gcc/ada/
[official-gcc.git] / gcc / fortran / trans-types.c
blob060bf58ebb36eeada133c165e3518507591bbd01
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-types.c -- gfortran backend types */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE and
35 LONG_DOUBLE_TYPE_SIZE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "gfortran.h"
43 #include "diagnostic-core.h" /* For fatal_error. */
44 #include "toplev.h" /* For rest_of_decl_compilation. */
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
74 tree gfc_charlen_type_node;
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
79 bool gfc_real16_is_float128 = false;
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
110 int gfc_index_integer_kind;
112 /* The default kinds of the various types. */
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
140 int i;
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
152 return false;
156 static int
157 get_real_kind_from_node (tree type)
159 int i;
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
165 return -4;
168 static int
169 get_int_kind_from_node (tree type)
171 int i;
173 if (!type)
174 return -2;
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
180 return -1;
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
217 gcc_unreachable ();
220 static int
221 get_int_kind_from_name (const char *name)
223 return get_int_kind_from_node (get_typenode_from_name (name));
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
231 gfc_get_int_kind_from_width_isofortranenv (int size)
233 int i;
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
245 return -1;
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
252 gfc_get_real_kind_from_width_isofortranenv (int size)
254 int i;
256 size /= 8;
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
268 return -1;
273 static int
274 get_int_kind_from_width (int size)
276 int i;
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
282 return -2;
285 static int
286 get_int_kind_from_minimal_width (int size)
288 int i;
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
294 return -2;
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
301 void
302 gfc_init_c_interop_kinds (void)
304 int i;
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
358 void
359 gfc_init_kinds (void)
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
368 int kind, bitsize;
370 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
371 continue;
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
380 gcc_assert (i_index != MAX_INT_KINDS);
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
399 i_index += 1;
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((machine_mode) mode);
420 int kind;
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
425 continue;
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (!targetm.libgcc_floating_mode_supported_p ((machine_mode)
431 mode))
432 continue;
433 if (mode != TYPE_MODE (float_type_node)
434 && (mode != TYPE_MODE (double_type_node))
435 && (mode != TYPE_MODE (long_double_type_node))
436 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
437 && (mode != TFmode)
438 #endif
440 continue;
442 /* Let the kind equal the precision divided by 8, rounding up. Again,
443 this insulates the programmer from the underlying byte size.
445 Also, it effectively deals with IEEE extended formats. There, the
446 total size of the type may equal 16, but it's got 6 bytes of padding
447 and the increased size can get in the way of a real IEEE quad format
448 which may also be supported by the target.
450 We round up so as to handle IA-64 __floatreg (RFmode), which is an
451 82 bit type. Not to be confused with __float80 (XFmode), which is
452 an 80 bit type also supported by IA-64. So XFmode should come out
453 to be kind=10, and RFmode should come out to be kind=11. Egads. */
455 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
457 if (kind == 4)
458 saw_r4 = true;
459 if (kind == 8)
460 saw_r8 = true;
461 if (kind == 10)
462 saw_r10 = true;
463 if (kind == 16)
464 saw_r16 = true;
466 /* Careful we don't stumble a weird internal mode. */
467 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
468 /* Or have too many modes for the allocated space. */
469 gcc_assert (r_index != MAX_REAL_KINDS);
471 gfc_real_kinds[r_index].kind = kind;
472 gfc_real_kinds[r_index].radix = fmt->b;
473 gfc_real_kinds[r_index].digits = fmt->p;
474 gfc_real_kinds[r_index].min_exponent = fmt->emin;
475 gfc_real_kinds[r_index].max_exponent = fmt->emax;
476 if (fmt->pnan < fmt->p)
477 /* This is an IBM extended double format (or the MIPS variant)
478 made up of two IEEE doubles. The value of the long double is
479 the sum of the values of the two parts. The most significant
480 part is required to be the value of the long double rounded
481 to the nearest double. If we use emax of 1024 then we can't
482 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
483 rounding will make the most significant part overflow. */
484 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
485 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
486 r_index += 1;
489 /* Choose the default integer kind. We choose 4 unless the user directs us
490 otherwise. Even if the user specified that the default integer kind is 8,
491 the numeric storage size is not 64 bits. In this case, a warning will be
492 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
494 gfc_numeric_storage_size = 4 * 8;
496 if (gfc_option.flag_default_integer)
498 if (!saw_i8)
499 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
501 gfc_default_integer_kind = 8;
504 else if (gfc_option.flag_integer4_kind == 8)
506 if (!saw_i8)
507 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
509 gfc_default_integer_kind = 8;
511 else if (saw_i4)
513 gfc_default_integer_kind = 4;
515 else
517 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
518 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
521 /* Choose the default real kind. Again, we choose 4 when possible. */
522 if (gfc_option.flag_default_real)
524 if (!saw_r8)
525 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
527 gfc_default_real_kind = 8;
529 else if (gfc_option.flag_real4_kind == 8)
531 if (!saw_r8)
532 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
534 gfc_default_real_kind = 8;
536 else if (gfc_option.flag_real4_kind == 10)
538 if (!saw_r10)
539 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
541 gfc_default_real_kind = 10;
543 else if (gfc_option.flag_real4_kind == 16)
545 if (!saw_r16)
546 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
548 gfc_default_real_kind = 16;
550 else if (saw_r4)
551 gfc_default_real_kind = 4;
552 else
553 gfc_default_real_kind = gfc_real_kinds[0].kind;
555 /* Choose the default double kind. If -fdefault-real and -fdefault-double
556 are specified, we use kind=8, if it's available. If -fdefault-real is
557 specified without -fdefault-double, we use kind=16, if it's available.
558 Otherwise we do not change anything. */
559 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
560 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
562 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
563 gfc_default_double_kind = 8;
564 else if (gfc_option.flag_default_real && saw_r16)
565 gfc_default_double_kind = 16;
566 else if (gfc_option.flag_real8_kind == 4)
568 if (!saw_r4)
569 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
571 gfc_default_double_kind = 4;
573 else if (gfc_option.flag_real8_kind == 10 )
575 if (!saw_r10)
576 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
578 gfc_default_double_kind = 10;
580 else if (gfc_option.flag_real8_kind == 16 )
582 if (!saw_r16)
583 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
585 gfc_default_double_kind = 16;
587 else if (saw_r4 && saw_r8)
588 gfc_default_double_kind = 8;
589 else
591 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
592 real ... occupies two contiguous numeric storage units.
594 Therefore we must be supplied a kind twice as large as we chose
595 for single precision. There are loopholes, in that double
596 precision must *occupy* two storage units, though it doesn't have
597 to *use* two storage units. Which means that you can make this
598 kind artificially wide by padding it. But at present there are
599 no GCC targets for which a two-word type does not exist, so we
600 just let gfc_validate_kind abort and tell us if something breaks. */
602 gfc_default_double_kind
603 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
606 /* The default logical kind is constrained to be the same as the
607 default integer kind. Similarly with complex and real. */
608 gfc_default_logical_kind = gfc_default_integer_kind;
609 gfc_default_complex_kind = gfc_default_real_kind;
611 /* We only have two character kinds: ASCII and UCS-4.
