1006 subreg_hard_regno (rtx x, int check_mode)
1008 enum machine_mode mode = GET_MODE (x);
1009 unsigned int byte_offset, base_regno, final_regno;
1010 rtx reg = SUBREG_REG (x);
1012 /* This is where we attempt to catch illegal subregs
1013 created by the compiler. */
1014 if (GET_CODE (x) != SUBREG
1015 || GET_CODE (reg) != REG)
1016 abort ();
1017 base_regno = REGNO (reg);
1018 if (base_regno >= FIRST_PSEUDO_REGISTER)
1019 abort ();
1020 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
1021 abort ();
1022 #ifdef ENABLE_CHECKING
1023 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1024 SUBREG_BYTE (x), mode))
1025 abort ();
1026 #endif
1027 /* Catch non-congruent offsets too. */
1028 byte_offset = SUBREG_BYTE (x);
1029 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1030 abort ();
1032 final_regno = subreg_regno (x);
1034 return final_regno;
1037 /* Return a value representing some low-order bits of X, where the number
1038 of low-order bits is given by MODE. Note that no conversion is done
1039 between floating-point and fixed-point values, rather, the bit
1040 representation is returned.
1042 This function handles the cases in common between gen_lowpart, below,
1043 and two variants in cse.c and combine.c. These are the cases that can
1044 be safely handled at all points in the compilation.
1046 If this is not a case we can handle, return 0. */
1049 gen_lowpart_common (enum machine_mode mode, rtx x)
1051 int msize = GET_MODE_SIZE (mode);
1052 int xsize = GET_MODE_SIZE (GET_MODE (x));
1053 int offset = 0;
1055 if (GET_MODE (x) == mode)
1056 return x;
1058 /* MODE must occupy no more words than the mode of X. */
1059 if (GET_MODE (x) != VOIDmode
1060 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1061 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1062 return 0;
1064 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1065 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1066 && GET_MODE (x) != VOIDmode && msize > xsize)
1067 return 0;
1069 offset = subreg_lowpart_offset (mode, GET_MODE (x));
1071 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1072 && (GET_MODE_CLASS (mode) == MODE_INT
1073 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1075 /* If we are getting the low-order part of something that has been
1076 sign- or zero-extended, we can either just use the object being
1077 extended or make a narrower extension. If we want an even smaller
1078 piece than the size of the object being extended, call ourselves
1079 recursively.
1081 This case is used mostly by combine and cse. */
1083 if (GET_MODE (XEXP (x, 0)) == mode)
1084 return XEXP (x, 0);
1085 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1086 return gen_lowpart_common (mode, XEXP (x, 0));
1087 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
1088 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1090 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1091 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1092 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1093 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
1094 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1095 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1096 from the low-order part of the constant. */
1097 else if ((GET_MODE_CLASS (mode) == MODE_INT
1098 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1099 && GET_MODE (x) == VOIDmode
1100 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1102 /* If MODE is twice the host word size, X is already the desired
1103 representation. Otherwise, if MODE is wider than a word, we can't
1104 do this. If MODE is exactly a word, return just one CONST_INT. */
1106 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1107 return x;
1108 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1109 return 0;
1110 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1111 return (GET_CODE (x) == CONST_INT ? x
1112 : GEN_INT (CONST_DOUBLE_LOW (x)));
1113 else
1115 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1116 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1117 : CONST_DOUBLE_LOW (x));
1119 /* Sign extend to HOST_WIDE_INT. */
1120 val = trunc_int_for_mode (val, mode);
1122 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1123 : GEN_INT (val));
1127 /* The floating-point emulator can handle all conversions between
1128 FP and integer operands. This simplifies reload because it
1129 doesn't have to deal with constructs like (subreg:DI
1130 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1131 /* Single-precision floats are always 32-bits and double-precision
1132 floats are always 64-bits. */
1134 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1135 && GET_MODE_BITSIZE (mode) == 32
1136 && GET_CODE (x) == CONST_INT)
1138 REAL_VALUE_TYPE r;
1139 long i = INTVAL (x);
1141 real_from_target (&r, &i, mode);
1142 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1144 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1145 && GET_MODE_BITSIZE (mode) == 64
1146 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1147 && GET_MODE (x) == VOIDmode)
1149 REAL_VALUE_TYPE r;
1150 HOST_WIDE_INT low, high;
1151 long i[2];
1153 if (GET_CODE (x) == CONST_INT)
1155 low = INTVAL (x);
1156 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1158 else
1160 low = CONST_DOUBLE_LOW (x);
1161 high = CONST_DOUBLE_HIGH (x);
1164 if (HOST_BITS_PER_WIDE_INT > 32)
1165 high = low >> 31 >> 1;
1167 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1168 target machine. */
1169 if (WORDS_BIG_ENDIAN)
1170 i[0] = high, i[1] = low;
1171 else
1172 i[0] = low, i[1] = high;
1174 real_from_target (&r, i, mode);
1175 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1177 else if ((GET_MODE_CLASS (mode) == MODE_INT
1178 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1179 && GET_CODE (x) == CONST_DOUBLE
1180 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1182 REAL_VALUE_TYPE r;
1183 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1184 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1186 /* Convert 'r' into an array of four 32-bit words in target word
1187 order. */
1188 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1189 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1191 case 32:
1192 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1193 i[1] = 0;
1194 i[2] = 0;
1195 i[3 - 3 * endian] = 0;
1196 break;
1197 case 64:
1198 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1199 i[2 - 2 * endian] = 0;
1200 i[3 - 2 * endian] = 0;
1201 break;
1202 case 96:
1203 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1204 i[3 - 3 * endian] = 0;
1205 break;
1206 case 128:
1207 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1208 break;
1209 default:
1210 abort ();
1212 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1213 and return it. */
1214 #if HOST_BITS_PER_WIDE_INT == 32
1215 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1216 #else
1217 if (HOST_BITS_PER_WIDE_INT != 64)
1218 abort ();
1220 return immed_double_const ((((unsigned long) i[3 * endian])
1221 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1222 (((unsigned long) i[2 - endian])
1223 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1224 mode);
1225 #endif
1227 /* If MODE is a condition code and X is a CONST_INT, the value of X
1228 must already have been "recognized" by the back-end, and we can
1229 assume that it is valid for this mode. */
1230 else if (GET_MODE_CLASS (mode) == MODE_CC
1231 && GET_CODE (x) == CONST_INT)
1232 return x;
1234 /* Otherwise, we can't do this. */
1235 return 0;
1238 /* Return the constant real or imaginary part (which has mode MODE)
1239 of a complex value X. The IMAGPART_P argument determines whether
1240 the real or complex component should be returned. This function
1241 returns NULL_RTX if the component isn't a constant. */
1243 static rtx
1244 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1246 tree decl, part;
1248 if (GET_CODE (x) == MEM
1249 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1251 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1252 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1254 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1255 if (TREE_CODE (part) == REAL_CST
1256 || TREE_CODE (part) == INTEGER_CST)
1257 return expand_expr (part, NULL_RTX, mode, 0);
1260 return NULL_RTX;
1263 /* Return the real part (which has mode MODE) of a complex value X.
1264 This always comes at the low address in memory. */
1267 gen_realpart (enum machine_mode mode, rtx x)
1269 rtx part;
1271 /* Handle complex constants. */
1272 part = gen_complex_constant_part (mode, x, 0);
1273 if (part != NULL_RTX)
1274 return part;
1276 if (WORDS_BIG_ENDIAN
1277 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1278 && REG_P (x)
1279 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1280 internal_error
1281 ("can't access real part of complex value in hard register");
1282 else if (WORDS_BIG_ENDIAN)
1283 return gen_highpart (mode, x);
1284 else
1285 return gen_lowpart (mode, x);
1288 /* Return the imaginary part (which has mode MODE) of a complex value X.
1289 This always comes at the high address in memory. */
1292 gen_imagpart (enum machine_mode mode, rtx x)
1294 rtx part;
1296 /* Handle complex constants. */
1297 part = gen_complex_constant_part (mode, x, 1);
1298 if (part != NULL_RTX)
1299 return part;
1301 if (WORDS_BIG_ENDIAN)
1302 return gen_lowpart (mode, x);
1303 else if (! WORDS_BIG_ENDIAN
1304 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1305 && REG_P (x)
1306 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1307 internal_error
1308 ("can't access imaginary part of complex value in hard register");
1309 else
1310 return gen_highpart (mode, x);
1313 /* Return 1 iff X, assumed to be a SUBREG,
1314 refers to the real part of the complex value in its containing reg.
1315 Complex values are always stored with the real part in the first word,
1316 regardless of WORDS_BIG_ENDIAN. */
1319 subreg_realpart_p (rtx x)
1321 if (GET_CODE (x) != SUBREG)
1322 abort ();
1324 return ((unsigned int) SUBREG_BYTE (x)
1325 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1328 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1329 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1330 least-significant part of X.
1331 MODE specifies how big a part of X to return;
1332 it usually should not be larger than a word.
1333 If X is a MEM whose address is a QUEUED, the value may be so also. */
1336 gen_lowpart (enum machine_mode mode, rtx x)
1338 rtx result = gen_lowpart_common (mode, x);
1340 if (result)
1341 return result;
1342 else if (GET_CODE (x) == REG)
1344 /* Must be a hard reg that's not valid in MODE. */
1345 result = gen_lowpart_common (mode, copy_to_reg (x));
1346 if (result == 0)
1347 abort ();
1348 return result;
1350 else if (GET_CODE (x) == MEM)
1352 /* The only additional case we can do is MEM. */
1353 int offset = 0;
1355 /* The following exposes the use of "x" to CSE. */
1356 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
1357 && SCALAR_INT_MODE_P (GET_MODE (x))
1358 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1359 GET_MODE_BITSIZE (GET_MODE (x)))
1360 && ! no_new_pseudos)
1361 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1363 if (WORDS_BIG_ENDIAN)
1364 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1365 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1367 if (BYTES_BIG_ENDIAN)
1368 /* Adjust the address so that the address-after-the-data
1369 is unchanged. */
1370 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1371 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1373 return adjust_address (x, mode, offset);
1375 else if (GET_CODE (x) == ADDRESSOF)
1376 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1377 else
1378 abort ();
1381 /* Like `gen_lowpart', but refer to the most significant part.
1382 This is used to access the imaginary part of a complex number. */
1385 gen_highpart (enum machine_mode mode, rtx x)
1387 unsigned int msize = GET_MODE_SIZE (mode);
1388 rtx result;
1390 /* This case loses if X is a subreg. To catch bugs early,
1391 complain if an invalid MODE is used even in other cases. */
1392 if (msize > UNITS_PER_WORD
1393 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1394 abort ();
1396 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1397 subreg_highpart_offset (mode, GET_MODE (x)));
1399 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1400 the target if we have a MEM. gen_highpart must return a valid operand,
1401 emitting code if necessary to do so. */
1402 if (result != NULL_RTX && GET_CODE (result) == MEM)
1403 result = validize_mem (result);
1405 if (!result)
1406 abort ();
1407 return result;
1410 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1411 be VOIDmode constant. */
1413 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1415 if (GET_MODE (exp) != VOIDmode)
1417 if (GET_MODE (exp) != innermode)
1418 abort ();
1419 return gen_highpart (outermode, exp);
1421 return simplify_gen_subreg (outermode, exp, innermode,
1422 subreg_highpart_offset (outermode, innermode));
1425 /* Return offset in bytes to get OUTERMODE low part
1426 of the value in mode INNERMODE stored in memory in target format. */
1428 unsigned int
1429 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1431 unsigned int offset = 0;
1432 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1434 if (difference > 0)
1436 if (WORDS_BIG_ENDIAN)
1437 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1438 if (BYTES_BIG_ENDIAN)
1439 offset += difference % UNITS_PER_WORD;
1442 return offset;
1445 /* Return offset in bytes to get OUTERMODE high part
1446 of the value in mode INNERMODE stored in memory in target format. */
1447 unsigned int
1448 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1450 unsigned int offset = 0;
1451 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1453 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1454 abort ();
1456 if (difference > 0)
1458 if (! WORDS_BIG_ENDIAN)
1459 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1460 if (! BYTES_BIG_ENDIAN)
1461 offset += difference % UNITS_PER_WORD;
1464 return offset;
1467 /* Return 1 iff X, assumed to be a SUBREG,
1468 refers to the least significant part of its containing reg.
1469 If X is not a SUBREG, always return 1 (it is its own low part!). */
1472 subreg_lowpart_p (rtx x)
1474 if (GET_CODE (x) != SUBREG)
1475 return 1;
1476 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1477 return 0;
1479 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1480 == SUBREG_BYTE (x));
1484 /* Helper routine for all the constant cases of operand_subword.
1485 Some places invoke this directly. */
1488 constant_subword (rtx op, int offset, enum machine_mode mode)
1490 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1491 HOST_WIDE_INT val;
1493 /* If OP is already an integer word, return it. */
1494 if (GET_MODE_CLASS (mode) == MODE_INT
1495 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1496 return op;
1498 /* The output is some bits, the width of the target machine's word.
1499 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1500 host can't. */
1501 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1502 && GET_MODE_CLASS (mode) == MODE_FLOAT
1503 && GET_MODE_BITSIZE (mode) == 64
1504 && GET_CODE (op) == CONST_DOUBLE)
1506 long k[2];
1507 REAL_VALUE_TYPE rv;
1509 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1510 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1512 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1513 which the words are written depends on the word endianness.
1514 ??? This is a potential portability problem and should
1515 be fixed at some point.
1517 We must exercise caution with the sign bit. By definition there
1518 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1519 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1520 So we explicitly mask and sign-extend as necessary. */
1521 if (BITS_PER_WORD == 32)
1523 val = k[offset];
1524 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1525 return GEN_INT (val);
1527 #if HOST_BITS_PER_WIDE_INT >= 64
1528 else if (BITS_PER_WORD >= 64 && offset == 0)
1530 val = k[! WORDS_BIG_ENDIAN];
1531 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1532 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1533 return GEN_INT (val);
1535 #endif
1536 else if (BITS_PER_WORD == 16)
1538 val = k[offset >> 1];
1539 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1540 val >>= 16;
1541 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1542 return GEN_INT (val);
1544 else
1545 abort ();
1547 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1548 && GET_MODE_CLASS (mode) == MODE_FLOAT
1549 && GET_MODE_BITSIZE (mode) > 64
1550 && GET_CODE (op) == CONST_DOUBLE)
1552 long k[4];
1553 REAL_VALUE_TYPE rv;
1555 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1556 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1558 if (BITS_PER_WORD == 32)
1560 val = k[offset];
1561 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1562 return GEN_INT (val);
1564 #if HOST_BITS_PER_WIDE_INT >= 64
1565 else if (BITS_PER_WORD >= 64 && offset <= 1)
1567 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1568 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1569 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1570 return GEN_INT (val);
1572 #endif
1573 else
1574 abort ();
1577 /* Single word float is a little harder, since single- and double-word
1578 values often do not have the same high-order bits. We have already
1579 verified that we want the only defined word of the single-word value. */
1580 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1581 && GET_MODE_BITSIZE (mode) == 32
1582 && GET_CODE (op) == CONST_DOUBLE)
1584 long l;
1585 REAL_VALUE_TYPE rv;
1587 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1588 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1590 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1591 val = l;
1592 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1594 if (BITS_PER_WORD == 16)
1596 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1597 val >>= 16;
1598 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1601 return GEN_INT (val);
1604 /* The only remaining cases that we can handle are integers.
