gcc/ada/
[official-gcc.git] / gcc / reload1.c
blob77d904263a088245ab7320a58130b1e061917a0c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "input.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "predict.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfgrtl.h"
46 #include "cfgbuild.h"
47 #include "basic-block.h"
48 #include "df.h"
49 #include "reload.h"
50 #include "recog.h"
51 #include "except.h"
52 #include "tree.h"
53 #include "ira.h"
54 #include "target.h"
55 #include "emit-rtl.h"
56 #include "dumpfile.h"
57 #include "rtl-iter.h"
59 /* This file contains the reload pass of the compiler, which is
60 run after register allocation has been done. It checks that
61 each insn is valid (operands required to be in registers really
62 are in registers of the proper class) and fixes up invalid ones
63 by copying values temporarily into registers for the insns
64 that need them.
66 The results of register allocation are described by the vector
67 reg_renumber; the insns still contain pseudo regs, but reg_renumber
68 can be used to find which hard reg, if any, a pseudo reg is in.
70 The technique we always use is to free up a few hard regs that are
71 called ``reload regs'', and for each place where a pseudo reg
72 must be in a hard reg, copy it temporarily into one of the reload regs.
74 Reload regs are allocated locally for every instruction that needs
75 reloads. When there are pseudos which are allocated to a register that
76 has been chosen as a reload reg, such pseudos must be ``spilled''.
77 This means that they go to other hard regs, or to stack slots if no other
78 available hard regs can be found. Spilling can invalidate more
79 insns, requiring additional need for reloads, so we must keep checking
80 until the process stabilizes.
82 For machines with different classes of registers, we must keep track
83 of the register class needed for each reload, and make sure that
84 we allocate enough reload registers of each class.
86 The file reload.c contains the code that checks one insn for
87 validity and reports the reloads that it needs. This file
88 is in charge of scanning the entire rtl code, accumulating the
89 reload needs, spilling, assigning reload registers to use for
90 fixing up each insn, and generating the new insns to copy values
91 into the reload registers. */
93 struct target_reload default_target_reload;
94 #if SWITCHABLE_TARGET
95 struct target_reload *this_target_reload = &default_target_reload;
96 #endif
98 #define spill_indirect_levels \
99 (this_target_reload->x_spill_indirect_levels)
101 /* During reload_as_needed, element N contains a REG rtx for the hard reg
102 into which reg N has been reloaded (perhaps for a previous insn). */
103 static rtx *reg_last_reload_reg;
105 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
106 for an output reload that stores into reg N. */
107 static regset_head reg_has_output_reload;
109 /* Indicates which hard regs are reload-registers for an output reload
110 in the current insn. */
111 static HARD_REG_SET reg_is_output_reload;
113 /* Widest width in which each pseudo reg is referred to (via subreg). */
114 static unsigned int *reg_max_ref_width;
116 /* Vector to remember old contents of reg_renumber before spilling. */
117 static short *reg_old_renumber;
119 /* During reload_as_needed, element N contains the last pseudo regno reloaded
120 into hard register N. If that pseudo reg occupied more than one register,
121 reg_reloaded_contents points to that pseudo for each spill register in
122 use; all of these must remain set for an inheritance to occur. */
123 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
125 /* During reload_as_needed, element N contains the insn for which
126 hard register N was last used. Its contents are significant only
127 when reg_reloaded_valid is set for this register. */
128 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
130 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
131 static HARD_REG_SET reg_reloaded_valid;
132 /* Indicate if the register was dead at the end of the reload.
133 This is only valid if reg_reloaded_contents is set and valid. */
134 static HARD_REG_SET reg_reloaded_dead;
136 /* Indicate whether the register's current value is one that is not
137 safe to retain across a call, even for registers that are normally
138 call-saved. This is only meaningful for members of reg_reloaded_valid. */
139 static HARD_REG_SET reg_reloaded_call_part_clobbered;
141 /* Number of spill-regs so far; number of valid elements of spill_regs. */
142 static int n_spills;
144 /* In parallel with spill_regs, contains REG rtx's for those regs.
145 Holds the last rtx used for any given reg, or 0 if it has never
146 been used for spilling yet. This rtx is reused, provided it has
147 the proper mode. */
148 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
150 /* In parallel with spill_regs, contains nonzero for a spill reg
151 that was stored after the last time it was used.
152 The precise value is the insn generated to do the store. */
153 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
155 /* This is the register that was stored with spill_reg_store. This is a
156 copy of reload_out / reload_out_reg when the value was stored; if
157 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
158 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
160 /* This table is the inverse mapping of spill_regs:
161 indexed by hard reg number,
162 it contains the position of that reg in spill_regs,
163 or -1 for something that is not in spill_regs.
165 ?!? This is no longer accurate. */
166 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
168 /* This reg set indicates registers that can't be used as spill registers for
169 the currently processed insn. These are the hard registers which are live
170 during the insn, but not allocated to pseudos, as well as fixed
171 registers. */
172 static HARD_REG_SET bad_spill_regs;
174 /* These are the hard registers that can't be used as spill register for any
175 insn. This includes registers used for user variables and registers that
176 we can't eliminate. A register that appears in this set also can't be used
177 to retry register allocation. */
178 static HARD_REG_SET bad_spill_regs_global;
180 /* Describes order of use of registers for reloading
181 of spilled pseudo-registers. `n_spills' is the number of
182 elements that are actually valid; new ones are added at the end.
184 Both spill_regs and spill_reg_order are used on two occasions:
185 once during find_reload_regs, where they keep track of the spill registers
186 for a single insn, but also during reload_as_needed where they show all
187 the registers ever used by reload. For the latter case, the information
188 is calculated during finish_spills. */
189 static short spill_regs[FIRST_PSEUDO_REGISTER];
191 /* This vector of reg sets indicates, for each pseudo, which hard registers
192 may not be used for retrying global allocation because the register was
193 formerly spilled from one of them. If we allowed reallocating a pseudo to
194 a register that it was already allocated to, reload might not
195 terminate. */
196 static HARD_REG_SET *pseudo_previous_regs;
198 /* This vector of reg sets indicates, for each pseudo, which hard
199 registers may not be used for retrying global allocation because they
200 are used as spill registers during one of the insns in which the
201 pseudo is live. */
202 static HARD_REG_SET *pseudo_forbidden_regs;
204 /* All hard regs that have been used as spill registers for any insn are
205 marked in this set. */
206 static HARD_REG_SET used_spill_regs;
208 /* Index of last register assigned as a spill register. We allocate in
209 a round-robin fashion. */
210 static int last_spill_reg;
212 /* Record the stack slot for each spilled hard register. */
213 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
215 /* Width allocated so far for that stack slot. */
216 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
218 /* Record which pseudos needed to be spilled. */
219 static regset_head spilled_pseudos;
221 /* Record which pseudos changed their allocation in finish_spills. */
222 static regset_head changed_allocation_pseudos;
224 /* Used for communication between order_regs_for_reload and count_pseudo.
225 Used to avoid counting one pseudo twice. */
226 static regset_head pseudos_counted;
228 /* First uid used by insns created by reload in this function.
229 Used in find_equiv_reg. */
230 int reload_first_uid;
232 /* Flag set by local-alloc or global-alloc if anything is live in
233 a call-clobbered reg across calls. */
234 int caller_save_needed;
236 /* Set to 1 while reload_as_needed is operating.
237 Required by some machines to handle any generated moves differently. */
238 int reload_in_progress = 0;
240 /* This obstack is used for allocation of rtl during register elimination.
241 The allocated storage can be freed once find_reloads has processed the
242 insn. */
243 static struct obstack reload_obstack;
245 /* Points to the beginning of the reload_obstack. All insn_chain structures
246 are allocated first. */
247 static char *reload_startobj;
249 /* The point after all insn_chain structures. Used to quickly deallocate
250 memory allocated in copy_reloads during calculate_needs_all_insns. */
251 static char *reload_firstobj;
253 /* This points before all local rtl generated by register elimination.
254 Used to quickly free all memory after processing one insn. */
255 static char *reload_insn_firstobj;
257 /* List of insn_chain instructions, one for every insn that reload needs to
258 examine. */
259 struct insn_chain *reload_insn_chain;
261 /* TRUE if we potentially left dead insns in the insn stream and want to
262 run DCE immediately after reload, FALSE otherwise. */
263 static bool need_dce;
265 /* List of all insns needing reloads. */
266 static struct insn_chain *insns_need_reload;
268 /* This structure is used to record information about register eliminations.
269 Each array entry describes one possible way of eliminating a register
270 in favor of another. If there is more than one way of eliminating a
271 particular register, the most preferred should be specified first. */
273 struct elim_table
275 int from; /* Register number to be eliminated. */
276 int to; /* Register number used as replacement. */
277 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
278 int can_eliminate; /* Nonzero if this elimination can be done. */
279 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
280 target hook in previous scan over insns
281 made by reload. */
282 HOST_WIDE_INT offset; /* Current offset between the two regs. */
283 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
284 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
285 rtx from_rtx; /* REG rtx for the register to be eliminated.
286 We cannot simply compare the number since
287 we might then spuriously replace a hard
288 register corresponding to a pseudo
289 assigned to the reg to be eliminated. */
290 rtx to_rtx; /* REG rtx for the replacement. */
293 static struct elim_table *reg_eliminate = 0;
295 /* This is an intermediate structure to initialize the table. It has
296 exactly the members provided by ELIMINABLE_REGS. */
297 static const struct elim_table_1
299 const int from;
300 const int to;
301 } reg_eliminate_1[] =
303 /* If a set of eliminable registers was specified, define the table from it.
304 Otherwise, default to the normal case of the frame pointer being
305 replaced by the stack pointer. */
307 #ifdef ELIMINABLE_REGS
308 ELIMINABLE_REGS;
309 #else
310 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
311 #endif
313 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
315 /* Record the number of pending eliminations that have an offset not equal
316 to their initial offset. If nonzero, we use a new copy of each
317 replacement result in any insns encountered. */
318 int num_not_at_initial_offset;
320 /* Count the number of registers that we may be able to eliminate. */
321 static int num_eliminable;
322 /* And the number of registers that are equivalent to a constant that
323 can be eliminated to frame_pointer / arg_pointer + constant. */
324 static int num_eliminable_invariants;
326 /* For each label, we record the offset of each elimination. If we reach
327 a label by more than one path and an offset differs, we cannot do the
328 elimination. This information is indexed by the difference of the
329 number of the label and the first label number. We can't offset the
330 pointer itself as this can cause problems on machines with segmented
331 memory. The first table is an array of flags that records whether we
332 have yet encountered a label and the second table is an array of arrays,
333 one entry in the latter array for each elimination. */
335 static int first_label_num;
336 static char *offsets_known_at;
337 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
339 vec<reg_equivs_t, va_gc> *reg_equivs;
341 /* Stack of addresses where an rtx has been changed. We can undo the
342 changes by popping items off the stack and restoring the original
343 value at each location.
345 We use this simplistic undo capability rather than copy_rtx as copy_rtx
346 will not make a deep copy of a normally sharable rtx, such as
347 (const (plus (symbol_ref) (const_int))). If such an expression appears
348 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
349 rtx expression would be changed. See PR 42431. */
351 typedef rtx *rtx_p;
352 static vec<rtx_p> substitute_stack;
354 /* Number of labels in the current function. */
356 static int num_labels;
358 static void replace_pseudos_in (rtx *, machine_mode, rtx);
359 static void maybe_fix_stack_asms (void);
360 static void copy_reloads (struct insn_chain *);
361 static void calculate_needs_all_insns (int);
362 static int find_reg (struct insn_chain *, int);
363 static void find_reload_regs (struct insn_chain *);
364 static void select_reload_regs (void);
365 static void delete_caller_save_insns (void);
367 static void spill_failure (rtx_insn *, enum reg_class);
368 static void count_spilled_pseudo (int, int, int);
369 static void delete_dead_insn (rtx_insn *);
370 static void alter_reg (int, int, bool);
371 static void set_label_offsets (rtx, rtx_insn *, int);
372 static void check_eliminable_occurrences (rtx);
373 static void elimination_effects (rtx, machine_mode);
374 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
375 static int eliminate_regs_in_insn (rtx_insn *, int);
376 static void update_eliminable_offsets (void);
377 static void mark_not_eliminable (rtx, const_rtx, void *);
378 static void set_initial_elim_offsets (void);
379 static bool verify_initial_elim_offsets (void);
380 static void set_initial_label_offsets (void);
381 static void set_offsets_for_label (rtx_insn *);
382 static void init_eliminable_invariants (rtx_insn *, bool);
383 static void init_elim_table (void);
384 static void free_reg_equiv (void);
385 static void update_eliminables (HARD_REG_SET *);
386 static bool update_eliminables_and_spill (void);
387 static void elimination_costs_in_insn (rtx_insn *);
388 static void spill_hard_reg (unsigned int, int);
389 static int finish_spills (int);
390 static void scan_paradoxical_subregs (rtx);
391 static void count_pseudo (int);
392 static void order_regs_for_reload (struct insn_chain *);
393 static void reload_as_needed (int);
394 static void forget_old_reloads_1 (rtx, const_rtx, void *);
395 static void forget_marked_reloads (regset);
396 static int reload_reg_class_lower (const void *, const void *);
397 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
398 machine_mode);
399 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
400 machine_mode);
401 static int reload_reg_free_p (unsigned int, int, enum reload_type);
402 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
403 rtx, rtx, int, int);
404 static int free_for_value_p (int, machine_mode, int, enum reload_type,
405 rtx, rtx, int, int);
406 static int allocate_reload_reg (struct insn_chain *, int, int);
407 static int conflicts_with_override (rtx);
408 static void failed_reload (rtx_insn *, int);
409 static int set_reload_reg (int, int);
410 static void choose_reload_regs_init (struct insn_chain *, rtx *);
411 static void choose_reload_regs (struct insn_chain *);
412 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
413 rtx, int);
414 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
415 int);
416 static void do_input_reload (struct insn_chain *, struct reload *, int);
417 static void do_output_reload (struct insn_chain *, struct reload *, int);
418 static void emit_reload_insns (struct insn_chain *);
419 static void delete_output_reload (rtx_insn *, int, int, rtx);
420 static void delete_address_reloads (rtx_insn *, rtx_insn *);
421 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
422 static void inc_for_reload (rtx, rtx, rtx, int);
423 #ifdef AUTO_INC_DEC
424 static void add_auto_inc_notes (rtx_insn *, rtx);
425 #endif
426 static void substitute (rtx *, const_rtx, rtx);
427 static bool gen_reload_chain_without_interm_reg_p (int, int);
428 static int reloads_conflict (int, int);
429 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
430 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
432 /* Initialize the reload pass. This is called at the beginning of compilation
433 and may be called again if the target is reinitialized. */
435 void
436 init_reload (void)
438 int i;
440 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
441 Set spill_indirect_levels to the number of levels such addressing is
442 permitted, zero if it is not permitted at all. */
444 rtx tem
445 = gen_rtx_MEM (Pmode,
446 gen_rtx_PLUS (Pmode,
447 gen_rtx_REG (Pmode,
448 LAST_VIRTUAL_REGISTER + 1),
449 gen_int_mode (4, Pmode)));
450 spill_indirect_levels = 0;
452 while (memory_address_p (QImode, tem))
454 spill_indirect_levels++;
455 tem = gen_rtx_MEM (Pmode, tem);
458 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
460 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
461 indirect_symref_ok = memory_address_p (QImode, tem);
463 /* See if reg+reg is a valid (and offsettable) address. */
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 tem = gen_rtx_PLUS (Pmode,
468 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
469 gen_rtx_REG (Pmode, i));
471 /* This way, we make sure that reg+reg is an offsettable address. */
472 tem = plus_constant (Pmode, tem, 4);
474 if (memory_address_p (QImode, tem))
476 double_reg_address_ok = 1;
477 break;
481 /* Initialize obstack for our rtl allocation. */
482 if (reload_startobj == NULL)
484 gcc_obstack_init (&reload_obstack);
485 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
488 INIT_REG_SET (&spilled_pseudos);
489 INIT_REG_SET (&changed_allocation_pseudos);
490 INIT_REG_SET (&pseudos_counted);
493 /* List of insn chains that are currently unused. */
494 static struct insn_chain *unused_insn_chains = 0;
496 /* Allocate an empty insn_chain structure. */
497 struct insn_chain *
498 new_insn_chain (void)
500 struct insn_chain *c;
502 if (unused_insn_chains == 0)
504 c = XOBNEW (&reload_obstack, struct insn_chain);
505 INIT_REG_SET (&c->live_throughout);
506 INIT_REG_SET (&c->dead_or_set);
508 else
510 c = unused_insn_chains;
511 unused_insn_chains = c->next;
513 c->is_caller_save_insn = 0;
514 c->need_operand_change = 0;
515 c->need_reload = 0;
516 c->need_elim = 0;
517 return c;
520 /* Small utility function to set all regs in hard reg set TO which are
521 allocated to pseudos in regset FROM. */
523 void
524 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
526 unsigned int regno;
527 reg_set_iterator rsi;
529 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
531 int r = reg_renumber[regno];
533 if (r < 0)
535 /* reload_combine uses the information from DF_LIVE_IN,
536 which might still contain registers that have not
537 actually been allocated since they have an
538 equivalence. */
539 gcc_assert (ira_conflicts_p || reload_completed);
541 else
542 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
546 /* Replace all pseudos found in LOC with their corresponding
547 equivalences. */
549 static void
550 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
552 rtx x = *loc;
553 enum rtx_code code;
554 const char *fmt;
555 int i, j;
557 if (! x)
558 return;
560 code = GET_CODE (x);
561 if (code == REG)
563 unsigned int regno = REGNO (x);
565 if (regno < FIRST_PSEUDO_REGISTER)
566 return;
568 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
569 if (x != *loc)
571 *loc = x;
572 replace_pseudos_in (loc, mem_mode, usage);
573 return;
576 if (reg_equiv_constant (regno))
577 *loc = reg_equiv_constant (regno);
578 else if (reg_equiv_invariant (regno))
579 *loc = reg_equiv_invariant (regno);
580 else if (reg_equiv_mem (regno))
581 *loc = reg_equiv_mem (regno);
582 else if (reg_equiv_address (regno))
583 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
584 else
586 gcc_assert (!REG_P (regno_reg_rtx[regno])
587 || REGNO (regno_reg_rtx[regno]) != regno);
588 *loc = regno_reg_rtx[regno];
591 return;
593 else if (code == MEM)
595 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
596 return;
599 /* Process each of our operands recursively. */
600 fmt = GET_RTX_FORMAT (code);
601 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
602 if (*fmt == 'e')
603 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
604 else if (*fmt == 'E')
605 for (j = 0; j < XVECLEN (x, i); j++)
606 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
609 /* Determine if the current function has an exception receiver block
610 that reaches the exit block via non-exceptional edges */
612 static bool
613 has_nonexceptional_receiver (void)
615 edge e;
616 edge_iterator ei;
617 basic_block *tos, *worklist, bb;
619 /* If we're not optimizing, then just err on the safe side. */
620 if (!optimize)
621 return true;
623 /* First determine which blocks can reach exit via normal paths. */
624 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
626 FOR_EACH_BB_FN (bb, cfun)
627 bb->flags &= ~BB_REACHABLE;
629 /* Place the exit block on our worklist. */
630 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
631 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
633 /* Iterate: find everything reachable from what we've already seen. */
634 while (tos != worklist)
636 bb = *--tos;
638 FOR_EACH_EDGE (e, ei, bb->preds)
639 if (!(e->flags & EDGE_ABNORMAL))
641 basic_block src = e->src;
643 if (!(src->flags & BB_REACHABLE))
645 src->flags |= BB_REACHABLE;
646 *tos++ = src;
650 free (worklist);
652 /* Now see if there's a reachable block with an exceptional incoming
653 edge. */
654 FOR_EACH_BB_FN (bb, cfun)
655 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
656 return true;
658 /* No exceptional block reached exit unexceptionally. */
659 return false;
662 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
663 zero elements) to MAX_REG_NUM elements.
665 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
666 void
667 grow_reg_equivs (void)
669 int old_size = vec_safe_length (reg_equivs);
670 int max_regno = max_reg_num ();
671 int i;
672 reg_equivs_t ze;
674 memset (&ze, 0, sizeof (reg_equivs_t));
675 vec_safe_reserve (reg_equivs, max_regno);
676 for (i = old_size; i < max_regno; i++)
677 reg_equivs->quick_insert (i, ze);
681 /* Global variables used by reload and its subroutines. */
683 /* The current basic block while in calculate_elim_costs_all_insns. */
684 static basic_block elim_bb;
686 /* Set during calculate_needs if an insn needs register elimination. */
687 static int something_needs_elimination;
688 /* Set during calculate_needs if an insn needs an operand changed. */
689 static int something_needs_operands_changed;
690 /* Set by alter_regs if we spilled a register to the stack. */
691 static bool something_was_spilled;
693 /* Nonzero means we couldn't get enough spill regs. */
694 static int failure;
696 /* Temporary array of pseudo-register number. */
697 static int *temp_pseudo_reg_arr;
699 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
700 If that insn didn't set the register (i.e., it copied the register to
701 memory), just delete that insn instead of the equivalencing insn plus
702 anything now dead. If we call delete_dead_insn on that insn, we may
703 delete the insn that actually sets the register if the register dies
704 there and that is incorrect. */
705 static void
706 remove_init_insns ()
708 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
710 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
712 rtx list;
713 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
715 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
717 /* If we already deleted the insn or if it may trap, we can't
718 delete it. The latter case shouldn't happen, but can
719 if an insn has a variable address, gets a REG_EH_REGION
720 note added to it, and then gets converted into a load
721 from a constant address. */
722 if (NOTE_P (equiv_insn)
723 || can_throw_internal (equiv_insn))
725 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
726 delete_dead_insn (equiv_insn);
727 else
728 SET_INSN_DELETED (equiv_insn);
734 /* Return true if remove_init_insns will delete INSN. */
735 static bool
736 will_delete_init_insn_p (rtx_insn *insn)
738 rtx set = single_set (insn);
739 if (!set || !REG_P (SET_DEST (set)))
740 return false;
741 unsigned regno = REGNO (SET_DEST (set));
743 if (can_throw_internal (insn))
744 return false;
746 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
747 return false;
749 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
751 rtx equiv_insn = XEXP (list, 0);
752 if (equiv_insn == insn)
753 return true;
755 return false;
758 /* Main entry point for the reload pass.
760 FIRST is the first insn of the function being compiled.
762 GLOBAL nonzero means we were called from global_alloc
763 and should attempt to reallocate any pseudoregs that we
764 displace from hard regs we will use for reloads.
765 If GLOBAL is zero, we do not have enough information to do that,
766 so any pseudo reg that is spilled must go to the stack.
768 Return value is TRUE if reload likely left dead insns in the
769 stream and a DCE pass should be run to elimiante them. Else the
770 return value is FALSE. */
772 bool
773 reload (rtx_insn *first, int global)
775 int i, n;
776 rtx_insn *insn;
777 struct elim_table *ep;
778 basic_block bb;
779 bool inserted;
781 /* Make sure even insns with volatile mem refs are recognizable. */
782 init_recog ();
784 failure = 0;
786 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
788 /* Make sure that the last insn in the chain
789 is not something that needs reloading. */
790 emit_note (NOTE_INSN_DELETED);
792 /* Enable find_equiv_reg to distinguish insns made by reload. */
793 reload_first_uid = get_max_uid ();
795 #ifdef SECONDARY_MEMORY_NEEDED
796 /* Initialize the secondary memory table. */
797 clear_secondary_mem ();
798 #endif
800 /* We don't have a stack slot for any spill reg yet. */
801 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
802 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
804 /* Initialize the save area information for caller-save, in case some
805 are needed. */
806 init_save_areas ();
808 /* Compute which hard registers are now in use
809 as homes for pseudo registers.
810 This is done here rather than (eg) in global_alloc
811 because this point is reached even if not optimizing. */
812 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
813 mark_home_live (i);
815 /* A function that has a nonlocal label that can reach the exit
816 block via non-exceptional paths must save all call-saved
817 registers. */
818 if (cfun->has_nonlocal_label
819 && has_nonexceptional_receiver ())
820 crtl->saves_all_registers = 1;
822 if (crtl->saves_all_registers)
823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
824 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
825 df_set_regs_ever_live (i, true);
827 /* Find all the pseudo registers that didn't get hard regs
828 but do have known equivalent constants or memory slots.
829 These include parameters (known equivalent to parameter slots)
830 and cse'd or loop-moved constant memory addresses.
832 Record constant equivalents in reg_equiv_constant
833 so they will be substituted by find_reloads.
834 Record memory equivalents in reg_mem_equiv so they can
835 be substituted eventually by altering the REG-rtx's. */
837 grow_reg_equivs ();
838 reg_old_renumber = XCNEWVEC (short, max_regno);
839 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
840 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
841 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
843 CLEAR_HARD_REG_SET (bad_spill_regs_global);
845 init_eliminable_invariants (first, true);
846 init_elim_table ();
848 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
849 stack slots to the pseudos that lack hard regs or equivalents.
850 Do not touch virtual registers. */
852 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
853 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
854 temp_pseudo_reg_arr[n++] = i;
856 if (ira_conflicts_p)
857 /* Ask IRA to order pseudo-registers for better stack slot
858 sharing. */
859 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
861 for (i = 0; i < n; i++)
862 alter_reg (temp_pseudo_reg_arr[i], -1, false);
864 /* If we have some registers we think can be eliminated, scan all insns to
865 see if there is an insn that sets one of these registers to something
866 other than itself plus a constant. If so, the register cannot be
867 eliminated. Doing this scan here eliminates an extra pass through the
868 main reload loop in the most common case where register elimination
869 cannot be done. */
870 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
871 if (INSN_P (insn))
872 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
874 maybe_fix_stack_asms ();
876 insns_need_reload = 0;
877 something_needs_elimination = 0;
879 /* Initialize to -1, which means take the first spill register. */
880 last_spill_reg = -1;
882 /* Spill any hard regs that we know we can't eliminate. */
883 CLEAR_HARD_REG_SET (used_spill_regs);
884 /* There can be multiple ways to eliminate a register;
885 they should be listed adjacently.
886 Elimination for any register fails only if all possible ways fail. */
887 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
889 int from = ep->from;
890 int can_eliminate = 0;
893 can_eliminate |= ep->can_eliminate;
894 ep++;
896 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
897 if (! can_eliminate)
898 spill_hard_reg (from, 1);
901 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
902 if (frame_pointer_needed)
903 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
904 #endif
905 finish_spills (global);
907 /* From now on, we may need to generate moves differently. We may also
908 allow modifications of insns which cause them to not be recognized.
909 Any such modifications will be cleaned up during reload itself. */
910 reload_in_progress = 1;
912 /* This loop scans the entire function each go-round
913 and repeats until one repetition spills no additional hard regs. */
914 for (;;)
916 int something_changed;
917 int did_spill;
918 HOST_WIDE_INT starting_frame_size;
920 starting_frame_size = get_frame_size ();
921 something_was_spilled = false;
923 set_initial_elim_offsets ();
924 set_initial_label_offsets ();
926 /* For each pseudo register that has an equivalent location defined,
927 try to eliminate any eliminable registers (such as the frame pointer)
928 assuming initial offsets for the replacement register, which
929 is the normal case.
931 If the resulting location is directly addressable, substitute
932 the MEM we just got directly for the old REG.
934 If it is not addressable but is a constant or the sum of a hard reg
935 and constant, it is probably not addressable because the constant is
936 out of range, in that case record the address; we will generate
937 hairy code to compute the address in a register each time it is
938 needed. Similarly if it is a hard register, but one that is not
939 valid as an address register.
941 If the location is not addressable, but does not have one of the
942 above forms, assign a stack slot. We have to do this to avoid the
943 potential of producing lots of reloads if, e.g., a location involves
944 a pseudo that didn't get a hard register and has an equivalent memory
945 location that also involves a pseudo that didn't get a hard register.
947 Perhaps at some point we will improve reload_when_needed handling
948 so this problem goes away. But that's very hairy. */
950 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
951 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
953 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
954 NULL_RTX);
956 if (strict_memory_address_addr_space_p
957 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
958 MEM_ADDR_SPACE (x)))
959 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
960 else if (CONSTANT_P (XEXP (x, 0))
961 || (REG_P (XEXP (x, 0))
962 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
963 || (GET_CODE (XEXP (x, 0)) == PLUS
964 && REG_P (XEXP (XEXP (x, 0), 0))
965 && (REGNO (XEXP (XEXP (x, 0), 0))
966 < FIRST_PSEUDO_REGISTER)
967 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
968 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
969 else
971 /* Make a new stack slot. Then indicate that something
972 changed so we go back and recompute offsets for
973 eliminable registers because the allocation of memory
974 below might change some offset. reg_equiv_{mem,address}
975 will be set up for this pseudo on the next pass around
976 the loop. */
977 reg_equiv_memory_loc (i) = 0;
978 reg_equiv_init (i) = 0;
979 alter_reg (i, -1, true);
983 if (caller_save_needed)
984 setup_save_areas ();
986 if (starting_frame_size && crtl->stack_alignment_needed)
988 /* If we have a stack frame, we must align it now. The
989 stack size may be a part of the offset computation for
990 register elimination. So if this changes the stack size,
991 then repeat the elimination bookkeeping. We don't
992 realign when there is no stack, as that will cause a
993 stack frame when none is needed should
994 STARTING_FRAME_OFFSET not be already aligned to
995 STACK_BOUNDARY. */
996 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
998 /* If we allocated another stack slot, redo elimination bookkeeping. */
999 if (something_was_spilled || starting_frame_size != get_frame_size ())
1001 update_eliminables_and_spill ();
1002 continue;
1005 if (caller_save_needed)
1007 save_call_clobbered_regs ();
1008 /* That might have allocated new insn_chain structures. */
1009 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1012 calculate_needs_all_insns (global);
1014 if (! ira_conflicts_p)
1015 /* Don't do it for IRA. We need this info because we don't
1016 change live_throughout and dead_or_set for chains when IRA
1017 is used. */
1018 CLEAR_REG_SET (&spilled_pseudos);
1020 did_spill = 0;
1022 something_changed = 0;
1024 /* If we allocated any new memory locations, make another pass
1025 since it might have changed elimination offsets. */
1026 if (something_was_spilled || starting_frame_size != get_frame_size ())
1027 something_changed = 1;
1029 /* Even if the frame size remained the same, we might still have
1030 changed elimination offsets, e.g. if find_reloads called
1031 force_const_mem requiring the back end to allocate a constant
1032 pool base register that needs to be saved on the stack. */
1033 else if (!verify_initial_elim_offsets ())
1034 something_changed = 1;
1036 if (update_eliminables_and_spill ())
1038 did_spill = 1;
1039 something_changed = 1;
1042 select_reload_regs ();
1043 if (failure)
1044 goto failed;
1046 if (insns_need_reload != 0 || did_spill)
1047 something_changed |= finish_spills (global);
1049 if (! something_changed)
1050 break;
1052 if (caller_save_needed)
1053 delete_caller_save_insns ();
1055 obstack_free (&reload_obstack, reload_firstobj);
1058 /* If global-alloc was run, notify it of any register eliminations we have
1059 done. */
1060 if (global)
1061 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1062 if (ep->can_eliminate)
1063 mark_elimination (ep->from, ep->to);
1065 remove_init_insns ();
1067 /* Use the reload registers where necessary
1068 by generating move instructions to move the must-be-register
1069 values into or out of the reload registers. */
1071 if (insns_need_reload != 0 || something_needs_elimination
1072 || something_needs_operands_changed)
1074 HOST_WIDE_INT old_frame_size = get_frame_size ();
1076 reload_as_needed (global);
1078 gcc_assert (old_frame_size == get_frame_size ());
1080 gcc_assert (verify_initial_elim_offsets ());
1083 /* If we were able to eliminate the frame pointer, show that it is no
1084 longer live at the start of any basic block. If it ls live by
1085 virtue of being in a pseudo, that pseudo will be marked live
1086 and hence the frame pointer will be known to be live via that
1087 pseudo. */
1089 if (! frame_pointer_needed)
1090 FOR_EACH_BB_FN (bb, cfun)
1091 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1093 /* Come here (with failure set nonzero) if we can't get enough spill
1094 regs. */
1095 failed:
1097 CLEAR_REG_SET (&changed_allocation_pseudos);
1098 CLEAR_REG_SET (&spilled_pseudos);
1099 reload_in_progress = 0;
1101 /* Now eliminate all pseudo regs by modifying them into
1102 their equivalent memory references.
1103 The REG-rtx's for the pseudos are modified in place,
1104 so all insns that used to refer to them now refer to memory.
