1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky, lich@inria.inria.fr.
4 Changes by Michael Meissner, meissner@osf.org.
5 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6 Brendan Eich, brendan@microunity.com.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-attr.h"
38 #include "stringpool.h"
39 #include "stor-layout.h"
55 #include "hash-table.h"
58 #include "target-def.h"
59 #include "common/common-target.h"
60 #include "langhooks.h"
61 #include "dominance.h"
67 #include "cfgcleanup.h"
69 #include "basic-block.h"
70 #include "sched-int.h"
71 #include "tree-ssa-alias.h"
72 #include "internal-fn.h"
73 #include "gimple-fold.h"
75 #include "gimple-expr.h"
80 #include "diagnostic.h"
81 #include "target-globals.h"
83 #include "tree-pass.h"
86 #include "plugin-api.h"
92 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
93 #define UNSPEC_ADDRESS_P(X) \
94 (GET_CODE (X) == UNSPEC \
95 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
96 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
98 /* Extract the symbol or label from UNSPEC wrapper X. */
99 #define UNSPEC_ADDRESS(X) \
102 /* Extract the symbol type from UNSPEC wrapper X. */
103 #define UNSPEC_ADDRESS_TYPE(X) \
104 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
106 /* The maximum distance between the top of the stack frame and the
107 value $sp has when we save and restore registers.
109 The value for normal-mode code must be a SMALL_OPERAND and must
110 preserve the maximum stack alignment. We therefore use a value
111 of 0x7ff0 in this case.
113 microMIPS LWM and SWM support 12-bit offsets (from -0x800 to 0x7ff),
114 so we use a maximum of 0x7f0 for TARGET_MICROMIPS.
116 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
117 up to 0x7f8 bytes and can usually save or restore all the registers
118 that we need to save or restore. (Note that we can only use these
119 instructions for o32, for which the stack alignment is 8 bytes.)
121 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
122 RESTORE are not available. We can then use unextended instructions
123 to save and restore registers, and to allocate and deallocate the top
124 part of the frame. */
125 #define MIPS_MAX_FIRST_STACK_STEP \
126 (!TARGET_COMPRESSION ? 0x7ff0 \
127 : TARGET_MICROMIPS || GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
128 : TARGET_64BIT ? 0x100 : 0x400)
130 /* True if INSN is a mips.md pattern or asm statement. */
131 /* ??? This test exists through the compiler, perhaps it should be
133 #define USEFUL_INSN_P(INSN) \
134 (NONDEBUG_INSN_P (INSN) \
135 && GET_CODE (PATTERN (INSN)) != USE \
136 && GET_CODE (PATTERN (INSN)) != CLOBBER)
138 /* If INSN is a delayed branch sequence, return the first instruction
139 in the sequence, otherwise return INSN itself. */
140 #define SEQ_BEGIN(INSN) \
141 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
142 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), 0, 0)) \
145 /* Likewise for the last instruction in a delayed branch sequence. */
146 #define SEQ_END(INSN) \
147 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
148 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), \
150 XVECLEN (PATTERN (INSN), 0) - 1)) \
153 /* Execute the following loop body with SUBINSN set to each instruction
154 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
155 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
156 for ((SUBINSN) = SEQ_BEGIN (INSN); \
157 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
158 (SUBINSN) = NEXT_INSN (SUBINSN))
160 /* True if bit BIT is set in VALUE. */
161 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
163 /* Return the opcode for a ptr_mode load of the form:
165 l[wd] DEST, OFFSET(BASE). */
166 #define MIPS_LOAD_PTR(DEST, OFFSET, BASE) \
167 (((ptr_mode == DImode ? 0x37 : 0x23) << 26) \
172 /* Return the opcode to move register SRC into register DEST. */
173 #define MIPS_MOVE(DEST, SRC) \
174 ((TARGET_64BIT ? 0x2d : 0x21) \
178 /* Return the opcode for:
181 #define MIPS_LUI(DEST, VALUE) \
182 ((0xf << 26) | ((DEST) << 16) | (VALUE))
184 /* Return the opcode to jump to register DEST. */
185 #define MIPS_JR(DEST) \
186 (((DEST) << 21) | 0x8)
188 /* Return the opcode for:
190 bal . + (1 + OFFSET) * 4. */
191 #define MIPS_BAL(OFFSET) \
192 ((0x1 << 26) | (0x11 << 16) | (OFFSET))
194 /* Return the usual opcode for a nop. */
197 /* Classifies an address.
200 A natural register + offset address. The register satisfies
201 mips_valid_base_register_p and the offset is a const_arith_operand.
204 A LO_SUM rtx. The first operand is a valid base register and
205 the second operand is a symbolic address.
208 A signed 16-bit constant address.
211 A constant symbolic address. */
212 enum mips_address_type
{
219 /* Macros to create an enumeration identifier for a function prototype. */
220 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
221 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
222 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
223 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
225 /* Classifies the prototype of a built-in function. */
226 enum mips_function_type
{
227 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
228 #include "config/mips/mips-ftypes.def"
229 #undef DEF_MIPS_FTYPE
233 /* Specifies how a built-in function should be converted into rtl. */
234 enum mips_builtin_type
{
235 /* The function corresponds directly to an .md pattern. The return
236 value is mapped to operand 0 and the arguments are mapped to
237 operands 1 and above. */
240 /* The function corresponds directly to an .md pattern. There is no return
241 value and the arguments are mapped to operands 0 and above. */
242 MIPS_BUILTIN_DIRECT_NO_TARGET
,
244 /* The function corresponds to a comparison instruction followed by
245 a mips_cond_move_tf_ps pattern. The first two arguments are the
246 values to compare and the second two arguments are the vector
247 operands for the movt.ps or movf.ps instruction (in assembly order). */
251 /* The function corresponds to a V2SF comparison instruction. Operand 0
252 of this instruction is the result of the comparison, which has mode
253 CCV2 or CCV4. The function arguments are mapped to operands 1 and
254 above. The function's return value is an SImode boolean that is
255 true under the following conditions:
257 MIPS_BUILTIN_CMP_ANY: one of the registers is true
258 MIPS_BUILTIN_CMP_ALL: all of the registers are true
259 MIPS_BUILTIN_CMP_LOWER: the first register is true
260 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
261 MIPS_BUILTIN_CMP_ANY
,
262 MIPS_BUILTIN_CMP_ALL
,
263 MIPS_BUILTIN_CMP_UPPER
,
264 MIPS_BUILTIN_CMP_LOWER
,
266 /* As above, but the instruction only sets a single $fcc register. */
267 MIPS_BUILTIN_CMP_SINGLE
,
269 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
270 MIPS_BUILTIN_BPOSGE32
273 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
274 #define MIPS_FP_CONDITIONS(MACRO) \
292 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
293 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
294 enum mips_fp_condition
{
295 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND
)
297 #undef DECLARE_MIPS_COND
299 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
300 #define STRINGIFY(X) #X
301 static const char *const mips_fp_conditions
[] = {
302 MIPS_FP_CONDITIONS (STRINGIFY
)
306 /* A class used to control a comdat-style stub that we output in each
307 translation unit that needs it. */
308 class mips_one_only_stub
{
310 virtual ~mips_one_only_stub () {}
312 /* Return the name of the stub. */
313 virtual const char *get_name () = 0;
315 /* Output the body of the function to asm_out_file. */
316 virtual void output_body () = 0;
319 /* Tuning information that is automatically derived from other sources
320 (such as the scheduler). */
322 /* The architecture and tuning settings that this structure describes. */
326 /* True if this structure describes MIPS16 settings. */
329 /* True if the structure has been initialized. */
332 /* True if "MULT $0, $0" is preferable to "MTLO $0; MTHI $0"
333 when optimizing for speed. */
334 bool fast_mult_zero_zero_p
;
337 /* Information about a function's frame layout. */
338 struct GTY(()) mips_frame_info
{
339 /* The size of the frame in bytes. */
340 HOST_WIDE_INT total_size
;
342 /* The number of bytes allocated to variables. */
343 HOST_WIDE_INT var_size
;
345 /* The number of bytes allocated to outgoing function arguments. */
346 HOST_WIDE_INT args_size
;
348 /* The number of bytes allocated to the .cprestore slot, or 0 if there
350 HOST_WIDE_INT cprestore_size
;
352 /* Bit X is set if the function saves or restores GPR X. */
355 /* Likewise FPR X. */
358 /* Likewise doubleword accumulator X ($acX). */
359 unsigned int acc_mask
;
361 /* The number of GPRs, FPRs, doubleword accumulators and COP0
365 unsigned int num_acc
;
366 unsigned int num_cop0_regs
;
368 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
369 save slots from the top of the frame, or zero if no such slots are
371 HOST_WIDE_INT gp_save_offset
;
372 HOST_WIDE_INT fp_save_offset
;
373 HOST_WIDE_INT acc_save_offset
;
374 HOST_WIDE_INT cop0_save_offset
;
376 /* Likewise, but giving offsets from the bottom of the frame. */
377 HOST_WIDE_INT gp_sp_offset
;
378 HOST_WIDE_INT fp_sp_offset
;
379 HOST_WIDE_INT acc_sp_offset
;
380 HOST_WIDE_INT cop0_sp_offset
;
382 /* Similar, but the value passed to _mcount. */
383 HOST_WIDE_INT ra_fp_offset
;
385 /* The offset of arg_pointer_rtx from the bottom of the frame. */
386 HOST_WIDE_INT arg_pointer_offset
;
388 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
389 HOST_WIDE_INT hard_frame_pointer_offset
;
392 struct GTY(()) machine_function
{
393 /* The next floating-point condition-code register to allocate
394 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
395 unsigned int next_fcc
;
397 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
398 rtx mips16_gp_pseudo_rtx
;
400 /* The number of extra stack bytes taken up by register varargs.
401 This area is allocated by the callee at the very top of the frame. */
404 /* The current frame information, calculated by mips_compute_frame_info. */
405 struct mips_frame_info frame
;
407 /* The register to use as the function's global pointer, or INVALID_REGNUM
408 if the function doesn't need one. */
409 unsigned int global_pointer
;
411 /* How many instructions it takes to load a label into $AT, or 0 if
412 this property hasn't yet been calculated. */
413 unsigned int load_label_num_insns
;
415 /* True if mips_adjust_insn_length should ignore an instruction's
417 bool ignore_hazard_length_p
;
419 /* True if the whole function is suitable for .set noreorder and
421 bool all_noreorder_p
;
423 /* True if the function has "inflexible" and "flexible" references
424 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
425 and mips_cfun_has_flexible_gp_ref_p for details. */
426 bool has_inflexible_gp_insn_p
;
427 bool has_flexible_gp_insn_p
;
429 /* True if the function's prologue must load the global pointer
430 value into pic_offset_table_rtx and store the same value in
431 the function's cprestore slot (if any). Even if this value
432 is currently false, we may decide to set it to true later;
433 see mips_must_initialize_gp_p () for details. */
434 bool must_initialize_gp_p
;
436 /* True if the current function must restore $gp after any potential
437 clobber. This value is only meaningful during the first post-epilogue
438 split_insns pass; see mips_must_initialize_gp_p () for details. */
439 bool must_restore_gp_when_clobbered_p
;
441 /* True if this is an interrupt handler. */
442 bool interrupt_handler_p
;
444 /* True if this is an interrupt handler that uses shadow registers. */
445 bool use_shadow_register_set_p
;
447 /* True if this is an interrupt handler that should keep interrupts
449 bool keep_interrupts_masked_p
;
451 /* True if this is an interrupt handler that should use DERET
453 bool use_debug_exception_return_p
;
456 /* Information about a single argument. */
457 struct mips_arg_info
{
458 /* True if the argument is passed in a floating-point register, or
459 would have been if we hadn't run out of registers. */
462 /* The number of words passed in registers, rounded up. */
463 unsigned int reg_words
;
465 /* For EABI, the offset of the first register from GP_ARG_FIRST or
466 FP_ARG_FIRST. For other ABIs, the offset of the first register from
467 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
468 comment for details).
470 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
472 unsigned int reg_offset
;
474 /* The number of words that must be passed on the stack, rounded up. */
475 unsigned int stack_words
;
477 /* The offset from the start of the stack overflow area of the argument's
478 first stack word. Only meaningful when STACK_WORDS is nonzero. */
479 unsigned int stack_offset
;
482 /* Information about an address described by mips_address_type.
488 REG is the base register and OFFSET is the constant offset.
491 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
492 is the type of symbol it references.
495 SYMBOL_TYPE is the type of symbol that the address references. */
496 struct mips_address_info
{
497 enum mips_address_type type
;
500 enum mips_symbol_type symbol_type
;
503 /* One stage in a constant building sequence. These sequences have
507 A = A CODE[1] VALUE[1]
508 A = A CODE[2] VALUE[2]
511 where A is an accumulator, each CODE[i] is a binary rtl operation
512 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
513 struct mips_integer_op
{
515 unsigned HOST_WIDE_INT value
;
518 /* The largest number of operations needed to load an integer constant.
519 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
520 When the lowest bit is clear, we can try, but reject a sequence with
521 an extra SLL at the end. */
522 #define MIPS_MAX_INTEGER_OPS 7
524 /* Information about a MIPS16e SAVE or RESTORE instruction. */
525 struct mips16e_save_restore_info
{
526 /* The number of argument registers saved by a SAVE instruction.
527 0 for RESTORE instructions. */
530 /* Bit X is set if the instruction saves or restores GPR X. */
533 /* The total number of bytes to allocate. */
537 /* Costs of various operations on the different architectures. */
539 struct mips_rtx_cost_data
541 unsigned short fp_add
;
542 unsigned short fp_mult_sf
;
543 unsigned short fp_mult_df
;
544 unsigned short fp_div_sf
;
545 unsigned short fp_div_df
;
546 unsigned short int_mult_si
;
547 unsigned short int_mult_di
;
548 unsigned short int_div_si
;
549 unsigned short int_div_di
;
550 unsigned short branch_cost
;
551 unsigned short memory_latency
;
554 /* Global variables for machine-dependent things. */
556 /* The -G setting, or the configuration's default small-data limit if
557 no -G option is given. */
558 static unsigned int mips_small_data_threshold
;
560 /* The number of file directives written by mips_output_filename. */
561 int num_source_filenames
;
563 /* The name that appeared in the last .file directive written by
564 mips_output_filename, or "" if mips_output_filename hasn't
565 written anything yet. */
566 const char *current_function_file
= "";
568 /* Arrays that map GCC register numbers to debugger register numbers. */
569 int mips_dbx_regno
[FIRST_PSEUDO_REGISTER
];
570 int mips_dwarf_regno
[FIRST_PSEUDO_REGISTER
];
572 /* Information about the current function's epilogue, used only while
575 /* A list of queued REG_CFA_RESTORE notes. */
578 /* The CFA is currently defined as CFA_REG + CFA_OFFSET. */
580 HOST_WIDE_INT cfa_offset
;
582 /* The offset of the CFA from the stack pointer while restoring
584 HOST_WIDE_INT cfa_restore_sp_offset
;
587 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
588 struct mips_asm_switch mips_noreorder
= { "reorder", 0 };
589 struct mips_asm_switch mips_nomacro
= { "macro", 0 };
590 struct mips_asm_switch mips_noat
= { "at", 0 };
592 /* True if we're writing out a branch-likely instruction rather than a
594 static bool mips_branch_likely
;
596 /* The current instruction-set architecture. */
597 enum processor mips_arch
;
598 const struct mips_cpu_info
*mips_arch_info
;
600 /* The processor that we should tune the code for. */
601 enum processor mips_tune
;
602 const struct mips_cpu_info
*mips_tune_info
;
604 /* The ISA level associated with mips_arch. */
607 /* The ISA revision level. This is 0 for MIPS I to V and N for
611 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
612 static const struct mips_cpu_info
*mips_isa_option_info
;
614 /* Which cost information to use. */
615 static const struct mips_rtx_cost_data
*mips_cost
;
617 /* The ambient target flags, excluding MASK_MIPS16. */
618 static int mips_base_target_flags
;
620 /* The default compression mode. */
621 unsigned int mips_base_compression_flags
;
623 /* The ambient values of other global variables. */
624 static int mips_base_schedule_insns
; /* flag_schedule_insns */
625 static int mips_base_reorder_blocks_and_partition
; /* flag_reorder... */
626 static int mips_base_move_loop_invariants
; /* flag_move_loop_invariants */
627 static int mips_base_align_loops
; /* align_loops */
628 static int mips_base_align_jumps
; /* align_jumps */
629 static int mips_base_align_functions
; /* align_functions */
631 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
632 bool mips_hard_regno_mode_ok
[(int) MAX_MACHINE_MODE
][FIRST_PSEUDO_REGISTER
];
634 /* Index C is true if character C is a valid PRINT_OPERAND punctation
636 static bool mips_print_operand_punct
[256];
638 static GTY (()) int mips_output_filename_first_time
= 1;
640 /* mips_split_p[X] is true if symbols of type X can be split by
641 mips_split_symbol. */
642 bool mips_split_p
[NUM_SYMBOL_TYPES
];
644 /* mips_split_hi_p[X] is true if the high parts of symbols of type X
645 can be split by mips_split_symbol. */
646 bool mips_split_hi_p
[NUM_SYMBOL_TYPES
];
648 /* mips_use_pcrel_pool_p[X] is true if symbols of type X should be
649 forced into a PC-relative constant pool. */
650 bool mips_use_pcrel_pool_p
[NUM_SYMBOL_TYPES
];
652 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
653 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
654 if they are matched by a special .md file pattern. */
655 const char *mips_lo_relocs
[NUM_SYMBOL_TYPES
];
657 /* Likewise for HIGHs. */
658 const char *mips_hi_relocs
[NUM_SYMBOL_TYPES
];
660 /* Target state for MIPS16. */
661 struct target_globals
*mips16_globals
;
663 /* Cached value of can_issue_more. This is cached in mips_variable_issue hook
664 and returned from mips_sched_reorder2. */
665 static int cached_can_issue_more
;
667 /* The stubs for various MIPS16 support functions, if used. */
668 static mips_one_only_stub
*mips16_rdhwr_stub
;
669 static mips_one_only_stub
*mips16_get_fcsr_stub
;
670 static mips_one_only_stub
*mips16_set_fcsr_stub
;
672 /* Index R is the smallest register class that contains register R. */
673 const enum reg_class mips_regno_to_class
[FIRST_PSEUDO_REGISTER
] = {
674 LEA_REGS
, LEA_REGS
, M16_STORE_REGS
, V1_REG
,
675 M16_STORE_REGS
, M16_STORE_REGS
, M16_STORE_REGS
, M16_STORE_REGS
,
676 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
677 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
678 M16_REGS
, M16_STORE_REGS
, LEA_REGS
, LEA_REGS
,
679 LEA_REGS
, LEA_REGS
, LEA_REGS
, LEA_REGS
,
680 T_REG
, PIC_FN_ADDR_REG
, LEA_REGS
, LEA_REGS
,
681 LEA_REGS
, M16_SP_REGS
, LEA_REGS
, LEA_REGS
,
683 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
684 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
685 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
686 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
687 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
688 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
689 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
690 FP_REGS
, FP_REGS
, FP_REGS
, FP_REGS
,
691 MD0_REG
, MD1_REG
, NO_REGS
, ST_REGS
,
692 ST_REGS
, ST_REGS
, ST_REGS
, ST_REGS
,
693 ST_REGS
, ST_REGS
, ST_REGS
, NO_REGS
,
694 NO_REGS
, FRAME_REGS
, FRAME_REGS
, NO_REGS
,
695 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
696 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
697 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
698 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
699 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
700 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
701 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
702 COP0_REGS
, COP0_REGS
, COP0_REGS
, COP0_REGS
,
703 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
704 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
705 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
706 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
707 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
708 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
709 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
710 COP2_REGS
, COP2_REGS
, COP2_REGS
, COP2_REGS
,
711 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
712 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
713 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
714 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
715 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
716 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
717 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
718 COP3_REGS
, COP3_REGS
, COP3_REGS
, COP3_REGS
,
719 DSP_ACC_REGS
, DSP_ACC_REGS
, DSP_ACC_REGS
, DSP_ACC_REGS
,
720 DSP_ACC_REGS
, DSP_ACC_REGS
, ALL_REGS
, ALL_REGS
,
721 ALL_REGS
, ALL_REGS
, ALL_REGS
, ALL_REGS
724 /* The value of TARGET_ATTRIBUTE_TABLE. */
725 static const struct attribute_spec mips_attribute_table
[] = {
726 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
728 { "long_call", 0, 0, false, true, true, NULL
, false },
729 { "far", 0, 0, false, true, true, NULL
, false },
730 { "near", 0, 0, false, true, true, NULL
, false },
731 /* We would really like to treat "mips16" and "nomips16" as type
732 attributes, but GCC doesn't provide the hooks we need to support
733 the right conversion rules. As declaration attributes, they affect
734 code generation but don't carry other semantics. */
735 { "mips16", 0, 0, true, false, false, NULL
, false },
736 { "nomips16", 0, 0, true, false, false, NULL
, false },
737 { "micromips", 0, 0, true, false, false, NULL
, false },
738 { "nomicromips", 0, 0, true, false, false, NULL
, false },
739 { "nocompression", 0, 0, true, false, false, NULL
, false },
740 /* Allow functions to be specified as interrupt handlers */
741 { "interrupt", 0, 0, false, true, true, NULL
, false },
742 { "use_shadow_register_set", 0, 0, false, true, true, NULL
, false },
743 { "keep_interrupts_masked", 0, 0, false, true, true, NULL
, false },
744 { "use_debug_exception_return", 0, 0, false, true, true, NULL
, false },
745 { NULL
, 0, 0, false, false, false, NULL
, false }
748 /* A table describing all the processors GCC knows about; see
749 mips-cpus.def for details. */
750 static const struct mips_cpu_info mips_cpu_info_table
[] = {
751 #define MIPS_CPU(NAME, CPU, ISA, FLAGS) \
752 { NAME, CPU, ISA, FLAGS },
753 #include "mips-cpus.def"
757 /* Default costs. If these are used for a processor we should look
758 up the actual costs. */
759 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
760 COSTS_N_INSNS (7), /* fp_mult_sf */ \
761 COSTS_N_INSNS (8), /* fp_mult_df */ \
762 COSTS_N_INSNS (23), /* fp_div_sf */ \
763 COSTS_N_INSNS (36), /* fp_div_df */ \
764 COSTS_N_INSNS (10), /* int_mult_si */ \
765 COSTS_N_INSNS (10), /* int_mult_di */ \
766 COSTS_N_INSNS (69), /* int_div_si */ \
767 COSTS_N_INSNS (69), /* int_div_di */ \
768 2, /* branch_cost */ \
769 4 /* memory_latency */
771 /* Floating-point costs for processors without an FPU. Just assume that
772 all floating-point libcalls are very expensive. */
773 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
774 COSTS_N_INSNS (256), /* fp_mult_sf */ \
775 COSTS_N_INSNS (256), /* fp_mult_df */ \
776 COSTS_N_INSNS (256), /* fp_div_sf */ \
777 COSTS_N_INSNS (256) /* fp_div_df */
779 /* Costs to use when optimizing for size. */
780 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size
= {
781 COSTS_N_INSNS (1), /* fp_add */
782 COSTS_N_INSNS (1), /* fp_mult_sf */
783 COSTS_N_INSNS (1), /* fp_mult_df */
784 COSTS_N_INSNS (1), /* fp_div_sf */
785 COSTS_N_INSNS (1), /* fp_div_df */
786 COSTS_N_INSNS (1), /* int_mult_si */
787 COSTS_N_INSNS (1), /* int_mult_di */
788 COSTS_N_INSNS (1), /* int_div_si */
789 COSTS_N_INSNS (1), /* int_div_di */
791 4 /* memory_latency */
794 /* Costs to use when optimizing for speed, indexed by processor. */
795 static const struct mips_rtx_cost_data
796 mips_rtx_cost_data
[NUM_PROCESSOR_VALUES
] = {
798 COSTS_N_INSNS (2), /* fp_add */
799 COSTS_N_INSNS (4), /* fp_mult_sf */
800 COSTS_N_INSNS (5), /* fp_mult_df */
801 COSTS_N_INSNS (12), /* fp_div_sf */
802 COSTS_N_INSNS (19), /* fp_div_df */
803 COSTS_N_INSNS (12), /* int_mult_si */
804 COSTS_N_INSNS (12), /* int_mult_di */
805 COSTS_N_INSNS (35), /* int_div_si */
806 COSTS_N_INSNS (35), /* int_div_di */
808 4 /* memory_latency */
812 COSTS_N_INSNS (6), /* int_mult_si */
813 COSTS_N_INSNS (6), /* int_mult_di */
814 COSTS_N_INSNS (36), /* int_div_si */
815 COSTS_N_INSNS (36), /* int_div_di */
817 4 /* memory_latency */
821 COSTS_N_INSNS (36), /* int_mult_si */
822 COSTS_N_INSNS (36), /* int_mult_di */
823 COSTS_N_INSNS (37), /* int_div_si */
824 COSTS_N_INSNS (37), /* int_div_di */
826 4 /* memory_latency */
830 COSTS_N_INSNS (4), /* int_mult_si */
831 COSTS_N_INSNS (11), /* int_mult_di */
832 COSTS_N_INSNS (36), /* int_div_si */
833 COSTS_N_INSNS (68), /* int_div_di */
835 4 /* memory_latency */
838 COSTS_N_INSNS (4), /* fp_add */
839 COSTS_N_INSNS (4), /* fp_mult_sf */
840 COSTS_N_INSNS (5), /* fp_mult_df */
841 COSTS_N_INSNS (17), /* fp_div_sf */
842 COSTS_N_INSNS (32), /* fp_div_df */
843 COSTS_N_INSNS (4), /* int_mult_si */
844 COSTS_N_INSNS (11), /* int_mult_di */
845 COSTS_N_INSNS (36), /* int_div_si */
846 COSTS_N_INSNS (68), /* int_div_di */
848 4 /* memory_latency */
851 COSTS_N_INSNS (4), /* fp_add */
852 COSTS_N_INSNS (4), /* fp_mult_sf */
853 COSTS_N_INSNS (5), /* fp_mult_df */
854 COSTS_N_INSNS (17), /* fp_div_sf */
855 COSTS_N_INSNS (32), /* fp_div_df */
856 COSTS_N_INSNS (4), /* int_mult_si */
857 COSTS_N_INSNS (7), /* int_mult_di */
858 COSTS_N_INSNS (42), /* int_div_si */
859 COSTS_N_INSNS (72), /* int_div_di */
861 4 /* memory_latency */
865 COSTS_N_INSNS (5), /* int_mult_si */
866 COSTS_N_INSNS (5), /* int_mult_di */
867 COSTS_N_INSNS (41), /* int_div_si */
868 COSTS_N_INSNS (41), /* int_div_di */
870 4 /* memory_latency */
873 COSTS_N_INSNS (8), /* fp_add */
874 COSTS_N_INSNS (8), /* fp_mult_sf */
875 COSTS_N_INSNS (10), /* fp_mult_df */
876 COSTS_N_INSNS (34), /* fp_div_sf */
877 COSTS_N_INSNS (64), /* fp_div_df */
878 COSTS_N_INSNS (5), /* int_mult_si */
879 COSTS_N_INSNS (5), /* int_mult_di */
880 COSTS_N_INSNS (41), /* int_div_si */
881 COSTS_N_INSNS (41), /* int_div_di */
883 4 /* memory_latency */
886 COSTS_N_INSNS (4), /* fp_add */
887 COSTS_N_INSNS (4), /* fp_mult_sf */
888 COSTS_N_INSNS (5), /* fp_mult_df */