612 ASCII corresponds to a 8-bit integer type, if one is available.
613 UCS-4 corresponds to a 32-bit integer type, if one is available. */
614 i_index = 0;
615 if ((kind = get_int_kind_from_width (8)) > 0)
617 gfc_character_kinds[i_index].kind = kind;
618 gfc_character_kinds[i_index].bit_size = 8;
619 gfc_character_kinds[i_index].name = "ascii";
620 i_index++;
622 if ((kind = get_int_kind_from_width (32)) > 0)
624 gfc_character_kinds[i_index].kind = kind;
625 gfc_character_kinds[i_index].bit_size = 32;
626 gfc_character_kinds[i_index].name = "iso_10646";
627 i_index++;
630 /* Choose the smallest integer kind for our default character. */
631 gfc_default_character_kind = gfc_character_kinds[0].kind;
632 gfc_character_storage_size = gfc_default_character_kind * 8;
634 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
636 /* Pick a kind the same size as the C "int" type. */
637 gfc_c_int_kind = INT_TYPE_SIZE / 8;
639 /* Choose atomic kinds to match C's int. */
640 gfc_atomic_int_kind = gfc_c_int_kind;
641 gfc_atomic_logical_kind = gfc_c_int_kind;
645 /* Make sure that a valid kind is present. Returns an index into the
646 associated kinds array, -1 if the kind is not present. */
648 static int
649 validate_integer (int kind)
651 int i;
653 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
654 if (gfc_integer_kinds[i].kind == kind)
655 return i;
657 return -1;
660 static int
661 validate_real (int kind)
663 int i;
665 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
666 if (gfc_real_kinds[i].kind == kind)
667 return i;
669 return -1;
672 static int
673 validate_logical (int kind)
675 int i;
677 for (i = 0; gfc_logical_kinds[i].kind; i++)
678 if (gfc_logical_kinds[i].kind == kind)
679 return i;
681 return -1;
684 static int
685 validate_character (int kind)
687 int i;
689 for (i = 0; gfc_character_kinds[i].kind; i++)
690 if (gfc_character_kinds[i].kind == kind)
691 return i;
693 return -1;
696 /* Validate a kind given a basic type. The return value is the same
697 for the child functions, with -1 indicating nonexistence of the
698 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
701 gfc_validate_kind (bt type, int kind, bool may_fail)
703 int rc;
705 switch (type)
707 case BT_REAL: /* Fall through */
708 case BT_COMPLEX:
709 rc = validate_real (kind);
710 break;
711 case BT_INTEGER:
712 rc = validate_integer (kind);
713 break;
714 case BT_LOGICAL:
715 rc = validate_logical (kind);
716 break;
717 case BT_CHARACTER:
718 rc = validate_character (kind);
719 break;
721 default:
722 gfc_internal_error ("gfc_validate_kind(): Got bad type");
725 if (rc < 0 && !may_fail)
726 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
728 return rc;
732 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
733 Reuse common type nodes where possible. Recognize if the kind matches up
734 with a C type. This will be used later in determining which routines may
735 be scarfed from libm. */
737 static tree
738 gfc_build_int_type (gfc_integer_info *info)
740 int mode_precision = info->bit_size;
742 if (mode_precision == CHAR_TYPE_SIZE)
743 info->c_char = 1;
744 if (mode_precision == SHORT_TYPE_SIZE)
745 info->c_short = 1;
746 if (mode_precision == INT_TYPE_SIZE)
747 info->c_int = 1;
748 if (mode_precision == LONG_TYPE_SIZE)
749 info->c_long = 1;
750 if (mode_precision == LONG_LONG_TYPE_SIZE)
751 info->c_long_long = 1;
753 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
754 return intQI_type_node;
755 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
756 return intHI_type_node;
757 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
758 return intSI_type_node;
759 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
760 return intDI_type_node;
761 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
762 return intTI_type_node;
764 return make_signed_type (mode_precision);
767 tree
768 gfc_build_uint_type (int size)
770 if (size == CHAR_TYPE_SIZE)
771 return unsigned_char_type_node;
772 if (size == SHORT_TYPE_SIZE)
773 return short_unsigned_type_node;
774 if (size == INT_TYPE_SIZE)
775 return unsigned_type_node;
776 if (size == LONG_TYPE_SIZE)
777 return long_unsigned_type_node;
778 if (size == LONG_LONG_TYPE_SIZE)
779 return long_long_unsigned_type_node;
781 return make_unsigned_type (size);
785 static tree
786 gfc_build_real_type (gfc_real_info *info)
788 int mode_precision = info->mode_precision;
789 tree new_type;
791 if (mode_precision == FLOAT_TYPE_SIZE)
792 info->c_float = 1;
793 if (mode_precision == DOUBLE_TYPE_SIZE)
794 info->c_double = 1;
795 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
796 info->c_long_double = 1;
797 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
799 info->c_float128 = 1;
800 gfc_real16_is_float128 = true;
803 if (TYPE_PRECISION (float_type_node) == mode_precision)
804 return float_type_node;
805 if (TYPE_PRECISION (double_type_node) == mode_precision)
806 return double_type_node;
807 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
808 return long_double_type_node;
810 new_type = make_node (REAL_TYPE);
811 TYPE_PRECISION (new_type) = mode_precision;
812 layout_type (new_type);
813 return new_type;
816 static tree
817 gfc_build_complex_type (tree scalar_type)
819 tree new_type;
821 if (scalar_type == NULL)
822 return NULL;
823 if (scalar_type == float_type_node)
824 return complex_float_type_node;
825 if (scalar_type == double_type_node)
826 return complex_double_type_node;
827 if (scalar_type == long_double_type_node)
828 return complex_long_double_type_node;
830 new_type = make_node (COMPLEX_TYPE);
831 TREE_TYPE (new_type) = scalar_type;
832 layout_type (new_type);
833 return new_type;
836 static tree
837 gfc_build_logical_type (gfc_logical_info *info)
839 int bit_size = info->bit_size;
840 tree new_type;
842 if (bit_size == BOOL_TYPE_SIZE)
844 info->c_bool = 1;
845 return boolean_type_node;
848 new_type = make_unsigned_type (bit_size);
849 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
850 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
851 TYPE_PRECISION (new_type) = 1;
853 return new_type;
857 /* Create the backend type nodes. We map them to their
858 equivalent C type, at least for now. We also give
859 names to the types here, and we push them in the
860 global binding level context.*/
862 void
863 gfc_init_types (void)
865 char name_buf[18];
866 int index;
867 tree type;
868 unsigned n;
870 /* Create and name the types. */
871 #define PUSH_TYPE(name, node) \
872 pushdecl (build_decl (input_location, \
873 TYPE_DECL, get_identifier (name), node))
875 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
877 type = gfc_build_int_type (&gfc_integer_kinds[index]);
878 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
879 if (TYPE_STRING_FLAG (type))
880 type = make_signed_type (gfc_integer_kinds[index].bit_size);
881 gfc_integer_types[index] = type;
882 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
883 gfc_integer_kinds[index].kind);
884 PUSH_TYPE (name_buf, type);
887 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
889 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
890 gfc_logical_types[index] = type;
891 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
892 gfc_logical_kinds[index].kind);
893 PUSH_TYPE (name_buf, type);
896 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
898 type = gfc_build_real_type (&gfc_real_kinds[index]);
899 gfc_real_types[index] = type;
900 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
901 gfc_real_kinds[index].kind);
902 PUSH_TYPE (name_buf, type);
904 if (gfc_real_kinds[index].c_float128)
905 float128_type_node = type;
907 type = gfc_build_complex_type (type);
908 gfc_complex_types[index] = type;
909 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
910 gfc_real_kinds[index].kind);
911 PUSH_TYPE (name_buf, type);
913 if (gfc_real_kinds[index].c_float128)
914 complex_float128_type_node = type;
917 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
919 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
920 type = build_qualified_type (type, TYPE_UNQUALIFIED);
921 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
922 gfc_character_kinds[index].kind);
923 PUSH_TYPE (name_buf, type);
924 gfc_character_types[index] = type;
925 gfc_pcharacter_types[index] = build_pointer_type (type);
927 gfc_character1_type_node = gfc_character_types[0];
929 PUSH_TYPE ("byte", unsigned_char_type_node);
930 PUSH_TYPE ("void", void_type_node);
932 /* DBX debugging output gets upset if these aren't set. */
933 if (!TYPE_NAME (integer_type_node))
934 PUSH_TYPE ("c_integer", integer_type_node);
935 if (!TYPE_NAME (char_type_node))
936 PUSH_TYPE ("c_char", char_type_node);
938 #undef PUSH_TYPE
940 pvoid_type_node = build_pointer_type (void_type_node);
941 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
942 ppvoid_type_node = build_pointer_type (pvoid_type_node);
943 pchar_type_node = build_pointer_type (gfc_character1_type_node);
944 pfunc_type_node
945 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
947 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
948 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
949 since this function is called before gfc_init_constants. */
950 gfc_array_range_type
951 = build_range_type (gfc_array_index_type,
952 build_int_cst (gfc_array_index_type, 0),
953 NULL_TREE);
955 /* The maximum array element size that can be handled is determined
956 by the number of bits available to store this field in the array
957 descriptor. */
959 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
960 gfc_max_array_element_size
961 = wide_int_to_tree (size_type_node,
962 wi::mask (n, UNSIGNED,
963 TYPE_PRECISION (size_type_node)));
965 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
966 boolean_true_node = build_int_cst (boolean_type_node, 1);
967 boolean_false_node = build_int_cst (boolean_type_node, 0);
969 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
970 gfc_charlen_int_kind = 4;
971 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
974 /* Get the type node for the given type and kind. */
976 tree
977 gfc_get_int_type (int kind)
979 int index = gfc_validate_kind (BT_INTEGER, kind, true);
980 return index < 0 ? 0 : gfc_integer_types[index];
983 tree
984 gfc_get_real_type (int kind)
986 int index = gfc_validate_kind (BT_REAL, kind, true);
987 return index < 0 ? 0 : gfc_real_types[index];
990 tree
991 gfc_get_complex_type (int kind)
993 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
994 return index < 0 ? 0 : gfc_complex_types[index];
997 tree
998 gfc_get_logical_type (int kind)
1000 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1001 return index < 0 ? 0 : gfc_logical_types[index];
1004 tree
1005 gfc_get_char_type (int kind)
1007 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1008 return index < 0 ? 0 : gfc_character_types[index];
1011 tree
1012 gfc_get_pchar_type (int kind)
1014 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1015 return index < 0 ? 0 : gfc_pcharacter_types[index];
1019 /* Create a character type with the given kind and length. */
1021 tree
1022 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1024 tree bounds, type;
1026 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1027 type = build_array_type (eltype, bounds);
1028 TYPE_STRING_FLAG (type) = 1;
1030 return type;
1033 tree
1034 gfc_get_character_type_len (int kind, tree len)
1036 gfc_validate_kind (BT_CHARACTER, kind, false);
1037 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1041 /* Get a type node for a character kind. */
1043 tree
1044 gfc_get_character_type (int kind, gfc_charlen * cl)
1046 tree len;
1048 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1050 return gfc_get_character_type_len (kind, len);
1053 /* Covert a basic type. This will be an array for character types. */
1055 tree
1056 gfc_typenode_for_spec (gfc_typespec * spec)
1058 tree basetype;
1060 switch (spec->type)
1062 case BT_UNKNOWN:
1063 gcc_unreachable ();
1065 case BT_INTEGER:
1066 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1067 has been resolved. This is done so we can convert C_PTR and
1068 C_FUNPTR to simple variables that get translated to (void *). */
1069 if (spec->f90_type == BT_VOID)
1071 if (spec->u.derived
1072 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1073 basetype = ptr_type_node;
1074 else
1075 basetype = pfunc_type_node;
1077 else
1078 basetype = gfc_get_int_type (spec->kind);
1079 break;
1081 case BT_REAL:
1082 basetype = gfc_get_real_type (spec->kind);
1083 break;
1085 case BT_COMPLEX:
1086 basetype = gfc_get_complex_type (spec->kind);
1087 break;
1089 case BT_LOGICAL:
1090 basetype = gfc_get_logical_type (spec->kind);
1091 break;
1093 case BT_CHARACTER:
1094 #if 0
1095 if (spec->deferred)
1096 basetype = gfc_get_character_type (spec->kind, NULL);
1097 else
1098 #endif
1099 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1100 break;
1102 case BT_HOLLERITH:
1103 /* Since this cannot be used, return a length one character. */
1104 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1105 gfc_index_one_node);
1106 break;
1108 case BT_DERIVED:
1109 case BT_CLASS:
1110 basetype = gfc_get_derived_type (spec->u.derived);
1112 if (spec->type == BT_CLASS)
1113 GFC_CLASS_TYPE_P (basetype) = 1;
1115 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1116 type and kind to fit a (void *) and the basetype returned was a
1117 ptr_type_node. We need to pass up this new information to the
1118 symbol that was declared of type C_PTR or C_FUNPTR. */
1119 if (spec->u.derived->ts.f90_type == BT_VOID)
1121 spec->type = BT_INTEGER;
1122 spec->kind = gfc_index_integer_kind;
1123 spec->f90_type = BT_VOID;
1125 break;
1126 case BT_VOID:
1127 case BT_ASSUMED:
1128 /* This is for the second arg to c_f_pointer and c_f_procpointer
1129 of the iso_c_binding module, to accept any ptr type. */
1130 basetype = ptr_type_node;
1131 if (spec->f90_type == BT_VOID)
1133 if (spec->u.derived
1134 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1135 basetype = ptr_type_node;
1136 else
1137 basetype = pfunc_type_node;
1139 break;
1140 default:
1141 gcc_unreachable ();
1143 return basetype;
1146 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1148 static tree
1149 gfc_conv_array_bound (gfc_expr * expr)
1151 /* If expr is an integer constant, return that. */
1152 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1153 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1155 /* Otherwise return NULL. */
1156 return NULL_TREE;
1159 tree
1160 gfc_get_element_type (tree type)
1162 tree element;
1164 if (GFC_ARRAY_TYPE_P (type))
1166 if (TREE_CODE (type) == POINTER_TYPE)
1167 type = TREE_TYPE (type);
1168 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1170 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1171 element = type;
1173 else
1175 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1176 element = TREE_TYPE (type);
1179 else
1181 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1182 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1184 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1185 element = TREE_TYPE (element);
1187 /* For arrays, which are not scalar coarrays. */
1188 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1189 element = TREE_TYPE (element);
1192 return element;
1195 /* Build an array. This function is called from gfc_sym_type().