1106 For a reg that has a reg_equiv_address, all those insns
1107 were changed by reloading so that no insns refer to it any longer;
1108 but the DECL_RTL of a variable decl may refer to it,
1109 and if so this causes the debugging info to mention the variable. */
1111 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1113 rtx addr = 0;
1115 if (reg_equiv_mem (i))
1116 addr = XEXP (reg_equiv_mem (i), 0);
1118 if (reg_equiv_address (i))
1119 addr = reg_equiv_address (i);
1121 if (addr)
1123 if (reg_renumber[i] < 0)
1125 rtx reg = regno_reg_rtx[i];
1127 REG_USERVAR_P (reg) = 0;
1128 PUT_CODE (reg, MEM);
1129 XEXP (reg, 0) = addr;
1130 if (reg_equiv_memory_loc (i))
1131 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1132 else
1133 MEM_ATTRS (reg) = 0;
1134 MEM_NOTRAP_P (reg) = 1;
1136 else if (reg_equiv_mem (i))
1137 XEXP (reg_equiv_mem (i), 0) = addr;
1140 /* We don't want complex addressing modes in debug insns
1141 if simpler ones will do, so delegitimize equivalences
1142 in debug insns. */
1143 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1145 rtx reg = regno_reg_rtx[i];
1146 rtx equiv = 0;
1147 df_ref use, next;
1149 if (reg_equiv_constant (i))
1150 equiv = reg_equiv_constant (i);
1151 else if (reg_equiv_invariant (i))
1152 equiv = reg_equiv_invariant (i);
1153 else if (reg && MEM_P (reg))
1154 equiv = targetm.delegitimize_address (reg);
1155 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1156 equiv = reg;
1158 if (equiv == reg)
1159 continue;
1161 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1163 insn = DF_REF_INSN (use);
1165 /* Make sure the next ref is for a different instruction,
1166 so that we're not affected by the rescan. */
1167 next = DF_REF_NEXT_REG (use);
1168 while (next && DF_REF_INSN (next) == insn)
1169 next = DF_REF_NEXT_REG (next);
1171 if (DEBUG_INSN_P (insn))
1173 if (!equiv)
1175 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1176 df_insn_rescan_debug_internal (insn);
1178 else
1179 INSN_VAR_LOCATION_LOC (insn)
1180 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1181 reg, equiv);
1187 /* We must set reload_completed now since the cleanup_subreg_operands call
1188 below will re-recognize each insn and reload may have generated insns
1189 which are only valid during and after reload. */
1190 reload_completed = 1;
1192 /* Make a pass over all the insns and delete all USEs which we inserted
1193 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1194 notes. Delete all CLOBBER insns, except those that refer to the return
1195 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1196 from misarranging variable-array code, and simplify (subreg (reg))
1197 operands. Strip and regenerate REG_INC notes that may have been moved
1198 around. */
1200 for (insn = first; insn; insn = NEXT_INSN (insn))
1201 if (INSN_P (insn))
1203 rtx *pnote;
1205 if (CALL_P (insn))
1206 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1207 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1209 if ((GET_CODE (PATTERN (insn)) == USE
1210 /* We mark with QImode USEs introduced by reload itself. */
1211 && (GET_MODE (insn) == QImode
1212 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1213 || (GET_CODE (PATTERN (insn)) == CLOBBER
1214 && (!MEM_P (XEXP (PATTERN (insn), 0))
1215 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1216 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1217 && XEXP (XEXP (PATTERN (insn), 0), 0)
1218 != stack_pointer_rtx))
1219 && (!REG_P (XEXP (PATTERN (insn), 0))
1220 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1222 delete_insn (insn);
1223 continue;
1226 /* Some CLOBBERs may survive until here and still reference unassigned
1227 pseudos with const equivalent, which may in turn cause ICE in later
1228 passes if the reference remains in place. */
1229 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1230 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1231 VOIDmode, PATTERN (insn));
1233 /* Discard obvious no-ops, even without -O. This optimization
1234 is fast and doesn't interfere with debugging. */
1235 if (NONJUMP_INSN_P (insn)
1236 && GET_CODE (PATTERN (insn)) == SET
1237 && REG_P (SET_SRC (PATTERN (insn)))
1238 && REG_P (SET_DEST (PATTERN (insn)))
1239 && (REGNO (SET_SRC (PATTERN (insn)))
1240 == REGNO (SET_DEST (PATTERN (insn)))))
1242 delete_insn (insn);
1243 continue;
1246 pnote = &REG_NOTES (insn);
1247 while (*pnote != 0)
1249 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1250 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1251 || REG_NOTE_KIND (*pnote) == REG_INC)
1252 *pnote = XEXP (*pnote, 1);
1253 else
1254 pnote = &XEXP (*pnote, 1);
1257 #ifdef AUTO_INC_DEC
1258 add_auto_inc_notes (insn, PATTERN (insn));
1259 #endif
1261 /* Simplify (subreg (reg)) if it appears as an operand. */
1262 cleanup_subreg_operands (insn);
1264 /* Clean up invalid ASMs so that they don't confuse later passes.
1265 See PR 21299. */
1266 if (asm_noperands (PATTERN (insn)) >= 0)
1268 extract_insn (insn);
1269 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1271 error_for_asm (insn,
1272 "%<asm%> operand has impossible constraints");
1273 delete_insn (insn);
1274 continue;
1279 /* If we are doing generic stack checking, give a warning if this
1280 function's frame size is larger than we expect. */
1281 if (flag_stack_check == GENERIC_STACK_CHECK)
1283 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1284 static int verbose_warned = 0;
1286 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1287 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1288 size += UNITS_PER_WORD;
1290 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1292 warning (0, "frame size too large for reliable stack checking");
1293 if (! verbose_warned)
1295 warning (0, "try reducing the number of local variables");
1296 verbose_warned = 1;
1301 free (temp_pseudo_reg_arr);
1303 /* Indicate that we no longer have known memory locations or constants. */
1304 free_reg_equiv ();
1306 free (reg_max_ref_width);
1307 free (reg_old_renumber);
1308 free (pseudo_previous_regs);
1309 free (pseudo_forbidden_regs);
1311 CLEAR_HARD_REG_SET (used_spill_regs);
1312 for (i = 0; i < n_spills; i++)
1313 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1315 /* Free all the insn_chain structures at once. */
1316 obstack_free (&reload_obstack, reload_startobj);
1317 unused_insn_chains = 0;
1319 inserted = fixup_abnormal_edges ();
1321 /* We've possibly turned single trapping insn into multiple ones. */
1322 if (cfun->can_throw_non_call_exceptions)
1324 sbitmap blocks;
1325 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1326 bitmap_ones (blocks);
1327 find_many_sub_basic_blocks (blocks);
1328 sbitmap_free (blocks);
1331 if (inserted)
1332 commit_edge_insertions ();
1334 /* Replacing pseudos with their memory equivalents might have
1335 created shared rtx. Subsequent passes would get confused
1336 by this, so unshare everything here. */
1337 unshare_all_rtl_again (first);
1339 #ifdef STACK_BOUNDARY
1340 /* init_emit has set the alignment of the hard frame pointer
1341 to STACK_BOUNDARY. It is very likely no longer valid if
1342 the hard frame pointer was used for register allocation. */
1343 if (!frame_pointer_needed)
1344 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1345 #endif
1347 substitute_stack.release ();
1349 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1351 reload_completed = !failure;
1353 return need_dce;
1356 /* Yet another special case. Unfortunately, reg-stack forces people to
1357 write incorrect clobbers in asm statements. These clobbers must not
1358 cause the register to appear in bad_spill_regs, otherwise we'll call
1359 fatal_insn later. We clear the corresponding regnos in the live
1360 register sets to avoid this.
1361 The whole thing is rather sick, I'm afraid. */
1363 static void
1364 maybe_fix_stack_asms (void)
1366 #ifdef STACK_REGS
1367 const char *constraints[MAX_RECOG_OPERANDS];
1368 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1369 struct insn_chain *chain;
1371 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1373 int i, noperands;
1374 HARD_REG_SET clobbered, allowed;
1375 rtx pat;
1377 if (! INSN_P (chain->insn)
1378 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1379 continue;
1380 pat = PATTERN (chain->insn);
1381 if (GET_CODE (pat) != PARALLEL)
1382 continue;
1384 CLEAR_HARD_REG_SET (clobbered);
1385 CLEAR_HARD_REG_SET (allowed);
1387 /* First, make a mask of all stack regs that are clobbered. */
1388 for (i = 0; i < XVECLEN (pat, 0); i++)
1390 rtx t = XVECEXP (pat, 0, i);
1391 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1392 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1395 /* Get the operand values and constraints out of the insn. */
1396 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1397 constraints, operand_mode, NULL);
1399 /* For every operand, see what registers are allowed. */
1400 for (i = 0; i < noperands; i++)
1402 const char *p = constraints[i];
1403 /* For every alternative, we compute the class of registers allowed
1404 for reloading in CLS, and merge its contents into the reg set
1405 ALLOWED. */
1406 int cls = (int) NO_REGS;
1408 for (;;)
1410 char c = *p;
1412 if (c == '\0' || c == ',' || c == '#')
1414 /* End of one alternative - mark the regs in the current
1415 class, and reset the class. */
1416 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1417 cls = NO_REGS;
1418 p++;
1419 if (c == '#')
1420 do {
1421 c = *p++;
1422 } while (c != '\0' && c != ',');
1423 if (c == '\0')
1424 break;
1425 continue;
1428 switch (c)
1430 case 'g':
1431 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1432 break;
1434 default:
1435 enum constraint_num cn = lookup_constraint (p);
1436 if (insn_extra_address_constraint (cn))
1437 cls = (int) reg_class_subunion[cls]
1438 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1439 ADDRESS, SCRATCH)];
1440 else
1441 cls = (int) reg_class_subunion[cls]
1442 [reg_class_for_constraint (cn)];
1443 break;
1445 p += CONSTRAINT_LEN (c, p);
1448 /* Those of the registers which are clobbered, but allowed by the
1449 constraints, must be usable as reload registers. So clear them
1450 out of the life information. */
1451 AND_HARD_REG_SET (allowed, clobbered);
1452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1453 if (TEST_HARD_REG_BIT (allowed, i))
1455 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1456 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1460 #endif
1463 /* Copy the global variables n_reloads and rld into the corresponding elts
1464 of CHAIN. */
1465 static void
1466 copy_reloads (struct insn_chain *chain)
1468 chain->n_reloads = n_reloads;
1469 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1470 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1471 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1474 /* Walk the chain of insns, and determine for each whether it needs reloads
1475 and/or eliminations. Build the corresponding insns_need_reload list, and
1476 set something_needs_elimination as appropriate. */
1477 static void
1478 calculate_needs_all_insns (int global)
1480 struct insn_chain **pprev_reload = &insns_need_reload;
1481 struct insn_chain *chain, *next = 0;
1483 something_needs_elimination = 0;
1485 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1486 for (chain = reload_insn_chain; chain != 0; chain = next)
1488 rtx_insn *insn = chain->insn;
1490 next = chain->next;
1492 /* Clear out the shortcuts. */
1493 chain->n_reloads = 0;
1494 chain->need_elim = 0;
1495 chain->need_reload = 0;
1496 chain->need_operand_change = 0;
1498 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1499 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1500 what effects this has on the known offsets at labels. */
1502 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1503 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1504 set_label_offsets (insn, insn, 0);
1506 if (INSN_P (insn))
1508 rtx old_body = PATTERN (insn);
1509 int old_code = INSN_CODE (insn);
1510 rtx old_notes = REG_NOTES (insn);
1511 int did_elimination = 0;
1512 int operands_changed = 0;
1514 /* Skip insns that only set an equivalence. */
1515 if (will_delete_init_insn_p (insn))
1516 continue;
1518 /* If needed, eliminate any eliminable registers. */
1519 if (num_eliminable || num_eliminable_invariants)
1520 did_elimination = eliminate_regs_in_insn (insn, 0);
1522 /* Analyze the instruction. */
1523 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1524 global, spill_reg_order);
1526 /* If a no-op set needs more than one reload, this is likely
1527 to be something that needs input address reloads. We
1528 can't get rid of this cleanly later, and it is of no use
1529 anyway, so discard it now.
1530 We only do this when expensive_optimizations is enabled,
1531 since this complements reload inheritance / output
1532 reload deletion, and it can make debugging harder. */
1533 if (flag_expensive_optimizations && n_reloads > 1)
1535 rtx set = single_set (insn);
1536 if (set
1538 ((SET_SRC (set) == SET_DEST (set)
1539 && REG_P (SET_SRC (set))
1540 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1541 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1542 && reg_renumber[REGNO (SET_SRC (set))] < 0
1543 && reg_renumber[REGNO (SET_DEST (set))] < 0
1544 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1545 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1546 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1547 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1549 if (ira_conflicts_p)
1550 /* Inform IRA about the insn deletion. */
1551 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1552 REGNO (SET_SRC (set)));
1553 delete_insn (insn);
1554 /* Delete it from the reload chain. */
1555 if (chain->prev)
1556 chain->prev->next = next;
1557 else
1558 reload_insn_chain = next;
1559 if (next)
1560 next->prev = chain->prev;
1561 chain->next = unused_insn_chains;
1562 unused_insn_chains = chain;
1563 continue;
1566 if (num_eliminable)
1567 update_eliminable_offsets ();
1569 /* Remember for later shortcuts which insns had any reloads or
1570 register eliminations. */
1571 chain->need_elim = did_elimination;
1572 chain->need_reload = n_reloads > 0;
1573 chain->need_operand_change = operands_changed;
1575 /* Discard any register replacements done. */
1576 if (did_elimination)
1578 obstack_free (&reload_obstack, reload_insn_firstobj);
1579 PATTERN (insn) = old_body;
1580 INSN_CODE (insn) = old_code;
1581 REG_NOTES (insn) = old_notes;
1582 something_needs_elimination = 1;
1585 something_needs_operands_changed |= operands_changed;
1587 if (n_reloads != 0)
1589 copy_reloads (chain);
1590 *pprev_reload = chain;
1591 pprev_reload = &chain->next_need_reload;
1595 *pprev_reload = 0;
1598 /* This function is called from the register allocator to set up estimates
1599 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1600 an invariant. The structure is similar to calculate_needs_all_insns. */
1602 void
1603 calculate_elim_costs_all_insns (void)
1605 int *reg_equiv_init_cost;
1606 basic_block bb;
1607 int i;
1609 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1610 init_elim_table ();
1611 init_eliminable_invariants (get_insns (), false);
1613 set_initial_elim_offsets ();
1614 set_initial_label_offsets ();
1616 FOR_EACH_BB_FN (bb, cfun)
1618 rtx_insn *insn;
1619 elim_bb = bb;
1621 FOR_BB_INSNS (bb, insn)
1623 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1624 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1625 what effects this has on the known offsets at labels. */
1627 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1628 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1629 set_label_offsets (insn, insn, 0);
1631 if (INSN_P (insn))
1633 rtx set = single_set (insn);
1635 /* Skip insns that only set an equivalence. */
1636 if (set && REG_P (SET_DEST (set))
1637 && reg_renumber[REGNO (SET_DEST (set))] < 0
1638 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1639 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1641 unsigned regno = REGNO (SET_DEST (set));
1642 rtx init = reg_equiv_init (regno);
1643 if (init)
1645 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1646 false, true);
1647 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1648 int freq = REG_FREQ_FROM_BB (bb);
1650 reg_equiv_init_cost[regno] = cost * freq;
1651 continue;
1654 /* If needed, eliminate any eliminable registers. */
1655 if (num_eliminable || num_eliminable_invariants)
1656 elimination_costs_in_insn (insn);
1658 if (num_eliminable)
1659 update_eliminable_offsets ();
1663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1665 if (reg_equiv_invariant (i))
1667 if (reg_equiv_init (i))
1669 int cost = reg_equiv_init_cost[i];
1670 if (dump_file)
1671 fprintf (dump_file,
1672 "Reg %d has equivalence, initial gains %d\n", i, cost);
1673 if (cost != 0)
1674 ira_adjust_equiv_reg_cost (i, cost);
1676 else
1678 if (dump_file)
1679 fprintf (dump_file,
1680 "Reg %d had equivalence, but can't be eliminated\n",
1682 ira_adjust_equiv_reg_cost (i, 0);
1687 free (reg_equiv_init_cost);
1688 free (offsets_known_at);
1689 free (offsets_at);
1690 offsets_at = NULL;
1691 offsets_known_at = NULL;
1694 /* Comparison function for qsort to decide which of two reloads
1695 should be handled first. *P1 and *P2 are the reload numbers. */
1697 static int
1698 reload_reg_class_lower (const void *r1p, const void *r2p)
1700 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1701 int t;
1703 /* Consider required reloads before optional ones. */
1704 t = rld[r1].optional - rld[r2].optional;
1705 if (t != 0)
1706 return t;
1708 /* Count all solitary classes before non-solitary ones. */
1709 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1710 - (reg_class_size[(int) rld[r1].rclass] == 1));
1711 if (t != 0)
1712 return t;
1714 /* Aside from solitaires, consider all multi-reg groups first. */
1715 t = rld[r2].nregs - rld[r1].nregs;
1716 if (t != 0)
1717 return t;
1719 /* Consider reloads in order of increasing reg-class number. */
1720 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1721 if (t != 0)
1722 return t;
1724 /* If reloads are equally urgent, sort by reload number,
1725 so that the results of qsort leave nothing to chance. */
1726 return r1 - r2;
1729 /* The cost of spilling each hard reg. */
1730 static int spill_cost[FIRST_PSEUDO_REGISTER];
1732 /* When spilling multiple hard registers, we use SPILL_COST for the first
1733 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1734 only the first hard reg for a multi-reg pseudo. */
1735 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1737 /* Map of hard regno to pseudo regno currently occupying the hard
1738 reg. */
1739 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1741 /* Update the spill cost arrays, considering that pseudo REG is live. */
1743 static void
1744 count_pseudo (int reg)
1746 int freq = REG_FREQ (reg);
1747 int r = reg_renumber[reg];
1748 int nregs;
1750 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1751 if (ira_conflicts_p && r < 0)
1752 return;
1754 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1755 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1756 return;
1758 SET_REGNO_REG_SET (&pseudos_counted, reg);
1760 gcc_assert (r >= 0);
1762 spill_add_cost[r] += freq;
1763 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1764 while (nregs-- > 0)
1766 hard_regno_to_pseudo_regno[r + nregs] = reg;
1767 spill_cost[r + nregs] += freq;
1771 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1772 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1774 static void
1775 order_regs_for_reload (struct insn_chain *chain)
1777 unsigned i;
1778 HARD_REG_SET used_by_pseudos;
1779 HARD_REG_SET used_by_pseudos2;
1780 reg_set_iterator rsi;
1782 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1784 memset (spill_cost, 0, sizeof spill_cost);
1785 memset (spill_add_cost, 0, sizeof spill_add_cost);
1786 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1787 hard_regno_to_pseudo_regno[i] = -1;
1789 /* Count number of uses of each hard reg by pseudo regs allocated to it
1790 and then order them by decreasing use. First exclude hard registers
1791 that are live in or across this insn. */
1793 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1794 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1795 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1796 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1798 /* Now find out which pseudos are allocated to it, and update
1799 hard_reg_n_uses. */
1800 CLEAR_REG_SET (&pseudos_counted);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 EXECUTE_IF_SET_IN_REG_SET
1808 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1810 count_pseudo (i);
1812 CLEAR_REG_SET (&pseudos_counted);
1815 /* Vector of reload-numbers showing the order in which the reloads should
1816 be processed. */
1817 static short reload_order[MAX_RELOADS];
1819 /* This is used to keep track of the spill regs used in one insn. */
1820 static HARD_REG_SET used_spill_regs_local;
1822 /* We decided to spill hard register SPILLED, which has a size of
1823 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1824 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1825 update SPILL_COST/SPILL_ADD_COST. */
1827 static void
1828 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1830 int freq = REG_FREQ (reg);
1831 int r = reg_renumber[reg];
1832 int nregs;
1834 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1835 if (ira_conflicts_p && r < 0)
1836 return;
1838 gcc_assert (r >= 0);
1840 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1842 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1843 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1844 return;
1846 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1848 spill_add_cost[r] -= freq;
1849 while (nregs-- > 0)
1851 hard_regno_to_pseudo_regno[r + nregs] = -1;
1852 spill_cost[r + nregs] -= freq;
1856 /* Find reload register to use for reload number ORDER. */
1858 static int
1859 find_reg (struct insn_chain *chain, int order)
1861 int rnum = reload_order[order];
1862 struct reload *rl = rld + rnum;
1863 int best_cost = INT_MAX;
1864 int best_reg = -1;
1865 unsigned int i, j, n;
1866 int k;
1867 HARD_REG_SET not_usable;
1868 HARD_REG_SET used_by_other_reload;
1869 reg_set_iterator rsi;
1870 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1871 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1873 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1874 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1875 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1877 CLEAR_HARD_REG_SET (used_by_other_reload);
1878 for (k = 0; k < order; k++)
1880 int other = reload_order[k];
1882 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1883 for (j = 0; j < rld[other].nregs; j++)
1884 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1887 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1889 #ifdef REG_ALLOC_ORDER
1890 unsigned int regno = reg_alloc_order[i];
1891 #else
1892 unsigned int regno = i;
1893 #endif
1895 if (! TEST_HARD_REG_BIT (not_usable, regno)
1896 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1897 && HARD_REGNO_MODE_OK (regno, rl->mode))
1899 int this_cost = spill_cost[regno];
1900 int ok = 1;
1901 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1903 for (j = 1; j < this_nregs; j++)
1905 this_cost += spill_add_cost[regno + j];
1906 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1907 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1908 ok = 0;
1910 if (! ok)
1911 continue;
1913 if (ira_conflicts_p)
1915 /* Ask IRA to find a better pseudo-register for
1916 spilling. */
1917 for (n = j = 0; j < this_nregs; j++)
1919 int r = hard_regno_to_pseudo_regno[regno + j];
1921 if (r < 0)
1922 continue;
1923 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1924 regno_pseudo_regs[n++] = r;
1926 regno_pseudo_regs[n++] = -1;
1927 if (best_reg < 0
1928 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1929 best_regno_pseudo_regs,
1930 rl->in, rl->out,
1931 chain->insn))
1933 best_reg = regno;
1934 for (j = 0;; j++)
1936 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1937 if (regno_pseudo_regs[j] < 0)
1938 break;
1941 continue;
1944 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1945 this_cost--;
1946 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1947 this_cost--;
1948 if (this_cost < best_cost
1949 /* Among registers with equal cost, prefer caller-saved ones, or
1950 use REG_ALLOC_ORDER if it is defined. */
1951 || (this_cost == best_cost
1952 #ifdef REG_ALLOC_ORDER
1953 && (inv_reg_alloc_order[regno]
1954 < inv_reg_alloc_order[best_reg])
1955 #else
1956 && call_used_regs[regno]
1957 && ! call_used_regs[best_reg]
1958 #endif
1961 best_reg = regno;
1962 best_cost = this_cost;
1966 if (best_reg == -1)
1967 return 0;
1969 if (dump_file)
1970 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1972 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1973 rl->regno = best_reg;
1975 EXECUTE_IF_SET_IN_REG_SET
1976 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1978 count_spilled_pseudo (best_reg, rl->nregs, j);
1981 EXECUTE_IF_SET_IN_REG_SET
1982 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1984 count_spilled_pseudo (best_reg, rl->nregs, j);
1987 for (i = 0; i < rl->nregs; i++)
1989 gcc_assert (spill_cost[best_reg + i] == 0);
1990 gcc_assert (spill_add_cost[best_reg + i] == 0);
1991 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1992 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1994 return 1;
1997 /* Find more reload regs to satisfy the remaining need of an insn, which
1998 is given by CHAIN.
1999 Do it by ascending class number, since otherwise a reg
2000 might be spilled for a big class and might fail to count
2001 for a smaller class even though it belongs to that class. */
2003 static void
2004 find_reload_regs (struct insn_chain *chain)
2006 int i;
2008 /* In order to be certain of getting the registers we need,
2009 we must sort the reloads into order of increasing register class.
2010 Then our grabbing of reload registers will parallel the process
2011 that provided the reload registers. */
2012 for (i = 0; i < chain->n_reloads; i++)
2014 /* Show whether this reload already has a hard reg. */
2015 if (chain->rld[i].reg_rtx)
2017 int regno = REGNO (chain->rld[i].reg_rtx);
2018 chain->rld[i].regno = regno;
2019 chain->rld[i].nregs
2020 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2022 else
2023 chain->rld[i].regno = -1;
2024 reload_order[i] = i;
2027 n_reloads = chain->n_reloads;
2028 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2030 CLEAR_HARD_REG_SET (used_spill_regs_local);
2032 if (dump_file)
2033 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2035 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2037 /* Compute the order of preference for hard registers to spill. */
2039 order_regs_for_reload (chain);
2041 for (i = 0; i < n_reloads; i++)
2043 int r = reload_order[i];
2045 /* Ignore reloads that got marked inoperative. */
2046 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2047 && ! rld[r].optional
2048 && rld[r].regno == -1)
2049 if (! find_reg (chain, i))
2051 if (dump_file)
2052 fprintf (dump_file, "reload failure for reload %d\n", r);
2053 spill_failure (chain->insn, rld[r].rclass);
2054 failure = 1;
2055 return;
2059 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2060 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2062 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2065 static void
2066 select_reload_regs (void)
2068 struct insn_chain *chain;
2070 /* Try to satisfy the needs for each insn. */
2071 for (chain = insns_need_reload; chain != 0;
2072 chain = chain->next_need_reload)
2073 find_reload_regs (chain);
2076 /* Delete all insns that were inserted by emit_caller_save_insns during
2077 this iteration. */
2078 static void
2079 delete_caller_save_insns (void)
2081 struct insn_chain *c = reload_insn_chain;
2083 while (c != 0)
2085 while (c != 0 && c->is_caller_save_insn)
2087 struct insn_chain *next = c->next;
2088 rtx_insn *insn = c->insn;
2090 if (c == reload_insn_chain)
2091 reload_insn_chain = next;
2092 delete_insn (insn);
2094 if (next)
2095 next->prev = c->prev;
2096 if (c->prev)
2097 c->prev->next = next;
2098 c->next = unused_insn_chains;
2099 unused_insn_chains = c;
2100 c = next;
2102 if (c != 0)
2103 c = c->next;
2107 /* Handle the failure to find a register to spill.
2108 INSN should be one of the insns which needed this particular spill reg. */
2110 static void
2111 spill_failure (rtx_insn *insn, enum reg_class rclass)
2113 if (asm_noperands (PATTERN (insn)) >= 0)
2114 error_for_asm (insn, "can%'t find a register in class %qs while "
2115 "reloading %<asm%>",
2116 reg_class_names[rclass]);
2117 else
2119 error ("unable to find a register to spill in class %qs",
2120 reg_class_names[rclass]);
2122 if (dump_file)
2124 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2125 debug_reload_to_stream (dump_file);
2127 fatal_insn ("this is the insn:", insn);
2131 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2132 data that is dead in INSN. */
2134 static void
2135 delete_dead_insn (rtx_insn *insn)
2137 rtx_insn *prev = prev_active_insn (insn);
2138 rtx prev_dest;
2140 /* If the previous insn sets a register that dies in our insn make
2141 a note that we want to run DCE immediately after reload.
2143 We used to delete the previous insn & recurse, but that's wrong for
2144 block local equivalences. Instead of trying to figure out the exact
2145 circumstances where we can delete the potentially dead insns, just
2146 let DCE do the job. */
2147 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2148 && GET_CODE (PATTERN (prev)) == SET
2149 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2150 && reg_mentioned_p (prev_dest, PATTERN (insn))
2151 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2152 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2153 need_dce = 1;
2155 SET_INSN_DELETED (insn);
2158 /* Modify the home of pseudo-reg I.
2159 The new home is present in reg_renumber[I].
2161 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2162 or it may be -1, meaning there is none or it is not relevant.
2163 This is used so that all pseudos spilled from a given hard reg
2164 can share one stack slot. */
2166 static void
2167 alter_reg (int i, int from_reg, bool dont_share_p)
2169 /* When outputting an inline function, this can happen
2170 for a reg that isn't actually used. */
2171 if (regno_reg_rtx[i] == 0)
2172 return;
2174 /* If the reg got changed to a MEM at rtl-generation time,
2175 ignore it. */
2176 if (!REG_P (regno_reg_rtx[i]))
2177 return;
2179 /* Modify the reg-rtx to contain the new hard reg
2180 number or else to contain its pseudo reg number. */
2181 SET_REGNO (regno_reg_rtx[i],
2182 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2184 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2185 allocate a stack slot for it. */
2187 if (reg_renumber[i] < 0
2188 && REG_N_REFS (i) > 0
2189 && reg_equiv_constant (i) == 0
2190 && (reg_equiv_invariant (i) == 0
2191 || reg_equiv_init (i) == 0)
2192 && reg_equiv_memory_loc (i) == 0)
2194 rtx x = NULL_RTX;
2195 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2196 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2197 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2198 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2199 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2200 int adjust = 0;
2202 something_was_spilled = true;
2204 if (ira_conflicts_p)
2206 /* Mark the spill for IRA. */
2207 SET_REGNO_REG_SET (&spilled_pseudos, i);
2208 if (!dont_share_p)
2209 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2212 if (x)
2215 /* Each pseudo reg has an inherent size which comes from its own mode,
2216 and a total size which provides room for paradoxical subregs
2217 which refer to the pseudo reg in wider modes.
2219 We can use a slot already allocated if it provides both
2220 enough inherent space and enough total space.
2221 Otherwise, we allocate a new slot, making sure that it has no less
2222 inherent space, and no less total space, then the previous slot. */
2223 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2225 rtx stack_slot;
2227 /* No known place to spill from => no slot to reuse. */
2228 x = assign_stack_local (mode, total_size,
2229 min_align > inherent_align
2230 || total_size > inherent_size ? -1 : 0);
2232 stack_slot = x;
2234 /* Cancel the big-endian correction done in assign_stack_local.
2235 Get the address of the beginning of the slot. This is so we
2236 can do a big-endian correction unconditionally below. */
2237 if (BYTES_BIG_ENDIAN)
2239 adjust = inherent_size - total_size;
2240 if (adjust)
2241 stack_slot
2242 = adjust_address_nv (x, mode_for_size (total_size
2243 * BITS_PER_UNIT,
2244 MODE_INT, 1),
2245 adjust);
2248 if (! dont_share_p && ira_conflicts_p)
2249 /* Inform IRA about allocation a new stack slot. */
2250 ira_mark_new_stack_slot (stack_slot, i, total_size);
2253 /* Reuse a stack slot if possible. */
2254 else if (spill_stack_slot[from_reg] != 0
2255 && spill_stack_slot_width[from_reg] >= total_size
2256 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2257 >= inherent_size)
2258 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2259 x = spill_stack_slot[from_reg];
2261 /* Allocate a bigger slot. */
2262 else
2264 /* Compute maximum size needed, both for inherent size
2265 and for total size. */
2266 rtx stack_slot;
2268 if (spill_stack_slot[from_reg])
2270 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2271 > inherent_size)
2272 mode = GET_MODE (spill_stack_slot[from_reg]);
2273 if (spill_stack_slot_width[from_reg] > total_size)
2274 total_size = spill_stack_slot_width[from_reg];
2275 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2276 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2279 /* Make a slot with that size. */
2280 x = assign_stack_local (mode, total_size,
2281 min_align > inherent_align
2282 || total_size > inherent_size ? -1 : 0);
2283 stack_slot = x;
2285 /* Cancel the big-endian correction done in assign_stack_local.
2286 Get the address of the beginning of the slot. This is so we
2287 can do a big-endian correction unconditionally below. */
2288 if (BYTES_BIG_ENDIAN)
2290 adjust = GET_MODE_SIZE (mode) - total_size;
2291 if (adjust)
2292 stack_slot
2293 = adjust_address_nv (x, mode_for_size (total_size
2294 * BITS_PER_UNIT,
2295 MODE_INT, 1),
2296 adjust);
2299 spill_stack_slot[from_reg] = stack_slot;
2300 spill_stack_slot_width[from_reg] = total_size;
2303 /* On a big endian machine, the "address" of the slot
2304 is the address of the low part that fits its inherent mode. */
2305 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2306 adjust += (total_size - inherent_size);
2308 /* If we have any adjustment to make, or if the stack slot is the
2309 wrong mode, make a new stack slot. */
2310 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2312 /* Set all of the memory attributes as appropriate for a spill. */
2313 set_mem_attrs_for_spill (x);
2315 /* Save the stack slot for later. */
2316 reg_equiv_memory_loc (i) = x;
2320 /* Mark the slots in regs_ever_live for the hard regs used by
2321 pseudo-reg number REGNO, accessed in MODE. */
2323 static void
2324 mark_home_live_1 (int regno, machine_mode mode)
2326 int i, lim;
2328 i = reg_renumber[regno];
2329 if (i < 0)
2330 return;
2331 lim = end_hard_regno (mode, i);
2332 while (i < lim)
2333 df_set_regs_ever_live (i++, true);
2336 /* Mark the slots in regs_ever_live for the hard regs
2337 used by pseudo-reg number REGNO. */
2339 void
2340 mark_home_live (int regno)
2342 if (reg_renumber[regno] >= 0)
2343 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2346 /* This function handles the tracking of elimination offsets around branches.