889 COSTS_N_INSNS (17), /* fp_div_sf */
890 COSTS_N_INSNS (32), /* fp_div_df */
891 COSTS_N_INSNS (5), /* int_mult_si */
892 COSTS_N_INSNS (5), /* int_mult_di */
893 COSTS_N_INSNS (41), /* int_div_si */
894 COSTS_N_INSNS (41), /* int_div_di */
896 4 /* memory_latency */
900 COSTS_N_INSNS (5), /* int_mult_si */
901 COSTS_N_INSNS (5), /* int_mult_di */
902 COSTS_N_INSNS (41), /* int_div_si */
903 COSTS_N_INSNS (41), /* int_div_di */
905 4 /* memory_latency */
908 COSTS_N_INSNS (8), /* fp_add */
909 COSTS_N_INSNS (8), /* fp_mult_sf */
910 COSTS_N_INSNS (10), /* fp_mult_df */
911 COSTS_N_INSNS (34), /* fp_div_sf */
912 COSTS_N_INSNS (64), /* fp_div_df */
913 COSTS_N_INSNS (5), /* int_mult_si */
914 COSTS_N_INSNS (5), /* int_mult_di */
915 COSTS_N_INSNS (41), /* int_div_si */
916 COSTS_N_INSNS (41), /* int_div_di */
918 4 /* memory_latency */
921 COSTS_N_INSNS (4), /* fp_add */
922 COSTS_N_INSNS (4), /* fp_mult_sf */
923 COSTS_N_INSNS (5), /* fp_mult_df */
924 COSTS_N_INSNS (17), /* fp_div_sf */
925 COSTS_N_INSNS (32), /* fp_div_df */
926 COSTS_N_INSNS (5), /* int_mult_si */
927 COSTS_N_INSNS (5), /* int_mult_di */
928 COSTS_N_INSNS (41), /* int_div_si */
929 COSTS_N_INSNS (41), /* int_div_di */
931 4 /* memory_latency */
934 COSTS_N_INSNS (6), /* fp_add */
935 COSTS_N_INSNS (6), /* fp_mult_sf */
936 COSTS_N_INSNS (7), /* fp_mult_df */
937 COSTS_N_INSNS (25), /* fp_div_sf */
938 COSTS_N_INSNS (48), /* fp_div_df */
939 COSTS_N_INSNS (5), /* int_mult_si */
940 COSTS_N_INSNS (5), /* int_mult_di */
941 COSTS_N_INSNS (41), /* int_div_si */
942 COSTS_N_INSNS (41), /* int_div_di */
944 4 /* memory_latency */
961 COSTS_N_INSNS (5), /* int_mult_si */
962 COSTS_N_INSNS (5), /* int_mult_di */
963 COSTS_N_INSNS (72), /* int_div_si */
964 COSTS_N_INSNS (72), /* int_div_di */
966 4 /* memory_latency */
971 COSTS_N_INSNS (6), /* int_mult_si */
972 COSTS_N_INSNS (6), /* int_mult_di */
973 COSTS_N_INSNS (18), /* int_div_si */
974 COSTS_N_INSNS (35), /* int_div_di */
976 4 /* memory_latency */
979 COSTS_N_INSNS (2), /* fp_add */
980 COSTS_N_INSNS (4), /* fp_mult_sf */
981 COSTS_N_INSNS (5), /* fp_mult_df */
982 COSTS_N_INSNS (12), /* fp_div_sf */
983 COSTS_N_INSNS (19), /* fp_div_df */
984 COSTS_N_INSNS (2), /* int_mult_si */
985 COSTS_N_INSNS (2), /* int_mult_di */
986 COSTS_N_INSNS (35), /* int_div_si */
987 COSTS_N_INSNS (35), /* int_div_di */
989 4 /* memory_latency */
992 COSTS_N_INSNS (3), /* fp_add */
993 COSTS_N_INSNS (5), /* fp_mult_sf */
994 COSTS_N_INSNS (6), /* fp_mult_df */
995 COSTS_N_INSNS (15), /* fp_div_sf */
996 COSTS_N_INSNS (16), /* fp_div_df */
997 COSTS_N_INSNS (17), /* int_mult_si */
998 COSTS_N_INSNS (17), /* int_mult_di */
999 COSTS_N_INSNS (38), /* int_div_si */
1000 COSTS_N_INSNS (38), /* int_div_di */
1001 2, /* branch_cost */
1002 6 /* memory_latency */
1005 COSTS_N_INSNS (6), /* fp_add */
1006 COSTS_N_INSNS (7), /* fp_mult_sf */
1007 COSTS_N_INSNS (8), /* fp_mult_df */
1008 COSTS_N_INSNS (23), /* fp_div_sf */
1009 COSTS_N_INSNS (36), /* fp_div_df */
1010 COSTS_N_INSNS (10), /* int_mult_si */
1011 COSTS_N_INSNS (10), /* int_mult_di */
1012 COSTS_N_INSNS (69), /* int_div_si */
1013 COSTS_N_INSNS (69), /* int_div_di */
1014 2, /* branch_cost */
1015 6 /* memory_latency */
1027 /* The only costs that appear to be updated here are
1028 integer multiplication. */
1030 COSTS_N_INSNS (4), /* int_mult_si */
1031 COSTS_N_INSNS (6), /* int_mult_di */
1032 COSTS_N_INSNS (69), /* int_div_si */
1033 COSTS_N_INSNS (69), /* int_div_di */
1034 1, /* branch_cost */
1035 4 /* memory_latency */
1050 COSTS_N_INSNS (6), /* fp_add */
1051 COSTS_N_INSNS (4), /* fp_mult_sf */
1052 COSTS_N_INSNS (5), /* fp_mult_df */
1053 COSTS_N_INSNS (23), /* fp_div_sf */
1054 COSTS_N_INSNS (36), /* fp_div_df */
1055 COSTS_N_INSNS (5), /* int_mult_si */
1056 COSTS_N_INSNS (5), /* int_mult_di */
1057 COSTS_N_INSNS (36), /* int_div_si */
1058 COSTS_N_INSNS (36), /* int_div_di */
1059 1, /* branch_cost */
1060 4 /* memory_latency */
1063 COSTS_N_INSNS (6), /* fp_add */
1064 COSTS_N_INSNS (5), /* fp_mult_sf */
1065 COSTS_N_INSNS (6), /* fp_mult_df */
1066 COSTS_N_INSNS (30), /* fp_div_sf */
1067 COSTS_N_INSNS (59), /* fp_div_df */
1068 COSTS_N_INSNS (3), /* int_mult_si */
1069 COSTS_N_INSNS (4), /* int_mult_di */
1070 COSTS_N_INSNS (42), /* int_div_si */
1071 COSTS_N_INSNS (74), /* int_div_di */
1072 1, /* branch_cost */
1073 4 /* memory_latency */
1076 COSTS_N_INSNS (6), /* fp_add */
1077 COSTS_N_INSNS (5), /* fp_mult_sf */
1078 COSTS_N_INSNS (6), /* fp_mult_df */
1079 COSTS_N_INSNS (30), /* fp_div_sf */
1080 COSTS_N_INSNS (59), /* fp_div_df */
1081 COSTS_N_INSNS (5), /* int_mult_si */
1082 COSTS_N_INSNS (9), /* int_mult_di */
1083 COSTS_N_INSNS (42), /* int_div_si */
1084 COSTS_N_INSNS (74), /* int_div_di */
1085 1, /* branch_cost */
1086 4 /* memory_latency */
1089 COSTS_N_INSNS (4), /* fp_add */
1090 COSTS_N_INSNS (4), /* fp_mult_sf */
1091 COSTS_N_INSNS (256), /* fp_mult_df */
1092 COSTS_N_INSNS (8), /* fp_div_sf */
1093 COSTS_N_INSNS (256), /* fp_div_df */
1094 COSTS_N_INSNS (4), /* int_mult_si */
1095 COSTS_N_INSNS (256), /* int_mult_di */
1096 COSTS_N_INSNS (37), /* int_div_si */
1097 COSTS_N_INSNS (256), /* int_div_di */
1098 1, /* branch_cost */
1099 4 /* memory_latency */
1102 /* The only costs that are changed here are
1103 integer multiplication. */
1104 COSTS_N_INSNS (6), /* fp_add */
1105 COSTS_N_INSNS (7), /* fp_mult_sf */
1106 COSTS_N_INSNS (8), /* fp_mult_df */
1107 COSTS_N_INSNS (23), /* fp_div_sf */
1108 COSTS_N_INSNS (36), /* fp_div_df */
1109 COSTS_N_INSNS (5), /* int_mult_si */
1110 COSTS_N_INSNS (9), /* int_mult_di */
1111 COSTS_N_INSNS (69), /* int_div_si */
1112 COSTS_N_INSNS (69), /* int_div_di */
1113 1, /* branch_cost */
1114 4 /* memory_latency */
1120 /* The only costs that are changed here are
1121 integer multiplication. */
1122 COSTS_N_INSNS (6), /* fp_add */
1123 COSTS_N_INSNS (7), /* fp_mult_sf */
1124 COSTS_N_INSNS (8), /* fp_mult_df */
1125 COSTS_N_INSNS (23), /* fp_div_sf */
1126 COSTS_N_INSNS (36), /* fp_div_df */
1127 COSTS_N_INSNS (3), /* int_mult_si */
1128 COSTS_N_INSNS (8), /* int_mult_di */
1129 COSTS_N_INSNS (69), /* int_div_si */
1130 COSTS_N_INSNS (69), /* int_div_di */
1131 1, /* branch_cost */
1132 4 /* memory_latency */
1135 COSTS_N_INSNS (2), /* fp_add */
1136 COSTS_N_INSNS (2), /* fp_mult_sf */
1137 COSTS_N_INSNS (2), /* fp_mult_df */
1138 COSTS_N_INSNS (12), /* fp_div_sf */
1139 COSTS_N_INSNS (19), /* fp_div_df */
1140 COSTS_N_INSNS (5), /* int_mult_si */
1141 COSTS_N_INSNS (9), /* int_mult_di */
1142 COSTS_N_INSNS (34), /* int_div_si */
1143 COSTS_N_INSNS (66), /* int_div_di */
1144 1, /* branch_cost */
1145 4 /* memory_latency */
1148 /* These costs are the same as the SB-1A below. */
1149 COSTS_N_INSNS (4), /* fp_add */
1150 COSTS_N_INSNS (4), /* fp_mult_sf */
1151 COSTS_N_INSNS (4), /* fp_mult_df */
1152 COSTS_N_INSNS (24), /* fp_div_sf */
1153 COSTS_N_INSNS (32), /* fp_div_df */
1154 COSTS_N_INSNS (3), /* int_mult_si */
1155 COSTS_N_INSNS (4), /* int_mult_di */
1156 COSTS_N_INSNS (36), /* int_div_si */
1157 COSTS_N_INSNS (68), /* int_div_di */
1158 1, /* branch_cost */
1159 4 /* memory_latency */
1162 /* These costs are the same as the SB-1 above. */
1163 COSTS_N_INSNS (4), /* fp_add */
1164 COSTS_N_INSNS (4), /* fp_mult_sf */
1165 COSTS_N_INSNS (4), /* fp_mult_df */
1166 COSTS_N_INSNS (24), /* fp_div_sf */
1167 COSTS_N_INSNS (32), /* fp_div_df */
1168 COSTS_N_INSNS (3), /* int_mult_si */
1169 COSTS_N_INSNS (4), /* int_mult_di */
1170 COSTS_N_INSNS (36), /* int_div_si */
1171 COSTS_N_INSNS (68), /* int_div_di */
1172 1, /* branch_cost */
1173 4 /* memory_latency */
1180 COSTS_N_INSNS (8), /* int_mult_si */
1181 COSTS_N_INSNS (8), /* int_mult_di */
1182 COSTS_N_INSNS (72), /* int_div_si */
1183 COSTS_N_INSNS (72), /* int_div_di */
1184 1, /* branch_cost */
1185 4 /* memory_latency */
1188 /* These costs are the same as 5KF above. */
1189 COSTS_N_INSNS (4), /* fp_add */
1190 COSTS_N_INSNS (4), /* fp_mult_sf */
1191 COSTS_N_INSNS (5), /* fp_mult_df */
1192 COSTS_N_INSNS (17), /* fp_div_sf */
1193 COSTS_N_INSNS (32), /* fp_div_df */
1194 COSTS_N_INSNS (4), /* int_mult_si */
1195 COSTS_N_INSNS (11), /* int_mult_di */
1196 COSTS_N_INSNS (36), /* int_div_si */
1197 COSTS_N_INSNS (68), /* int_div_di */
1198 1, /* branch_cost */
1199 4 /* memory_latency */
1202 COSTS_N_INSNS (4), /* fp_add */
1203 COSTS_N_INSNS (5), /* fp_mult_sf */
1204 COSTS_N_INSNS (5), /* fp_mult_df */
1205 COSTS_N_INSNS (17), /* fp_div_sf */
1206 COSTS_N_INSNS (17), /* fp_div_df */
1207 COSTS_N_INSNS (5), /* int_mult_si */
1208 COSTS_N_INSNS (5), /* int_mult_di */
1209 COSTS_N_INSNS (8), /* int_div_si */
1210 COSTS_N_INSNS (8), /* int_div_di */
1211 2, /* branch_cost */
1212 10 /* memory_latency */
1216 static rtx
mips_find_pic_call_symbol (rtx_insn
*, rtx
, bool);
1217 static int mips_register_move_cost (machine_mode
, reg_class_t
,
1219 static unsigned int mips_function_arg_boundary (machine_mode
, const_tree
);
1221 struct mips16_flip_traits
: default_hashmap_traits
1223 static hashval_t
hash (const char *s
) { return htab_hash_string (s
); }
1225 equal_keys (const char *a
, const char *b
)
1227 return !strcmp (a
, b
);
1231 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1232 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1233 static GTY (()) hash_map
<const char *, bool, mips16_flip_traits
> *
1236 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1237 mode, false if it should next add an attribute for the opposite mode. */
1238 static GTY(()) bool mips16_flipper
;
1240 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1241 for -mflip-mips16. Return true if it should use "mips16" and false if
1242 it should use "nomips16". */
1245 mflip_mips16_use_mips16_p (tree decl
)
1248 bool base_is_mips16
= (mips_base_compression_flags
& MASK_MIPS16
) != 0;
1250 /* Use the opposite of the command-line setting for anonymous decls. */
1251 if (!DECL_NAME (decl
))
1252 return !base_is_mips16
;
1254 if (!mflip_mips16_htab
)
1256 = hash_map
<const char *, bool, mips16_flip_traits
>::create_ggc (37);
1258 name
= IDENTIFIER_POINTER (DECL_NAME (decl
));
1261 bool *slot
= &mflip_mips16_htab
->get_or_insert (name
, &existed
);
1264 mips16_flipper
= !mips16_flipper
;
1265 *slot
= mips16_flipper
? !base_is_mips16
: base_is_mips16
;
1270 /* Predicates to test for presence of "near" and "far"/"long_call"
1271 attributes on the given TYPE. */
1274 mips_near_type_p (const_tree type
)
1276 return lookup_attribute ("near", TYPE_ATTRIBUTES (type
)) != NULL
;
1280 mips_far_type_p (const_tree type
)
1282 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type
)) != NULL
1283 || lookup_attribute ("far", TYPE_ATTRIBUTES (type
)) != NULL
);
1287 /* Check if the interrupt attribute is set for a function. */
1290 mips_interrupt_type_p (tree type
)
1292 return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type
)) != NULL
;
1295 /* Check if the attribute to use shadow register set is set for a function. */
1298 mips_use_shadow_register_set_p (tree type
)
1300 return lookup_attribute ("use_shadow_register_set",
1301 TYPE_ATTRIBUTES (type
)) != NULL
;
1304 /* Check if the attribute to keep interrupts masked is set for a function. */
1307 mips_keep_interrupts_masked_p (tree type
)
1309 return lookup_attribute ("keep_interrupts_masked",
1310 TYPE_ATTRIBUTES (type
)) != NULL
;
1313 /* Check if the attribute to use debug exception return is set for
1317 mips_use_debug_exception_return_p (tree type
)
1319 return lookup_attribute ("use_debug_exception_return",
1320 TYPE_ATTRIBUTES (type
)) != NULL
;
1323 /* Return the set of compression modes that are explicitly required
1324 by the attributes in ATTRIBUTES. */
1327 mips_get_compress_on_flags (tree attributes
)
1329 unsigned int flags
= 0;
1331 if (lookup_attribute ("mips16", attributes
) != NULL
)
1332 flags
|= MASK_MIPS16
;
1334 if (lookup_attribute ("micromips", attributes
) != NULL
)
1335 flags
|= MASK_MICROMIPS
;
1340 /* Return the set of compression modes that are explicitly forbidden
1341 by the attributes in ATTRIBUTES. */
1344 mips_get_compress_off_flags (tree attributes
)
1346 unsigned int flags
= 0;
1348 if (lookup_attribute ("nocompression", attributes
) != NULL
)
1349 flags
|= MASK_MIPS16
| MASK_MICROMIPS
;
1351 if (lookup_attribute ("nomips16", attributes
) != NULL
)
1352 flags
|= MASK_MIPS16
;
1354 if (lookup_attribute ("nomicromips", attributes
) != NULL
)
1355 flags
|= MASK_MICROMIPS
;
1360 /* Return the compression mode that should be used for function DECL.
1361 Return the ambient setting if DECL is null. */
1364 mips_get_compress_mode (tree decl
)
1366 unsigned int flags
, force_on
;
1368 flags
= mips_base_compression_flags
;
1371 /* Nested functions must use the same frame pointer as their
1372 parent and must therefore use the same ISA mode. */
1373 tree parent
= decl_function_context (decl
);
1376 force_on
= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl
));
1379 flags
&= ~mips_get_compress_off_flags (DECL_ATTRIBUTES (decl
));
1384 /* Return the attribute name associated with MASK_MIPS16 and MASK_MICROMIPS
1388 mips_get_compress_on_name (unsigned int flags
)
1390 if (flags
== MASK_MIPS16
)
1395 /* Return the attribute name that forbids MASK_MIPS16 and MASK_MICROMIPS
1399 mips_get_compress_off_name (unsigned int flags
)
1401 if (flags
== MASK_MIPS16
)
1403 if (flags
== MASK_MICROMIPS
)
1404 return "nomicromips";
1405 return "nocompression";
1408 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1411 mips_comp_type_attributes (const_tree type1
, const_tree type2
)
1413 /* Disallow mixed near/far attributes. */
1414 if (mips_far_type_p (type1
) && mips_near_type_p (type2
))
1416 if (mips_near_type_p (type1
) && mips_far_type_p (type2
))
1421 /* Implement TARGET_INSERT_ATTRIBUTES. */
1424 mips_insert_attributes (tree decl
, tree
*attributes
)
1427 unsigned int compression_flags
, nocompression_flags
;
1429 /* Check for "mips16" and "nomips16" attributes. */
1430 compression_flags
= mips_get_compress_on_flags (*attributes
);
1431 nocompression_flags
= mips_get_compress_off_flags (*attributes
);
1433 if (TREE_CODE (decl
) != FUNCTION_DECL
)
1435 if (nocompression_flags
)
1436 error ("%qs attribute only applies to functions",
1437 mips_get_compress_off_name (nocompression_flags
));
1439 if (compression_flags
)
1440 error ("%qs attribute only applies to functions",
1441 mips_get_compress_on_name (nocompression_flags
));
1445 compression_flags
|= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl
));
1446 nocompression_flags
|=
1447 mips_get_compress_off_flags (DECL_ATTRIBUTES (decl
));
1449 if (compression_flags
&& nocompression_flags
)
1450 error ("%qE cannot have both %qs and %qs attributes",
1451 DECL_NAME (decl
), mips_get_compress_on_name (compression_flags
),
1452 mips_get_compress_off_name (nocompression_flags
));
1454 if (compression_flags
& MASK_MIPS16
1455 && compression_flags
& MASK_MICROMIPS
)
1456 error ("%qE cannot have both %qs and %qs attributes",
1457 DECL_NAME (decl
), "mips16", "micromips");
1459 if (TARGET_FLIP_MIPS16
1460 && !DECL_ARTIFICIAL (decl
)
1461 && compression_flags
== 0
1462 && nocompression_flags
== 0)
1464 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1465 "mips16" attribute, arbitrarily pick one. We must pick the same
1466 setting for duplicate declarations of a function. */
1467 name
= mflip_mips16_use_mips16_p (decl
) ? "mips16" : "nomips16";
1468 *attributes
= tree_cons (get_identifier (name
), NULL
, *attributes
);
1469 name
= "nomicromips";
1470 *attributes
= tree_cons (get_identifier (name
), NULL
, *attributes
);
1475 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1478 mips_merge_decl_attributes (tree olddecl
, tree newdecl
)
1482 diff
= (mips_get_compress_on_flags (DECL_ATTRIBUTES (olddecl
))
1483 ^ mips_get_compress_on_flags (DECL_ATTRIBUTES (newdecl
)));
1485 error ("%qE redeclared with conflicting %qs attributes",
1486 DECL_NAME (newdecl
), mips_get_compress_on_name (diff
));
1488 diff
= (mips_get_compress_off_flags (DECL_ATTRIBUTES (olddecl
))
1489 ^ mips_get_compress_off_flags (DECL_ATTRIBUTES (newdecl
)));
1491 error ("%qE redeclared with conflicting %qs attributes",
1492 DECL_NAME (newdecl
), mips_get_compress_off_name (diff
));
1494 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
1495 DECL_ATTRIBUTES (newdecl
));
1498 /* Implement TARGET_CAN_INLINE_P. */
1501 mips_can_inline_p (tree caller
, tree callee
)
1503 if (mips_get_compress_mode (callee
) != mips_get_compress_mode (caller
))
1505 return default_target_can_inline_p (caller
, callee
);
1508 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1509 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1512 mips_split_plus (rtx x
, rtx
*base_ptr
, HOST_WIDE_INT
*offset_ptr
)
1514 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
1516 *base_ptr
= XEXP (x
, 0);
1517 *offset_ptr
= INTVAL (XEXP (x
, 1));
1526 static unsigned int mips_build_integer (struct mips_integer_op
*,
1527 unsigned HOST_WIDE_INT
);
1529 /* A subroutine of mips_build_integer, with the same interface.
1530 Assume that the final action in the sequence should be a left shift. */
1533 mips_build_shift (struct mips_integer_op
*codes
, HOST_WIDE_INT value
)
1535 unsigned int i
, shift
;
1537 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1538 since signed numbers are easier to load than unsigned ones. */
1540 while ((value
& 1) == 0)
1541 value
/= 2, shift
++;
1543 i
= mips_build_integer (codes
, value
);
1544 codes
[i
].code
= ASHIFT
;
1545 codes
[i
].value
= shift
;
1549 /* As for mips_build_shift, but assume that the final action will be
1550 an IOR or PLUS operation. */
1553 mips_build_lower (struct mips_integer_op
*codes
, unsigned HOST_WIDE_INT value
)
1555 unsigned HOST_WIDE_INT high
;
1558 high
= value
& ~(unsigned HOST_WIDE_INT
) 0xffff;
1559 if (!LUI_OPERAND (high
) && (value
& 0x18000) == 0x18000)
1561 /* The constant is too complex to load with a simple LUI/ORI pair,
1562 so we want to give the recursive call as many trailing zeros as
1563 possible. In this case, we know bit 16 is set and that the
1564 low 16 bits form a negative number. If we subtract that number
1565 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1566 i
= mips_build_integer (codes
, CONST_HIGH_PART (value
));
1567 codes
[i
].code
= PLUS
;
1568 codes
[i
].value
= CONST_LOW_PART (value
);
1572 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1573 bits gives a value with at least 17 trailing zeros. */
1574 i
= mips_build_integer (codes
, high
);
1575 codes
[i
].code
= IOR
;
1576 codes
[i
].value
= value
& 0xffff;
1581 /* Fill CODES with a sequence of rtl operations to load VALUE.
1582 Return the number of operations needed. */
1585 mips_build_integer (struct mips_integer_op
*codes
,
1586 unsigned HOST_WIDE_INT value
)
1588 if (SMALL_OPERAND (value
)
1589 || SMALL_OPERAND_UNSIGNED (value
)
1590 || LUI_OPERAND (value
))
1592 /* The value can be loaded with a single instruction. */
1593 codes
[0].code
= UNKNOWN
;
1594 codes
[0].value
= value
;
1597 else if ((value
& 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value
)))
1599 /* Either the constant is a simple LUI/ORI combination or its
1600 lowest bit is set. We don't want to shift in this case. */
1601 return mips_build_lower (codes
, value
);
1603 else if ((value
& 0xffff) == 0)
1605 /* The constant will need at least three actions. The lowest
1606 16 bits are clear, so the final action will be a shift. */
1607 return mips_build_shift (codes
, value
);
1611 /* The final action could be a shift, add or inclusive OR.
1612 Rather than use a complex condition to select the best
1613 approach, try both mips_build_shift and mips_build_lower
1614 and pick the one that gives the shortest sequence.
1615 Note that this case is only used once per constant. */
1616 struct mips_integer_op alt_codes
[MIPS_MAX_INTEGER_OPS
];
1617 unsigned int cost
, alt_cost
;
1619 cost
= mips_build_shift (codes
, value
);
1620 alt_cost
= mips_build_lower (alt_codes
, value
);
1621 if (alt_cost
< cost
)
1623 memcpy (codes
, alt_codes
, alt_cost
* sizeof (codes
[0]));
1630 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
1633 mips_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED
, rtx x
)
1635 return mips_const_insns (x
) > 0;
1638 /* Return a SYMBOL_REF for a MIPS16 function called NAME. */
1641 mips16_stub_function (const char *name
)
1645 x
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (name
));
1646 SYMBOL_REF_FLAGS (x
) |= (SYMBOL_FLAG_EXTERNAL
| SYMBOL_FLAG_FUNCTION
);
1650 /* Return a legitimate call address for STUB, given that STUB is a MIPS16
1651 support function. */
1654 mips16_stub_call_address (mips_one_only_stub
*stub
)
1656 rtx fn
= mips16_stub_function (stub
->get_name ());
1657 SYMBOL_REF_FLAGS (fn
) |= SYMBOL_FLAG_LOCAL
;
1658 if (!call_insn_operand (fn
, VOIDmode
))
1659 fn
= force_reg (Pmode
, fn
);
1663 /* A stub for moving the thread pointer into TLS_GET_TP_REGNUM. */
1665 class mips16_rdhwr_one_only_stub
: public mips_one_only_stub
1667 virtual const char *get_name ();
1668 virtual void output_body ();
1672 mips16_rdhwr_one_only_stub::get_name ()
1674 return "__mips16_rdhwr";
1678 mips16_rdhwr_one_only_stub::output_body ()
1680 fprintf (asm_out_file
,
1682 "\t.set\tmips32r2\n"
1683 "\t.set\tnoreorder\n"
1689 /* A stub for moving the FCSR into GET_FCSR_REGNUM. */
1690 class mips16_get_fcsr_one_only_stub
: public mips_one_only_stub
1692 virtual const char *get_name ();
1693 virtual void output_body ();
1697 mips16_get_fcsr_one_only_stub::get_name ()
1699 return "__mips16_get_fcsr";
1703 mips16_get_fcsr_one_only_stub::output_body ()
1705 fprintf (asm_out_file
,
1707 "\tj\t$31\n", reg_names
[GET_FCSR_REGNUM
]);
1710 /* A stub for moving SET_FCSR_REGNUM into the FCSR. */
1711 class mips16_set_fcsr_one_only_stub
: public mips_one_only_stub
1713 virtual const char *get_name ();
1714 virtual void output_body ();
1718 mips16_set_fcsr_one_only_stub::get_name ()
1720 return "__mips16_set_fcsr";
1724 mips16_set_fcsr_one_only_stub::output_body ()
1726 fprintf (asm_out_file
,
1728 "\tj\t$31\n", reg_names
[SET_FCSR_REGNUM
]);
1731 /* Return true if symbols of type TYPE require a GOT access. */
1734 mips_got_symbol_type_p (enum mips_symbol_type type
)
1738 case SYMBOL_GOT_PAGE_OFST
:
1739 case SYMBOL_GOT_DISP
:
1747 /* Return true if X is a thread-local symbol. */
1750 mips_tls_symbol_p (rtx x
)
1752 return GET_CODE (x
) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x
) != 0;
1755 /* Return true if SYMBOL_REF X is associated with a global symbol
1756 (in the STB_GLOBAL sense). */
1759 mips_global_symbol_p (const_rtx x
)
1761 const_tree decl
= SYMBOL_REF_DECL (x
);
1764 return !SYMBOL_REF_LOCAL_P (x
) || SYMBOL_REF_EXTERNAL_P (x
);
1766 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1767 or weak symbols. Relocations in the object file will be against
1768 the target symbol, so it's that symbol's binding that matters here. */
1769 return DECL_P (decl
) && (TREE_PUBLIC (decl
) || DECL_WEAK (decl
));
1772 /* Return true if function X is a libgcc MIPS16 stub function. */
1775 mips16_stub_function_p (const_rtx x
)
1777 return (GET_CODE (x
) == SYMBOL_REF
1778 && strncmp (XSTR (x
, 0), "__mips16_", 9) == 0);
1781 /* Return true if function X is a locally-defined and locally-binding
1785 mips16_local_function_p (const_rtx x
)
1787 return (GET_CODE (x
) == SYMBOL_REF
1788 && SYMBOL_REF_LOCAL_P (x
)
1789 && !SYMBOL_REF_EXTERNAL_P (x
)
1790 && (mips_get_compress_mode (SYMBOL_REF_DECL (x
)) & MASK_MIPS16
));
1793 /* Return true if SYMBOL_REF X binds locally. */
1796 mips_symbol_binds_local_p (const_rtx x
)
1798 return (SYMBOL_REF_DECL (x
)
1799 ? targetm
.binds_local_p (SYMBOL_REF_DECL (x
))
1800 : SYMBOL_REF_LOCAL_P (x
));
1803 /* Return true if rtx constants of mode MODE should be put into a small
1807 mips_rtx_constant_in_small_data_p (machine_mode mode
)
1809 return (!TARGET_EMBEDDED_DATA
1810 && TARGET_LOCAL_SDATA
1811 && GET_MODE_SIZE (mode
) <= mips_small_data_threshold
);
1814 /* Return true if X should not be moved directly into register $25.
1815 We need this because many versions of GAS will treat "la $25,foo" as
1816 part of a call sequence and so allow a global "foo" to be lazily bound. */
1819 mips_dangerous_for_la25_p (rtx x
)
1821 return (!TARGET_EXPLICIT_RELOCS
1823 && GET_CODE (x
) == SYMBOL_REF
1824 && mips_global_symbol_p (x
));
1827 /* Return true if calls to X might need $25 to be valid on entry. */
1830 mips_use_pic_fn_addr_reg_p (const_rtx x
)
1832 if (!TARGET_USE_PIC_FN_ADDR_REG
)
1835 /* MIPS16 stub functions are guaranteed not to use $25. */
1836 if (mips16_stub_function_p (x
))
1839 if (GET_CODE (x
) == SYMBOL_REF
)
1841 /* If PLTs and copy relocations are available, the static linker
1842 will make sure that $25 is valid on entry to the target function. */
1843 if (TARGET_ABICALLS_PIC0
)
1846 /* Locally-defined functions use absolute accesses to set up
1847 the global pointer. */
1848 if (TARGET_ABSOLUTE_ABICALLS
1849 && mips_symbol_binds_local_p (x
)
1850 && !SYMBOL_REF_EXTERNAL_P (x
))
1857 /* Return the method that should be used to access SYMBOL_REF or
1858 LABEL_REF X in context CONTEXT. */
1860 static enum mips_symbol_type
1861 mips_classify_symbol (const_rtx x
, enum mips_symbol_context context
)
1864 return SYMBOL_GOT_DISP
;
1866 if (GET_CODE (x
) == LABEL_REF
)
1868 /* Only return SYMBOL_PC_RELATIVE if we are generating MIPS16
1869 code and if we know that the label is in the current function's
1870 text section. LABEL_REFs are used for jump tables as well as
1871 text labels, so we must check whether jump tables live in the
1873 if (TARGET_MIPS16_SHORT_JUMP_TABLES
1874 && !LABEL_REF_NONLOCAL_P (x
))
1875 return SYMBOL_PC_RELATIVE
;
1877 if (TARGET_ABICALLS
&& !TARGET_ABSOLUTE_ABICALLS
)
1878 return SYMBOL_GOT_PAGE_OFST
;
1880 return SYMBOL_ABSOLUTE
;
1883 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
1885 if (SYMBOL_REF_TLS_MODEL (x
))
1888 if (CONSTANT_POOL_ADDRESS_P (x
))
1890 if (TARGET_MIPS16_TEXT_LOADS
)
1891 return SYMBOL_PC_RELATIVE
;
1893 if (TARGET_MIPS16_PCREL_LOADS
&& context
== SYMBOL_CONTEXT_MEM
)
1894 return SYMBOL_PC_RELATIVE
;
1896 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x
)))
1897 return SYMBOL_GP_RELATIVE
;
1900 /* Do not use small-data accesses for weak symbols; they may end up
1902 if (TARGET_GPOPT
&& SYMBOL_REF_SMALL_P (x
) && !SYMBOL_REF_WEAK (x
))
1903 return SYMBOL_GP_RELATIVE
;
1905 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1907 if (TARGET_ABICALLS_PIC2
1908 && !(TARGET_ABSOLUTE_ABICALLS
&& mips_symbol_binds_local_p (x
)))
1910 /* There are three cases to consider:
1912 - o32 PIC (either with or without explicit relocs)
1913 - n32/n64 PIC without explicit relocs
1914 - n32/n64 PIC with explicit relocs
1916 In the first case, both local and global accesses will use an
1917 R_MIPS_GOT16 relocation. We must correctly predict which of
1918 the two semantics (local or global) the assembler and linker
1919 will apply. The choice depends on the symbol's binding rather
1920 than its visibility.
1922 In the second case, the assembler will not use R_MIPS_GOT16
1923 relocations, but it chooses between local and global accesses
1924 in the same way as for o32 PIC.