1605 Convert to proper endianness now since these cases need it.
1606 At this point, offset == 0 means the low-order word.
1608 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1609 in general. However, if OP is (const_int 0), we can just return
1610 it for any word. */
1612 if (op == const0_rtx)
1613 return op;
1615 if (GET_MODE_CLASS (mode) != MODE_INT
1616 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1617 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1618 return 0;
1620 if (WORDS_BIG_ENDIAN)
1621 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1623 /* Find out which word on the host machine this value is in and get
1624 it from the constant. */
1625 val = (offset / size_ratio == 0
1626 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1627 : (GET_CODE (op) == CONST_INT
1628 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1630 /* Get the value we want into the low bits of val. */
1631 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1632 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1634 val = trunc_int_for_mode (val, word_mode);
1636 return GEN_INT (val);
1639 /* Return subword OFFSET of operand OP.
1640 The word number, OFFSET, is interpreted as the word number starting
1641 at the low-order address. OFFSET 0 is the low-order word if not
1642 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1644 If we cannot extract the required word, we return zero. Otherwise,
1645 an rtx corresponding to the requested word will be returned.
1647 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1648 reload has completed, a valid address will always be returned. After
1649 reload, if a valid address cannot be returned, we return zero.
1651 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1652 it is the responsibility of the caller.
1654 MODE is the mode of OP in case it is a CONST_INT.
1656 ??? This is still rather broken for some cases. The problem for the
1657 moment is that all callers of this thing provide no 'goal mode' to
1658 tell us to work with. This exists because all callers were written
1659 in a word based SUBREG world.
1660 Now use of this function can be deprecated by simplify_subreg in most
1661 cases.
1665 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1667 if (mode == VOIDmode)
1668 mode = GET_MODE (op);
1670 if (mode == VOIDmode)
1671 abort ();
1673 /* If OP is narrower than a word, fail. */
1674 if (mode != BLKmode
1675 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1676 return 0;
1678 /* If we want a word outside OP, return zero. */
1679 if (mode != BLKmode
1680 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1681 return const0_rtx;
1683 /* Form a new MEM at the requested address. */
1684 if (GET_CODE (op) == MEM)
1686 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1688 if (! validate_address)
1689 return new;
1691 else if (reload_completed)
1693 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1694 return 0;
1696 else
1697 return replace_equiv_address (new, XEXP (new, 0));
1700 /* Rest can be handled by simplify_subreg. */
1701 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1704 /* Similar to `operand_subword', but never return 0. If we can't extract
1705 the required subword, put OP into a register and try again. If that fails,
1706 abort. We always validate the address in this case.
1708 MODE is the mode of OP, in case it is CONST_INT. */
1711 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1713 rtx result = operand_subword (op, offset, 1, mode);
1715 if (result)
1716 return result;
1718 if (mode != BLKmode && mode != VOIDmode)
1720 /* If this is a register which can not be accessed by words, copy it
1721 to a pseudo register. */
1722 if (GET_CODE (op) == REG)
1723 op = copy_to_reg (op);
1724 else
1725 op = force_reg (mode, op);
1728 result = operand_subword (op, offset, 1, mode);
1729 if (result == 0)
1730 abort ();
1732 return result;
1735 /* Given a compare instruction, swap the operands.
1736 A test instruction is changed into a compare of 0 against the operand. */
1738 void
1739 reverse_comparison (rtx insn)
1741 rtx body = PATTERN (insn);
1742 rtx comp;
1744 if (GET_CODE (body) == SET)
1745 comp = SET_SRC (body);
1746 else
1747 comp = SET_SRC (XVECEXP (body, 0, 0));
1749 if (GET_CODE (comp) == COMPARE)
1751 rtx op0 = XEXP (comp, 0);
1752 rtx op1 = XEXP (comp, 1);
1753 XEXP (comp, 0) = op1;
1754 XEXP (comp, 1) = op0;
1756 else
1758 rtx new = gen_rtx_COMPARE (VOIDmode,
1759 CONST0_RTX (GET_MODE (comp)), comp);
1760 if (GET_CODE (body) == SET)
1761 SET_SRC (body) = new;
1762 else
1763 SET_SRC (XVECEXP (body, 0, 0)) = new;
1767 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1768 or (2) a component ref of something variable. Represent the later with
1769 a NULL expression. */
1771 static tree
1772 component_ref_for_mem_expr (tree ref)
1774 tree inner = TREE_OPERAND (ref, 0);
1776 if (TREE_CODE (inner) == COMPONENT_REF)
1777 inner = component_ref_for_mem_expr (inner);
1778 else
1780 tree placeholder_ptr = 0;
1782 /* Now remove any conversions: they don't change what the underlying
1783 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1784 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1785 || TREE_CODE (inner) == NON_LVALUE_EXPR
1786 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1787 || TREE_CODE (inner) == SAVE_EXPR
1788 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1789 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1790 inner = find_placeholder (inner, &placeholder_ptr);
1791 else
1792 inner = TREE_OPERAND (inner, 0);
1794 if (! DECL_P (inner))
1795 inner = NULL_TREE;
1798 if (inner == TREE_OPERAND (ref, 0))
1799 return ref;
1800 else
1801 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1802 TREE_OPERAND (ref, 1));
1805 /* Given REF, a MEM, and T, either the type of X or the expression
1806 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1807 if we are making a new object of this type. BITPOS is nonzero if
1808 there is an offset outstanding on T that will be applied later. */
1810 void
1811 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1812 HOST_WIDE_INT bitpos)
1814 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1815 tree expr = MEM_EXPR (ref);
1816 rtx offset = MEM_OFFSET (ref);
1817 rtx size = MEM_SIZE (ref);
1818 unsigned int align = MEM_ALIGN (ref);
1819 HOST_WIDE_INT apply_bitpos = 0;
1820 tree type;
1822 /* It can happen that type_for_mode was given a mode for which there
1823 is no language-level type. In which case it returns NULL, which
1824 we can see here. */
1825 if (t == NULL_TREE)
1826 return;
1828 type = TYPE_P (t) ? t : TREE_TYPE (t);
1830 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1831 wrong answer, as it assumes that DECL_RTL already has the right alias
1832 info. Callers should not set DECL_RTL until after the call to
1833 set_mem_attributes. */
1834 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1835 abort ();
1837 /* Get the alias set from the expression or type (perhaps using a
1838 front-end routine) and use it. */
1839 alias = get_alias_set (t);
1841 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1842 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1843 RTX_UNCHANGING_P (ref)
1844 |= ((lang_hooks.honor_readonly
1845 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1846 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1848 /* If we are making an object of this type, or if this is a DECL, we know
1849 that it is a scalar if the type is not an aggregate. */
1850 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1851 MEM_SCALAR_P (ref) = 1;
1853 /* We can set the alignment from the type if we are making an object,
1854 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1855 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1856 align = MAX (align, TYPE_ALIGN (type));
1858 /* If the size is known, we can set that. */
1859 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1860 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1862 /* If T is not a type, we may be able to deduce some more information about
1863 the expression. */
1864 if (! TYPE_P (t))
1866 maybe_set_unchanging (ref, t);
1867 if (TREE_THIS_VOLATILE (t))
1868 MEM_VOLATILE_P (ref) = 1;
1870 /* Now remove any conversions: they don't change what the underlying
1871 object is. Likewise for SAVE_EXPR. */
1872 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1873 || TREE_CODE (t) == NON_LVALUE_EXPR
1874 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1875 || TREE_CODE (t) == SAVE_EXPR)
1876 t = TREE_OPERAND (t, 0);
1878 /* If this expression can't be addressed (e.g., it contains a reference
1879 to a non-addressable field), show we don't change its alias set. */
1880 if (! can_address_p (t))
1881 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1883 /* If this is a decl, set the attributes of the MEM from it. */
1884 if (DECL_P (t))
1886 expr = t;
1887 offset = const0_rtx;
1888 apply_bitpos = bitpos;
1889 size = (DECL_SIZE_UNIT (t)
1890 && host_integerp (DECL_SIZE_UNIT (t), 1)
1891 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1892 align = DECL_ALIGN (t);
1895 /* If this is a constant, we know the alignment. */
1896 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1898 align = TYPE_ALIGN (type);
1899 #ifdef CONSTANT_ALIGNMENT
1900 align = CONSTANT_ALIGNMENT (t, align);
1901 #endif
1904 /* If this is a field reference and not a bit-field, record it. */
1905 /* ??? There is some information that can be gleened from bit-fields,
1906 such as the word offset in the structure that might be modified.
1907 But skip it for now. */
1908 else if (TREE_CODE (t) == COMPONENT_REF
1909 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1911 expr = component_ref_for_mem_expr (t);
1912 offset = const0_rtx;
1913 apply_bitpos = bitpos;
1914 /* ??? Any reason the field size would be different than
1915 the size we got from the type? */
1918 /* If this is an array reference, look for an outer field reference. */
1919 else if (TREE_CODE (t) == ARRAY_REF)
1921 tree off_tree = size_zero_node;
1922 /* We can't modify t, because we use it at the end of the
1923 function. */
1924 tree t2 = t;
1928 tree index = TREE_OPERAND (t2, 1);
1929 tree array = TREE_OPERAND (t2, 0);
1930 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1931 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1932 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1934 /* We assume all arrays have sizes that are a multiple of a byte.
1935 First subtract the lower bound, if any, in the type of the
1936 index, then convert to sizetype and multiply by the size of the
1937 array element. */
1938 if (low_bound != 0 && ! integer_zerop (low_bound))
1939 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1940 index, low_bound));
1942 /* If the index has a self-referential type, pass it to a
1943 WITH_RECORD_EXPR; if the component size is, pass our
1944 component to one. */
1945 if (CONTAINS_PLACEHOLDER_P (index))
1946 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1947 if (CONTAINS_PLACEHOLDER_P (unit_size))
1948 unit_size = build (WITH_RECORD_EXPR, sizetype,
1949 unit_size, array);
1951 off_tree
1952 = fold (build (PLUS_EXPR, sizetype,
1953 fold (build (MULT_EXPR, sizetype,
1954 index,
1955 unit_size)),
1956 off_tree));
1957 t2 = TREE_OPERAND (t2, 0);
1959 while (TREE_CODE (t2) == ARRAY_REF);
1961 if (DECL_P (t2))
1963 expr = t2;
1964 offset = NULL;
1965 if (host_integerp (off_tree, 1))
1967 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1968 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1969 align = DECL_ALIGN (t2);
1970 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1971 align = aoff;
1972 offset = GEN_INT (ioff);
1973 apply_bitpos = bitpos;
1976 else if (TREE_CODE (t2) == COMPONENT_REF)
1978 expr = component_ref_for_mem_expr (t2);
1979 if (host_integerp (off_tree, 1))
1981 offset = GEN_INT (tree_low_cst (off_tree, 1));
1982 apply_bitpos = bitpos;
1984 /* ??? Any reason the field size would be different than
1985 the size we got from the type? */
1987 else if (flag_argument_noalias > 1
1988 && TREE_CODE (t2) == INDIRECT_REF
1989 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1991 expr = t2;
1992 offset = NULL;
1996 /* If this is a Fortran indirect argument reference, record the
1997 parameter decl. */
1998 else if (flag_argument_noalias > 1
1999 && TREE_CODE (t) == INDIRECT_REF
2000 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
2002 expr = t;
2003 offset = NULL;
2007 /* If we modified OFFSET based on T, then subtract the outstanding
2008 bit position offset. Similarly, increase the size of the accessed
2009 object to contain the negative offset. */
2010 if (apply_bitpos)
2012 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2013 if (size)
2014 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2017 /* Now set the attributes we computed above. */
2018 MEM_ATTRS (ref)
2019 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2021 /* If this is already known to be a scalar or aggregate, we are done. */
2022 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
2023 return;
2025 /* If it is a reference into an aggregate, this is part of an aggregate.
2026 Otherwise we don't know. */
2027 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2028 || TREE_CODE (t) == ARRAY_RANGE_REF
2029 || TREE_CODE (t) == BIT_FIELD_REF)
2030 MEM_IN_STRUCT_P (ref) = 1;
2033 void
2034 set_mem_attributes (rtx ref, tree t, int objectp)
2036 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2039 /* Set the decl for MEM to DECL. */
2041 void
2042 set_mem_attrs_from_reg (rtx mem, rtx reg)
2044 MEM_ATTRS (mem)
2045 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2046 GEN_INT (REG_OFFSET (reg)),
2047 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2050 /* Set the alias set of MEM to SET. */
2052 void
2053 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
2055 #ifdef ENABLE_CHECKING
2056 /* If the new and old alias sets don't conflict, something is wrong. */
2057 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2058 abort ();
2059 #endif
2061 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
2062 MEM_SIZE (mem), MEM_ALIGN (mem),
2063 GET_MODE (mem));
2066 /* Set the alignment of MEM to ALIGN bits. */
2068 void
2069 set_mem_align (rtx mem, unsigned int align)
2071 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2072 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2073 GET_MODE (mem));
2076 /* Set the expr for MEM to EXPR. */
2078 void
2079 set_mem_expr (rtx mem, tree expr)
2081 MEM_ATTRS (mem)
2082 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
2083 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2086 /* Set the offset of MEM to OFFSET. */
2088 void
2089 set_mem_offset (rtx mem, rtx offset)
2091 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2092 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2093 GET_MODE (mem));
2096 /* Set the size of MEM to SIZE. */
2098 void
2099 set_mem_size (rtx mem, rtx size)
2101 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2102 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2103 GET_MODE (mem));
2106 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2107 and its address changed to ADDR. (VOIDmode means don't change the mode.