2348 X is a piece of RTL being scanned.
2350 INSN is the insn that it came from, if any.
2352 INITIAL_P is nonzero if we are to set the offset to be the initial
2353 offset and zero if we are setting the offset of the label to be the
2354 current offset. */
2356 static void
2357 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2359 enum rtx_code code = GET_CODE (x);
2360 rtx tem;
2361 unsigned int i;
2362 struct elim_table *p;
2364 switch (code)
2366 case LABEL_REF:
2367 if (LABEL_REF_NONLOCAL_P (x))
2368 return;
2370 x = LABEL_REF_LABEL (x);
2372 /* ... fall through ... */
2374 case CODE_LABEL:
2375 /* If we know nothing about this label, set the desired offsets. Note
2376 that this sets the offset at a label to be the offset before a label
2377 if we don't know anything about the label. This is not correct for
2378 the label after a BARRIER, but is the best guess we can make. If
2379 we guessed wrong, we will suppress an elimination that might have
2380 been possible had we been able to guess correctly. */
2382 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2384 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2385 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2386 = (initial_p ? reg_eliminate[i].initial_offset
2387 : reg_eliminate[i].offset);
2388 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2391 /* Otherwise, if this is the definition of a label and it is
2392 preceded by a BARRIER, set our offsets to the known offset of
2393 that label. */
2395 else if (x == insn
2396 && (tem = prev_nonnote_insn (insn)) != 0
2397 && BARRIER_P (tem))
2398 set_offsets_for_label (insn);
2399 else
2400 /* If neither of the above cases is true, compare each offset
2401 with those previously recorded and suppress any eliminations
2402 where the offsets disagree. */
2404 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2405 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2406 != (initial_p ? reg_eliminate[i].initial_offset
2407 : reg_eliminate[i].offset))
2408 reg_eliminate[i].can_eliminate = 0;
2410 return;
2412 case JUMP_TABLE_DATA:
2413 set_label_offsets (PATTERN (insn), insn, initial_p);
2414 return;
2416 case JUMP_INSN:
2417 set_label_offsets (PATTERN (insn), insn, initial_p);
2419 /* ... fall through ... */
2421 case INSN:
2422 case CALL_INSN:
2423 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2424 to indirectly and hence must have all eliminations at their
2425 initial offsets. */
2426 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2427 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2428 set_label_offsets (XEXP (tem, 0), insn, 1);
2429 return;
2431 case PARALLEL:
2432 case ADDR_VEC:
2433 case ADDR_DIFF_VEC:
2434 /* Each of the labels in the parallel or address vector must be
2435 at their initial offsets. We want the first field for PARALLEL
2436 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2438 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2439 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2440 insn, initial_p);
2441 return;
2443 case SET:
2444 /* We only care about setting PC. If the source is not RETURN,
2445 IF_THEN_ELSE, or a label, disable any eliminations not at
2446 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2447 isn't one of those possibilities. For branches to a label,
2448 call ourselves recursively.
2450 Note that this can disable elimination unnecessarily when we have
2451 a non-local goto since it will look like a non-constant jump to
2452 someplace in the current function. This isn't a significant
2453 problem since such jumps will normally be when all elimination
2454 pairs are back to their initial offsets. */
2456 if (SET_DEST (x) != pc_rtx)
2457 return;
2459 switch (GET_CODE (SET_SRC (x)))
2461 case PC:
2462 case RETURN:
2463 return;
2465 case LABEL_REF:
2466 set_label_offsets (SET_SRC (x), insn, initial_p);
2467 return;
2469 case IF_THEN_ELSE:
2470 tem = XEXP (SET_SRC (x), 1);
2471 if (GET_CODE (tem) == LABEL_REF)
2472 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2473 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2474 break;
2476 tem = XEXP (SET_SRC (x), 2);
2477 if (GET_CODE (tem) == LABEL_REF)
2478 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2479 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2480 break;
2481 return;
2483 default:
2484 break;
2487 /* If we reach here, all eliminations must be at their initial
2488 offset because we are doing a jump to a variable address. */
2489 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2490 if (p->offset != p->initial_offset)
2491 p->can_eliminate = 0;
2492 break;
2494 default:
2495 break;
2499 /* This function examines every reg that occurs in X and adjusts the
2500 costs for its elimination which are gathered by IRA. INSN is the
2501 insn in which X occurs. We do not recurse into MEM expressions. */
2503 static void
2504 note_reg_elim_costly (const_rtx x, rtx insn)
2506 subrtx_iterator::array_type array;
2507 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2509 const_rtx x = *iter;
2510 if (MEM_P (x))
2511 iter.skip_subrtxes ();
2512 else if (REG_P (x)
2513 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2514 && reg_equiv_init (REGNO (x))
2515 && reg_equiv_invariant (REGNO (x)))
2517 rtx t = reg_equiv_invariant (REGNO (x));
2518 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2519 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2520 int freq = REG_FREQ_FROM_BB (elim_bb);
2522 if (cost != 0)
2523 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2528 /* Scan X and replace any eliminable registers (such as fp) with a
2529 replacement (such as sp), plus an offset.
2531 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2532 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2533 MEM, we are allowed to replace a sum of a register and the constant zero
2534 with the register, which we cannot do outside a MEM. In addition, we need
2535 to record the fact that a register is referenced outside a MEM.
2537 If INSN is an insn, it is the insn containing X. If we replace a REG
2538 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2539 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2540 the REG is being modified.
2542 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2543 That's used when we eliminate in expressions stored in notes.
2544 This means, do not set ref_outside_mem even if the reference
2545 is outside of MEMs.
2547 If FOR_COSTS is true, we are being called before reload in order to
2548 estimate the costs of keeping registers with an equivalence unallocated.
2550 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2551 replacements done assuming all offsets are at their initial values. If
2552 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2553 encounter, return the actual location so that find_reloads will do
2554 the proper thing. */
2556 static rtx
2557 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2558 bool may_use_invariant, bool for_costs)
2560 enum rtx_code code = GET_CODE (x);
2561 struct elim_table *ep;
2562 int regno;
2563 rtx new_rtx;
2564 int i, j;
2565 const char *fmt;
2566 int copied = 0;
2568 if (! current_function_decl)
2569 return x;
2571 switch (code)
2573 CASE_CONST_ANY:
2574 case CONST:
2575 case SYMBOL_REF:
2576 case CODE_LABEL:
2577 case PC:
2578 case CC0:
2579 case ASM_INPUT:
2580 case ADDR_VEC:
2581 case ADDR_DIFF_VEC:
2582 case RETURN:
2583 return x;
2585 case REG:
2586 regno = REGNO (x);
2588 /* First handle the case where we encounter a bare register that
2589 is eliminable. Replace it with a PLUS. */
2590 if (regno < FIRST_PSEUDO_REGISTER)
2592 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2593 ep++)
2594 if (ep->from_rtx == x && ep->can_eliminate)
2595 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2598 else if (reg_renumber && reg_renumber[regno] < 0
2599 && reg_equivs
2600 && reg_equiv_invariant (regno))
2602 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2603 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2604 mem_mode, insn, true, for_costs);
2605 /* There exists at least one use of REGNO that cannot be
2606 eliminated. Prevent the defining insn from being deleted. */
2607 reg_equiv_init (regno) = NULL_RTX;
2608 if (!for_costs)
2609 alter_reg (regno, -1, true);
2611 return x;
2613 /* You might think handling MINUS in a manner similar to PLUS is a
2614 good idea. It is not. It has been tried multiple times and every
2615 time the change has had to have been reverted.
2617 Other parts of reload know a PLUS is special (gen_reload for example)
2618 and require special code to handle code a reloaded PLUS operand.
2620 Also consider backends where the flags register is clobbered by a
2621 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2622 lea instruction comes to mind). If we try to reload a MINUS, we
2623 may kill the flags register that was holding a useful value.
2625 So, please before trying to handle MINUS, consider reload as a
2626 whole instead of this little section as well as the backend issues. */
2627 case PLUS:
2628 /* If this is the sum of an eliminable register and a constant, rework
2629 the sum. */
2630 if (REG_P (XEXP (x, 0))
2631 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2632 && CONSTANT_P (XEXP (x, 1)))
2634 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2635 ep++)
2636 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2638 /* The only time we want to replace a PLUS with a REG (this
2639 occurs when the constant operand of the PLUS is the negative
2640 of the offset) is when we are inside a MEM. We won't want
2641 to do so at other times because that would change the
2642 structure of the insn in a way that reload can't handle.
2643 We special-case the commonest situation in
2644 eliminate_regs_in_insn, so just replace a PLUS with a
2645 PLUS here, unless inside a MEM. */
2646 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2647 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2648 return ep->to_rtx;
2649 else
2650 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2651 plus_constant (Pmode, XEXP (x, 1),
2652 ep->previous_offset));
2655 /* If the register is not eliminable, we are done since the other
2656 operand is a constant. */
2657 return x;
2660 /* If this is part of an address, we want to bring any constant to the
2661 outermost PLUS. We will do this by doing register replacement in
2662 our operands and seeing if a constant shows up in one of them.
2664 Note that there is no risk of modifying the structure of the insn,
2665 since we only get called for its operands, thus we are either
2666 modifying the address inside a MEM, or something like an address
2667 operand of a load-address insn. */
2670 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2671 for_costs);
2672 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2673 for_costs);
2675 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2677 /* If one side is a PLUS and the other side is a pseudo that
2678 didn't get a hard register but has a reg_equiv_constant,
2679 we must replace the constant here since it may no longer
2680 be in the position of any operand. */
2681 if (GET_CODE (new0) == PLUS && REG_P (new1)
2682 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2683 && reg_renumber[REGNO (new1)] < 0
2684 && reg_equivs
2685 && reg_equiv_constant (REGNO (new1)) != 0)
2686 new1 = reg_equiv_constant (REGNO (new1));
2687 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2688 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2689 && reg_renumber[REGNO (new0)] < 0
2690 && reg_equiv_constant (REGNO (new0)) != 0)
2691 new0 = reg_equiv_constant (REGNO (new0));
2693 new_rtx = form_sum (GET_MODE (x), new0, new1);
2695 /* As above, if we are not inside a MEM we do not want to
2696 turn a PLUS into something else. We might try to do so here
2697 for an addition of 0 if we aren't optimizing. */
2698 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2699 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2700 else
2701 return new_rtx;
2704 return x;
2706 case MULT:
2707 /* If this is the product of an eliminable register and a
2708 constant, apply the distribute law and move the constant out
2709 so that we have (plus (mult ..) ..). This is needed in order
2710 to keep load-address insns valid. This case is pathological.
2711 We ignore the possibility of overflow here. */
2712 if (REG_P (XEXP (x, 0))
2713 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2714 && CONST_INT_P (XEXP (x, 1)))
2715 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2716 ep++)
2717 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2719 if (! mem_mode
2720 /* Refs inside notes or in DEBUG_INSNs don't count for
2721 this purpose. */
2722 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2723 || GET_CODE (insn) == INSN_LIST
2724 || DEBUG_INSN_P (insn))))
2725 ep->ref_outside_mem = 1;
2727 return
2728 plus_constant (Pmode,
2729 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2730 ep->previous_offset * INTVAL (XEXP (x, 1)));
2733 /* ... fall through ... */
2735 case CALL:
2736 case COMPARE:
2737 /* See comments before PLUS about handling MINUS. */
2738 case MINUS:
2739 case DIV: case UDIV:
2740 case MOD: case UMOD:
2741 case AND: case IOR: case XOR:
2742 case ROTATERT: case ROTATE:
2743 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2744 case NE: case EQ:
2745 case GE: case GT: case GEU: case GTU:
2746 case LE: case LT: case LEU: case LTU:
2748 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2749 for_costs);
2750 rtx new1 = XEXP (x, 1)
2751 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2752 for_costs) : 0;
2754 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2755 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2757 return x;
2759 case EXPR_LIST:
2760 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2761 if (XEXP (x, 0))
2763 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2764 for_costs);
2765 if (new_rtx != XEXP (x, 0))
2767 /* If this is a REG_DEAD note, it is not valid anymore.
2768 Using the eliminated version could result in creating a
2769 REG_DEAD note for the stack or frame pointer. */
2770 if (REG_NOTE_KIND (x) == REG_DEAD)
2771 return (XEXP (x, 1)
2772 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2773 for_costs)
2774 : NULL_RTX);
2776 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2780 /* ... fall through ... */
2782 case INSN_LIST:
2783 case INT_LIST:
2784 /* Now do eliminations in the rest of the chain. If this was
2785 an EXPR_LIST, this might result in allocating more memory than is
2786 strictly needed, but it simplifies the code. */
2787 if (XEXP (x, 1))
2789 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2790 for_costs);
2791 if (new_rtx != XEXP (x, 1))
2792 return
2793 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2795 return x;
2797 case PRE_INC:
2798 case POST_INC:
2799 case PRE_DEC:
2800 case POST_DEC:
2801 /* We do not support elimination of a register that is modified.
2802 elimination_effects has already make sure that this does not
2803 happen. */
2804 return x;
2806 case PRE_MODIFY:
2807 case POST_MODIFY:
2808 /* We do not support elimination of a register that is modified.
2809 elimination_effects has already make sure that this does not
2810 happen. The only remaining case we need to consider here is
2811 that the increment value may be an eliminable register. */
2812 if (GET_CODE (XEXP (x, 1)) == PLUS
2813 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2815 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2816 insn, true, for_costs);
2818 if (new_rtx != XEXP (XEXP (x, 1), 1))
2819 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2820 gen_rtx_PLUS (GET_MODE (x),
2821 XEXP (x, 0), new_rtx));
2823 return x;
2825 case STRICT_LOW_PART:
2826 case NEG: case NOT:
2827 case SIGN_EXTEND: case ZERO_EXTEND:
2828 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2829 case FLOAT: case FIX:
2830 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2831 case ABS:
2832 case SQRT:
2833 case FFS:
2834 case CLZ:
2835 case CTZ:
2836 case POPCOUNT:
2837 case PARITY:
2838 case BSWAP:
2839 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2840 for_costs);
2841 if (new_rtx != XEXP (x, 0))
2842 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2843 return x;
2845 case SUBREG:
2846 /* Similar to above processing, but preserve SUBREG_BYTE.
2847 Convert (subreg (mem)) to (mem) if not paradoxical.
2848 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2849 pseudo didn't get a hard reg, we must replace this with the
2850 eliminated version of the memory location because push_reload
2851 may do the replacement in certain circumstances. */
2852 if (REG_P (SUBREG_REG (x))
2853 && !paradoxical_subreg_p (x)
2854 && reg_equivs
2855 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2857 new_rtx = SUBREG_REG (x);
2859 else
2860 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2862 if (new_rtx != SUBREG_REG (x))
2864 int x_size = GET_MODE_SIZE (GET_MODE (x));
2865 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2867 if (MEM_P (new_rtx)
2868 && ((x_size < new_size
2869 #ifdef WORD_REGISTER_OPERATIONS
2870 /* On these machines, combine can create rtl of the form
2871 (set (subreg:m1 (reg:m2 R) 0) ...)
2872 where m1 < m2, and expects something interesting to
2873 happen to the entire word. Moreover, it will use the
2874 (reg:m2 R) later, expecting all bits to be preserved.
2875 So if the number of words is the same, preserve the
2876 subreg so that push_reload can see it. */
2877 && ! ((x_size - 1) / UNITS_PER_WORD
2878 == (new_size -1 ) / UNITS_PER_WORD)
2879 #endif
2881 || x_size == new_size)
2883 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2884 else
2885 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2888 return x;
2890 case MEM:
2891 /* Our only special processing is to pass the mode of the MEM to our
2892 recursive call and copy the flags. While we are here, handle this
2893 case more efficiently. */
2895 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2896 for_costs);
2897 if (for_costs
2898 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2899 && !memory_address_p (GET_MODE (x), new_rtx))
2900 note_reg_elim_costly (XEXP (x, 0), insn);
2902 return replace_equiv_address_nv (x, new_rtx);
2904 case USE:
2905 /* Handle insn_list USE that a call to a pure function may generate. */
2906 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2907 for_costs);
2908 if (new_rtx != XEXP (x, 0))
2909 return gen_rtx_USE (GET_MODE (x), new_rtx);
2910 return x;
2912 case CLOBBER:
2913 case ASM_OPERANDS:
2914 gcc_assert (insn && DEBUG_INSN_P (insn));
2915 break;
2917 case SET:
2918 gcc_unreachable ();
2920 default:
2921 break;
2924 /* Process each of our operands recursively. If any have changed, make a
2925 copy of the rtx. */
2926 fmt = GET_RTX_FORMAT (code);
2927 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2929 if (*fmt == 'e')
2931 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2932 for_costs);
2933 if (new_rtx != XEXP (x, i) && ! copied)
2935 x = shallow_copy_rtx (x);
2936 copied = 1;
2938 XEXP (x, i) = new_rtx;
2940 else if (*fmt == 'E')
2942 int copied_vec = 0;
2943 for (j = 0; j < XVECLEN (x, i); j++)
2945 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2946 for_costs);
2947 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2949 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2950 XVEC (x, i)->elem);
2951 if (! copied)
2953 x = shallow_copy_rtx (x);
2954 copied = 1;
2956 XVEC (x, i) = new_v;
2957 copied_vec = 1;
2959 XVECEXP (x, i, j) = new_rtx;
2964 return x;
2968 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2970 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2973 /* Scan rtx X for modifications of elimination target registers. Update
2974 the table of eliminables to reflect the changed state. MEM_MODE is
2975 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2977 static void
2978 elimination_effects (rtx x, machine_mode mem_mode)
2980 enum rtx_code code = GET_CODE (x);
2981 struct elim_table *ep;
2982 int regno;
2983 int i, j;
2984 const char *fmt;
2986 switch (code)
2988 CASE_CONST_ANY:
2989 case CONST:
2990 case SYMBOL_REF:
2991 case CODE_LABEL:
2992 case PC:
2993 case CC0:
2994 case ASM_INPUT:
2995 case ADDR_VEC:
2996 case ADDR_DIFF_VEC:
2997 case RETURN:
2998 return;
3000 case REG:
3001 regno = REGNO (x);
3003 /* First handle the case where we encounter a bare register that
3004 is eliminable. Replace it with a PLUS. */
3005 if (regno < FIRST_PSEUDO_REGISTER)
3007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3008 ep++)
3009 if (ep->from_rtx == x && ep->can_eliminate)
3011 if (! mem_mode)
3012 ep->ref_outside_mem = 1;
3013 return;
3017 else if (reg_renumber[regno] < 0
3018 && reg_equivs
3019 && reg_equiv_constant (regno)
3020 && ! function_invariant_p (reg_equiv_constant (regno)))
3021 elimination_effects (reg_equiv_constant (regno), mem_mode);
3022 return;
3024 case PRE_INC:
3025 case POST_INC:
3026 case PRE_DEC:
3027 case POST_DEC:
3028 case POST_MODIFY:
3029 case PRE_MODIFY:
3030 /* If we modify the source of an elimination rule, disable it. */
3031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3032 if (ep->from_rtx == XEXP (x, 0))
3033 ep->can_eliminate = 0;
3035 /* If we modify the target of an elimination rule by adding a constant,
3036 update its offset. If we modify the target in any other way, we'll
3037 have to disable the rule as well. */
3038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3039 if (ep->to_rtx == XEXP (x, 0))
3041 int size = GET_MODE_SIZE (mem_mode);
3043 /* If more bytes than MEM_MODE are pushed, account for them. */
3044 #ifdef PUSH_ROUNDING
3045 if (ep->to_rtx == stack_pointer_rtx)
3046 size = PUSH_ROUNDING (size);
3047 #endif
3048 if (code == PRE_DEC || code == POST_DEC)
3049 ep->offset += size;
3050 else if (code == PRE_INC || code == POST_INC)
3051 ep->offset -= size;
3052 else if (code == PRE_MODIFY || code == POST_MODIFY)
3054 if (GET_CODE (XEXP (x, 1)) == PLUS
3055 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3056 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3057 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3058 else
3059 ep->can_eliminate = 0;
3063 /* These two aren't unary operators. */
3064 if (code == POST_MODIFY || code == PRE_MODIFY)
3065 break;
3067 /* Fall through to generic unary operation case. */
3068 case STRICT_LOW_PART:
3069 case NEG: case NOT:
3070 case SIGN_EXTEND: case ZERO_EXTEND:
3071 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3072 case FLOAT: case FIX:
3073 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3074 case ABS:
3075 case SQRT:
3076 case FFS:
3077 case CLZ:
3078 case CTZ:
3079 case POPCOUNT:
3080 case PARITY:
3081 case BSWAP:
3082 elimination_effects (XEXP (x, 0), mem_mode);
3083 return;
3085 case SUBREG:
3086 if (REG_P (SUBREG_REG (x))
3087 && (GET_MODE_SIZE (GET_MODE (x))
3088 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3089 && reg_equivs
3090 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3091 return;
3093 elimination_effects (SUBREG_REG (x), mem_mode);
3094 return;
3096 case USE:
3097 /* If using a register that is the source of an eliminate we still
3098 think can be performed, note it cannot be performed since we don't
3099 know how this register is used. */
3100 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3101 if (ep->from_rtx == XEXP (x, 0))
3102 ep->can_eliminate = 0;
3104 elimination_effects (XEXP (x, 0), mem_mode);
3105 return;
3107 case CLOBBER:
3108 /* If clobbering a register that is the replacement register for an
3109 elimination we still think can be performed, note that it cannot
3110 be performed. Otherwise, we need not be concerned about it. */
3111 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3112 if (ep->to_rtx == XEXP (x, 0))
3113 ep->can_eliminate = 0;
3115 elimination_effects (XEXP (x, 0), mem_mode);
3116 return;
3118 case SET:
3119 /* Check for setting a register that we know about. */
3120 if (REG_P (SET_DEST (x)))
3122 /* See if this is setting the replacement register for an
3123 elimination.
3125 If DEST is the hard frame pointer, we do nothing because we
3126 assume that all assignments to the frame pointer are for
3127 non-local gotos and are being done at a time when they are valid
3128 and do not disturb anything else. Some machines want to
3129 eliminate a fake argument pointer (or even a fake frame pointer)
3130 with either the real frame or the stack pointer. Assignments to
3131 the hard frame pointer must not prevent this elimination. */
3133 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3134 ep++)
3135 if (ep->to_rtx == SET_DEST (x)
3136 && SET_DEST (x) != hard_frame_pointer_rtx)
3138 /* If it is being incremented, adjust the offset. Otherwise,
3139 this elimination can't be done. */
3140 rtx src = SET_SRC (x);
3142 if (GET_CODE (src) == PLUS
3143 && XEXP (src, 0) == SET_DEST (x)
3144 && CONST_INT_P (XEXP (src, 1)))
3145 ep->offset -= INTVAL (XEXP (src, 1));
3146 else
3147 ep->can_eliminate = 0;
3151 elimination_effects (SET_DEST (x), VOIDmode);
3152 elimination_effects (SET_SRC (x), VOIDmode);
3153 return;
3155 case MEM:
3156 /* Our only special processing is to pass the mode of the MEM to our
3157 recursive call. */
3158 elimination_effects (XEXP (x, 0), GET_MODE (x));
3159 return;
3161 default:
3162 break;
3165 fmt = GET_RTX_FORMAT (code);
3166 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3168 if (*fmt == 'e')
3169 elimination_effects (XEXP (x, i), mem_mode);
3170 else if (*fmt == 'E')
3171 for (j = 0; j < XVECLEN (x, i); j++)
3172 elimination_effects (XVECEXP (x, i, j), mem_mode);
3176 /* Descend through rtx X and verify that no references to eliminable registers
3177 remain. If any do remain, mark the involved register as not
3178 eliminable. */
3180 static void
3181 check_eliminable_occurrences (rtx x)
3183 const char *fmt;
3184 int i;
3185 enum rtx_code code;
3187 if (x == 0)
3188 return;
3190 code = GET_CODE (x);
3192 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3194 struct elim_table *ep;
3196 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3197 if (ep->from_rtx == x)
3198 ep->can_eliminate = 0;
3199 return;
3202 fmt = GET_RTX_FORMAT (code);
3203 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3205 if (*fmt == 'e')
3206 check_eliminable_occurrences (XEXP (x, i));
3207 else if (*fmt == 'E')
3209 int j;
3210 for (j = 0; j < XVECLEN (x, i); j++)
3211 check_eliminable_occurrences (XVECEXP (x, i, j));
3216 /* Scan INSN and eliminate all eliminable registers in it.
3218 If REPLACE is nonzero, do the replacement destructively. Also
3219 delete the insn as dead it if it is setting an eliminable register.
3221 If REPLACE is zero, do all our allocations in reload_obstack.
3223 If no eliminations were done and this insn doesn't require any elimination
3224 processing (these are not identical conditions: it might be updating sp,
3225 but not referencing fp; this needs to be seen during reload_as_needed so
3226 that the offset between fp and sp can be taken into consideration), zero
3227 is returned. Otherwise, 1 is returned. */
3229 static int
3230 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3232 int icode = recog_memoized (insn);
3233 rtx old_body = PATTERN (insn);
3234 int insn_is_asm = asm_noperands (old_body) >= 0;
3235 rtx old_set = single_set (insn);
3236 rtx new_body;
3237 int val = 0;
3238 int i;
3239 rtx substed_operand[MAX_RECOG_OPERANDS];
3240 rtx orig_operand[MAX_RECOG_OPERANDS];
3241 struct elim_table *ep;
3242 rtx plus_src, plus_cst_src;
3244 if (! insn_is_asm && icode < 0)
3246 gcc_assert (DEBUG_INSN_P (insn)
3247 || GET_CODE (PATTERN (insn)) == USE
3248 || GET_CODE (PATTERN (insn)) == CLOBBER
3249 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3250 if (DEBUG_INSN_P (insn))
3251 INSN_VAR_LOCATION_LOC (insn)
3252 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3253 return 0;
3256 if (old_set != 0 && REG_P (SET_DEST (old_set))
3257 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3259 /* Check for setting an eliminable register. */
3260 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3261 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3263 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3264 /* If this is setting the frame pointer register to the
3265 hardware frame pointer register and this is an elimination
3266 that will be done (tested above), this insn is really
3267 adjusting the frame pointer downward to compensate for
3268 the adjustment done before a nonlocal goto. */
3269 if (ep->from == FRAME_POINTER_REGNUM
3270 && ep->to == HARD_FRAME_POINTER_REGNUM)
3272 rtx base = SET_SRC (old_set);
3273 rtx_insn *base_insn = insn;
3274 HOST_WIDE_INT offset = 0;
3276 while (base != ep->to_rtx)
3278 rtx_insn *prev_insn;
3279 rtx prev_set;
3281 if (GET_CODE (base) == PLUS
3282 && CONST_INT_P (XEXP (base, 1)))
3284 offset += INTVAL (XEXP (base, 1));
3285 base = XEXP (base, 0);
3287 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3288 && (prev_set = single_set (prev_insn)) != 0
3289 && rtx_equal_p (SET_DEST (prev_set), base))
3291 base = SET_SRC (prev_set);
3292 base_insn = prev_insn;
3294 else
3295 break;
3298 if (base == ep->to_rtx)
3300 rtx src = plus_constant (Pmode, ep->to_rtx,
3301 offset - ep->offset);
3303 new_body = old_body;
3304 if (! replace)
3306 new_body = copy_insn (old_body);
3307 if (REG_NOTES (insn))
3308 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3310 PATTERN (insn) = new_body;
3311 old_set = single_set (insn);
3313 /* First see if this insn remains valid when we
3314 make the change. If not, keep the INSN_CODE
3315 the same and let reload fit it up. */
3316 validate_change (insn, &SET_SRC (old_set), src, 1);
3317 validate_change (insn, &SET_DEST (old_set),
3318 ep->to_rtx, 1);
3319 if (! apply_change_group ())
3321 SET_SRC (old_set) = src;
3322 SET_DEST (old_set) = ep->to_rtx;
3325 val = 1;
3326 goto done;
3329 #endif
3331 /* In this case this insn isn't serving a useful purpose. We
3332 will delete it in reload_as_needed once we know that this
3333 elimination is, in fact, being done.
3335 If REPLACE isn't set, we can't delete this insn, but needn't
3336 process it since it won't be used unless something changes. */
3337 if (replace)
3339 delete_dead_insn (insn);
3340 return 1;
3342 val = 1;
3343 goto done;
3347 /* We allow one special case which happens to work on all machines we
3348 currently support: a single set with the source or a REG_EQUAL
3349 note being a PLUS of an eliminable register and a constant. */
3350 plus_src = plus_cst_src = 0;
3351 if (old_set && REG_P (SET_DEST (old_set)))
3353 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3354 plus_src = SET_SRC (old_set);
3355 /* First see if the source is of the form (plus (...) CST). */
3356 if (plus_src
3357 && CONST_INT_P (XEXP (plus_src, 1)))
3358 plus_cst_src = plus_src;
3359 else if (REG_P (SET_SRC (old_set))
3360 || plus_src)
3362 /* Otherwise, see if we have a REG_EQUAL note of the form
3363 (plus (...) CST). */
3364 rtx links;
3365 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3367 if ((REG_NOTE_KIND (links) == REG_EQUAL
3368 || REG_NOTE_KIND (links) == REG_EQUIV)
3369 && GET_CODE (XEXP (links, 0)) == PLUS
3370 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3372 plus_cst_src = XEXP (links, 0);
3373 break;
3378 /* Check that the first operand of the PLUS is a hard reg or
3379 the lowpart subreg of one. */
3380 if (plus_cst_src)
3382 rtx reg = XEXP (plus_cst_src, 0);
3383 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3384 reg = SUBREG_REG (reg);
3386 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3387 plus_cst_src = 0;
3390 if (plus_cst_src)
3392 rtx reg = XEXP (plus_cst_src, 0);
3393 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3395 if (GET_CODE (reg) == SUBREG)
3396 reg = SUBREG_REG (reg);
3398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3399 if (ep->from_rtx == reg && ep->can_eliminate)
3401 rtx to_rtx = ep->to_rtx;
3402 offset += ep->offset;
3403 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3405 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3406 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3407 to_rtx);
3408 /* If we have a nonzero offset, and the source is already
3409 a simple REG, the following transformation would
3410 increase the cost of the insn by replacing a simple REG
3411 with (plus (reg sp) CST). So try only when we already
3412 had a PLUS before. */
3413 if (offset == 0 || plus_src)
3415 rtx new_src = plus_constant (GET_MODE (to_rtx),
3416 to_rtx, offset);
3418 new_body = old_body;
3419 if (! replace)
3421 new_body = copy_insn (old_body);
3422 if (REG_NOTES (insn))
3423 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3425 PATTERN (insn) = new_body;
3426 old_set = single_set (insn);
3428 /* First see if this insn remains valid when we make the
3429 change. If not, try to replace the whole pattern with
3430 a simple set (this may help if the original insn was a
3431 PARALLEL that was only recognized as single_set due to
3432 REG_UNUSED notes). If this isn't valid either, keep
3433 the INSN_CODE the same and let reload fix it up. */
3434 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3436 rtx new_pat = gen_rtx_SET (VOIDmode,
3437 SET_DEST (old_set), new_src);
3439 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3440 SET_SRC (old_set) = new_src;
3443 else
3444 break;
3446 val = 1;
3447 /* This can't have an effect on elimination offsets, so skip right
3448 to the end. */
3449 goto done;
3453 /* Determine the effects of this insn on elimination offsets. */
3454 elimination_effects (old_body, VOIDmode);
3456 /* Eliminate all eliminable registers occurring in operands that
3457 can be handled by reload. */
3458 extract_insn (insn);
3459 for (i = 0; i < recog_data.n_operands; i++)
3461 orig_operand[i] = recog_data.operand[i];
3462 substed_operand[i] = recog_data.operand[i];
3464 /* For an asm statement, every operand is eliminable. */
3465 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3467 bool is_set_src, in_plus;
3469 /* Check for setting a register that we know about. */
3470 if (recog_data.operand_type[i] != OP_IN
3471 && REG_P (orig_operand[i]))
3473 /* If we are assigning to a register that can be eliminated, it
3474 must be as part of a PARALLEL, since the code above handles
3475 single SETs. We must indicate that we can no longer
3476 eliminate this reg. */
3477 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3478 ep++)
3479 if (ep->from_rtx == orig_operand[i])
3480 ep->can_eliminate = 0;
3483 /* Companion to the above plus substitution, we can allow
3484 invariants as the source of a plain move. */
3485 is_set_src = false;
3486 if (old_set
3487 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3488 is_set_src = true;
3489 in_plus = false;
3490 if (plus_src
3491 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3492 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3493 in_plus = true;
3495 substed_operand[i]
3496 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3497 replace ? insn : NULL_RTX,
3498 is_set_src || in_plus, false);
3499 if (substed_operand[i] != orig_operand[i])
3500 val = 1;
3501 /* Terminate the search in check_eliminable_occurrences at
3502 this point. */
3503 *recog_data.operand_loc[i] = 0;
3505 /* If an output operand changed from a REG to a MEM and INSN is an
3506 insn, write a CLOBBER insn. */
3507 if (recog_data.operand_type[i] != OP_IN
3508 && REG_P (orig_operand[i])
3509 && MEM_P (substed_operand[i])
3510 && replace)
3511 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3515 for (i = 0; i < recog_data.n_dups; i++)
3516 *recog_data.dup_loc[i]
3517 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3519 /* If any eliminable remain, they aren't eliminable anymore. */
3520 check_eliminable_occurrences (old_body);
3522 /* Substitute the operands; the new values are in the substed_operand
3523 array. */
3524 for (i = 0; i < recog_data.n_operands; i++)
3525 *recog_data.operand_loc[i] = substed_operand[i];
3526 for (i = 0; i < recog_data.n_dups; i++)
3527 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3529 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3530 re-recognize the insn. We do this in case we had a simple addition
3531 but now can do this as a load-address. This saves an insn in this
3532 common case.
3533 If re-recognition fails, the old insn code number will still be used,
3534 and some register operands may have changed into PLUS expressions.