1926 In the third case we have more freedom since both forms of
1927 access will work for any kind of symbol. However, there seems
1928 little point in doing things differently. */
1929 if (mips_global_symbol_p (x
))
1930 return SYMBOL_GOT_DISP
;
1932 return SYMBOL_GOT_PAGE_OFST
;
1935 return SYMBOL_ABSOLUTE
;
1938 /* Classify the base of symbolic expression X, given that X appears in
1941 static enum mips_symbol_type
1942 mips_classify_symbolic_expression (rtx x
, enum mips_symbol_context context
)
1946 split_const (x
, &x
, &offset
);
1947 if (UNSPEC_ADDRESS_P (x
))
1948 return UNSPEC_ADDRESS_TYPE (x
);
1950 return mips_classify_symbol (x
, context
);
1953 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1954 is the alignment in bytes of SYMBOL_REF X. */
1957 mips_offset_within_alignment_p (rtx x
, HOST_WIDE_INT offset
)
1959 HOST_WIDE_INT align
;
1961 align
= SYMBOL_REF_DECL (x
) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x
)) : 1;
1962 return IN_RANGE (offset
, 0, align
- 1);
1965 /* Return true if X is a symbolic constant that can be used in context
1966 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1969 mips_symbolic_constant_p (rtx x
, enum mips_symbol_context context
,
1970 enum mips_symbol_type
*symbol_type
)
1974 split_const (x
, &x
, &offset
);
1975 if (UNSPEC_ADDRESS_P (x
))
1977 *symbol_type
= UNSPEC_ADDRESS_TYPE (x
);
1978 x
= UNSPEC_ADDRESS (x
);
1980 else if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
1982 *symbol_type
= mips_classify_symbol (x
, context
);
1983 if (*symbol_type
== SYMBOL_TLS
)
1989 if (offset
== const0_rtx
)
1992 /* Check whether a nonzero offset is valid for the underlying
1994 switch (*symbol_type
)
1996 case SYMBOL_ABSOLUTE
:
1997 case SYMBOL_64_HIGH
:
2000 /* If the target has 64-bit pointers and the object file only
2001 supports 32-bit symbols, the values of those symbols will be
2002 sign-extended. In this case we can't allow an arbitrary offset
2003 in case the 32-bit value X + OFFSET has a different sign from X. */
2004 if (Pmode
== DImode
&& !ABI_HAS_64BIT_SYMBOLS
)
2005 return offset_within_block_p (x
, INTVAL (offset
));
2007 /* In other cases the relocations can handle any offset. */
2010 case SYMBOL_PC_RELATIVE
:
2011 /* Allow constant pool references to be converted to LABEL+CONSTANT.
2012 In this case, we no longer have access to the underlying constant,
2013 but the original symbol-based access was known to be valid. */
2014 if (GET_CODE (x
) == LABEL_REF
)
2019 case SYMBOL_GP_RELATIVE
:
2020 /* Make sure that the offset refers to something within the
2021 same object block. This should guarantee that the final
2022 PC- or GP-relative offset is within the 16-bit limit. */
2023 return offset_within_block_p (x
, INTVAL (offset
));
2025 case SYMBOL_GOT_PAGE_OFST
:
2026 case SYMBOL_GOTOFF_PAGE
:
2027 /* If the symbol is global, the GOT entry will contain the symbol's
2028 address, and we will apply a 16-bit offset after loading it.
2029 If the symbol is local, the linker should provide enough local
2030 GOT entries for a 16-bit offset, but larger offsets may lead
2032 return SMALL_INT (offset
);
2036 /* There is no carry between the HI and LO REL relocations, so the
2037 offset is only valid if we know it won't lead to such a carry. */
2038 return mips_offset_within_alignment_p (x
, INTVAL (offset
));
2040 case SYMBOL_GOT_DISP
:
2041 case SYMBOL_GOTOFF_DISP
:
2042 case SYMBOL_GOTOFF_CALL
:
2043 case SYMBOL_GOTOFF_LOADGP
:
2046 case SYMBOL_GOTTPREL
:
2054 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
2055 single instruction. We rely on the fact that, in the worst case,
2056 all instructions involved in a MIPS16 address calculation are usually
2060 mips_symbol_insns_1 (enum mips_symbol_type type
, machine_mode mode
)
2062 if (mips_use_pcrel_pool_p
[(int) type
])
2064 if (mode
== MAX_MACHINE_MODE
)
2065 /* LEAs will be converted into constant-pool references by
2067 type
= SYMBOL_PC_RELATIVE
;
2069 /* The constant must be loaded and then dereferenced. */
2075 case SYMBOL_ABSOLUTE
:
2076 /* When using 64-bit symbols, we need 5 preparatory instructions,
2079 lui $at,%highest(symbol)
2080 daddiu $at,$at,%higher(symbol)
2082 daddiu $at,$at,%hi(symbol)
2085 The final address is then $at + %lo(symbol). With 32-bit
2086 symbols we just need a preparatory LUI for normal mode and
2087 a preparatory LI and SLL for MIPS16. */
2088 return ABI_HAS_64BIT_SYMBOLS
? 6 : TARGET_MIPS16
? 3 : 2;
2090 case SYMBOL_GP_RELATIVE
:
2091 /* Treat GP-relative accesses as taking a single instruction on
2092 MIPS16 too; the copy of $gp can often be shared. */
2095 case SYMBOL_PC_RELATIVE
:
2096 /* PC-relative constants can be only be used with ADDIUPC,
2097 DADDIUPC, LWPC and LDPC. */
2098 if (mode
== MAX_MACHINE_MODE
2099 || GET_MODE_SIZE (mode
) == 4
2100 || GET_MODE_SIZE (mode
) == 8)
2103 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
2106 case SYMBOL_GOT_DISP
:
2107 /* The constant will have to be loaded from the GOT before it
2108 is used in an address. */
2109 if (mode
!= MAX_MACHINE_MODE
)
2114 case SYMBOL_GOT_PAGE_OFST
:
2115 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
2116 local/global classification is accurate. The worst cases are:
2118 (1) For local symbols when generating o32 or o64 code. The assembler
2124 ...and the final address will be $at + %lo(symbol).
2126 (2) For global symbols when -mxgot. The assembler will use:
2128 lui $at,%got_hi(symbol)
2131 ...and the final address will be $at + %got_lo(symbol). */
2134 case SYMBOL_GOTOFF_PAGE
:
2135 case SYMBOL_GOTOFF_DISP
:
2136 case SYMBOL_GOTOFF_CALL
:
2137 case SYMBOL_GOTOFF_LOADGP
:
2138 case SYMBOL_64_HIGH
:
2144 case SYMBOL_GOTTPREL
:
2147 /* A 16-bit constant formed by a single relocation, or a 32-bit
2148 constant formed from a high 16-bit relocation and a low 16-bit
2149 relocation. Use mips_split_p to determine which. 32-bit
2150 constants need an "lui; addiu" sequence for normal mode and
2151 an "li; sll; addiu" sequence for MIPS16 mode. */
2152 return !mips_split_p
[type
] ? 1 : TARGET_MIPS16
? 3 : 2;
2155 /* We don't treat a bare TLS symbol as a constant. */
2161 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
2162 to load symbols of type TYPE into a register. Return 0 if the given
2163 type of symbol cannot be used as an immediate operand.
2165 Otherwise, return the number of instructions needed to load or store
2166 values of mode MODE to or from addresses of type TYPE. Return 0 if
2167 the given type of symbol is not valid in addresses.
2169 In both cases, instruction counts are based off BASE_INSN_LENGTH. */
2172 mips_symbol_insns (enum mips_symbol_type type
, machine_mode mode
)
2174 return mips_symbol_insns_1 (type
, mode
) * (TARGET_MIPS16
? 2 : 1);
2177 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2180 mips_cannot_force_const_mem (machine_mode mode
, rtx x
)
2182 enum mips_symbol_type type
;
2185 /* There is no assembler syntax for expressing an address-sized
2187 if (GET_CODE (x
) == HIGH
)
2190 /* As an optimization, reject constants that mips_legitimize_move
2193 Suppose we have a multi-instruction sequence that loads constant C
2194 into register R. If R does not get allocated a hard register, and
2195 R is used in an operand that allows both registers and memory
2196 references, reload will consider forcing C into memory and using
2197 one of the instruction's memory alternatives. Returning false
2198 here will force it to use an input reload instead. */
2199 if (CONST_INT_P (x
) && mips_legitimate_constant_p (mode
, x
))
2202 split_const (x
, &base
, &offset
);
2203 if (mips_symbolic_constant_p (base
, SYMBOL_CONTEXT_LEA
, &type
))
2205 /* See whether we explicitly want these symbols in the pool. */
2206 if (mips_use_pcrel_pool_p
[(int) type
])
2209 /* The same optimization as for CONST_INT. */
2210 if (SMALL_INT (offset
) && mips_symbol_insns (type
, MAX_MACHINE_MODE
) > 0)
2213 /* If MIPS16 constant pools live in the text section, they should
2214 not refer to anything that might need run-time relocation. */
2215 if (TARGET_MIPS16_PCREL_LOADS
&& mips_got_symbol_type_p (type
))
2219 /* TLS symbols must be computed by mips_legitimize_move. */
2220 if (tls_referenced_p (x
))
2226 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
2227 constants when we're using a per-function constant pool. */
2230 mips_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED
,
2231 const_rtx x ATTRIBUTE_UNUSED
)
2233 return !TARGET_MIPS16_PCREL_LOADS
;
2236 /* Return true if register REGNO is a valid base register for mode MODE.
2237 STRICT_P is true if REG_OK_STRICT is in effect. */
2240 mips_regno_mode_ok_for_base_p (int regno
, machine_mode mode
,
2243 if (!HARD_REGISTER_NUM_P (regno
))
2247 regno
= reg_renumber
[regno
];
2250 /* These fake registers will be eliminated to either the stack or
2251 hard frame pointer, both of which are usually valid base registers.
2252 Reload deals with the cases where the eliminated form isn't valid. */
2253 if (regno
== ARG_POINTER_REGNUM
|| regno
== FRAME_POINTER_REGNUM
)
2256 /* In MIPS16 mode, the stack pointer can only address word and doubleword
2257 values, nothing smaller. */
2258 if (TARGET_MIPS16
&& regno
== STACK_POINTER_REGNUM
)
2259 return GET_MODE_SIZE (mode
) == 4 || GET_MODE_SIZE (mode
) == 8;
2261 return TARGET_MIPS16
? M16_REG_P (regno
) : GP_REG_P (regno
);
2264 /* Return true if X is a valid base register for mode MODE.
2265 STRICT_P is true if REG_OK_STRICT is in effect. */
2268 mips_valid_base_register_p (rtx x
, machine_mode mode
, bool strict_p
)
2270 if (!strict_p
&& GET_CODE (x
) == SUBREG
)
2274 && mips_regno_mode_ok_for_base_p (REGNO (x
), mode
, strict_p
));
2277 /* Return true if, for every base register BASE_REG, (plus BASE_REG X)
2278 can address a value of mode MODE. */
2281 mips_valid_offset_p (rtx x
, machine_mode mode
)
2283 /* Check that X is a signed 16-bit number. */
2284 if (!const_arith_operand (x
, Pmode
))
2287 /* We may need to split multiword moves, so make sure that every word
2289 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2290 && !SMALL_OPERAND (INTVAL (x
) + GET_MODE_SIZE (mode
) - UNITS_PER_WORD
))
2296 /* Return true if a LO_SUM can address a value of mode MODE when the
2297 LO_SUM symbol has type SYMBOL_TYPE. */
2300 mips_valid_lo_sum_p (enum mips_symbol_type symbol_type
, machine_mode mode
)
2302 /* Check that symbols of type SYMBOL_TYPE can be used to access values
2304 if (mips_symbol_insns (symbol_type
, mode
) == 0)
2307 /* Check that there is a known low-part relocation. */
2308 if (mips_lo_relocs
[symbol_type
] == NULL
)
2311 /* We may need to split multiword moves, so make sure that each word
2312 can be accessed without inducing a carry. This is mainly needed
2313 for o64, which has historically only guaranteed 64-bit alignment
2314 for 128-bit types. */
2315 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
2316 && GET_MODE_BITSIZE (mode
) > GET_MODE_ALIGNMENT (mode
))
2322 /* Return true if X is a valid address for machine mode MODE. If it is,
2323 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
2327 mips_classify_address (struct mips_address_info
*info
, rtx x
,
2328 machine_mode mode
, bool strict_p
)
2330 switch (GET_CODE (x
))
2334 info
->type
= ADDRESS_REG
;
2336 info
->offset
= const0_rtx
;
2337 return mips_valid_base_register_p (info
->reg
, mode
, strict_p
);
2340 info
->type
= ADDRESS_REG
;
2341 info
->reg
= XEXP (x
, 0);
2342 info
->offset
= XEXP (x
, 1);
2343 return (mips_valid_base_register_p (info
->reg
, mode
, strict_p
)
2344 && mips_valid_offset_p (info
->offset
, mode
));
2347 info
->type
= ADDRESS_LO_SUM
;
2348 info
->reg
= XEXP (x
, 0);
2349 info
->offset
= XEXP (x
, 1);
2350 /* We have to trust the creator of the LO_SUM to do something vaguely
2351 sane. Target-independent code that creates a LO_SUM should also
2352 create and verify the matching HIGH. Target-independent code that
2353 adds an offset to a LO_SUM must prove that the offset will not
2354 induce a carry. Failure to do either of these things would be
2355 a bug, and we are not required to check for it here. The MIPS
2356 backend itself should only create LO_SUMs for valid symbolic
2357 constants, with the high part being either a HIGH or a copy
2360 = mips_classify_symbolic_expression (info
->offset
, SYMBOL_CONTEXT_MEM
);
2361 return (mips_valid_base_register_p (info
->reg
, mode
, strict_p
)
2362 && mips_valid_lo_sum_p (info
->symbol_type
, mode
));
2365 /* Small-integer addresses don't occur very often, but they
2366 are legitimate if $0 is a valid base register. */
2367 info
->type
= ADDRESS_CONST_INT
;
2368 return !TARGET_MIPS16
&& SMALL_INT (x
);
2373 info
->type
= ADDRESS_SYMBOLIC
;
2374 return (mips_symbolic_constant_p (x
, SYMBOL_CONTEXT_MEM
,
2376 && mips_symbol_insns (info
->symbol_type
, mode
) > 0
2377 && !mips_split_p
[info
->symbol_type
]);
2384 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
2387 mips_legitimate_address_p (machine_mode mode
, rtx x
, bool strict_p
)
2389 struct mips_address_info addr
;
2391 return mips_classify_address (&addr
, x
, mode
, strict_p
);
2394 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
2397 mips_stack_address_p (rtx x
, machine_mode mode
)
2399 struct mips_address_info addr
;
2401 return (mips_classify_address (&addr
, x
, mode
, false)
2402 && addr
.type
== ADDRESS_REG
2403 && addr
.reg
== stack_pointer_rtx
);
2406 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
2407 address instruction. Note that such addresses are not considered
2408 legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use
2409 is so restricted. */
2412 mips_lwxs_address_p (rtx addr
)
2415 && GET_CODE (addr
) == PLUS
2416 && REG_P (XEXP (addr
, 1)))
2418 rtx offset
= XEXP (addr
, 0);
2419 if (GET_CODE (offset
) == MULT
2420 && REG_P (XEXP (offset
, 0))
2421 && CONST_INT_P (XEXP (offset
, 1))
2422 && INTVAL (XEXP (offset
, 1)) == 4)
2428 /* Return true if ADDR matches the pattern for the L{B,H,W,D}{,U}X load
2429 indexed address instruction. Note that such addresses are
2430 not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P
2431 sense, because their use is so restricted. */
2434 mips_lx_address_p (rtx addr
, machine_mode mode
)
2436 if (GET_CODE (addr
) != PLUS
2437 || !REG_P (XEXP (addr
, 0))
2438 || !REG_P (XEXP (addr
, 1)))
2440 if (ISA_HAS_LBX
&& mode
== QImode
)
2442 if (ISA_HAS_LHX
&& mode
== HImode
)
2444 if (ISA_HAS_LWX
&& mode
== SImode
)
2446 if (ISA_HAS_LDX
&& mode
== DImode
)
2451 /* Return true if a value at OFFSET bytes from base register BASE can be
2452 accessed using an unextended MIPS16 instruction. MODE is the mode of
2455 Usually the offset in an unextended instruction is a 5-bit field.
2456 The offset is unsigned and shifted left once for LH and SH, twice
2457 for LW and SW, and so on. An exception is LWSP and SWSP, which have
2458 an 8-bit immediate field that's shifted left twice. */
2461 mips16_unextended_reference_p (machine_mode mode
, rtx base
,
2462 unsigned HOST_WIDE_INT offset
)
2464 if (mode
!= BLKmode
&& offset
% GET_MODE_SIZE (mode
) == 0)
2466 if (GET_MODE_SIZE (mode
) == 4 && base
== stack_pointer_rtx
)
2467 return offset
< 256U * GET_MODE_SIZE (mode
);
2468 return offset
< 32U * GET_MODE_SIZE (mode
);
2473 /* Return the number of instructions needed to load or store a value
2474 of mode MODE at address X, assuming that BASE_INSN_LENGTH is the
2475 length of one instruction. Return 0 if X isn't valid for MODE.
2476 Assume that multiword moves may need to be split into word moves
2477 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
2481 mips_address_insns (rtx x
, machine_mode mode
, bool might_split_p
)
2483 struct mips_address_info addr
;
2486 /* BLKmode is used for single unaligned loads and stores and should
2487 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
2488 meaningless, so we have to single it out as a special case one way
2490 if (mode
!= BLKmode
&& might_split_p
)
2491 factor
= (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2495 if (mips_classify_address (&addr
, x
, mode
, false))
2500 && !mips16_unextended_reference_p (mode
, addr
.reg
,
2501 UINTVAL (addr
.offset
)))
2505 case ADDRESS_LO_SUM
:
2506 return TARGET_MIPS16
? factor
* 2 : factor
;
2508 case ADDRESS_CONST_INT
:
2511 case ADDRESS_SYMBOLIC
:
2512 return factor
* mips_symbol_insns (addr
.symbol_type
, mode
);
2517 /* Return true if X fits within an unsigned field of BITS bits that is
2518 shifted left SHIFT bits before being used. */
2521 mips_unsigned_immediate_p (unsigned HOST_WIDE_INT x
, int bits
, int shift
= 0)
2523 return (x
& ((1 << shift
) - 1)) == 0 && x
< ((unsigned) 1 << (shift
+ bits
));
2526 /* Return true if X fits within a signed field of BITS bits that is
2527 shifted left SHIFT bits before being used. */
2530 mips_signed_immediate_p (unsigned HOST_WIDE_INT x
, int bits
, int shift
= 0)
2532 x
+= 1 << (bits
+ shift
- 1);
2533 return mips_unsigned_immediate_p (x
, bits
, shift
);
2536 /* Return true if X is legitimate for accessing values of mode MODE,
2537 if it is based on a MIPS16 register, and if the offset satisfies
2538 OFFSET_PREDICATE. */
2541 m16_based_address_p (rtx x
, machine_mode mode
,
2542 insn_operand_predicate_fn offset_predicate
)
2544 struct mips_address_info addr
;
2546 return (mips_classify_address (&addr
, x
, mode
, false)
2547 && addr
.type
== ADDRESS_REG
2548 && M16_REG_P (REGNO (addr
.reg
))
2549 && offset_predicate (addr
.offset
, mode
));
2552 /* Return true if X is a legitimate address that conforms to the requirements
2553 for a microMIPS LWSP or SWSP insn. */
2556 lwsp_swsp_address_p (rtx x
, machine_mode mode
)
2558 struct mips_address_info addr
;
2560 return (mips_classify_address (&addr
, x
, mode
, false)
2561 && addr
.type
== ADDRESS_REG
2562 && REGNO (addr
.reg
) == STACK_POINTER_REGNUM
2563 && uw5_operand (addr
.offset
, mode
));
2566 /* Return true if X is a legitimate address with a 12-bit offset.
2567 MODE is the mode of the value being accessed. */
2570 umips_12bit_offset_address_p (rtx x
, machine_mode mode
)
2572 struct mips_address_info addr
;
2574 return (mips_classify_address (&addr
, x
, mode
, false)
2575 && addr
.type
== ADDRESS_REG
2576 && CONST_INT_P (addr
.offset
)
2577 && UMIPS_12BIT_OFFSET_P (INTVAL (addr
.offset
)));
2580 /* Return the number of instructions needed to load constant X,
2581 assuming that BASE_INSN_LENGTH is the length of one instruction.
2582 Return 0 if X isn't a valid constant. */
2585 mips_const_insns (rtx x
)
2587 struct mips_integer_op codes
[MIPS_MAX_INTEGER_OPS
];
2588 enum mips_symbol_type symbol_type
;
2591 switch (GET_CODE (x
))
2594 if (!mips_symbolic_constant_p (XEXP (x
, 0), SYMBOL_CONTEXT_LEA
,
2596 || !mips_split_p
[symbol_type
])
2599 /* This is simply an LUI for normal mode. It is an extended
2600 LI followed by an extended SLL for MIPS16. */
2601 return TARGET_MIPS16
? 4 : 1;
2605 /* Unsigned 8-bit constants can be loaded using an unextended
2606 LI instruction. Unsigned 16-bit constants can be loaded
2607 using an extended LI. Negative constants must be loaded
2608 using LI and then negated. */
2609 return (IN_RANGE (INTVAL (x
), 0, 255) ? 1
2610 : SMALL_OPERAND_UNSIGNED (INTVAL (x
)) ? 2
2611 : IN_RANGE (-INTVAL (x
), 0, 255) ? 2
2612 : SMALL_OPERAND_UNSIGNED (-INTVAL (x
)) ? 3
2615 return mips_build_integer (codes
, INTVAL (x
));
2619 /* Allow zeros for normal mode, where we can use $0. */
2620 return !TARGET_MIPS16
&& x
== CONST0_RTX (GET_MODE (x
)) ? 1 : 0;
2626 /* See if we can refer to X directly. */
2627 if (mips_symbolic_constant_p (x
, SYMBOL_CONTEXT_LEA
, &symbol_type
))
2628 return mips_symbol_insns (symbol_type
, MAX_MACHINE_MODE
);
2630 /* Otherwise try splitting the constant into a base and offset.
2631 If the offset is a 16-bit value, we can load the base address
2632 into a register and then use (D)ADDIU to add in the offset.
2633 If the offset is larger, we can load the base and offset
2634 into separate registers and add them together with (D)ADDU.
2635 However, the latter is only possible before reload; during
2636 and after reload, we must have the option of forcing the
2637 constant into the pool instead. */
2638 split_const (x
, &x
, &offset
);
2641 int n
= mips_const_insns (x
);
2644 if (SMALL_INT (offset
))
2646 else if (!targetm
.cannot_force_const_mem (GET_MODE (x
), x
))
2647 return n
+ 1 + mips_build_integer (codes
, INTVAL (offset
));
2654 return mips_symbol_insns (mips_classify_symbol (x
, SYMBOL_CONTEXT_LEA
),
2662 /* X is a doubleword constant that can be handled by splitting it into
2663 two words and loading each word separately. Return the number of
2664 instructions required to do this, assuming that BASE_INSN_LENGTH
2665 is the length of one instruction. */
2668 mips_split_const_insns (rtx x
)
2670 unsigned int low
, high
;
2672 low
= mips_const_insns (mips_subword (x
, false));
2673 high
= mips_const_insns (mips_subword (x
, true));
2674 gcc_assert (low
> 0 && high
> 0);
2678 /* Return the number of instructions needed to implement INSN,
2679 given that it loads from or stores to MEM. Assume that
2680 BASE_INSN_LENGTH is the length of one instruction. */
2683 mips_load_store_insns (rtx mem
, rtx_insn
*insn
)
2689 gcc_assert (MEM_P (mem
));
2690 mode
= GET_MODE (mem
);
2692 /* Try to prove that INSN does not need to be split. */
2693 might_split_p
= GET_MODE_SIZE (mode
) > UNITS_PER_WORD
;
2696 set
= single_set (insn
);
2697 if (set
&& !mips_split_move_insn_p (SET_DEST (set
), SET_SRC (set
), insn
))
2698 might_split_p
= false;
2701 return mips_address_insns (XEXP (mem
, 0), mode
, might_split_p
);
2704 /* Return the number of instructions needed for an integer division,
2705 assuming that BASE_INSN_LENGTH is the length of one instruction. */
2708 mips_idiv_insns (void)
2713 if (TARGET_CHECK_ZERO_DIV
)
2715 if (GENERATE_DIVIDE_TRAPS
)
2721 if (TARGET_FIX_R4000
|| TARGET_FIX_R4400
)
2726 /* Emit a move from SRC to DEST. Assume that the move expanders can
2727 handle all moves if !can_create_pseudo_p (). The distinction is
2728 important because, unlike emit_move_insn, the move expanders know
2729 how to force Pmode objects into the constant pool even when the
2730 constant pool address is not itself legitimate. */
2733 mips_emit_move (rtx dest
, rtx src
)
2735 return (can_create_pseudo_p ()
2736 ? emit_move_insn (dest
, src
)
2737 : emit_move_insn_1 (dest
, src
));
2740 /* Emit a move from SRC to DEST, splitting compound moves into individual
2741 instructions. SPLIT_TYPE is the type of split to perform. */
2744 mips_emit_move_or_split (rtx dest
, rtx src
, enum mips_split_type split_type
)
2746 if (mips_split_move_p (dest
, src
, split_type
))
2747 mips_split_move (dest
, src
, split_type
);
2749 mips_emit_move (dest
, src
);
2752 /* Emit an instruction of the form (set TARGET (CODE OP0)). */
2755 mips_emit_unary (enum rtx_code code
, rtx target
, rtx op0
)
2757 emit_insn (gen_rtx_SET (VOIDmode
, target
,
2758 gen_rtx_fmt_e (code
, GET_MODE (op0
), op0
)));
2761 /* Compute (CODE OP0) and store the result in a new register of mode MODE.
2762 Return that new register. */
2765 mips_force_unary (machine_mode mode
, enum rtx_code code
, rtx op0
)
2769 reg
= gen_reg_rtx (mode
);
2770 mips_emit_unary (code
, reg
, op0
);
2774 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2777 mips_emit_binary (enum rtx_code code
, rtx target
, rtx op0
, rtx op1
)
2779 emit_insn (gen_rtx_SET (VOIDmode
, target
,
2780 gen_rtx_fmt_ee (code
, GET_MODE (target
), op0
, op1
)));
2783 /* Compute (CODE OP0 OP1) and store the result in a new register
2784 of mode MODE. Return that new register. */
2787 mips_force_binary (machine_mode mode
, enum rtx_code code
, rtx op0
, rtx op1
)
2791 reg
= gen_reg_rtx (mode
);
2792 mips_emit_binary (code
, reg
, op0
, op1
);
2796 /* Copy VALUE to a register and return that register. If new pseudos
2797 are allowed, copy it into a new register, otherwise use DEST. */
2800 mips_force_temporary (rtx dest
, rtx value
)
2802 if (can_create_pseudo_p ())
2803 return force_reg (Pmode
, value
);
2806 mips_emit_move (dest
, value
);
2811 /* Emit a call sequence with call pattern PATTERN and return the call
2812 instruction itself (which is not necessarily the last instruction
2813 emitted). ORIG_ADDR is the original, unlegitimized address,
2814 ADDR is the legitimized form, and LAZY_P is true if the call
2815 address is lazily-bound. */
2818 mips_emit_call_insn (rtx pattern
, rtx orig_addr
, rtx addr
, bool lazy_p
)
2823 insn
= emit_call_insn (pattern
);
2825 if (TARGET_MIPS16
&& mips_use_pic_fn_addr_reg_p (orig_addr
))
2827 /* MIPS16 JALRs only take MIPS16 registers. If the target
2828 function requires $25 to be valid on entry, we must copy it
2829 there separately. The move instruction can be put in the
2830 call's delay slot. */
2831 reg
= gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
);
2832 emit_insn_before (gen_move_insn (reg
, addr
), insn
);
2833 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), reg
);
2837 /* Lazy-binding stubs require $gp to be valid on entry. */
2838 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), pic_offset_table_rtx
);
2842 /* See the comment above load_call<mode> for details. */
2843 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
),
2844 gen_rtx_REG (Pmode
, GOT_VERSION_REGNUM
));
2845 emit_insn (gen_update_got_version ());
2849 && TARGET_EXPLICIT_RELOCS
2850 && TARGET_CALL_CLOBBERED_GP
)
2852 rtx post_call_tmp_reg
= gen_rtx_REG (word_mode
, POST_CALL_TMP_REG
);
2853 clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn
), post_call_tmp_reg
);
2859 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2860 then add CONST_INT OFFSET to the result. */
2863 mips_unspec_address_offset (rtx base
, rtx offset
,
2864 enum mips_symbol_type symbol_type
)
2866 base
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, base
),
2867 UNSPEC_ADDRESS_FIRST
+ symbol_type
);
2868 if (offset
!= const0_rtx
)
2869 base
= gen_rtx_PLUS (Pmode
, base
, offset
);
2870 return gen_rtx_CONST (Pmode
, base
);
2873 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2874 type SYMBOL_TYPE. */
2877 mips_unspec_address (rtx address
, enum mips_symbol_type symbol_type
)
2881 split_const (address
, &base
, &offset
);
2882 return mips_unspec_address_offset (base
, offset
, symbol_type
);
2885 /* If OP is an UNSPEC address, return the address to which it refers,
2886 otherwise return OP itself. */
2889 mips_strip_unspec_address (rtx op
)
2893 split_const (op
, &base
, &offset
);
2894 if (UNSPEC_ADDRESS_P (base
))
2895 op
= plus_constant (Pmode
, UNSPEC_ADDRESS (base
), INTVAL (offset
));
2899 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2900 high part to BASE and return the result. Just return BASE otherwise.
2901 TEMP is as for mips_force_temporary.
2903 The returned expression can be used as the first operand to a LO_SUM. */
2906 mips_unspec_offset_high (rtx temp
, rtx base
, rtx addr
,
2907 enum mips_symbol_type symbol_type
)
2909 if (mips_split_p
[symbol_type
])
2911 addr
= gen_rtx_HIGH (Pmode
, mips_unspec_address (addr
, symbol_type
));
2912 addr
= mips_force_temporary (temp
, addr
);
2913 base
= mips_force_temporary (temp
, gen_rtx_PLUS (Pmode
, addr
, base
));
2918 /* Return an instruction that copies $gp into register REG. We want
2919 GCC to treat the register's value as constant, so that its value
2920 can be rematerialized on demand. */
2923 gen_load_const_gp (rtx reg
)
2925 return PMODE_INSN (gen_load_const_gp
, (reg
));
2928 /* Return a pseudo register that contains the value of $gp throughout
2929 the current function. Such registers are needed by MIPS16 functions,
2930 for which $gp itself is not a valid base register or addition operand. */
2933 mips16_gp_pseudo_reg (void)
2935 if (cfun
->machine
->mips16_gp_pseudo_rtx
== NULL_RTX
)
2939 cfun
->machine
->mips16_gp_pseudo_rtx
= gen_reg_rtx (Pmode
);
2941 push_topmost_sequence ();
2943 scan
= get_insns ();
2944 while (NEXT_INSN (scan
) && !INSN_P (NEXT_INSN (scan
)))
2945 scan
= NEXT_INSN (scan
);
2947 rtx set
= gen_load_const_gp (cfun
->machine
->mips16_gp_pseudo_rtx
);
2948 rtx_insn
*insn
= emit_insn_after (set
, scan
);
2949 INSN_LOCATION (insn
) = 0;
2951 pop_topmost_sequence ();
2954 return cfun
->machine
->mips16_gp_pseudo_rtx
;
2957 /* Return a base register that holds pic_offset_table_rtx.