2108 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2109 returned memory location is required to be valid. The memory
2110 attributes are not changed. */
2112 static rtx
2113 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
2115 rtx new;
2117 if (GET_CODE (memref) != MEM)
2118 abort ();
2119 if (mode == VOIDmode)
2120 mode = GET_MODE (memref);
2121 if (addr == 0)
2122 addr = XEXP (memref, 0);
2124 if (validate)
2126 if (reload_in_progress || reload_completed)
2128 if (! memory_address_p (mode, addr))
2129 abort ();
2131 else
2132 addr = memory_address (mode, addr);
2135 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2136 return memref;
2138 new = gen_rtx_MEM (mode, addr);
2139 MEM_COPY_ATTRIBUTES (new, memref);
2140 return new;
2143 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2144 way we are changing MEMREF, so we only preserve the alias set. */
2147 change_address (rtx memref, enum machine_mode mode, rtx addr)
2149 rtx new = change_address_1 (memref, mode, addr, 1);
2150 enum machine_mode mmode = GET_MODE (new);
2152 MEM_ATTRS (new)
2153 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2154 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2155 (mmode == BLKmode ? BITS_PER_UNIT
2156 : GET_MODE_ALIGNMENT (mmode)),
2157 mmode);
2159 return new;
2162 /* Return a memory reference like MEMREF, but with its mode changed
2163 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2164 nonzero, the memory address is forced to be valid.
2165 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2166 and caller is responsible for adjusting MEMREF base register. */
2169 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2170 int validate, int adjust)
2172 rtx addr = XEXP (memref, 0);
2173 rtx new;
2174 rtx memoffset = MEM_OFFSET (memref);
2175 rtx size = 0;
2176 unsigned int memalign = MEM_ALIGN (memref);
2178 /* ??? Prefer to create garbage instead of creating shared rtl.
2179 This may happen even if offset is nonzero -- consider
2180 (plus (plus reg reg) const_int) -- so do this always. */
2181 addr = copy_rtx (addr);
2183 if (adjust)
2185 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2186 object, we can merge it into the LO_SUM. */
2187 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2188 && offset >= 0
2189 && (unsigned HOST_WIDE_INT) offset
2190 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2191 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2192 plus_constant (XEXP (addr, 1), offset));
2193 else
2194 addr = plus_constant (addr, offset);
2197 new = change_address_1 (memref, mode, addr, validate);
2199 /* Compute the new values of the memory attributes due to this adjustment.
2200 We add the offsets and update the alignment. */
2201 if (memoffset)
2202 memoffset = GEN_INT (offset + INTVAL (memoffset));
2204 /* Compute the new alignment by taking the MIN of the alignment and the
2205 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2206 if zero. */
2207 if (offset != 0)
2208 memalign
2209 = MIN (memalign,
2210 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2212 /* We can compute the size in a number of ways. */
2213 if (GET_MODE (new) != BLKmode)
2214 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2215 else if (MEM_SIZE (memref))
2216 size = plus_constant (MEM_SIZE (memref), -offset);
2218 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2219 memoffset, size, memalign, GET_MODE (new));
2221 /* At some point, we should validate that this offset is within the object,
2222 if all the appropriate values are known. */
2223 return new;
2226 /* Return a memory reference like MEMREF, but with its mode changed
2227 to MODE and its address changed to ADDR, which is assumed to be
2228 MEMREF offseted by OFFSET bytes. If VALIDATE is
2229 nonzero, the memory address is forced to be valid. */
2232 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2233 HOST_WIDE_INT offset, int validate)
2235 memref = change_address_1 (memref, VOIDmode, addr, validate);
2236 return adjust_address_1 (memref, mode, offset, validate, 0);
2239 /* Return a memory reference like MEMREF, but whose address is changed by
2240 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2241 known to be in OFFSET (possibly 1). */
2244 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2246 rtx new, addr = XEXP (memref, 0);
2248 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2250 /* At this point we don't know _why_ the address is invalid. It
2251 could have secondary memory references, multiplies or anything.
2253 However, if we did go and rearrange things, we can wind up not
2254 being able to recognize the magic around pic_offset_table_rtx.
2255 This stuff is fragile, and is yet another example of why it is
2256 bad to expose PIC machinery too early. */
2257 if (! memory_address_p (GET_MODE (memref), new)
2258 && GET_CODE (addr) == PLUS
2259 && XEXP (addr, 0) == pic_offset_table_rtx)
2261 addr = force_reg (GET_MODE (addr), addr);
2262 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2265 update_temp_slot_address (XEXP (memref, 0), new);
2266 new = change_address_1 (memref, VOIDmode, new, 1);
2268 /* Update the alignment to reflect the offset. Reset the offset, which
2269 we don't know. */
2270 MEM_ATTRS (new)
2271 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2272 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2273 GET_MODE (new));
2274 return new;
2277 /* Return a memory reference like MEMREF, but with its address changed to
2278 ADDR. The caller is asserting that the actual piece of memory pointed
2279 to is the same, just the form of the address is being changed, such as
2280 by putting something into a register. */
2283 replace_equiv_address (rtx memref, rtx addr)
2285 /* change_address_1 copies the memory attribute structure without change
2286 and that's exactly what we want here. */
2287 update_temp_slot_address (XEXP (memref, 0), addr);
2288 return change_address_1 (memref, VOIDmode, addr, 1);
2291 /* Likewise, but the reference is not required to be valid. */
2294 replace_equiv_address_nv (rtx memref, rtx addr)
2296 return change_address_1 (memref, VOIDmode, addr, 0);
2299 /* Return a memory reference like MEMREF, but with its mode widened to
2300 MODE and offset by OFFSET. This would be used by targets that e.g.
2301 cannot issue QImode memory operations and have to use SImode memory
2302 operations plus masking logic. */
2305 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2307 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2308 tree expr = MEM_EXPR (new);
2309 rtx memoffset = MEM_OFFSET (new);
2310 unsigned int size = GET_MODE_SIZE (mode);
2312 /* If we don't know what offset we were at within the expression, then
2313 we can't know if we've overstepped the bounds. */
2314 if (! memoffset)
2315 expr = NULL_TREE;
2317 while (expr)
2319 if (TREE_CODE (expr) == COMPONENT_REF)
2321 tree field = TREE_OPERAND (expr, 1);
2323 if (! DECL_SIZE_UNIT (field))
2325 expr = NULL_TREE;
2326 break;
2329 /* Is the field at least as large as the access? If so, ok,
2330 otherwise strip back to the containing structure. */
2331 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2332 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2333 && INTVAL (memoffset) >= 0)
2334 break;
2336 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2338 expr = NULL_TREE;
2339 break;
2342 expr = TREE_OPERAND (expr, 0);
2343 memoffset = (GEN_INT (INTVAL (memoffset)
2344 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2345 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2346 / BITS_PER_UNIT)));
2348 /* Similarly for the decl. */
2349 else if (DECL_P (expr)
2350 && DECL_SIZE_UNIT (expr)
2351 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2352 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2353 && (! memoffset || INTVAL (memoffset) >= 0))
2354 break;
2355 else
2357 /* The widened memory access overflows the expression, which means
2358 that it could alias another expression. Zap it. */
2359 expr = NULL_TREE;
2360 break;
2364 if (! expr)
2365 memoffset = NULL_RTX;
2367 /* The widened memory may alias other stuff, so zap the alias set. */
2368 /* ??? Maybe use get_alias_set on any remaining expression. */
2370 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2371 MEM_ALIGN (new), mode);
2373 return new;
2376 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2379 gen_label_rtx (void)
2381 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2382 NULL, label_num++, NULL);
2385 /* For procedure integration. */
2387 /* Install new pointers to the first and last insns in the chain.
2388 Also, set cur_insn_uid to one higher than the last in use.
2389 Used for an inline-procedure after copying the insn chain. */
2391 void
2392 set_new_first_and_last_insn (rtx first, rtx last)
2394 rtx insn;
2396 first_insn = first;
2397 last_insn = last;
2398 cur_insn_uid = 0;
2400 for (insn = first; insn; insn = NEXT_INSN (insn))
2401 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2403 cur_insn_uid++;
2406 /* Set the range of label numbers found in the current function.
2407 This is used when belatedly compiling an inline function. */
2409 void
2410 set_new_first_and_last_label_num (int first, int last)
2412 base_label_num = label_num;
2413 first_label_num = first;
2414 last_label_num = last;
2417 /* Set the last label number found in the current function.
2418 This is used when belatedly compiling an inline function. */
2420 void
2421 set_new_last_label_num (int last)
2423 base_label_num = label_num;
2424 last_label_num = last;
2427 /* Restore all variables describing the current status from the structure *P.
2428 This is used after a nested function. */
2430 void
2431 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2433 last_label_num = 0;
2436 /* Go through all the RTL insn bodies and copy any invalid shared
2437 structure. This routine should only be called once. */
2439 void
2440 unshare_all_rtl (tree fndecl, rtx insn)
2442 tree decl;
2444 /* Make sure that virtual parameters are not shared. */
2445 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2446 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2448 /* Make sure that virtual stack slots are not shared. */
2449 unshare_all_decls (DECL_INITIAL (fndecl));
2451 /* Unshare just about everything else. */
2452 unshare_all_rtl_in_chain (insn);
2454 /* Make sure the addresses of stack slots found outside the insn chain
2455 (such as, in DECL_RTL of a variable) are not shared
2456 with the insn chain.
2458 This special care is necessary when the stack slot MEM does not
2459 actually appear in the insn chain. If it does appear, its address
2460 is unshared from all else at that point. */
2461 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2464 /* Go through all the RTL insn bodies and copy any invalid shared
2465 structure, again. This is a fairly expensive thing to do so it
2466 should be done sparingly. */
2468 void
2469 unshare_all_rtl_again (rtx insn)
2471 rtx p;
2472 tree decl;
2474 for (p = insn; p; p = NEXT_INSN (p))
2475 if (INSN_P (p))
2477 reset_used_flags (PATTERN (p));
2478 reset_used_flags (REG_NOTES (p));
2479 reset_used_flags (LOG_LINKS (p));
2482 /* Make sure that virtual stack slots are not shared. */
2483 reset_used_decls (DECL_INITIAL (cfun->decl));
2485 /* Make sure that virtual parameters are not shared. */
2486 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2487 reset_used_flags (DECL_RTL (decl));
2489 reset_used_flags (stack_slot_list);
2491 unshare_all_rtl (cfun->decl, insn);
2494 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2495 Recursively does the same for subexpressions. */
2497 static void
2498 verify_rtx_sharing (rtx orig, rtx insn)
2500 rtx x = orig;
2501 int i;
2502 enum rtx_code code;
2503 const char *format_ptr;
2505 if (x == 0)
2506 return;
2508 code = GET_CODE (x);
2510 /* These types may be freely shared. */
2512 switch (code)
2514 case REG:
2515 case QUEUED:
2516 case CONST_INT:
2517 case CONST_DOUBLE:
2518 case CONST_VECTOR:
2519 case SYMBOL_REF:
2520 case LABEL_REF:
2521 case CODE_LABEL:
2522 case PC:
2523 case CC0:
2524 case SCRATCH:
2525 /* SCRATCH must be shared because they represent distinct values. */
2526 return;
2528 case CONST:
2529 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2530 a LABEL_REF, it isn't sharable. */
2531 if (GET_CODE (XEXP (x, 0)) == PLUS
2532 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2533 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2534 return;
2535 break;
2537 case MEM:
2538 /* A MEM is allowed to be shared if its address is constant. */
2539 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2540 || reload_completed || reload_in_progress)
2541 return;
2543 break;
2545 default:
2546 break;
2549 /* This rtx may not be shared. If it has already been seen,
2550 replace it with a copy of itself. */
2552 if (RTX_FLAG (x, used))
2554 error ("Invalid rtl sharing found in the insn");
2555 debug_rtx (insn);
2556 error ("Shared rtx");
2557 debug_rtx (x);
2558 abort ();
2560 RTX_FLAG (x, used) = 1;
2562 /* Now scan the subexpressions recursively. */
2564 format_ptr = GET_RTX_FORMAT (code);
2566 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2568 switch (*format_ptr++)
2570 case 'e':
2571 verify_rtx_sharing (XEXP (x, i), insn);
2572 break;
2574 case 'E':
2575 if (XVEC (x, i) != NULL)
2577 int j;
2578 int len = XVECLEN (x, i);
2580 for (j = 0; j < len; j++)
2582 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2583 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2584 && GET_CODE (SET_SRC (XVECEXP (x, i, j))) == ASM_OPERANDS)
2585 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2586 else
2587 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2590 break;
2593 return;
2596 /* Go through all the RTL insn bodies and chec that there is no inexpected
2597 sharing in between the subexpressions. */
2599 void
2600 verify_rtl_sharing (void)
2602 rtx p;
2604 for (p = get_insns (); p; p = NEXT_INSN (p))
2605 if (INSN_P (p))
2607 reset_used_flags (PATTERN (p));
2608 reset_used_flags (REG_NOTES (p));
2609 reset_used_flags (LOG_LINKS (p));
2612 for (p = get_insns (); p; p = NEXT_INSN (p))
2613 if (INSN_P (p))
2615 verify_rtx_sharing (PATTERN (p), p);
2616 verify_rtx_sharing (REG_NOTES (p), p);
2617 verify_rtx_sharing (LOG_LINKS (p), p);
2621 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2622 Assumes the mark bits are cleared at entry. */
2624 void
2625 unshare_all_rtl_in_chain (rtx insn)
2627 for (; insn; insn = NEXT_INSN (insn))
2628 if (INSN_P (insn))
2630 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2631 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2632 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2636 /* Go through all virtual stack slots of a function and copy any
2637 shared structure. */
2638 static void
2639 unshare_all_decls (tree blk)
2641 tree t;
2643 /* Copy shared decls. */
2644 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2645 if (DECL_RTL_SET_P (t))
2646 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2648 /* Now process sub-blocks. */
2649 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2650 unshare_all_decls (t);
2653 /* Go through all virtual stack slots of a function and mark them as
2654 not shared. */
2655 static void
2656 reset_used_decls (tree blk)
2658 tree t;
2660 /* Mark decls. */
2661 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2662 if (DECL_RTL_SET_P (t))
2663 reset_used_flags (DECL_RTL (t));
2665 /* Now process sub-blocks. */
2666 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2667 reset_used_decls (t);
2670 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2671 placed in the result directly, rather than being copied. MAY_SHARE is
2672 either a MEM of an EXPR_LIST of MEMs. */
2675 copy_most_rtx (rtx orig, rtx may_share)
2677 rtx copy;
2678 int i, j;
2679 RTX_CODE code;
2680 const char *format_ptr;
2682 if (orig == may_share
2683 || (GET_CODE (may_share) == EXPR_LIST
2684 && in_expr_list_p (may_share, orig)))
2685 return orig;
2687 code = GET_CODE (orig);
2689 switch (code)
2691 case REG:
2692 case QUEUED:
2693 case CONST_INT:
2694 case CONST_DOUBLE:
2695 case CONST_VECTOR:
2696 case SYMBOL_REF:
2697 case CODE_LABEL:
2698 case PC:
2699 case CC0:
2700 return orig;
2701 default:
2702 break;
2705 copy = rtx_alloc (code);
2706 PUT_MODE (copy, GET_MODE (orig));
2707 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2708 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2709 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2710 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2711 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2713 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2715 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2717 switch (*format_ptr++)
2719 case 'e':
2720 XEXP (copy, i) = XEXP (orig, i);
2721 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2722 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2723 break;
2725 case 'u':
2726 XEXP (copy, i) = XEXP (orig, i);
2727 break;
2729 case 'E':
2730 case 'V':
2731 XVEC (copy, i) = XVEC (orig, i);
2732 if (XVEC (orig, i) != NULL)
2734 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2735 for (j = 0; j < XVECLEN (copy, i); j++)
2736 XVECEXP (copy, i, j)
2737 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2739 break;
2741 case 'w':
2742 XWINT (copy, i) = XWINT (orig, i);
2743 break;
2745 case 'n':
2746 case 'i':
2747 XINT (copy, i) = XINT (orig, i);
2748 break;
2750 case 't':
2751 XTREE (copy, i) = XTREE (orig, i);
2752 break;
2754 case 's':
2755 case 'S':
2756 XSTR (copy, i) = XSTR (orig, i);
2757 break;
2759 case '0':
2760 X0ANY (copy, i) = X0ANY (orig, i);
2761 break;
2763 default:
2764 abort ();
2767 return copy;
2770 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2771 Recursively does the same for subexpressions. */
2774 copy_rtx_if_shared (rtx orig)
2776 rtx x = orig;
2777 int i;
2778 enum rtx_code code;
2779 const char *format_ptr;
2780 int copied = 0;
2782 if (x == 0)
2783 return 0;
2785 code = GET_CODE (x);
2787 /* These types may be freely shared. */
2789 switch (code)
2791 case REG:
2792 case QUEUED:
2793 case CONST_INT:
2794 case CONST_DOUBLE:
2795 case CONST_VECTOR:
2796 case SYMBOL_REF:
2797 case LABEL_REF:
2798 case CODE_LABEL:
2799 case PC:
2800 case CC0:
2801 case SCRATCH:
2802 /* SCRATCH must be shared because they represent distinct values. */
2803 return x;
2805 case CONST:
2806 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2807 a LABEL_REF, it isn't sharable. */
2808 if (GET_CODE (XEXP (x, 0)) == PLUS
2809 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2810 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2811 return x;
2812 break;
2814 case INSN:
2815 case JUMP_INSN:
2816 case CALL_INSN:
2817 case NOTE:
2818 case BARRIER:
2819 /* The chain of insns is not being copied. */
2820 return x;
2822 default:
2823 break;
2826 /* This rtx may not be shared. If it has already been seen,
2827 replace it with a copy of itself. */
2829 if (RTX_FLAG (x, used))
2831 rtx copy;
2833 copy = rtx_alloc (code);
2834 memcpy (copy, x, RTX_SIZE (code));
2835 x = copy;
2836 copied = 1;
2838 RTX_FLAG (x, used) = 1;
2840 /* Now scan the subexpressions recursively.