3535 These will be handled by find_reloads by loading them into a register
3536 again. */
3538 if (val)
3540 /* If we aren't replacing things permanently and we changed something,
3541 make another copy to ensure that all the RTL is new. Otherwise
3542 things can go wrong if find_reload swaps commutative operands
3543 and one is inside RTL that has been copied while the other is not. */
3544 new_body = old_body;
3545 if (! replace)
3547 new_body = copy_insn (old_body);
3548 if (REG_NOTES (insn))
3549 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3551 PATTERN (insn) = new_body;
3553 /* If we had a move insn but now we don't, rerecognize it. This will
3554 cause spurious re-recognition if the old move had a PARALLEL since
3555 the new one still will, but we can't call single_set without
3556 having put NEW_BODY into the insn and the re-recognition won't
3557 hurt in this rare case. */
3558 /* ??? Why this huge if statement - why don't we just rerecognize the
3559 thing always? */
3560 if (! insn_is_asm
3561 && old_set != 0
3562 && ((REG_P (SET_SRC (old_set))
3563 && (GET_CODE (new_body) != SET
3564 || !REG_P (SET_SRC (new_body))))
3565 /* If this was a load from or store to memory, compare
3566 the MEM in recog_data.operand to the one in the insn.
3567 If they are not equal, then rerecognize the insn. */
3568 || (old_set != 0
3569 && ((MEM_P (SET_SRC (old_set))
3570 && SET_SRC (old_set) != recog_data.operand[1])
3571 || (MEM_P (SET_DEST (old_set))
3572 && SET_DEST (old_set) != recog_data.operand[0])))
3573 /* If this was an add insn before, rerecognize. */
3574 || GET_CODE (SET_SRC (old_set)) == PLUS))
3576 int new_icode = recog (PATTERN (insn), insn, 0);
3577 if (new_icode >= 0)
3578 INSN_CODE (insn) = new_icode;
3582 /* Restore the old body. If there were any changes to it, we made a copy
3583 of it while the changes were still in place, so we'll correctly return
3584 a modified insn below. */
3585 if (! replace)
3587 /* Restore the old body. */
3588 for (i = 0; i < recog_data.n_operands; i++)
3589 /* Restoring a top-level match_parallel would clobber the new_body
3590 we installed in the insn. */
3591 if (recog_data.operand_loc[i] != &PATTERN (insn))
3592 *recog_data.operand_loc[i] = orig_operand[i];
3593 for (i = 0; i < recog_data.n_dups; i++)
3594 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3597 /* Update all elimination pairs to reflect the status after the current
3598 insn. The changes we make were determined by the earlier call to
3599 elimination_effects.
3601 We also detect cases where register elimination cannot be done,
3602 namely, if a register would be both changed and referenced outside a MEM
3603 in the resulting insn since such an insn is often undefined and, even if
3604 not, we cannot know what meaning will be given to it. Note that it is
3605 valid to have a register used in an address in an insn that changes it
3606 (presumably with a pre- or post-increment or decrement).
3608 If anything changes, return nonzero. */
3610 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3612 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3613 ep->can_eliminate = 0;
3615 ep->ref_outside_mem = 0;
3617 if (ep->previous_offset != ep->offset)
3618 val = 1;
3621 done:
3622 /* If we changed something, perform elimination in REG_NOTES. This is
3623 needed even when REPLACE is zero because a REG_DEAD note might refer
3624 to a register that we eliminate and could cause a different number
3625 of spill registers to be needed in the final reload pass than in
3626 the pre-passes. */
3627 if (val && REG_NOTES (insn) != 0)
3628 REG_NOTES (insn)
3629 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3630 false);
3632 return val;
3635 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3636 register allocator. INSN is the instruction we need to examine, we perform
3637 eliminations in its operands and record cases where eliminating a reg with
3638 an invariant equivalence would add extra cost. */
3640 static void
3641 elimination_costs_in_insn (rtx_insn *insn)
3643 int icode = recog_memoized (insn);
3644 rtx old_body = PATTERN (insn);
3645 int insn_is_asm = asm_noperands (old_body) >= 0;
3646 rtx old_set = single_set (insn);
3647 int i;
3648 rtx orig_operand[MAX_RECOG_OPERANDS];
3649 rtx orig_dup[MAX_RECOG_OPERANDS];
3650 struct elim_table *ep;
3651 rtx plus_src, plus_cst_src;
3652 bool sets_reg_p;
3654 if (! insn_is_asm && icode < 0)
3656 gcc_assert (DEBUG_INSN_P (insn)
3657 || GET_CODE (PATTERN (insn)) == USE
3658 || GET_CODE (PATTERN (insn)) == CLOBBER
3659 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3660 return;
3663 if (old_set != 0 && REG_P (SET_DEST (old_set))
3664 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3666 /* Check for setting an eliminable register. */
3667 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3668 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3669 return;
3672 /* We allow one special case which happens to work on all machines we
3673 currently support: a single set with the source or a REG_EQUAL
3674 note being a PLUS of an eliminable register and a constant. */
3675 plus_src = plus_cst_src = 0;
3676 sets_reg_p = false;
3677 if (old_set && REG_P (SET_DEST (old_set)))
3679 sets_reg_p = true;
3680 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3681 plus_src = SET_SRC (old_set);
3682 /* First see if the source is of the form (plus (...) CST). */
3683 if (plus_src
3684 && CONST_INT_P (XEXP (plus_src, 1)))
3685 plus_cst_src = plus_src;
3686 else if (REG_P (SET_SRC (old_set))
3687 || plus_src)
3689 /* Otherwise, see if we have a REG_EQUAL note of the form
3690 (plus (...) CST). */
3691 rtx links;
3692 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3694 if ((REG_NOTE_KIND (links) == REG_EQUAL
3695 || REG_NOTE_KIND (links) == REG_EQUIV)
3696 && GET_CODE (XEXP (links, 0)) == PLUS
3697 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3699 plus_cst_src = XEXP (links, 0);
3700 break;
3706 /* Determine the effects of this insn on elimination offsets. */
3707 elimination_effects (old_body, VOIDmode);
3709 /* Eliminate all eliminable registers occurring in operands that
3710 can be handled by reload. */
3711 extract_insn (insn);
3712 for (i = 0; i < recog_data.n_dups; i++)
3713 orig_dup[i] = *recog_data.dup_loc[i];
3715 for (i = 0; i < recog_data.n_operands; i++)
3717 orig_operand[i] = recog_data.operand[i];
3719 /* For an asm statement, every operand is eliminable. */
3720 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3722 bool is_set_src, in_plus;
3724 /* Check for setting a register that we know about. */
3725 if (recog_data.operand_type[i] != OP_IN
3726 && REG_P (orig_operand[i]))
3728 /* If we are assigning to a register that can be eliminated, it
3729 must be as part of a PARALLEL, since the code above handles
3730 single SETs. We must indicate that we can no longer
3731 eliminate this reg. */
3732 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3733 ep++)
3734 if (ep->from_rtx == orig_operand[i])
3735 ep->can_eliminate = 0;
3738 /* Companion to the above plus substitution, we can allow
3739 invariants as the source of a plain move. */
3740 is_set_src = false;
3741 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3742 is_set_src = true;
3743 if (is_set_src && !sets_reg_p)
3744 note_reg_elim_costly (SET_SRC (old_set), insn);
3745 in_plus = false;
3746 if (plus_src && sets_reg_p
3747 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3748 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3749 in_plus = true;
3751 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3752 NULL_RTX,
3753 is_set_src || in_plus, true);
3754 /* Terminate the search in check_eliminable_occurrences at
3755 this point. */
3756 *recog_data.operand_loc[i] = 0;
3760 for (i = 0; i < recog_data.n_dups; i++)
3761 *recog_data.dup_loc[i]
3762 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3764 /* If any eliminable remain, they aren't eliminable anymore. */
3765 check_eliminable_occurrences (old_body);
3767 /* Restore the old body. */
3768 for (i = 0; i < recog_data.n_operands; i++)
3769 *recog_data.operand_loc[i] = orig_operand[i];
3770 for (i = 0; i < recog_data.n_dups; i++)
3771 *recog_data.dup_loc[i] = orig_dup[i];
3773 /* Update all elimination pairs to reflect the status after the current
3774 insn. The changes we make were determined by the earlier call to
3775 elimination_effects. */
3777 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3779 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3780 ep->can_eliminate = 0;
3782 ep->ref_outside_mem = 0;
3785 return;
3788 /* Loop through all elimination pairs.
3789 Recalculate the number not at initial offset.
3791 Compute the maximum offset (minimum offset if the stack does not
3792 grow downward) for each elimination pair. */
3794 static void
3795 update_eliminable_offsets (void)
3797 struct elim_table *ep;
3799 num_not_at_initial_offset = 0;
3800 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3802 ep->previous_offset = ep->offset;
3803 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3804 num_not_at_initial_offset++;
3808 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3809 replacement we currently believe is valid, mark it as not eliminable if X
3810 modifies DEST in any way other than by adding a constant integer to it.
3812 If DEST is the frame pointer, we do nothing because we assume that
3813 all assignments to the hard frame pointer are nonlocal gotos and are being
3814 done at a time when they are valid and do not disturb anything else.
3815 Some machines want to eliminate a fake argument pointer with either the
3816 frame or stack pointer. Assignments to the hard frame pointer must not
3817 prevent this elimination.
3819 Called via note_stores from reload before starting its passes to scan
3820 the insns of the function. */
3822 static void
3823 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3825 unsigned int i;
3827 /* A SUBREG of a hard register here is just changing its mode. We should
3828 not see a SUBREG of an eliminable hard register, but check just in
3829 case. */
3830 if (GET_CODE (dest) == SUBREG)
3831 dest = SUBREG_REG (dest);
3833 if (dest == hard_frame_pointer_rtx)
3834 return;
3836 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3837 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3838 && (GET_CODE (x) != SET
3839 || GET_CODE (SET_SRC (x)) != PLUS
3840 || XEXP (SET_SRC (x), 0) != dest
3841 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3843 reg_eliminate[i].can_eliminate_previous
3844 = reg_eliminate[i].can_eliminate = 0;
3845 num_eliminable--;
3849 /* Verify that the initial elimination offsets did not change since the
3850 last call to set_initial_elim_offsets. This is used to catch cases
3851 where something illegal happened during reload_as_needed that could
3852 cause incorrect code to be generated if we did not check for it. */
3854 static bool
3855 verify_initial_elim_offsets (void)
3857 HOST_WIDE_INT t;
3859 if (!num_eliminable)
3860 return true;
3862 #ifdef ELIMINABLE_REGS
3864 struct elim_table *ep;
3866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3868 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3869 if (t != ep->initial_offset)
3870 return false;
3873 #else
3874 INITIAL_FRAME_POINTER_OFFSET (t);
3875 if (t != reg_eliminate[0].initial_offset)
3876 return false;
3877 #endif
3879 return true;
3882 /* Reset all offsets on eliminable registers to their initial values. */
3884 static void
3885 set_initial_elim_offsets (void)
3887 struct elim_table *ep = reg_eliminate;
3889 #ifdef ELIMINABLE_REGS
3890 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3892 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3893 ep->previous_offset = ep->offset = ep->initial_offset;
3895 #else
3896 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3897 ep->previous_offset = ep->offset = ep->initial_offset;
3898 #endif
3900 num_not_at_initial_offset = 0;
3903 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3905 static void
3906 set_initial_eh_label_offset (rtx label)
3908 set_label_offsets (label, NULL, 1);
3911 /* Initialize the known label offsets.
3912 Set a known offset for each forced label to be at the initial offset
3913 of each elimination. We do this because we assume that all
3914 computed jumps occur from a location where each elimination is
3915 at its initial offset.
3916 For all other labels, show that we don't know the offsets. */
3918 static void
3919 set_initial_label_offsets (void)
3921 memset (offsets_known_at, 0, num_labels);
3923 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3924 if (x->insn ())
3925 set_label_offsets (x->insn (), NULL, 1);
3927 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3928 if (x->insn ())
3929 set_label_offsets (x->insn (), NULL, 1);
3931 for_each_eh_label (set_initial_eh_label_offset);
3934 /* Set all elimination offsets to the known values for the code label given
3935 by INSN. */
3937 static void
3938 set_offsets_for_label (rtx_insn *insn)
3940 unsigned int i;
3941 int label_nr = CODE_LABEL_NUMBER (insn);
3942 struct elim_table *ep;
3944 num_not_at_initial_offset = 0;
3945 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3947 ep->offset = ep->previous_offset
3948 = offsets_at[label_nr - first_label_num][i];
3949 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3950 num_not_at_initial_offset++;
3954 /* See if anything that happened changes which eliminations are valid.
3955 For example, on the SPARC, whether or not the frame pointer can
3956 be eliminated can depend on what registers have been used. We need
3957 not check some conditions again (such as flag_omit_frame_pointer)
3958 since they can't have changed. */
3960 static void
3961 update_eliminables (HARD_REG_SET *pset)
3963 int previous_frame_pointer_needed = frame_pointer_needed;
3964 struct elim_table *ep;
3966 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3967 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3968 && targetm.frame_pointer_required ())
3969 #ifdef ELIMINABLE_REGS
3970 || ! targetm.can_eliminate (ep->from, ep->to)
3971 #endif
3973 ep->can_eliminate = 0;
3975 /* Look for the case where we have discovered that we can't replace
3976 register A with register B and that means that we will now be
3977 trying to replace register A with register C. This means we can
3978 no longer replace register C with register B and we need to disable
3979 such an elimination, if it exists. This occurs often with A == ap,
3980 B == sp, and C == fp. */
3982 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3984 struct elim_table *op;
3985 int new_to = -1;
3987 if (! ep->can_eliminate && ep->can_eliminate_previous)
3989 /* Find the current elimination for ep->from, if there is a
3990 new one. */
3991 for (op = reg_eliminate;
3992 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3993 if (op->from == ep->from && op->can_eliminate)
3995 new_to = op->to;
3996 break;
3999 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4000 disable it. */
4001 for (op = reg_eliminate;
4002 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4003 if (op->from == new_to && op->to == ep->to)
4004 op->can_eliminate = 0;
4008 /* See if any registers that we thought we could eliminate the previous
4009 time are no longer eliminable. If so, something has changed and we
4010 must spill the register. Also, recompute the number of eliminable
4011 registers and see if the frame pointer is needed; it is if there is
4012 no elimination of the frame pointer that we can perform. */
4014 frame_pointer_needed = 1;
4015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4017 if (ep->can_eliminate
4018 && ep->from == FRAME_POINTER_REGNUM
4019 && ep->to != HARD_FRAME_POINTER_REGNUM
4020 && (! SUPPORTS_STACK_ALIGNMENT
4021 || ! crtl->stack_realign_needed))
4022 frame_pointer_needed = 0;
4024 if (! ep->can_eliminate && ep->can_eliminate_previous)
4026 ep->can_eliminate_previous = 0;
4027 SET_HARD_REG_BIT (*pset, ep->from);
4028 num_eliminable--;
4032 /* If we didn't need a frame pointer last time, but we do now, spill
4033 the hard frame pointer. */
4034 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4035 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4038 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4039 Return true iff a register was spilled. */
4041 static bool
4042 update_eliminables_and_spill (void)
4044 int i;
4045 bool did_spill = false;
4046 HARD_REG_SET to_spill;
4047 CLEAR_HARD_REG_SET (to_spill);
4048 update_eliminables (&to_spill);
4049 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4052 if (TEST_HARD_REG_BIT (to_spill, i))
4054 spill_hard_reg (i, 1);
4055 did_spill = true;
4057 /* Regardless of the state of spills, if we previously had
4058 a register that we thought we could eliminate, but now can
4059 not eliminate, we must run another pass.
4061 Consider pseudos which have an entry in reg_equiv_* which
4062 reference an eliminable register. We must make another pass
4063 to update reg_equiv_* so that we do not substitute in the
4064 old value from when we thought the elimination could be
4065 performed. */
4067 return did_spill;
4070 /* Return true if X is used as the target register of an elimination. */
4072 bool
4073 elimination_target_reg_p (rtx x)
4075 struct elim_table *ep;
4077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4078 if (ep->to_rtx == x && ep->can_eliminate)
4079 return true;
4081 return false;
4084 /* Initialize the table of registers to eliminate.
4085 Pre-condition: global flag frame_pointer_needed has been set before
4086 calling this function. */
4088 static void
4089 init_elim_table (void)
4091 struct elim_table *ep;
4092 #ifdef ELIMINABLE_REGS
4093 const struct elim_table_1 *ep1;
4094 #endif
4096 if (!reg_eliminate)
4097 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4099 num_eliminable = 0;
4101 #ifdef ELIMINABLE_REGS
4102 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4103 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4105 ep->from = ep1->from;
4106 ep->to = ep1->to;
4107 ep->can_eliminate = ep->can_eliminate_previous
4108 = (targetm.can_eliminate (ep->from, ep->to)
4109 && ! (ep->to == STACK_POINTER_REGNUM
4110 && frame_pointer_needed
4111 && (! SUPPORTS_STACK_ALIGNMENT
4112 || ! stack_realign_fp)));
4114 #else
4115 reg_eliminate[0].from = reg_eliminate_1[0].from;
4116 reg_eliminate[0].to = reg_eliminate_1[0].to;
4117 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4118 = ! frame_pointer_needed;
4119 #endif
4121 /* Count the number of eliminable registers and build the FROM and TO
4122 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4123 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4124 We depend on this. */
4125 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4127 num_eliminable += ep->can_eliminate;
4128 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4129 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4133 /* Find all the pseudo registers that didn't get hard regs
4134 but do have known equivalent constants or memory slots.
4135 These include parameters (known equivalent to parameter slots)
4136 and cse'd or loop-moved constant memory addresses.
4138 Record constant equivalents in reg_equiv_constant
4139 so they will be substituted by find_reloads.
4140 Record memory equivalents in reg_mem_equiv so they can
4141 be substituted eventually by altering the REG-rtx's. */
4143 static void
4144 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4146 int i;
4147 rtx_insn *insn;
4149 grow_reg_equivs ();
4150 if (do_subregs)
4151 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4152 else
4153 reg_max_ref_width = NULL;
4155 num_eliminable_invariants = 0;
4157 first_label_num = get_first_label_num ();
4158 num_labels = max_label_num () - first_label_num;
4160 /* Allocate the tables used to store offset information at labels. */
4161 offsets_known_at = XNEWVEC (char, num_labels);
4162 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4164 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4165 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4166 find largest such for each pseudo. FIRST is the head of the insn
4167 list. */
4169 for (insn = first; insn; insn = NEXT_INSN (insn))
4171 rtx set = single_set (insn);
4173 /* We may introduce USEs that we want to remove at the end, so
4174 we'll mark them with QImode. Make sure there are no
4175 previously-marked insns left by say regmove. */
4176 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4177 && GET_MODE (insn) != VOIDmode)
4178 PUT_MODE (insn, VOIDmode);
4180 if (do_subregs && NONDEBUG_INSN_P (insn))
4181 scan_paradoxical_subregs (PATTERN (insn));
4183 if (set != 0 && REG_P (SET_DEST (set)))
4185 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4186 rtx x;
4188 if (! note)
4189 continue;
4191 i = REGNO (SET_DEST (set));
4192 x = XEXP (note, 0);
4194 if (i <= LAST_VIRTUAL_REGISTER)
4195 continue;
4197 /* If flag_pic and we have constant, verify it's legitimate. */
4198 if (!CONSTANT_P (x)
4199 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4201 /* It can happen that a REG_EQUIV note contains a MEM
4202 that is not a legitimate memory operand. As later
4203 stages of reload assume that all addresses found
4204 in the reg_equiv_* arrays were originally legitimate,
4205 we ignore such REG_EQUIV notes. */
4206 if (memory_operand (x, VOIDmode))
4208 /* Always unshare the equivalence, so we can
4209 substitute into this insn without touching the
4210 equivalence. */
4211 reg_equiv_memory_loc (i) = copy_rtx (x);
4213 else if (function_invariant_p (x))
4215 machine_mode mode;
4217 mode = GET_MODE (SET_DEST (set));
4218 if (GET_CODE (x) == PLUS)
4220 /* This is PLUS of frame pointer and a constant,
4221 and might be shared. Unshare it. */
4222 reg_equiv_invariant (i) = copy_rtx (x);
4223 num_eliminable_invariants++;
4225 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4227 reg_equiv_invariant (i) = x;
4228 num_eliminable_invariants++;
4230 else if (targetm.legitimate_constant_p (mode, x))
4231 reg_equiv_constant (i) = x;
4232 else
4234 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4235 if (! reg_equiv_memory_loc (i))
4236 reg_equiv_init (i) = NULL_RTX;
4239 else
4241 reg_equiv_init (i) = NULL_RTX;
4242 continue;
4245 else
4246 reg_equiv_init (i) = NULL_RTX;
4250 if (dump_file)
4251 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4252 if (reg_equiv_init (i))
4254 fprintf (dump_file, "init_insns for %u: ", i);
4255 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4256 fprintf (dump_file, "\n");
4260 /* Indicate that we no longer have known memory locations or constants.
4261 Free all data involved in tracking these. */
4263 static void
4264 free_reg_equiv (void)
4266 int i;
4268 free (offsets_known_at);
4269 free (offsets_at);
4270 offsets_at = 0;
4271 offsets_known_at = 0;
4273 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4274 if (reg_equiv_alt_mem_list (i))
4275 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4276 vec_free (reg_equivs);
4279 /* Kick all pseudos out of hard register REGNO.
4281 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4282 because we found we can't eliminate some register. In the case, no pseudos
4283 are allowed to be in the register, even if they are only in a block that
4284 doesn't require spill registers, unlike the case when we are spilling this
4285 hard reg to produce another spill register.
4287 Return nonzero if any pseudos needed to be kicked out. */
4289 static void
4290 spill_hard_reg (unsigned int regno, int cant_eliminate)
4292 int i;
4294 if (cant_eliminate)
4296 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4297 df_set_regs_ever_live (regno, true);
4300 /* Spill every pseudo reg that was allocated to this reg
4301 or to something that overlaps this reg. */
4303 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4304 if (reg_renumber[i] >= 0
4305 && (unsigned int) reg_renumber[i] <= regno
4306 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4307 SET_REGNO_REG_SET (&spilled_pseudos, i);
4310 /* After find_reload_regs has been run for all insn that need reloads,
4311 and/or spill_hard_regs was called, this function is used to actually
4312 spill pseudo registers and try to reallocate them. It also sets up the
4313 spill_regs array for use by choose_reload_regs. */
4315 static int
4316 finish_spills (int global)
4318 struct insn_chain *chain;
4319 int something_changed = 0;
4320 unsigned i;
4321 reg_set_iterator rsi;
4323 /* Build the spill_regs array for the function. */
4324 /* If there are some registers still to eliminate and one of the spill regs
4325 wasn't ever used before, additional stack space may have to be
4326 allocated to store this register. Thus, we may have changed the offset
4327 between the stack and frame pointers, so mark that something has changed.
4329 One might think that we need only set VAL to 1 if this is a call-used
4330 register. However, the set of registers that must be saved by the
4331 prologue is not identical to the call-used set. For example, the
4332 register used by the call insn for the return PC is a call-used register,
4333 but must be saved by the prologue. */
4335 n_spills = 0;
4336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4337 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4339 spill_reg_order[i] = n_spills;
4340 spill_regs[n_spills++] = i;
4341 if (num_eliminable && ! df_regs_ever_live_p (i))
4342 something_changed = 1;
4343 df_set_regs_ever_live (i, true);
4345 else
4346 spill_reg_order[i] = -1;
4348 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4349 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4351 /* Record the current hard register the pseudo is allocated to
4352 in pseudo_previous_regs so we avoid reallocating it to the
4353 same hard reg in a later pass. */
4354 gcc_assert (reg_renumber[i] >= 0);
4356 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4357 /* Mark it as no longer having a hard register home. */
4358 reg_renumber[i] = -1;
4359 if (ira_conflicts_p)
4360 /* Inform IRA about the change. */
4361 ira_mark_allocation_change (i);
4362 /* We will need to scan everything again. */
4363 something_changed = 1;
4366 /* Retry global register allocation if possible. */
4367 if (global && ira_conflicts_p)
4369 unsigned int n;
4371 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4372 /* For every insn that needs reloads, set the registers used as spill
4373 regs in pseudo_forbidden_regs for every pseudo live across the
4374 insn. */
4375 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4377 EXECUTE_IF_SET_IN_REG_SET
4378 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4380 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4381 chain->used_spill_regs);
4383 EXECUTE_IF_SET_IN_REG_SET
4384 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4386 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4387 chain->used_spill_regs);
4391 /* Retry allocating the pseudos spilled in IRA and the
4392 reload. For each reg, merge the various reg sets that
4393 indicate which hard regs can't be used, and call
4394 ira_reassign_pseudos. */
4395 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4396 if (reg_old_renumber[i] != reg_renumber[i])
4398 if (reg_renumber[i] < 0)
4399 temp_pseudo_reg_arr[n++] = i;
4400 else
4401 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4403 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4404 bad_spill_regs_global,
4405 pseudo_forbidden_regs, pseudo_previous_regs,
4406 &spilled_pseudos))
4407 something_changed = 1;
4409 /* Fix up the register information in the insn chain.
4410 This involves deleting those of the spilled pseudos which did not get
4411 a new hard register home from the live_{before,after} sets. */
4412 for (chain = reload_insn_chain; chain; chain = chain->next)
4414 HARD_REG_SET used_by_pseudos;
4415 HARD_REG_SET used_by_pseudos2;
4417 if (! ira_conflicts_p)
4419 /* Don't do it for IRA because IRA and the reload still can
4420 assign hard registers to the spilled pseudos on next
4421 reload iterations. */
4422 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4423 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4425 /* Mark any unallocated hard regs as available for spills. That
4426 makes inheritance work somewhat better. */
4427 if (chain->need_reload)
4429 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4430 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4431 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4433 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4434 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4435 /* Value of chain->used_spill_regs from previous iteration
4436 may be not included in the value calculated here because
4437 of possible removing caller-saves insns (see function
4438 delete_caller_save_insns. */
4439 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4440 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4444 CLEAR_REG_SET (&changed_allocation_pseudos);
4445 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4446 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4448 int regno = reg_renumber[i];
4449 if (reg_old_renumber[i] == regno)
4450 continue;
4452 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4454 alter_reg (i, reg_old_renumber[i], false);
4455 reg_old_renumber[i] = regno;
4456 if (dump_file)
4458 if (regno == -1)
4459 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4460 else
4461 fprintf (dump_file, " Register %d now in %d.\n\n",
4462 i, reg_renumber[i]);
4466 return something_changed;
4469 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4471 static void
4472 scan_paradoxical_subregs (rtx x)
4474 int i;
4475 const char *fmt;
4476 enum rtx_code code = GET_CODE (x);
4478 switch (code)
4480 case REG:
4481 case CONST:
4482 case SYMBOL_REF:
4483 case LABEL_REF:
4484 CASE_CONST_ANY:
4485 case CC0:
4486 case PC:
4487 case USE:
4488 case CLOBBER:
4489 return;
4491 case SUBREG:
4492 if (REG_P (SUBREG_REG (x))
4493 && (GET_MODE_SIZE (GET_MODE (x))
4494 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4496 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4497 = GET_MODE_SIZE (GET_MODE (x));
4498 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4500 return;
4502 default:
4503 break;
4506 fmt = GET_RTX_FORMAT (code);
4507 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4509 if (fmt[i] == 'e')
4510 scan_paradoxical_subregs (XEXP (x, i));
4511 else if (fmt[i] == 'E')
4513 int j;
4514 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4515 scan_paradoxical_subregs (XVECEXP (x, i, j));
4520 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4521 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4522 and apply the corresponding narrowing subreg to *OTHER_PTR.
4523 Return true if the operands were changed, false otherwise. */
4525 static bool
4526 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4528 rtx op, inner, other, tem;
4530 op = *op_ptr;
4531 if (!paradoxical_subreg_p (op))
4532 return false;
4533 inner = SUBREG_REG (op);
4535 other = *other_ptr;
4536 tem = gen_lowpart_common (GET_MODE (inner), other);
4537 if (!tem)
4538 return false;
4540 /* If the lowpart operation turned a hard register into a subreg,
4541 rather than simplifying it to another hard register, then the
4542 mode change cannot be properly represented. For example, OTHER
4543 might be valid in its current mode, but not in the new one. */
4544 if (GET_CODE (tem) == SUBREG
4545 && REG_P (other)
4546 && HARD_REGISTER_P (other))
4547 return false;
4549 *op_ptr = inner;
4550 *other_ptr = tem;
4551 return true;
4554 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4555 examine all of the reload insns between PREV and NEXT exclusive, and
4556 annotate all that may trap. */
4558 static void
4559 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4561 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4562 if (note == NULL)
4563 return;
4564 if (!insn_could_throw_p (insn))
4565 remove_note (insn, note);
4566 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4569 /* Reload pseudo-registers into hard regs around each insn as needed.
4570 Additional register load insns are output before the insn that needs it
4571 and perhaps store insns after insns that modify the reloaded pseudo reg.
4573 reg_last_reload_reg and reg_reloaded_contents keep track of
4574 which registers are already available in reload registers.
4575 We update these for the reloads that we perform,
4576 as the insns are scanned. */
4578 static void
4579 reload_as_needed (int live_known)
4581 struct insn_chain *chain;
4582 #if defined (AUTO_INC_DEC)
4583 int i;
4584 #endif
4585 rtx_note *marker;
4587 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4588 memset (spill_reg_store, 0, sizeof spill_reg_store);
4589 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4590 INIT_REG_SET (&reg_has_output_reload);
4591 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4592 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4594 set_initial_elim_offsets ();
4596 /* Generate a marker insn that we will move around. */
4597 marker = emit_note (NOTE_INSN_DELETED);
4598 unlink_insn_chain (marker, marker);
4600 for (chain = reload_insn_chain; chain; chain = chain->next)
4602 rtx_insn *prev = 0;
4603 rtx_insn *insn = chain->insn;
4604 rtx_insn *old_next = NEXT_INSN (insn);
4605 #ifdef AUTO_INC_DEC
4606 rtx_insn *old_prev = PREV_INSN (insn);
4607 #endif
4609 if (will_delete_init_insn_p (insn))
4610 continue;
4612 /* If we pass a label, copy the offsets from the label information
4613 into the current offsets of each elimination. */
4614 if (LABEL_P (insn))
4615 set_offsets_for_label (insn);
4617 else if (INSN_P (insn))
4619 regset_head regs_to_forget;
4620 INIT_REG_SET (&regs_to_forget);
4621 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4623 /* If this is a USE and CLOBBER of a MEM, ensure that any
4624 references to eliminable registers have been removed. */
4626 if ((GET_CODE (PATTERN (insn)) == USE
4627 || GET_CODE (PATTERN (insn)) == CLOBBER)
4628 && MEM_P (XEXP (PATTERN (insn), 0)))
4629 XEXP (XEXP (PATTERN (insn), 0), 0)
4630 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4631 GET_MODE (XEXP (PATTERN (insn), 0)),
4632 NULL_RTX);
4634 /* If we need to do register elimination processing, do so.
4635 This might delete the insn, in which case we are done. */
4636 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4638 eliminate_regs_in_insn (insn, 1);
4639 if (NOTE_P (insn))
4641 update_eliminable_offsets ();
4642 CLEAR_REG_SET (&regs_to_forget);
4643 continue;
4647 /* If need_elim is nonzero but need_reload is zero, one might think
4648 that we could simply set n_reloads to 0. However, find_reloads
4649 could have done some manipulation of the insn (such as swapping
4650 commutative operands), and these manipulations are lost during
4651 the first pass for every insn that needs register elimination.
4652 So the actions of find_reloads must be redone here. */
4654 if (! chain->need_elim && ! chain->need_reload
4655 && ! chain->need_operand_change)
4656 n_reloads = 0;
4657 /* First find the pseudo regs that must be reloaded for this insn.
4658 This info is returned in the tables reload_... (see reload.h).
4659 Also modify the body of INSN by substituting RELOAD
4660 rtx's for those pseudo regs. */
4661 else
4663 CLEAR_REG_SET (&reg_has_output_reload);
4664 CLEAR_HARD_REG_SET (reg_is_output_reload);
4666 find_reloads (insn, 1, spill_indirect_levels, live_known,
4667 spill_reg_order);
4670 if (n_reloads > 0)
4672 rtx_insn *next = NEXT_INSN (insn);
4674 /* ??? PREV can get deleted by reload inheritance.
4675 Work around this by emitting a marker note. */
4676 prev = PREV_INSN (insn);
4677 reorder_insns_nobb (marker, marker, prev);
4679 /* Now compute which reload regs to reload them into. Perhaps
4680 reusing reload regs from previous insns, or else output
4681 load insns to reload them. Maybe output store insns too.
4682 Record the choices of reload reg in reload_reg_rtx. */
4683 choose_reload_regs (chain);
4685 /* Generate the insns to reload operands into or out of
4686 their reload regs. */
4687 emit_reload_insns (chain);
4689 /* Substitute the chosen reload regs from reload_reg_rtx
4690 into the insn's body (or perhaps into the bodies of other
4691 load and store insn that we just made for reloading
4692 and that we moved the structure into). */
4693 subst_reloads (insn);
4695 prev = PREV_INSN (marker);
4696 unlink_insn_chain (marker, marker);
4698 /* Adjust the exception region notes for loads and stores. */
4699 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4700 fixup_eh_region_note (insn, prev, next);
4702 /* Adjust the location of REG_ARGS_SIZE. */
4703 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4704 if (p)
4706 remove_note (insn, p);
4707 fixup_args_size_notes (prev, PREV_INSN (next),
4708 INTVAL (XEXP (p, 0)));
4711 /* If this was an ASM, make sure that all the reload insns
4712 we have generated are valid. If not, give an error
4713 and delete them. */
4714 if (asm_noperands (PATTERN (insn)) >= 0)
4715 for (rtx_insn *p = NEXT_INSN (prev);
4716 p != next;
4717 p = NEXT_INSN (p))
4718 if (p != insn && INSN_P (p)
4719 && GET_CODE (PATTERN (p)) != USE
4720 && (recog_memoized (p) < 0
4721 || (extract_insn (p),
4722 !(constrain_operands (1,
4723 get_enabled_alternatives (p))))))
4725 error_for_asm (insn,
4726 "%<asm%> operand requires "
4727 "impossible reload");
4728 delete_insn (p);
4732 if (num_eliminable && chain->need_elim)
4733 update_eliminable_offsets ();
4735 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4736 is no longer validly lying around to save a future reload.