2958 TEMP, if nonnull, is a scratch Pmode base register. */
2961 mips_pic_base_register (rtx temp
)
2964 return pic_offset_table_rtx
;
2966 if (currently_expanding_to_rtl
)
2967 return mips16_gp_pseudo_reg ();
2969 if (can_create_pseudo_p ())
2970 temp
= gen_reg_rtx (Pmode
);
2973 /* The first post-reload split exposes all references to $gp
2974 (both uses and definitions). All references must remain
2975 explicit after that point.
2977 It is safe to introduce uses of $gp at any time, so for
2978 simplicity, we do that before the split too. */
2979 mips_emit_move (temp
, pic_offset_table_rtx
);
2981 emit_insn (gen_load_const_gp (temp
));
2985 /* Return the RHS of a load_call<mode> insn. */
2988 mips_unspec_call (rtx reg
, rtx symbol
)
2992 vec
= gen_rtvec (3, reg
, symbol
, gen_rtx_REG (SImode
, GOT_VERSION_REGNUM
));
2993 return gen_rtx_UNSPEC (Pmode
, vec
, UNSPEC_LOAD_CALL
);
2996 /* If SRC is the RHS of a load_call<mode> insn, return the underlying symbol
2997 reference. Return NULL_RTX otherwise. */
3000 mips_strip_unspec_call (rtx src
)
3002 if (GET_CODE (src
) == UNSPEC
&& XINT (src
, 1) == UNSPEC_LOAD_CALL
)
3003 return mips_strip_unspec_address (XVECEXP (src
, 0, 1));
3007 /* Create and return a GOT reference of type TYPE for address ADDR.
3008 TEMP, if nonnull, is a scratch Pmode base register. */
3011 mips_got_load (rtx temp
, rtx addr
, enum mips_symbol_type type
)
3013 rtx base
, high
, lo_sum_symbol
;
3015 base
= mips_pic_base_register (temp
);
3017 /* If we used the temporary register to load $gp, we can't use
3018 it for the high part as well. */
3019 if (temp
!= NULL
&& reg_overlap_mentioned_p (base
, temp
))
3022 high
= mips_unspec_offset_high (temp
, base
, addr
, type
);
3023 lo_sum_symbol
= mips_unspec_address (addr
, type
);
3025 if (type
== SYMBOL_GOTOFF_CALL
)
3026 return mips_unspec_call (high
, lo_sum_symbol
);
3028 return PMODE_INSN (gen_unspec_got
, (high
, lo_sum_symbol
));
3031 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
3032 it appears in a MEM of that mode. Return true if ADDR is a legitimate
3033 constant in that context and can be split into high and low parts.
3034 If so, and if LOW_OUT is nonnull, emit the high part and store the
3035 low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
3037 TEMP is as for mips_force_temporary and is used to load the high
3038 part into a register.
3040 When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
3041 a legitimize SET_SRC for an .md pattern, otherwise the low part
3042 is guaranteed to be a legitimate address for mode MODE. */
3045 mips_split_symbol (rtx temp
, rtx addr
, machine_mode mode
, rtx
*low_out
)
3047 enum mips_symbol_context context
;
3048 enum mips_symbol_type symbol_type
;
3051 context
= (mode
== MAX_MACHINE_MODE
3052 ? SYMBOL_CONTEXT_LEA
3053 : SYMBOL_CONTEXT_MEM
);
3054 if (GET_CODE (addr
) == HIGH
&& context
== SYMBOL_CONTEXT_LEA
)
3056 addr
= XEXP (addr
, 0);
3057 if (mips_symbolic_constant_p (addr
, context
, &symbol_type
)
3058 && mips_symbol_insns (symbol_type
, mode
) > 0
3059 && mips_split_hi_p
[symbol_type
])
3062 switch (symbol_type
)
3064 case SYMBOL_GOT_PAGE_OFST
:
3065 /* The high part of a page/ofst pair is loaded from the GOT. */
3066 *low_out
= mips_got_load (temp
, addr
, SYMBOL_GOTOFF_PAGE
);
3077 if (mips_symbolic_constant_p (addr
, context
, &symbol_type
)
3078 && mips_symbol_insns (symbol_type
, mode
) > 0
3079 && mips_split_p
[symbol_type
])
3082 switch (symbol_type
)
3084 case SYMBOL_GOT_DISP
:
3085 /* SYMBOL_GOT_DISP symbols are loaded from the GOT. */
3086 *low_out
= mips_got_load (temp
, addr
, SYMBOL_GOTOFF_DISP
);
3089 case SYMBOL_GP_RELATIVE
:
3090 high
= mips_pic_base_register (temp
);
3091 *low_out
= gen_rtx_LO_SUM (Pmode
, high
, addr
);
3095 high
= gen_rtx_HIGH (Pmode
, copy_rtx (addr
));
3096 high
= mips_force_temporary (temp
, high
);
3097 *low_out
= gen_rtx_LO_SUM (Pmode
, high
, addr
);
3106 /* Return a legitimate address for REG + OFFSET. TEMP is as for
3107 mips_force_temporary; it is only needed when OFFSET is not a
3111 mips_add_offset (rtx temp
, rtx reg
, HOST_WIDE_INT offset
)
3113 if (!SMALL_OPERAND (offset
))
3119 /* Load the full offset into a register so that we can use
3120 an unextended instruction for the address itself. */
3121 high
= GEN_INT (offset
);
3126 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
3127 The addition inside the macro CONST_HIGH_PART may cause an
3128 overflow, so we need to force a sign-extension check. */
3129 high
= gen_int_mode (CONST_HIGH_PART (offset
), Pmode
);
3130 offset
= CONST_LOW_PART (offset
);
3132 high
= mips_force_temporary (temp
, high
);
3133 reg
= mips_force_temporary (temp
, gen_rtx_PLUS (Pmode
, high
, reg
));
3135 return plus_constant (Pmode
, reg
, offset
);
3138 /* The __tls_get_attr symbol. */
3139 static GTY(()) rtx mips_tls_symbol
;
3141 /* Return an instruction sequence that calls __tls_get_addr. SYM is
3142 the TLS symbol we are referencing and TYPE is the symbol type to use
3143 (either global dynamic or local dynamic). V0 is an RTX for the
3144 return value location. */
3147 mips_call_tls_get_addr (rtx sym
, enum mips_symbol_type type
, rtx v0
)
3151 a0
= gen_rtx_REG (Pmode
, GP_ARG_FIRST
);
3153 if (!mips_tls_symbol
)
3154 mips_tls_symbol
= init_one_libfunc ("__tls_get_addr");
3156 loc
= mips_unspec_address (sym
, type
);
3160 emit_insn (gen_rtx_SET (Pmode
, a0
,
3161 gen_rtx_LO_SUM (Pmode
, pic_offset_table_rtx
, loc
)));
3162 insn
= mips_expand_call (MIPS_CALL_NORMAL
, v0
, mips_tls_symbol
,
3163 const0_rtx
, NULL_RTX
, false);
3164 RTL_CONST_CALL_P (insn
) = 1;
3165 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), a0
);
3166 insn
= get_insns ();
3173 /* Return a pseudo register that contains the current thread pointer. */
3176 mips_expand_thread_pointer (rtx tp
)
3182 if (!mips16_rdhwr_stub
)
3183 mips16_rdhwr_stub
= new mips16_rdhwr_one_only_stub ();
3184 fn
= mips16_stub_call_address (mips16_rdhwr_stub
);
3185 emit_insn (PMODE_INSN (gen_tls_get_tp_mips16
, (tp
, fn
)));
3188 emit_insn (PMODE_INSN (gen_tls_get_tp
, (tp
)));
3195 return mips_expand_thread_pointer (gen_reg_rtx (Pmode
));
3198 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
3199 its address. The return value will be both a valid address and a valid
3200 SET_SRC (either a REG or a LO_SUM). */
3203 mips_legitimize_tls_address (rtx loc
)
3205 rtx dest
, insn
, v0
, tp
, tmp1
, tmp2
, eqv
, offset
;
3206 enum tls_model model
;
3208 model
= SYMBOL_REF_TLS_MODEL (loc
);
3209 /* Only TARGET_ABICALLS code can have more than one module; other
3210 code must be be static and should not use a GOT. All TLS models
3211 reduce to local exec in this situation. */
3212 if (!TARGET_ABICALLS
)
3213 model
= TLS_MODEL_LOCAL_EXEC
;
3217 case TLS_MODEL_GLOBAL_DYNAMIC
:
3218 v0
= gen_rtx_REG (Pmode
, GP_RETURN
);
3219 insn
= mips_call_tls_get_addr (loc
, SYMBOL_TLSGD
, v0
);
3220 dest
= gen_reg_rtx (Pmode
);
3221 emit_libcall_block (insn
, dest
, v0
, loc
);
3224 case TLS_MODEL_LOCAL_DYNAMIC
:
3225 v0
= gen_rtx_REG (Pmode
, GP_RETURN
);
3226 insn
= mips_call_tls_get_addr (loc
, SYMBOL_TLSLDM
, v0
);
3227 tmp1
= gen_reg_rtx (Pmode
);
3229 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
3230 share the LDM result with other LD model accesses. */
3231 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, const0_rtx
),
3233 emit_libcall_block (insn
, tmp1
, v0
, eqv
);
3235 offset
= mips_unspec_address (loc
, SYMBOL_DTPREL
);
3236 if (mips_split_p
[SYMBOL_DTPREL
])
3238 tmp2
= mips_unspec_offset_high (NULL
, tmp1
, loc
, SYMBOL_DTPREL
);
3239 dest
= gen_rtx_LO_SUM (Pmode
, tmp2
, offset
);
3242 dest
= expand_binop (Pmode
, add_optab
, tmp1
, offset
,
3243 0, 0, OPTAB_DIRECT
);
3246 case TLS_MODEL_INITIAL_EXEC
:
3247 tp
= mips_get_tp ();
3248 tmp1
= gen_reg_rtx (Pmode
);
3249 tmp2
= mips_unspec_address (loc
, SYMBOL_GOTTPREL
);
3250 if (Pmode
== DImode
)
3251 emit_insn (gen_load_gotdi (tmp1
, pic_offset_table_rtx
, tmp2
));
3253 emit_insn (gen_load_gotsi (tmp1
, pic_offset_table_rtx
, tmp2
));
3254 dest
= gen_reg_rtx (Pmode
);
3255 emit_insn (gen_add3_insn (dest
, tmp1
, tp
));
3258 case TLS_MODEL_LOCAL_EXEC
:
3259 tmp1
= mips_get_tp ();
3260 offset
= mips_unspec_address (loc
, SYMBOL_TPREL
);
3261 if (mips_split_p
[SYMBOL_TPREL
])
3263 tmp2
= mips_unspec_offset_high (NULL
, tmp1
, loc
, SYMBOL_TPREL
);
3264 dest
= gen_rtx_LO_SUM (Pmode
, tmp2
, offset
);
3267 dest
= expand_binop (Pmode
, add_optab
, tmp1
, offset
,
3268 0, 0, OPTAB_DIRECT
);
3277 /* Implement "TARGET = __builtin_mips_get_fcsr ()" for MIPS16,
3281 mips16_expand_get_fcsr (rtx target
)
3283 if (!mips16_get_fcsr_stub
)
3284 mips16_get_fcsr_stub
= new mips16_get_fcsr_one_only_stub ();
3285 rtx fn
= mips16_stub_call_address (mips16_get_fcsr_stub
);
3286 emit_insn (PMODE_INSN (gen_mips_get_fcsr_mips16
, (fn
)));
3287 emit_move_insn (target
, gen_rtx_REG (SImode
, GET_FCSR_REGNUM
));
3290 /* Implement __builtin_mips_set_fcsr (TARGET) for MIPS16, using a stub. */
3293 mips16_expand_set_fcsr (rtx newval
)
3295 if (!mips16_set_fcsr_stub
)
3296 mips16_set_fcsr_stub
= new mips16_set_fcsr_one_only_stub ();
3297 rtx fn
= mips16_stub_call_address (mips16_set_fcsr_stub
);
3298 emit_move_insn (gen_rtx_REG (SImode
, SET_FCSR_REGNUM
), newval
);
3299 emit_insn (PMODE_INSN (gen_mips_set_fcsr_mips16
, (fn
)));
3302 /* If X is not a valid address for mode MODE, force it into a register. */
3305 mips_force_address (rtx x
, machine_mode mode
)
3307 if (!mips_legitimate_address_p (mode
, x
, false))
3308 x
= force_reg (Pmode
, x
);
3312 /* This function is used to implement LEGITIMIZE_ADDRESS. If X can
3313 be legitimized in a way that the generic machinery might not expect,
3314 return a new address, otherwise return NULL. MODE is the mode of
3315 the memory being accessed. */
3318 mips_legitimize_address (rtx x
, rtx oldx ATTRIBUTE_UNUSED
,
3322 HOST_WIDE_INT offset
;
3324 if (mips_tls_symbol_p (x
))
3325 return mips_legitimize_tls_address (x
);
3327 /* See if the address can split into a high part and a LO_SUM. */
3328 if (mips_split_symbol (NULL
, x
, mode
, &addr
))
3329 return mips_force_address (addr
, mode
);
3331 /* Handle BASE + OFFSET using mips_add_offset. */
3332 mips_split_plus (x
, &base
, &offset
);
3335 if (!mips_valid_base_register_p (base
, mode
, false))
3336 base
= copy_to_mode_reg (Pmode
, base
);
3337 addr
= mips_add_offset (NULL
, base
, offset
);
3338 return mips_force_address (addr
, mode
);
3344 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
3347 mips_move_integer (rtx temp
, rtx dest
, unsigned HOST_WIDE_INT value
)
3349 struct mips_integer_op codes
[MIPS_MAX_INTEGER_OPS
];
3351 unsigned int i
, num_ops
;
3354 mode
= GET_MODE (dest
);
3355 num_ops
= mips_build_integer (codes
, value
);
3357 /* Apply each binary operation to X. Invariant: X is a legitimate
3358 source operand for a SET pattern. */
3359 x
= GEN_INT (codes
[0].value
);
3360 for (i
= 1; i
< num_ops
; i
++)
3362 if (!can_create_pseudo_p ())
3364 emit_insn (gen_rtx_SET (VOIDmode
, temp
, x
));
3368 x
= force_reg (mode
, x
);
3369 x
= gen_rtx_fmt_ee (codes
[i
].code
, mode
, x
, GEN_INT (codes
[i
].value
));
3372 emit_insn (gen_rtx_SET (VOIDmode
, dest
, x
));
3375 /* Subroutine of mips_legitimize_move. Move constant SRC into register
3376 DEST given that SRC satisfies immediate_operand but doesn't satisfy
3380 mips_legitimize_const_move (machine_mode mode
, rtx dest
, rtx src
)
3384 /* Split moves of big integers into smaller pieces. */
3385 if (splittable_const_int_operand (src
, mode
))
3387 mips_move_integer (dest
, dest
, INTVAL (src
));
3391 /* Split moves of symbolic constants into high/low pairs. */
3392 if (mips_split_symbol (dest
, src
, MAX_MACHINE_MODE
, &src
))
3394 emit_insn (gen_rtx_SET (VOIDmode
, dest
, src
));
3398 /* Generate the appropriate access sequences for TLS symbols. */
3399 if (mips_tls_symbol_p (src
))
3401 mips_emit_move (dest
, mips_legitimize_tls_address (src
));
3405 /* If we have (const (plus symbol offset)), and that expression cannot
3406 be forced into memory, load the symbol first and add in the offset.
3407 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
3408 forced into memory, as it usually produces better code. */
3409 split_const (src
, &base
, &offset
);
3410 if (offset
!= const0_rtx
3411 && (targetm
.cannot_force_const_mem (mode
, src
)
3412 || (!TARGET_MIPS16
&& can_create_pseudo_p ())))
3414 base
= mips_force_temporary (dest
, base
);
3415 mips_emit_move (dest
, mips_add_offset (NULL
, base
, INTVAL (offset
)));
3419 src
= force_const_mem (mode
, src
);
3421 /* When using explicit relocs, constant pool references are sometimes
3422 not legitimate addresses. */
3423 mips_split_symbol (dest
, XEXP (src
, 0), mode
, &XEXP (src
, 0));
3424 mips_emit_move (dest
, src
);
3427 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
3428 sequence that is valid. */
3431 mips_legitimize_move (machine_mode mode
, rtx dest
, rtx src
)
3433 if (!register_operand (dest
, mode
) && !reg_or_0_operand (src
, mode
))
3435 mips_emit_move (dest
, force_reg (mode
, src
));
3439 /* We need to deal with constants that would be legitimate
3440 immediate_operands but aren't legitimate move_operands. */
3441 if (CONSTANT_P (src
) && !move_operand (src
, mode
))
3443 mips_legitimize_const_move (mode
, dest
, src
);
3444 set_unique_reg_note (get_last_insn (), REG_EQUAL
, copy_rtx (src
));
3450 /* Return true if value X in context CONTEXT is a small-data address
3451 that can be rewritten as a LO_SUM. */
3454 mips_rewrite_small_data_p (rtx x
, enum mips_symbol_context context
)
3456 enum mips_symbol_type symbol_type
;
3458 return (mips_lo_relocs
[SYMBOL_GP_RELATIVE
]
3459 && !mips_split_p
[SYMBOL_GP_RELATIVE
]
3460 && mips_symbolic_constant_p (x
, context
, &symbol_type
)
3461 && symbol_type
== SYMBOL_GP_RELATIVE
);
3464 /* Return true if OP refers to small data symbols directly, not through
3465 a LO_SUM. CONTEXT is the context in which X appears. */
3468 mips_small_data_pattern_1 (rtx x
, enum mips_symbol_context context
)
3470 subrtx_var_iterator::array_type array
;
3471 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, ALL
)
3475 /* Ignore things like "g" constraints in asms. We make no particular
3476 guarantee about which symbolic constants are acceptable as asm operands
3477 versus which must be forced into a GPR. */
3478 if (GET_CODE (x
) == LO_SUM
|| GET_CODE (x
) == ASM_OPERANDS
)
3479 iter
.skip_subrtxes ();
3482 if (mips_small_data_pattern_1 (XEXP (x
, 0), SYMBOL_CONTEXT_MEM
))
3484 iter
.skip_subrtxes ();
3486 else if (mips_rewrite_small_data_p (x
, context
))
3492 /* Return true if OP refers to small data symbols directly, not through
3496 mips_small_data_pattern_p (rtx op
)
3498 return mips_small_data_pattern_1 (op
, SYMBOL_CONTEXT_LEA
);
3501 /* Rewrite *LOC so that it refers to small data using explicit
3502 relocations. CONTEXT is the context in which *LOC appears. */
3505 mips_rewrite_small_data_1 (rtx
*loc
, enum mips_symbol_context context
)
3507 subrtx_ptr_iterator::array_type array
;
3508 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, ALL
)
3513 mips_rewrite_small_data_1 (&XEXP (*loc
, 0), SYMBOL_CONTEXT_MEM
);
3514 iter
.skip_subrtxes ();
3516 else if (mips_rewrite_small_data_p (*loc
, context
))
3518 *loc
= gen_rtx_LO_SUM (Pmode
, pic_offset_table_rtx
, *loc
);
3519 iter
.skip_subrtxes ();
3521 else if (GET_CODE (*loc
) == LO_SUM
)
3522 iter
.skip_subrtxes ();
3526 /* Rewrite instruction pattern PATTERN so that it refers to small data
3527 using explicit relocations. */
3530 mips_rewrite_small_data (rtx pattern
)
3532 pattern
= copy_insn (pattern
);
3533 mips_rewrite_small_data_1 (&pattern
, SYMBOL_CONTEXT_LEA
);
3537 /* The cost of loading values from the constant pool. It should be
3538 larger than the cost of any constant we want to synthesize inline. */
3539 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
3541 /* Return the cost of X when used as an operand to the MIPS16 instruction
3542 that implements CODE. Return -1 if there is no such instruction, or if
3543 X is not a valid immediate operand for it. */
3546 mips16_constant_cost (int code
, HOST_WIDE_INT x
)
3553 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
3554 other shifts are extended. The shift patterns truncate the shift
3555 count to the right size, so there are no out-of-range values. */
3556 if (IN_RANGE (x
, 1, 8))
3558 return COSTS_N_INSNS (1);
3561 if (IN_RANGE (x
, -128, 127))
3563 if (SMALL_OPERAND (x
))
3564 return COSTS_N_INSNS (1);
3568 /* Like LE, but reject the always-true case. */
3572 /* We add 1 to the immediate and use SLT. */
3575 /* We can use CMPI for an xor with an unsigned 16-bit X. */
3578 if (IN_RANGE (x
, 0, 255))
3580 if (SMALL_OPERAND_UNSIGNED (x
))
3581 return COSTS_N_INSNS (1);
3586 /* Equality comparisons with 0 are cheap. */
3596 /* Return true if there is a non-MIPS16 instruction that implements CODE
3597 and if that instruction accepts X as an immediate operand. */
3600 mips_immediate_operand_p (int code
, HOST_WIDE_INT x
)
3607 /* All shift counts are truncated to a valid constant. */
3612 /* Likewise rotates, if the target supports rotates at all. */
3618 /* These instructions take 16-bit unsigned immediates. */
3619 return SMALL_OPERAND_UNSIGNED (x
);
3624 /* These instructions take 16-bit signed immediates. */
3625 return SMALL_OPERAND (x
);
3631 /* The "immediate" forms of these instructions are really
3632 implemented as comparisons with register 0. */
3637 /* Likewise, meaning that the only valid immediate operand is 1. */
3641 /* We add 1 to the immediate and use SLT. */
3642 return SMALL_OPERAND (x
+ 1);
3645 /* Likewise SLTU, but reject the always-true case. */
3646 return SMALL_OPERAND (x
+ 1) && x
+ 1 != 0;
3650 /* The bit position and size are immediate operands. */
3651 return ISA_HAS_EXT_INS
;
3654 /* By default assume that $0 can be used for 0. */
3659 /* Return the cost of binary operation X, given that the instruction
3660 sequence for a word-sized or smaller operation has cost SINGLE_COST
3661 and that the sequence of a double-word operation has cost DOUBLE_COST.
3662 If SPEED is true, optimize for speed otherwise optimize for size. */
3665 mips_binary_cost (rtx x
, int single_cost
, int double_cost
, bool speed
)
3669 if (GET_MODE_SIZE (GET_MODE (x
)) == UNITS_PER_WORD
* 2)
3674 + set_src_cost (XEXP (x
, 0), speed
)
3675 + rtx_cost (XEXP (x
, 1), GET_CODE (x
), 1, speed
));
3678 /* Return the cost of floating-point multiplications of mode MODE. */
3681 mips_fp_mult_cost (machine_mode mode
)
3683 return mode
== DFmode
? mips_cost
->fp_mult_df
: mips_cost
->fp_mult_sf
;
3686 /* Return the cost of floating-point divisions of mode MODE. */
3689 mips_fp_div_cost (machine_mode mode
)
3691 return mode
== DFmode
? mips_cost
->fp_div_df
: mips_cost
->fp_div_sf
;
3694 /* Return the cost of sign-extending OP to mode MODE, not including the
3695 cost of OP itself. */
3698 mips_sign_extend_cost (machine_mode mode
, rtx op
)
3701 /* Extended loads are as cheap as unextended ones. */
3704 if (TARGET_64BIT
&& mode
== DImode
&& GET_MODE (op
) == SImode
)
3705 /* A sign extension from SImode to DImode in 64-bit mode is free. */
3708 if (ISA_HAS_SEB_SEH
|| GENERATE_MIPS16E
)
3709 /* We can use SEB or SEH. */
3710 return COSTS_N_INSNS (1);
3712 /* We need to use a shift left and a shift right. */
3713 return COSTS_N_INSNS (TARGET_MIPS16
? 4 : 2);
3716 /* Return the cost of zero-extending OP to mode MODE, not including the
3717 cost of OP itself. */
3720 mips_zero_extend_cost (machine_mode mode
, rtx op
)
3723 /* Extended loads are as cheap as unextended ones. */
3726 if (TARGET_64BIT
&& mode
== DImode
&& GET_MODE (op
) == SImode
)
3727 /* We need a shift left by 32 bits and a shift right by 32 bits. */
3728 return COSTS_N_INSNS (TARGET_MIPS16
? 4 : 2);
3730 if (GENERATE_MIPS16E
)
3731 /* We can use ZEB or ZEH. */
3732 return COSTS_N_INSNS (1);
3735 /* We need to load 0xff or 0xffff into a register and use AND. */
3736 return COSTS_N_INSNS (GET_MODE (op
) == QImode
? 2 : 3);
3738 /* We can use ANDI. */
3739 return COSTS_N_INSNS (1);
3742 /* Return the cost of moving between two registers of mode MODE,
3743 assuming that the move will be in pieces of at most UNITS bytes. */
3746 mips_set_reg_reg_piece_cost (machine_mode mode
, unsigned int units
)
3748 return COSTS_N_INSNS ((GET_MODE_SIZE (mode
) + units
- 1) / units
);
3751 /* Return the cost of moving between two registers of mode MODE. */
3754 mips_set_reg_reg_cost (machine_mode mode
)
3756 switch (GET_MODE_CLASS (mode
))
3759 return mips_set_reg_reg_piece_cost (mode
, GET_MODE_SIZE (CCmode
));
3762 case MODE_COMPLEX_FLOAT
:
3763 case MODE_VECTOR_FLOAT
:
3764 if (TARGET_HARD_FLOAT
)
3765 return mips_set_reg_reg_piece_cost (mode
, UNITS_PER_HWFPVALUE
);
3769 return mips_set_reg_reg_piece_cost (mode
, UNITS_PER_WORD
);
3773 /* Implement TARGET_RTX_COSTS. */
3776 mips_rtx_costs (rtx x
, int code
, int outer_code
, int opno ATTRIBUTE_UNUSED
,
3777 int *total
, bool speed
)
3779 machine_mode mode
= GET_MODE (x
);
3780 bool float_mode_p
= FLOAT_MODE_P (mode
);
3784 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
3785 appear in the instruction stream, and the cost of a comparison is
3786 really the cost of the branch or scc condition. At the time of
3787 writing, GCC only uses an explicit outer COMPARE code when optabs
3788 is testing whether a constant is expensive enough to force into a
3789 register. We want optabs to pass such constants through the MIPS
3790 expanders instead, so make all constants very cheap here. */
3791 if (outer_code
== COMPARE
)
3793 gcc_assert (CONSTANT_P (x
));
3801 /* Treat *clear_upper32-style ANDs as having zero cost in the
3802 second operand. The cost is entirely in the first operand.
3804 ??? This is needed because we would otherwise try to CSE
3805 the constant operand. Although that's the right thing for
3806 instructions that continue to be a register operation throughout
3807 compilation, it is disastrous for instructions that could
3808 later be converted into a memory operation. */
3810 && outer_code
== AND
3811 && UINTVAL (x
) == 0xffffffff)
3819 cost
= mips16_constant_cost (outer_code
, INTVAL (x
));
3828 /* When not optimizing for size, we care more about the cost
3829 of hot code, and hot code is often in a loop. If a constant
3830 operand needs to be forced into a register, we will often be
3831 able to hoist the constant load out of the loop, so the load
3832 should not contribute to the cost. */
3833 if (speed
|| mips_immediate_operand_p (outer_code
, INTVAL (x
)))
3845 if (force_to_mem_operand (x
, VOIDmode
))
3847 *total
= COSTS_N_INSNS (1);
3850 cost
= mips_const_insns (x
);
3853 /* If the constant is likely to be stored in a GPR, SETs of
3854 single-insn constants are as cheap as register sets; we
3855 never want to CSE them.
3857 Don't reduce the cost of storing a floating-point zero in
3858 FPRs. If we have a zero in an FPR for other reasons, we
3859 can get better cfg-cleanup and delayed-branch results by
3860 using it consistently, rather than using $0 sometimes and
3861 an FPR at other times. Also, moves between floating-point
3862 registers are sometimes cheaper than (D)MTC1 $0. */
3864 && outer_code
== SET
3865 && !(float_mode_p
&& TARGET_HARD_FLOAT
))
3867 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3868 want to CSE the constant itself. It is usually better to
3869 have N copies of the last operation in the sequence and one
3870 shared copy of the other operations. (Note that this is
3871 not true for MIPS16 code, where the final operation in the
3872 sequence is often an extended instruction.)