2841 We can store any replaced subexpressions directly into X
2842 since we know X is not shared! Any vectors in X
2843 must be copied if X was copied. */
2845 format_ptr = GET_RTX_FORMAT (code);
2847 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2849 switch (*format_ptr++)
2851 case 'e':
2852 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2853 break;
2855 case 'E':
2856 if (XVEC (x, i) != NULL)
2858 int j;
2859 int len = XVECLEN (x, i);
2861 if (copied && len > 0)
2862 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2863 for (j = 0; j < len; j++)
2864 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
2866 break;
2869 return x;
2872 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2873 to look for shared sub-parts. */
2875 void
2876 reset_used_flags (rtx x)
2878 int i, j;
2879 enum rtx_code code;
2880 const char *format_ptr;
2882 if (x == 0)
2883 return;
2885 code = GET_CODE (x);
2887 /* These types may be freely shared so we needn't do any resetting
2888 for them. */
2890 switch (code)
2892 case REG:
2893 case QUEUED:
2894 case CONST_INT:
2895 case CONST_DOUBLE:
2896 case CONST_VECTOR:
2897 case SYMBOL_REF:
2898 case CODE_LABEL:
2899 case PC:
2900 case CC0:
2901 return;
2903 case INSN:
2904 case JUMP_INSN:
2905 case CALL_INSN:
2906 case NOTE:
2907 case LABEL_REF:
2908 case BARRIER:
2909 /* The chain of insns is not being copied. */
2910 return;
2912 default:
2913 break;
2916 RTX_FLAG (x, used) = 0;
2918 format_ptr = GET_RTX_FORMAT (code);
2919 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2921 switch (*format_ptr++)
2923 case 'e':
2924 reset_used_flags (XEXP (x, i));
2925 break;
2927 case 'E':
2928 for (j = 0; j < XVECLEN (x, i); j++)
2929 reset_used_flags (XVECEXP (x, i, j));
2930 break;
2935 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2936 to look for shared sub-parts. */
2938 void
2939 set_used_flags (rtx x)
2941 int i, j;
2942 enum rtx_code code;
2943 const char *format_ptr;
2945 if (x == 0)
2946 return;
2948 code = GET_CODE (x);
2950 /* These types may be freely shared so we needn't do any resetting
2951 for them. */
2953 switch (code)
2955 case REG:
2956 case QUEUED:
2957 case CONST_INT:
2958 case CONST_DOUBLE:
2959 case CONST_VECTOR:
2960 case SYMBOL_REF:
2961 case CODE_LABEL:
2962 case PC:
2963 case CC0:
2964 return;
2966 case INSN:
2967 case JUMP_INSN:
2968 case CALL_INSN:
2969 case NOTE:
2970 case LABEL_REF:
2971 case BARRIER:
2972 /* The chain of insns is not being copied. */
2973 return;
2975 default:
2976 break;
2979 RTX_FLAG (x, used) = 1;
2981 format_ptr = GET_RTX_FORMAT (code);
2982 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2984 switch (*format_ptr++)
2986 case 'e':
2987 set_used_flags (XEXP (x, i));
2988 break;
2990 case 'E':
2991 for (j = 0; j < XVECLEN (x, i); j++)
2992 set_used_flags (XVECEXP (x, i, j));
2993 break;
2998 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2999 Return X or the rtx for the pseudo reg the value of X was copied into.
3000 OTHER must be valid as a SET_DEST. */
3003 make_safe_from (rtx x, rtx other)
3005 while (1)
3006 switch (GET_CODE (other))
3008 case SUBREG:
3009 other = SUBREG_REG (other);
3010 break;
3011 case STRICT_LOW_PART:
3012 case SIGN_EXTEND:
3013 case ZERO_EXTEND:
3014 other = XEXP (other, 0);
3015 break;
3016 default:
3017 goto done;
3019 done:
3020 if ((GET_CODE (other) == MEM
3021 && ! CONSTANT_P (x)
3022 && GET_CODE (x) != REG
3023 && GET_CODE (x) != SUBREG)
3024 || (GET_CODE (other) == REG
3025 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3026 || reg_mentioned_p (other, x))))
3028 rtx temp = gen_reg_rtx (GET_MODE (x));
3029 emit_move_insn (temp, x);
3030 return temp;
3032 return x;
3035 /* Emission of insns (adding them to the doubly-linked list). */
3037 /* Return the first insn of the current sequence or current function. */
3040 get_insns (void)
3042 return first_insn;
3045 /* Specify a new insn as the first in the chain. */
3047 void
3048 set_first_insn (rtx insn)
3050 if (PREV_INSN (insn) != 0)
3051 abort ();
3052 first_insn = insn;
3055 /* Return the last insn emitted in current sequence or current function. */
3058 get_last_insn (void)
3060 return last_insn;
3063 /* Specify a new insn as the last in the chain. */
3065 void
3066 set_last_insn (rtx insn)
3068 if (NEXT_INSN (insn) != 0)
3069 abort ();
3070 last_insn = insn;
3073 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3076 get_last_insn_anywhere (void)
3078 struct sequence_stack *stack;
3079 if (last_insn)
3080 return last_insn;
3081 for (stack = seq_stack; stack; stack = stack->next)
3082 if (stack->last != 0)
3083 return stack->last;
3084 return 0;
3087 /* Return the first nonnote insn emitted in current sequence or current
3088 function. This routine looks inside SEQUENCEs. */
3091 get_first_nonnote_insn (void)
3093 rtx insn = first_insn;
3095 while (insn)
3097 insn = next_insn (insn);
3098 if (insn == 0 || GET_CODE (insn) != NOTE)
3099 break;
3102 return insn;
3105 /* Return the last nonnote insn emitted in current sequence or current
3106 function. This routine looks inside SEQUENCEs. */
3109 get_last_nonnote_insn (void)
3111 rtx insn = last_insn;
3113 while (insn)
3115 insn = previous_insn (insn);
3116 if (insn == 0 || GET_CODE (insn) != NOTE)
3117 break;
3120 return insn;
3123 /* Return a number larger than any instruction's uid in this function. */
3126 get_max_uid (void)
3128 return cur_insn_uid;
3131 /* Renumber instructions so that no instruction UIDs are wasted. */
3133 void
3134 renumber_insns (FILE *stream)
3136 rtx insn;
3138 /* If we're not supposed to renumber instructions, don't. */
3139 if (!flag_renumber_insns)
3140 return;
3142 /* If there aren't that many instructions, then it's not really
3143 worth renumbering them. */
3144 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
3145 return;
3147 cur_insn_uid = 1;
3149 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3151 if (stream)
3152 fprintf (stream, "Renumbering insn %d to %d\n",
3153 INSN_UID (insn), cur_insn_uid);
3154 INSN_UID (insn) = cur_insn_uid++;
3158 /* Return the next insn. If it is a SEQUENCE, return the first insn
3159 of the sequence. */
3162 next_insn (rtx insn)
3164 if (insn)
3166 insn = NEXT_INSN (insn);
3167 if (insn && GET_CODE (insn) == INSN
3168 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3169 insn = XVECEXP (PATTERN (insn), 0, 0);
3172 return insn;
3175 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3176 of the sequence. */
3179 previous_insn (rtx insn)
3181 if (insn)
3183 insn = PREV_INSN (insn);
3184 if (insn && GET_CODE (insn) == INSN
3185 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3186 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3189 return insn;
3192 /* Return the next insn after INSN that is not a NOTE. This routine does not
3193 look inside SEQUENCEs. */
3196 next_nonnote_insn (rtx insn)
3198 while (insn)
3200 insn = NEXT_INSN (insn);
3201 if (insn == 0 || GET_CODE (insn) != NOTE)
3202 break;
3205 return insn;
3208 /* Return the previous insn before INSN that is not a NOTE. This routine does
3209 not look inside SEQUENCEs. */
3212 prev_nonnote_insn (rtx insn)
3214 while (insn)
3216 insn = PREV_INSN (insn);
3217 if (insn == 0 || GET_CODE (insn) != NOTE)
3218 break;
3221 return insn;
3224 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3225 or 0, if there is none. This routine does not look inside
3226 SEQUENCEs. */
3229 next_real_insn (rtx insn)
3231 while (insn)
3233 insn = NEXT_INSN (insn);
3234 if (insn == 0 || GET_CODE (insn) == INSN
3235 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3236 break;
3239 return insn;
3242 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3243 or 0, if there is none. This routine does not look inside
3244 SEQUENCEs. */
3247 prev_real_insn (rtx insn)
3249 while (insn)
3251 insn = PREV_INSN (insn);
3252 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3253 || GET_CODE (insn) == JUMP_INSN)
3254 break;
3257 return insn;
3260 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3261 This routine does not look inside SEQUENCEs. */
3264 last_call_insn (void)
3266 rtx insn;
3268 for (insn = get_last_insn ();
3269 insn && GET_CODE (insn) != CALL_INSN;
3270 insn = PREV_INSN (insn))
3273 return insn;
3276 /* Find the next insn after INSN that really does something. This routine
3277 does not look inside SEQUENCEs. Until reload has completed, this is the
3278 same as next_real_insn. */
3281 active_insn_p (rtx insn)
3283 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3284 || (GET_CODE (insn) == INSN
3285 && (! reload_completed
3286 || (GET_CODE (PATTERN (insn)) != USE
3287 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3291 next_active_insn (rtx insn)
3293 while (insn)
3295 insn = NEXT_INSN (insn);
3296 if (insn == 0 || active_insn_p (insn))
3297 break;
3300 return insn;
3303 /* Find the last insn before INSN that really does something. This routine
3304 does not look inside SEQUENCEs. Until reload has completed, this is the
3305 same as prev_real_insn. */
3308 prev_active_insn (rtx insn)
3310 while (insn)
3312 insn = PREV_INSN (insn);
3313 if (insn == 0 || active_insn_p (insn))
3314 break;
3317 return insn;
3320 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3323 next_label (rtx insn)
3325 while (insn)
3327 insn = NEXT_INSN (insn);
3328 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3329 break;
3332 return insn;
3335 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3338 prev_label (rtx insn)
3340 while (insn)
3342 insn = PREV_INSN (insn);
3343 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3344 break;
3347 return insn;
3350 #ifdef HAVE_cc0
3351 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3352 and REG_CC_USER notes so we can find it. */
3354 void
3355 link_cc0_insns (rtx insn)
3357 rtx user = next_nonnote_insn (insn);
3359 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3360 user = XVECEXP (PATTERN (user), 0, 0);
3362 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3363 REG_NOTES (user));
3364 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3367 /* Return the next insn that uses CC0 after INSN, which is assumed to
3368 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3369 applied to the result of this function should yield INSN).
3371 Normally, this is simply the next insn. However, if a REG_CC_USER note
3372 is present, it contains the insn that uses CC0.