1196 Actually returns array descriptor type.
1198 Format of array descriptors is as follows:
1200 struct gfc_array_descriptor
1202 array *data
1203 index offset;
1204 index dtype;
1205 struct descriptor_dimension dimension[N_DIM];
1208 struct descriptor_dimension
1210 index stride;
1211 index lbound;
1212 index ubound;
1215 Translation code should use gfc_conv_descriptor_* rather than
1216 accessing the descriptor directly. Any changes to the array
1217 descriptor type will require changes in gfc_conv_descriptor_* and
1218 gfc_build_array_initializer.
1220 This is represented internally as a RECORD_TYPE. The index nodes
1221 are gfc_array_index_type and the data node is a pointer to the
1222 data. See below for the handling of character types.
1224 The dtype member is formatted as follows:
1225 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1226 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1227 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1229 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1230 this generated poor code for assumed/deferred size arrays. These
1231 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1232 of the GENERIC grammar. Also, there is no way to explicitly set
1233 the array stride, so all data must be packed(1). I've tried to
1234 mark all the functions which would require modification with a GCC
1235 ARRAYS comment.
1237 The data component points to the first element in the array. The
1238 offset field is the position of the origin of the array (i.e. element
1239 (0, 0 ...)). This may be outside the bounds of the array.
1241 An element is accessed by
1242 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1243 This gives good performance as the computation does not involve the
1244 bounds of the array. For packed arrays, this is optimized further
1245 by substituting the known strides.
1247 This system has one problem: all array bounds must be within 2^31
1248 elements of the origin (2^63 on 64-bit machines). For example
1249 integer, dimension (80000:90000, 80000:90000, 2) :: array
1250 may not work properly on 32-bit machines because 80000*80000 >
1251 2^31, so the calculation for stride2 would overflow. This may
1252 still work, but I haven't checked, and it relies on the overflow
1253 doing the right thing.
1255 The way to fix this problem is to access elements as follows:
1256 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1257 Obviously this is much slower. I will make this a compile time
1258 option, something like -fsmall-array-offsets. Mixing code compiled
1259 with and without this switch will work.
1261 (1) This can be worked around by modifying the upper bound of the
1262 previous dimension. This requires extra fields in the descriptor
1263 (both real_ubound and fake_ubound). */
1266 /* Returns true if the array sym does not require a descriptor. */
1269 gfc_is_nodesc_array (gfc_symbol * sym)
1271 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1273 /* We only want local arrays. */
1274 if (sym->attr.pointer || sym->attr.allocatable)
1275 return 0;
1277 /* We want a descriptor for associate-name arrays that do not have an
1278 explicitly known shape already. */
1279 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1280 return 0;
1282 if (sym->attr.dummy)
1283 return sym->as->type != AS_ASSUMED_SHAPE
1284 && sym->as->type != AS_ASSUMED_RANK;
1286 if (sym->attr.result || sym->attr.function)
1287 return 0;
1289 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1291 return 1;
1295 /* Create an array descriptor type. */
1297 static tree
1298 gfc_build_array_type (tree type, gfc_array_spec * as,
1299 enum gfc_array_kind akind, bool restricted,
1300 bool contiguous)
1302 tree lbound[GFC_MAX_DIMENSIONS];
1303 tree ubound[GFC_MAX_DIMENSIONS];
1304 int n, corank;
1306 /* Assumed-shape arrays do not have codimension information stored in the
1307 descriptor. */
1308 corank = as->corank;
1309 if (as->type == AS_ASSUMED_SHAPE ||
1310 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1311 corank = 0;
1313 if (as->type == AS_ASSUMED_RANK)
1314 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1316 lbound[n] = NULL_TREE;
1317 ubound[n] = NULL_TREE;
1320 for (n = 0; n < as->rank; n++)
1322 /* Create expressions for the known bounds of the array. */
1323 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1324 lbound[n] = gfc_index_one_node;
1325 else
1326 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1327 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1330 for (n = as->rank; n < as->rank + corank; n++)
1332 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1333 lbound[n] = gfc_index_one_node;
1334 else
1335 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1337 if (n < as->rank + corank - 1)
1338 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1341 if (as->type == AS_ASSUMED_SHAPE)
1342 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1343 : GFC_ARRAY_ASSUMED_SHAPE;
1344 else if (as->type == AS_ASSUMED_RANK)
1345 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1346 : GFC_ARRAY_ASSUMED_RANK;
1347 return gfc_get_array_type_bounds (type, as->rank == -1
1348 ? GFC_MAX_DIMENSIONS : as->rank,
1349 corank, lbound,
1350 ubound, 0, akind, restricted);
1353 /* Returns the struct descriptor_dimension type. */
1355 static tree
1356 gfc_get_desc_dim_type (void)
1358 tree type;
1359 tree decl, *chain = NULL;
1361 if (gfc_desc_dim_type)
1362 return gfc_desc_dim_type;
1364 /* Build the type node. */
1365 type = make_node (RECORD_TYPE);
1367 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1368 TYPE_PACKED (type) = 1;
1370 /* Consists of the stride, lbound and ubound members. */
1371 decl = gfc_add_field_to_struct_1 (type,
1372 get_identifier ("stride"),
1373 gfc_array_index_type, &chain);
1374 TREE_NO_WARNING (decl) = 1;
1376 decl = gfc_add_field_to_struct_1 (type,
1377 get_identifier ("lbound"),
1378 gfc_array_index_type, &chain);
1379 TREE_NO_WARNING (decl) = 1;
1381 decl = gfc_add_field_to_struct_1 (type,
1382 get_identifier ("ubound"),
1383 gfc_array_index_type, &chain);
1384 TREE_NO_WARNING (decl) = 1;
1386 /* Finish off the type. */
1387 gfc_finish_type (type);
1388 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1390 gfc_desc_dim_type = type;
1391 return type;
1395 /* Return the DTYPE for an array. This describes the type and type parameters
1396 of the array. */
1397 /* TODO: Only call this when the value is actually used, and make all the
1398 unknown cases abort. */
1400 tree
1401 gfc_get_dtype_rank_type (int rank, tree etype)
1403 tree size;
1404 int n;
1405 HOST_WIDE_INT i;
1406 tree tmp;
1407 tree dtype;
1409 switch (TREE_CODE (etype))
1411 case INTEGER_TYPE:
1412 n = BT_INTEGER;
1413 break;
1415 case BOOLEAN_TYPE:
1416 n = BT_LOGICAL;
1417 break;
1419 case REAL_TYPE:
1420 n = BT_REAL;
1421 break;
1423 case COMPLEX_TYPE:
1424 n = BT_COMPLEX;
1425 break;
1427 /* We will never have arrays of arrays. */
1428 case RECORD_TYPE:
1429 n = BT_DERIVED;
1430 break;
1432 case ARRAY_TYPE:
1433 n = BT_CHARACTER;
1434 break;
1436 case POINTER_TYPE:
1437 n = BT_ASSUMED;
1438 break;
1440 default:
1441 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1442 /* We can strange array types for temporary arrays. */
1443 return gfc_index_zero_node;
1446 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1447 size = TYPE_SIZE_UNIT (etype);
1449 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1450 if (size && INTEGER_CST_P (size))
1452 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1453 gfc_fatal_error ("Array element size too big at %C");
1455 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1457 dtype = build_int_cst (gfc_array_index_type, i);
1459 if (size && !INTEGER_CST_P (size))
1461 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1462 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1463 gfc_array_index_type,
1464 fold_convert (gfc_array_index_type, size), tmp);
1465 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1466 tmp, dtype);
1468 /* If we don't know the size we leave it as zero. This should never happen
1469 for anything that is actually used. */
1470 /* TODO: Check this is actually true, particularly when repacking
1471 assumed size parameters. */
1473 return dtype;
1477 tree
1478 gfc_get_dtype (tree type)
1480 tree dtype;
1481 tree etype;
1482 int rank;
1484 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1486 if (GFC_TYPE_ARRAY_DTYPE (type))
1487 return GFC_TYPE_ARRAY_DTYPE (type);
1489 rank = GFC_TYPE_ARRAY_RANK (type);
1490 etype = gfc_get_element_type (type);
1491 dtype = gfc_get_dtype_rank_type (rank, etype);
1493 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1494 return dtype;
1498 /* Build an array type for use without a descriptor, packed according
1499 to the value of PACKED. */
1501 tree
1502 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1503 bool restricted)
1505 tree range;
1506 tree type;
1507 tree tmp;
1508 int n;
1509 int known_stride;
1510 int known_offset;
1511 mpz_t offset;
1512 mpz_t stride;
1513 mpz_t delta;
1514 gfc_expr *expr;
1516 mpz_init_set_ui (offset, 0);
1517 mpz_init_set_ui (stride, 1);
1518 mpz_init (delta);
1520 /* We don't use build_array_type because this does not include include
1521 lang-specific information (i.e. the bounds of the array) when checking
1522 for duplicates. */
1523 if (as->rank)
1524 type = make_node (ARRAY_TYPE);
1525 else
1526 type = build_variant_type_copy (etype);
1528 GFC_ARRAY_TYPE_P (type) = 1;
1529 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1531 known_stride = (packed != PACKED_NO);
1532 known_offset = 1;
1533 for (n = 0; n < as->rank; n++)
1535 /* Fill in the stride and bound components of the type. */
1536 if (known_stride)
1537 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1538 else
1539 tmp = NULL_TREE;
1540 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1542 expr = as->lower[n];
1543 if (expr->expr_type == EXPR_CONSTANT)
1545 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1546 gfc_index_integer_kind);