3874 Also, if we have a CONST_INT, we don't know whether it is
3875 for a word or doubleword operation, so we cannot rely on
3876 the result of mips_build_integer. */
3877 else if (!TARGET_MIPS16
3878 && (outer_code
== SET
|| mode
== VOIDmode
))
3880 *total
= COSTS_N_INSNS (cost
);
3883 /* The value will need to be fetched from the constant pool. */
3884 *total
= CONSTANT_POOL_COST
;
3888 /* If the address is legitimate, return the number of
3889 instructions it needs. */
3891 cost
= mips_address_insns (addr
, mode
, true);
3894 *total
= COSTS_N_INSNS (cost
+ 1);
3897 /* Check for a scaled indexed address. */
3898 if (mips_lwxs_address_p (addr
)
3899 || mips_lx_address_p (addr
, mode
))
3901 *total
= COSTS_N_INSNS (2);
3904 /* Otherwise use the default handling. */
3908 *total
= COSTS_N_INSNS (6);
3912 *total
= COSTS_N_INSNS (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
? 2 : 1);
3916 /* Check for a *clear_upper32 pattern and treat it like a zero
3917 extension. See the pattern's comment for details. */
3920 && CONST_INT_P (XEXP (x
, 1))
3921 && UINTVAL (XEXP (x
, 1)) == 0xffffffff)
3923 *total
= (mips_zero_extend_cost (mode
, XEXP (x
, 0))
3924 + set_src_cost (XEXP (x
, 0), speed
));
3927 if (ISA_HAS_CINS
&& CONST_INT_P (XEXP (x
, 1)))
3929 rtx op
= XEXP (x
, 0);
3930 if (GET_CODE (op
) == ASHIFT
3931 && CONST_INT_P (XEXP (op
, 1))
3932 && mask_low_and_shift_p (mode
, XEXP (x
, 1), XEXP (op
, 1), 32))
3934 *total
= COSTS_N_INSNS (1) + set_src_cost (XEXP (op
, 0), speed
);
3938 /* (AND (NOT op0) (NOT op1) is a nor operation that can be done in
3939 a single instruction. */
3941 && GET_CODE (XEXP (x
, 0)) == NOT
3942 && GET_CODE (XEXP (x
, 1)) == NOT
)
3944 cost
= GET_MODE_SIZE (mode
) > UNITS_PER_WORD
? 2 : 1;
3945 *total
= (COSTS_N_INSNS (cost
)
3946 + set_src_cost (XEXP (XEXP (x
, 0), 0), speed
)
3947 + set_src_cost (XEXP (XEXP (x
, 1), 0), speed
));
3955 /* Double-word operations use two single-word operations. */
3956 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (2),
3965 if (CONSTANT_P (XEXP (x
, 1)))
3966 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
3969 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (12),
3975 *total
= mips_cost
->fp_add
;
3977 *total
= COSTS_N_INSNS (4);
3981 /* Low-part immediates need an extended MIPS16 instruction. */
3982 *total
= (COSTS_N_INSNS (TARGET_MIPS16
? 2 : 1)
3983 + set_src_cost (XEXP (x
, 0), speed
));
3998 /* Branch comparisons have VOIDmode, so use the first operand's
4000 mode
= GET_MODE (XEXP (x
, 0));
4001 if (FLOAT_MODE_P (mode
))
4003 *total
= mips_cost
->fp_add
;
4006 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
4012 && (ISA_HAS_NMADD4_NMSUB4
|| ISA_HAS_NMADD3_NMSUB3
)
4013 && TARGET_FUSED_MADD
4014 && !HONOR_NANS (mode
)
4015 && !HONOR_SIGNED_ZEROS (mode
))
4017 /* See if we can use NMADD or NMSUB. See mips.md for the
4018 associated patterns. */
4019 rtx op0
= XEXP (x
, 0);
4020 rtx op1
= XEXP (x
, 1);
4021 if (GET_CODE (op0
) == MULT
&& GET_CODE (XEXP (op0
, 0)) == NEG
)
4023 *total
= (mips_fp_mult_cost (mode
)
4024 + set_src_cost (XEXP (XEXP (op0
, 0), 0), speed
)
4025 + set_src_cost (XEXP (op0
, 1), speed
)
4026 + set_src_cost (op1
, speed
));
4029 if (GET_CODE (op1
) == MULT
)
4031 *total
= (mips_fp_mult_cost (mode
)
4032 + set_src_cost (op0
, speed
)
4033 + set_src_cost (XEXP (op1
, 0), speed
)
4034 + set_src_cost (XEXP (op1
, 1), speed
));
4043 /* If this is part of a MADD or MSUB, treat the PLUS as
4045 if ((ISA_HAS_FP_MADD4_MSUB4
|| ISA_HAS_FP_MADD3_MSUB3
)
4046 && TARGET_FUSED_MADD
4047 && GET_CODE (XEXP (x
, 0)) == MULT
)
4050 *total
= mips_cost
->fp_add
;
4054 /* Double-word operations require three single-word operations and
4055 an SLTU. The MIPS16 version then needs to move the result of
4056 the SLTU from $24 to a MIPS16 register. */
4057 *total
= mips_binary_cost (x
, COSTS_N_INSNS (1),
4058 COSTS_N_INSNS (TARGET_MIPS16
? 5 : 4),
4064 && (ISA_HAS_NMADD4_NMSUB4
|| ISA_HAS_NMADD3_NMSUB3
)
4065 && TARGET_FUSED_MADD
4066 && !HONOR_NANS (mode
)
4067 && HONOR_SIGNED_ZEROS (mode
))
4069 /* See if we can use NMADD or NMSUB. See mips.md for the
4070 associated patterns. */
4071 rtx op
= XEXP (x
, 0);
4072 if ((GET_CODE (op
) == PLUS
|| GET_CODE (op
) == MINUS
)
4073 && GET_CODE (XEXP (op
, 0)) == MULT
)
4075 *total
= (mips_fp_mult_cost (mode
)
4076 + set_src_cost (XEXP (XEXP (op
, 0), 0), speed
)
4077 + set_src_cost (XEXP (XEXP (op
, 0), 1), speed
)
4078 + set_src_cost (XEXP (op
, 1), speed
));
4084 *total
= mips_cost
->fp_add
;
4086 *total
= COSTS_N_INSNS (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
? 4 : 1);
4091 *total
= mips_fp_mult_cost (mode
);
4092 else if (mode
== DImode
&& !TARGET_64BIT
)
4093 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
4094 where the mulsidi3 always includes an MFHI and an MFLO. */
4096 ? mips_cost
->int_mult_si
* 3 + 6
4097 : COSTS_N_INSNS (ISA_HAS_MUL3
? 7 : 9));
4099 *total
= COSTS_N_INSNS (ISA_HAS_MUL3
? 1 : 2) + 1;
4100 else if (mode
== DImode
)
4101 *total
= mips_cost
->int_mult_di
;
4103 *total
= mips_cost
->int_mult_si
;
4107 /* Check for a reciprocal. */
4109 && ISA_HAS_FP_RECIP_RSQRT (mode
)
4110 && flag_unsafe_math_optimizations
4111 && XEXP (x
, 0) == CONST1_RTX (mode
))
4113 if (outer_code
== SQRT
|| GET_CODE (XEXP (x
, 1)) == SQRT
)
4114 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
4115 division as being free. */
4116 *total
= set_src_cost (XEXP (x
, 1), speed
);
4118 *total
= (mips_fp_div_cost (mode
)
4119 + set_src_cost (XEXP (x
, 1), speed
));
4128 *total
= mips_fp_div_cost (mode
);
4137 /* It is our responsibility to make division by a power of 2
4138 as cheap as 2 register additions if we want the division
4139 expanders to be used for such operations; see the setting
4140 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
4141 should always produce shorter code than using
4142 expand_sdiv2_pow2. */
4144 && CONST_INT_P (XEXP (x
, 1))
4145 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
4147 *total
= COSTS_N_INSNS (2) + set_src_cost (XEXP (x
, 0), speed
);
4150 *total
= COSTS_N_INSNS (mips_idiv_insns ());
4152 else if (mode
== DImode
)
4153 *total
= mips_cost
->int_div_di
;
4155 *total
= mips_cost
->int_div_si
;
4159 *total
= mips_sign_extend_cost (mode
, XEXP (x
, 0));
4163 if (outer_code
== SET
4165 && (GET_CODE (XEXP (x
, 0)) == TRUNCATE
4166 || GET_CODE (XEXP (x
, 0)) == SUBREG
)
4167 && GET_MODE (XEXP (x
, 0)) == QImode
4168 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
)
4170 *total
= set_src_cost (XEXP (XEXP (x
, 0), 0), speed
);
4173 *total
= mips_zero_extend_cost (mode
, XEXP (x
, 0));
4177 case UNSIGNED_FLOAT
:
4180 case FLOAT_TRUNCATE
:
4181 *total
= mips_cost
->fp_add
;
4185 if (register_operand (SET_DEST (x
), VOIDmode
)
4186 && reg_or_0_operand (SET_SRC (x
), VOIDmode
))
4188 *total
= mips_set_reg_reg_cost (GET_MODE (SET_DEST (x
)));
4198 /* Implement TARGET_ADDRESS_COST. */
4201 mips_address_cost (rtx addr
, machine_mode mode
,
4202 addr_space_t as ATTRIBUTE_UNUSED
,
4203 bool speed ATTRIBUTE_UNUSED
)
4205 return mips_address_insns (addr
, mode
, false);
4208 /* Information about a single instruction in a multi-instruction
4210 struct mips_multi_member
{
4211 /* True if this is a label, false if it is code. */
4214 /* The output_asm_insn format of the instruction. */
4217 /* The operands to the instruction. */
4218 rtx operands
[MAX_RECOG_OPERANDS
];
4220 typedef struct mips_multi_member mips_multi_member
;
4222 /* The instructions that make up the current multi-insn sequence. */
4223 static vec
<mips_multi_member
> mips_multi_members
;
4225 /* How many instructions (as opposed to labels) are in the current
4226 multi-insn sequence. */
4227 static unsigned int mips_multi_num_insns
;
4229 /* Start a new multi-insn sequence. */
4232 mips_multi_start (void)
4234 mips_multi_members
.truncate (0);
4235 mips_multi_num_insns
= 0;
4238 /* Add a new, uninitialized member to the current multi-insn sequence. */
4240 static struct mips_multi_member
*
4241 mips_multi_add (void)
4243 mips_multi_member empty
;
4244 return mips_multi_members
.safe_push (empty
);
4247 /* Add a normal insn with the given asm format to the current multi-insn
4248 sequence. The other arguments are a null-terminated list of operands. */
4251 mips_multi_add_insn (const char *format
, ...)
4253 struct mips_multi_member
*member
;
4258 member
= mips_multi_add ();
4259 member
->is_label_p
= false;
4260 member
->format
= format
;
4261 va_start (ap
, format
);
4263 while ((op
= va_arg (ap
, rtx
)))
4264 member
->operands
[i
++] = op
;
4266 mips_multi_num_insns
++;
4269 /* Add the given label definition to the current multi-insn sequence.
4270 The definition should include the colon. */
4273 mips_multi_add_label (const char *label
)
4275 struct mips_multi_member
*member
;
4277 member
= mips_multi_add ();
4278 member
->is_label_p
= true;
4279 member
->format
= label
;
4282 /* Return the index of the last member of the current multi-insn sequence. */
4285 mips_multi_last_index (void)
4287 return mips_multi_members
.length () - 1;
4290 /* Add a copy of an existing instruction to the current multi-insn
4291 sequence. I is the index of the instruction that should be copied. */
4294 mips_multi_copy_insn (unsigned int i
)
4296 struct mips_multi_member
*member
;
4298 member
= mips_multi_add ();
4299 memcpy (member
, &mips_multi_members
[i
], sizeof (*member
));
4300 gcc_assert (!member
->is_label_p
);
4303 /* Change the operand of an existing instruction in the current
4304 multi-insn sequence. I is the index of the instruction,
4305 OP is the index of the operand, and X is the new value. */
4308 mips_multi_set_operand (unsigned int i
, unsigned int op
, rtx x
)
4310 mips_multi_members
[i
].operands
[op
] = x
;
4313 /* Write out the asm code for the current multi-insn sequence. */
4316 mips_multi_write (void)
4318 struct mips_multi_member
*member
;
4321 FOR_EACH_VEC_ELT (mips_multi_members
, i
, member
)
4322 if (member
->is_label_p
)
4323 fprintf (asm_out_file
, "%s\n", member
->format
);
4325 output_asm_insn (member
->format
, member
->operands
);
4328 /* Return one word of double-word value OP, taking into account the fixed
4329 endianness of certain registers. HIGH_P is true to select the high part,
4330 false to select the low part. */
4333 mips_subword (rtx op
, bool high_p
)
4335 unsigned int byte
, offset
;
4338 mode
= GET_MODE (op
);
4339 if (mode
== VOIDmode
)
4340 mode
= TARGET_64BIT
? TImode
: DImode
;
4342 if (TARGET_BIG_ENDIAN
? !high_p
: high_p
)
4343 byte
= UNITS_PER_WORD
;
4347 if (FP_REG_RTX_P (op
))
4349 /* Paired FPRs are always ordered little-endian. */
4350 offset
= (UNITS_PER_WORD
< UNITS_PER_HWFPVALUE
? high_p
: byte
!= 0);
4351 return gen_rtx_REG (word_mode
, REGNO (op
) + offset
);
4355 return mips_rewrite_small_data (adjust_address (op
, word_mode
, byte
));
4357 return simplify_gen_subreg (word_mode
, op
, mode
, byte
);
4360 /* Return true if SRC should be moved into DEST using "MULT $0, $0".
4361 SPLIT_TYPE is the condition under which moves should be split. */
4364 mips_mult_move_p (rtx dest
, rtx src
, enum mips_split_type split_type
)
4366 return ((split_type
!= SPLIT_FOR_SPEED
4367 || mips_tuning_info
.fast_mult_zero_zero_p
)
4368 && src
== const0_rtx
4370 && GET_MODE_SIZE (GET_MODE (dest
)) == 2 * UNITS_PER_WORD
4371 && (ISA_HAS_DSP_MULT
4372 ? ACC_REG_P (REGNO (dest
))
4373 : MD_REG_P (REGNO (dest
))));
4376 /* Return true if a move from SRC to DEST should be split into two.
4377 SPLIT_TYPE describes the split condition. */
4380 mips_split_move_p (rtx dest
, rtx src
, enum mips_split_type split_type
)
4382 /* Check whether the move can be done using some variant of MULT $0,$0. */
4383 if (mips_mult_move_p (dest
, src
, split_type
))
4386 /* FPR-to-FPR moves can be done in a single instruction, if they're
4388 unsigned int size
= GET_MODE_SIZE (GET_MODE (dest
));
4389 if (size
== 8 && FP_REG_RTX_P (src
) && FP_REG_RTX_P (dest
))
4392 /* Check for floating-point loads and stores. */
4393 if (size
== 8 && ISA_HAS_LDC1_SDC1
)
4395 if (FP_REG_RTX_P (dest
) && MEM_P (src
))
4397 if (FP_REG_RTX_P (src
) && MEM_P (dest
))
4401 /* Otherwise split all multiword moves. */
4402 return size
> UNITS_PER_WORD
;
4405 /* Split a move from SRC to DEST, given that mips_split_move_p holds.
4406 SPLIT_TYPE describes the split condition. */
4409 mips_split_move (rtx dest
, rtx src
, enum mips_split_type split_type
)
4413 gcc_checking_assert (mips_split_move_p (dest
, src
, split_type
));
4414 if (FP_REG_RTX_P (dest
) || FP_REG_RTX_P (src
))
4416 if (!TARGET_64BIT
&& GET_MODE (dest
) == DImode
)
4417 emit_insn (gen_move_doubleword_fprdi (dest
, src
));
4418 else if (!TARGET_64BIT
&& GET_MODE (dest
) == DFmode
)
4419 emit_insn (gen_move_doubleword_fprdf (dest
, src
));
4420 else if (!TARGET_64BIT
&& GET_MODE (dest
) == V2SFmode
)
4421 emit_insn (gen_move_doubleword_fprv2sf (dest
, src
));
4422 else if (!TARGET_64BIT
&& GET_MODE (dest
) == V2SImode
)
4423 emit_insn (gen_move_doubleword_fprv2si (dest
, src
));
4424 else if (!TARGET_64BIT
&& GET_MODE (dest
) == V4HImode
)
4425 emit_insn (gen_move_doubleword_fprv4hi (dest
, src
));
4426 else if (!TARGET_64BIT
&& GET_MODE (dest
) == V8QImode
)
4427 emit_insn (gen_move_doubleword_fprv8qi (dest
, src
));
4428 else if (TARGET_64BIT
&& GET_MODE (dest
) == TFmode
)
4429 emit_insn (gen_move_doubleword_fprtf (dest
, src
));
4433 else if (REG_P (dest
) && REGNO (dest
) == MD_REG_FIRST
)
4435 low_dest
= mips_subword (dest
, false);
4436 mips_emit_move (low_dest
, mips_subword (src
, false));
4438 emit_insn (gen_mthidi_ti (dest
, mips_subword (src
, true), low_dest
));
4440 emit_insn (gen_mthisi_di (dest
, mips_subword (src
, true), low_dest
));
4442 else if (REG_P (src
) && REGNO (src
) == MD_REG_FIRST
)
4444 mips_emit_move (mips_subword (dest
, false), mips_subword (src
, false));
4446 emit_insn (gen_mfhidi_ti (mips_subword (dest
, true), src
));
4448 emit_insn (gen_mfhisi_di (mips_subword (dest
, true), src
));
4452 /* The operation can be split into two normal moves. Decide in
4453 which order to do them. */
4454 low_dest
= mips_subword (dest
, false);
4455 if (REG_P (low_dest
)
4456 && reg_overlap_mentioned_p (low_dest
, src
))
4458 mips_emit_move (mips_subword (dest
, true), mips_subword (src
, true));
4459 mips_emit_move (low_dest
, mips_subword (src
, false));
4463 mips_emit_move (low_dest
, mips_subword (src
, false));
4464 mips_emit_move (mips_subword (dest
, true), mips_subword (src
, true));
4469 /* Return the split type for instruction INSN. */
4471 static enum mips_split_type
4472 mips_insn_split_type (rtx insn
)
4474 basic_block bb
= BLOCK_FOR_INSN (insn
);
4477 if (optimize_bb_for_speed_p (bb
))
4478 return SPLIT_FOR_SPEED
;
4480 return SPLIT_FOR_SIZE
;
4482 /* Once CFG information has been removed, we should trust the optimization
4483 decisions made by previous passes and only split where necessary. */
4484 return SPLIT_IF_NECESSARY
;
4487 /* Return true if a move from SRC to DEST in INSN should be split. */
4490 mips_split_move_insn_p (rtx dest
, rtx src
, rtx insn
)
4492 return mips_split_move_p (dest
, src
, mips_insn_split_type (insn
));
4495 /* Split a move from SRC to DEST in INSN, given that mips_split_move_insn_p
4499 mips_split_move_insn (rtx dest
, rtx src
, rtx insn
)
4501 mips_split_move (dest
, src
, mips_insn_split_type (insn
));
4504 /* Return the appropriate instructions to move SRC into DEST. Assume
4505 that SRC is operand 1 and DEST is operand 0. */
4508 mips_output_move (rtx dest
, rtx src
)
4510 enum rtx_code dest_code
, src_code
;
4512 enum mips_symbol_type symbol_type
;
4515 dest_code
= GET_CODE (dest
);
4516 src_code
= GET_CODE (src
);
4517 mode
= GET_MODE (dest
);
4518 dbl_p
= (GET_MODE_SIZE (mode
) == 8);
4520 if (mips_split_move_p (dest
, src
, SPLIT_IF_NECESSARY
))
4523 if ((src_code
== REG
&& GP_REG_P (REGNO (src
)))
4524 || (!TARGET_MIPS16
&& src
== CONST0_RTX (mode
)))
4526 if (dest_code
== REG
)
4528 if (GP_REG_P (REGNO (dest
)))
4529 return "move\t%0,%z1";
4531 if (mips_mult_move_p (dest
, src
, SPLIT_IF_NECESSARY
))
4533 if (ISA_HAS_DSP_MULT
)
4534 return "mult\t%q0,%.,%.";
4536 return "mult\t%.,%.";
4539 /* Moves to HI are handled by special .md insns. */
4540 if (REGNO (dest
) == LO_REGNUM
)
4543 if (DSP_ACC_REG_P (REGNO (dest
)))
4545 static char retval
[] = "mt__\t%z1,%q0";
4547 retval
[2] = reg_names
[REGNO (dest
)][4];
4548 retval
[3] = reg_names
[REGNO (dest
)][5];
4552 if (FP_REG_P (REGNO (dest
)))
4553 return dbl_p
? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
4555 if (ALL_COP_REG_P (REGNO (dest
)))
4557 static char retval
[] = "dmtc_\t%z1,%0";
4559 retval
[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest
));
4560 return dbl_p
? retval
: retval
+ 1;
4563 if (dest_code
== MEM
)
4564 switch (GET_MODE_SIZE (mode
))
4566 case 1: return "sb\t%z1,%0";
4567 case 2: return "sh\t%z1,%0";
4568 case 4: return "sw\t%z1,%0";
4569 case 8: return "sd\t%z1,%0";
4572 if (dest_code
== REG
&& GP_REG_P (REGNO (dest
)))
4574 if (src_code
== REG
)
4576 /* Moves from HI are handled by special .md insns. */
4577 if (REGNO (src
) == LO_REGNUM
)
4579 /* When generating VR4120 or VR4130 code, we use MACC and
4580 DMACC instead of MFLO. This avoids both the normal
4581 MIPS III HI/LO hazards and the errata related to
4584 return dbl_p
? "dmacc\t%0,%.,%." : "macc\t%0,%.,%.";
4588 if (DSP_ACC_REG_P (REGNO (src
)))
4590 static char retval
[] = "mf__\t%0,%q1";
4592 retval
[2] = reg_names
[REGNO (src
)][4];
4593 retval
[3] = reg_names
[REGNO (src
)][5];
4597 if (FP_REG_P (REGNO (src
)))
4598 return dbl_p
? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
4600 if (ALL_COP_REG_P (REGNO (src
)))
4602 static char retval
[] = "dmfc_\t%0,%1";
4604 retval
[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src
));
4605 return dbl_p
? retval
: retval
+ 1;
4609 if (src_code
== MEM
)
4610 switch (GET_MODE_SIZE (mode
))
4612 case 1: return "lbu\t%0,%1";
4613 case 2: return "lhu\t%0,%1";
4614 case 4: return "lw\t%0,%1";
4615 case 8: return "ld\t%0,%1";
4618 if (src_code
== CONST_INT
)
4620 /* Don't use the X format for the operand itself, because that
4621 will give out-of-range numbers for 64-bit hosts and 32-bit
4624 return "li\t%0,%1\t\t\t# %X1";
4626 if (SMALL_OPERAND_UNSIGNED (INTVAL (src
)))
4629 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src
)))
4633 if (src_code
== HIGH
)
4634 return TARGET_MIPS16
? "#" : "lui\t%0,%h1";
4636 if (CONST_GP_P (src
))
4637 return "move\t%0,%1";
4639 if (mips_symbolic_constant_p (src
, SYMBOL_CONTEXT_LEA
, &symbol_type
)
4640 && mips_lo_relocs
[symbol_type
] != 0)
4642 /* A signed 16-bit constant formed by applying a relocation
4643 operator to a symbolic address. */
4644 gcc_assert (!mips_split_p
[symbol_type
]);
4645 return "li\t%0,%R1";
4648 if (symbolic_operand (src
, VOIDmode
))
4650 gcc_assert (TARGET_MIPS16
4651 ? TARGET_MIPS16_TEXT_LOADS
4652 : !TARGET_EXPLICIT_RELOCS
);
4653 return dbl_p
? "dla\t%0,%1" : "la\t%0,%1";
4656 if (src_code
== REG
&& FP_REG_P (REGNO (src
)))
4658 if (dest_code
== REG
&& FP_REG_P (REGNO (dest
)))
4660 if (GET_MODE (dest
) == V2SFmode
)
4661 return "mov.ps\t%0,%1";
4663 return dbl_p
? "mov.d\t%0,%1" : "mov.s\t%0,%1";
4666 if (dest_code
== MEM
)
4667 return dbl_p
? "sdc1\t%1,%0" : "swc1\t%1,%0";
4669 if (dest_code
== REG
&& FP_REG_P (REGNO (dest
)))
4671 if (src_code
== MEM
)
4672 return dbl_p
? "ldc1\t%0,%1" : "lwc1\t%0,%1";
4674 if (dest_code
== REG
&& ALL_COP_REG_P (REGNO (dest
)) && src_code
== MEM
)
4676 static char retval
[] = "l_c_\t%0,%1";
4678 retval
[1] = (dbl_p
? 'd' : 'w');
4679 retval
[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest
));
4682 if (dest_code
== MEM
&& src_code
== REG
&& ALL_COP_REG_P (REGNO (src
)))
4684 static char retval
[] = "s_c_\t%1,%0";
4686 retval
[1] = (dbl_p
? 'd' : 'w');
4687 retval
[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src
));
4693 /* Return true if CMP1 is a suitable second operand for integer ordering
4694 test CODE. See also the *sCC patterns in mips.md. */
4697 mips_int_order_operand_ok_p (enum rtx_code code
, rtx cmp1
)
4703 return reg_or_0_operand (cmp1
, VOIDmode
);
4707 return !TARGET_MIPS16
&& cmp1
== const1_rtx
;
4711 return arith_operand (cmp1
, VOIDmode
);
4714 return sle_operand (cmp1
, VOIDmode
);
4717 return sleu_operand (cmp1
, VOIDmode
);
4724 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
4725 integer ordering test *CODE, or if an equivalent combination can
4726 be formed by adjusting *CODE and *CMP1. When returning true, update
4727 *CODE and *CMP1 with the chosen code and operand, otherwise leave
4731 mips_canonicalize_int_order_test (enum rtx_code
*code
, rtx
*cmp1
,
4734 HOST_WIDE_INT plus_one
;
4736 if (mips_int_order_operand_ok_p (*code
, *cmp1
))
4739 if (CONST_INT_P (*cmp1
))
4743 plus_one
= trunc_int_for_mode (UINTVAL (*cmp1
) + 1, mode
);
4744 if (INTVAL (*cmp1
) < plus_one
)
4747 *cmp1
= force_reg (mode
, GEN_INT (plus_one
));
4753 plus_one
= trunc_int_for_mode (UINTVAL (*cmp1
) + 1, mode
);
4757 *cmp1
= force_reg (mode
, GEN_INT (plus_one
));
4768 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
4769 in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
4770 is nonnull, it's OK to set TARGET to the inverse of the result and
4771 flip *INVERT_PTR instead. */
4774 mips_emit_int_order_test (enum rtx_code code
, bool *invert_ptr
,
4775 rtx target
, rtx cmp0
, rtx cmp1
)
4779 /* First see if there is a MIPS instruction that can do this operation.
4780 If not, try doing the same for the inverse operation. If that also
4781 fails, force CMP1 into a register and try again. */
4782 mode
= GET_MODE (cmp0
);
4783 if (mips_canonicalize_int_order_test (&code
, &cmp1
, mode
))
4784 mips_emit_binary (code
, target
, cmp0
, cmp1
);
4787 enum rtx_code inv_code
= reverse_condition (code
);
4788 if (!mips_canonicalize_int_order_test (&inv_code
, &cmp1
, mode
))
4790 cmp1
= force_reg (mode
, cmp1
);
4791 mips_emit_int_order_test (code
, invert_ptr
, target
, cmp0
, cmp1
);
4793 else if (invert_ptr
== 0)
4797 inv_target
= mips_force_binary (GET_MODE (target
),
4798 inv_code
, cmp0
, cmp1
);
4799 mips_emit_binary (XOR
, target
, inv_target
, const1_rtx
);
4803 *invert_ptr
= !*invert_ptr
;
4804 mips_emit_binary (inv_code
, target
, cmp0
, cmp1
);
4809 /* Return a register that is zero iff CMP0 and CMP1 are equal.
4810 The register will have the same mode as CMP0. */
4813 mips_zero_if_equal (rtx cmp0
, rtx cmp1
)
4815 if (cmp1
== const0_rtx
)
4818 if (uns_arith_operand (cmp1
, VOIDmode
))
4819 return expand_binop (GET_MODE (cmp0
), xor_optab
,
4820 cmp0
, cmp1
, 0, 0, OPTAB_DIRECT
);
4822 return expand_binop (GET_MODE (cmp0
), sub_optab
,
4823 cmp0
, cmp1
, 0, 0, OPTAB_DIRECT
);
4826 /* Convert *CODE into a code that can be used in a floating-point
4827 scc instruction (C.cond.fmt). Return true if the values of
4828 the condition code registers will be inverted, with 0 indicating
4829 that the condition holds. */
4832 mips_reversed_fp_cond (enum rtx_code
*code
)
4839 *code
= reverse_condition_maybe_unordered (*code
);
4847 /* Allocate a floating-point condition-code register of mode MODE.
4849 These condition code registers are used for certain kinds
4850 of compound operation, such as compare and branches, vconds,
4851 and built-in functions. At expand time, their use is entirely
4852 controlled by MIPS-specific code and is entirely internal
4853 to these compound operations.
4855 We could (and did in the past) expose condition-code values
4856 as pseudo registers and leave the register allocator to pick
4857 appropriate registers. The problem is that it is not practically
4858 possible for the rtl optimizers to guarantee that no spills will
4859 be needed, even when AVOID_CCMODE_COPIES is defined. We would
4860 therefore need spill and reload sequences to handle the worst case.
4862 Although such sequences do exist, they are very expensive and are
4863 not something we'd want to use. This is especially true of CCV2 and
4864 CCV4, where all the shuffling would greatly outweigh whatever benefit
4865 the vectorization itself provides.
4867 The main benefit of having more than one condition-code register
4868 is to allow the pipelining of operations, especially those involving
4869 comparisons and conditional moves. We don't really expect the
4870 registers to be live for long periods, and certainly never want
4871 them to be live across calls.
4873 Also, there should be no penalty attached to using all the available
4874 registers. They are simply bits in the same underlying FPU control
4877 We therefore expose the hardware registers from the outset and use
4878 a simple round-robin allocation scheme. */
4881 mips_allocate_fcc (machine_mode mode
)
4883 unsigned int regno
, count
;
4885 gcc_assert (TARGET_HARD_FLOAT
&& ISA_HAS_8CC
);
4889 else if (mode
== CCV2mode
)
4891 else if (mode
== CCV4mode
)
4896 cfun
->machine
->next_fcc
+= -cfun
->machine
->next_fcc
& (count
- 1);
4897 if (cfun
->machine
->next_fcc
> ST_REG_LAST
- ST_REG_FIRST
)
4898 cfun
->machine
->next_fcc
= 0;
4899 regno
= ST_REG_FIRST
+ cfun
->machine
->next_fcc
;
4900 cfun
->machine
->next_fcc
+= count
;
4901 return gen_rtx_REG (mode
, regno
);
4904 /* Convert a comparison into something that can be used in a branch or
4905 conditional move. On entry, *OP0 and *OP1 are the values being
4906 compared and *CODE is the code used to compare them.
4908 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
4909 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
4910 otherwise any standard branch condition can be used. The standard branch
4913 - EQ or NE between two registers.
4914 - any comparison between a register and zero. */
4917 mips_emit_compare (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
, bool need_eq_ne_p
)
4922 if (GET_MODE_CLASS (GET_MODE (*op0
)) == MODE_INT
)
4924 if (!need_eq_ne_p
&& *op1
== const0_rtx
)
4926 else if (*code
== EQ
|| *code
== NE
)
4930 *op0
= mips_zero_if_equal (cmp_op0
, cmp_op1
);
4934 *op1
= force_reg (GET_MODE (cmp_op0
), cmp_op1
);
4938 /* The comparison needs a separate scc instruction. Store the
4939 result of the scc in *OP0 and compare it against zero. */
4940 bool invert
= false;
4941 *op0
= gen_reg_rtx (GET_MODE (cmp_op0
));
4942 mips_emit_int_order_test (*code
, &invert
, *op0
, cmp_op0
, cmp_op1
);
4943 *code
= (invert
? EQ
: NE
);
4947 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0
)))
4949 *op0
= gen_rtx_REG (CCDSPmode
, CCDSP_CC_REGNUM
);
4950 mips_emit_binary (*code
, *op0
, cmp_op0
, cmp_op1
);
4956 enum rtx_code cmp_code
;
4958 /* Floating-point tests use a separate C.cond.fmt comparison to
4959 set a condition code register. The branch or conditional move
4960 will then compare that register against zero.