4737 Note that this does not detect pseudos that were reloaded
4738 for this insn in order to be stored in
4739 (obeying register constraints). That is correct; such reload
4740 registers ARE still valid. */
4741 forget_marked_reloads (&regs_to_forget);
4742 CLEAR_REG_SET (&regs_to_forget);
4744 /* There may have been CLOBBER insns placed after INSN. So scan
4745 between INSN and NEXT and use them to forget old reloads. */
4746 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4747 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4748 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4750 #ifdef AUTO_INC_DEC
4751 /* Likewise for regs altered by auto-increment in this insn.
4752 REG_INC notes have been changed by reloading:
4753 find_reloads_address_1 records substitutions for them,
4754 which have been performed by subst_reloads above. */
4755 for (i = n_reloads - 1; i >= 0; i--)
4757 rtx in_reg = rld[i].in_reg;
4758 if (in_reg)
4760 enum rtx_code code = GET_CODE (in_reg);
4761 /* PRE_INC / PRE_DEC will have the reload register ending up
4762 with the same value as the stack slot, but that doesn't
4763 hold true for POST_INC / POST_DEC. Either we have to
4764 convert the memory access to a true POST_INC / POST_DEC,
4765 or we can't use the reload register for inheritance. */
4766 if ((code == POST_INC || code == POST_DEC)
4767 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4768 REGNO (rld[i].reg_rtx))
4769 /* Make sure it is the inc/dec pseudo, and not
4770 some other (e.g. output operand) pseudo. */
4771 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4772 == REGNO (XEXP (in_reg, 0))))
4775 rtx reload_reg = rld[i].reg_rtx;
4776 machine_mode mode = GET_MODE (reload_reg);
4777 int n = 0;
4778 rtx_insn *p;
4780 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4782 /* We really want to ignore REG_INC notes here, so
4783 use PATTERN (p) as argument to reg_set_p . */
4784 if (reg_set_p (reload_reg, PATTERN (p)))
4785 break;
4786 n = count_occurrences (PATTERN (p), reload_reg, 0);
4787 if (! n)
4788 continue;
4789 if (n == 1)
4791 rtx replace_reg
4792 = gen_rtx_fmt_e (code, mode, reload_reg);
4794 validate_replace_rtx_group (reload_reg,
4795 replace_reg, p);
4796 n = verify_changes (0);
4798 /* We must also verify that the constraints
4799 are met after the replacement. Make sure
4800 extract_insn is only called for an insn
4801 where the replacements were found to be
4802 valid so far. */
4803 if (n)
4805 extract_insn (p);
4806 n = constrain_operands (1,
4807 get_enabled_alternatives (p));
4810 /* If the constraints were not met, then
4811 undo the replacement, else confirm it. */
4812 if (!n)
4813 cancel_changes (0);
4814 else
4815 confirm_change_group ();
4817 break;
4819 if (n == 1)
4821 add_reg_note (p, REG_INC, reload_reg);
4822 /* Mark this as having an output reload so that the
4823 REG_INC processing code below won't invalidate
4824 the reload for inheritance. */
4825 SET_HARD_REG_BIT (reg_is_output_reload,
4826 REGNO (reload_reg));
4827 SET_REGNO_REG_SET (&reg_has_output_reload,
4828 REGNO (XEXP (in_reg, 0)));
4830 else
4831 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4832 NULL);
4834 else if ((code == PRE_INC || code == PRE_DEC)
4835 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4836 REGNO (rld[i].reg_rtx))
4837 /* Make sure it is the inc/dec pseudo, and not
4838 some other (e.g. output operand) pseudo. */
4839 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4840 == REGNO (XEXP (in_reg, 0))))
4842 SET_HARD_REG_BIT (reg_is_output_reload,
4843 REGNO (rld[i].reg_rtx));
4844 SET_REGNO_REG_SET (&reg_has_output_reload,
4845 REGNO (XEXP (in_reg, 0)));
4847 else if (code == PRE_INC || code == PRE_DEC
4848 || code == POST_INC || code == POST_DEC)
4850 int in_regno = REGNO (XEXP (in_reg, 0));
4852 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4854 int in_hard_regno;
4855 bool forget_p = true;
4857 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4858 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4859 in_hard_regno))
4861 for (rtx_insn *x = (old_prev ?
4862 NEXT_INSN (old_prev) : insn);
4863 x != old_next;
4864 x = NEXT_INSN (x))
4865 if (x == reg_reloaded_insn[in_hard_regno])
4867 forget_p = false;
4868 break;
4871 /* If for some reasons, we didn't set up
4872 reg_last_reload_reg in this insn,
4873 invalidate inheritance from previous
4874 insns for the incremented/decremented
4875 register. Such registers will be not in
4876 reg_has_output_reload. Invalidate it
4877 also if the corresponding element in
4878 reg_reloaded_insn is also
4879 invalidated. */
4880 if (forget_p)
4881 forget_old_reloads_1 (XEXP (in_reg, 0),
4882 NULL_RTX, NULL);
4887 /* If a pseudo that got a hard register is auto-incremented,
4888 we must purge records of copying it into pseudos without
4889 hard registers. */
4890 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4891 if (REG_NOTE_KIND (x) == REG_INC)
4893 /* See if this pseudo reg was reloaded in this insn.
4894 If so, its last-reload info is still valid
4895 because it is based on this insn's reload. */
4896 for (i = 0; i < n_reloads; i++)
4897 if (rld[i].out == XEXP (x, 0))
4898 break;
4900 if (i == n_reloads)
4901 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4903 #endif
4905 /* A reload reg's contents are unknown after a label. */
4906 if (LABEL_P (insn))
4907 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4909 /* Don't assume a reload reg is still good after a call insn
4910 if it is a call-used reg, or if it contains a value that will
4911 be partially clobbered by the call. */
4912 else if (CALL_P (insn))
4914 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4915 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4917 /* If this is a call to a setjmp-type function, we must not
4918 reuse any reload reg contents across the call; that will
4919 just be clobbered by other uses of the register in later
4920 code, before the longjmp. */
4921 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4922 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4926 /* Clean up. */
4927 free (reg_last_reload_reg);
4928 CLEAR_REG_SET (&reg_has_output_reload);
4931 /* Discard all record of any value reloaded from X,
4932 or reloaded in X from someplace else;
4933 unless X is an output reload reg of the current insn.
4935 X may be a hard reg (the reload reg)
4936 or it may be a pseudo reg that was reloaded from.
4938 When DATA is non-NULL just mark the registers in regset
4939 to be forgotten later. */
4941 static void
4942 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4943 void *data)
4945 unsigned int regno;
4946 unsigned int nr;
4947 regset regs = (regset) data;
4949 /* note_stores does give us subregs of hard regs,
4950 subreg_regno_offset requires a hard reg. */
4951 while (GET_CODE (x) == SUBREG)
4953 /* We ignore the subreg offset when calculating the regno,
4954 because we are using the entire underlying hard register
4955 below. */
4956 x = SUBREG_REG (x);
4959 if (!REG_P (x))
4960 return;
4962 regno = REGNO (x);
4964 if (regno >= FIRST_PSEUDO_REGISTER)
4965 nr = 1;
4966 else
4968 unsigned int i;
4970 nr = hard_regno_nregs[regno][GET_MODE (x)];
4971 /* Storing into a spilled-reg invalidates its contents.
4972 This can happen if a block-local pseudo is allocated to that reg
4973 and it wasn't spilled because this block's total need is 0.
4974 Then some insn might have an optional reload and use this reg. */
4975 if (!regs)
4976 for (i = 0; i < nr; i++)
4977 /* But don't do this if the reg actually serves as an output
4978 reload reg in the current instruction. */
4979 if (n_reloads == 0
4980 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4982 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4983 spill_reg_store[regno + i] = 0;
4987 if (regs)
4988 while (nr-- > 0)
4989 SET_REGNO_REG_SET (regs, regno + nr);
4990 else
4992 /* Since value of X has changed,
4993 forget any value previously copied from it. */
4995 while (nr-- > 0)
4996 /* But don't forget a copy if this is the output reload
4997 that establishes the copy's validity. */
4998 if (n_reloads == 0
4999 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5000 reg_last_reload_reg[regno + nr] = 0;
5004 /* Forget the reloads marked in regset by previous function. */
5005 static void
5006 forget_marked_reloads (regset regs)
5008 unsigned int reg;
5009 reg_set_iterator rsi;
5010 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5012 if (reg < FIRST_PSEUDO_REGISTER
5013 /* But don't do this if the reg actually serves as an output
5014 reload reg in the current instruction. */
5015 && (n_reloads == 0
5016 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5018 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5019 spill_reg_store[reg] = 0;
5021 if (n_reloads == 0
5022 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5023 reg_last_reload_reg[reg] = 0;
5027 /* The following HARD_REG_SETs indicate when each hard register is
5028 used for a reload of various parts of the current insn. */
5030 /* If reg is unavailable for all reloads. */
5031 static HARD_REG_SET reload_reg_unavailable;
5032 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5033 static HARD_REG_SET reload_reg_used;
5034 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5035 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5036 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5037 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5038 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5039 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5040 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5041 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5042 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5043 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5044 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5045 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5046 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5047 static HARD_REG_SET reload_reg_used_in_op_addr;
5048 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5049 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5050 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5051 static HARD_REG_SET reload_reg_used_in_insn;
5052 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5053 static HARD_REG_SET reload_reg_used_in_other_addr;
5055 /* If reg is in use as a reload reg for any sort of reload. */
5056 static HARD_REG_SET reload_reg_used_at_all;
5058 /* If reg is use as an inherited reload. We just mark the first register
5059 in the group. */
5060 static HARD_REG_SET reload_reg_used_for_inherit;
5062 /* Records which hard regs are used in any way, either as explicit use or
5063 by being allocated to a pseudo during any point of the current insn. */
5064 static HARD_REG_SET reg_used_in_insn;
5066 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5067 TYPE. MODE is used to indicate how many consecutive regs are
5068 actually used. */
5070 static void
5071 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5072 machine_mode mode)
5074 switch (type)
5076 case RELOAD_OTHER:
5077 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5078 break;
5080 case RELOAD_FOR_INPUT_ADDRESS:
5081 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5082 break;
5084 case RELOAD_FOR_INPADDR_ADDRESS:
5085 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5086 break;
5088 case RELOAD_FOR_OUTPUT_ADDRESS:
5089 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5090 break;
5092 case RELOAD_FOR_OUTADDR_ADDRESS:
5093 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5094 break;
5096 case RELOAD_FOR_OPERAND_ADDRESS:
5097 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5098 break;
5100 case RELOAD_FOR_OPADDR_ADDR:
5101 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5102 break;
5104 case RELOAD_FOR_OTHER_ADDRESS:
5105 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5106 break;
5108 case RELOAD_FOR_INPUT:
5109 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5110 break;
5112 case RELOAD_FOR_OUTPUT:
5113 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5114 break;
5116 case RELOAD_FOR_INSN:
5117 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5118 break;
5121 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5124 /* Similarly, but show REGNO is no longer in use for a reload. */
5126 static void
5127 clear_reload_reg_in_use (unsigned int regno, int opnum,
5128 enum reload_type type, machine_mode mode)
5130 unsigned int nregs = hard_regno_nregs[regno][mode];
5131 unsigned int start_regno, end_regno, r;
5132 int i;
5133 /* A complication is that for some reload types, inheritance might
5134 allow multiple reloads of the same types to share a reload register.
5135 We set check_opnum if we have to check only reloads with the same
5136 operand number, and check_any if we have to check all reloads. */
5137 int check_opnum = 0;
5138 int check_any = 0;
5139 HARD_REG_SET *used_in_set;
5141 switch (type)
5143 case RELOAD_OTHER:
5144 used_in_set = &reload_reg_used;
5145 break;
5147 case RELOAD_FOR_INPUT_ADDRESS:
5148 used_in_set = &reload_reg_used_in_input_addr[opnum];
5149 break;
5151 case RELOAD_FOR_INPADDR_ADDRESS:
5152 check_opnum = 1;
5153 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5154 break;
5156 case RELOAD_FOR_OUTPUT_ADDRESS:
5157 used_in_set = &reload_reg_used_in_output_addr[opnum];
5158 break;
5160 case RELOAD_FOR_OUTADDR_ADDRESS:
5161 check_opnum = 1;
5162 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5163 break;
5165 case RELOAD_FOR_OPERAND_ADDRESS:
5166 used_in_set = &reload_reg_used_in_op_addr;
5167 break;
5169 case RELOAD_FOR_OPADDR_ADDR:
5170 check_any = 1;
5171 used_in_set = &reload_reg_used_in_op_addr_reload;
5172 break;
5174 case RELOAD_FOR_OTHER_ADDRESS:
5175 used_in_set = &reload_reg_used_in_other_addr;
5176 check_any = 1;
5177 break;
5179 case RELOAD_FOR_INPUT:
5180 used_in_set = &reload_reg_used_in_input[opnum];
5181 break;
5183 case RELOAD_FOR_OUTPUT:
5184 used_in_set = &reload_reg_used_in_output[opnum];
5185 break;
5187 case RELOAD_FOR_INSN:
5188 used_in_set = &reload_reg_used_in_insn;
5189 break;
5190 default:
5191 gcc_unreachable ();
5193 /* We resolve conflicts with remaining reloads of the same type by
5194 excluding the intervals of reload registers by them from the
5195 interval of freed reload registers. Since we only keep track of
5196 one set of interval bounds, we might have to exclude somewhat
5197 more than what would be necessary if we used a HARD_REG_SET here.
5198 But this should only happen very infrequently, so there should
5199 be no reason to worry about it. */
5201 start_regno = regno;
5202 end_regno = regno + nregs;
5203 if (check_opnum || check_any)
5205 for (i = n_reloads - 1; i >= 0; i--)
5207 if (rld[i].when_needed == type
5208 && (check_any || rld[i].opnum == opnum)
5209 && rld[i].reg_rtx)
5211 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5212 unsigned int conflict_end
5213 = end_hard_regno (rld[i].mode, conflict_start);
5215 /* If there is an overlap with the first to-be-freed register,
5216 adjust the interval start. */
5217 if (conflict_start <= start_regno && conflict_end > start_regno)
5218 start_regno = conflict_end;
5219 /* Otherwise, if there is a conflict with one of the other
5220 to-be-freed registers, adjust the interval end. */
5221 if (conflict_start > start_regno && conflict_start < end_regno)
5222 end_regno = conflict_start;
5227 for (r = start_regno; r < end_regno; r++)
5228 CLEAR_HARD_REG_BIT (*used_in_set, r);
5231 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5232 specified by OPNUM and TYPE. */
5234 static int
5235 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5237 int i;
5239 /* In use for a RELOAD_OTHER means it's not available for anything. */
5240 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5241 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5242 return 0;
5244 switch (type)
5246 case RELOAD_OTHER:
5247 /* In use for anything means we can't use it for RELOAD_OTHER. */
5248 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5249 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5250 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5251 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5252 return 0;
5254 for (i = 0; i < reload_n_operands; i++)
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5256 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5258 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5259 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5260 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5261 return 0;
5263 return 1;
5265 case RELOAD_FOR_INPUT:
5266 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5267 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5268 return 0;
5270 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5271 return 0;
5273 /* If it is used for some other input, can't use it. */
5274 for (i = 0; i < reload_n_operands; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5276 return 0;
5278 /* If it is used in a later operand's address, can't use it. */
5279 for (i = opnum + 1; i < reload_n_operands; i++)
5280 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5281 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5282 return 0;
5284 return 1;
5286 case RELOAD_FOR_INPUT_ADDRESS:
5287 /* Can't use a register if it is used for an input address for this
5288 operand or used as an input in an earlier one. */
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5290 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5291 return 0;
5293 for (i = 0; i < opnum; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5295 return 0;
5297 return 1;
5299 case RELOAD_FOR_INPADDR_ADDRESS:
5300 /* Can't use a register if it is used for an input address
5301 for this operand or used as an input in an earlier
5302 one. */
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5304 return 0;
5306 for (i = 0; i < opnum; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5308 return 0;
5310 return 1;
5312 case RELOAD_FOR_OUTPUT_ADDRESS:
5313 /* Can't use a register if it is used for an output address for this
5314 operand or used as an output in this or a later operand. Note
5315 that multiple output operands are emitted in reverse order, so
5316 the conflicting ones are those with lower indices. */
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5318 return 0;
5320 for (i = 0; i <= opnum; i++)
5321 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5322 return 0;
5324 return 1;
5326 case RELOAD_FOR_OUTADDR_ADDRESS:
5327 /* Can't use a register if it is used for an output address
5328 for this operand or used as an output in this or a
5329 later operand. Note that multiple output operands are
5330 emitted in reverse order, so the conflicting ones are
5331 those with lower indices. */
5332 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5333 return 0;
5335 for (i = 0; i <= opnum; i++)
5336 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5337 return 0;
5339 return 1;
5341 case RELOAD_FOR_OPERAND_ADDRESS:
5342 for (i = 0; i < reload_n_operands; i++)
5343 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5344 return 0;
5346 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5347 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5349 case RELOAD_FOR_OPADDR_ADDR:
5350 for (i = 0; i < reload_n_operands; i++)
5351 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5352 return 0;
5354 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5356 case RELOAD_FOR_OUTPUT:
5357 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5358 outputs, or an operand address for this or an earlier output.
5359 Note that multiple output operands are emitted in reverse order,
5360 so the conflicting ones are those with higher indices. */
5361 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5362 return 0;
5364 for (i = 0; i < reload_n_operands; i++)
5365 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5366 return 0;
5368 for (i = opnum; i < reload_n_operands; i++)
5369 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5370 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5371 return 0;
5373 return 1;
5375 case RELOAD_FOR_INSN:
5376 for (i = 0; i < reload_n_operands; i++)
5377 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5378 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5379 return 0;
5381 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5382 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5384 case RELOAD_FOR_OTHER_ADDRESS:
5385 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5387 default:
5388 gcc_unreachable ();
5392 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5393 the number RELOADNUM, is still available in REGNO at the end of the insn.
5395 We can assume that the reload reg was already tested for availability
5396 at the time it is needed, and we should not check this again,
5397 in case the reg has already been marked in use. */
5399 static int
5400 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5402 int opnum = rld[reloadnum].opnum;
5403 enum reload_type type = rld[reloadnum].when_needed;
5404 int i;
5406 /* See if there is a reload with the same type for this operand, using
5407 the same register. This case is not handled by the code below. */
5408 for (i = reloadnum + 1; i < n_reloads; i++)
5410 rtx reg;
5411 int nregs;
5413 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5414 continue;
5415 reg = rld[i].reg_rtx;
5416 if (reg == NULL_RTX)
5417 continue;
5418 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5419 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5420 return 0;
5423 switch (type)
5425 case RELOAD_OTHER:
5426 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5427 its value must reach the end. */
5428 return 1;
5430 /* If this use is for part of the insn,
5431 its value reaches if no subsequent part uses the same register.
5432 Just like the above function, don't try to do this with lots
5433 of fallthroughs. */
5435 case RELOAD_FOR_OTHER_ADDRESS:
5436 /* Here we check for everything else, since these don't conflict
5437 with anything else and everything comes later. */
5439 for (i = 0; i < reload_n_operands; i++)
5440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5442 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5443 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5444 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5445 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5446 return 0;
5448 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5449 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5450 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5451 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5453 case RELOAD_FOR_INPUT_ADDRESS:
5454 case RELOAD_FOR_INPADDR_ADDRESS:
5455 /* Similar, except that we check only for this and subsequent inputs
5456 and the address of only subsequent inputs and we do not need
5457 to check for RELOAD_OTHER objects since they are known not to
5458 conflict. */
5460 for (i = opnum; i < reload_n_operands; i++)
5461 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5462 return 0;
5464 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5465 could be killed if the register is also used by reload with type
5466 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5467 if (type == RELOAD_FOR_INPADDR_ADDRESS
5468 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5469 return 0;
5471 for (i = opnum + 1; i < reload_n_operands; i++)
5472 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5473 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5474 return 0;
5476 for (i = 0; i < reload_n_operands; i++)
5477 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5478 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5479 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5480 return 0;
5482 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5483 return 0;
5485 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5486 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5487 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5489 case RELOAD_FOR_INPUT:
5490 /* Similar to input address, except we start at the next operand for
5491 both input and input address and we do not check for
5492 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5493 would conflict. */
5495 for (i = opnum + 1; i < reload_n_operands; i++)
5496 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5498 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5499 return 0;
5501 /* ... fall through ... */
5503 case RELOAD_FOR_OPERAND_ADDRESS:
5504 /* Check outputs and their addresses. */
5506 for (i = 0; i < reload_n_operands; i++)
5507 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5508 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5509 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5510 return 0;
5512 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5514 case RELOAD_FOR_OPADDR_ADDR:
5515 for (i = 0; i < reload_n_operands; i++)
5516 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5517 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5518 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5519 return 0;
5521 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5522 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5523 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5525 case RELOAD_FOR_INSN:
5526 /* These conflict with other outputs with RELOAD_OTHER. So
5527 we need only check for output addresses. */
5529 opnum = reload_n_operands;
5531 /* ... fall through ... */
5533 case RELOAD_FOR_OUTPUT:
5534 case RELOAD_FOR_OUTPUT_ADDRESS:
5535 case RELOAD_FOR_OUTADDR_ADDRESS:
5536 /* We already know these can't conflict with a later output. So the
5537 only thing to check are later output addresses.
5538 Note that multiple output operands are emitted in reverse order,
5539 so the conflicting ones are those with lower indices. */
5540 for (i = 0; i < opnum; i++)
5541 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5542 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5543 return 0;
5545 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5546 could be killed if the register is also used by reload with type
5547 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5548 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5549 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5550 return 0;
5552 return 1;
5554 default:
5555 gcc_unreachable ();
5559 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5560 every register in REG. */
5562 static bool
5563 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5565 unsigned int i;
5567 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5568 if (!reload_reg_reaches_end_p (i, reloadnum))
5569 return false;
5570 return true;
5574 /* Returns whether R1 and R2 are uniquely chained: the value of one
5575 is used by the other, and that value is not used by any other
5576 reload for this insn. This is used to partially undo the decision
5577 made in find_reloads when in the case of multiple
5578 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5579 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5580 reloads. This code tries to avoid the conflict created by that
5581 change. It might be cleaner to explicitly keep track of which
5582 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5583 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5584 this after the fact. */
5585 static bool
5586 reloads_unique_chain_p (int r1, int r2)
5588 int i;
5590 /* We only check input reloads. */
5591 if (! rld[r1].in || ! rld[r2].in)
5592 return false;
5594 /* Avoid anything with output reloads. */
5595 if (rld[r1].out || rld[r2].out)
5596 return false;
5598 /* "chained" means one reload is a component of the other reload,
5599 not the same as the other reload. */
5600 if (rld[r1].opnum != rld[r2].opnum
5601 || rtx_equal_p (rld[r1].in, rld[r2].in)
5602 || rld[r1].optional || rld[r2].optional
5603 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5604 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5605 return false;
5607 /* The following loop assumes that r1 is the reload that feeds r2. */
5608 if (r1 > r2)
5610 int tmp = r2;
5611 r2 = r1;
5612 r1 = tmp;
5615 for (i = 0; i < n_reloads; i ++)
5616 /* Look for input reloads that aren't our two */
5617 if (i != r1 && i != r2 && rld[i].in)
5619 /* If our reload is mentioned at all, it isn't a simple chain. */
5620 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5621 return false;
5623 return true;
5626 /* The recursive function change all occurrences of WHAT in *WHERE
5627 to REPL. */
5628 static void
5629 substitute (rtx *where, const_rtx what, rtx repl)
5631 const char *fmt;
5632 int i;
5633 enum rtx_code code;
5635 if (*where == 0)
5636 return;
5638 if (*where == what || rtx_equal_p (*where, what))
5640 /* Record the location of the changed rtx. */
5641 substitute_stack.safe_push (where);
5642 *where = repl;
5643 return;
5646 code = GET_CODE (*where);
5647 fmt = GET_RTX_FORMAT (code);
5648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5650 if (fmt[i] == 'E')
5652 int j;
5654 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5655 substitute (&XVECEXP (*where, i, j), what, repl);
5657 else if (fmt[i] == 'e')
5658 substitute (&XEXP (*where, i), what, repl);
5662 /* The function returns TRUE if chain of reload R1 and R2 (in any
5663 order) can be evaluated without usage of intermediate register for
5664 the reload containing another reload. It is important to see
5665 gen_reload to understand what the function is trying to do. As an
5666 example, let us have reload chain
5668 r2: const
5669 r1: <something> + const
5671 and reload R2 got reload reg HR. The function returns true if
5672 there is a correct insn HR = HR + <something>. Otherwise,
5673 gen_reload will use intermediate register (and this is the reload
5674 reg for R1) to reload <something>.
5676 We need this function to find a conflict for chain reloads. In our
5677 example, if HR = HR + <something> is incorrect insn, then we cannot
5678 use HR as a reload register for R2. If we do use it then we get a
5679 wrong code:
5681 HR = const
5682 HR = <something>
5683 HR = HR + HR
5686 static bool
5687 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5689 /* Assume other cases in gen_reload are not possible for
5690 chain reloads or do need an intermediate hard registers. */
5691 bool result = true;
5692 int regno, n, code;
5693 rtx out, in;
5694 rtx_insn *insn;
5695 rtx_insn *last = get_last_insn ();
5697 /* Make r2 a component of r1. */
5698 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5700 n = r1;
5701 r1 = r2;
5702 r2 = n;
5704 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5705 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5706 gcc_assert (regno >= 0);
5707 out = gen_rtx_REG (rld[r1].mode, regno);
5708 in = rld[r1].in;
5709 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5711 /* If IN is a paradoxical SUBREG, remove it and try to put the
5712 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5713 strip_paradoxical_subreg (&in, &out);
5715 if (GET_CODE (in) == PLUS
5716 && (REG_P (XEXP (in, 0))
5717 || GET_CODE (XEXP (in, 0)) == SUBREG
5718 || MEM_P (XEXP (in, 0)))
5719 && (REG_P (XEXP (in, 1))
5720 || GET_CODE (XEXP (in, 1)) == SUBREG
5721 || CONSTANT_P (XEXP (in, 1))
5722 || MEM_P (XEXP (in, 1))))
5724 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5725 code = recog_memoized (insn);
5726 result = false;
5728 if (code >= 0)
5730 extract_insn (insn);
5731 /* We want constrain operands to treat this insn strictly in
5732 its validity determination, i.e., the way it would after
5733 reload has completed. */
5734 result = constrain_operands (1, get_enabled_alternatives (insn));
5737 delete_insns_since (last);
5740 /* Restore the original value at each changed address within R1. */
5741 while (!substitute_stack.is_empty ())
5743 rtx *where = substitute_stack.pop ();
5744 *where = rld[r2].in;
5747 return result;
5750 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5751 Return 0 otherwise.
5753 This function uses the same algorithm as reload_reg_free_p above. */
5755 static int
5756 reloads_conflict (int r1, int r2)
5758 enum reload_type r1_type = rld[r1].when_needed;
5759 enum reload_type r2_type = rld[r2].when_needed;
5760 int r1_opnum = rld[r1].opnum;
5761 int r2_opnum = rld[r2].opnum;
5763 /* RELOAD_OTHER conflicts with everything. */
5764 if (r2_type == RELOAD_OTHER)
5765 return 1;
5767 /* Otherwise, check conflicts differently for each type. */
5769 switch (r1_type)
5771 case RELOAD_FOR_INPUT:
5772 return (r2_type == RELOAD_FOR_INSN
5773 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5774 || r2_type == RELOAD_FOR_OPADDR_ADDR
5775 || r2_type == RELOAD_FOR_INPUT
5776 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5777 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5778 && r2_opnum > r1_opnum));
5780 case RELOAD_FOR_INPUT_ADDRESS:
5781 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5782 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5784 case RELOAD_FOR_INPADDR_ADDRESS:
5785 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5786 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5788 case RELOAD_FOR_OUTPUT_ADDRESS:
5789 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5790 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5792 case RELOAD_FOR_OUTADDR_ADDRESS:
5793 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5794 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5796 case RELOAD_FOR_OPERAND_ADDRESS:
5797 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5798 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5799 && (!reloads_unique_chain_p (r1, r2)
5800 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5802 case RELOAD_FOR_OPADDR_ADDR:
5803 return (r2_type == RELOAD_FOR_INPUT
5804 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5806 case RELOAD_FOR_OUTPUT:
5807 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5808 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5809 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5810 && r2_opnum >= r1_opnum));
5812 case RELOAD_FOR_INSN:
5813 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5814 || r2_type == RELOAD_FOR_INSN
5815 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5817 case RELOAD_FOR_OTHER_ADDRESS:
5818 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5820 case RELOAD_OTHER:
5821 return 1;
5823 default:
5824 gcc_unreachable ();
5828 /* Indexed by reload number, 1 if incoming value
5829 inherited from previous insns. */
5830 static char reload_inherited[MAX_RELOADS];
5832 /* For an inherited reload, this is the insn the reload was inherited from,
5833 if we know it. Otherwise, this is 0. */
5834 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5836 /* If nonzero, this is a place to get the value of the reload,
5837 rather than using reload_in. */
5838 static rtx reload_override_in[MAX_RELOADS];
5840 /* For each reload, the hard register number of the register used,
5841 or -1 if we did not need a register for this reload. */
5842 static int reload_spill_index[MAX_RELOADS];
5844 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5845 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5847 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5848 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5850 /* Subroutine of free_for_value_p, used to check a single register.
5851 START_REGNO is the starting regno of the full reload register
5852 (possibly comprising multiple hard registers) that we are considering. */
5854 static int
5855 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5856 enum reload_type type, rtx value, rtx out,
5857 int reloadnum, int ignore_address_reloads)
5859 int time1;
5860 /* Set if we see an input reload that must not share its reload register
5861 with any new earlyclobber, but might otherwise share the reload
5862 register with an output or input-output reload. */
5863 int check_earlyclobber = 0;
5864 int i;
5865 int copy = 0;
5867 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5868 return 0;
5870 if (out == const0_rtx)
5872 copy = 1;
5873 out = NULL_RTX;
5876 /* We use some pseudo 'time' value to check if the lifetimes of the
5877 new register use would overlap with the one of a previous reload
5878 that is not read-only or uses a different value.
5879 The 'time' used doesn't have to be linear in any shape or form, just
5880 monotonic.
5881 Some reload types use different 'buckets' for each operand.
5882 So there are MAX_RECOG_OPERANDS different time values for each
5883 such reload type.
5884 We compute TIME1 as the time when the register for the prospective
5885 new reload ceases to be live, and TIME2 for each existing
5886 reload as the time when that the reload register of that reload
5887 becomes live.