3374 Return 0 if we can't find the insn. */
3377 next_cc0_user (rtx insn)
3379 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3381 if (note)
3382 return XEXP (note, 0);
3384 insn = next_nonnote_insn (insn);
3385 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3386 insn = XVECEXP (PATTERN (insn), 0, 0);
3388 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3389 return insn;
3391 return 0;
3394 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3395 note, it is the previous insn. */
3398 prev_cc0_setter (rtx insn)
3400 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3402 if (note)
3403 return XEXP (note, 0);
3405 insn = prev_nonnote_insn (insn);
3406 if (! sets_cc0_p (PATTERN (insn)))
3407 abort ();
3409 return insn;
3411 #endif
3413 /* Increment the label uses for all labels present in rtx. */
3415 static void
3416 mark_label_nuses (rtx x)
3418 enum rtx_code code;
3419 int i, j;
3420 const char *fmt;
3422 code = GET_CODE (x);
3423 if (code == LABEL_REF)
3424 LABEL_NUSES (XEXP (x, 0))++;
3426 fmt = GET_RTX_FORMAT (code);
3427 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3429 if (fmt[i] == 'e')
3430 mark_label_nuses (XEXP (x, i));
3431 else if (fmt[i] == 'E')
3432 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3433 mark_label_nuses (XVECEXP (x, i, j));
3438 /* Try splitting insns that can be split for better scheduling.
3439 PAT is the pattern which might split.
3440 TRIAL is the insn providing PAT.
3441 LAST is nonzero if we should return the last insn of the sequence produced.
3443 If this routine succeeds in splitting, it returns the first or last
3444 replacement insn depending on the value of LAST. Otherwise, it
3445 returns TRIAL. If the insn to be returned can be split, it will be. */
3448 try_split (rtx pat, rtx trial, int last)
3450 rtx before = PREV_INSN (trial);
3451 rtx after = NEXT_INSN (trial);
3452 int has_barrier = 0;
3453 rtx tem;
3454 rtx note, seq;
3455 int probability;
3456 rtx insn_last, insn;
3457 int njumps = 0;
3459 if (any_condjump_p (trial)
3460 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3461 split_branch_probability = INTVAL (XEXP (note, 0));
3462 probability = split_branch_probability;
3464 seq = split_insns (pat, trial);
3466 split_branch_probability = -1;
3468 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3469 We may need to handle this specially. */
3470 if (after && GET_CODE (after) == BARRIER)
3472 has_barrier = 1;
3473 after = NEXT_INSN (after);
3476 if (!seq)
3477 return trial;
3479 /* Avoid infinite loop if any insn of the result matches
3480 the original pattern. */
3481 insn_last = seq;
3482 while (1)
3484 if (INSN_P (insn_last)
3485 && rtx_equal_p (PATTERN (insn_last), pat))
3486 return trial;
3487 if (!NEXT_INSN (insn_last))
3488 break;
3489 insn_last = NEXT_INSN (insn_last);
3492 /* Mark labels. */
3493 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3495 if (GET_CODE (insn) == JUMP_INSN)
3497 mark_jump_label (PATTERN (insn), insn, 0);
3498 njumps++;
3499 if (probability != -1
3500 && any_condjump_p (insn)
3501 && !find_reg_note (insn, REG_BR_PROB, 0))
3503 /* We can preserve the REG_BR_PROB notes only if exactly
3504 one jump is created, otherwise the machine description
3505 is responsible for this step using
3506 split_branch_probability variable. */
3507 if (njumps != 1)
3508 abort ();
3509 REG_NOTES (insn)
3510 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3511 GEN_INT (probability),
3512 REG_NOTES (insn));
3517 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3518 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3519 if (GET_CODE (trial) == CALL_INSN)
3521 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3522 if (GET_CODE (insn) == CALL_INSN)
3524 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3525 while (*p)
3526 p = &XEXP (*p, 1);
3527 *p = CALL_INSN_FUNCTION_USAGE (trial);
3528 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3532 /* Copy notes, particularly those related to the CFG. */
3533 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3535 switch (REG_NOTE_KIND (note))
3537 case REG_EH_REGION:
3538 insn = insn_last;
3539 while (insn != NULL_RTX)
3541 if (GET_CODE (insn) == CALL_INSN
3542 || (flag_non_call_exceptions
3543 && may_trap_p (PATTERN (insn))))
3544 REG_NOTES (insn)
3545 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3546 XEXP (note, 0),
3547 REG_NOTES (insn));
3548 insn = PREV_INSN (insn);
3550 break;
3552 case REG_NORETURN:
3553 case REG_SETJMP:
3554 case REG_ALWAYS_RETURN:
3555 insn = insn_last;
3556 while (insn != NULL_RTX)
3558 if (GET_CODE (insn) == CALL_INSN)
3559 REG_NOTES (insn)
3560 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3561 XEXP (note, 0),
3562 REG_NOTES (insn));
3563 insn = PREV_INSN (insn);
3565 break;
3567 case REG_NON_LOCAL_GOTO:
3568 insn = insn_last;
3569 while (insn != NULL_RTX)
3571 if (GET_CODE (insn) == JUMP_INSN)
3572 REG_NOTES (insn)
3573 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3574 XEXP (note, 0),
3575 REG_NOTES (insn));
3576 insn = PREV_INSN (insn);
3578 break;
3580 default:
3581 break;
3585 /* If there are LABELS inside the split insns increment the
3586 usage count so we don't delete the label. */
3587 if (GET_CODE (trial) == INSN)
3589 insn = insn_last;
3590 while (insn != NULL_RTX)
3592 if (GET_CODE (insn) == INSN)
3593 mark_label_nuses (PATTERN (insn));
3595 insn = PREV_INSN (insn);
3599 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3601 delete_insn (trial);
3602 if (has_barrier)
3603 emit_barrier_after (tem);
3605 /* Recursively call try_split for each new insn created; by the
3606 time control returns here that insn will be fully split, so
3607 set LAST and continue from the insn after the one returned.
3608 We can't use next_active_insn here since AFTER may be a note.
3609 Ignore deleted insns, which can be occur if not optimizing. */
3610 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3611 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3612 tem = try_split (PATTERN (tem), tem, 1);
3614 /* Return either the first or the last insn, depending on which was
3615 requested. */
3616 return last
3617 ? (after ? PREV_INSN (after) : last_insn)
3618 : NEXT_INSN (before);
3621 /* Make and return an INSN rtx, initializing all its slots.
3622 Store PATTERN in the pattern slots. */
3625 make_insn_raw (rtx pattern)
3627 rtx insn;
3629 insn = rtx_alloc (INSN);
3631 INSN_UID (insn) = cur_insn_uid++;
3632 PATTERN (insn) = pattern;
3633 INSN_CODE (insn) = -1;
3634 LOG_LINKS (insn) = NULL;
3635 REG_NOTES (insn) = NULL;
3636 INSN_LOCATOR (insn) = 0;
3637 BLOCK_FOR_INSN (insn) = NULL;
3639 #ifdef ENABLE_RTL_CHECKING
3640 if (insn
3641 && INSN_P (insn)
3642 && (returnjump_p (insn)
3643 || (GET_CODE (insn) == SET
3644 && SET_DEST (insn) == pc_rtx)))
3646 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3647 debug_rtx (insn);
3649 #endif
3651 return insn;
3654 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3656 static rtx
3657 make_jump_insn_raw (rtx pattern)
3659 rtx insn;
3661 insn = rtx_alloc (JUMP_INSN);
3662 INSN_UID (insn) = cur_insn_uid++;
3664 PATTERN (insn) = pattern;
3665 INSN_CODE (insn) = -1;
3666 LOG_LINKS (insn) = NULL;
3667 REG_NOTES (insn) = NULL;
3668 JUMP_LABEL (insn) = NULL;
3669 INSN_LOCATOR (insn) = 0;
3670 BLOCK_FOR_INSN (insn) = NULL;
3672 return insn;
3675 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3677 static rtx
3678 make_call_insn_raw (rtx pattern)
3680 rtx insn;
3682 insn = rtx_alloc (CALL_INSN);
3683 INSN_UID (insn) = cur_insn_uid++;
3685 PATTERN (insn) = pattern;
3686 INSN_CODE (insn) = -1;
3687 LOG_LINKS (insn) = NULL;
3688 REG_NOTES (insn) = NULL;
3689 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3690 INSN_LOCATOR (insn) = 0;
3691 BLOCK_FOR_INSN (insn) = NULL;
3693 return insn;
3696 /* Add INSN to the end of the doubly-linked list.
3697 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3699 void
3700 add_insn (rtx insn)
3702 PREV_INSN (insn) = last_insn;
3703 NEXT_INSN (insn) = 0;
3705 if (NULL != last_insn)
3706 NEXT_INSN (last_insn) = insn;
3708 if (NULL == first_insn)
3709 first_insn = insn;
3711 last_insn = insn;
3714 /* Add INSN into the doubly-linked list after insn AFTER. This and
3715 the next should be the only functions called to insert an insn once
3716 delay slots have been filled since only they know how to update a
3717 SEQUENCE. */
3719 void
3720 add_insn_after (rtx insn, rtx after)
3722 rtx next = NEXT_INSN (after);
3723 basic_block bb;
3725 if (optimize && INSN_DELETED_P (after))
3726 abort ();
3728 NEXT_INSN (insn) = next;
3729 PREV_INSN (insn) = after;
3731 if (next)
3733 PREV_INSN (next) = insn;
3734 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3735 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3737 else if (last_insn == after)
3738 last_insn = insn;
3739 else
3741 struct sequence_stack *stack = seq_stack;
3742 /* Scan all pending sequences too. */
3743 for (; stack; stack = stack->next)
3744 if (after == stack->last)
3746 stack->last = insn;
3747 break;
3750 if (stack == 0)
3751 abort ();
3754 if (GET_CODE (after) != BARRIER
3755 && GET_CODE (insn) != BARRIER
3756 && (bb = BLOCK_FOR_INSN (after)))
3758 set_block_for_insn (insn, bb);
3759 if (INSN_P (insn))
3760 bb->flags |= BB_DIRTY;
3761 /* Should not happen as first in the BB is always
3762 either NOTE or LABEL. */
3763 if (bb->end == after
3764 /* Avoid clobbering of structure when creating new BB. */
3765 && GET_CODE (insn) != BARRIER
3766 && (GET_CODE (insn) != NOTE
3767 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3768 bb->end = insn;
3771 NEXT_INSN (after) = insn;
3772 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3774 rtx sequence = PATTERN (after);
3775 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3779 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3780 the previous should be the only functions called to insert an insn once
3781 delay slots have been filled since only they know how to update a
3782 SEQUENCE. */
3784 void
3785 add_insn_before (rtx insn, rtx before)
3787 rtx prev = PREV_INSN (before);
3788 basic_block bb;
3790 if (optimize && INSN_DELETED_P (before))
3791 abort ();
3793 PREV_INSN (insn) = prev;
3794 NEXT_INSN (insn) = before;
3796 if (prev)
3798 NEXT_INSN (prev) = insn;
3799 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3801 rtx sequence = PATTERN (prev);
3802 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3805 else if (first_insn == before)
3806 first_insn = insn;
3807 else
3809 struct sequence_stack *stack = seq_stack;
3810 /* Scan all pending sequences too. */
3811 for (; stack; stack = stack->next)
3812 if (before == stack->first)
3814 stack->first = insn;
3815 break;
3818 if (stack == 0)
3819 abort ();
3822 if (GET_CODE (before) != BARRIER
3823 && GET_CODE (insn) != BARRIER
3824 && (bb = BLOCK_FOR_INSN (before)))
3826 set_block_for_insn (insn, bb);
3827 if (INSN_P (insn))
3828 bb->flags |= BB_DIRTY;
3829 /* Should not happen as first in the BB is always
3830 either NOTE or LABEl. */
3831 if (bb->head == insn
3832 /* Avoid clobbering of structure when creating new BB. */
3833 && GET_CODE (insn) != BARRIER
3834 && (GET_CODE (insn) != NOTE
3835 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3836 abort ();
3839 PREV_INSN (before) = insn;
3840 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3841 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3844 /* Remove an insn from its doubly-linked list. This function knows how
3845 to handle sequences. */
3846 void
3847 remove_insn (rtx insn)
3849 rtx next = NEXT_INSN (insn);
3850 rtx prev = PREV_INSN (insn);
3851 basic_block bb;
3853 if (prev)
3855 NEXT_INSN (prev) = next;
3856 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3858 rtx sequence = PATTERN (prev);
3859 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3862 else if (first_insn == insn)
3863 first_insn = next;
3864 else
3866 struct sequence_stack *stack = seq_stack;
3867 /* Scan all pending sequences too. */
3868 for (; stack; stack = stack->next)
3869 if (insn == stack->first)
3871 stack->first = next;
3872 break;
3875 if (stack == 0)
3876 abort ();
3879 if (next)
3881 PREV_INSN (next) = prev;
3882 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3883 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3885 else if (last_insn == insn)
3886 last_insn = prev;
3887 else
3889 struct sequence_stack *stack = seq_stack;
3890 /* Scan all pending sequences too. */
3891 for (; stack; stack = stack->next)
3892 if (insn == stack->last)
3894 stack->last = prev;
3895 break;
3898 if (stack == 0)
3899 abort ();
3901 if (GET_CODE (insn) != BARRIER
3902 && (bb = BLOCK_FOR_INSN (insn)))
3904 if (INSN_P (insn))
3905 bb->flags |= BB_DIRTY;
3906 if (bb->head == insn)
3908 /* Never ever delete the basic block note without deleting whole
3909 basic block. */
3910 if (GET_CODE (insn) == NOTE)
3911 abort ();
3912 bb->head = next;
3914 if (bb->end == insn)
3915 bb->end = prev;
3919 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3921 void
3922 add_function_usage_to (rtx call_insn, rtx call_fusage)
3924 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3925 abort ();
3927 /* Put the register usage information on the CALL. If there is already
3928 some usage information, put ours at the end. */
3929 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3931 rtx link;
3933 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3934 link = XEXP (link, 1))
3937 XEXP (link, 1) = call_fusage;
3939 else
3940 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3943 /* Delete all insns made since FROM.
3944 FROM becomes the new last instruction. */
3946 void
3947 delete_insns_since (rtx from)
3949 if (from == 0)
3950 first_insn = 0;
3951 else
3952 NEXT_INSN (from) = 0;
3953 last_insn = from;
3956 /* This function is deprecated, please use sequences instead.