4962 Set CMP_CODE to the code of the comparison instruction and
4963 *CODE to the code that the branch or move should use. */
4965 *code
= mips_reversed_fp_cond (&cmp_code
) ? EQ
: NE
;
4967 ? mips_allocate_fcc (CCmode
)
4968 : gen_rtx_REG (CCmode
, FPSW_REGNUM
));
4970 mips_emit_binary (cmp_code
, *op0
, cmp_op0
, cmp_op1
);
4974 /* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
4975 and OPERAND[3]. Store the result in OPERANDS[0].
4977 On 64-bit targets, the mode of the comparison and target will always be
4978 SImode, thus possibly narrower than that of the comparison's operands. */
4981 mips_expand_scc (rtx operands
[])
4983 rtx target
= operands
[0];
4984 enum rtx_code code
= GET_CODE (operands
[1]);
4985 rtx op0
= operands
[2];
4986 rtx op1
= operands
[3];
4988 gcc_assert (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
);
4990 if (code
== EQ
|| code
== NE
)
4993 && reg_imm10_operand (op1
, GET_MODE (op1
)))
4994 mips_emit_binary (code
, target
, op0
, op1
);
4997 rtx zie
= mips_zero_if_equal (op0
, op1
);
4998 mips_emit_binary (code
, target
, zie
, const0_rtx
);
5002 mips_emit_int_order_test (code
, 0, target
, op0
, op1
);
5005 /* Compare OPERANDS[1] with OPERANDS[2] using comparison code
5006 CODE and jump to OPERANDS[3] if the condition holds. */
5009 mips_expand_conditional_branch (rtx
*operands
)
5011 enum rtx_code code
= GET_CODE (operands
[0]);
5012 rtx op0
= operands
[1];
5013 rtx op1
= operands
[2];
5016 mips_emit_compare (&code
, &op0
, &op1
, TARGET_MIPS16
);
5017 condition
= gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5018 emit_jump_insn (gen_condjump (condition
, operands
[3]));
5023 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
5024 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
5027 mips_expand_vcondv2sf (rtx dest
, rtx true_src
, rtx false_src
,
5028 enum rtx_code cond
, rtx cmp_op0
, rtx cmp_op1
)
5033 reversed_p
= mips_reversed_fp_cond (&cond
);
5034 cmp_result
= mips_allocate_fcc (CCV2mode
);
5035 emit_insn (gen_scc_ps (cmp_result
,
5036 gen_rtx_fmt_ee (cond
, VOIDmode
, cmp_op0
, cmp_op1
)));
5038 emit_insn (gen_mips_cond_move_tf_ps (dest
, false_src
, true_src
,
5041 emit_insn (gen_mips_cond_move_tf_ps (dest
, true_src
, false_src
,
5045 /* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0]
5046 if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
5049 mips_expand_conditional_move (rtx
*operands
)
5052 enum rtx_code code
= GET_CODE (operands
[1]);
5053 rtx op0
= XEXP (operands
[1], 0);
5054 rtx op1
= XEXP (operands
[1], 1);
5056 mips_emit_compare (&code
, &op0
, &op1
, true);
5057 cond
= gen_rtx_fmt_ee (code
, GET_MODE (op0
), op0
, op1
);
5058 emit_insn (gen_rtx_SET (VOIDmode
, operands
[0],
5059 gen_rtx_IF_THEN_ELSE (GET_MODE (operands
[0]), cond
,
5060 operands
[2], operands
[3])));
5063 /* Perform the comparison in COMPARISON, then trap if the condition holds. */
5066 mips_expand_conditional_trap (rtx comparison
)
5072 /* MIPS conditional trap instructions don't have GT or LE flavors,
5073 so we must swap the operands and convert to LT and GE respectively. */
5074 code
= GET_CODE (comparison
);
5081 code
= swap_condition (code
);
5082 op0
= XEXP (comparison
, 1);
5083 op1
= XEXP (comparison
, 0);
5087 op0
= XEXP (comparison
, 0);
5088 op1
= XEXP (comparison
, 1);
5092 mode
= GET_MODE (XEXP (comparison
, 0));
5093 op0
= force_reg (mode
, op0
);
5094 if (!arith_operand (op1
, mode
))
5095 op1
= force_reg (mode
, op1
);
5097 emit_insn (gen_rtx_TRAP_IF (VOIDmode
,
5098 gen_rtx_fmt_ee (code
, mode
, op0
, op1
),
5102 /* Initialize *CUM for a call to a function of type FNTYPE. */
5105 mips_init_cumulative_args (CUMULATIVE_ARGS
*cum
, tree fntype
)
5107 memset (cum
, 0, sizeof (*cum
));
5108 cum
->prototype
= (fntype
&& prototype_p (fntype
));
5109 cum
->gp_reg_found
= (cum
->prototype
&& stdarg_p (fntype
));
5112 /* Fill INFO with information about a single argument. CUM is the
5113 cumulative state for earlier arguments. MODE is the mode of this
5114 argument and TYPE is its type (if known). NAMED is true if this
5115 is a named (fixed) argument rather than a variable one. */
5118 mips_get_arg_info (struct mips_arg_info
*info
, const CUMULATIVE_ARGS
*cum
,
5119 machine_mode mode
, const_tree type
, bool named
)
5121 bool doubleword_aligned_p
;
5122 unsigned int num_bytes
, num_words
, max_regs
;
5124 /* Work out the size of the argument. */
5125 num_bytes
= type
? int_size_in_bytes (type
) : GET_MODE_SIZE (mode
);
5126 num_words
= (num_bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
5128 /* Decide whether it should go in a floating-point register, assuming
5129 one is free. Later code checks for availability.
5131 The checks against UNITS_PER_FPVALUE handle the soft-float and
5132 single-float cases. */
5136 /* The EABI conventions have traditionally been defined in terms
5137 of TYPE_MODE, regardless of the actual type. */
5138 info
->fpr_p
= ((GET_MODE_CLASS (mode
) == MODE_FLOAT
5139 || mode
== V2SFmode
)
5140 && GET_MODE_SIZE (mode
) <= UNITS_PER_FPVALUE
);
5145 /* Only leading floating-point scalars are passed in
5146 floating-point registers. We also handle vector floats the same
5147 say, which is OK because they are not covered by the standard ABI. */
5148 info
->fpr_p
= (!cum
->gp_reg_found
5149 && cum
->arg_number
< 2
5151 || SCALAR_FLOAT_TYPE_P (type
)
5152 || VECTOR_FLOAT_TYPE_P (type
))
5153 && (GET_MODE_CLASS (mode
) == MODE_FLOAT
5154 || mode
== V2SFmode
)
5155 && GET_MODE_SIZE (mode
) <= UNITS_PER_FPVALUE
);
5160 /* Scalar, complex and vector floating-point types are passed in
5161 floating-point registers, as long as this is a named rather
5162 than a variable argument. */
5163 info
->fpr_p
= (named
5164 && (type
== 0 || FLOAT_TYPE_P (type
))
5165 && (GET_MODE_CLASS (mode
) == MODE_FLOAT
5166 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
5167 || mode
== V2SFmode
)
5168 && GET_MODE_UNIT_SIZE (mode
) <= UNITS_PER_FPVALUE
);
5170 /* ??? According to the ABI documentation, the real and imaginary
5171 parts of complex floats should be passed in individual registers.
5172 The real and imaginary parts of stack arguments are supposed
5173 to be contiguous and there should be an extra word of padding
5176 This has two problems. First, it makes it impossible to use a
5177 single "void *" va_list type, since register and stack arguments
5178 are passed differently. (At the time of writing, MIPSpro cannot
5179 handle complex float varargs correctly.) Second, it's unclear
5180 what should happen when there is only one register free.
5182 For now, we assume that named complex floats should go into FPRs
5183 if there are two FPRs free, otherwise they should be passed in the
5184 same way as a struct containing two floats. */
5186 && GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
5187 && GET_MODE_UNIT_SIZE (mode
) < UNITS_PER_FPVALUE
)
5189 if (cum
->num_gprs
>= MAX_ARGS_IN_REGISTERS
- 1)
5190 info
->fpr_p
= false;
5200 /* See whether the argument has doubleword alignment. */
5201 doubleword_aligned_p
= (mips_function_arg_boundary (mode
, type
)
5204 /* Set REG_OFFSET to the register count we're interested in.
5205 The EABI allocates the floating-point registers separately,
5206 but the other ABIs allocate them like integer registers. */
5207 info
->reg_offset
= (mips_abi
== ABI_EABI
&& info
->fpr_p
5211 /* Advance to an even register if the argument is doubleword-aligned. */
5212 if (doubleword_aligned_p
)
5213 info
->reg_offset
+= info
->reg_offset
& 1;
5215 /* Work out the offset of a stack argument. */
5216 info
->stack_offset
= cum
->stack_words
;
5217 if (doubleword_aligned_p
)
5218 info
->stack_offset
+= info
->stack_offset
& 1;
5220 max_regs
= MAX_ARGS_IN_REGISTERS
- info
->reg_offset
;
5222 /* Partition the argument between registers and stack. */
5223 info
->reg_words
= MIN (num_words
, max_regs
);
5224 info
->stack_words
= num_words
- info
->reg_words
;
5227 /* INFO describes a register argument that has the normal format for the
5228 argument's mode. Return the register it uses, assuming that FPRs are
5229 available if HARD_FLOAT_P. */
5232 mips_arg_regno (const struct mips_arg_info
*info
, bool hard_float_p
)
5234 if (!info
->fpr_p
|| !hard_float_p
)
5235 return GP_ARG_FIRST
+ info
->reg_offset
;
5236 else if (mips_abi
== ABI_32
&& TARGET_DOUBLE_FLOAT
&& info
->reg_offset
> 0)
5237 /* In o32, the second argument is always passed in $f14
5238 for TARGET_DOUBLE_FLOAT, regardless of whether the
5239 first argument was a word or doubleword. */
5240 return FP_ARG_FIRST
+ 2;
5242 return FP_ARG_FIRST
+ info
->reg_offset
;
5245 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
5248 mips_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED
)
5250 return !TARGET_OLDABI
;
5253 /* Implement TARGET_FUNCTION_ARG. */
5256 mips_function_arg (cumulative_args_t cum_v
, machine_mode mode
,
5257 const_tree type
, bool named
)
5259 CUMULATIVE_ARGS
*cum
= get_cumulative_args (cum_v
);
5260 struct mips_arg_info info
;
5262 /* We will be called with a mode of VOIDmode after the last argument
5263 has been seen. Whatever we return will be passed to the call expander.
5264 If we need a MIPS16 fp_code, return a REG with the code stored as
5266 if (mode
== VOIDmode
)
5268 if (TARGET_MIPS16
&& cum
->fp_code
!= 0)
5269 return gen_rtx_REG ((machine_mode
) cum
->fp_code
, 0);
5274 mips_get_arg_info (&info
, cum
, mode
, type
, named
);
5276 /* Return straight away if the whole argument is passed on the stack. */
5277 if (info
.reg_offset
== MAX_ARGS_IN_REGISTERS
)
5280 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
5281 contains a double in its entirety, then that 64-bit chunk is passed
5282 in a floating-point register. */
5284 && TARGET_HARD_FLOAT
5287 && TREE_CODE (type
) == RECORD_TYPE
5288 && TYPE_SIZE_UNIT (type
)
5289 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
)))
5293 /* First check to see if there is any such field. */
5294 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
5295 if (TREE_CODE (field
) == FIELD_DECL
5296 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
))
5297 && TYPE_PRECISION (TREE_TYPE (field
)) == BITS_PER_WORD
5298 && tree_fits_shwi_p (bit_position (field
))
5299 && int_bit_position (field
) % BITS_PER_WORD
== 0)
5304 /* Now handle the special case by returning a PARALLEL
5305 indicating where each 64-bit chunk goes. INFO.REG_WORDS
5306 chunks are passed in registers. */
5308 HOST_WIDE_INT bitpos
;
5311 /* assign_parms checks the mode of ENTRY_PARM, so we must
5312 use the actual mode here. */
5313 ret
= gen_rtx_PARALLEL (mode
, rtvec_alloc (info
.reg_words
));
5316 field
= TYPE_FIELDS (type
);
5317 for (i
= 0; i
< info
.reg_words
; i
++)
5321 for (; field
; field
= DECL_CHAIN (field
))
5322 if (TREE_CODE (field
) == FIELD_DECL
5323 && int_bit_position (field
) >= bitpos
)
5327 && int_bit_position (field
) == bitpos
5328 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
))
5329 && TYPE_PRECISION (TREE_TYPE (field
)) == BITS_PER_WORD
)
5330 reg
= gen_rtx_REG (DFmode
, FP_ARG_FIRST
+ info
.reg_offset
+ i
);
5332 reg
= gen_rtx_REG (DImode
, GP_ARG_FIRST
+ info
.reg_offset
+ i
);
5335 = gen_rtx_EXPR_LIST (VOIDmode
, reg
,
5336 GEN_INT (bitpos
/ BITS_PER_UNIT
));
5338 bitpos
+= BITS_PER_WORD
;
5344 /* Handle the n32/n64 conventions for passing complex floating-point
5345 arguments in FPR pairs. The real part goes in the lower register
5346 and the imaginary part goes in the upper register. */
5349 && GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
5355 inner
= GET_MODE_INNER (mode
);
5356 regno
= FP_ARG_FIRST
+ info
.reg_offset
;
5357 if (info
.reg_words
* UNITS_PER_WORD
== GET_MODE_SIZE (inner
))
5359 /* Real part in registers, imaginary part on stack. */
5360 gcc_assert (info
.stack_words
== info
.reg_words
);
5361 return gen_rtx_REG (inner
, regno
);
5365 gcc_assert (info
.stack_words
== 0);
5366 real
= gen_rtx_EXPR_LIST (VOIDmode
,
5367 gen_rtx_REG (inner
, regno
),
5369 imag
= gen_rtx_EXPR_LIST (VOIDmode
,
5371 regno
+ info
.reg_words
/ 2),
5372 GEN_INT (GET_MODE_SIZE (inner
)));
5373 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, real
, imag
));
5377 return gen_rtx_REG (mode
, mips_arg_regno (&info
, TARGET_HARD_FLOAT
));
5380 /* Implement TARGET_FUNCTION_ARG_ADVANCE. */
5383 mips_function_arg_advance (cumulative_args_t cum_v
, machine_mode mode
,
5384 const_tree type
, bool named
)
5386 CUMULATIVE_ARGS
*cum
= get_cumulative_args (cum_v
);
5387 struct mips_arg_info info
;
5389 mips_get_arg_info (&info
, cum
, mode
, type
, named
);
5392 cum
->gp_reg_found
= true;
5394 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
5395 an explanation of what this code does. It assumes that we're using
5396 either the o32 or the o64 ABI, both of which pass at most 2 arguments
5398 if (cum
->arg_number
< 2 && info
.fpr_p
)
5399 cum
->fp_code
+= (mode
== SFmode
? 1 : 2) << (cum
->arg_number
* 2);
5401 /* Advance the register count. This has the effect of setting
5402 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
5403 argument required us to skip the final GPR and pass the whole
5404 argument on the stack. */
5405 if (mips_abi
!= ABI_EABI
|| !info
.fpr_p
)
5406 cum
->num_gprs
= info
.reg_offset
+ info
.reg_words
;
5407 else if (info
.reg_words
> 0)
5408 cum
->num_fprs
+= MAX_FPRS_PER_FMT
;
5410 /* Advance the stack word count. */
5411 if (info
.stack_words
> 0)
5412 cum
->stack_words
= info
.stack_offset
+ info
.stack_words
;
5417 /* Implement TARGET_ARG_PARTIAL_BYTES. */
5420 mips_arg_partial_bytes (cumulative_args_t cum
,
5421 machine_mode mode
, tree type
, bool named
)
5423 struct mips_arg_info info
;
5425 mips_get_arg_info (&info
, get_cumulative_args (cum
), mode
, type
, named
);
5426 return info
.stack_words
> 0 ? info
.reg_words
* UNITS_PER_WORD
: 0;
5429 /* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
5430 least PARM_BOUNDARY bits of alignment, but will be given anything up
5431 to STACK_BOUNDARY bits if the type requires it. */
5434 mips_function_arg_boundary (machine_mode mode
, const_tree type
)
5436 unsigned int alignment
;
5438 alignment
= type
? TYPE_ALIGN (type
) : GET_MODE_ALIGNMENT (mode
);
5439 if (alignment
< PARM_BOUNDARY
)
5440 alignment
= PARM_BOUNDARY
;
5441 if (alignment
> STACK_BOUNDARY
)
5442 alignment
= STACK_BOUNDARY
;
5446 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
5447 upward rather than downward. In other words, return true if the
5448 first byte of the stack slot has useful data, false if the last
5452 mips_pad_arg_upward (machine_mode mode
, const_tree type
)
5454 /* On little-endian targets, the first byte of every stack argument
5455 is passed in the first byte of the stack slot. */
5456 if (!BYTES_BIG_ENDIAN
)
5459 /* Otherwise, integral types are padded downward: the last byte of a
5460 stack argument is passed in the last byte of the stack slot. */
5462 ? (INTEGRAL_TYPE_P (type
)
5463 || POINTER_TYPE_P (type
)
5464 || FIXED_POINT_TYPE_P (type
))
5465 : (SCALAR_INT_MODE_P (mode
)
5466 || ALL_SCALAR_FIXED_POINT_MODE_P (mode
)))
5469 /* Big-endian o64 pads floating-point arguments downward. */
5470 if (mips_abi
== ABI_O64
)
5471 if (type
!= 0 ? FLOAT_TYPE_P (type
) : GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5474 /* Other types are padded upward for o32, o64, n32 and n64. */
5475 if (mips_abi
!= ABI_EABI
)
5478 /* Arguments smaller than a stack slot are padded downward. */
5479 if (mode
!= BLKmode
)
5480 return GET_MODE_BITSIZE (mode
) >= PARM_BOUNDARY
;
5482 return int_size_in_bytes (type
) >= (PARM_BOUNDARY
/ BITS_PER_UNIT
);
5485 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
5486 if the least significant byte of the register has useful data. Return
5487 the opposite if the most significant byte does. */
5490 mips_pad_reg_upward (machine_mode mode
, tree type
)
5492 /* No shifting is required for floating-point arguments. */
5493 if (type
!= 0 ? FLOAT_TYPE_P (type
) : GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5494 return !BYTES_BIG_ENDIAN
;
5496 /* Otherwise, apply the same padding to register arguments as we do
5497 to stack arguments. */
5498 return mips_pad_arg_upward (mode
, type
);
5501 /* Return nonzero when an argument must be passed by reference. */
5504 mips_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED
,
5505 machine_mode mode
, const_tree type
,
5506 bool named ATTRIBUTE_UNUSED
)
5508 if (mips_abi
== ABI_EABI
)
5512 /* ??? How should SCmode be handled? */
5513 if (mode
== DImode
|| mode
== DFmode
5514 || mode
== DQmode
|| mode
== UDQmode
5515 || mode
== DAmode
|| mode
== UDAmode
)
5518 size
= type
? int_size_in_bytes (type
) : GET_MODE_SIZE (mode
);
5519 return size
== -1 || size
> UNITS_PER_WORD
;
5523 /* If we have a variable-sized parameter, we have no choice. */
5524 return targetm
.calls
.must_pass_in_stack (mode
, type
);
5528 /* Implement TARGET_CALLEE_COPIES. */
5531 mips_callee_copies (cumulative_args_t cum ATTRIBUTE_UNUSED
,
5532 machine_mode mode ATTRIBUTE_UNUSED
,
5533 const_tree type ATTRIBUTE_UNUSED
, bool named
)
5535 return mips_abi
== ABI_EABI
&& named
;
5538 /* See whether VALTYPE is a record whose fields should be returned in
5539 floating-point registers. If so, return the number of fields and
5540 list them in FIELDS (which should have two elements). Return 0
5543 For n32 & n64, a structure with one or two fields is returned in
5544 floating-point registers as long as every field has a floating-point
5548 mips_fpr_return_fields (const_tree valtype
, tree
*fields
)
5556 if (TREE_CODE (valtype
) != RECORD_TYPE
)
5560 for (field
= TYPE_FIELDS (valtype
); field
!= 0; field
= DECL_CHAIN (field
))
5562 if (TREE_CODE (field
) != FIELD_DECL
)
5565 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field
)))
5571 fields
[i
++] = field
;
5576 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
5577 a value in the most significant part of $2/$3 if:
5579 - the target is big-endian;
5581 - the value has a structure or union type (we generalize this to
5582 cover aggregates from other languages too); and
5584 - the structure is not returned in floating-point registers. */
5587 mips_return_in_msb (const_tree valtype
)
5591 return (TARGET_NEWABI
5592 && TARGET_BIG_ENDIAN
5593 && AGGREGATE_TYPE_P (valtype
)
5594 && mips_fpr_return_fields (valtype
, fields
) == 0);
5597 /* Return true if the function return value MODE will get returned in a
5598 floating-point register. */
5601 mips_return_mode_in_fpr_p (machine_mode mode
)
5603 return ((GET_MODE_CLASS (mode
) == MODE_FLOAT
5605 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
5606 && GET_MODE_UNIT_SIZE (mode
) <= UNITS_PER_HWFPVALUE
);
5609 /* Return the representation of an FPR return register when the
5610 value being returned in FP_RETURN has mode VALUE_MODE and the
5611 return type itself has mode TYPE_MODE. On NewABI targets,
5612 the two modes may be different for structures like:
5614 struct __attribute__((packed)) foo { float f; }
5616 where we return the SFmode value of "f" in FP_RETURN, but where
5617 the structure itself has mode BLKmode. */
5620 mips_return_fpr_single (machine_mode type_mode
,
5621 machine_mode value_mode
)
5625 x
= gen_rtx_REG (value_mode
, FP_RETURN
);
5626 if (type_mode
!= value_mode
)
5628 x
= gen_rtx_EXPR_LIST (VOIDmode
, x
, const0_rtx
);
5629 x
= gen_rtx_PARALLEL (type_mode
, gen_rtvec (1, x
));
5634 /* Return a composite value in a pair of floating-point registers.
5635 MODE1 and OFFSET1 are the mode and byte offset for the first value,
5636 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
5639 For n32 & n64, $f0 always holds the first value and $f2 the second.
5640 Otherwise the values are packed together as closely as possible. */
5643 mips_return_fpr_pair (machine_mode mode
,
5644 machine_mode mode1
, HOST_WIDE_INT offset1
,
5645 machine_mode mode2
, HOST_WIDE_INT offset2
)
5649 inc
= (TARGET_NEWABI
? 2 : MAX_FPRS_PER_FMT
);
5650 return gen_rtx_PARALLEL
5653 gen_rtx_EXPR_LIST (VOIDmode
,
5654 gen_rtx_REG (mode1
, FP_RETURN
),
5656 gen_rtx_EXPR_LIST (VOIDmode
,
5657 gen_rtx_REG (mode2
, FP_RETURN
+ inc
),
5658 GEN_INT (offset2
))));
5662 /* Implement TARGET_FUNCTION_VALUE and TARGET_LIBCALL_VALUE.
5663 For normal calls, VALTYPE is the return type and MODE is VOIDmode.
5664 For libcalls, VALTYPE is null and MODE is the mode of the return value. */
5667 mips_function_value_1 (const_tree valtype
, const_tree fn_decl_or_type
,
5676 if (fn_decl_or_type
&& DECL_P (fn_decl_or_type
))
5677 func
= fn_decl_or_type
;
5681 mode
= TYPE_MODE (valtype
);
5682 unsigned_p
= TYPE_UNSIGNED (valtype
);
5684 /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
5685 return values, promote the mode here too. */
5686 mode
= promote_function_mode (valtype
, mode
, &unsigned_p
, func
, 1);
5688 /* Handle structures whose fields are returned in $f0/$f2. */
5689 switch (mips_fpr_return_fields (valtype
, fields
))
5692 return mips_return_fpr_single (mode
,
5693 TYPE_MODE (TREE_TYPE (fields
[0])));
5696 return mips_return_fpr_pair (mode
,
5697 TYPE_MODE (TREE_TYPE (fields
[0])),
5698 int_byte_position (fields
[0]),
5699 TYPE_MODE (TREE_TYPE (fields
[1])),
5700 int_byte_position (fields
[1]));
5703 /* If a value is passed in the most significant part of a register, see
5704 whether we have to round the mode up to a whole number of words. */
5705 if (mips_return_in_msb (valtype
))
5707 HOST_WIDE_INT size
= int_size_in_bytes (valtype
);
5708 if (size
% UNITS_PER_WORD
!= 0)
5710 size
+= UNITS_PER_WORD
- size
% UNITS_PER_WORD
;
5711 mode
= mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
5715 /* For EABI, the class of return register depends entirely on MODE.
5716 For example, "struct { some_type x; }" and "union { some_type x; }"
5717 are returned in the same way as a bare "some_type" would be.
5718 Other ABIs only use FPRs for scalar, complex or vector types. */
5719 if (mips_abi
!= ABI_EABI
&& !FLOAT_TYPE_P (valtype
))
5720 return gen_rtx_REG (mode
, GP_RETURN
);
5725 /* Handle long doubles for n32 & n64. */
5727 return mips_return_fpr_pair (mode
,
5729 DImode
, GET_MODE_SIZE (mode
) / 2);
5731 if (mips_return_mode_in_fpr_p (mode
))
5733 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
5734 return mips_return_fpr_pair (mode
,
5735 GET_MODE_INNER (mode
), 0,
5736 GET_MODE_INNER (mode
),
5737 GET_MODE_SIZE (mode
) / 2);
5739 return gen_rtx_REG (mode
, FP_RETURN
);
5743 return gen_rtx_REG (mode
, GP_RETURN
);
5746 /* Implement TARGET_FUNCTION_VALUE. */
5749 mips_function_value (const_tree valtype
, const_tree fn_decl_or_type
,
5750 bool outgoing ATTRIBUTE_UNUSED
)
5752 return mips_function_value_1 (valtype
, fn_decl_or_type
, VOIDmode
);
5755 /* Implement TARGET_LIBCALL_VALUE. */
5758 mips_libcall_value (machine_mode mode
, const_rtx fun ATTRIBUTE_UNUSED
)
5760 return mips_function_value_1 (NULL_TREE
, NULL_TREE
, mode
);
5763 /* Implement TARGET_FUNCTION_VALUE_REGNO_P.
5765 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
5766 Currently, R2 and F0 are only implemented here (C has no complex type). */
5769 mips_function_value_regno_p (const unsigned int regno
)
5771 if (regno
== GP_RETURN
5772 || regno
== FP_RETURN
5773 || (LONG_DOUBLE_TYPE_SIZE
== 128
5774 && FP_RETURN
!= GP_RETURN
5775 && regno
== FP_RETURN
+ 2))
5781 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
5782 all BLKmode objects are returned in memory. Under the n32, n64
5783 and embedded ABIs, small structures are returned in a register.
5784 Objects with varying size must still be returned in memory, of
5788 mips_return_in_memory (const_tree type
, const_tree fndecl ATTRIBUTE_UNUSED
)
5790 return (TARGET_OLDABI
5791 ? TYPE_MODE (type
) == BLKmode
5792 : !IN_RANGE (int_size_in_bytes (type
), 0, 2 * UNITS_PER_WORD
));
5795 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
5798 mips_setup_incoming_varargs (cumulative_args_t cum
, machine_mode mode
,
5799 tree type
, int *pretend_size ATTRIBUTE_UNUSED
,
5802 CUMULATIVE_ARGS local_cum
;
5803 int gp_saved
, fp_saved
;
5805 /* The caller has advanced CUM up to, but not beyond, the last named
5806 argument. Advance a local copy of CUM past the last "real" named
5807 argument, to find out how many registers are left over. */
5808 local_cum
= *get_cumulative_args (cum
);
5809 mips_function_arg_advance (pack_cumulative_args (&local_cum
), mode
, type
,
5812 /* Found out how many registers we need to save. */
5813 gp_saved
= MAX_ARGS_IN_REGISTERS
- local_cum
.num_gprs
;
5814 fp_saved
= (EABI_FLOAT_VARARGS_P
5815 ? MAX_ARGS_IN_REGISTERS
- local_cum
.num_fprs
5824 ptr
= plus_constant (Pmode
, virtual_incoming_args_rtx
,
5825 REG_PARM_STACK_SPACE (cfun
->decl
)
5826 - gp_saved
* UNITS_PER_WORD
);
5827 mem
= gen_frame_mem (BLKmode
, ptr
);
5828 set_mem_alias_set (mem
, get_varargs_alias_set ());
5830 move_block_from_reg (local_cum
.num_gprs
+ GP_ARG_FIRST
,
5835 /* We can't use move_block_from_reg, because it will use
5840 /* Set OFF to the offset from virtual_incoming_args_rtx of
5841 the first float register. The FP save area lies below
5842 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
5843 off
= (-gp_saved
* UNITS_PER_WORD
) & -UNITS_PER_FPVALUE
;
5844 off
-= fp_saved
* UNITS_PER_FPREG
;
5846 mode
= TARGET_SINGLE_FLOAT
? SFmode
: DFmode
;
5848 for (i
= local_cum
.num_fprs
; i
< MAX_ARGS_IN_REGISTERS
;
5849 i
+= MAX_FPRS_PER_FMT
)
5853 ptr
= plus_constant (Pmode
, virtual_incoming_args_rtx
, off
);
5854 mem
= gen_frame_mem (mode
, ptr
);
5855 set_mem_alias_set (mem
, get_varargs_alias_set ());
5856 mips_emit_move (mem
, gen_rtx_REG (mode
, FP_ARG_FIRST
+ i
));
5857 off
+= UNITS_PER_HWFPVALUE
;
5861 if (REG_PARM_STACK_SPACE (cfun
->decl
) == 0)
5862 cfun
->machine
->varargs_size
= (gp_saved
* UNITS_PER_WORD
5863 + fp_saved
* UNITS_PER_FPREG
);
5866 /* Implement TARGET_BUILTIN_VA_LIST. */
5869 mips_build_builtin_va_list (void)
5871 if (EABI_FLOAT_VARARGS_P
)
5873 /* We keep 3 pointers, and two offsets.