5888 Where there is little to be gained by exact lifetime calculations,
5889 we just make conservative assumptions, i.e. a longer lifetime;
5890 this is done in the 'default:' cases. */
5891 switch (type)
5893 case RELOAD_FOR_OTHER_ADDRESS:
5894 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5895 time1 = copy ? 0 : 1;
5896 break;
5897 case RELOAD_OTHER:
5898 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5899 break;
5900 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5901 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5902 respectively, to the time values for these, we get distinct time
5903 values. To get distinct time values for each operand, we have to
5904 multiply opnum by at least three. We round that up to four because
5905 multiply by four is often cheaper. */
5906 case RELOAD_FOR_INPADDR_ADDRESS:
5907 time1 = opnum * 4 + 2;
5908 break;
5909 case RELOAD_FOR_INPUT_ADDRESS:
5910 time1 = opnum * 4 + 3;
5911 break;
5912 case RELOAD_FOR_INPUT:
5913 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5914 executes (inclusive). */
5915 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5916 break;
5917 case RELOAD_FOR_OPADDR_ADDR:
5918 /* opnum * 4 + 4
5919 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5920 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5921 break;
5922 case RELOAD_FOR_OPERAND_ADDRESS:
5923 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5924 is executed. */
5925 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5926 break;
5927 case RELOAD_FOR_OUTADDR_ADDRESS:
5928 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5929 break;
5930 case RELOAD_FOR_OUTPUT_ADDRESS:
5931 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5932 break;
5933 default:
5934 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5937 for (i = 0; i < n_reloads; i++)
5939 rtx reg = rld[i].reg_rtx;
5940 if (reg && REG_P (reg)
5941 && ((unsigned) regno - true_regnum (reg)
5942 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5943 && i != reloadnum)
5945 rtx other_input = rld[i].in;
5947 /* If the other reload loads the same input value, that
5948 will not cause a conflict only if it's loading it into
5949 the same register. */
5950 if (true_regnum (reg) != start_regno)
5951 other_input = NULL_RTX;
5952 if (! other_input || ! rtx_equal_p (other_input, value)
5953 || rld[i].out || out)
5955 int time2;
5956 switch (rld[i].when_needed)
5958 case RELOAD_FOR_OTHER_ADDRESS:
5959 time2 = 0;
5960 break;
5961 case RELOAD_FOR_INPADDR_ADDRESS:
5962 /* find_reloads makes sure that a
5963 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5964 by at most one - the first -
5965 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5966 address reload is inherited, the address address reload
5967 goes away, so we can ignore this conflict. */
5968 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5969 && ignore_address_reloads
5970 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5971 Then the address address is still needed to store
5972 back the new address. */
5973 && ! rld[reloadnum].out)
5974 continue;
5975 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5976 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5977 reloads go away. */
5978 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5979 && ignore_address_reloads
5980 /* Unless we are reloading an auto_inc expression. */
5981 && ! rld[reloadnum].out)
5982 continue;
5983 time2 = rld[i].opnum * 4 + 2;
5984 break;
5985 case RELOAD_FOR_INPUT_ADDRESS:
5986 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5987 && ignore_address_reloads
5988 && ! rld[reloadnum].out)
5989 continue;
5990 time2 = rld[i].opnum * 4 + 3;
5991 break;
5992 case RELOAD_FOR_INPUT:
5993 time2 = rld[i].opnum * 4 + 4;
5994 check_earlyclobber = 1;
5995 break;
5996 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5997 == MAX_RECOG_OPERAND * 4 */
5998 case RELOAD_FOR_OPADDR_ADDR:
5999 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6000 && ignore_address_reloads
6001 && ! rld[reloadnum].out)
6002 continue;
6003 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6004 break;
6005 case RELOAD_FOR_OPERAND_ADDRESS:
6006 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6007 check_earlyclobber = 1;
6008 break;
6009 case RELOAD_FOR_INSN:
6010 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6011 break;
6012 case RELOAD_FOR_OUTPUT:
6013 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6014 instruction is executed. */
6015 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6016 break;
6017 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6018 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6019 value. */
6020 case RELOAD_FOR_OUTADDR_ADDRESS:
6021 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6022 && ignore_address_reloads
6023 && ! rld[reloadnum].out)
6024 continue;
6025 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6026 break;
6027 case RELOAD_FOR_OUTPUT_ADDRESS:
6028 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6029 break;
6030 case RELOAD_OTHER:
6031 /* If there is no conflict in the input part, handle this
6032 like an output reload. */
6033 if (! rld[i].in || rtx_equal_p (other_input, value))
6035 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6036 /* Earlyclobbered outputs must conflict with inputs. */
6037 if (earlyclobber_operand_p (rld[i].out))
6038 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6040 break;
6042 time2 = 1;
6043 /* RELOAD_OTHER might be live beyond instruction execution,
6044 but this is not obvious when we set time2 = 1. So check
6045 here if there might be a problem with the new reload
6046 clobbering the register used by the RELOAD_OTHER. */
6047 if (out)
6048 return 0;
6049 break;
6050 default:
6051 return 0;
6053 if ((time1 >= time2
6054 && (! rld[i].in || rld[i].out
6055 || ! rtx_equal_p (other_input, value)))
6056 || (out && rld[reloadnum].out_reg
6057 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6058 return 0;
6063 /* Earlyclobbered outputs must conflict with inputs. */
6064 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6065 return 0;
6067 return 1;
6070 /* Return 1 if the value in reload reg REGNO, as used by a reload
6071 needed for the part of the insn specified by OPNUM and TYPE,
6072 may be used to load VALUE into it.
6074 MODE is the mode in which the register is used, this is needed to
6075 determine how many hard regs to test.
6077 Other read-only reloads with the same value do not conflict
6078 unless OUT is nonzero and these other reloads have to live while
6079 output reloads live.
6080 If OUT is CONST0_RTX, this is a special case: it means that the
6081 test should not be for using register REGNO as reload register, but
6082 for copying from register REGNO into the reload register.
6084 RELOADNUM is the number of the reload we want to load this value for;
6085 a reload does not conflict with itself.
6087 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6088 reloads that load an address for the very reload we are considering.
6090 The caller has to make sure that there is no conflict with the return
6091 register. */
6093 static int
6094 free_for_value_p (int regno, machine_mode mode, int opnum,
6095 enum reload_type type, rtx value, rtx out, int reloadnum,
6096 int ignore_address_reloads)
6098 int nregs = hard_regno_nregs[regno][mode];
6099 while (nregs-- > 0)
6100 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6101 value, out, reloadnum,
6102 ignore_address_reloads))
6103 return 0;
6104 return 1;
6107 /* Return nonzero if the rtx X is invariant over the current function. */
6108 /* ??? Actually, the places where we use this expect exactly what is
6109 tested here, and not everything that is function invariant. In
6110 particular, the frame pointer and arg pointer are special cased;
6111 pic_offset_table_rtx is not, and we must not spill these things to
6112 memory. */
6115 function_invariant_p (const_rtx x)
6117 if (CONSTANT_P (x))
6118 return 1;
6119 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6120 return 1;
6121 if (GET_CODE (x) == PLUS
6122 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6123 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6124 return 1;
6125 return 0;
6128 /* Determine whether the reload reg X overlaps any rtx'es used for
6129 overriding inheritance. Return nonzero if so. */
6131 static int
6132 conflicts_with_override (rtx x)
6134 int i;
6135 for (i = 0; i < n_reloads; i++)
6136 if (reload_override_in[i]
6137 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6138 return 1;
6139 return 0;
6142 /* Give an error message saying we failed to find a reload for INSN,
6143 and clear out reload R. */
6144 static void
6145 failed_reload (rtx_insn *insn, int r)
6147 if (asm_noperands (PATTERN (insn)) < 0)
6148 /* It's the compiler's fault. */
6149 fatal_insn ("could not find a spill register", insn);
6151 /* It's the user's fault; the operand's mode and constraint
6152 don't match. Disable this reload so we don't crash in final. */
6153 error_for_asm (insn,
6154 "%<asm%> operand constraint incompatible with operand size");
6155 rld[r].in = 0;
6156 rld[r].out = 0;
6157 rld[r].reg_rtx = 0;
6158 rld[r].optional = 1;
6159 rld[r].secondary_p = 1;
6162 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6163 for reload R. If it's valid, get an rtx for it. Return nonzero if
6164 successful. */
6165 static int
6166 set_reload_reg (int i, int r)
6168 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6169 parameter. */
6170 int regno ATTRIBUTE_UNUSED;
6171 rtx reg = spill_reg_rtx[i];
6173 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6174 spill_reg_rtx[i] = reg
6175 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6177 regno = true_regnum (reg);
6179 /* Detect when the reload reg can't hold the reload mode.
6180 This used to be one `if', but Sequent compiler can't handle that. */
6181 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6183 machine_mode test_mode = VOIDmode;
6184 if (rld[r].in)
6185 test_mode = GET_MODE (rld[r].in);
6186 /* If rld[r].in has VOIDmode, it means we will load it
6187 in whatever mode the reload reg has: to wit, rld[r].mode.
6188 We have already tested that for validity. */
6189 /* Aside from that, we need to test that the expressions
6190 to reload from or into have modes which are valid for this
6191 reload register. Otherwise the reload insns would be invalid. */
6192 if (! (rld[r].in != 0 && test_mode != VOIDmode
6193 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6194 if (! (rld[r].out != 0
6195 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6197 /* The reg is OK. */
6198 last_spill_reg = i;
6200 /* Mark as in use for this insn the reload regs we use
6201 for this. */
6202 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6203 rld[r].when_needed, rld[r].mode);
6205 rld[r].reg_rtx = reg;
6206 reload_spill_index[r] = spill_regs[i];
6207 return 1;
6210 return 0;
6213 /* Find a spill register to use as a reload register for reload R.
6214 LAST_RELOAD is nonzero if this is the last reload for the insn being
6215 processed.
6217 Set rld[R].reg_rtx to the register allocated.
6219 We return 1 if successful, or 0 if we couldn't find a spill reg and
6220 we didn't change anything. */
6222 static int
6223 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6224 int last_reload)
6226 int i, pass, count;
6228 /* If we put this reload ahead, thinking it is a group,
6229 then insist on finding a group. Otherwise we can grab a
6230 reg that some other reload needs.
6231 (That can happen when we have a 68000 DATA_OR_FP_REG
6232 which is a group of data regs or one fp reg.)
6233 We need not be so restrictive if there are no more reloads
6234 for this insn.
6236 ??? Really it would be nicer to have smarter handling
6237 for that kind of reg class, where a problem like this is normal.
6238 Perhaps those classes should be avoided for reloading
6239 by use of more alternatives. */
6241 int force_group = rld[r].nregs > 1 && ! last_reload;
6243 /* If we want a single register and haven't yet found one,
6244 take any reg in the right class and not in use.
6245 If we want a consecutive group, here is where we look for it.
6247 We use three passes so we can first look for reload regs to
6248 reuse, which are already in use for other reloads in this insn,
6249 and only then use additional registers which are not "bad", then
6250 finally any register.
6252 I think that maximizing reuse is needed to make sure we don't
6253 run out of reload regs. Suppose we have three reloads, and
6254 reloads A and B can share regs. These need two regs.
6255 Suppose A and B are given different regs.
6256 That leaves none for C. */
6257 for (pass = 0; pass < 3; pass++)
6259 /* I is the index in spill_regs.
6260 We advance it round-robin between insns to use all spill regs
6261 equally, so that inherited reloads have a chance
6262 of leapfrogging each other. */
6264 i = last_spill_reg;
6266 for (count = 0; count < n_spills; count++)
6268 int rclass = (int) rld[r].rclass;
6269 int regnum;
6271 i++;
6272 if (i >= n_spills)
6273 i -= n_spills;
6274 regnum = spill_regs[i];
6276 if ((reload_reg_free_p (regnum, rld[r].opnum,
6277 rld[r].when_needed)
6278 || (rld[r].in
6279 /* We check reload_reg_used to make sure we
6280 don't clobber the return register. */
6281 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6282 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6283 rld[r].when_needed, rld[r].in,
6284 rld[r].out, r, 1)))
6285 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6286 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6287 /* Look first for regs to share, then for unshared. But
6288 don't share regs used for inherited reloads; they are
6289 the ones we want to preserve. */
6290 && (pass
6291 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6292 regnum)
6293 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6294 regnum))))
6296 int nr = hard_regno_nregs[regnum][rld[r].mode];
6298 /* During the second pass we want to avoid reload registers
6299 which are "bad" for this reload. */
6300 if (pass == 1
6301 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6302 continue;
6304 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6305 (on 68000) got us two FP regs. If NR is 1,
6306 we would reject both of them. */
6307 if (force_group)
6308 nr = rld[r].nregs;
6309 /* If we need only one reg, we have already won. */
6310 if (nr == 1)
6312 /* But reject a single reg if we demand a group. */
6313 if (force_group)
6314 continue;
6315 break;
6317 /* Otherwise check that as many consecutive regs as we need
6318 are available here. */
6319 while (nr > 1)
6321 int regno = regnum + nr - 1;
6322 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6323 && spill_reg_order[regno] >= 0
6324 && reload_reg_free_p (regno, rld[r].opnum,
6325 rld[r].when_needed)))
6326 break;
6327 nr--;
6329 if (nr == 1)
6330 break;
6334 /* If we found something on the current pass, omit later passes. */
6335 if (count < n_spills)
6336 break;
6339 /* We should have found a spill register by now. */
6340 if (count >= n_spills)
6341 return 0;
6343 /* I is the index in SPILL_REG_RTX of the reload register we are to
6344 allocate. Get an rtx for it and find its register number. */
6346 return set_reload_reg (i, r);
6349 /* Initialize all the tables needed to allocate reload registers.
6350 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6351 is the array we use to restore the reg_rtx field for every reload. */
6353 static void
6354 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6356 int i;
6358 for (i = 0; i < n_reloads; i++)
6359 rld[i].reg_rtx = save_reload_reg_rtx[i];
6361 memset (reload_inherited, 0, MAX_RELOADS);
6362 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6363 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6365 CLEAR_HARD_REG_SET (reload_reg_used);
6366 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6367 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6368 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6369 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6370 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6372 CLEAR_HARD_REG_SET (reg_used_in_insn);
6374 HARD_REG_SET tmp;
6375 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6376 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6377 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6378 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6379 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6380 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6383 for (i = 0; i < reload_n_operands; i++)
6385 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6386 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6387 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6388 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6389 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6390 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6393 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6395 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6397 for (i = 0; i < n_reloads; i++)
6398 /* If we have already decided to use a certain register,
6399 don't use it in another way. */
6400 if (rld[i].reg_rtx)
6401 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6402 rld[i].when_needed, rld[i].mode);
6405 #ifdef SECONDARY_MEMORY_NEEDED
6406 /* If X is not a subreg, return it unmodified. If it is a subreg,
6407 look up whether we made a replacement for the SUBREG_REG. Return
6408 either the replacement or the SUBREG_REG. */
6410 static rtx
6411 replaced_subreg (rtx x)
6413 if (GET_CODE (x) == SUBREG)
6414 return find_replacement (&SUBREG_REG (x));
6415 return x;
6417 #endif
6419 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6420 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6421 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6422 otherwise it is NULL. */
6424 static int
6425 compute_reload_subreg_offset (machine_mode outermode,
6426 rtx subreg,
6427 machine_mode innermode)
6429 int outer_offset;
6430 machine_mode middlemode;
6432 if (!subreg)
6433 return subreg_lowpart_offset (outermode, innermode);
6435 outer_offset = SUBREG_BYTE (subreg);
6436 middlemode = GET_MODE (SUBREG_REG (subreg));
6438 /* If SUBREG is paradoxical then return the normal lowpart offset
6439 for OUTERMODE and INNERMODE. Our caller has already checked
6440 that OUTERMODE fits in INNERMODE. */
6441 if (outer_offset == 0
6442 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6443 return subreg_lowpart_offset (outermode, innermode);
6445 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6446 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6447 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6450 /* Assign hard reg targets for the pseudo-registers we must reload
6451 into hard regs for this insn.
6452 Also output the instructions to copy them in and out of the hard regs.
6454 For machines with register classes, we are responsible for
6455 finding a reload reg in the proper class. */
6457 static void
6458 choose_reload_regs (struct insn_chain *chain)
6460 rtx_insn *insn = chain->insn;
6461 int i, j;
6462 unsigned int max_group_size = 1;
6463 enum reg_class group_class = NO_REGS;
6464 int pass, win, inheritance;
6466 rtx save_reload_reg_rtx[MAX_RELOADS];
6468 /* In order to be certain of getting the registers we need,
6469 we must sort the reloads into order of increasing register class.
6470 Then our grabbing of reload registers will parallel the process
6471 that provided the reload registers.
6473 Also note whether any of the reloads wants a consecutive group of regs.
6474 If so, record the maximum size of the group desired and what
6475 register class contains all the groups needed by this insn. */
6477 for (j = 0; j < n_reloads; j++)
6479 reload_order[j] = j;
6480 if (rld[j].reg_rtx != NULL_RTX)
6482 gcc_assert (REG_P (rld[j].reg_rtx)
6483 && HARD_REGISTER_P (rld[j].reg_rtx));
6484 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6486 else
6487 reload_spill_index[j] = -1;
6489 if (rld[j].nregs > 1)
6491 max_group_size = MAX (rld[j].nregs, max_group_size);
6492 group_class
6493 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6496 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6499 if (n_reloads > 1)
6500 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6502 /* If -O, try first with inheritance, then turning it off.
6503 If not -O, don't do inheritance.
6504 Using inheritance when not optimizing leads to paradoxes
6505 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6506 because one side of the comparison might be inherited. */
6507 win = 0;
6508 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6510 choose_reload_regs_init (chain, save_reload_reg_rtx);
6512 /* Process the reloads in order of preference just found.
6513 Beyond this point, subregs can be found in reload_reg_rtx.
6515 This used to look for an existing reloaded home for all of the
6516 reloads, and only then perform any new reloads. But that could lose
6517 if the reloads were done out of reg-class order because a later
6518 reload with a looser constraint might have an old home in a register
6519 needed by an earlier reload with a tighter constraint.
6521 To solve this, we make two passes over the reloads, in the order
6522 described above. In the first pass we try to inherit a reload
6523 from a previous insn. If there is a later reload that needs a
6524 class that is a proper subset of the class being processed, we must
6525 also allocate a spill register during the first pass.
6527 Then make a second pass over the reloads to allocate any reloads
6528 that haven't been given registers yet. */
6530 for (j = 0; j < n_reloads; j++)
6532 int r = reload_order[j];
6533 rtx search_equiv = NULL_RTX;
6535 /* Ignore reloads that got marked inoperative. */
6536 if (rld[r].out == 0 && rld[r].in == 0
6537 && ! rld[r].secondary_p)
6538 continue;
6540 /* If find_reloads chose to use reload_in or reload_out as a reload
6541 register, we don't need to chose one. Otherwise, try even if it
6542 found one since we might save an insn if we find the value lying
6543 around.
6544 Try also when reload_in is a pseudo without a hard reg. */
6545 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6546 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6547 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6548 && !MEM_P (rld[r].in)
6549 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6550 continue;
6552 #if 0 /* No longer needed for correct operation.
6553 It might give better code, or might not; worth an experiment? */
6554 /* If this is an optional reload, we can't inherit from earlier insns
6555 until we are sure that any non-optional reloads have been allocated.
6556 The following code takes advantage of the fact that optional reloads
6557 are at the end of reload_order. */
6558 if (rld[r].optional != 0)
6559 for (i = 0; i < j; i++)
6560 if ((rld[reload_order[i]].out != 0
6561 || rld[reload_order[i]].in != 0
6562 || rld[reload_order[i]].secondary_p)
6563 && ! rld[reload_order[i]].optional
6564 && rld[reload_order[i]].reg_rtx == 0)
6565 allocate_reload_reg (chain, reload_order[i], 0);
6566 #endif
6568 /* First see if this pseudo is already available as reloaded
6569 for a previous insn. We cannot try to inherit for reloads
6570 that are smaller than the maximum number of registers needed
6571 for groups unless the register we would allocate cannot be used
6572 for the groups.
6574 We could check here to see if this is a secondary reload for
6575 an object that is already in a register of the desired class.
6576 This would avoid the need for the secondary reload register.
6577 But this is complex because we can't easily determine what
6578 objects might want to be loaded via this reload. So let a
6579 register be allocated here. In `emit_reload_insns' we suppress
6580 one of the loads in the case described above. */
6582 if (inheritance)
6584 int byte = 0;
6585 int regno = -1;
6586 machine_mode mode = VOIDmode;
6587 rtx subreg = NULL_RTX;
6589 if (rld[r].in == 0)
6591 else if (REG_P (rld[r].in))
6593 regno = REGNO (rld[r].in);
6594 mode = GET_MODE (rld[r].in);
6596 else if (REG_P (rld[r].in_reg))
6598 regno = REGNO (rld[r].in_reg);
6599 mode = GET_MODE (rld[r].in_reg);
6601 else if (GET_CODE (rld[r].in_reg) == SUBREG
6602 && REG_P (SUBREG_REG (rld[r].in_reg)))
6604 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6605 if (regno < FIRST_PSEUDO_REGISTER)
6606 regno = subreg_regno (rld[r].in_reg);
6607 else
6609 subreg = rld[r].in_reg;
6610 byte = SUBREG_BYTE (subreg);
6612 mode = GET_MODE (rld[r].in_reg);
6614 #ifdef AUTO_INC_DEC
6615 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6616 && REG_P (XEXP (rld[r].in_reg, 0)))
6618 regno = REGNO (XEXP (rld[r].in_reg, 0));
6619 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6620 rld[r].out = rld[r].in;
6622 #endif
6623 #if 0
6624 /* This won't work, since REGNO can be a pseudo reg number.
6625 Also, it takes much more hair to keep track of all the things
6626 that can invalidate an inherited reload of part of a pseudoreg. */
6627 else if (GET_CODE (rld[r].in) == SUBREG
6628 && REG_P (SUBREG_REG (rld[r].in)))
6629 regno = subreg_regno (rld[r].in);
6630 #endif
6632 if (regno >= 0
6633 && reg_last_reload_reg[regno] != 0
6634 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6635 >= GET_MODE_SIZE (mode) + byte)
6636 #ifdef CANNOT_CHANGE_MODE_CLASS
6637 /* Verify that the register it's in can be used in
6638 mode MODE. */
6639 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6640 GET_MODE (reg_last_reload_reg[regno]),
6641 mode)
6642 #endif
6645 enum reg_class rclass = rld[r].rclass, last_class;
6646 rtx last_reg = reg_last_reload_reg[regno];
6648 i = REGNO (last_reg);
6649 byte = compute_reload_subreg_offset (mode,
6650 subreg,
6651 GET_MODE (last_reg));
6652 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6653 last_class = REGNO_REG_CLASS (i);
6655 if (reg_reloaded_contents[i] == regno
6656 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6657 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6658 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6659 /* Even if we can't use this register as a reload
6660 register, we might use it for reload_override_in,
6661 if copying it to the desired class is cheap
6662 enough. */
6663 || ((register_move_cost (mode, last_class, rclass)
6664 < memory_move_cost (mode, rclass, true))
6665 && (secondary_reload_class (1, rclass, mode,
6666 last_reg)
6667 == NO_REGS)
6668 #ifdef SECONDARY_MEMORY_NEEDED
6669 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6670 mode)
6671 #endif
6674 && (rld[r].nregs == max_group_size
6675 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6677 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6678 rld[r].when_needed, rld[r].in,
6679 const0_rtx, r, 1))
6681 /* If a group is needed, verify that all the subsequent
6682 registers still have their values intact. */
6683 int nr = hard_regno_nregs[i][rld[r].mode];
6684 int k;
6686 for (k = 1; k < nr; k++)
6687 if (reg_reloaded_contents[i + k] != regno
6688 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6689 break;
6691 if (k == nr)
6693 int i1;
6694 int bad_for_class;
6696 last_reg = (GET_MODE (last_reg) == mode
6697 ? last_reg : gen_rtx_REG (mode, i));
6699 bad_for_class = 0;
6700 for (k = 0; k < nr; k++)
6701 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6702 i+k);
6704 /* We found a register that contains the
6705 value we need. If this register is the
6706 same as an `earlyclobber' operand of the
6707 current insn, just mark it as a place to
6708 reload from since we can't use it as the
6709 reload register itself. */
6711 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6712 if (reg_overlap_mentioned_for_reload_p
6713 (reg_last_reload_reg[regno],
6714 reload_earlyclobbers[i1]))
6715 break;
6717 if (i1 != n_earlyclobbers
6718 || ! (free_for_value_p (i, rld[r].mode,
6719 rld[r].opnum,
6720 rld[r].when_needed, rld[r].in,
6721 rld[r].out, r, 1))
6722 /* Don't use it if we'd clobber a pseudo reg. */
6723 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6724 && rld[r].out
6725 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6726 /* Don't clobber the frame pointer. */
6727 || (i == HARD_FRAME_POINTER_REGNUM
6728 && frame_pointer_needed
6729 && rld[r].out)
6730 /* Don't really use the inherited spill reg
6731 if we need it wider than we've got it. */
6732 || (GET_MODE_SIZE (rld[r].mode)
6733 > GET_MODE_SIZE (mode))
6734 || bad_for_class
6736 /* If find_reloads chose reload_out as reload
6737 register, stay with it - that leaves the
6738 inherited register for subsequent reloads. */
6739 || (rld[r].out && rld[r].reg_rtx
6740 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6742 if (! rld[r].optional)
6744 reload_override_in[r] = last_reg;
6745 reload_inheritance_insn[r]
6746 = reg_reloaded_insn[i];
6749 else
6751 int k;
6752 /* We can use this as a reload reg. */
6753 /* Mark the register as in use for this part of
6754 the insn. */
6755 mark_reload_reg_in_use (i,
6756 rld[r].opnum,
6757 rld[r].when_needed,
6758 rld[r].mode);
6759 rld[r].reg_rtx = last_reg;
6760 reload_inherited[r] = 1;
6761 reload_inheritance_insn[r]
6762 = reg_reloaded_insn[i];
6763 reload_spill_index[r] = i;
6764 for (k = 0; k < nr; k++)
6765 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6766 i + k);
6773 /* Here's another way to see if the value is already lying around. */
6774 if (inheritance
6775 && rld[r].in != 0
6776 && ! reload_inherited[r]
6777 && rld[r].out == 0
6778 && (CONSTANT_P (rld[r].in)
6779 || GET_CODE (rld[r].in) == PLUS
6780 || REG_P (rld[r].in)
6781 || MEM_P (rld[r].in))
6782 && (rld[r].nregs == max_group_size
6783 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6784 search_equiv = rld[r].in;
6786 if (search_equiv)
6788 rtx equiv
6789 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6790 -1, NULL, 0, rld[r].mode);
6791 int regno = 0;
6793 if (equiv != 0)
6795 if (REG_P (equiv))
6796 regno = REGNO (equiv);
6797 else
6799 /* This must be a SUBREG of a hard register.
6800 Make a new REG since this might be used in an
6801 address and not all machines support SUBREGs
6802 there. */
6803 gcc_assert (GET_CODE (equiv) == SUBREG);
6804 regno = subreg_regno (equiv);
6805 equiv = gen_rtx_REG (rld[r].mode, regno);
6806 /* If we choose EQUIV as the reload register, but the
6807 loop below decides to cancel the inheritance, we'll
6808 end up reloading EQUIV in rld[r].mode, not the mode
6809 it had originally. That isn't safe when EQUIV isn't
6810 available as a spill register since its value might
6811 still be live at this point. */
6812 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6813 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6814 equiv = 0;
6818 /* If we found a spill reg, reject it unless it is free
6819 and of the desired class. */
6820 if (equiv != 0)
6822 int regs_used = 0;
6823 int bad_for_class = 0;
6824 int max_regno = regno + rld[r].nregs;
6826 for (i = regno; i < max_regno; i++)
6828 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6830 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6834 if ((regs_used
6835 && ! free_for_value_p (regno, rld[r].mode,
6836 rld[r].opnum, rld[r].when_needed,
6837 rld[r].in, rld[r].out, r, 1))
6838 || bad_for_class)
6839 equiv = 0;
6842 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6843 equiv = 0;
6845 /* We found a register that contains the value we need.
6846 If this register is the same as an `earlyclobber' operand
6847 of the current insn, just mark it as a place to reload from
6848 since we can't use it as the reload register itself. */
6850 if (equiv != 0)
6851 for (i = 0; i < n_earlyclobbers; i++)
6852 if (reg_overlap_mentioned_for_reload_p (equiv,
6853 reload_earlyclobbers[i]))
6855 if (! rld[r].optional)
6856 reload_override_in[r] = equiv;
6857 equiv = 0;
6858 break;
6861 /* If the equiv register we have found is explicitly clobbered
6862 in the current insn, it depends on the reload type if we
6863 can use it, use it for reload_override_in, or not at all.
6864 In particular, we then can't use EQUIV for a
6865 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6867 if (equiv != 0)
6869 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6870 switch (rld[r].when_needed)
6872 case RELOAD_FOR_OTHER_ADDRESS:
6873 case RELOAD_FOR_INPADDR_ADDRESS:
6874 case RELOAD_FOR_INPUT_ADDRESS:
6875 case RELOAD_FOR_OPADDR_ADDR:
6876 break;
6877 case RELOAD_OTHER:
6878 case RELOAD_FOR_INPUT:
6879 case RELOAD_FOR_OPERAND_ADDRESS:
6880 if (! rld[r].optional)
6881 reload_override_in[r] = equiv;
6882 /* Fall through. */
6883 default:
6884 equiv = 0;
6885 break;
6887 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6888 switch (rld[r].when_needed)
6890 case RELOAD_FOR_OTHER_ADDRESS:
6891 case RELOAD_FOR_INPADDR_ADDRESS:
6892 case RELOAD_FOR_INPUT_ADDRESS:
6893 case RELOAD_FOR_OPADDR_ADDR:
6894 case RELOAD_FOR_OPERAND_ADDRESS:
6895 case RELOAD_FOR_INPUT:
6896 break;
6897 case RELOAD_OTHER:
6898 if (! rld[r].optional)
6899 reload_override_in[r] = equiv;
6900 /* Fall through. */
6901 default:
6902 equiv = 0;
6903 break;
6907 /* If we found an equivalent reg, say no code need be generated
6908 to load it, and use it as our reload reg. */
6909 if (equiv != 0
6910 && (regno != HARD_FRAME_POINTER_REGNUM
6911 || !frame_pointer_needed))
6913 int nr = hard_regno_nregs[regno][rld[r].mode];
6914 int k;
6915 rld[r].reg_rtx = equiv;
6916 reload_spill_index[r] = regno;
6917 reload_inherited[r] = 1;
6919 /* If reg_reloaded_valid is not set for this register,
6920 there might be a stale spill_reg_store lying around.
6921 We must clear it, since otherwise emit_reload_insns
6922 might delete the store. */
6923 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6924 spill_reg_store[regno] = NULL;
6925 /* If any of the hard registers in EQUIV are spill
6926 registers, mark them as in use for this insn. */
6927 for (k = 0; k < nr; k++)
6929 i = spill_reg_order[regno + k];
6930 if (i >= 0)
6932 mark_reload_reg_in_use (regno, rld[r].opnum,
6933 rld[r].when_needed,
6934 rld[r].mode);
6935 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6936 regno + k);
6942 /* If we found a register to use already, or if this is an optional
6943 reload, we are done. */
6944 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6945 continue;
6947 #if 0
6948 /* No longer needed for correct operation. Might or might
6949 not give better code on the average. Want to experiment? */
6951 /* See if there is a later reload that has a class different from our
6952 class that intersects our class or that requires less register
6953 than our reload. If so, we must allocate a register to this
6954 reload now, since that reload might inherit a previous reload
6955 and take the only available register in our class. Don't do this
6956 for optional reloads since they will force all previous reloads
6957 to be allocated. Also don't do this for reloads that have been
6958 turned off. */
6960 for (i = j + 1; i < n_reloads; i++)
6962 int s = reload_order[i];
6964 if ((rld[s].in == 0 && rld[s].out == 0
6965 && ! rld[s].secondary_p)
6966 || rld[s].optional)
6967 continue;
6969 if ((rld[s].rclass != rld[r].rclass
6970 && reg_classes_intersect_p (rld[r].rclass,
6971 rld[s].rclass))
6972 || rld[s].nregs < rld[r].nregs)
6973 break;
6976 if (i == n_reloads)
6977 continue;
6979 allocate_reload_reg (chain, r, j == n_reloads - 1);
6980 #endif
6983 /* Now allocate reload registers for anything non-optional that
6984 didn't get one yet. */
6985 for (j = 0; j < n_reloads; j++)
6987 int r = reload_order[j];
6989 /* Ignore reloads that got marked inoperative. */
6990 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6991 continue;
6993 /* Skip reloads that already have a register allocated or are
6994 optional. */
6995 if (rld[r].reg_rtx != 0 || rld[r].optional)
6996 continue;
6998 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6999 break;
7002 /* If that loop got all the way, we have won. */
7003 if (j == n_reloads)
7005 win = 1;
7006 break;
7009 /* Loop around and try without any inheritance. */
7012 if (! win)
7014 /* First undo everything done by the failed attempt
7015 to allocate with inheritance. */
7016 choose_reload_regs_init (chain, save_reload_reg_rtx);
7018 /* Some sanity tests to verify that the reloads found in the first
7019 pass are identical to the ones we have now. */
7020 gcc_assert (chain->n_reloads == n_reloads);
7022 for (i = 0; i < n_reloads; i++)
7024 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7025 continue;
7026 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7027 for (j = 0; j < n_spills; j++)
7028 if (spill_regs[j] == chain->rld[i].regno)
7029 if (! set_reload_reg (j, i))
7030 failed_reload (chain->insn, i);
7034 /* If we thought we could inherit a reload, because it seemed that
7035 nothing else wanted the same reload register earlier in the insn,
7036 verify that assumption, now that all reloads have been assigned.
7037 Likewise for reloads where reload_override_in has been set. */
7039 /* If doing expensive optimizations, do one preliminary pass that doesn't
7040 cancel any inheritance, but removes reloads that have been needed only
7041 for reloads that we know can be inherited. */
7042 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7044 for (j = 0; j < n_reloads; j++)
7046 int r = reload_order[j];
7047 rtx check_reg;
7048 #ifdef SECONDARY_MEMORY_NEEDED
7049 rtx tem;
7050 #endif
7051 if (reload_inherited[r] && rld[r].reg_rtx)
7052 check_reg = rld[r].reg_rtx;
7053 else if (reload_override_in[r]
7054 && (REG_P (reload_override_in[r])
7055 || GET_CODE (reload_override_in[r]) == SUBREG))
7056 check_reg = reload_override_in[r];
7057 else
7058 continue;
7059 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7060 rld[r].opnum, rld[r].when_needed, rld[r].in,
7061 (reload_inherited[r]
7062 ? rld[r].out : const0_rtx),
7063 r, 1))
7065 if (pass)
7066 continue;
7067 reload_inherited[r] = 0;
7068 reload_override_in[r] = 0;
7070 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7071 reload_override_in, then we do not need its related
7072 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7073 likewise for other reload types.
7074 We handle this by removing a reload when its only replacement
7075 is mentioned in reload_in of the reload we are going to inherit.