3958 Move a consecutive bunch of insns to a different place in the chain.
3959 The insns to be moved are those between FROM and TO.
3960 They are moved to a new position after the insn AFTER.
3961 AFTER must not be FROM or TO or any insn in between.
3963 This function does not know about SEQUENCEs and hence should not be
3964 called after delay-slot filling has been done. */
3966 void
3967 reorder_insns_nobb (rtx from, rtx to, rtx after)
3969 /* Splice this bunch out of where it is now. */
3970 if (PREV_INSN (from))
3971 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3972 if (NEXT_INSN (to))
3973 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3974 if (last_insn == to)
3975 last_insn = PREV_INSN (from);
3976 if (first_insn == from)
3977 first_insn = NEXT_INSN (to);
3979 /* Make the new neighbors point to it and it to them. */
3980 if (NEXT_INSN (after))
3981 PREV_INSN (NEXT_INSN (after)) = to;
3983 NEXT_INSN (to) = NEXT_INSN (after);
3984 PREV_INSN (from) = after;
3985 NEXT_INSN (after) = from;
3986 if (after == last_insn)
3987 last_insn = to;
3990 /* Same as function above, but take care to update BB boundaries. */
3991 void
3992 reorder_insns (rtx from, rtx to, rtx after)
3994 rtx prev = PREV_INSN (from);
3995 basic_block bb, bb2;
3997 reorder_insns_nobb (from, to, after);
3999 if (GET_CODE (after) != BARRIER
4000 && (bb = BLOCK_FOR_INSN (after)))
4002 rtx x;
4003 bb->flags |= BB_DIRTY;
4005 if (GET_CODE (from) != BARRIER
4006 && (bb2 = BLOCK_FOR_INSN (from)))
4008 if (bb2->end == to)
4009 bb2->end = prev;
4010 bb2->flags |= BB_DIRTY;
4013 if (bb->end == after)
4014 bb->end = to;
4016 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4017 set_block_for_insn (x, bb);
4021 /* Return the line note insn preceding INSN. */
4023 static rtx
4024 find_line_note (rtx insn)
4026 if (no_line_numbers)
4027 return 0;
4029 for (; insn; insn = PREV_INSN (insn))
4030 if (GET_CODE (insn) == NOTE
4031 && NOTE_LINE_NUMBER (insn) >= 0)
4032 break;
4034 return insn;
4037 /* Like reorder_insns, but inserts line notes to preserve the line numbers
4038 of the moved insns when debugging. This may insert a note between AFTER
4039 and FROM, and another one after TO. */
4041 void
4042 reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
4044 rtx from_line = find_line_note (from);
4045 rtx after_line = find_line_note (after);
4047 reorder_insns (from, to, after);
4049 if (from_line == after_line)
4050 return;
4052 if (from_line)
4053 emit_note_copy_after (from_line, after);
4054 if (after_line)
4055 emit_note_copy_after (after_line, to);
4058 /* Remove unnecessary notes from the instruction stream. */
4060 void
4061 remove_unnecessary_notes (void)
4063 rtx block_stack = NULL_RTX;
4064 rtx eh_stack = NULL_RTX;
4065 rtx insn;
4066 rtx next;
4067 rtx tmp;
4069 /* We must not remove the first instruction in the function because
4070 the compiler depends on the first instruction being a note. */
4071 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
4073 /* Remember what's next. */
4074 next = NEXT_INSN (insn);
4076 /* We're only interested in notes. */
4077 if (GET_CODE (insn) != NOTE)
4078 continue;
4080 switch (NOTE_LINE_NUMBER (insn))
4082 case NOTE_INSN_DELETED:
4083 case NOTE_INSN_LOOP_END_TOP_COND:
4084 remove_insn (insn);
4085 break;
4087 case NOTE_INSN_EH_REGION_BEG:
4088 eh_stack = alloc_INSN_LIST (insn, eh_stack);
4089 break;
4091 case NOTE_INSN_EH_REGION_END:
4092 /* Too many end notes. */
4093 if (eh_stack == NULL_RTX)
4094 abort ();
4095 /* Mismatched nesting. */
4096 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
4097 abort ();
4098 tmp = eh_stack;
4099 eh_stack = XEXP (eh_stack, 1);
4100 free_INSN_LIST_node (tmp);
4101 break;
4103 case NOTE_INSN_BLOCK_BEG:
4104 /* By now, all notes indicating lexical blocks should have
4105 NOTE_BLOCK filled in. */
4106 if (NOTE_BLOCK (insn) == NULL_TREE)
4107 abort ();
4108 block_stack = alloc_INSN_LIST (insn, block_stack);
4109 break;
4111 case NOTE_INSN_BLOCK_END:
4112 /* Too many end notes. */
4113 if (block_stack == NULL_RTX)
4114 abort ();
4115 /* Mismatched nesting. */
4116 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
4117 abort ();
4118 tmp = block_stack;
4119 block_stack = XEXP (block_stack, 1);
4120 free_INSN_LIST_node (tmp);
4122 /* Scan back to see if there are any non-note instructions
4123 between INSN and the beginning of this block. If not,
4124 then there is no PC range in the generated code that will
4125 actually be in this block, so there's no point in
4126 remembering the existence of the block. */
4127 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
4129 /* This block contains a real instruction. Note that we
4130 don't include labels; if the only thing in the block
4131 is a label, then there are still no PC values that
4132 lie within the block. */
4133 if (INSN_P (tmp))
4134 break;
4136 /* We're only interested in NOTEs. */
4137 if (GET_CODE (tmp) != NOTE)
4138 continue;
4140 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
4142 /* We just verified that this BLOCK matches us with
4143 the block_stack check above. Never delete the
4144 BLOCK for the outermost scope of the function; we
4145 can refer to names from that scope even if the
4146 block notes are messed up. */
4147 if (! is_body_block (NOTE_BLOCK (insn))
4148 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
4150 remove_insn (tmp);
4151 remove_insn (insn);
4153 break;
4155 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
4156 /* There's a nested block. We need to leave the
4157 current block in place since otherwise the debugger
4158 wouldn't be able to show symbols from our block in
4159 the nested block. */
4160 break;
4165 /* Too many begin notes. */
4166 if (block_stack || eh_stack)
4167 abort ();
4171 /* Emit insn(s) of given code and pattern
4172 at a specified place within the doubly-linked list.
4174 All of the emit_foo global entry points accept an object
4175 X which is either an insn list or a PATTERN of a single
4176 instruction.
4178 There are thus a few canonical ways to generate code and
4179 emit it at a specific place in the instruction stream. For
4180 example, consider the instruction named SPOT and the fact that
4181 we would like to emit some instructions before SPOT. We might
4182 do it like this:
4184 start_sequence ();
4185 ... emit the new instructions ...
4186 insns_head = get_insns ();
4187 end_sequence ();
4189 emit_insn_before (insns_head, SPOT);
4191 It used to be common to generate SEQUENCE rtl instead, but that
4192 is a relic of the past which no longer occurs. The reason is that
4193 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4194 generated would almost certainly die right after it was created. */
4196 /* Make X be output before the instruction BEFORE. */
4199 emit_insn_before (rtx x, rtx before)
4201 rtx last = before;
4202 rtx insn;
4204 #ifdef ENABLE_RTL_CHECKING
4205 if (before == NULL_RTX)
4206 abort ();
4207 #endif
4209 if (x == NULL_RTX)
4210 return last;
4212 switch (GET_CODE (x))
4214 case INSN:
4215 case JUMP_INSN:
4216 case CALL_INSN:
4217 case CODE_LABEL:
4218 case BARRIER:
4219 case NOTE:
4220 insn = x;
4221 while (insn)
4223 rtx next = NEXT_INSN (insn);
4224 add_insn_before (insn, before);
4225 last = insn;
4226 insn = next;
4228 break;
4230 #ifdef ENABLE_RTL_CHECKING
4231 case SEQUENCE:
4232 abort ();
4233 break;
4234 #endif
4236 default:
4237 last = make_insn_raw (x);
4238 add_insn_before (last, before);
4239 break;
4242 return last;
4245 /* Make an instruction with body X and code JUMP_INSN
4246 and output it before the instruction BEFORE. */
4249 emit_jump_insn_before (rtx x, rtx before)
4251 rtx insn, last = NULL_RTX;
4253 #ifdef ENABLE_RTL_CHECKING
4254 if (before == NULL_RTX)
4255 abort ();
4256 #endif
4258 switch (GET_CODE (x))
4260 case INSN:
4261 case JUMP_INSN:
4262 case CALL_INSN:
4263 case CODE_LABEL:
4264 case BARRIER:
4265 case NOTE:
4266 insn = x;
4267 while (insn)
4269 rtx next = NEXT_INSN (insn);
4270 add_insn_before (insn, before);
4271 last = insn;
4272 insn = next;
4274 break;
4276 #ifdef ENABLE_RTL_CHECKING
4277 case SEQUENCE:
4278 abort ();
4279 break;
4280 #endif
4282 default:
4283 last = make_jump_insn_raw (x);
4284 add_insn_before (last, before);
4285 break;
4288 return last;
4291 /* Make an instruction with body X and code CALL_INSN
4292 and output it before the instruction BEFORE. */
4295 emit_call_insn_before (rtx x, rtx before)
4297 rtx last = NULL_RTX, insn;
4299 #ifdef ENABLE_RTL_CHECKING
4300 if (before == NULL_RTX)
4301 abort ();
4302 #endif
4304 switch (GET_CODE (x))
4306 case INSN:
4307 case JUMP_INSN:
4308 case CALL_INSN:
4309 case CODE_LABEL:
4310 case BARRIER:
4311 case NOTE:
4312 insn = x;
4313 while (insn)
4315 rtx next = NEXT_INSN (insn);
4316 add_insn_before (insn, before);
4317 last = insn;
4318 insn = next;
4320 break;
4322 #ifdef ENABLE_RTL_CHECKING
4323 case SEQUENCE:
4324 abort ();
4325 break;
4326 #endif
4328 default:
4329 last = make_call_insn_raw (x);
4330 add_insn_before (last, before);
4331 break;
4334 return last;
4337 /* Make an insn of code BARRIER
4338 and output it before the insn BEFORE. */
4341 emit_barrier_before (rtx before)
4343 rtx insn = rtx_alloc (BARRIER);
4345 INSN_UID (insn) = cur_insn_uid++;
4347 add_insn_before (insn, before);
4348 return insn;
4351 /* Emit the label LABEL before the insn BEFORE. */
4354 emit_label_before (rtx label, rtx before)
4356 /* This can be called twice for the same label as a result of the
4357 confusion that follows a syntax error! So make it harmless. */
4358 if (INSN_UID (label) == 0)
4360 INSN_UID (label) = cur_insn_uid++;
4361 add_insn_before (label, before);
4364 return label;
4367 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4370 emit_note_before (int subtype, rtx before)
4372 rtx note = rtx_alloc (NOTE);
4373 INSN_UID (note) = cur_insn_uid++;
4374 NOTE_SOURCE_FILE (note) = 0;
4375 NOTE_LINE_NUMBER (note) = subtype;
4376 BLOCK_FOR_INSN (note) = NULL;
4378 add_insn_before (note, before);
4379 return note;
4382 /* Helper for emit_insn_after, handles lists of instructions
4383 efficiently. */
4385 static rtx emit_insn_after_1 (rtx, rtx);
4387 static rtx
4388 emit_insn_after_1 (rtx first, rtx after)
4390 rtx last;
4391 rtx after_after;
4392 basic_block bb;
4394 if (GET_CODE (after) != BARRIER
4395 && (bb = BLOCK_FOR_INSN (after)))
4397 bb->flags |= BB_DIRTY;
4398 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4399 if (GET_CODE (last) != BARRIER)
4400 set_block_for_insn (last, bb);
4401 if (GET_CODE (last) != BARRIER)
4402 set_block_for_insn (last, bb);
4403 if (bb->end == after)
4404 bb->end = last;
4406 else
4407 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4408 continue;
4410 after_after = NEXT_INSN (after);
4412 NEXT_INSN (after) = first;
4413 PREV_INSN (first) = after;
4414 NEXT_INSN (last) = after_after;
4415 if (after_after)
4416 PREV_INSN (after_after) = last;
4418 if (after == last_insn)
4419 last_insn = last;
4420 return last;
4423 /* Make X be output after the insn AFTER. */
4426 emit_insn_after (rtx x, rtx after)
4428 rtx last = after;
4430 #ifdef ENABLE_RTL_CHECKING
4431 if (after == NULL_RTX)
4432 abort ();
4433 #endif
4435 if (x == NULL_RTX)
4436 return last;
4438 switch (GET_CODE (x))
4440 case INSN:
4441 case JUMP_INSN:
4442 case CALL_INSN:
4443 case CODE_LABEL:
4444 case BARRIER:
4445 case NOTE:
4446 last = emit_insn_after_1 (x, after);
4447 break;
4449 #ifdef ENABLE_RTL_CHECKING
4450 case SEQUENCE:
4451 abort ();
4452 break;
4453 #endif
4455 default:
4456 last = make_insn_raw (x);
4457 add_insn_after (last, after);
4458 break;
4461 return last;
4464 /* Similar to emit_insn_after, except that line notes are to be inserted so
4465 as to act as if this insn were at FROM. */
4467 void
4468 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4470 rtx from_line = find_line_note (from);
4471 rtx after_line = find_line_note (after);
4472 rtx insn = emit_insn_after (x, after);
4474 if (from_line)
4475 emit_note_copy_after (from_line, after);
4477 if (after_line)
4478 emit_note_copy_after (after_line, insn);
4481 /* Make an insn of code JUMP_INSN with body X
4482 and output it after the insn AFTER. */
4485 emit_jump_insn_after (rtx x, rtx after)
4487 rtx last;
4489 #ifdef ENABLE_RTL_CHECKING
4490 if (after == NULL_RTX)
4491 abort ();
4492 #endif
4494 switch (GET_CODE (x))
4496 case INSN:
4497 case JUMP_INSN:
4498 case CALL_INSN:
4499 case CODE_LABEL:
4500 case BARRIER:
4501 case NOTE:
4502 last = emit_insn_after_1 (x, after);
4503 break;
4505 #ifdef ENABLE_RTL_CHECKING
4506 case SEQUENCE:
4507 abort ();
4508 break;
4509 #endif
4511 default:
4512 last = make_jump_insn_raw (x);
4513 add_insn_after (last, after);
4514 break;
4517 return last;
4520 /* Make an instruction with body X and code CALL_INSN
4521 and output it after the instruction AFTER. */
4524 emit_call_insn_after (rtx x, rtx after)
4526 rtx last;
4528 #ifdef ENABLE_RTL_CHECKING
4529 if (after == NULL_RTX)
4530 abort ();
4531 #endif
4533 switch (GET_CODE (x))
4535 case INSN:
4536 case JUMP_INSN:
4537 case CALL_INSN:
4538 case CODE_LABEL:
4539 case BARRIER:
4540 case NOTE:
4541 last = emit_insn_after_1 (x, after);
4542 break;
4544 #ifdef ENABLE_RTL_CHECKING
4545 case SEQUENCE:
4546 abort ();
4547 break;
4548 #endif
4550 default:
4551 last = make_call_insn_raw (x);
4552 add_insn_after (last, after);
4553 break;
4556 return last;
4559 /* Make an insn of code BARRIER
4560 and output it after the insn AFTER. */
4563 emit_barrier_after (rtx after)
4565 rtx insn = rtx_alloc (BARRIER);
4567 INSN_UID (insn) = cur_insn_uid++;
4569 add_insn_after (insn, after);
4570 return insn;
4573 /* Emit the label LABEL after the insn AFTER. */
4576 emit_label_after (rtx label, rtx after)
4578 /* This can be called twice for the same label
4579 as a result of the confusion that follows a syntax error!