1548 else
1550 known_stride = 0;
1551 tmp = NULL_TREE;
1553 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1555 if (known_stride)
1557 /* Calculate the offset. */
1558 mpz_mul (delta, stride, as->lower[n]->value.integer);
1559 mpz_sub (offset, offset, delta);
1561 else
1562 known_offset = 0;
1564 expr = as->upper[n];
1565 if (expr && expr->expr_type == EXPR_CONSTANT)
1567 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1568 gfc_index_integer_kind);
1570 else
1572 tmp = NULL_TREE;
1573 known_stride = 0;
1575 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1577 if (known_stride)
1579 /* Calculate the stride. */
1580 mpz_sub (delta, as->upper[n]->value.integer,
1581 as->lower[n]->value.integer);
1582 mpz_add_ui (delta, delta, 1);
1583 mpz_mul (stride, stride, delta);
1586 /* Only the first stride is known for partial packed arrays. */
1587 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1588 known_stride = 0;
1590 for (n = as->rank; n < as->rank + as->corank; n++)
1592 expr = as->lower[n];
1593 if (expr->expr_type == EXPR_CONSTANT)
1594 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1595 gfc_index_integer_kind);
1596 else
1597 tmp = NULL_TREE;
1598 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1600 expr = as->upper[n];
1601 if (expr && expr->expr_type == EXPR_CONSTANT)
1602 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1603 gfc_index_integer_kind);
1604 else
1605 tmp = NULL_TREE;
1606 if (n < as->rank + as->corank - 1)
1607 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1610 if (known_offset)
1612 GFC_TYPE_ARRAY_OFFSET (type) =
1613 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1615 else
1616 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1618 if (known_stride)
1620 GFC_TYPE_ARRAY_SIZE (type) =
1621 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1623 else
1624 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1626 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1627 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1628 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1629 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1630 NULL_TREE);
1631 /* TODO: use main type if it is unbounded. */
1632 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1633 build_pointer_type (build_array_type (etype, range));
1634 if (restricted)
1635 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1636 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1637 TYPE_QUAL_RESTRICT);
1639 if (as->rank == 0)
1641 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1643 type = build_pointer_type (type);
1645 if (restricted)
1646 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1648 GFC_ARRAY_TYPE_P (type) = 1;
1649 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1652 return type;
1655 if (known_stride)
1657 mpz_sub_ui (stride, stride, 1);
1658 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1660 else
1661 range = NULL_TREE;
1663 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1664 TYPE_DOMAIN (type) = range;
1666 build_pointer_type (etype);
1667 TREE_TYPE (type) = etype;
1669 layout_type (type);
1671 mpz_clear (offset);
1672 mpz_clear (stride);
1673 mpz_clear (delta);
1675 /* Represent packed arrays as multi-dimensional if they have rank >
1676 1 and with proper bounds, instead of flat arrays. This makes for
1677 better debug info. */
1678 if (known_offset)
1680 tree gtype = etype, rtype, type_decl;
1682 for (n = as->rank - 1; n >= 0; n--)
1684 rtype = build_range_type (gfc_array_index_type,
1685 GFC_TYPE_ARRAY_LBOUND (type, n),
1686 GFC_TYPE_ARRAY_UBOUND (type, n));
1687 gtype = build_array_type (gtype, rtype);
1689 TYPE_NAME (type) = type_decl = build_decl (input_location,
1690 TYPE_DECL, NULL, gtype);
1691 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1694 if (packed != PACKED_STATIC || !known_stride
1695 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1697 /* For dummy arrays and automatic (heap allocated) arrays we
1698 want a pointer to the array. */
1699 type = build_pointer_type (type);
1700 if (restricted)
1701 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1702 GFC_ARRAY_TYPE_P (type) = 1;
1703 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1705 return type;
1709 /* Return or create the base type for an array descriptor. */
1711 static tree
1712 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1713 enum gfc_array_kind akind)
1715 tree fat_type, decl, arraytype, *chain = NULL;
1716 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1717 int idx;
1719 /* Assumed-rank array. */
1720 if (dimen == -1)
1721 dimen = GFC_MAX_DIMENSIONS;
1723 idx = 2 * (codimen + dimen) + restricted;
1725 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1727 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1729 if (gfc_array_descriptor_base_caf[idx])
1730 return gfc_array_descriptor_base_caf[idx];
1732 else if (gfc_array_descriptor_base[idx])
1733 return gfc_array_descriptor_base[idx];
1735 /* Build the type node. */
1736 fat_type = make_node (RECORD_TYPE);
1738 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1739 TYPE_NAME (fat_type) = get_identifier (name);
1740 TYPE_NAMELESS (fat_type) = 1;
1742 /* Add the data member as the first element of the descriptor. */
1743 decl = gfc_add_field_to_struct_1 (fat_type,
1744 get_identifier ("data"),
1745 (restricted
1746 ? prvoid_type_node
1747 : ptr_type_node), &chain);
1749 /* Add the base component. */
1750 decl = gfc_add_field_to_struct_1 (fat_type,
1751 get_identifier ("offset"),
1752 gfc_array_index_type, &chain);
1753 TREE_NO_WARNING (decl) = 1;
1755 /* Add the dtype component. */
1756 decl = gfc_add_field_to_struct_1 (fat_type,
1757 get_identifier ("dtype"),
1758 gfc_array_index_type, &chain);
1759 TREE_NO_WARNING (decl) = 1;
1761 /* Build the array type for the stride and bound components. */
1762 if (dimen + codimen > 0)
1764 arraytype =
1765 build_array_type (gfc_get_desc_dim_type (),
1766 build_range_type (gfc_array_index_type,
1767 gfc_index_zero_node,
1768 gfc_rank_cst[codimen + dimen - 1]));
1770 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1771 arraytype, &chain);
1772 TREE_NO_WARNING (decl) = 1;
1775 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1776 && akind == GFC_ARRAY_ALLOCATABLE)
1778 decl = gfc_add_field_to_struct_1 (fat_type,
1779 get_identifier ("token"),
1780 prvoid_type_node, &chain);
1781 TREE_NO_WARNING (decl) = 1;
1784 /* Finish off the type. */
1785 gfc_finish_type (fat_type);
1786 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1788 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1789 && akind == GFC_ARRAY_ALLOCATABLE)
1790 gfc_array_descriptor_base_caf[idx] = fat_type;
1791 else
1792 gfc_array_descriptor_base[idx] = fat_type;
1794 return fat_type;
1798 /* Build an array (descriptor) type with given bounds. */
1800 tree
1801 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1802 tree * ubound, int packed,
1803 enum gfc_array_kind akind, bool restricted)
1805 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1806 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1807 const char *type_name;
1808 int n;
1810 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1811 fat_type = build_distinct_type_copy (base_type);
1812 /* Make sure that nontarget and target array type have the same canonical
1813 type (and same stub decl for debug info). */
1814 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1815 TYPE_CANONICAL (fat_type) = base_type;
1816 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1818 tmp = TYPE_NAME (etype);
1819 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1820 tmp = DECL_NAME (tmp);
1821 if (tmp)
1822 type_name = IDENTIFIER_POINTER (tmp);
1823 else
1824 type_name = "unknown";
1825 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1826 GFC_MAX_SYMBOL_LEN, type_name);
1827 TYPE_NAME (fat_type) = get_identifier (name);
1828 TYPE_NAMELESS (fat_type) = 1;
1830 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1831 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1833 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1834 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1835 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1836 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1838 /* Build an array descriptor record type. */
1839 if (packed != 0)
1840 stride = gfc_index_one_node;
1841 else
1842 stride = NULL_TREE;
1843 for (n = 0; n < dimen + codimen; n++)
1845 if (n < dimen)
1846 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1848 if (lbound)
1849 lower = lbound[n];
1850 else
1851 lower = NULL_TREE;
1853 if (lower != NULL_TREE)
1855 if (INTEGER_CST_P (lower))
1856 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1857 else
1858 lower = NULL_TREE;
1861 if (codimen && n == dimen + codimen - 1)
1862 break;
1864 upper = ubound[n];
1865 if (upper != NULL_TREE)
1867 if (INTEGER_CST_P (upper))
1868 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1869 else
1870 upper = NULL_TREE;
1873 if (n >= dimen)
1874 continue;
1876 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1878 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1879 gfc_array_index_type, upper, lower);
1880 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1881 gfc_array_index_type, tmp,
1882 gfc_index_one_node);
1883 stride = fold_build2_loc (input_location, MULT_EXPR,
1884 gfc_array_index_type, tmp, stride);
1885 /* Check the folding worked. */
1886 gcc_assert (INTEGER_CST_P (stride));
1888 else
1889 stride = NULL_TREE;
1891 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1893 /* TODO: known offsets for descriptors. */
1894 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1896 if (dimen == 0)
1898 arraytype = build_pointer_type (etype);
1899 if (restricted)
1900 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1902 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1903 return fat_type;
1906 /* We define data as an array with the correct size if possible.