7076 A special case are auto_inc expressions; even if the input is
7077 inherited, we still need the address for the output. We can
7078 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7079 If we succeeded removing some reload and we are doing a preliminary
7080 pass just to remove such reloads, make another pass, since the
7081 removal of one reload might allow us to inherit another one. */
7082 else if (rld[r].in
7083 && rld[r].out != rld[r].in
7084 && remove_address_replacements (rld[r].in))
7086 if (pass)
7087 pass = 2;
7089 #ifdef SECONDARY_MEMORY_NEEDED
7090 /* If we needed a memory location for the reload, we also have to
7091 remove its related reloads. */
7092 else if (rld[r].in
7093 && rld[r].out != rld[r].in
7094 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7095 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7096 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7097 rld[r].rclass, rld[r].inmode)
7098 && remove_address_replacements
7099 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7100 rld[r].when_needed)))
7102 if (pass)
7103 pass = 2;
7105 #endif
7109 /* Now that reload_override_in is known valid,
7110 actually override reload_in. */
7111 for (j = 0; j < n_reloads; j++)
7112 if (reload_override_in[j])
7113 rld[j].in = reload_override_in[j];
7115 /* If this reload won't be done because it has been canceled or is
7116 optional and not inherited, clear reload_reg_rtx so other
7117 routines (such as subst_reloads) don't get confused. */
7118 for (j = 0; j < n_reloads; j++)
7119 if (rld[j].reg_rtx != 0
7120 && ((rld[j].optional && ! reload_inherited[j])
7121 || (rld[j].in == 0 && rld[j].out == 0
7122 && ! rld[j].secondary_p)))
7124 int regno = true_regnum (rld[j].reg_rtx);
7126 if (spill_reg_order[regno] >= 0)
7127 clear_reload_reg_in_use (regno, rld[j].opnum,
7128 rld[j].when_needed, rld[j].mode);
7129 rld[j].reg_rtx = 0;
7130 reload_spill_index[j] = -1;
7133 /* Record which pseudos and which spill regs have output reloads. */
7134 for (j = 0; j < n_reloads; j++)
7136 int r = reload_order[j];
7138 i = reload_spill_index[r];
7140 /* I is nonneg if this reload uses a register.
7141 If rld[r].reg_rtx is 0, this is an optional reload
7142 that we opted to ignore. */
7143 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7144 && rld[r].reg_rtx != 0)
7146 int nregno = REGNO (rld[r].out_reg);
7147 int nr = 1;
7149 if (nregno < FIRST_PSEUDO_REGISTER)
7150 nr = hard_regno_nregs[nregno][rld[r].mode];
7152 while (--nr >= 0)
7153 SET_REGNO_REG_SET (&reg_has_output_reload,
7154 nregno + nr);
7156 if (i >= 0)
7157 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7159 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7160 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7161 || rld[r].when_needed == RELOAD_FOR_INSN);
7166 /* Deallocate the reload register for reload R. This is called from
7167 remove_address_replacements. */
7169 void
7170 deallocate_reload_reg (int r)
7172 int regno;
7174 if (! rld[r].reg_rtx)
7175 return;
7176 regno = true_regnum (rld[r].reg_rtx);
7177 rld[r].reg_rtx = 0;
7178 if (spill_reg_order[regno] >= 0)
7179 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7180 rld[r].mode);
7181 reload_spill_index[r] = -1;
7184 /* These arrays are filled by emit_reload_insns and its subroutines. */
7185 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7186 static rtx_insn *other_input_address_reload_insns = 0;
7187 static rtx_insn *other_input_reload_insns = 0;
7188 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7189 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7190 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7191 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7192 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7193 static rtx_insn *operand_reload_insns = 0;
7194 static rtx_insn *other_operand_reload_insns = 0;
7195 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7197 /* Values to be put in spill_reg_store are put here first. Instructions
7198 must only be placed here if the associated reload register reaches
7199 the end of the instruction's reload sequence. */
7200 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7201 static HARD_REG_SET reg_reloaded_died;
7203 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7204 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7205 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7206 adjusted register, and return true. Otherwise, return false. */
7207 static bool
7208 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7209 enum reg_class new_class,
7210 machine_mode new_mode)
7213 rtx reg;
7215 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7217 unsigned regno = REGNO (reg);
7219 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7220 continue;
7221 if (GET_MODE (reg) != new_mode)
7223 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7224 continue;
7225 if (hard_regno_nregs[regno][new_mode]
7226 > hard_regno_nregs[regno][GET_MODE (reg)])
7227 continue;
7228 reg = reload_adjust_reg_for_mode (reg, new_mode);
7230 *reload_reg = reg;
7231 return true;
7233 return false;
7236 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7237 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7238 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7239 adjusted register, and return true. Otherwise, return false. */
7240 static bool
7241 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7242 enum insn_code icode)
7245 enum reg_class new_class = scratch_reload_class (icode);
7246 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7248 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7249 new_class, new_mode);
7252 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7253 has the number J. OLD contains the value to be used as input. */
7255 static void
7256 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7257 rtx old, int j)
7259 rtx_insn *insn = chain->insn;
7260 rtx reloadreg;
7261 rtx oldequiv_reg = 0;
7262 rtx oldequiv = 0;
7263 int special = 0;
7264 machine_mode mode;
7265 rtx_insn **where;
7267 /* delete_output_reload is only invoked properly if old contains
7268 the original pseudo register. Since this is replaced with a
7269 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7270 find the pseudo in RELOAD_IN_REG. This is also used to
7271 determine whether a secondary reload is needed. */
7272 if (reload_override_in[j]
7273 && (REG_P (rl->in_reg)
7274 || (GET_CODE (rl->in_reg) == SUBREG
7275 && REG_P (SUBREG_REG (rl->in_reg)))))
7277 oldequiv = old;
7278 old = rl->in_reg;
7280 if (oldequiv == 0)
7281 oldequiv = old;
7282 else if (REG_P (oldequiv))
7283 oldequiv_reg = oldequiv;
7284 else if (GET_CODE (oldequiv) == SUBREG)
7285 oldequiv_reg = SUBREG_REG (oldequiv);
7287 reloadreg = reload_reg_rtx_for_input[j];
7288 mode = GET_MODE (reloadreg);
7290 /* If we are reloading from a register that was recently stored in
7291 with an output-reload, see if we can prove there was
7292 actually no need to store the old value in it. */
7294 if (optimize && REG_P (oldequiv)
7295 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7296 && spill_reg_store[REGNO (oldequiv)]
7297 && REG_P (old)
7298 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7299 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7300 rl->out_reg)))
7301 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7303 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7304 OLDEQUIV. */
7306 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7307 oldequiv = SUBREG_REG (oldequiv);
7308 if (GET_MODE (oldequiv) != VOIDmode
7309 && mode != GET_MODE (oldequiv))
7310 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7312 /* Switch to the right place to emit the reload insns. */
7313 switch (rl->when_needed)
7315 case RELOAD_OTHER:
7316 where = &other_input_reload_insns;
7317 break;
7318 case RELOAD_FOR_INPUT:
7319 where = &input_reload_insns[rl->opnum];
7320 break;
7321 case RELOAD_FOR_INPUT_ADDRESS:
7322 where = &input_address_reload_insns[rl->opnum];
7323 break;
7324 case RELOAD_FOR_INPADDR_ADDRESS:
7325 where = &inpaddr_address_reload_insns[rl->opnum];
7326 break;
7327 case RELOAD_FOR_OUTPUT_ADDRESS:
7328 where = &output_address_reload_insns[rl->opnum];
7329 break;
7330 case RELOAD_FOR_OUTADDR_ADDRESS:
7331 where = &outaddr_address_reload_insns[rl->opnum];
7332 break;
7333 case RELOAD_FOR_OPERAND_ADDRESS:
7334 where = &operand_reload_insns;
7335 break;
7336 case RELOAD_FOR_OPADDR_ADDR:
7337 where = &other_operand_reload_insns;
7338 break;
7339 case RELOAD_FOR_OTHER_ADDRESS:
7340 where = &other_input_address_reload_insns;
7341 break;
7342 default:
7343 gcc_unreachable ();
7346 push_to_sequence (*where);
7348 /* Auto-increment addresses must be reloaded in a special way. */
7349 if (rl->out && ! rl->out_reg)
7351 /* We are not going to bother supporting the case where a
7352 incremented register can't be copied directly from
7353 OLDEQUIV since this seems highly unlikely. */
7354 gcc_assert (rl->secondary_in_reload < 0);
7356 if (reload_inherited[j])
7357 oldequiv = reloadreg;
7359 old = XEXP (rl->in_reg, 0);
7361 /* Prevent normal processing of this reload. */
7362 special = 1;
7363 /* Output a special code sequence for this case. */
7364 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7367 /* If we are reloading a pseudo-register that was set by the previous
7368 insn, see if we can get rid of that pseudo-register entirely
7369 by redirecting the previous insn into our reload register. */
7371 else if (optimize && REG_P (old)
7372 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7373 && dead_or_set_p (insn, old)
7374 /* This is unsafe if some other reload
7375 uses the same reg first. */
7376 && ! conflicts_with_override (reloadreg)
7377 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7378 rl->when_needed, old, rl->out, j, 0))
7380 rtx_insn *temp = PREV_INSN (insn);
7381 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7382 temp = PREV_INSN (temp);
7383 if (temp
7384 && NONJUMP_INSN_P (temp)
7385 && GET_CODE (PATTERN (temp)) == SET
7386 && SET_DEST (PATTERN (temp)) == old
7387 /* Make sure we can access insn_operand_constraint. */
7388 && asm_noperands (PATTERN (temp)) < 0
7389 /* This is unsafe if operand occurs more than once in current
7390 insn. Perhaps some occurrences aren't reloaded. */
7391 && count_occurrences (PATTERN (insn), old, 0) == 1)
7393 rtx old = SET_DEST (PATTERN (temp));
7394 /* Store into the reload register instead of the pseudo. */
7395 SET_DEST (PATTERN (temp)) = reloadreg;
7397 /* Verify that resulting insn is valid.
7399 Note that we have replaced the destination of TEMP with
7400 RELOADREG. If TEMP references RELOADREG within an
7401 autoincrement addressing mode, then the resulting insn
7402 is ill-formed and we must reject this optimization. */
7403 extract_insn (temp);
7404 if (constrain_operands (1, get_enabled_alternatives (temp))
7405 #ifdef AUTO_INC_DEC
7406 && ! find_reg_note (temp, REG_INC, reloadreg)
7407 #endif
7410 /* If the previous insn is an output reload, the source is
7411 a reload register, and its spill_reg_store entry will
7412 contain the previous destination. This is now
7413 invalid. */
7414 if (REG_P (SET_SRC (PATTERN (temp)))
7415 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7417 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7418 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7421 /* If these are the only uses of the pseudo reg,
7422 pretend for GDB it lives in the reload reg we used. */
7423 if (REG_N_DEATHS (REGNO (old)) == 1
7424 && REG_N_SETS (REGNO (old)) == 1)
7426 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7427 if (ira_conflicts_p)
7428 /* Inform IRA about the change. */
7429 ira_mark_allocation_change (REGNO (old));
7430 alter_reg (REGNO (old), -1, false);
7432 special = 1;
7434 /* Adjust any debug insns between temp and insn. */
7435 while ((temp = NEXT_INSN (temp)) != insn)
7436 if (DEBUG_INSN_P (temp))
7437 replace_rtx (PATTERN (temp), old, reloadreg);
7438 else
7439 gcc_assert (NOTE_P (temp));
7441 else
7443 SET_DEST (PATTERN (temp)) = old;
7448 /* We can't do that, so output an insn to load RELOADREG. */
7450 /* If we have a secondary reload, pick up the secondary register
7451 and icode, if any. If OLDEQUIV and OLD are different or
7452 if this is an in-out reload, recompute whether or not we
7453 still need a secondary register and what the icode should
7454 be. If we still need a secondary register and the class or
7455 icode is different, go back to reloading from OLD if using
7456 OLDEQUIV means that we got the wrong type of register. We
7457 cannot have different class or icode due to an in-out reload
7458 because we don't make such reloads when both the input and
7459 output need secondary reload registers. */
7461 if (! special && rl->secondary_in_reload >= 0)
7463 rtx second_reload_reg = 0;
7464 rtx third_reload_reg = 0;
7465 int secondary_reload = rl->secondary_in_reload;
7466 rtx real_oldequiv = oldequiv;
7467 rtx real_old = old;
7468 rtx tmp;
7469 enum insn_code icode;
7470 enum insn_code tertiary_icode = CODE_FOR_nothing;
7472 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7473 and similarly for OLD.
7474 See comments in get_secondary_reload in reload.c. */
7475 /* If it is a pseudo that cannot be replaced with its
7476 equivalent MEM, we must fall back to reload_in, which
7477 will have all the necessary substitutions registered.
7478 Likewise for a pseudo that can't be replaced with its
7479 equivalent constant.
7481 Take extra care for subregs of such pseudos. Note that
7482 we cannot use reg_equiv_mem in this case because it is
7483 not in the right mode. */
7485 tmp = oldequiv;
7486 if (GET_CODE (tmp) == SUBREG)
7487 tmp = SUBREG_REG (tmp);
7488 if (REG_P (tmp)
7489 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7490 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7491 || reg_equiv_constant (REGNO (tmp)) != 0))
7493 if (! reg_equiv_mem (REGNO (tmp))
7494 || num_not_at_initial_offset
7495 || GET_CODE (oldequiv) == SUBREG)
7496 real_oldequiv = rl->in;
7497 else
7498 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7501 tmp = old;
7502 if (GET_CODE (tmp) == SUBREG)
7503 tmp = SUBREG_REG (tmp);
7504 if (REG_P (tmp)
7505 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7506 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7507 || reg_equiv_constant (REGNO (tmp)) != 0))
7509 if (! reg_equiv_mem (REGNO (tmp))
7510 || num_not_at_initial_offset
7511 || GET_CODE (old) == SUBREG)
7512 real_old = rl->in;
7513 else
7514 real_old = reg_equiv_mem (REGNO (tmp));
7517 second_reload_reg = rld[secondary_reload].reg_rtx;
7518 if (rld[secondary_reload].secondary_in_reload >= 0)
7520 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7522 third_reload_reg = rld[tertiary_reload].reg_rtx;
7523 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7524 /* We'd have to add more code for quartary reloads. */
7525 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7527 icode = rl->secondary_in_icode;
7529 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7530 || (rl->in != 0 && rl->out != 0))
7532 secondary_reload_info sri, sri2;
7533 enum reg_class new_class, new_t_class;
7535 sri.icode = CODE_FOR_nothing;
7536 sri.prev_sri = NULL;
7537 new_class
7538 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7539 rl->rclass, mode,
7540 &sri);
7542 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7543 second_reload_reg = 0;
7544 else if (new_class == NO_REGS)
7546 if (reload_adjust_reg_for_icode (&second_reload_reg,
7547 third_reload_reg,
7548 (enum insn_code) sri.icode))
7550 icode = (enum insn_code) sri.icode;
7551 third_reload_reg = 0;
7553 else
7555 oldequiv = old;
7556 real_oldequiv = real_old;
7559 else if (sri.icode != CODE_FOR_nothing)
7560 /* We currently lack a way to express this in reloads. */
7561 gcc_unreachable ();
7562 else
7564 sri2.icode = CODE_FOR_nothing;
7565 sri2.prev_sri = &sri;
7566 new_t_class
7567 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7568 new_class, mode,
7569 &sri);
7570 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7572 if (reload_adjust_reg_for_temp (&second_reload_reg,
7573 third_reload_reg,
7574 new_class, mode))
7576 third_reload_reg = 0;
7577 tertiary_icode = (enum insn_code) sri2.icode;
7579 else
7581 oldequiv = old;
7582 real_oldequiv = real_old;
7585 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7587 rtx intermediate = second_reload_reg;
7589 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7590 new_class, mode)
7591 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7592 ((enum insn_code)
7593 sri2.icode)))
7595 second_reload_reg = intermediate;
7596 tertiary_icode = (enum insn_code) sri2.icode;
7598 else
7600 oldequiv = old;
7601 real_oldequiv = real_old;
7604 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7606 rtx intermediate = second_reload_reg;
7608 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7609 new_class, mode)
7610 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7611 new_t_class, mode))
7613 second_reload_reg = intermediate;
7614 tertiary_icode = (enum insn_code) sri2.icode;
7616 else
7618 oldequiv = old;
7619 real_oldequiv = real_old;
7622 else
7624 /* This could be handled more intelligently too. */
7625 oldequiv = old;
7626 real_oldequiv = real_old;
7631 /* If we still need a secondary reload register, check
7632 to see if it is being used as a scratch or intermediate
7633 register and generate code appropriately. If we need
7634 a scratch register, use REAL_OLDEQUIV since the form of
7635 the insn may depend on the actual address if it is
7636 a MEM. */
7638 if (second_reload_reg)
7640 if (icode != CODE_FOR_nothing)
7642 /* We'd have to add extra code to handle this case. */
7643 gcc_assert (!third_reload_reg);
7645 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7646 second_reload_reg));
7647 special = 1;
7649 else
7651 /* See if we need a scratch register to load the
7652 intermediate register (a tertiary reload). */
7653 if (tertiary_icode != CODE_FOR_nothing)
7655 emit_insn ((GEN_FCN (tertiary_icode)
7656 (second_reload_reg, real_oldequiv,
7657 third_reload_reg)));
7659 else if (third_reload_reg)
7661 gen_reload (third_reload_reg, real_oldequiv,
7662 rl->opnum,
7663 rl->when_needed);
7664 gen_reload (second_reload_reg, third_reload_reg,
7665 rl->opnum,
7666 rl->when_needed);
7668 else
7669 gen_reload (second_reload_reg, real_oldequiv,
7670 rl->opnum,
7671 rl->when_needed);
7673 oldequiv = second_reload_reg;
7678 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7680 rtx real_oldequiv = oldequiv;
7682 if ((REG_P (oldequiv)
7683 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7684 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7685 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7686 || (GET_CODE (oldequiv) == SUBREG
7687 && REG_P (SUBREG_REG (oldequiv))
7688 && (REGNO (SUBREG_REG (oldequiv))
7689 >= FIRST_PSEUDO_REGISTER)
7690 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7691 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7692 || (CONSTANT_P (oldequiv)
7693 && (targetm.preferred_reload_class (oldequiv,
7694 REGNO_REG_CLASS (REGNO (reloadreg)))
7695 == NO_REGS)))
7696 real_oldequiv = rl->in;
7697 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7698 rl->when_needed);
7701 if (cfun->can_throw_non_call_exceptions)
7702 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7704 /* End this sequence. */
7705 *where = get_insns ();
7706 end_sequence ();
7708 /* Update reload_override_in so that delete_address_reloads_1
7709 can see the actual register usage. */
7710 if (oldequiv_reg)
7711 reload_override_in[j] = oldequiv;
7714 /* Generate insns to for the output reload RL, which is for the insn described
7715 by CHAIN and has the number J. */
7716 static void
7717 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7718 int j)
7720 rtx reloadreg;
7721 rtx_insn *insn = chain->insn;
7722 int special = 0;
7723 rtx old = rl->out;
7724 machine_mode mode;
7725 rtx_insn *p;
7726 rtx rl_reg_rtx;
7728 if (rl->when_needed == RELOAD_OTHER)
7729 start_sequence ();
7730 else
7731 push_to_sequence (output_reload_insns[rl->opnum]);
7733 rl_reg_rtx = reload_reg_rtx_for_output[j];
7734 mode = GET_MODE (rl_reg_rtx);
7736 reloadreg = rl_reg_rtx;
7738 /* If we need two reload regs, set RELOADREG to the intermediate
7739 one, since it will be stored into OLD. We might need a secondary
7740 register only for an input reload, so check again here. */
7742 if (rl->secondary_out_reload >= 0)
7744 rtx real_old = old;
7745 int secondary_reload = rl->secondary_out_reload;
7746 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7748 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7749 && reg_equiv_mem (REGNO (old)) != 0)
7750 real_old = reg_equiv_mem (REGNO (old));
7752 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7754 rtx second_reloadreg = reloadreg;
7755 reloadreg = rld[secondary_reload].reg_rtx;
7757 /* See if RELOADREG is to be used as a scratch register
7758 or as an intermediate register. */
7759 if (rl->secondary_out_icode != CODE_FOR_nothing)
7761 /* We'd have to add extra code to handle this case. */
7762 gcc_assert (tertiary_reload < 0);
7764 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7765 (real_old, second_reloadreg, reloadreg)));
7766 special = 1;
7768 else
7770 /* See if we need both a scratch and intermediate reload
7771 register. */
7773 enum insn_code tertiary_icode
7774 = rld[secondary_reload].secondary_out_icode;
7776 /* We'd have to add more code for quartary reloads. */
7777 gcc_assert (tertiary_reload < 0
7778 || rld[tertiary_reload].secondary_out_reload < 0);
7780 if (GET_MODE (reloadreg) != mode)
7781 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7783 if (tertiary_icode != CODE_FOR_nothing)
7785 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7787 /* Copy primary reload reg to secondary reload reg.
7788 (Note that these have been swapped above, then
7789 secondary reload reg to OLD using our insn.) */
7791 /* If REAL_OLD is a paradoxical SUBREG, remove it
7792 and try to put the opposite SUBREG on
7793 RELOADREG. */
7794 strip_paradoxical_subreg (&real_old, &reloadreg);
7796 gen_reload (reloadreg, second_reloadreg,
7797 rl->opnum, rl->when_needed);
7798 emit_insn ((GEN_FCN (tertiary_icode)
7799 (real_old, reloadreg, third_reloadreg)));
7800 special = 1;
7803 else
7805 /* Copy between the reload regs here and then to
7806 OUT later. */
7808 gen_reload (reloadreg, second_reloadreg,
7809 rl->opnum, rl->when_needed);
7810 if (tertiary_reload >= 0)
7812 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7814 gen_reload (third_reloadreg, reloadreg,
7815 rl->opnum, rl->when_needed);
7816 reloadreg = third_reloadreg;
7823 /* Output the last reload insn. */
7824 if (! special)
7826 rtx set;
7828 /* Don't output the last reload if OLD is not the dest of
7829 INSN and is in the src and is clobbered by INSN. */
7830 if (! flag_expensive_optimizations
7831 || !REG_P (old)
7832 || !(set = single_set (insn))
7833 || rtx_equal_p (old, SET_DEST (set))
7834 || !reg_mentioned_p (old, SET_SRC (set))
7835 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7836 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7837 gen_reload (old, reloadreg, rl->opnum,
7838 rl->when_needed);
7841 /* Look at all insns we emitted, just to be safe. */
7842 for (p = get_insns (); p; p = NEXT_INSN (p))
7843 if (INSN_P (p))
7845 rtx pat = PATTERN (p);
7847 /* If this output reload doesn't come from a spill reg,
7848 clear any memory of reloaded copies of the pseudo reg.
7849 If this output reload comes from a spill reg,
7850 reg_has_output_reload will make this do nothing. */
7851 note_stores (pat, forget_old_reloads_1, NULL);
7853 if (reg_mentioned_p (rl_reg_rtx, pat))
7855 rtx set = single_set (insn);
7856 if (reload_spill_index[j] < 0
7857 && set
7858 && SET_SRC (set) == rl_reg_rtx)
7860 int src = REGNO (SET_SRC (set));
7862 reload_spill_index[j] = src;
7863 SET_HARD_REG_BIT (reg_is_output_reload, src);
7864 if (find_regno_note (insn, REG_DEAD, src))
7865 SET_HARD_REG_BIT (reg_reloaded_died, src);
7867 if (HARD_REGISTER_P (rl_reg_rtx))
7869 int s = rl->secondary_out_reload;
7870 set = single_set (p);
7871 /* If this reload copies only to the secondary reload
7872 register, the secondary reload does the actual
7873 store. */
7874 if (s >= 0 && set == NULL_RTX)
7875 /* We can't tell what function the secondary reload
7876 has and where the actual store to the pseudo is
7877 made; leave new_spill_reg_store alone. */
7879 else if (s >= 0
7880 && SET_SRC (set) == rl_reg_rtx
7881 && SET_DEST (set) == rld[s].reg_rtx)
7883 /* Usually the next instruction will be the
7884 secondary reload insn; if we can confirm
7885 that it is, setting new_spill_reg_store to
7886 that insn will allow an extra optimization. */
7887 rtx s_reg = rld[s].reg_rtx;
7888 rtx_insn *next = NEXT_INSN (p);
7889 rld[s].out = rl->out;
7890 rld[s].out_reg = rl->out_reg;
7891 set = single_set (next);
7892 if (set && SET_SRC (set) == s_reg
7893 && reload_reg_rtx_reaches_end_p (s_reg, s))
7895 SET_HARD_REG_BIT (reg_is_output_reload,
7896 REGNO (s_reg));
7897 new_spill_reg_store[REGNO (s_reg)] = next;
7900 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7901 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7906 if (rl->when_needed == RELOAD_OTHER)
7908 emit_insn (other_output_reload_insns[rl->opnum]);
7909 other_output_reload_insns[rl->opnum] = get_insns ();
7911 else
7912 output_reload_insns[rl->opnum] = get_insns ();
7914 if (cfun->can_throw_non_call_exceptions)
7915 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7917 end_sequence ();
7920 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7921 and has the number J. */
7922 static void
7923 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7925 rtx_insn *insn = chain->insn;
7926 rtx old = (rl->in && MEM_P (rl->in)
7927 ? rl->in_reg : rl->in);
7928 rtx reg_rtx = rl->reg_rtx;
7930 if (old && reg_rtx)
7932 machine_mode mode;
7934 /* Determine the mode to reload in.
7935 This is very tricky because we have three to choose from.
7936 There is the mode the insn operand wants (rl->inmode).
7937 There is the mode of the reload register RELOADREG.
7938 There is the intrinsic mode of the operand, which we could find
7939 by stripping some SUBREGs.
7940 It turns out that RELOADREG's mode is irrelevant:
7941 we can change that arbitrarily.
7943 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7944 then the reload reg may not support QImode moves, so use SImode.
7945 If foo is in memory due to spilling a pseudo reg, this is safe,
7946 because the QImode value is in the least significant part of a
7947 slot big enough for a SImode. If foo is some other sort of
7948 memory reference, then it is impossible to reload this case,
7949 so previous passes had better make sure this never happens.
7951 Then consider a one-word union which has SImode and one of its
7952 members is a float, being fetched as (SUBREG:SF union:SI).
7953 We must fetch that as SFmode because we could be loading into
7954 a float-only register. In this case OLD's mode is correct.
7956 Consider an immediate integer: it has VOIDmode. Here we need
7957 to get a mode from something else.
7959 In some cases, there is a fourth mode, the operand's
7960 containing mode. If the insn specifies a containing mode for
7961 this operand, it overrides all others.
7963 I am not sure whether the algorithm here is always right,
7964 but it does the right things in those cases. */
7966 mode = GET_MODE (old);
7967 if (mode == VOIDmode)
7968 mode = rl->inmode;
7970 /* We cannot use gen_lowpart_common since it can do the wrong thing
7971 when REG_RTX has a multi-word mode. Note that REG_RTX must
7972 always be a REG here. */
7973 if (GET_MODE (reg_rtx) != mode)
7974 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7976 reload_reg_rtx_for_input[j] = reg_rtx;
7978 if (old != 0
7979 /* AUTO_INC reloads need to be handled even if inherited. We got an
7980 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7981 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7982 && ! rtx_equal_p (reg_rtx, old)
7983 && reg_rtx != 0)
7984 emit_input_reload_insns (chain, rld + j, old, j);
7986 /* When inheriting a wider reload, we have a MEM in rl->in,
7987 e.g. inheriting a SImode output reload for
7988 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7989 if (optimize && reload_inherited[j] && rl->in
7990 && MEM_P (rl->in)
7991 && MEM_P (rl->in_reg)
7992 && reload_spill_index[j] >= 0
7993 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7994 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7996 /* If we are reloading a register that was recently stored in with an
7997 output-reload, see if we can prove there was
7998 actually no need to store the old value in it. */
8000 if (optimize
8001 && (reload_inherited[j] || reload_override_in[j])
8002 && reg_rtx
8003 && REG_P (reg_rtx)
8004 && spill_reg_store[REGNO (reg_rtx)] != 0
8005 #if 0
8006 /* There doesn't seem to be any reason to restrict this to pseudos
8007 and doing so loses in the case where we are copying from a
8008 register of the wrong class. */
8009 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8010 #endif
8011 /* The insn might have already some references to stackslots
8012 replaced by MEMs, while reload_out_reg still names the
8013 original pseudo. */
8014 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8015 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8016 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8019 /* Do output reloading for reload RL, which is for the insn described by
8020 CHAIN and has the number J.
8021 ??? At some point we need to support handling output reloads of
8022 JUMP_INSNs or insns that set cc0. */
8023 static void
8024 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8026 rtx note, old;
8027 rtx_insn *insn = chain->insn;
8028 /* If this is an output reload that stores something that is
8029 not loaded in this same reload, see if we can eliminate a previous
8030 store. */
8031 rtx pseudo = rl->out_reg;
8032 rtx reg_rtx = rl->reg_rtx;
8034 if (rl->out && reg_rtx)
8036 machine_mode mode;
8038 /* Determine the mode to reload in.
8039 See comments above (for input reloading). */
8040 mode = GET_MODE (rl->out);
8041 if (mode == VOIDmode)
8043 /* VOIDmode should never happen for an output. */
8044 if (asm_noperands (PATTERN (insn)) < 0)
8045 /* It's the compiler's fault. */
8046 fatal_insn ("VOIDmode on an output", insn);
8047 error_for_asm (insn, "output operand is constant in %<asm%>");
8048 /* Prevent crash--use something we know is valid. */
8049 mode = word_mode;
8050 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8052 if (GET_MODE (reg_rtx) != mode)
8053 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8055 reload_reg_rtx_for_output[j] = reg_rtx;
8057 if (pseudo
8058 && optimize
8059 && REG_P (pseudo)
8060 && ! rtx_equal_p (rl->in_reg, pseudo)
8061 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8062 && reg_last_reload_reg[REGNO (pseudo)])
8064 int pseudo_no = REGNO (pseudo);
8065 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8067 /* We don't need to test full validity of last_regno for
8068 inherit here; we only want to know if the store actually
8069 matches the pseudo. */
8070 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8071 && reg_reloaded_contents[last_regno] == pseudo_no
8072 && spill_reg_store[last_regno]
8073 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8074 delete_output_reload (insn, j, last_regno, reg_rtx);
8077 old = rl->out_reg;
8078 if (old == 0
8079 || reg_rtx == 0
8080 || rtx_equal_p (old, reg_rtx))
8081 return;
8083 /* An output operand that dies right away does need a reload,
8084 but need not be copied from it. Show the new location in the
8085 REG_UNUSED note. */
8086 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8087 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8089 XEXP (note, 0) = reg_rtx;
8090 return;
8092 /* Likewise for a SUBREG of an operand that dies. */
8093 else if (GET_CODE (old) == SUBREG
8094 && REG_P (SUBREG_REG (old))
8095 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8096 SUBREG_REG (old))))
8098 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8099 return;
8101 else if (GET_CODE (old) == SCRATCH)
8102 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8103 but we don't want to make an output reload. */
8104 return;
8106 /* If is a JUMP_INSN, we can't support output reloads yet. */
8107 gcc_assert (NONJUMP_INSN_P (insn));
8109 emit_output_reload_insns (chain, rld + j, j);
8112 /* A reload copies values of MODE from register SRC to register DEST.
8113 Return true if it can be treated for inheritance purposes like a
8114 group of reloads, each one reloading a single hard register. The
8115 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8116 occupy the same number of hard registers. */
8118 static bool
8119 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8120 int src ATTRIBUTE_UNUSED,
8121 machine_mode mode ATTRIBUTE_UNUSED)
8123 #ifdef CANNOT_CHANGE_MODE_CLASS
8124 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8125 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8126 #else
8127 return true;
8128 #endif
8131 /* Output insns to reload values in and out of the chosen reload regs. */
8133 static void
8134 emit_reload_insns (struct insn_chain *chain)
8136 rtx_insn *insn = chain->insn;
8138 int j;
8140 CLEAR_HARD_REG_SET (reg_reloaded_died);
8142 for (j = 0; j < reload_n_operands; j++)
8143 input_reload_insns[j] = input_address_reload_insns[j]
8144 = inpaddr_address_reload_insns[j]
8145 = output_reload_insns[j] = output_address_reload_insns[j]
8146 = outaddr_address_reload_insns[j]
8147 = other_output_reload_insns[j] = 0;
8148 other_input_address_reload_insns = 0;
8149 other_input_reload_insns = 0;
8150 operand_reload_insns = 0;
8151 other_operand_reload_insns = 0;
8153 /* Dump reloads into the dump file. */
8154 if (dump_file)
8156 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8157 debug_reload_to_stream (dump_file);
8160 for (j = 0; j < n_reloads; j++)
8161 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8163 unsigned int i;
8165 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8166 new_spill_reg_store[i] = 0;
8169 /* Now output the instructions to copy the data into and out of the
8170 reload registers. Do these in the order that the reloads were reported,
8171 since reloads of base and index registers precede reloads of operands
8172 and the operands may need the base and index registers reloaded. */
8174 for (j = 0; j < n_reloads; j++)
8176 do_input_reload (chain, rld + j, j);
8177 do_output_reload (chain, rld + j, j);
8180 /* Now write all the insns we made for reloads in the order expected by
8181 the allocation functions. Prior to the insn being reloaded, we write
8182 the following reloads:
8184 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8186 RELOAD_OTHER reloads.
8188 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8189 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8190 RELOAD_FOR_INPUT reload for the operand.