4580 So make it harmless. */
4581 if (INSN_UID (label) == 0)
4583 INSN_UID (label) = cur_insn_uid++;
4584 add_insn_after (label, after);
4587 return label;
4590 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4593 emit_note_after (int subtype, rtx after)
4595 rtx note = rtx_alloc (NOTE);
4596 INSN_UID (note) = cur_insn_uid++;
4597 NOTE_SOURCE_FILE (note) = 0;
4598 NOTE_LINE_NUMBER (note) = subtype;
4599 BLOCK_FOR_INSN (note) = NULL;
4600 add_insn_after (note, after);
4601 return note;
4604 /* Emit a copy of note ORIG after the insn AFTER. */
4607 emit_note_copy_after (rtx orig, rtx after)
4609 rtx note;
4611 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4613 cur_insn_uid++;
4614 return 0;
4617 note = rtx_alloc (NOTE);
4618 INSN_UID (note) = cur_insn_uid++;
4619 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4620 NOTE_DATA (note) = NOTE_DATA (orig);
4621 BLOCK_FOR_INSN (note) = NULL;
4622 add_insn_after (note, after);
4623 return note;
4626 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4628 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4630 rtx last = emit_insn_after (pattern, after);
4632 after = NEXT_INSN (after);
4633 while (1)
4635 if (active_insn_p (after))
4636 INSN_LOCATOR (after) = loc;
4637 if (after == last)
4638 break;
4639 after = NEXT_INSN (after);
4641 return last;
4644 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4646 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4648 rtx last = emit_jump_insn_after (pattern, after);
4650 after = NEXT_INSN (after);
4651 while (1)
4653 if (active_insn_p (after))
4654 INSN_LOCATOR (after) = loc;
4655 if (after == last)
4656 break;
4657 after = NEXT_INSN (after);
4659 return last;
4662 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4664 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4666 rtx last = emit_call_insn_after (pattern, after);
4668 after = NEXT_INSN (after);
4669 while (1)
4671 if (active_insn_p (after))
4672 INSN_LOCATOR (after) = loc;
4673 if (after == last)
4674 break;
4675 after = NEXT_INSN (after);
4677 return last;
4680 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4682 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4684 rtx first = PREV_INSN (before);
4685 rtx last = emit_insn_before (pattern, before);
4687 first = NEXT_INSN (first);
4688 while (1)
4690 if (active_insn_p (first))
4691 INSN_LOCATOR (first) = loc;
4692 if (first == last)
4693 break;
4694 first = NEXT_INSN (first);
4696 return last;
4699 /* Take X and emit it at the end of the doubly-linked
4700 INSN list.
4702 Returns the last insn emitted. */
4705 emit_insn (rtx x)
4707 rtx last = last_insn;
4708 rtx insn;
4710 if (x == NULL_RTX)
4711 return last;
4713 switch (GET_CODE (x))
4715 case INSN:
4716 case JUMP_INSN:
4717 case CALL_INSN:
4718 case CODE_LABEL:
4719 case BARRIER:
4720 case NOTE:
4721 insn = x;
4722 while (insn)
4724 rtx next = NEXT_INSN (insn);
4725 add_insn (insn);
4726 last = insn;
4727 insn = next;
4729 break;
4731 #ifdef ENABLE_RTL_CHECKING
4732 case SEQUENCE:
4733 abort ();
4734 break;
4735 #endif
4737 default:
4738 last = make_insn_raw (x);
4739 add_insn (last);
4740 break;
4743 return last;
4746 /* Make an insn of code JUMP_INSN with pattern X
4747 and add it to the end of the doubly-linked list. */
4750 emit_jump_insn (rtx x)
4752 rtx last = NULL_RTX, insn;
4754 switch (GET_CODE (x))
4756 case INSN:
4757 case JUMP_INSN:
4758 case CALL_INSN:
4759 case CODE_LABEL:
4760 case BARRIER:
4761 case NOTE:
4762 insn = x;
4763 while (insn)
4765 rtx next = NEXT_INSN (insn);
4766 add_insn (insn);
4767 last = insn;
4768 insn = next;
4770 break;
4772 #ifdef ENABLE_RTL_CHECKING
4773 case SEQUENCE:
4774 abort ();
4775 break;
4776 #endif
4778 default:
4779 last = make_jump_insn_raw (x);
4780 add_insn (last);
4781 break;
4784 return last;
4787 /* Make an insn of code CALL_INSN with pattern X
4788 and add it to the end of the doubly-linked list. */
4791 emit_call_insn (rtx x)
4793 rtx insn;
4795 switch (GET_CODE (x))
4797 case INSN:
4798 case JUMP_INSN:
4799 case CALL_INSN:
4800 case CODE_LABEL:
4801 case BARRIER:
4802 case NOTE:
4803 insn = emit_insn (x);
4804 break;
4806 #ifdef ENABLE_RTL_CHECKING
4807 case SEQUENCE:
4808 abort ();
4809 break;
4810 #endif
4812 default:
4813 insn = make_call_insn_raw (x);
4814 add_insn (insn);
4815 break;
4818 return insn;
4821 /* Add the label LABEL to the end of the doubly-linked list. */
4824 emit_label (rtx label)
4826 /* This can be called twice for the same label
4827 as a result of the confusion that follows a syntax error!
4828 So make it harmless. */
4829 if (INSN_UID (label) == 0)
4831 INSN_UID (label) = cur_insn_uid++;
4832 add_insn (label);
4834 return label;
4837 /* Make an insn of code BARRIER
4838 and add it to the end of the doubly-linked list. */
4841 emit_barrier (void)
4843 rtx barrier = rtx_alloc (BARRIER);
4844 INSN_UID (barrier) = cur_insn_uid++;
4845 add_insn (barrier);
4846 return barrier;
4849 /* Make line numbering NOTE insn for LOCATION add it to the end
4850 of the doubly-linked list, but only if line-numbers are desired for
4851 debugging info and it doesn't match the previous one. */
4854 emit_line_note (location_t location)
4856 rtx note;
4858 set_file_and_line_for_stmt (location);
4860 if (location.file && last_location.file
4861 && !strcmp (location.file, last_location.file)
4862 && location.line == last_location.line)
4863 return NULL_RTX;
4864 last_location = location;
4866 if (no_line_numbers)
4868 cur_insn_uid++;
4869 return NULL_RTX;
4872 note = emit_note (location.line);
4873 NOTE_SOURCE_FILE (note) = location.file;
4875 return note;
4878 /* Emit a copy of note ORIG. */
4881 emit_note_copy (rtx orig)
4883 rtx note;
4885 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4887 cur_insn_uid++;
4888 return NULL_RTX;
4891 note = rtx_alloc (NOTE);
4893 INSN_UID (note) = cur_insn_uid++;
4894 NOTE_DATA (note) = NOTE_DATA (orig);
4895 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4896 BLOCK_FOR_INSN (note) = NULL;
4897 add_insn (note);
4899 return note;
4902 /* Make an insn of code NOTE or type NOTE_NO
4903 and add it to the end of the doubly-linked list. */
4906 emit_note (int note_no)
4908 rtx note;
4910 note = rtx_alloc (NOTE);
4911 INSN_UID (note) = cur_insn_uid++;
4912 NOTE_LINE_NUMBER (note) = note_no;
4913 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4914 BLOCK_FOR_INSN (note) = NULL;
4915 add_insn (note);
4916 return note;
4919 /* Cause next statement to emit a line note even if the line number
4920 has not changed. */
4922 void
4923 force_next_line_note (void)
4925 last_location.line = -1;
4928 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4929 note of this type already exists, remove it first. */
4932 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4934 rtx note = find_reg_note (insn, kind, NULL_RTX);
4936 switch (kind)
4938 case REG_EQUAL:
4939 case REG_EQUIV:
4940 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4941 has multiple sets (some callers assume single_set
4942 means the insn only has one set, when in fact it
4943 means the insn only has one * useful * set). */
4944 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4946 if (note)
4947 abort ();
4948 return NULL_RTX;
4951 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4952 It serves no useful purpose and breaks eliminate_regs. */
4953 if (GET_CODE (datum) == ASM_OPERANDS)
4954 return NULL_RTX;
4955 break;
4957 default:
4958 break;
4961 if (note)
4963 XEXP (note, 0) = datum;
4964 return note;
4967 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4968 return REG_NOTES (insn);
4971 /* Return an indication of which type of insn should have X as a body.
4972 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4974 enum rtx_code
4975 classify_insn (rtx x)
4977 if (GET_CODE (x) == CODE_LABEL)
4978 return CODE_LABEL;
4979 if (GET_CODE (x) == CALL)
4980 return CALL_INSN;
4981 if (GET_CODE (x) == RETURN)
4982 return JUMP_INSN;
4983 if (GET_CODE (x) == SET)
4985 if (SET_DEST (x) == pc_rtx)
4986 return JUMP_INSN;
4987 else if (GET_CODE (SET_SRC (x)) == CALL)
4988 return CALL_INSN;
4989 else
4990 return INSN;
4992 if (GET_CODE (x) == PARALLEL)
4994 int j;
4995 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4996 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4997 return CALL_INSN;
4998 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4999 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5000 return JUMP_INSN;
5001 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5002 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5003 return CALL_INSN;
5005 return INSN;
5008 /* Emit the rtl pattern X as an appropriate kind of insn.
5009 If X is a label, it is simply added into the insn chain. */
5012 emit (rtx x)
5014 enum rtx_code code = classify_insn (x);
5016 if (code == CODE_LABEL)
5017 return emit_label (x);
5018 else if (code == INSN)
5019 return emit_insn (x);
5020 else if (code == JUMP_INSN)
5022 rtx insn = emit_jump_insn (x);
5023 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5024 return emit_barrier ();
5025 return insn;
5027 else if (code == CALL_INSN)
5028 return emit_call_insn (x);
5029 else
5030 abort ();
5033 /* Space for free sequence stack entries. */
5034 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
5036 /* Begin emitting insns to a sequence which can be packaged in an
5037 RTL_EXPR. If this sequence will contain something that might cause
5038 the compiler to pop arguments to function calls (because those
5039 pops have previously been deferred; see INHIBIT_DEFER_POP for more
5040 details), use do_pending_stack_adjust before calling this function.
5041 That will ensure that the deferred pops are not accidentally
5042 emitted in the middle of this sequence. */
5044 void
5045 start_sequence (void)
5047 struct sequence_stack *tem;
5049 if (free_sequence_stack != NULL)
5051 tem = free_sequence_stack;
5052 free_sequence_stack = tem->next;
5054 else
5055 tem = ggc_alloc (sizeof (struct sequence_stack));
5057 tem->next = seq_stack;
5058 tem->first = first_insn;
5059 tem->last = last_insn;
5060 tem->sequence_rtl_expr = seq_rtl_expr;
5062 seq_stack = tem;
5064 first_insn = 0;
5065 last_insn = 0;
5068 /* Similarly, but indicate that this sequence will be placed in T, an
5069 RTL_EXPR. See the documentation for start_sequence for more
5070 information about how to use this function. */
5072 void
5073 start_sequence_for_rtl_expr (tree t)
5075 start_sequence ();
5077 seq_rtl_expr = t;
5080 /* Set up the insn chain starting with FIRST as the current sequence,
5081 saving the previously current one. See the documentation for
5082 start_sequence for more information about how to use this function. */
5084 void
5085 push_to_sequence (rtx first)
5087 rtx last;
5089 start_sequence ();
5091 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5093 first_insn = first;
5094 last_insn = last;
5097 /* Set up the insn chain from a chain stort in FIRST to LAST. */
5099 void
5100 push_to_full_sequence (rtx first, rtx last)
5102 start_sequence ();
5103 first_insn = first;
5104 last_insn = last;
5105 /* We really should have the end of the insn chain here. */
5106 if (last && NEXT_INSN (last))
5107 abort ();
5110 /* Set up the outer-level insn chain
5111 as the current sequence, saving the previously current one. */
5113 void
5114 push_topmost_sequence (void)
5116 struct sequence_stack *stack, *top = NULL;
5118 start_sequence ();
5120 for (stack = seq_stack; stack; stack = stack->next)
5121 top = stack;
5123 first_insn = top->first;
5124 last_insn = top->last;
5125 seq_rtl_expr = top->sequence_rtl_expr;
5128 /* After emitting to the outer-level insn chain, update the outer-level
5129 insn chain, and restore the previous saved state. */
5131 void
5132 pop_topmost_sequence (void)
5134 struct sequence_stack *stack, *top = NULL;
5136 for (stack = seq_stack; stack; stack = stack->next)
5137 top = stack;
5139 top->first = first_insn;
5140 top->last = last_insn;
5141 /* ??? Why don't we save seq_rtl_expr here? */
5143 end_sequence ();
5146 /* After emitting to a sequence, restore previous saved state.
5148 To get the contents of the sequence just made, you must call
5149 `get_insns' *before* calling here.