5875 Two pointers are to the overflow area, which starts at the CFA.
5876 One of these is constant, for addressing into the GPR save area
5877 below it. The other is advanced up the stack through the
5880 The third pointer is to the bottom of the GPR save area.
5881 Since the FPR save area is just below it, we can address
5882 FPR slots off this pointer.
5884 We also keep two one-byte offsets, which are to be subtracted
5885 from the constant pointers to yield addresses in the GPR and
5886 FPR save areas. These are downcounted as float or non-float
5887 arguments are used, and when they get to zero, the argument
5888 must be obtained from the overflow region. */
5889 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
, f_res
, record
;
5892 record
= lang_hooks
.types
.make_type (RECORD_TYPE
);
5894 f_ovfl
= build_decl (BUILTINS_LOCATION
,
5895 FIELD_DECL
, get_identifier ("__overflow_argptr"),
5897 f_gtop
= build_decl (BUILTINS_LOCATION
,
5898 FIELD_DECL
, get_identifier ("__gpr_top"),
5900 f_ftop
= build_decl (BUILTINS_LOCATION
,
5901 FIELD_DECL
, get_identifier ("__fpr_top"),
5903 f_goff
= build_decl (BUILTINS_LOCATION
,
5904 FIELD_DECL
, get_identifier ("__gpr_offset"),
5905 unsigned_char_type_node
);
5906 f_foff
= build_decl (BUILTINS_LOCATION
,
5907 FIELD_DECL
, get_identifier ("__fpr_offset"),
5908 unsigned_char_type_node
);
5909 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
5910 warn on every user file. */
5911 index
= build_int_cst (NULL_TREE
, GET_MODE_SIZE (ptr_mode
) - 2 - 1);
5912 array
= build_array_type (unsigned_char_type_node
,
5913 build_index_type (index
));
5914 f_res
= build_decl (BUILTINS_LOCATION
,
5915 FIELD_DECL
, get_identifier ("__reserved"), array
);
5917 DECL_FIELD_CONTEXT (f_ovfl
) = record
;
5918 DECL_FIELD_CONTEXT (f_gtop
) = record
;
5919 DECL_FIELD_CONTEXT (f_ftop
) = record
;
5920 DECL_FIELD_CONTEXT (f_goff
) = record
;
5921 DECL_FIELD_CONTEXT (f_foff
) = record
;
5922 DECL_FIELD_CONTEXT (f_res
) = record
;
5924 TYPE_FIELDS (record
) = f_ovfl
;
5925 DECL_CHAIN (f_ovfl
) = f_gtop
;
5926 DECL_CHAIN (f_gtop
) = f_ftop
;
5927 DECL_CHAIN (f_ftop
) = f_goff
;
5928 DECL_CHAIN (f_goff
) = f_foff
;
5929 DECL_CHAIN (f_foff
) = f_res
;
5931 layout_type (record
);
5935 /* Otherwise, we use 'void *'. */
5936 return ptr_type_node
;
5939 /* Implement TARGET_EXPAND_BUILTIN_VA_START. */
5942 mips_va_start (tree valist
, rtx nextarg
)
5944 if (EABI_FLOAT_VARARGS_P
)
5946 const CUMULATIVE_ARGS
*cum
;
5947 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
;
5948 tree ovfl
, gtop
, ftop
, goff
, foff
;
5950 int gpr_save_area_size
;
5951 int fpr_save_area_size
;
5954 cum
= &crtl
->args
.info
;
5956 = (MAX_ARGS_IN_REGISTERS
- cum
->num_gprs
) * UNITS_PER_WORD
;
5958 = (MAX_ARGS_IN_REGISTERS
- cum
->num_fprs
) * UNITS_PER_FPREG
;
5960 f_ovfl
= TYPE_FIELDS (va_list_type_node
);
5961 f_gtop
= DECL_CHAIN (f_ovfl
);
5962 f_ftop
= DECL_CHAIN (f_gtop
);
5963 f_goff
= DECL_CHAIN (f_ftop
);
5964 f_foff
= DECL_CHAIN (f_goff
);
5966 ovfl
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovfl
), valist
, f_ovfl
,
5968 gtop
= build3 (COMPONENT_REF
, TREE_TYPE (f_gtop
), valist
, f_gtop
,
5970 ftop
= build3 (COMPONENT_REF
, TREE_TYPE (f_ftop
), valist
, f_ftop
,
5972 goff
= build3 (COMPONENT_REF
, TREE_TYPE (f_goff
), valist
, f_goff
,
5974 foff
= build3 (COMPONENT_REF
, TREE_TYPE (f_foff
), valist
, f_foff
,
5977 /* Emit code to initialize OVFL, which points to the next varargs
5978 stack argument. CUM->STACK_WORDS gives the number of stack
5979 words used by named arguments. */
5980 t
= make_tree (TREE_TYPE (ovfl
), virtual_incoming_args_rtx
);
5981 if (cum
->stack_words
> 0)
5982 t
= fold_build_pointer_plus_hwi (t
, cum
->stack_words
* UNITS_PER_WORD
);
5983 t
= build2 (MODIFY_EXPR
, TREE_TYPE (ovfl
), ovfl
, t
);
5984 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5986 /* Emit code to initialize GTOP, the top of the GPR save area. */
5987 t
= make_tree (TREE_TYPE (gtop
), virtual_incoming_args_rtx
);
5988 t
= build2 (MODIFY_EXPR
, TREE_TYPE (gtop
), gtop
, t
);
5989 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5991 /* Emit code to initialize FTOP, the top of the FPR save area.
5992 This address is gpr_save_area_bytes below GTOP, rounded
5993 down to the next fp-aligned boundary. */
5994 t
= make_tree (TREE_TYPE (ftop
), virtual_incoming_args_rtx
);
5995 fpr_offset
= gpr_save_area_size
+ UNITS_PER_FPVALUE
- 1;
5996 fpr_offset
&= -UNITS_PER_FPVALUE
;
5998 t
= fold_build_pointer_plus_hwi (t
, -fpr_offset
);
5999 t
= build2 (MODIFY_EXPR
, TREE_TYPE (ftop
), ftop
, t
);
6000 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6002 /* Emit code to initialize GOFF, the offset from GTOP of the
6003 next GPR argument. */
6004 t
= build2 (MODIFY_EXPR
, TREE_TYPE (goff
), goff
,
6005 build_int_cst (TREE_TYPE (goff
), gpr_save_area_size
));
6006 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6008 /* Likewise emit code to initialize FOFF, the offset from FTOP
6009 of the next FPR argument. */
6010 t
= build2 (MODIFY_EXPR
, TREE_TYPE (foff
), foff
,
6011 build_int_cst (TREE_TYPE (foff
), fpr_save_area_size
));
6012 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6016 nextarg
= plus_constant (Pmode
, nextarg
, -cfun
->machine
->varargs_size
);
6017 std_expand_builtin_va_start (valist
, nextarg
);
6021 /* Like std_gimplify_va_arg_expr, but apply alignment to zero-sized
6025 mips_std_gimplify_va_arg_expr (tree valist
, tree type
, gimple_seq
*pre_p
,
6028 tree addr
, t
, type_size
, rounded_size
, valist_tmp
;
6029 unsigned HOST_WIDE_INT align
, boundary
;
6032 indirect
= pass_by_reference (NULL
, TYPE_MODE (type
), type
, false);
6034 type
= build_pointer_type (type
);
6036 align
= PARM_BOUNDARY
/ BITS_PER_UNIT
;
6037 boundary
= targetm
.calls
.function_arg_boundary (TYPE_MODE (type
), type
);
6039 /* When we align parameter on stack for caller, if the parameter
6040 alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
6041 aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
6042 here with caller. */
6043 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
6044 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
6046 boundary
/= BITS_PER_UNIT
;
6048 /* Hoist the valist value into a temporary for the moment. */
6049 valist_tmp
= get_initialized_tmp_var (valist
, pre_p
, NULL
);
6051 /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually
6052 requires greater alignment, we must perform dynamic alignment. */
6053 if (boundary
> align
)
6055 t
= build2 (MODIFY_EXPR
, TREE_TYPE (valist
), valist_tmp
,
6056 fold_build_pointer_plus_hwi (valist_tmp
, boundary
- 1));
6057 gimplify_and_add (t
, pre_p
);
6059 t
= build2 (MODIFY_EXPR
, TREE_TYPE (valist
), valist_tmp
,
6060 fold_build2 (BIT_AND_EXPR
, TREE_TYPE (valist
),
6062 build_int_cst (TREE_TYPE (valist
), -boundary
)));
6063 gimplify_and_add (t
, pre_p
);
6068 /* If the actual alignment is less than the alignment of the type,
6069 adjust the type accordingly so that we don't assume strict alignment
6070 when dereferencing the pointer. */
6071 boundary
*= BITS_PER_UNIT
;
6072 if (boundary
< TYPE_ALIGN (type
))
6074 type
= build_variant_type_copy (type
);
6075 TYPE_ALIGN (type
) = boundary
;
6078 /* Compute the rounded size of the type. */
6079 type_size
= size_in_bytes (type
);
6080 rounded_size
= round_up (type_size
, align
);
6082 /* Reduce rounded_size so it's sharable with the postqueue. */
6083 gimplify_expr (&rounded_size
, pre_p
, post_p
, is_gimple_val
, fb_rvalue
);
6087 if (PAD_VARARGS_DOWN
&& !integer_zerop (rounded_size
))
6089 /* Small args are padded downward. */
6090 t
= fold_build2_loc (input_location
, GT_EXPR
, sizetype
,
6091 rounded_size
, size_int (align
));
6092 t
= fold_build3 (COND_EXPR
, sizetype
, t
, size_zero_node
,
6093 size_binop (MINUS_EXPR
, rounded_size
, type_size
));
6094 addr
= fold_build_pointer_plus (addr
, t
);
6097 /* Compute new value for AP. */
6098 t
= fold_build_pointer_plus (valist_tmp
, rounded_size
);
6099 t
= build2 (MODIFY_EXPR
, TREE_TYPE (valist
), valist
, t
);
6100 gimplify_and_add (t
, pre_p
);
6102 addr
= fold_convert (build_pointer_type (type
), addr
);
6105 addr
= build_va_arg_indirect_ref (addr
);
6107 return build_va_arg_indirect_ref (addr
);
6110 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
6113 mips_gimplify_va_arg_expr (tree valist
, tree type
, gimple_seq
*pre_p
,
6119 indirect_p
= pass_by_reference (NULL
, TYPE_MODE (type
), type
, 0);
6121 type
= build_pointer_type (type
);
6123 if (!EABI_FLOAT_VARARGS_P
)
6124 addr
= mips_std_gimplify_va_arg_expr (valist
, type
, pre_p
, post_p
);
6127 tree f_ovfl
, f_gtop
, f_ftop
, f_goff
, f_foff
;
6128 tree ovfl
, top
, off
, align
;
6129 HOST_WIDE_INT size
, rsize
, osize
;
6132 f_ovfl
= TYPE_FIELDS (va_list_type_node
);
6133 f_gtop
= DECL_CHAIN (f_ovfl
);
6134 f_ftop
= DECL_CHAIN (f_gtop
);
6135 f_goff
= DECL_CHAIN (f_ftop
);
6136 f_foff
= DECL_CHAIN (f_goff
);
6140 TOP be the top of the GPR or FPR save area;
6141 OFF be the offset from TOP of the next register;
6142 ADDR_RTX be the address of the argument;
6143 SIZE be the number of bytes in the argument type;
6144 RSIZE be the number of bytes used to store the argument
6145 when it's in the register save area; and
6146 OSIZE be the number of bytes used to store it when it's
6147 in the stack overflow area.
6149 The code we want is:
6151 1: off &= -rsize; // round down
6154 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
6159 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
6160 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
6164 [1] and [9] can sometimes be optimized away. */
6166 ovfl
= build3 (COMPONENT_REF
, TREE_TYPE (f_ovfl
), valist
, f_ovfl
,
6168 size
= int_size_in_bytes (type
);
6170 if (GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_FLOAT
6171 && GET_MODE_SIZE (TYPE_MODE (type
)) <= UNITS_PER_FPVALUE
)
6173 top
= build3 (COMPONENT_REF
, TREE_TYPE (f_ftop
),
6174 unshare_expr (valist
), f_ftop
, NULL_TREE
);
6175 off
= build3 (COMPONENT_REF
, TREE_TYPE (f_foff
),
6176 unshare_expr (valist
), f_foff
, NULL_TREE
);
6178 /* When va_start saves FPR arguments to the stack, each slot
6179 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
6180 argument's precision. */
6181 rsize
= UNITS_PER_HWFPVALUE
;
6183 /* Overflow arguments are padded to UNITS_PER_WORD bytes
6184 (= PARM_BOUNDARY bits). This can be different from RSIZE
6187 (1) On 32-bit targets when TYPE is a structure such as:
6189 struct s { float f; };
6191 Such structures are passed in paired FPRs, so RSIZE
6192 will be 8 bytes. However, the structure only takes
6193 up 4 bytes of memory, so OSIZE will only be 4.
6195 (2) In combinations such as -mgp64 -msingle-float
6196 -fshort-double. Doubles passed in registers will then take
6197 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
6198 stack take up UNITS_PER_WORD bytes. */
6199 osize
= MAX (GET_MODE_SIZE (TYPE_MODE (type
)), UNITS_PER_WORD
);
6203 top
= build3 (COMPONENT_REF
, TREE_TYPE (f_gtop
),
6204 unshare_expr (valist
), f_gtop
, NULL_TREE
);
6205 off
= build3 (COMPONENT_REF
, TREE_TYPE (f_goff
),
6206 unshare_expr (valist
), f_goff
, NULL_TREE
);
6207 rsize
= (size
+ UNITS_PER_WORD
- 1) & -UNITS_PER_WORD
;
6208 if (rsize
> UNITS_PER_WORD
)
6210 /* [1] Emit code for: off &= -rsize. */
6211 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (off
), unshare_expr (off
),
6212 build_int_cst (TREE_TYPE (off
), -rsize
));
6213 gimplify_assign (unshare_expr (off
), t
, pre_p
);
6218 /* [2] Emit code to branch if off == 0. */
6219 t
= build2 (NE_EXPR
, boolean_type_node
, unshare_expr (off
),
6220 build_int_cst (TREE_TYPE (off
), 0));
6221 addr
= build3 (COND_EXPR
, ptr_type_node
, t
, NULL_TREE
, NULL_TREE
);
6223 /* [5] Emit code for: off -= rsize. We do this as a form of
6224 post-decrement not available to C. */
6225 t
= fold_convert (TREE_TYPE (off
), build_int_cst (NULL_TREE
, rsize
));
6226 t
= build2 (POSTDECREMENT_EXPR
, TREE_TYPE (off
), off
, t
);
6228 /* [4] Emit code for:
6229 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
6230 t
= fold_convert (sizetype
, t
);
6231 t
= fold_build1 (NEGATE_EXPR
, sizetype
, t
);
6232 t
= fold_build_pointer_plus (top
, t
);
6233 if (BYTES_BIG_ENDIAN
&& rsize
> size
)
6234 t
= fold_build_pointer_plus_hwi (t
, rsize
- size
);
6235 COND_EXPR_THEN (addr
) = t
;
6237 if (osize
> UNITS_PER_WORD
)
6239 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
6240 t
= fold_build_pointer_plus_hwi (unshare_expr (ovfl
), osize
- 1);
6241 u
= build_int_cst (TREE_TYPE (t
), -osize
);
6242 t
= build2 (BIT_AND_EXPR
, TREE_TYPE (t
), t
, u
);
6243 align
= build2 (MODIFY_EXPR
, TREE_TYPE (ovfl
),
6244 unshare_expr (ovfl
), t
);
6249 /* [10, 11] Emit code for:
6250 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
6252 u
= fold_convert (TREE_TYPE (ovfl
), build_int_cst (NULL_TREE
, osize
));
6253 t
= build2 (POSTINCREMENT_EXPR
, TREE_TYPE (ovfl
), ovfl
, u
);
6254 if (BYTES_BIG_ENDIAN
&& osize
> size
)
6255 t
= fold_build_pointer_plus_hwi (t
, osize
- size
);
6257 /* String [9] and [10, 11] together. */
6259 t
= build2 (COMPOUND_EXPR
, TREE_TYPE (t
), align
, t
);
6260 COND_EXPR_ELSE (addr
) = t
;
6262 addr
= fold_convert (build_pointer_type (type
), addr
);
6263 addr
= build_va_arg_indirect_ref (addr
);
6267 addr
= build_va_arg_indirect_ref (addr
);
6272 /* Declare a unique, locally-binding function called NAME, then start
6276 mips_start_unique_function (const char *name
)
6280 decl
= build_decl (BUILTINS_LOCATION
, FUNCTION_DECL
,
6281 get_identifier (name
),
6282 build_function_type_list (void_type_node
, NULL_TREE
));
6283 DECL_RESULT (decl
) = build_decl (BUILTINS_LOCATION
, RESULT_DECL
,
6284 NULL_TREE
, void_type_node
);
6285 TREE_PUBLIC (decl
) = 1;
6286 TREE_STATIC (decl
) = 1;
6288 cgraph_node::create (decl
)->set_comdat_group (DECL_ASSEMBLER_NAME (decl
));
6290 targetm
.asm_out
.unique_section (decl
, 0);
6291 switch_to_section (get_named_section (decl
, NULL
, 0));
6293 targetm
.asm_out
.globalize_label (asm_out_file
, name
);
6294 fputs ("\t.hidden\t", asm_out_file
);
6295 assemble_name (asm_out_file
, name
);
6296 putc ('\n', asm_out_file
);
6299 /* Start a definition of function NAME. MIPS16_P indicates whether the
6300 function contains MIPS16 code. */
6303 mips_start_function_definition (const char *name
, bool mips16_p
)
6306 fprintf (asm_out_file
, "\t.set\tmips16\n");
6308 fprintf (asm_out_file
, "\t.set\tnomips16\n");
6310 if (TARGET_MICROMIPS
)
6311 fprintf (asm_out_file
, "\t.set\tmicromips\n");
6312 #ifdef HAVE_GAS_MICROMIPS
6314 fprintf (asm_out_file
, "\t.set\tnomicromips\n");
6317 if (!flag_inhibit_size_directive
)
6319 fputs ("\t.ent\t", asm_out_file
);
6320 assemble_name (asm_out_file
, name
);
6321 fputs ("\n", asm_out_file
);
6324 ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file
, name
, "function");
6326 /* Start the definition proper. */
6327 assemble_name (asm_out_file
, name
);
6328 fputs (":\n", asm_out_file
);
6331 /* End a function definition started by mips_start_function_definition. */
6334 mips_end_function_definition (const char *name
)
6336 if (!flag_inhibit_size_directive
)
6338 fputs ("\t.end\t", asm_out_file
);
6339 assemble_name (asm_out_file
, name
);
6340 fputs ("\n", asm_out_file
);
6344 /* If *STUB_PTR points to a stub, output a comdat-style definition for it,
6345 then free *STUB_PTR. */
6348 mips_finish_stub (mips_one_only_stub
**stub_ptr
)
6350 mips_one_only_stub
*stub
= *stub_ptr
;
6354 const char *name
= stub
->get_name ();
6355 mips_start_unique_function (name
);
6356 mips_start_function_definition (name
, false);
6357 stub
->output_body ();
6358 mips_end_function_definition (name
);
6363 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
6366 mips_ok_for_lazy_binding_p (rtx x
)
6368 return (TARGET_USE_GOT
6369 && GET_CODE (x
) == SYMBOL_REF
6370 && !SYMBOL_REF_BIND_NOW_P (x
)
6371 && !mips_symbol_binds_local_p (x
));
6374 /* Load function address ADDR into register DEST. TYPE is as for
6375 mips_expand_call. Return true if we used an explicit lazy-binding
6379 mips_load_call_address (enum mips_call_type type
, rtx dest
, rtx addr
)
6381 /* If we're generating PIC, and this call is to a global function,
6382 try to allow its address to be resolved lazily. This isn't
6383 possible for sibcalls when $gp is call-saved because the value
6384 of $gp on entry to the stub would be our caller's gp, not ours. */
6385 if (TARGET_EXPLICIT_RELOCS
6386 && !(type
== MIPS_CALL_SIBCALL
&& TARGET_CALL_SAVED_GP
)
6387 && mips_ok_for_lazy_binding_p (addr
))
6389 addr
= mips_got_load (dest
, addr
, SYMBOL_GOTOFF_CALL
);
6390 emit_insn (gen_rtx_SET (VOIDmode
, dest
, addr
));
6395 mips_emit_move (dest
, addr
);
6400 struct local_alias_traits
: default_hashmap_traits
6402 static hashval_t
hash (rtx
);
6403 static bool equal_keys (rtx
, rtx
);
6406 /* Each locally-defined hard-float MIPS16 function has a local symbol
6407 associated with it. This hash table maps the function symbol (FUNC)
6408 to the local symbol (LOCAL). */
6409 static GTY (()) hash_map
<rtx
, rtx
, local_alias_traits
> *mips16_local_aliases
;
6411 /* Hash table callbacks for mips16_local_aliases. */
6414 local_alias_traits::hash (rtx func
)
6416 return htab_hash_string (XSTR (func
, 0));
6420 local_alias_traits::equal_keys (rtx func1
, rtx func2
)
6422 return rtx_equal_p (func1
, func2
);
6425 /* FUNC is the symbol for a locally-defined hard-float MIPS16 function.
6426 Return a local alias for it, creating a new one if necessary. */
6429 mips16_local_alias (rtx func
)
6431 /* Create the hash table if this is the first call. */
6432 if (mips16_local_aliases
== NULL
)
6433 mips16_local_aliases
6434 = hash_map
<rtx
, rtx
, local_alias_traits
>::create_ggc (37);
6436 /* Look up the function symbol, creating a new entry if need be. */
6438 rtx
*slot
= &mips16_local_aliases
->get_or_insert (func
, &existed
);
6439 gcc_assert (slot
!= NULL
);
6443 const char *func_name
, *local_name
;
6446 /* Create a new SYMBOL_REF for the local symbol. The choice of
6447 __fn_local_* is based on the __fn_stub_* names that we've
6448 traditionally used for the non-MIPS16 stub. */
6449 func_name
= targetm
.strip_name_encoding (XSTR (func
, 0));
6450 local_name
= ACONCAT (("__fn_local_", func_name
, NULL
));
6451 local
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (local_name
));
6452 SYMBOL_REF_FLAGS (local
) = SYMBOL_REF_FLAGS (func
) | SYMBOL_FLAG_LOCAL
;
6454 /* Create a new structure to represent the mapping. */
6460 /* A chained list of functions for which mips16_build_call_stub has already
6461 generated a stub. NAME is the name of the function and FP_RET_P is true
6462 if the function returns a value in floating-point registers. */
6463 struct mips16_stub
{
6464 struct mips16_stub
*next
;
6468 static struct mips16_stub
*mips16_stubs
;
6470 /* Return the two-character string that identifies floating-point
6471 return mode MODE in the name of a MIPS16 function stub. */
6474 mips16_call_stub_mode_suffix (machine_mode mode
)
6478 else if (mode
== DFmode
)
6480 else if (mode
== SCmode
)
6482 else if (mode
== DCmode
)
6484 else if (mode
== V2SFmode
)
6490 /* Write instructions to move a 32-bit value between general register
6491 GPREG and floating-point register FPREG. DIRECTION is 't' to move
6492 from GPREG to FPREG and 'f' to move in the opposite direction. */
6495 mips_output_32bit_xfer (char direction
, unsigned int gpreg
, unsigned int fpreg
)
6497 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
6498 reg_names
[gpreg
], reg_names
[fpreg
]);
6501 /* Likewise for 64-bit values. */
6504 mips_output_64bit_xfer (char direction
, unsigned int gpreg
, unsigned int fpreg
)
6507 fprintf (asm_out_file
, "\tdm%cc1\t%s,%s\n", direction
,
6508 reg_names
[gpreg
], reg_names
[fpreg
]);
6509 else if (TARGET_FLOAT64
)
6511 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
6512 reg_names
[gpreg
+ TARGET_BIG_ENDIAN
], reg_names
[fpreg
]);
6513 fprintf (asm_out_file
, "\tm%chc1\t%s,%s\n", direction
,
6514 reg_names
[gpreg
+ TARGET_LITTLE_ENDIAN
], reg_names
[fpreg
]);
6518 /* Move the least-significant word. */
6519 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
6520 reg_names
[gpreg
+ TARGET_BIG_ENDIAN
], reg_names
[fpreg
]);
6521 /* ...then the most significant word. */
6522 fprintf (asm_out_file
, "\tm%cc1\t%s,%s\n", direction
,
6523 reg_names
[gpreg
+ TARGET_LITTLE_ENDIAN
], reg_names
[fpreg
+ 1]);
6527 /* Write out code to move floating-point arguments into or out of
6528 general registers. FP_CODE is the code describing which arguments
6529 are present (see the comment above the definition of CUMULATIVE_ARGS
6530 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
6533 mips_output_args_xfer (int fp_code
, char direction
)
6535 unsigned int gparg
, fparg
, f
;
6536 CUMULATIVE_ARGS cum
;
6538 /* This code only works for o32 and o64. */
6539 gcc_assert (TARGET_OLDABI
);
6541 mips_init_cumulative_args (&cum
, NULL
);
6543 for (f
= (unsigned int) fp_code
; f
!= 0; f
>>= 2)
6546 struct mips_arg_info info
;
6550 else if ((f
& 3) == 2)
6555 mips_get_arg_info (&info
, &cum
, mode
, NULL
, true);
6556 gparg
= mips_arg_regno (&info
, false);
6557 fparg
= mips_arg_regno (&info
, true);
6560 mips_output_32bit_xfer (direction
, gparg
, fparg
);
6562 mips_output_64bit_xfer (direction
, gparg
, fparg
);
6564 mips_function_arg_advance (pack_cumulative_args (&cum
), mode
, NULL
, true);
6568 /* Write a MIPS16 stub for the current function. This stub is used
6569 for functions which take arguments in the floating-point registers.
6570 It is normal-mode code that moves the floating-point arguments
6571 into the general registers and then jumps to the MIPS16 code. */
6574 mips16_build_function_stub (void)
6576 const char *fnname
, *alias_name
, *separator
;
6577 char *secname
, *stubname
;
6582 /* Create the name of the stub, and its unique section. */
6583 symbol
= XEXP (DECL_RTL (current_function_decl
), 0);
6584 alias
= mips16_local_alias (symbol
);
6586 fnname
= targetm
.strip_name_encoding (XSTR (symbol
, 0));
6587 alias_name
= targetm
.strip_name_encoding (XSTR (alias
, 0));
6588 secname
= ACONCAT ((".mips16.fn.", fnname
, NULL
));
6589 stubname
= ACONCAT (("__fn_stub_", fnname
, NULL
));
6591 /* Build a decl for the stub. */
6592 stubdecl
= build_decl (BUILTINS_LOCATION
,
6593 FUNCTION_DECL
, get_identifier (stubname
),
6594 build_function_type_list (void_type_node
, NULL_TREE
));
6595 set_decl_section_name (stubdecl
, secname
);
6596 DECL_RESULT (stubdecl
) = build_decl (BUILTINS_LOCATION
,
6597 RESULT_DECL
, NULL_TREE
, void_type_node
);
6599 /* Output a comment. */
6600 fprintf (asm_out_file
, "\t# Stub function for %s (",
6601 current_function_name ());
6603 for (f
= (unsigned int) crtl
->args
.info
.fp_code
; f
!= 0; f
>>= 2)
6605 fprintf (asm_out_file
, "%s%s", separator
,
6606 (f
& 3) == 1 ? "float" : "double");
6609 fprintf (asm_out_file
, ")\n");
6611 /* Start the function definition. */
6612 assemble_start_function (stubdecl
, stubname
);
6613 mips_start_function_definition (stubname
, false);
6615 /* If generating pic2 code, either set up the global pointer or
6617 if (TARGET_ABICALLS_PIC2
)
6619 if (TARGET_ABSOLUTE_ABICALLS
)
6620 fprintf (asm_out_file
, "\t.option\tpic0\n");
6623 output_asm_insn ("%(.cpload\t%^%)", NULL
);
6624 /* Emit an R_MIPS_NONE relocation to tell the linker what the
6625 target function is. Use a local GOT access when loading the
6626 symbol, to cut down on the number of unnecessary GOT entries
6627 for stubs that aren't needed. */
6628 output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol
);
6633 /* Load the address of the MIPS16 function into $25. Do this first so
6634 that targets with coprocessor interlocks can use an MFC1 to fill the
6636 output_asm_insn ("la\t%^,%0", &symbol
);
6638 /* Move the arguments from floating-point registers to general registers. */
6639 mips_output_args_xfer (crtl
->args
.info
.fp_code
, 'f');
6641 /* Jump to the MIPS16 function. */
6642 output_asm_insn ("jr\t%^", NULL
);
6644 if (TARGET_ABICALLS_PIC2
&& TARGET_ABSOLUTE_ABICALLS
)
6645 fprintf (asm_out_file
, "\t.option\tpic2\n");
6647 mips_end_function_definition (stubname
);
6649 /* If the linker needs to create a dynamic symbol for the target
6650 function, it will associate the symbol with the stub (which,
6651 unlike the target function, follows the proper calling conventions).
6652 It is therefore useful to have a local alias for the target function,
6653 so that it can still be identified as MIPS16 code. As an optimization,
6654 this symbol can also be used for indirect MIPS16 references from
6655 within this file. */
6656 ASM_OUTPUT_DEF (asm_out_file
, alias_name
, fnname
);
6658 switch_to_section (function_section (current_function_decl
));
6661 /* The current function is a MIPS16 function that returns a value in an FPR.
6662 Copy the return value from its soft-float to its hard-float location.
6663 libgcc2 has special non-MIPS16 helper functions for each case. */
6666 mips16_copy_fpr_return_value (void)
6668 rtx fn
, insn
, retval
;
6670 machine_mode return_mode
;
6673 return_type
= DECL_RESULT (current_function_decl
);
6674 return_mode
= DECL_MODE (return_type
);
6676 name
= ACONCAT (("__mips16_ret_",
6677 mips16_call_stub_mode_suffix (return_mode
),
6679 fn
= mips16_stub_function (name
);
6681 /* The function takes arguments in $2 (and possibly $3), so calls
6682 to it cannot be lazily bound. */
6683 SYMBOL_REF_FLAGS (fn
) |= SYMBOL_FLAG_BIND_NOW
;
6685 /* Model the call as something that takes the GPR return value as
6686 argument and returns an "updated" value. */
6687 retval
= gen_rtx_REG (return_mode
, GP_RETURN
);
6688 insn
= mips_expand_call (MIPS_CALL_EPILOGUE
, retval
, fn
,
6689 const0_rtx
, NULL_RTX
, false);
6690 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), retval
);
6693 /* Consider building a stub for a MIPS16 call to function *FN_PTR.
6694 RETVAL is the location of the return value, or null if this is
6695 a "call" rather than a "call_value". ARGS_SIZE is the size of the
6696 arguments and FP_CODE is the code built by mips_function_arg;
6697 see the comment before the fp_code field in CUMULATIVE_ARGS for details.
6699 There are three alternatives:
6701 - If a stub was needed, emit the call and return the call insn itself.
6703 - If we can avoid using a stub by redirecting the call, set *FN_PTR
6704 to the new target and return null.