1907 Much better than doing pointer arithmetic. */
1908 if (stride)
1909 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1910 int_const_binop (MINUS_EXPR, stride,
1911 build_int_cst (TREE_TYPE (stride), 1)));
1912 else
1913 rtype = gfc_array_range_type;
1914 arraytype = build_array_type (etype, rtype);
1915 arraytype = build_pointer_type (arraytype);
1916 if (restricted)
1917 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1918 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1920 /* This will generate the base declarations we need to emit debug
1921 information for this type. FIXME: there must be a better way to
1922 avoid divergence between compilations with and without debug
1923 information. */
1925 struct array_descr_info info;
1926 gfc_get_array_descr_info (fat_type, &info);
1927 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1930 return fat_type;
1933 /* Build a pointer type. This function is called from gfc_sym_type(). */
1935 static tree
1936 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1938 /* Array pointer types aren't actually pointers. */
1939 if (sym->attr.dimension)
1940 return type;
1941 else
1942 return build_pointer_type (type);
1945 static tree gfc_nonrestricted_type (tree t);
1946 /* Given two record or union type nodes TO and FROM, ensure
1947 that all fields in FROM have a corresponding field in TO,
1948 their type being nonrestrict variants. This accepts a TO
1949 node that already has a prefix of the fields in FROM. */
1950 static void
1951 mirror_fields (tree to, tree from)
1953 tree fto, ffrom;
1954 tree *chain;
1956 /* Forward to the end of TOs fields. */
1957 fto = TYPE_FIELDS (to);
1958 ffrom = TYPE_FIELDS (from);
1959 chain = &TYPE_FIELDS (to);
1960 while (fto)
1962 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1963 chain = &DECL_CHAIN (fto);
1964 fto = DECL_CHAIN (fto);
1965 ffrom = DECL_CHAIN (ffrom);
1968 /* Now add all fields remaining in FROM (starting with ffrom). */
1969 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1971 tree newfield = copy_node (ffrom);
1972 DECL_CONTEXT (newfield) = to;
1973 /* The store to DECL_CHAIN might seem redundant with the
1974 stores to *chain, but not clearing it here would mean
1975 leaving a chain into the old fields. If ever
1976 our called functions would look at them confusion
1977 will arise. */
1978 DECL_CHAIN (newfield) = NULL_TREE;
1979 *chain = newfield;
1980 chain = &DECL_CHAIN (newfield);
1982 if (TREE_CODE (ffrom) == FIELD_DECL)
1984 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1985 TREE_TYPE (newfield) = elemtype;
1988 *chain = NULL_TREE;
1991 /* Given a type T, returns a different type of the same structure,
1992 except that all types it refers to (recursively) are always
1993 non-restrict qualified types. */
1994 static tree
1995 gfc_nonrestricted_type (tree t)
1997 tree ret = t;
1999 /* If the type isn't laid out yet, don't copy it. If something
2000 needs it for real it should wait until the type got finished. */
2001 if (!TYPE_SIZE (t))
2002 return t;
2004 if (!TYPE_LANG_SPECIFIC (t))
2005 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2006 /* If we're dealing with this very node already further up
2007 the call chain (recursion via pointers and struct members)
2008 we haven't yet determined if we really need a new type node.
2009 Assume we don't, return T itself. */
2010 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2011 return t;
2013 /* If we have calculated this all already, just return it. */
2014 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2015 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2017 /* Mark this type. */
2018 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2020 switch (TREE_CODE (t))
2022 default:
2023 break;
2025 case POINTER_TYPE:
2026 case REFERENCE_TYPE:
2028 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2029 if (totype == TREE_TYPE (t))
2030 ret = t;
2031 else if (TREE_CODE (t) == POINTER_TYPE)
2032 ret = build_pointer_type (totype);
2033 else
2034 ret = build_reference_type (totype);
2035 ret = build_qualified_type (ret,
2036 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2038 break;
2040 case ARRAY_TYPE:
2042 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2043 if (elemtype == TREE_TYPE (t))
2044 ret = t;
2045 else
2047 ret = build_variant_type_copy (t);
2048 TREE_TYPE (ret) = elemtype;
2049 if (TYPE_LANG_SPECIFIC (t)
2050 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2052 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2053 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2054 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2056 TYPE_LANG_SPECIFIC (ret)
2057 = ggc_cleared_alloc<struct lang_type> ();
2058 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2059 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2064 break;
2066 case RECORD_TYPE:
2067 case UNION_TYPE:
2068 case QUAL_UNION_TYPE:
2070 tree field;
2071 /* First determine if we need a new type at all.
2072 Careful, the two calls to gfc_nonrestricted_type per field
2073 might return different values. That happens exactly when
2074 one of the fields reaches back to this very record type
2075 (via pointers). The first calls will assume that we don't
2076 need to copy T (see the error_mark_node marking). If there
2077 are any reasons for copying T apart from having to copy T,
2078 we'll indeed copy it, and the second calls to
2079 gfc_nonrestricted_type will use that new node if they
2080 reach back to T. */
2081 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2082 if (TREE_CODE (field) == FIELD_DECL)
2084 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2085 if (elemtype != TREE_TYPE (field))
2086 break;
2088 if (!field)
2089 break;
2090 ret = build_variant_type_copy (t);
2091 TYPE_FIELDS (ret) = NULL_TREE;
2093 /* Here we make sure that as soon as we know we have to copy
2094 T, that also fields reaching back to us will use the new
2095 copy. It's okay if that copy still contains the old fields,
2096 we won't look at them. */
2097 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2098 mirror_fields (ret, t);
2100 break;
2103 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2104 return ret;
2108 /* Return the type for a symbol. Special handling is required for character
2109 types to get the correct level of indirection.
2110 For functions return the return type.
2111 For subroutines return void_type_node.
2112 Calling this multiple times for the same symbol should be avoided,
2113 especially for character and array types. */
2115 tree
2116 gfc_sym_type (gfc_symbol * sym)
2118 tree type;
2119 int byref;
2120 bool restricted;
2122 /* Procedure Pointers inside COMMON blocks. */
2123 if (sym->attr.proc_pointer && sym->attr.in_common)
2125 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2126 sym->attr.proc_pointer = 0;
2127 type = build_pointer_type (gfc_get_function_type (sym));
2128 sym->attr.proc_pointer = 1;
2129 return type;
2132 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2133 return void_type_node;
2135 /* In the case of a function the fake result variable may have a
2136 type different from the function type, so don't return early in
2137 that case. */
2138 if (sym->backend_decl && !sym->attr.function)
2139 return TREE_TYPE (sym->backend_decl);
2141 if (sym->ts.type == BT_CHARACTER
2142 && ((sym->attr.function && sym->attr.is_bind_c)
2143 || (sym->attr.result
2144 && sym->ns->proc_name
2145 && sym->ns->proc_name->attr.is_bind_c)))
2146 type = gfc_character1_type_node;
2147 else
2148 type = gfc_typenode_for_spec (&sym->ts);
2150 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2151 byref = 1;
2152 else
2153 byref = 0;
2155 restricted = !sym->attr.target && !sym->attr.pointer
2156 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2157 if (!restricted)
2158 type = gfc_nonrestricted_type (type);
2160 if (sym->attr.dimension || sym->attr.codimension)
2162 if (gfc_is_nodesc_array (sym))
2164 /* If this is a character argument of unknown length, just use the
2165 base type. */
2166 if (sym->ts.type != BT_CHARACTER
2167 || !(sym->attr.dummy || sym->attr.function)
2168 || sym->ts.u.cl->backend_decl)
2170 type = gfc_get_nodesc_array_type (type, sym->as,
2171 byref ? PACKED_FULL
2172 : PACKED_STATIC,
2173 restricted);
2174 byref = 0;
2177 else
2179 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2180 if (sym->attr.pointer)
2181 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2182 : GFC_ARRAY_POINTER;
2183 else if (sym->attr.allocatable)
2184 akind = GFC_ARRAY_ALLOCATABLE;
2185 type = gfc_build_array_type (type, sym->as, akind, restricted,
2186 sym->attr.contiguous);
2189 else
2191 if (sym->attr.allocatable || sym->attr.pointer
2192 || gfc_is_associate_pointer (sym))
2193 type = gfc_build_pointer_type (sym, type);
2196 /* We currently pass all parameters by reference.