5151 If the compiler might have deferred popping arguments while
5152 generating this sequence, and this sequence will not be immediately
5153 inserted into the instruction stream, use do_pending_stack_adjust
5154 before calling get_insns. That will ensure that the deferred
5155 pops are inserted into this sequence, and not into some random
5156 location in the instruction stream. See INHIBIT_DEFER_POP for more
5157 information about deferred popping of arguments. */
5159 void
5160 end_sequence (void)
5162 struct sequence_stack *tem = seq_stack;
5164 first_insn = tem->first;
5165 last_insn = tem->last;
5166 seq_rtl_expr = tem->sequence_rtl_expr;
5167 seq_stack = tem->next;
5169 memset (tem, 0, sizeof (*tem));
5170 tem->next = free_sequence_stack;
5171 free_sequence_stack = tem;
5174 /* This works like end_sequence, but records the old sequence in FIRST
5175 and LAST. */
5177 void
5178 end_full_sequence (rtx *first, rtx *last)
5180 *first = first_insn;
5181 *last = last_insn;
5182 end_sequence ();
5185 /* Return 1 if currently emitting into a sequence. */
5188 in_sequence_p (void)
5190 return seq_stack != 0;
5193 /* Put the various virtual registers into REGNO_REG_RTX. */
5195 void
5196 init_virtual_regs (struct emit_status *es)
5198 rtx *ptr = es->x_regno_reg_rtx;
5199 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5200 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5201 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5202 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5203 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5207 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5208 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5209 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5210 static int copy_insn_n_scratches;
5212 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5213 copied an ASM_OPERANDS.
5214 In that case, it is the original input-operand vector. */
5215 static rtvec orig_asm_operands_vector;
5217 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5218 copied an ASM_OPERANDS.
5219 In that case, it is the copied input-operand vector. */
5220 static rtvec copy_asm_operands_vector;
5222 /* Likewise for the constraints vector. */
5223 static rtvec orig_asm_constraints_vector;
5224 static rtvec copy_asm_constraints_vector;
5226 /* Recursively create a new copy of an rtx for copy_insn.
5227 This function differs from copy_rtx in that it handles SCRATCHes and
5228 ASM_OPERANDs properly.
5229 Normally, this function is not used directly; use copy_insn as front end.
5230 However, you could first copy an insn pattern with copy_insn and then use
5231 this function afterwards to properly copy any REG_NOTEs containing
5232 SCRATCHes. */
5235 copy_insn_1 (rtx orig)
5237 rtx copy;
5238 int i, j;
5239 RTX_CODE code;
5240 const char *format_ptr;
5242 code = GET_CODE (orig);
5244 switch (code)
5246 case REG:
5247 case QUEUED:
5248 case CONST_INT:
5249 case CONST_DOUBLE:
5250 case CONST_VECTOR:
5251 case SYMBOL_REF:
5252 case CODE_LABEL:
5253 case PC:
5254 case CC0:
5255 case ADDRESSOF:
5256 return orig;
5258 case SCRATCH:
5259 for (i = 0; i < copy_insn_n_scratches; i++)
5260 if (copy_insn_scratch_in[i] == orig)
5261 return copy_insn_scratch_out[i];
5262 break;
5264 case CONST:
5265 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5266 a LABEL_REF, it isn't sharable. */
5267 if (GET_CODE (XEXP (orig, 0)) == PLUS
5268 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5269 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5270 return orig;
5271 break;
5273 /* A MEM with a constant address is not sharable. The problem is that
5274 the constant address may need to be reloaded. If the mem is shared,
5275 then reloading one copy of this mem will cause all copies to appear
5276 to have been reloaded. */
5278 default:
5279 break;
5282 copy = rtx_alloc (code);
5284 /* Copy the various flags, and other information. We assume that
5285 all fields need copying, and then clear the fields that should
5286 not be copied. That is the sensible default behavior, and forces
5287 us to explicitly document why we are *not* copying a flag. */
5288 memcpy (copy, orig, RTX_HDR_SIZE);
5290 /* We do not copy the USED flag, which is used as a mark bit during
5291 walks over the RTL. */
5292 RTX_FLAG (copy, used) = 0;
5294 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5295 if (GET_RTX_CLASS (code) == 'i')
5297 RTX_FLAG (copy, jump) = 0;
5298 RTX_FLAG (copy, call) = 0;
5299 RTX_FLAG (copy, frame_related) = 0;
5302 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5304 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5306 copy->u.fld[i] = orig->u.fld[i];
5307 switch (*format_ptr++)
5309 case 'e':
5310 if (XEXP (orig, i) != NULL)
5311 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5312 break;
5314 case 'E':
5315 case 'V':
5316 if (XVEC (orig, i) == orig_asm_constraints_vector)
5317 XVEC (copy, i) = copy_asm_constraints_vector;
5318 else if (XVEC (orig, i) == orig_asm_operands_vector)
5319 XVEC (copy, i) = copy_asm_operands_vector;
5320 else if (XVEC (orig, i) != NULL)
5322 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5323 for (j = 0; j < XVECLEN (copy, i); j++)
5324 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5326 break;
5328 case 't':
5329 case 'w':
5330 case 'i':
5331 case 's':
5332 case 'S':
5333 case 'u':
5334 case '0':
5335 /* These are left unchanged. */
5336 break;
5338 default:
5339 abort ();
5343 if (code == SCRATCH)
5345 i = copy_insn_n_scratches++;
5346 if (i >= MAX_RECOG_OPERANDS)
5347 abort ();
5348 copy_insn_scratch_in[i] = orig;
5349 copy_insn_scratch_out[i] = copy;
5351 else if (code == ASM_OPERANDS)
5353 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5354 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5355 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5356 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5359 return copy;
5362 /* Create a new copy of an rtx.
5363 This function differs from copy_rtx in that it handles SCRATCHes and
5364 ASM_OPERANDs properly.
5365 INSN doesn't really have to be a full INSN; it could be just the
5366 pattern. */
5368 copy_insn (rtx insn)
5370 copy_insn_n_scratches = 0;
5371 orig_asm_operands_vector = 0;
5372 orig_asm_constraints_vector = 0;
5373 copy_asm_operands_vector = 0;
5374 copy_asm_constraints_vector = 0;
5375 return copy_insn_1 (insn);
5378 /* Initialize data structures and variables in this file
5379 before generating rtl for each function. */
5381 void
5382 init_emit (void)
5384 struct function *f = cfun;
5386 f->emit = ggc_alloc (sizeof (struct emit_status));
5387 first_insn = NULL;
5388 last_insn = NULL;
5389 seq_rtl_expr = NULL;
5390 cur_insn_uid = 1;
5391 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5392 last_location.line = 0;
5393 last_location.file = 0;
5394 first_label_num = label_num;
5395 last_label_num = 0;
5396 seq_stack = NULL;
5398 /* Init the tables that describe all the pseudo regs. */
5400 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5402 f->emit->regno_pointer_align
5403 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5404 * sizeof (unsigned char));
5406 regno_reg_rtx
5407 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5409 /* Put copies of all the hard registers into regno_reg_rtx. */
5410 memcpy (regno_reg_rtx,
5411 static_regno_reg_rtx,
5412 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5414 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5415 init_virtual_regs (f->emit);
5417 /* Indicate that the virtual registers and stack locations are
5418 all pointers. */
5419 REG_POINTER (stack_pointer_rtx) = 1;
5420 REG_POINTER (frame_pointer_rtx) = 1;
5421 REG_POINTER (hard_frame_pointer_rtx) = 1;
5422 REG_POINTER (arg_pointer_rtx) = 1;
5424 REG_POINTER (virtual_incoming_args_rtx) = 1;
5425 REG_POINTER (virtual_stack_vars_rtx) = 1;
5426 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5427 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5428 REG_POINTER (virtual_cfa_rtx) = 1;
5430 #ifdef STACK_BOUNDARY
5431 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5432 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5433 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5434 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5436 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5437 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5438 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5439 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5440 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5441 #endif
5443 #ifdef INIT_EXPANDERS
5444 INIT_EXPANDERS;
5445 #endif
5448 /* Generate the constant 0. */
5450 static rtx
5451 gen_const_vector_0 (enum machine_mode mode)
5453 rtx tem;
5454 rtvec v;
5455 int units, i;
5456 enum machine_mode inner;
5458 units = GET_MODE_NUNITS (mode);
5459 inner = GET_MODE_INNER (mode);
5461 v = rtvec_alloc (units);
5463 /* We need to call this function after we to set CONST0_RTX first. */
5464 if (!CONST0_RTX (inner))
5465 abort ();
5467 for (i = 0; i < units; ++i)
5468 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5470 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5471 return tem;
5474 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5475 all elements are zero. */
5477 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5479 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5480 int i;
5482 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5483 if (RTVEC_ELT (v, i) != inner_zero)
5484 return gen_rtx_raw_CONST_VECTOR (mode, v);
5485 return CONST0_RTX (mode);
5488 /* Create some permanent unique rtl objects shared between all functions.
5489 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5491 void
5492 init_emit_once (int line_numbers)
5494 int i;
5495 enum machine_mode mode;
5496 enum machine_mode double_mode;
5498 /* We need reg_raw_mode, so initialize the modes now. */
5499 init_reg_modes_once ();
5501 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5502 tables. */
5503 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5504 const_int_htab_eq, NULL);
5506 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5507 const_double_htab_eq, NULL);
5509 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5510 mem_attrs_htab_eq, NULL);
5511 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5512 reg_attrs_htab_eq, NULL);
5514 no_line_numbers = ! line_numbers;
5516 /* Compute the word and byte modes. */
5518 byte_mode = VOIDmode;
5519 word_mode = VOIDmode;
5520 double_mode = VOIDmode;
5522 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5523 mode = GET_MODE_WIDER_MODE (mode))
5525 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5526 && byte_mode == VOIDmode)
5527 byte_mode = mode;
5529 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5530 && word_mode == VOIDmode)
5531 word_mode = mode;
5534 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5535 mode = GET_MODE_WIDER_MODE (mode))
5537 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5538 && double_mode == VOIDmode)
5539 double_mode = mode;
5542 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5544 /* Assign register numbers to the globally defined register rtx.
5545 This must be done at runtime because the register number field
5546 is in a union and some compilers can't initialize unions. */
5548 pc_rtx = gen_rtx (PC, VOIDmode);
5549 cc0_rtx = gen_rtx (CC0, VOIDmode);
5550 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5551 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5552 if (hard_frame_pointer_rtx == 0)
5553 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5554 HARD_FRAME_POINTER_REGNUM);
5555 if (arg_pointer_rtx == 0)
5556 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5557 virtual_incoming_args_rtx =
5558 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5559 virtual_stack_vars_rtx =
5560 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5561 virtual_stack_dynamic_rtx =
5562 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5563 virtual_outgoing_args_rtx =
5564 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5565 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5567 /* Initialize RTL for commonly used hard registers. These are
5568 copied into regno_reg_rtx as we begin to compile each function. */
5569 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5570 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5572 #ifdef INIT_EXPANDERS
5573 /* This is to initialize {init|mark|free}_machine_status before the first
5574 call to push_function_context_to. This is needed by the Chill front
5575 end which calls push_function_context_to before the first call to
5576 init_function_start. */
5577 INIT_EXPANDERS;
5578 #endif
5580 /* Create the unique rtx's for certain rtx codes and operand values. */
5582 /* Don't use gen_rtx here since gen_rtx in this case
5583 tries to use these variables. */
5584 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5585 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5586 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5588 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5589 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5590 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5591 else
5592 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5594 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5595 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5596 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5597 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5598 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5599 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5600 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5602 dconsthalf = dconst1;
5603 dconsthalf.exp--;
5605 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5607 /* Initialize mathematical constants for constant folding builtins.
5608 These constants need to be given to at least 160 bits precision. */
5609 real_from_string (&dconstpi,
5610 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5611 real_from_string (&dconste,
5612 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5614 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5616 REAL_VALUE_TYPE *r =
5617 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5619 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5620 mode = GET_MODE_WIDER_MODE (mode))
5621 const_tiny_rtx[i][(int) mode] =
5622 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5624 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5626 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5627 mode = GET_MODE_WIDER_MODE (mode))
5628 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5630 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5631 mode != VOIDmode;
5632 mode = GET_MODE_WIDER_MODE (mode))
5633 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5636 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5637 mode != VOIDmode;
5638 mode = GET_MODE_WIDER_MODE (mode))
5639 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5641 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5642 mode != VOIDmode;
5643 mode = GET_MODE_WIDER_MODE (mode))
5644 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5646 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5647 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5648 const_tiny_rtx[0][i] = const0_rtx;
5650 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5651 if (STORE_FLAG_VALUE == 1)
5652 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5654 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5655 return_address_pointer_rtx
5656 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5657 #endif
5659 #ifdef STATIC_CHAIN_REGNUM
5660 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5662 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5663 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5664 static_chain_incoming_rtx
5665 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5666 else
5667 #endif
5668 static_chain_incoming_rtx = static_chain_rtx;
5669 #endif
5671 #ifdef STATIC_CHAIN
5672 static_chain_rtx = STATIC_CHAIN;
5674 #ifdef STATIC_CHAIN_INCOMING
5675 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5676 #else
5677 static_chain_incoming_rtx = static_chain_rtx;
5678 #endif
5679 #endif
5681 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5682 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5685 /* Query and clear/ restore no_line_numbers. This is used by the
5686 switch / case handling in stmt.c to give proper line numbers in
5687 warnings about unreachable code. */
5690 force_line_numbers (void)
5692 int old = no_line_numbers;
5694 no_line_numbers = 0;
5695 if (old)
5696 force_next_line_note ();
5697 return old;
5700 void
5701 restore_line_number_status (int old_value)
5703 no_line_numbers = old_value;
5706 /* Produce exact duplicate of insn INSN after AFTER.
5707 Care updating of libcall regions if present. */
5710 emit_copy_of_insn_after (rtx insn, rtx after)
5712 rtx new;
5713 rtx note1, note2, link;
5715 switch (GET_CODE (insn))
5717 case INSN:
5718 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5719 break;
5721 case JUMP_INSN:
5722 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5723 break;
5725 case CALL_INSN:
5726 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5727 if (CALL_INSN_FUNCTION_USAGE (insn))
5728 CALL_INSN_FUNCTION_USAGE (new)
5729 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5730 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5731 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5732 break;
5734 default:
5735 abort ();
5738 /* Update LABEL_NUSES. */
5739 mark_jump_label (PATTERN (new), new, 0);
5741 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5743 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5744 make them. */
5745 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5746 if (REG_NOTE_KIND (link) != REG_LABEL)
5748 if (GET_CODE (link) == EXPR_LIST)
5749 REG_NOTES (new)
5750 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5751 XEXP (link, 0),
5752 REG_NOTES (new)));
5753 else
5754 REG_NOTES (new)
5755 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5756 XEXP (link, 0),
5757 REG_NOTES (new)));
5760 /* Fix the libcall sequences. */
5761 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5763 rtx p = new;
5764 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5765 p = PREV_INSN (p);
5766 XEXP (note1, 0) = p;
5767 XEXP (note2, 0) = new;
5769 INSN_CODE (new) = INSN_CODE (insn);
5770 return new;
5773 #include "gt-emit-rtl.h"