8192 RELOAD_FOR_OPADDR_ADDRS reloads.
8194 RELOAD_FOR_OPERAND_ADDRESS reloads.
8196 After the insn being reloaded, we write the following:
8198 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8199 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8200 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8201 reloads for the operand. The RELOAD_OTHER output reloads are
8202 output in descending order by reload number. */
8204 emit_insn_before (other_input_address_reload_insns, insn);
8205 emit_insn_before (other_input_reload_insns, insn);
8207 for (j = 0; j < reload_n_operands; j++)
8209 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8210 emit_insn_before (input_address_reload_insns[j], insn);
8211 emit_insn_before (input_reload_insns[j], insn);
8214 emit_insn_before (other_operand_reload_insns, insn);
8215 emit_insn_before (operand_reload_insns, insn);
8217 for (j = 0; j < reload_n_operands; j++)
8219 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8220 x = emit_insn_after (output_address_reload_insns[j], x);
8221 x = emit_insn_after (output_reload_insns[j], x);
8222 emit_insn_after (other_output_reload_insns[j], x);
8225 /* For all the spill regs newly reloaded in this instruction,
8226 record what they were reloaded from, so subsequent instructions
8227 can inherit the reloads.
8229 Update spill_reg_store for the reloads of this insn.
8230 Copy the elements that were updated in the loop above. */
8232 for (j = 0; j < n_reloads; j++)
8234 int r = reload_order[j];
8235 int i = reload_spill_index[r];
8237 /* If this is a non-inherited input reload from a pseudo, we must
8238 clear any memory of a previous store to the same pseudo. Only do
8239 something if there will not be an output reload for the pseudo
8240 being reloaded. */
8241 if (rld[r].in_reg != 0
8242 && ! (reload_inherited[r] || reload_override_in[r]))
8244 rtx reg = rld[r].in_reg;
8246 if (GET_CODE (reg) == SUBREG)
8247 reg = SUBREG_REG (reg);
8249 if (REG_P (reg)
8250 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8251 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8253 int nregno = REGNO (reg);
8255 if (reg_last_reload_reg[nregno])
8257 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8259 if (reg_reloaded_contents[last_regno] == nregno)
8260 spill_reg_store[last_regno] = 0;
8265 /* I is nonneg if this reload used a register.
8266 If rld[r].reg_rtx is 0, this is an optional reload
8267 that we opted to ignore. */
8269 if (i >= 0 && rld[r].reg_rtx != 0)
8271 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8272 int k;
8274 /* For a multi register reload, we need to check if all or part
8275 of the value lives to the end. */
8276 for (k = 0; k < nr; k++)
8277 if (reload_reg_reaches_end_p (i + k, r))
8278 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8280 /* Maybe the spill reg contains a copy of reload_out. */
8281 if (rld[r].out != 0
8282 && (REG_P (rld[r].out)
8283 || (rld[r].out_reg
8284 ? REG_P (rld[r].out_reg)
8285 /* The reload value is an auto-modification of
8286 some kind. For PRE_INC, POST_INC, PRE_DEC
8287 and POST_DEC, we record an equivalence
8288 between the reload register and the operand
8289 on the optimistic assumption that we can make
8290 the equivalence hold. reload_as_needed must
8291 then either make it hold or invalidate the
8292 equivalence.
8294 PRE_MODIFY and POST_MODIFY addresses are reloaded
8295 somewhat differently, and allowing them here leads
8296 to problems. */
8297 : (GET_CODE (rld[r].out) != POST_MODIFY
8298 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8300 rtx reg;
8302 reg = reload_reg_rtx_for_output[r];
8303 if (reload_reg_rtx_reaches_end_p (reg, r))
8305 machine_mode mode = GET_MODE (reg);
8306 int regno = REGNO (reg);
8307 int nregs = hard_regno_nregs[regno][mode];
8308 rtx out = (REG_P (rld[r].out)
8309 ? rld[r].out
8310 : rld[r].out_reg
8311 ? rld[r].out_reg
8312 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8313 int out_regno = REGNO (out);
8314 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8315 : hard_regno_nregs[out_regno][mode]);
8316 bool piecemeal;
8318 spill_reg_store[regno] = new_spill_reg_store[regno];
8319 spill_reg_stored_to[regno] = out;
8320 reg_last_reload_reg[out_regno] = reg;
8322 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8323 && nregs == out_nregs
8324 && inherit_piecemeal_p (out_regno, regno, mode));
8326 /* If OUT_REGNO is a hard register, it may occupy more than
8327 one register. If it does, say what is in the
8328 rest of the registers assuming that both registers
8329 agree on how many words the object takes. If not,
8330 invalidate the subsequent registers. */
8332 if (HARD_REGISTER_NUM_P (out_regno))
8333 for (k = 1; k < out_nregs; k++)
8334 reg_last_reload_reg[out_regno + k]
8335 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8337 /* Now do the inverse operation. */
8338 for (k = 0; k < nregs; k++)
8340 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8341 reg_reloaded_contents[regno + k]
8342 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8343 ? out_regno
8344 : out_regno + k);
8345 reg_reloaded_insn[regno + k] = insn;
8346 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8347 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8348 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8349 regno + k);
8350 else
8351 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8352 regno + k);
8356 /* Maybe the spill reg contains a copy of reload_in. Only do
8357 something if there will not be an output reload for
8358 the register being reloaded. */
8359 else if (rld[r].out_reg == 0
8360 && rld[r].in != 0
8361 && ((REG_P (rld[r].in)
8362 && !HARD_REGISTER_P (rld[r].in)
8363 && !REGNO_REG_SET_P (&reg_has_output_reload,
8364 REGNO (rld[r].in)))
8365 || (REG_P (rld[r].in_reg)
8366 && !REGNO_REG_SET_P (&reg_has_output_reload,
8367 REGNO (rld[r].in_reg))))
8368 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8370 rtx reg;
8372 reg = reload_reg_rtx_for_input[r];
8373 if (reload_reg_rtx_reaches_end_p (reg, r))
8375 machine_mode mode;
8376 int regno;
8377 int nregs;
8378 int in_regno;
8379 int in_nregs;
8380 rtx in;
8381 bool piecemeal;
8383 mode = GET_MODE (reg);
8384 regno = REGNO (reg);
8385 nregs = hard_regno_nregs[regno][mode];
8386 if (REG_P (rld[r].in)
8387 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8388 in = rld[r].in;
8389 else if (REG_P (rld[r].in_reg))
8390 in = rld[r].in_reg;
8391 else
8392 in = XEXP (rld[r].in_reg, 0);
8393 in_regno = REGNO (in);
8395 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8396 : hard_regno_nregs[in_regno][mode]);
8398 reg_last_reload_reg[in_regno] = reg;
8400 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8401 && nregs == in_nregs
8402 && inherit_piecemeal_p (regno, in_regno, mode));
8404 if (HARD_REGISTER_NUM_P (in_regno))
8405 for (k = 1; k < in_nregs; k++)
8406 reg_last_reload_reg[in_regno + k]
8407 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8409 /* Unless we inherited this reload, show we haven't
8410 recently done a store.
8411 Previous stores of inherited auto_inc expressions
8412 also have to be discarded. */
8413 if (! reload_inherited[r]
8414 || (rld[r].out && ! rld[r].out_reg))
8415 spill_reg_store[regno] = 0;
8417 for (k = 0; k < nregs; k++)
8419 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8420 reg_reloaded_contents[regno + k]
8421 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8422 ? in_regno
8423 : in_regno + k);
8424 reg_reloaded_insn[regno + k] = insn;
8425 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8426 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8427 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8428 regno + k);
8429 else
8430 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8431 regno + k);
8437 /* The following if-statement was #if 0'd in 1.34 (or before...).
8438 It's reenabled in 1.35 because supposedly nothing else
8439 deals with this problem. */
8441 /* If a register gets output-reloaded from a non-spill register,
8442 that invalidates any previous reloaded copy of it.
8443 But forget_old_reloads_1 won't get to see it, because
8444 it thinks only about the original insn. So invalidate it here.
8445 Also do the same thing for RELOAD_OTHER constraints where the
8446 output is discarded. */
8447 if (i < 0
8448 && ((rld[r].out != 0
8449 && (REG_P (rld[r].out)
8450 || (MEM_P (rld[r].out)
8451 && REG_P (rld[r].out_reg))))
8452 || (rld[r].out == 0 && rld[r].out_reg
8453 && REG_P (rld[r].out_reg))))
8455 rtx out = ((rld[r].out && REG_P (rld[r].out))
8456 ? rld[r].out : rld[r].out_reg);
8457 int out_regno = REGNO (out);
8458 machine_mode mode = GET_MODE (out);
8460 /* REG_RTX is now set or clobbered by the main instruction.
8461 As the comment above explains, forget_old_reloads_1 only
8462 sees the original instruction, and there is no guarantee
8463 that the original instruction also clobbered REG_RTX.
8464 For example, if find_reloads sees that the input side of
8465 a matched operand pair dies in this instruction, it may
8466 use the input register as the reload register.
8468 Calling forget_old_reloads_1 is a waste of effort if
8469 REG_RTX is also the output register.
8471 If we know that REG_RTX holds the value of a pseudo
8472 register, the code after the call will record that fact. */
8473 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8474 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8476 if (!HARD_REGISTER_NUM_P (out_regno))
8478 rtx src_reg;
8479 rtx_insn *store_insn = NULL;
8481 reg_last_reload_reg[out_regno] = 0;
8483 /* If we can find a hard register that is stored, record
8484 the storing insn so that we may delete this insn with
8485 delete_output_reload. */
8486 src_reg = reload_reg_rtx_for_output[r];
8488 if (src_reg)
8490 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8491 store_insn = new_spill_reg_store[REGNO (src_reg)];
8492 else
8493 src_reg = NULL_RTX;
8495 else
8497 /* If this is an optional reload, try to find the
8498 source reg from an input reload. */
8499 rtx set = single_set (insn);
8500 if (set && SET_DEST (set) == rld[r].out)
8502 int k;
8504 src_reg = SET_SRC (set);
8505 store_insn = insn;
8506 for (k = 0; k < n_reloads; k++)
8508 if (rld[k].in == src_reg)
8510 src_reg = reload_reg_rtx_for_input[k];
8511 break;
8516 if (src_reg && REG_P (src_reg)
8517 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8519 int src_regno, src_nregs, k;
8520 rtx note;
8522 gcc_assert (GET_MODE (src_reg) == mode);
8523 src_regno = REGNO (src_reg);
8524 src_nregs = hard_regno_nregs[src_regno][mode];
8525 /* The place where to find a death note varies with
8526 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8527 necessarily checked exactly in the code that moves
8528 notes, so just check both locations. */
8529 note = find_regno_note (insn, REG_DEAD, src_regno);
8530 if (! note && store_insn)
8531 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8532 for (k = 0; k < src_nregs; k++)
8534 spill_reg_store[src_regno + k] = store_insn;
8535 spill_reg_stored_to[src_regno + k] = out;
8536 reg_reloaded_contents[src_regno + k] = out_regno;
8537 reg_reloaded_insn[src_regno + k] = store_insn;
8538 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8539 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8540 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8541 mode))
8542 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8543 src_regno + k);
8544 else
8545 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8546 src_regno + k);
8547 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8548 if (note)
8549 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8550 else
8551 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8553 reg_last_reload_reg[out_regno] = src_reg;
8554 /* We have to set reg_has_output_reload here, or else
8555 forget_old_reloads_1 will clear reg_last_reload_reg
8556 right away. */
8557 SET_REGNO_REG_SET (&reg_has_output_reload,
8558 out_regno);
8561 else
8563 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8565 for (k = 0; k < out_nregs; k++)
8566 reg_last_reload_reg[out_regno + k] = 0;
8570 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8573 /* Go through the motions to emit INSN and test if it is strictly valid.
8574 Return the emitted insn if valid, else return NULL. */
8576 static rtx_insn *
8577 emit_insn_if_valid_for_reload (rtx pat)
8579 rtx_insn *last = get_last_insn ();
8580 int code;
8582 rtx_insn *insn = emit_insn (pat);
8583 code = recog_memoized (insn);
8585 if (code >= 0)
8587 extract_insn (insn);
8588 /* We want constrain operands to treat this insn strictly in its
8589 validity determination, i.e., the way it would after reload has
8590 completed. */
8591 if (constrain_operands (1, get_enabled_alternatives (insn)))
8592 return insn;
8595 delete_insns_since (last);
8596 return NULL;
8599 /* Emit code to perform a reload from IN (which may be a reload register) to
8600 OUT (which may also be a reload register). IN or OUT is from operand
8601 OPNUM with reload type TYPE.
8603 Returns first insn emitted. */
8605 static rtx_insn *
8606 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8608 rtx_insn *last = get_last_insn ();
8609 rtx_insn *tem;
8610 #ifdef SECONDARY_MEMORY_NEEDED
8611 rtx tem1, tem2;
8612 #endif
8614 /* If IN is a paradoxical SUBREG, remove it and try to put the
8615 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8616 if (!strip_paradoxical_subreg (&in, &out))
8617 strip_paradoxical_subreg (&out, &in);
8619 /* How to do this reload can get quite tricky. Normally, we are being
8620 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8621 register that didn't get a hard register. In that case we can just
8622 call emit_move_insn.
8624 We can also be asked to reload a PLUS that adds a register or a MEM to
8625 another register, constant or MEM. This can occur during frame pointer
8626 elimination and while reloading addresses. This case is handled by
8627 trying to emit a single insn to perform the add. If it is not valid,
8628 we use a two insn sequence.
8630 Or we can be asked to reload an unary operand that was a fragment of
8631 an addressing mode, into a register. If it isn't recognized as-is,
8632 we try making the unop operand and the reload-register the same:
8633 (set reg:X (unop:X expr:Y))
8634 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8636 Finally, we could be called to handle an 'o' constraint by putting
8637 an address into a register. In that case, we first try to do this
8638 with a named pattern of "reload_load_address". If no such pattern
8639 exists, we just emit a SET insn and hope for the best (it will normally
8640 be valid on machines that use 'o').
8642 This entire process is made complex because reload will never
8643 process the insns we generate here and so we must ensure that
8644 they will fit their constraints and also by the fact that parts of
8645 IN might be being reloaded separately and replaced with spill registers.
8646 Because of this, we are, in some sense, just guessing the right approach
8647 here. The one listed above seems to work.
8649 ??? At some point, this whole thing needs to be rethought. */
8651 if (GET_CODE (in) == PLUS
8652 && (REG_P (XEXP (in, 0))
8653 || GET_CODE (XEXP (in, 0)) == SUBREG
8654 || MEM_P (XEXP (in, 0)))
8655 && (REG_P (XEXP (in, 1))
8656 || GET_CODE (XEXP (in, 1)) == SUBREG
8657 || CONSTANT_P (XEXP (in, 1))
8658 || MEM_P (XEXP (in, 1))))
8660 /* We need to compute the sum of a register or a MEM and another
8661 register, constant, or MEM, and put it into the reload
8662 register. The best possible way of doing this is if the machine
8663 has a three-operand ADD insn that accepts the required operands.
8665 The simplest approach is to try to generate such an insn and see if it
8666 is recognized and matches its constraints. If so, it can be used.
8668 It might be better not to actually emit the insn unless it is valid,
8669 but we need to pass the insn as an operand to `recog' and
8670 `extract_insn' and it is simpler to emit and then delete the insn if
8671 not valid than to dummy things up. */
8673 rtx op0, op1, tem;
8674 rtx_insn *insn;
8675 enum insn_code code;
8677 op0 = find_replacement (&XEXP (in, 0));
8678 op1 = find_replacement (&XEXP (in, 1));
8680 /* Since constraint checking is strict, commutativity won't be
8681 checked, so we need to do that here to avoid spurious failure
8682 if the add instruction is two-address and the second operand
8683 of the add is the same as the reload reg, which is frequently
8684 the case. If the insn would be A = B + A, rearrange it so
8685 it will be A = A + B as constrain_operands expects. */
8687 if (REG_P (XEXP (in, 1))
8688 && REGNO (out) == REGNO (XEXP (in, 1)))
8689 tem = op0, op0 = op1, op1 = tem;
8691 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8692 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8694 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8695 if (insn)
8696 return insn;
8698 /* If that failed, we must use a conservative two-insn sequence.
8700 Use a move to copy one operand into the reload register. Prefer
8701 to reload a constant, MEM or pseudo since the move patterns can
8702 handle an arbitrary operand. If OP1 is not a constant, MEM or
8703 pseudo and OP1 is not a valid operand for an add instruction, then
8704 reload OP1.
8706 After reloading one of the operands into the reload register, add
8707 the reload register to the output register.
8709 If there is another way to do this for a specific machine, a
8710 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8711 we emit below. */
8713 code = optab_handler (add_optab, GET_MODE (out));
8715 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8716 || (REG_P (op1)
8717 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8718 || (code != CODE_FOR_nothing
8719 && !insn_operand_matches (code, 2, op1)))
8720 tem = op0, op0 = op1, op1 = tem;
8722 gen_reload (out, op0, opnum, type);
8724 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8725 This fixes a problem on the 32K where the stack pointer cannot
8726 be used as an operand of an add insn. */
8728 if (rtx_equal_p (op0, op1))
8729 op1 = out;
8731 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8732 if (insn)
8734 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8735 set_dst_reg_note (insn, REG_EQUIV, in, out);
8736 return insn;
8739 /* If that failed, copy the address register to the reload register.
8740 Then add the constant to the reload register. */
8742 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8743 gen_reload (out, op1, opnum, type);
8744 insn = emit_insn (gen_add2_insn (out, op0));
8745 set_dst_reg_note (insn, REG_EQUIV, in, out);
8748 #ifdef SECONDARY_MEMORY_NEEDED
8749 /* If we need a memory location to do the move, do it that way. */
8750 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8751 (REG_P (tem1) && REG_P (tem2)))
8752 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8753 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8754 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8755 REGNO_REG_CLASS (REGNO (tem2)),
8756 GET_MODE (out)))
8758 /* Get the memory to use and rewrite both registers to its mode. */
8759 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8761 if (GET_MODE (loc) != GET_MODE (out))
8762 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8764 if (GET_MODE (loc) != GET_MODE (in))
8765 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8767 gen_reload (loc, in, opnum, type);
8768 gen_reload (out, loc, opnum, type);
8770 #endif
8771 else if (REG_P (out) && UNARY_P (in))
8773 rtx insn;
8774 rtx op1;
8775 rtx out_moded;
8776 rtx_insn *set;
8778 op1 = find_replacement (&XEXP (in, 0));
8779 if (op1 != XEXP (in, 0))
8780 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8782 /* First, try a plain SET. */
8783 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8784 if (set)
8785 return set;
8787 /* If that failed, move the inner operand to the reload
8788 register, and try the same unop with the inner expression
8789 replaced with the reload register. */
8791 if (GET_MODE (op1) != GET_MODE (out))
8792 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8793 else
8794 out_moded = out;
8796 gen_reload (out_moded, op1, opnum, type);
8798 insn
8799 = gen_rtx_SET (VOIDmode, out,
8800 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8801 out_moded));
8802 insn = emit_insn_if_valid_for_reload (insn);
8803 if (insn)
8805 set_unique_reg_note (insn, REG_EQUIV, in);
8806 return as_a <rtx_insn *> (insn);
8809 fatal_insn ("failure trying to reload:", set);
8811 /* If IN is a simple operand, use gen_move_insn. */
8812 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8814 tem = emit_insn (gen_move_insn (out, in));
8815 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8816 mark_jump_label (in, tem, 0);
8819 #ifdef HAVE_reload_load_address
8820 else if (HAVE_reload_load_address)
8821 emit_insn (gen_reload_load_address (out, in));
8822 #endif
8824 /* Otherwise, just write (set OUT IN) and hope for the best. */
8825 else
8826 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8828 /* Return the first insn emitted.
8829 We can not just return get_last_insn, because there may have
8830 been multiple instructions emitted. Also note that gen_move_insn may
8831 emit more than one insn itself, so we can not assume that there is one
8832 insn emitted per emit_insn_before call. */
8834 return last ? NEXT_INSN (last) : get_insns ();
8837 /* Delete a previously made output-reload whose result we now believe
8838 is not needed. First we double-check.
8840 INSN is the insn now being processed.
8841 LAST_RELOAD_REG is the hard register number for which we want to delete
8842 the last output reload.
8843 J is the reload-number that originally used REG. The caller has made
8844 certain that reload J doesn't use REG any longer for input.
8845 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8847 static void
8848 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8849 rtx new_reload_reg)
8851 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8852 rtx reg = spill_reg_stored_to[last_reload_reg];
8853 int k;
8854 int n_occurrences;
8855 int n_inherited = 0;
8856 rtx substed;
8857 unsigned regno;
8858 int nregs;
8860 /* It is possible that this reload has been only used to set another reload
8861 we eliminated earlier and thus deleted this instruction too. */
8862 if (output_reload_insn->deleted ())
8863 return;
8865 /* Get the raw pseudo-register referred to. */
8867 while (GET_CODE (reg) == SUBREG)
8868 reg = SUBREG_REG (reg);
8869 substed = reg_equiv_memory_loc (REGNO (reg));
8871 /* This is unsafe if the operand occurs more often in the current
8872 insn than it is inherited. */
8873 for (k = n_reloads - 1; k >= 0; k--)
8875 rtx reg2 = rld[k].in;
8876 if (! reg2)
8877 continue;
8878 if (MEM_P (reg2) || reload_override_in[k])
8879 reg2 = rld[k].in_reg;
8880 #ifdef AUTO_INC_DEC
8881 if (rld[k].out && ! rld[k].out_reg)
8882 reg2 = XEXP (rld[k].in_reg, 0);
8883 #endif
8884 while (GET_CODE (reg2) == SUBREG)
8885 reg2 = SUBREG_REG (reg2);
8886 if (rtx_equal_p (reg2, reg))
8888 if (reload_inherited[k] || reload_override_in[k] || k == j)
8889 n_inherited++;
8890 else
8891 return;
8894 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8895 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8896 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8897 reg, 0);
8898 if (substed)
8899 n_occurrences += count_occurrences (PATTERN (insn),
8900 eliminate_regs (substed, VOIDmode,
8901 NULL_RTX), 0);
8902 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8904 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8905 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8907 if (n_occurrences > n_inherited)
8908 return;
8910 regno = REGNO (reg);
8911 if (regno >= FIRST_PSEUDO_REGISTER)
8912 nregs = 1;
8913 else
8914 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8916 /* If the pseudo-reg we are reloading is no longer referenced
8917 anywhere between the store into it and here,
8918 and we're within the same basic block, then the value can only
8919 pass through the reload reg and end up here.
8920 Otherwise, give up--return. */
8921 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8922 i1 != insn; i1 = NEXT_INSN (i1))
8924 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8925 return;
8926 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8927 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8929 /* If this is USE in front of INSN, we only have to check that
8930 there are no more references than accounted for by inheritance. */
8931 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8933 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8934 i1 = NEXT_INSN (i1);
8936 if (n_occurrences <= n_inherited && i1 == insn)
8937 break;
8938 return;
8942 /* We will be deleting the insn. Remove the spill reg information. */
8943 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8945 spill_reg_store[last_reload_reg + k] = 0;
8946 spill_reg_stored_to[last_reload_reg + k] = 0;
8949 /* The caller has already checked that REG dies or is set in INSN.
8950 It has also checked that we are optimizing, and thus some
8951 inaccuracies in the debugging information are acceptable.
8952 So we could just delete output_reload_insn. But in some cases
8953 we can improve the debugging information without sacrificing
8954 optimization - maybe even improving the code: See if the pseudo
8955 reg has been completely replaced with reload regs. If so, delete
8956 the store insn and forget we had a stack slot for the pseudo. */
8957 if (rld[j].out != rld[j].in
8958 && REG_N_DEATHS (REGNO (reg)) == 1
8959 && REG_N_SETS (REGNO (reg)) == 1
8960 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8961 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8963 rtx_insn *i2;
8965 /* We know that it was used only between here and the beginning of
8966 the current basic block. (We also know that the last use before
8967 INSN was the output reload we are thinking of deleting, but never
8968 mind that.) Search that range; see if any ref remains. */
8969 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8971 rtx set = single_set (i2);
8973 /* Uses which just store in the pseudo don't count,
8974 since if they are the only uses, they are dead. */
8975 if (set != 0 && SET_DEST (set) == reg)
8976 continue;
8977 if (LABEL_P (i2) || JUMP_P (i2))
8978 break;
8979 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8980 && reg_mentioned_p (reg, PATTERN (i2)))
8982 /* Some other ref remains; just delete the output reload we
8983 know to be dead. */
8984 delete_address_reloads (output_reload_insn, insn);
8985 delete_insn (output_reload_insn);
8986 return;
8990 /* Delete the now-dead stores into this pseudo. Note that this
8991 loop also takes care of deleting output_reload_insn. */
8992 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8994 rtx set = single_set (i2);
8996 if (set != 0 && SET_DEST (set) == reg)
8998 delete_address_reloads (i2, insn);
8999 delete_insn (i2);
9001 if (LABEL_P (i2) || JUMP_P (i2))
9002 break;
9005 /* For the debugging info, say the pseudo lives in this reload reg. */
9006 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9007 if (ira_conflicts_p)
9008 /* Inform IRA about the change. */
9009 ira_mark_allocation_change (REGNO (reg));
9010 alter_reg (REGNO (reg), -1, false);
9012 else
9014 delete_address_reloads (output_reload_insn, insn);
9015 delete_insn (output_reload_insn);
9019 /* We are going to delete DEAD_INSN. Recursively delete loads of
9020 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9021 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9022 static void
9023 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9025 rtx set = single_set (dead_insn);
9026 rtx set2, dst;
9027 rtx_insn *prev, *next;
9028 if (set)
9030 rtx dst = SET_DEST (set);
9031 if (MEM_P (dst))
9032 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9034 /* If we deleted the store from a reloaded post_{in,de}c expression,
9035 we can delete the matching adds. */
9036 prev = PREV_INSN (dead_insn);
9037 next = NEXT_INSN (dead_insn);
9038 if (! prev || ! next)
9039 return;
9040 set = single_set (next);
9041 set2 = single_set (prev);
9042 if (! set || ! set2
9043 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9044 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9045 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9046 return;
9047 dst = SET_DEST (set);
9048 if (! rtx_equal_p (dst, SET_DEST (set2))
9049 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9050 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9051 || (INTVAL (XEXP (SET_SRC (set), 1))
9052 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9053 return;
9054 delete_related_insns (prev);
9055 delete_related_insns (next);
9058 /* Subfunction of delete_address_reloads: process registers found in X. */
9059 static void
9060 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9062 rtx_insn *prev, *i2;
9063 rtx set, dst;
9064 int i, j;
9065 enum rtx_code code = GET_CODE (x);
9067 if (code != REG)
9069 const char *fmt = GET_RTX_FORMAT (code);
9070 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9072 if (fmt[i] == 'e')
9073 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9074 else if (fmt[i] == 'E')
9076 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9077 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9078 current_insn);
9081 return;
9084 if (spill_reg_order[REGNO (x)] < 0)
9085 return;
9087 /* Scan backwards for the insn that sets x. This might be a way back due
9088 to inheritance. */
9089 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9091 code = GET_CODE (prev);
9092 if (code == CODE_LABEL || code == JUMP_INSN)
9093 return;
9094 if (!INSN_P (prev))
9095 continue;
9096 if (reg_set_p (x, PATTERN (prev)))
9097 break;
9098 if (reg_referenced_p (x, PATTERN (prev)))
9099 return;
9101 if (! prev || INSN_UID (prev) < reload_first_uid)
9102 return;
9103 /* Check that PREV only sets the reload register. */
9104 set = single_set (prev);
9105 if (! set)
9106 return;
9107 dst = SET_DEST (set);
9108 if (!REG_P (dst)
9109 || ! rtx_equal_p (dst, x))
9110 return;
9111 if (! reg_set_p (dst, PATTERN (dead_insn)))
9113 /* Check if DST was used in a later insn -
9114 it might have been inherited. */
9115 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9117 if (LABEL_P (i2))
9118 break;
9119 if (! INSN_P (i2))
9120 continue;
9121 if (reg_referenced_p (dst, PATTERN (i2)))
9123 /* If there is a reference to the register in the current insn,
9124 it might be loaded in a non-inherited reload. If no other
9125 reload uses it, that means the register is set before
9126 referenced. */
9127 if (i2 == current_insn)
9129 for (j = n_reloads - 1; j >= 0; j--)
9130 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9131 || reload_override_in[j] == dst)
9132 return;
9133 for (j = n_reloads - 1; j >= 0; j--)
9134 if (rld[j].in && rld[j].reg_rtx == dst)
9135 break;
9136 if (j >= 0)
9137 break;
9139 return;
9141 if (JUMP_P (i2))
9142 break;
9143 /* If DST is still live at CURRENT_INSN, check if it is used for
9144 any reload. Note that even if CURRENT_INSN sets DST, we still
9145 have to check the reloads. */
9146 if (i2 == current_insn)
9148 for (j = n_reloads - 1; j >= 0; j--)
9149 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9150 || reload_override_in[j] == dst)
9151 return;
9152 /* ??? We can't finish the loop here, because dst might be
9153 allocated to a pseudo in this block if no reload in this
9154 block needs any of the classes containing DST - see
9155 spill_hard_reg. There is no easy way to tell this, so we
9156 have to scan till the end of the basic block. */
9158 if (reg_set_p (dst, PATTERN (i2)))
9159 break;
9162 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9163 reg_reloaded_contents[REGNO (dst)] = -1;
9164 delete_insn (prev);
9167 /* Output reload-insns to reload VALUE into RELOADREG.
9168 VALUE is an autoincrement or autodecrement RTX whose operand
9169 is a register or memory location;
9170 so reloading involves incrementing that location.
9171 IN is either identical to VALUE, or some cheaper place to reload from.
9173 INC_AMOUNT is the number to increment or decrement by (always positive).
9174 This cannot be deduced from VALUE. */
9176 static void
9177 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9179 /* REG or MEM to be copied and incremented. */
9180 rtx incloc = find_replacement (&XEXP (value, 0));
9181 /* Nonzero if increment after copying. */
9182 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9183 || GET_CODE (value) == POST_MODIFY);
9184 rtx_insn *last;
9185 rtx inc;
9186 rtx_insn *add_insn;
9187 int code;
9188 rtx real_in = in == value ? incloc : in;
9190 /* No hard register is equivalent to this register after
9191 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9192 we could inc/dec that register as well (maybe even using it for
9193 the source), but I'm not sure it's worth worrying about. */
9194 if (REG_P (incloc))
9195 reg_last_reload_reg[REGNO (incloc)] = 0;
9197 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9199 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9200 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9202 else
9204 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9205 inc_amount = -inc_amount;
9207 inc = GEN_INT (inc_amount);
9210 /* If this is post-increment, first copy the location to the reload reg. */
9211 if (post && real_in != reloadreg)
9212 emit_insn (gen_move_insn (reloadreg, real_in));
9214 if (in == value)
9216 /* See if we can directly increment INCLOC. Use a method similar to
9217 that in gen_reload. */
9219 last = get_last_insn ();
9220 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9221 gen_rtx_PLUS (GET_MODE (incloc),
9222 incloc, inc)));
9224 code = recog_memoized (add_insn);
9225 if (code >= 0)
9227 extract_insn (add_insn);
9228 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9230 /* If this is a pre-increment and we have incremented the value
9231 where it lives, copy the incremented value to RELOADREG to
9232 be used as an address. */
9234 if (! post)
9235 emit_insn (gen_move_insn (reloadreg, incloc));
9236 return;
9239 delete_insns_since (last);
9242 /* If couldn't do the increment directly, must increment in RELOADREG.
9243 The way we do this depends on whether this is pre- or post-increment.
9244 For pre-increment, copy INCLOC to the reload register, increment it
9245 there, then save back. */
9247 if (! post)
9249 if (in != reloadreg)
9250 emit_insn (gen_move_insn (reloadreg, real_in));
9251 emit_insn (gen_add2_insn (reloadreg, inc));
9252 emit_insn (gen_move_insn (incloc, reloadreg));
9254 else
9256 /* Postincrement.
9257 Because this might be a jump insn or a compare, and because RELOADREG
9258 may not be available after the insn in an input reload, we must do
9259 the incrementation before the insn being reloaded for.
9261 We have already copied IN to RELOADREG. Increment the copy in
9262 RELOADREG, save that back, then decrement RELOADREG so it has
9263 the original value. */
9265 emit_insn (gen_add2_insn (reloadreg, inc));
9266 emit_insn (gen_move_insn (incloc, reloadreg));
9267 if (CONST_INT_P (inc))
9268 emit_insn (gen_add2_insn (reloadreg,
9269 gen_int_mode (-INTVAL (inc),
9270 GET_MODE (reloadreg))));
9271 else
9272 emit_insn (gen_sub2_insn (reloadreg, inc));
9276 #ifdef AUTO_INC_DEC
9277 static void
9278 add_auto_inc_notes (rtx_insn *insn, rtx x)
9280 enum rtx_code code = GET_CODE (x);
9281 const char *fmt;
9282 int i, j;
9284 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9286 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9287 return;
9290 /* Scan all the operand sub-expressions. */
9291 fmt = GET_RTX_FORMAT (code);
9292 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9294 if (fmt[i] == 'e')
9295 add_auto_inc_notes (insn, XEXP (x, i));
9296 else if (fmt[i] == 'E')
9297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9298 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9301 #endif