2197 See f95_get_function_decl. For dummy function parameters return the
2198 function type. */
2199 if (byref)
2201 /* We must use pointer types for potentially absent variables. The
2202 optimizers assume a reference type argument is never NULL. */
2203 if (sym->attr.optional
2204 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2205 type = build_pointer_type (type);
2206 else
2208 type = build_reference_type (type);
2209 if (restricted)
2210 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2214 return (type);
2217 /* Layout and output debug info for a record type. */
2219 void
2220 gfc_finish_type (tree type)
2222 tree decl;
2224 decl = build_decl (input_location,
2225 TYPE_DECL, NULL_TREE, type);
2226 TYPE_STUB_DECL (type) = decl;
2227 layout_type (type);
2228 rest_of_type_compilation (type, 1);
2229 rest_of_decl_compilation (decl, 1, 0);
2232 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2233 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2234 to the end of the field list pointed to by *CHAIN.
2236 Returns a pointer to the new field. */
2238 static tree
2239 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2241 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2243 DECL_CONTEXT (decl) = context;
2244 DECL_CHAIN (decl) = NULL_TREE;
2245 if (TYPE_FIELDS (context) == NULL_TREE)
2246 TYPE_FIELDS (context) = decl;
2247 if (chain != NULL)
2249 if (*chain != NULL)
2250 **chain = decl;
2251 *chain = &DECL_CHAIN (decl);
2254 return decl;
2257 /* Like `gfc_add_field_to_struct_1', but adds alignment
2258 information. */
2260 tree
2261 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2263 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2265 DECL_INITIAL (decl) = 0;
2266 DECL_ALIGN (decl) = 0;
2267 DECL_USER_ALIGN (decl) = 0;
2269 return decl;
2273 /* Copy the backend_decl and component backend_decls if
2274 the two derived type symbols are "equal", as described
2275 in 4.4.2 and resolved by gfc_compare_derived_types. */
2278 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2279 bool from_gsym)
2281 gfc_component *to_cm;
2282 gfc_component *from_cm;
2284 if (from == to)
2285 return 1;
2287 if (from->backend_decl == NULL
2288 || !gfc_compare_derived_types (from, to))
2289 return 0;
2291 to->backend_decl = from->backend_decl;
2293 to_cm = to->components;
2294 from_cm = from->components;
2296 /* Copy the component declarations. If a component is itself
2297 a derived type, we need a copy of its component declarations.
2298 This is done by recursing into gfc_get_derived_type and
2299 ensures that the component's component declarations have
2300 been built. If it is a character, we need the character
2301 length, as well. */
2302 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2304 to_cm->backend_decl = from_cm->backend_decl;
2305 if (from_cm->ts.type == BT_DERIVED
2306 && (!from_cm->attr.pointer || from_gsym))
2307 gfc_get_derived_type (to_cm->ts.u.derived);
2308 else if (from_cm->ts.type == BT_CLASS
2309 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2310 gfc_get_derived_type (to_cm->ts.u.derived);
2311 else if (from_cm->ts.type == BT_CHARACTER)
2312 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2315 return 1;
2319 /* Build a tree node for a procedure pointer component. */
2321 tree
2322 gfc_get_ppc_type (gfc_component* c)
2324 tree t;
2326 /* Explicit interface. */
2327 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2328 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2330 /* Implicit interface (only return value may be known). */
2331 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2332 t = gfc_typenode_for_spec (&c->ts);
2333 else
2334 t = void_type_node;
2336 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2340 /* Build a tree node for a derived type. If there are equal
2341 derived types, with different local names, these are built
2342 at the same time. If an equal derived type has been built
2343 in a parent namespace, this is used. */
2345 tree
2346 gfc_get_derived_type (gfc_symbol * derived)
2348 tree typenode = NULL, field = NULL, field_type = NULL;
2349 tree canonical = NULL_TREE;
2350 tree *chain = NULL;
2351 bool got_canonical = false;
2352 bool unlimited_entity = false;
2353 gfc_component *c;
2354 gfc_dt_list *dt;
2355 gfc_namespace *ns;
2357 if (derived->attr.unlimited_polymorphic)
2358 return ptr_type_node;
2360 if (derived && derived->attr.flavor == FL_PROCEDURE
2361 && derived->attr.generic)
2362 derived = gfc_find_dt_in_generic (derived);
2364 /* See if it's one of the iso_c_binding derived types. */
2365 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2367 if (derived->backend_decl)
2368 return derived->backend_decl;
2370 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2371 derived->backend_decl = ptr_type_node;
2372 else
2373 derived->backend_decl = pfunc_type_node;
2375 derived->ts.kind = gfc_index_integer_kind;
2376 derived->ts.type = BT_INTEGER;
2377 /* Set the f90_type to BT_VOID as a way to recognize something of type
2378 BT_INTEGER that needs to fit a void * for the purpose of the
2379 iso_c_binding derived types. */
2380 derived->ts.f90_type = BT_VOID;
2382 return derived->backend_decl;
2385 /* If use associated, use the module type for this one. */
2386 if (derived->backend_decl == NULL
2387 && derived->attr.use_assoc
2388 && derived->module
2389 && gfc_get_module_backend_decl (derived))
2390 goto copy_derived_types;
2392 /* The derived types from an earlier namespace can be used as the
2393 canonical type. */
2394 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2395 && gfc_global_ns_list)
2397 for (ns = gfc_global_ns_list;
2398 ns->translated && !got_canonical;
2399 ns = ns->sibling)
2401 dt = ns->derived_types;
2402 for (; dt && !canonical; dt = dt->next)
2404 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2405 if (derived->backend_decl)
2406 got_canonical = true;
2411 /* Store up the canonical type to be added to this one. */
2412 if (got_canonical)
2414 if (TYPE_CANONICAL (derived->backend_decl))
2415 canonical = TYPE_CANONICAL (derived->backend_decl);
2416 else
2417 canonical = derived->backend_decl;
2419 derived->backend_decl = NULL_TREE;
2422 /* derived->backend_decl != 0 means we saw it before, but its
2423 components' backend_decl may have not been built. */
2424 if (derived->backend_decl)
2426 /* Its components' backend_decl have been built or we are
2427 seeing recursion through the formal arglist of a procedure
2428 pointer component. */
2429 if (TYPE_FIELDS (derived->backend_decl)
2430 || derived->attr.proc_pointer_comp)
2431 return derived->backend_decl;
2432 else
2433 typenode = derived->backend_decl;
2435 else
2437 /* We see this derived type first time, so build the type node. */
2438 typenode = make_node (RECORD_TYPE);
2439 TYPE_NAME (typenode) = get_identifier (derived->name);
2440 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2441 derived->backend_decl = typenode;
2444 if (derived->components
2445 && derived->components->ts.type == BT_DERIVED
2446 && strcmp (derived->components->name, "_data") == 0
2447 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2448 unlimited_entity = true;
2450 /* Go through the derived type components, building them as
2451 necessary. The reason for doing this now is that it is
2452 possible to recurse back to this derived type through a
2453 pointer component (PR24092). If this happens, the fields
2454 will be built and so we can return the type. */
2455 for (c = derived->components; c; c = c->next)
2457 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2458 continue;
2460 if ((!c->attr.pointer && !c->attr.proc_pointer)
2461 || c->ts.u.derived->backend_decl == NULL)
2462 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2464 if (c->ts.u.derived->attr.is_iso_c)
2466 /* Need to copy the modified ts from the derived type. The
2467 typespec was modified because C_PTR/C_FUNPTR are translated
2468 into (void *) from derived types. */
2469 c->ts.type = c->ts.u.derived->ts.type;
2470 c->ts.kind = c->ts.u.derived->ts.kind;
2471 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2472 if (c->initializer)
2474 c->initializer->ts.type = c->ts.type;
2475 c->initializer->ts.kind = c->ts.kind;
2476 c->initializer->ts.f90_type = c->ts.f90_type;
2477 c->initializer->expr_type = EXPR_NULL;
2482 if (TYPE_FIELDS (derived->backend_decl))
2483 return derived->backend_decl;
2485 /* Build the type member list. Install the newly created RECORD_TYPE
2486 node as DECL_CONTEXT of each FIELD_DECL. */
2487 for (c = derived->components; c; c = c->next)
2489 if (c->attr.proc_pointer)
2490 field_type = gfc_get_ppc_type (c);
2491 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2492 field_type = c->ts.u.derived->backend_decl;
2493 else
2495 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2497 /* Evaluate the string length. */
2498 gfc_conv_const_charlen (c->ts.u.cl);
2499 gcc_assert (c->ts.u.cl->backend_decl);
2501 else if (c->ts.type == BT_CHARACTER)
2502 c->ts.u.cl->backend_decl
2503 = build_int_cst (gfc_charlen_type_node, 0);
2505 field_type = gfc_typenode_for_spec (&c->ts);
2508 /* This returns an array descriptor type. Initialization may be
2509 required. */
2510 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2512 if (c->attr.pointer || c->attr.allocatable)
2514 enum gfc_array_kind akind;
2515 if (c->attr.pointer)
2516 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2517 : GFC_ARRAY_POINTER;
2518 else
2519 akind = GFC_ARRAY_ALLOCATABLE;
2520 /* Pointers to arrays aren't actually pointer types. The
2521 descriptors are separate, but the data is common. */
2522 field_type = gfc_build_array_type (field_type, c->as, akind,
2523 !c->attr.target
2524 && !c->attr.pointer,
2525 c->attr.contiguous);
2527 else
2528 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2529 PACKED_STATIC,
2530 !c->attr.target);
2532 else if ((c->attr.pointer || c->attr.allocatable)
2533 && !c->attr.proc_pointer
2534 && !(unlimited_entity && c == derived->components))
2535 field_type = build_pointer_type (field_type);
2537 if (c->attr.pointer)
2538 field_type = gfc_nonrestricted_type (field_type);
2540 /* vtype fields can point to different types to the base type. */
2541 if (c->ts.type == BT_DERIVED
2542 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2543 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2544 ptr_mode, true);
2546 /* Ensure that the CLASS language specific flag is set. */
2547 if (c->ts.type == BT_CLASS)
2549 if (POINTER_TYPE_P (field_type))
2550 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2551 else
2552 GFC_CLASS_TYPE_P (field_type) = 1;
2555 field = gfc_add_field_to_struct (typenode,
2556 get_identifier (c->name),
2557 field_type, &chain);
2558 if (c->loc.lb)
2559 gfc_set_decl_location (field, &c->loc);
2560 else if (derived->declared_at.lb)
2561 gfc_set_decl_location (field, &derived->declared_at);
2563 gfc_finish_decl_attrs (field, &c->attr);
2565 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2567 gcc_assert (field);
2568 if (!c->backend_decl)
2569 c->backend_decl = field;
2572 /* Now lay out the derived type, including the fields. */
2573 if (canonical)
2574 TYPE_CANONICAL (typenode) = canonical;
2576 gfc_finish_type (typenode);
2577 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2578 if (derived->module && derived->ns->proc_name
2579 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2581 if (derived->ns->proc_name->backend_decl
2582 && TREE_CODE (derived->ns->proc_name->backend_decl)
2583 == NAMESPACE_DECL)
2585 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2586 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2587 = derived->ns->proc_name->backend_decl;
2591 derived->backend_decl = typenode;
2593 copy_derived_types:
2595 for (dt = gfc_derived_types; dt; dt = dt->next)
2596 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2598 return derived->backend_decl;
2603 gfc_return_by_reference (gfc_symbol * sym)
2605 if (!sym->attr.function)
2606 return 0;
2608 if (sym->attr.dimension)
2609 return 1;
2611 if (sym->ts.type == BT_CHARACTER
2612 && !sym->attr.is_bind_c
2613 && (!sym->attr.result
2614 || !sym->ns->proc_name
2615 || !sym->ns->proc_name->attr.is_bind_c))
2616 return 1;
2618 /* Possibly return complex numbers by reference for g77 compatibility.
2619 We don't do this for calls to intrinsics (as the library uses the
2620 -fno-f2c calling convention), nor for calls to functions which always
2621 require an explicit interface, as no compatibility problems can
2622 arise there. */
2623 if (gfc_option.flag_f2c
2624 && sym->ts.type == BT_COMPLEX
2625 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2626 return 1;
2628 return 0;
2631 static tree
2632 gfc_get_mixed_entry_union (gfc_namespace *ns)
2634 tree type;
2635 tree *chain = NULL;
2636 char name[GFC_MAX_SYMBOL_LEN + 1];
2637 gfc_entry_list *el, *el2;
2639 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2640 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2642 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2644 /* Build the type node. */
2645 type = make_node (UNION_TYPE);
2647 TYPE_NAME (type) = get_identifier (name);
2649 for (el = ns->entries; el; el = el->next)
2651 /* Search for duplicates. */
2652 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2653 if (el2->sym->result == el->sym->result)
2654 break;
2656 if (el == el2)
2657 gfc_add_field_to_struct_1 (type,
2658 get_identifier (el->sym->result->name),
2659 gfc_sym_type (el->sym->result), &chain);
2662 /* Finish off the type. */
2663 gfc_finish_type (type);
2664 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2665 return type;
2668 /* Create a "fn spec" based on the formal arguments;
2669 cf. create_function_arglist. */
2671 static tree
2672 create_fn_spec (gfc_symbol *sym, tree fntype)
2674 char spec[150];
2675 size_t spec_len;
2676 gfc_formal_arglist *f;
2677 tree tmp;
2679 memset (&spec, 0, sizeof (spec));
2680 spec[0] = '.';
2681 spec_len = 1;
2683 if (sym->attr.entry_master)
2684 spec[spec_len++] = 'R';
2685 if (gfc_return_by_reference (sym))
2687 gfc_symbol *result = sym->result ? sym->result : sym;
2689 if (result->attr.pointer || sym->attr.proc_pointer)
2690 spec[spec_len++] = '.';
2691 else
2692 spec[spec_len++] = 'w';
2693 if (sym->ts.type == BT_CHARACTER)
2694 spec[spec_len++] = 'R';
2697 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2698 if (spec_len < sizeof (spec))
2700 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2701 || f->sym->attr.external || f->sym->attr.cray_pointer
2702 || (f->sym->ts.type == BT_DERIVED
2703 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2704 || f->sym->ts.u.derived->attr.pointer_comp))
2705 || (f->sym->ts.type == BT_CLASS
2706 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2707 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2708 spec[spec_len++] = '.';
2709 else if (f->sym->attr.intent == INTENT_IN)
2710 spec[spec_len++] = 'r';
2711 else if (f->sym)
2712 spec[spec_len++] = 'w';
2715 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2716 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2717 return build_type_attribute_variant (fntype, tmp);
2721 tree
2722 gfc_get_function_type (gfc_symbol * sym)
2724 tree type;
2725 vec<tree, va_gc> *typelist = NULL;
2726 gfc_formal_arglist *f;
2727 gfc_symbol *arg;
2728 int alternate_return = 0;
2729 bool is_varargs = true;
2731 /* Make sure this symbol is a function, a subroutine or the main
2732 program. */
2733 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2734 || sym->attr.flavor == FL_PROGRAM);
2736 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2737 so that they can be detected here and handled further down. */
2738 if (sym->backend_decl == NULL)
2739 sym->backend_decl = error_mark_node;
2740 else if (sym->backend_decl == error_mark_node)
2741 goto arg_type_list_done;
2742 else if (sym->attr.proc_pointer)
2743 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2744 else
2745 return TREE_TYPE (sym->backend_decl);
2747 if (sym->attr.entry_master)
2748 /* Additional parameter for selecting an entry point. */
2749 vec_safe_push (typelist, gfc_array_index_type);
2751 if (sym->result)
2752 arg = sym->result;
2753 else
2754 arg = sym;
2756 if (arg->ts.type == BT_CHARACTER)
2757 gfc_conv_const_charlen (arg->ts.u.cl);
2759 /* Some functions we use an extra parameter for the return value. */
2760 if (gfc_return_by_reference (sym))
2762 type = gfc_sym_type (arg);
2763 if (arg->ts.type == BT_COMPLEX
2764 || arg->attr.dimension
2765 || arg->ts.type == BT_CHARACTER)
2766 type = build_reference_type (type);
2768 vec_safe_push (typelist, type);
2769 if (arg->ts.type == BT_CHARACTER)
2771 if (!arg->ts.deferred)
2772 /* Transfer by value. */
2773 vec_safe_push (typelist, gfc_charlen_type_node);
2774 else
2775 /* Deferred character lengths are transferred by reference
2776 so that the value can be returned. */
2777 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2781 /* Build the argument types for the function. */
2782 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2784 arg = f->sym;
2785 if (arg)
2787 /* Evaluate constant character lengths here so that they can be
2788 included in the type. */
2789 if (arg->ts.type == BT_CHARACTER)
2790 gfc_conv_const_charlen (arg->ts.u.cl);
2792 if (arg->attr.flavor == FL_PROCEDURE)
2794 type = gfc_get_function_type (arg);
2795 type = build_pointer_type (type);
2797 else
2798 type = gfc_sym_type (arg);
2800 /* Parameter Passing Convention
2802 We currently pass all parameters by reference.
2803 Parameters with INTENT(IN) could be passed by value.
2804 The problem arises if a function is called via an implicit
2805 prototype. In this situation the INTENT is not known.
2806 For this reason all parameters to global functions must be
2807 passed by reference. Passing by value would potentially
2808 generate bad code. Worse there would be no way of telling that
2809 this code was bad, except that it would give incorrect results.
2811 Contained procedures could pass by value as these are never
2812 used without an explicit interface, and cannot be passed as
2813 actual parameters for a dummy procedure. */
2815 vec_safe_push (typelist, type);
2817 else
2819 if (sym->attr.subroutine)
2820 alternate_return = 1;
2824 /* Add hidden string length parameters. */
2825 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2827 arg = f->sym;
2828 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2830 if (!arg->ts.deferred)
2831 /* Transfer by value. */
2832 type = gfc_charlen_type_node;
2833 else
2834 /* Deferred character lengths are transferred by reference
2835 so that the value can be returned. */
2836 type = build_pointer_type (gfc_charlen_type_node);
2838 vec_safe_push (typelist, type);
2842 if (!vec_safe_is_empty (typelist)
2843 || sym->attr.is_main_program
2844 || sym->attr.if_source != IFSRC_UNKNOWN)
2845 is_varargs = false;
2847 if (sym->backend_decl == error_mark_node)
2848 sym->backend_decl = NULL_TREE;
2850 arg_type_list_done:
2852 if (alternate_return)
2853 type = integer_type_node;
2854 else if (!sym->attr.function || gfc_return_by_reference (sym))
2855 type = void_type_node;
2856 else if (sym->attr.mixed_entry_master)
2857 type = gfc_get_mixed_entry_union (sym->ns);
2858 else if (gfc_option.flag_f2c
2859 && sym->ts.type == BT_REAL
2860 && sym->ts.kind == gfc_default_real_kind
2861 && !sym->attr.always_explicit)
2863 /* Special case: f2c calling conventions require that (scalar)
2864 default REAL functions return the C type double instead. f2c
2865 compatibility is only an issue with functions that don't
2866 require an explicit interface, as only these could be
2867 implemented in Fortran 77. */
2868 sym->ts.kind = gfc_default_double_kind;
2869 type = gfc_typenode_for_spec (&sym->ts);
2870 sym->ts.kind = gfc_default_real_kind;
2872 else if (sym->result && sym->result->attr.proc_pointer)
2873 /* Procedure pointer return values. */
2875 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2877 /* Unset proc_pointer as gfc_get_function_type
2878 is called recursively. */
2879 sym->result->attr.proc_pointer = 0;
2880 type = build_pointer_type (gfc_get_function_type (sym->result));
2881 sym->result->attr.proc_pointer = 1;
2883 else
2884 type = gfc_sym_type (sym->result);
2886 else
2887 type = gfc_sym_type (sym);
2889 if (is_varargs)
2890 type = build_varargs_function_type_vec (type, typelist);
2891 else
2892 type = build_function_type_vec (type, typelist);
2893 type = create_fn_spec (sym, type);
2895 return type;
2898 /* Language hooks for middle-end access to type nodes. */
2900 /* Return an integer type with BITS bits of precision,
2901 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2903 tree
2904 gfc_type_for_size (unsigned bits, int unsignedp)
2906 if (!unsignedp)
2908 int i;
2909 for (i = 0; i <= MAX_INT_KINDS; ++i)
2911 tree type = gfc_integer_types[i];
2912 if (type && bits == TYPE_PRECISION (type))
2913 return type;
2916 /* Handle TImode as a special case because it is used by some backends
2917 (e.g. ARM) even though it is not available for normal use. */
2918 #if HOST_BITS_PER_WIDE_INT >= 64
2919 if (bits == TYPE_PRECISION (intTI_type_node))
2920 return intTI_type_node;
2921 #endif
2923 if (bits <= TYPE_PRECISION (intQI_type_node))
2924 return intQI_type_node;
2925 if (bits <= TYPE_PRECISION (intHI_type_node))
2926 return intHI_type_node;
2927 if (bits <= TYPE_PRECISION (intSI_type_node))
2928 return intSI_type_node;
2929 if (bits <= TYPE_PRECISION (intDI_type_node))
2930 return intDI_type_node;
2931 if (bits <= TYPE_PRECISION (intTI_type_node))
2932 return intTI_type_node;
2934 else
2936 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2937 return unsigned_intQI_type_node;
2938 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2939 return unsigned_intHI_type_node;
2940 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2941 return unsigned_intSI_type_node;
2942 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2943 return unsigned_intDI_type_node;
2944 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2945 return unsigned_intTI_type_node;
2948 return NULL_TREE;
2951 /* Return a data type that has machine mode MODE. If the mode is an
2952 integer, then UNSIGNEDP selects between signed and unsigned types. */
2954 tree
2955 gfc_type_for_mode (machine_mode mode, int unsignedp)
2957 int i;
2958 tree *base;
2960 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2961 base = gfc_real_types;
2962 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2963 base = gfc_complex_types;
2964 else if (SCALAR_INT_MODE_P (mode))
2966 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2967 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2969 else if (VECTOR_MODE_P (mode))
2971 machine_mode inner_mode = GET_MODE_INNER (mode);
2972 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2973 if (inner_type != NULL_TREE)
2974 return build_vector_type_for_mode (inner_type, mode);
2975 return NULL_TREE;
2977 else
2978 return NULL_TREE;
2980 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2982 tree type = base[i];
2983 if (type && mode == TYPE_MODE (type))
2984 return type;
2987 return NULL_TREE;
2990 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2991 in that case. */
2993 bool
2994 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2996 int rank, dim;
2997 bool indirect = false;
2998 tree etype, ptype, field, t, base_decl;
2999 tree data_off, dim_off, dim_size, elem_size;
3000 tree lower_suboff, upper_suboff, stride_suboff;
3002 if (! GFC_DESCRIPTOR_TYPE_P (type))
3004 if (! POINTER_TYPE_P (type))
3005 return false;
3006 type = TREE_TYPE (type);
3007 if (! GFC_DESCRIPTOR_TYPE_P (type))
3008 return false;
3009 indirect = true;
3012 rank = GFC_TYPE_ARRAY_RANK (type);
3013 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3014 return false;
3016 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3017 gcc_assert (POINTER_TYPE_P (etype));
3018 etype = TREE_TYPE (etype);
3020 /* If the type is not a scalar coarray. */
3021 if (TREE_CODE (etype) == ARRAY_TYPE)
3022 etype = TREE_TYPE (etype);
3024 /* Can't handle variable sized elements yet. */
3025 if (int_size_in_bytes (etype) <= 0)
3026 return false;
3027 /* Nor non-constant lower bounds in assumed shape arrays. */
3028 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3029 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3031 for (dim = 0; dim < rank; dim++)
3032 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3033 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3034 return false;
3037 memset (info, '\0', sizeof (*info));
3038 info->ndimensions = rank;
3039 info->element_type = etype;
3040 ptype = build_pointer_type (gfc_array_index_type);
3041 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3042 if (!base_decl)
3044 base_decl = make_node (DEBUG_EXPR_DECL);
3045 DECL_ARTIFICIAL (base_decl) = 1;
3046 TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3047 DECL_MODE (base_decl) = TYPE_MODE (TREE_TYPE (base_decl));
3048 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3050 info->base_decl = base_decl;
3051 if (indirect)
3052 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3054 if (GFC_TYPE_ARRAY_SPAN (type))
3055 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3056 else
3057 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3058 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3059 data_off = byte_position (field);
3060 field = DECL_CHAIN (field);
3061 field = DECL_CHAIN (field);
3062 field = DECL_CHAIN (field);
3063 dim_off = byte_position (field);
3064 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3065 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3066 stride_suboff = byte_position (field);
3067 field = DECL_CHAIN (field);
3068 lower_suboff = byte_position (field);
3069 field = DECL_CHAIN (field);
3070 upper_suboff = byte_position (field);
3072 t = base_decl;
3073 if (!integer_zerop (data_off))
3074 t = fold_build_pointer_plus (t, data_off);
3075 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3076 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3077 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3078 info->allocated = build2 (NE_EXPR, boolean_type_node,
3079 info->data_location, null_pointer_node);
3080 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3081 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3082 info->associated = build2 (NE_EXPR, boolean_type_node,
3083 info->data_location, null_pointer_node);
3085 for (dim = 0; dim < rank; dim++)
3087 t = fold_build_pointer_plus (base_decl,
3088 size_binop (PLUS_EXPR,
3089 dim_off, lower_suboff));
3090 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3091 info->dimen[dim].lower_bound = t;
3092 t = fold_build_pointer_plus (base_decl,
3093 size_binop (PLUS_EXPR,
3094 dim_off, upper_suboff));
3095 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3096 info->dimen[dim].upper_bound = t;
3097 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3098 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3100 /* Assumed shape arrays have known lower bounds. */
3101 info->dimen[dim].upper_bound
3102 = build2 (MINUS_EXPR, gfc_array_index_type,
3103 info->dimen[dim].upper_bound,
3104 info->dimen[dim].lower_bound);
3105 info->dimen[dim].lower_bound
3106 = fold_convert (gfc_array_index_type,
3107 GFC_TYPE_ARRAY_LBOUND (type, dim));
3108 info->dimen[dim].upper_bound
3109 = build2 (PLUS_EXPR, gfc_array_index_type,
3110 info->dimen[dim].lower_bound,
3111 info->dimen[dim].upper_bound);
3113 t = fold_build_pointer_plus (base_decl,
3114 size_binop (PLUS_EXPR,
3115 dim_off, stride_suboff));
3116 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3117 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3118 info->dimen[dim].stride = t;
3119 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3122 return true;
3126 /* Create a type to handle vector subscripts for coarray library calls. It
3127 has the form:
3128 struct caf_vector_t {
3129 size_t nvec; // size of the vector
3130 union {
3131 struct {
3132 void *vector;
3133 int kind;
3134 } v;
3135 struct {
3136 ptrdiff_t lower_bound;
3137 ptrdiff_t upper_bound;
3138 ptrdiff_t stride;
3139 } triplet;
3140 } u;
3142 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3143 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3145 tree
3146 gfc_get_caf_vector_type (int dim)
3148 static tree vector_types[GFC_MAX_DIMENSIONS];
3149 static tree vec_type = NULL_TREE;
3150 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3152 if (vector_types[dim-1] != NULL_TREE)
3153 return vector_types[dim-1];
3155 if (vec_type == NULL_TREE)
3157 chain = 0;
3158 vect_struct_type = make_node (RECORD_TYPE);
3159 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3160 get_identifier ("vector"),
3161 pvoid_type_node, &chain);
3162 TREE_NO_WARNING (tmp) = 1;
3163 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3164 get_identifier ("kind"),
3165 integer_type_node, &chain);
3166 TREE_NO_WARNING (tmp) = 1;
3167 gfc_finish_type (vect_struct_type);
3169 chain = 0;
3170 triplet_struct_type = make_node (RECORD_TYPE);
3171 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3172 get_identifier ("lower_bound"),
3173 gfc_array_index_type, &chain);
3174 TREE_NO_WARNING (tmp) = 1;
3175 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3176 get_identifier ("upper_bound"),
3177 gfc_array_index_type, &chain);
3178 TREE_NO_WARNING (tmp) = 1;
3179 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3180 gfc_array_index_type, &chain);
3181 TREE_NO_WARNING (tmp) = 1;
3182 gfc_finish_type (triplet_struct_type);
3184 chain = 0;
3185 union_type = make_node (UNION_TYPE);
3186 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3187 vect_struct_type, &chain);
3188 TREE_NO_WARNING (tmp) = 1;
3189 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3190 triplet_struct_type, &chain);
3191 TREE_NO_WARNING (tmp) = 1;
3192 gfc_finish_type (union_type);
3194 chain = 0;
3195 vec_type = make_node (RECORD_TYPE);
3196 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3197 size_type_node, &chain);
3198 TREE_NO_WARNING (tmp) = 1;
3199 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3200 union_type, &chain);
3201 TREE_NO_WARNING (tmp) = 1;
3202 gfc_finish_type (vec_type);
3203 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3206 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3207 gfc_rank_cst[dim-1]);
3208 vector_types[dim-1] = build_array_type (vec_type, tmp);
3209 return vector_types[dim-1];
3212 #include "gt-fortran-trans-types.h"