6706 - If *FN_PTR doesn't need a stub, return null and leave *FN_PTR
6709 A stub is needed for calls to functions that, in normal mode,
6710 receive arguments in FPRs or return values in FPRs. The stub
6711 copies the arguments from their soft-float positions to their
6712 hard-float positions, calls the real function, then copies the
6713 return value from its hard-float position to its soft-float
6716 We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub.
6717 If *FN_PTR turns out to be to a non-MIPS16 function, the linker
6718 automatically redirects the JAL to the stub, otherwise the JAL
6719 continues to call FN directly. */
6722 mips16_build_call_stub (rtx retval
, rtx
*fn_ptr
, rtx args_size
, int fp_code
)
6726 struct mips16_stub
*l
;
6730 /* We don't need to do anything if we aren't in MIPS16 mode, or if
6731 we were invoked with the -msoft-float option. */
6732 if (!TARGET_MIPS16
|| TARGET_SOFT_FLOAT_ABI
)
6735 /* Figure out whether the value might come back in a floating-point
6737 fp_ret_p
= retval
&& mips_return_mode_in_fpr_p (GET_MODE (retval
));
6739 /* We don't need to do anything if there were no floating-point
6740 arguments and the value will not be returned in a floating-point
6742 if (fp_code
== 0 && !fp_ret_p
)
6745 /* We don't need to do anything if this is a call to a special
6746 MIPS16 support function. */
6748 if (mips16_stub_function_p (fn
))
6751 /* If we're calling a locally-defined MIPS16 function, we know that
6752 it will return values in both the "soft-float" and "hard-float"
6753 registers. There is no need to use a stub to move the latter
6755 if (fp_code
== 0 && mips16_local_function_p (fn
))
6758 /* This code will only work for o32 and o64 abis. The other ABI's
6759 require more sophisticated support. */
6760 gcc_assert (TARGET_OLDABI
);
6762 /* If we're calling via a function pointer, use one of the magic
6763 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
6764 Each stub expects the function address to arrive in register $2. */
6765 if (GET_CODE (fn
) != SYMBOL_REF
6766 || !call_insn_operand (fn
, VOIDmode
))
6773 /* If this is a locally-defined and locally-binding function,
6774 avoid the stub by calling the local alias directly. */
6775 if (mips16_local_function_p (fn
))
6777 *fn_ptr
= mips16_local_alias (fn
);
6781 /* Create a SYMBOL_REF for the libgcc.a function. */
6783 sprintf (buf
, "__mips16_call_stub_%s_%d",
6784 mips16_call_stub_mode_suffix (GET_MODE (retval
)),
6787 sprintf (buf
, "__mips16_call_stub_%d", fp_code
);
6788 stub_fn
= mips16_stub_function (buf
);
6790 /* The function uses $2 as an argument, so calls to it
6791 cannot be lazily bound. */
6792 SYMBOL_REF_FLAGS (stub_fn
) |= SYMBOL_FLAG_BIND_NOW
;
6794 /* Load the target function into $2. */
6795 addr
= gen_rtx_REG (Pmode
, GP_REG_FIRST
+ 2);
6796 lazy_p
= mips_load_call_address (MIPS_CALL_NORMAL
, addr
, fn
);
6798 /* Emit the call. */
6799 insn
= mips_expand_call (MIPS_CALL_NORMAL
, retval
, stub_fn
,
6800 args_size
, NULL_RTX
, lazy_p
);
6802 /* Tell GCC that this call does indeed use the value of $2. */
6803 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), addr
);
6805 /* If we are handling a floating-point return value, we need to
6806 save $18 in the function prologue. Putting a note on the
6807 call will mean that df_regs_ever_live_p ($18) will be true if the
6808 call is not eliminated, and we can check that in the prologue
6811 CALL_INSN_FUNCTION_USAGE (insn
) =
6812 gen_rtx_EXPR_LIST (VOIDmode
,
6813 gen_rtx_CLOBBER (VOIDmode
,
6814 gen_rtx_REG (word_mode
, 18)),
6815 CALL_INSN_FUNCTION_USAGE (insn
));
6820 /* We know the function we are going to call. If we have already
6821 built a stub, we don't need to do anything further. */
6822 fnname
= targetm
.strip_name_encoding (XSTR (fn
, 0));
6823 for (l
= mips16_stubs
; l
!= NULL
; l
= l
->next
)
6824 if (strcmp (l
->name
, fnname
) == 0)
6829 const char *separator
;
6830 char *secname
, *stubname
;
6831 tree stubid
, stubdecl
;
6834 /* If the function does not return in FPRs, the special stub
6838 If the function does return in FPRs, the stub section is named
6839 .mips16.call.fp.FNNAME
6841 Build a decl for the stub. */
6842 secname
= ACONCAT ((".mips16.call.", fp_ret_p
? "fp." : "",
6844 stubname
= ACONCAT (("__call_stub_", fp_ret_p
? "fp_" : "",
6846 stubid
= get_identifier (stubname
);
6847 stubdecl
= build_decl (BUILTINS_LOCATION
,
6848 FUNCTION_DECL
, stubid
,
6849 build_function_type_list (void_type_node
,
6851 set_decl_section_name (stubdecl
, secname
);
6852 DECL_RESULT (stubdecl
) = build_decl (BUILTINS_LOCATION
,
6853 RESULT_DECL
, NULL_TREE
,
6856 /* Output a comment. */
6857 fprintf (asm_out_file
, "\t# Stub function to call %s%s (",
6859 ? (GET_MODE (retval
) == SFmode
? "float " : "double ")
6863 for (f
= (unsigned int) fp_code
; f
!= 0; f
>>= 2)
6865 fprintf (asm_out_file
, "%s%s", separator
,
6866 (f
& 3) == 1 ? "float" : "double");
6869 fprintf (asm_out_file
, ")\n");
6871 /* Start the function definition. */
6872 assemble_start_function (stubdecl
, stubname
);
6873 mips_start_function_definition (stubname
, false);
6877 fprintf (asm_out_file
, "\t.cfi_startproc\n");
6879 /* Create a fake CFA 4 bytes below the stack pointer.
6880 This works around unwinders (like libgcc's) that expect
6881 the CFA for non-signal frames to be unique. */
6882 fprintf (asm_out_file
, "\t.cfi_def_cfa 29,-4\n");
6884 /* "Save" $sp in itself so we don't use the fake CFA.
6885 This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */
6886 fprintf (asm_out_file
, "\t.cfi_escape 0x16,29,1,0x6d\n");
6890 /* Load the address of the MIPS16 function into $25. Do this
6891 first so that targets with coprocessor interlocks can use
6892 an MFC1 to fill the delay slot. */
6893 if (TARGET_EXPLICIT_RELOCS
)
6895 output_asm_insn ("lui\t%^,%%hi(%0)", &fn
);
6896 output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn
);
6899 output_asm_insn ("la\t%^,%0", &fn
);
6902 /* Move the arguments from general registers to floating-point
6904 mips_output_args_xfer (fp_code
, 't');
6908 /* Save the return address in $18 and call the non-MIPS16 function.
6909 The stub's caller knows that $18 might be clobbered, even though
6910 $18 is usually a call-saved register. */
6911 fprintf (asm_out_file
, "\tmove\t%s,%s\n",
6912 reg_names
[GP_REG_FIRST
+ 18], reg_names
[RETURN_ADDR_REGNUM
]);
6913 output_asm_insn (MIPS_CALL ("jal", &fn
, 0, -1), &fn
);
6914 fprintf (asm_out_file
, "\t.cfi_register 31,18\n");
6916 /* Move the result from floating-point registers to
6917 general registers. */
6918 switch (GET_MODE (retval
))
6921 mips_output_32bit_xfer ('f', GP_RETURN
+ TARGET_BIG_ENDIAN
,
6923 ? FP_REG_FIRST
+ MAX_FPRS_PER_FMT
6925 mips_output_32bit_xfer ('f', GP_RETURN
+ TARGET_LITTLE_ENDIAN
,
6926 TARGET_LITTLE_ENDIAN
6927 ? FP_REG_FIRST
+ MAX_FPRS_PER_FMT
6929 if (GET_MODE (retval
) == SCmode
&& TARGET_64BIT
)
6931 /* On 64-bit targets, complex floats are returned in
6932 a single GPR, such that "sd" on a suitably-aligned
6933 target would store the value correctly. */
6934 fprintf (asm_out_file
, "\tdsll\t%s,%s,32\n",
6935 reg_names
[GP_RETURN
+ TARGET_BIG_ENDIAN
],
6936 reg_names
[GP_RETURN
+ TARGET_BIG_ENDIAN
]);
6937 fprintf (asm_out_file
, "\tdsll\t%s,%s,32\n",
6938 reg_names
[GP_RETURN
+ TARGET_LITTLE_ENDIAN
],
6939 reg_names
[GP_RETURN
+ TARGET_LITTLE_ENDIAN
]);
6940 fprintf (asm_out_file
, "\tdsrl\t%s,%s,32\n",
6941 reg_names
[GP_RETURN
+ TARGET_BIG_ENDIAN
],
6942 reg_names
[GP_RETURN
+ TARGET_BIG_ENDIAN
]);
6943 fprintf (asm_out_file
, "\tor\t%s,%s,%s\n",
6944 reg_names
[GP_RETURN
],
6945 reg_names
[GP_RETURN
],
6946 reg_names
[GP_RETURN
+ 1]);
6951 mips_output_32bit_xfer ('f', GP_RETURN
, FP_REG_FIRST
);
6955 mips_output_64bit_xfer ('f', GP_RETURN
+ (8 / UNITS_PER_WORD
),
6956 FP_REG_FIRST
+ MAX_FPRS_PER_FMT
);
6960 mips_output_64bit_xfer ('f', GP_RETURN
, FP_REG_FIRST
);
6966 fprintf (asm_out_file
, "\tjr\t%s\n", reg_names
[GP_REG_FIRST
+ 18]);
6967 fprintf (asm_out_file
, "\t.cfi_endproc\n");
6971 /* Jump to the previously-loaded address. */
6972 output_asm_insn ("jr\t%^", NULL
);
6975 #ifdef ASM_DECLARE_FUNCTION_SIZE
6976 ASM_DECLARE_FUNCTION_SIZE (asm_out_file
, stubname
, stubdecl
);
6979 mips_end_function_definition (stubname
);
6981 /* Record this stub. */
6982 l
= XNEW (struct mips16_stub
);
6983 l
->name
= xstrdup (fnname
);
6984 l
->fp_ret_p
= fp_ret_p
;
6985 l
->next
= mips16_stubs
;
6989 /* If we expect a floating-point return value, but we've built a
6990 stub which does not expect one, then we're in trouble. We can't
6991 use the existing stub, because it won't handle the floating-point
6992 value. We can't build a new stub, because the linker won't know
6993 which stub to use for the various calls in this object file.
6994 Fortunately, this case is illegal, since it means that a function
6995 was declared in two different ways in a single compilation. */
6996 if (fp_ret_p
&& !l
->fp_ret_p
)
6997 error ("cannot handle inconsistent calls to %qs", fnname
);
6999 if (retval
== NULL_RTX
)
7000 pattern
= gen_call_internal_direct (fn
, args_size
);
7002 pattern
= gen_call_value_internal_direct (retval
, fn
, args_size
);
7003 insn
= mips_emit_call_insn (pattern
, fn
, fn
, false);
7005 /* If we are calling a stub which handles a floating-point return
7006 value, we need to arrange to save $18 in the prologue. We do this
7007 by marking the function call as using the register. The prologue
7008 will later see that it is used, and emit code to save it. */
7010 CALL_INSN_FUNCTION_USAGE (insn
) =
7011 gen_rtx_EXPR_LIST (VOIDmode
,
7012 gen_rtx_CLOBBER (VOIDmode
,
7013 gen_rtx_REG (word_mode
, 18)),
7014 CALL_INSN_FUNCTION_USAGE (insn
));
7019 /* Expand a call of type TYPE. RESULT is where the result will go (null
7020 for "call"s and "sibcall"s), ADDR is the address of the function,
7021 ARGS_SIZE is the size of the arguments and AUX is the value passed
7022 to us by mips_function_arg. LAZY_P is true if this call already
7023 involves a lazily-bound function address (such as when calling
7024 functions through a MIPS16 hard-float stub).
7026 Return the call itself. */
7029 mips_expand_call (enum mips_call_type type
, rtx result
, rtx addr
,
7030 rtx args_size
, rtx aux
, bool lazy_p
)
7032 rtx orig_addr
, pattern
;
7036 fp_code
= aux
== 0 ? 0 : (int) GET_MODE (aux
);
7037 insn
= mips16_build_call_stub (result
, &addr
, args_size
, fp_code
);
7040 gcc_assert (!lazy_p
&& type
== MIPS_CALL_NORMAL
);
7045 if (!call_insn_operand (addr
, VOIDmode
))
7047 if (type
== MIPS_CALL_EPILOGUE
)
7048 addr
= MIPS_EPILOGUE_TEMP (Pmode
);
7050 addr
= gen_reg_rtx (Pmode
);
7051 lazy_p
|= mips_load_call_address (type
, addr
, orig_addr
);
7056 rtx (*fn
) (rtx
, rtx
);
7058 if (type
== MIPS_CALL_SIBCALL
)
7059 fn
= gen_sibcall_internal
;
7061 fn
= gen_call_internal
;
7063 pattern
= fn (addr
, args_size
);
7065 else if (GET_CODE (result
) == PARALLEL
&& XVECLEN (result
, 0) == 2)
7067 /* Handle return values created by mips_return_fpr_pair. */
7068 rtx (*fn
) (rtx
, rtx
, rtx
, rtx
);
7071 if (type
== MIPS_CALL_SIBCALL
)
7072 fn
= gen_sibcall_value_multiple_internal
;
7074 fn
= gen_call_value_multiple_internal
;
7076 reg1
= XEXP (XVECEXP (result
, 0, 0), 0);
7077 reg2
= XEXP (XVECEXP (result
, 0, 1), 0);
7078 pattern
= fn (reg1
, addr
, args_size
, reg2
);
7082 rtx (*fn
) (rtx
, rtx
, rtx
);
7084 if (type
== MIPS_CALL_SIBCALL
)
7085 fn
= gen_sibcall_value_internal
;
7087 fn
= gen_call_value_internal
;
7089 /* Handle return values created by mips_return_fpr_single. */
7090 if (GET_CODE (result
) == PARALLEL
&& XVECLEN (result
, 0) == 1)
7091 result
= XEXP (XVECEXP (result
, 0, 0), 0);
7092 pattern
= fn (result
, addr
, args_size
);
7095 return mips_emit_call_insn (pattern
, orig_addr
, addr
, lazy_p
);
7098 /* Split call instruction INSN into a $gp-clobbering call and
7099 (where necessary) an instruction to restore $gp from its save slot.
7100 CALL_PATTERN is the pattern of the new call. */
7103 mips_split_call (rtx insn
, rtx call_pattern
)
7105 emit_call_insn (call_pattern
);
7106 if (!find_reg_note (insn
, REG_NORETURN
, 0))
7107 mips_restore_gp_from_cprestore_slot (gen_rtx_REG (Pmode
,
7108 POST_CALL_TMP_REG
));
7111 /* Return true if a call to DECL may need to use JALX. */
7114 mips_call_may_need_jalx_p (tree decl
)
7116 /* If the current translation unit would use a different mode for DECL,
7117 assume that the call needs JALX. */
7118 if (mips_get_compress_mode (decl
) != TARGET_COMPRESSION
)
7121 /* mips_get_compress_mode is always accurate for locally-binding
7122 functions in the current translation unit. */
7123 if (!DECL_EXTERNAL (decl
) && targetm
.binds_local_p (decl
))
7126 /* When -minterlink-compressed is in effect, assume that functions
7127 could use a different encoding mode unless an attribute explicitly
7128 tells us otherwise. */
7129 if (TARGET_INTERLINK_COMPRESSED
)
7131 if (!TARGET_COMPRESSION
7132 && mips_get_compress_off_flags (DECL_ATTRIBUTES (decl
)) ==0)
7134 if (TARGET_COMPRESSION
7135 && mips_get_compress_on_flags (DECL_ATTRIBUTES (decl
)) == 0)
7142 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
7145 mips_function_ok_for_sibcall (tree decl
, tree exp ATTRIBUTE_UNUSED
)
7147 if (!TARGET_SIBCALLS
)
7150 /* Interrupt handlers need special epilogue code and therefore can't
7152 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl
)))
7155 /* Direct Js are only possible to functions that use the same ISA encoding.
7156 There is no JX counterpoart of JALX. */
7158 && const_call_insn_operand (XEXP (DECL_RTL (decl
), 0), VOIDmode
)
7159 && mips_call_may_need_jalx_p (decl
))
7162 /* Sibling calls should not prevent lazy binding. Lazy-binding stubs
7163 require $gp to be valid on entry, so sibcalls can only use stubs
7164 if $gp is call-clobbered. */
7166 && TARGET_CALL_SAVED_GP
7167 && !TARGET_ABICALLS_PIC0
7168 && !targetm
.binds_local_p (decl
))
7175 /* Implement MOVE_BY_PIECES_P. */
7178 mips_move_by_pieces_p (unsigned HOST_WIDE_INT size
, unsigned int align
)
7182 /* movmemsi is meant to generate code that is at least as good as
7183 move_by_pieces. However, movmemsi effectively uses a by-pieces
7184 implementation both for moves smaller than a word and for
7185 word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT
7186 bytes. We should allow the tree-level optimisers to do such
7187 moves by pieces, as it often exposes other optimization
7188 opportunities. We might as well continue to use movmemsi at
7189 the rtl level though, as it produces better code when
7190 scheduling is disabled (such as at -O). */
7191 if (currently_expanding_to_rtl
)
7193 if (align
< BITS_PER_WORD
)
7194 return size
< UNITS_PER_WORD
;
7195 return size
<= MIPS_MAX_MOVE_BYTES_STRAIGHT
;
7197 /* The default value. If this becomes a target hook, we should
7198 call the default definition instead. */
7199 return (move_by_pieces_ninsns (size
, align
, MOVE_MAX_PIECES
+ 1)
7200 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()));
7203 /* Implement STORE_BY_PIECES_P. */
7206 mips_store_by_pieces_p (unsigned HOST_WIDE_INT size
, unsigned int align
)
7208 /* Storing by pieces involves moving constants into registers
7209 of size MIN (ALIGN, BITS_PER_WORD), then storing them.
7210 We need to decide whether it is cheaper to load the address of
7211 constant data into a register and use a block move instead. */
7213 /* If the data is only byte aligned, then:
7215 (a1) A block move of less than 4 bytes would involve three 3 LBs and
7216 3 SBs. We might as well use 3 single-instruction LIs and 3 SBs
7219 (a2) A block move of 4 bytes from aligned source data can use an
7220 LW/SWL/SWR sequence. This is often better than the 4 LIs and
7221 4 SBs that we would generate when storing by pieces. */
7222 if (align
<= BITS_PER_UNIT
)
7225 /* If the data is 2-byte aligned, then:
7227 (b1) A block move of less than 4 bytes would use a combination of LBs,
7228 LHs, SBs and SHs. We get better code by using single-instruction
7229 LIs, SBs and SHs instead.
7231 (b2) A block move of 4 bytes from aligned source data would again use
7232 an LW/SWL/SWR sequence. In most cases, loading the address of
7233 the source data would require at least one extra instruction.
7234 It is often more efficient to use 2 single-instruction LIs and
7237 (b3) A block move of up to 3 additional bytes would be like (b1).
7239 (b4) A block move of 8 bytes from aligned source data can use two
7240 LW/SWL/SWR sequences or a single LD/SDL/SDR sequence. Both
7241 sequences are better than the 4 LIs and 4 SHs that we'd generate
7242 when storing by pieces.
7244 The reasoning for higher alignments is similar:
7246 (c1) A block move of less than 4 bytes would be the same as (b1).
7248 (c2) A block move of 4 bytes would use an LW/SW sequence. Again,
7249 loading the address of the source data would typically require
7250 at least one extra instruction. It is generally better to use
7253 (c3) A block move of up to 3 additional bytes would be like (b1).
7255 (c4) A block move of 8 bytes can use two LW/SW sequences or a single
7256 LD/SD sequence, and in these cases we've traditionally preferred
7257 the memory copy over the more bulky constant moves. */
7261 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
7262 Assume that the areas do not overlap. */
7265 mips_block_move_straight (rtx dest
, rtx src
, HOST_WIDE_INT length
)
7267 HOST_WIDE_INT offset
, delta
;
7268 unsigned HOST_WIDE_INT bits
;
7273 /* Work out how many bits to move at a time. If both operands have
7274 half-word alignment, it is usually better to move in half words.
7275 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
7276 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
7277 Otherwise move word-sized chunks. */
7278 if (MEM_ALIGN (src
) == BITS_PER_WORD
/ 2
7279 && MEM_ALIGN (dest
) == BITS_PER_WORD
/ 2)
7280 bits
= BITS_PER_WORD
/ 2;
7282 bits
= BITS_PER_WORD
;
7284 mode
= mode_for_size (bits
, MODE_INT
, 0);
7285 delta
= bits
/ BITS_PER_UNIT
;
7287 /* Allocate a buffer for the temporary registers. */
7288 regs
= XALLOCAVEC (rtx
, length
/ delta
);
7290 /* Load as many BITS-sized chunks as possible. Use a normal load if
7291 the source has enough alignment, otherwise use left/right pairs. */
7292 for (offset
= 0, i
= 0; offset
+ delta
<= length
; offset
+= delta
, i
++)
7294 regs
[i
] = gen_reg_rtx (mode
);
7295 if (MEM_ALIGN (src
) >= bits
)
7296 mips_emit_move (regs
[i
], adjust_address (src
, mode
, offset
));
7299 rtx part
= adjust_address (src
, BLKmode
, offset
);
7300 set_mem_size (part
, delta
);
7301 if (!mips_expand_ext_as_unaligned_load (regs
[i
], part
, bits
, 0, 0))
7306 /* Copy the chunks to the destination. */
7307 for (offset
= 0, i
= 0; offset
+ delta
<= length
; offset
+= delta
, i
++)
7308 if (MEM_ALIGN (dest
) >= bits
)
7309 mips_emit_move (adjust_address (dest
, mode
, offset
), regs
[i
]);
7312 rtx part
= adjust_address (dest
, BLKmode
, offset
);
7313 set_mem_size (part
, delta
);
7314 if (!mips_expand_ins_as_unaligned_store (part
, regs
[i
], bits
, 0))
7318 /* Mop up any left-over bytes. */
7319 if (offset
< length
)
7321 src
= adjust_address (src
, BLKmode
, offset
);
7322 dest
= adjust_address (dest
, BLKmode
, offset
);
7323 move_by_pieces (dest
, src
, length
- offset
,
7324 MIN (MEM_ALIGN (src
), MEM_ALIGN (dest
)), 0);
7328 /* Helper function for doing a loop-based block operation on memory
7329 reference MEM. Each iteration of the loop will operate on LENGTH
7332 Create a new base register for use within the loop and point it to
7333 the start of MEM. Create a new memory reference that uses this
7334 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
7337 mips_adjust_block_mem (rtx mem
, HOST_WIDE_INT length
,
7338 rtx
*loop_reg
, rtx
*loop_mem
)
7340 *loop_reg
= copy_addr_to_reg (XEXP (mem
, 0));
7342 /* Although the new mem does not refer to a known location,
7343 it does keep up to LENGTH bytes of alignment. */
7344 *loop_mem
= change_address (mem
, BLKmode
, *loop_reg
);
7345 set_mem_align (*loop_mem
, MIN (MEM_ALIGN (mem
), length
* BITS_PER_UNIT
));
7348 /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
7349 bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
7350 the memory regions do not overlap. */
7353 mips_block_move_loop (rtx dest
, rtx src
, HOST_WIDE_INT length
,
7354 HOST_WIDE_INT bytes_per_iter
)
7356 rtx_code_label
*label
;
7357 rtx src_reg
, dest_reg
, final_src
, test
;
7358 HOST_WIDE_INT leftover
;
7360 leftover
= length
% bytes_per_iter
;
7363 /* Create registers and memory references for use within the loop. */
7364 mips_adjust_block_mem (src
, bytes_per_iter
, &src_reg
, &src
);
7365 mips_adjust_block_mem (dest
, bytes_per_iter
, &dest_reg
, &dest
);
7367 /* Calculate the value that SRC_REG should have after the last iteration
7369 final_src
= expand_simple_binop (Pmode
, PLUS
, src_reg
, GEN_INT (length
),
7372 /* Emit the start of the loop. */
7373 label
= gen_label_rtx ();
7376 /* Emit the loop body. */
7377 mips_block_move_straight (dest
, src
, bytes_per_iter
);
7379 /* Move on to the next block. */
7380 mips_emit_move (src_reg
, plus_constant (Pmode
, src_reg
, bytes_per_iter
));
7381 mips_emit_move (dest_reg
, plus_constant (Pmode
, dest_reg
, bytes_per_iter
));
7383 /* Emit the loop condition. */
7384 test
= gen_rtx_NE (VOIDmode
, src_reg
, final_src
);
7385 if (Pmode
== DImode
)
7386 emit_jump_insn (gen_cbranchdi4 (test
, src_reg
, final_src
, label
));
7388 emit_jump_insn (gen_cbranchsi4 (test
, src_reg
, final_src
, label
));
7390 /* Mop up any left-over bytes. */
7392 mips_block_move_straight (dest
, src
, leftover
);
7395 /* Expand a movmemsi instruction, which copies LENGTH bytes from
7396 memory reference SRC to memory reference DEST. */
7399 mips_expand_block_move (rtx dest
, rtx src
, rtx length
)
7401 if (CONST_INT_P (length
))
7403 if (INTVAL (length
) <= MIPS_MAX_MOVE_BYTES_STRAIGHT
)
7405 mips_block_move_straight (dest
, src
, INTVAL (length
));
7410 mips_block_move_loop (dest
, src
, INTVAL (length
),
7411 MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER
);
7418 /* Expand a loop of synci insns for the address range [BEGIN, END). */
7421 mips_expand_synci_loop (rtx begin
, rtx end
)
7423 rtx inc
, cmp_result
, mask
, length
;
7424 rtx_code_label
*label
, *end_label
;
7426 /* Create end_label. */
7427 end_label
= gen_label_rtx ();
7429 /* Check if begin equals end. */
7430 cmp_result
= gen_rtx_EQ (VOIDmode
, begin
, end
);
7431 emit_jump_insn (gen_condjump (cmp_result
, end_label
));
7433 /* Load INC with the cache line size (rdhwr INC,$1). */
7434 inc
= gen_reg_rtx (Pmode
);
7435 emit_insn (PMODE_INSN (gen_rdhwr_synci_step
, (inc
)));
7437 /* Check if inc is 0. */
7438 cmp_result
= gen_rtx_EQ (VOIDmode
, inc
, const0_rtx
);
7439 emit_jump_insn (gen_condjump (cmp_result
, end_label
));
7441 /* Calculate mask. */
7442 mask
= mips_force_unary (Pmode
, NEG
, inc
);
7444 /* Mask out begin by mask. */
7445 begin
= mips_force_binary (Pmode
, AND
, begin
, mask
);
7447 /* Calculate length. */
7448 length
= mips_force_binary (Pmode
, MINUS
, end
, begin
);
7450 /* Loop back to here. */
7451 label
= gen_label_rtx ();
7454 emit_insn (gen_synci (begin
));
7456 /* Update length. */
7457 mips_emit_binary (MINUS
, length
, length
, inc
);
7460 mips_emit_binary (PLUS
, begin
, begin
, inc
);
7462 /* Check if length is greater than 0. */
7463 cmp_result
= gen_rtx_GT (VOIDmode
, length
, const0_rtx
);
7464 emit_jump_insn (gen_condjump (cmp_result
, label
));
7466 emit_label (end_label
);
7469 /* Expand a QI or HI mode atomic memory operation.
7471 GENERATOR contains a pointer to the gen_* function that generates
7472 the SI mode underlying atomic operation using masks that we
7475 RESULT is the return register for the operation. Its value is NULL
7478 MEM is the location of the atomic access.
7480 OLDVAL is the first operand for the operation.
7482 NEWVAL is the optional second operand for the operation. Its value
7483 is NULL if unused. */
7486 mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator
,
7487 rtx result
, rtx mem
, rtx oldval
, rtx newval
)
7489 rtx orig_addr
, memsi_addr
, memsi
, shift
, shiftsi
, unshifted_mask
;
7490 rtx unshifted_mask_reg
, mask
, inverted_mask
, si_op
;
7494 mode
= GET_MODE (mem
);
7496 /* Compute the address of the containing SImode value. */
7497 orig_addr
= force_reg (Pmode
, XEXP (mem
, 0));
7498 memsi_addr
= mips_force_binary (Pmode
, AND
, orig_addr
,
7499 force_reg (Pmode
, GEN_INT (-4)));
7501 /* Create a memory reference for it. */
7502 memsi
= gen_rtx_MEM (SImode
, memsi_addr
);
7503 set_mem_alias_set (memsi
, ALIAS_SET_MEMORY_BARRIER
);
7504 MEM_VOLATILE_P (memsi
) = MEM_VOLATILE_P (mem
);
7506 /* Work out the byte offset of the QImode or HImode value,
7507 counting from the least significant byte. */
7508 shift
= mips_force_binary (Pmode
, AND
, orig_addr
, GEN_INT (3));
7509 if (TARGET_BIG_ENDIAN
)
7510 mips_emit_binary (XOR
, shift
, shift
, GEN_INT (mode
== QImode
? 3 : 2));
7512 /* Multiply by eight to convert the shift value from bytes to bits. */
7513 mips_emit_binary (ASHIFT
, shift
, shift
, GEN_INT (3));
7515 /* Make the final shift an SImode value, so that it can be used in
7516 SImode operations. */
7517 shiftsi
= force_reg (SImode
, gen_lowpart (SImode
, shift
));
7519 /* Set MASK to an inclusive mask of the QImode or HImode value. */
7520 unshifted_mask
= GEN_INT (GET_MODE_MASK (mode
));
7521 unshifted_mask_reg
= force_reg (SImode
, unshifted_mask
);
7522 mask
= mips_force_binary (SImode
, ASHIFT
, unshifted_mask_reg
, shiftsi
);
7524 /* Compute the equivalent exclusive mask. */
7525 inverted_mask
= gen_reg_rtx (SImode
);
7526 emit_insn (gen_rtx_SET (VOIDmode
, inverted_mask
,
7527 gen_rtx_NOT (SImode
, mask
)));
7529 /* Shift the old value into place. */
7530 if (oldval
!= const0_rtx
)
7532 oldval
= convert_modes (SImode
, mode
, oldval
, true);
7533 oldval
= force_reg (SImode
, oldval
);
7534 oldval
= mips_force_binary (SImode
, ASHIFT
, oldval
, shiftsi
);
7537 /* Do the same for the new value. */
7538 if (newval
&& newval
!= const0_rtx
)
7540 newval
= convert_modes (SImode
, mode
, newval
, true);
7541 newval
= force_reg (SImode
, newval
);
7542 newval
= mips_force_binary (SImode
, ASHIFT
, newval
, shiftsi
);
7545 /* Do the SImode atomic access. */
7547 res
= gen_reg_rtx (SImode
);
7549 si_op
= generator
.fn_6 (res
, memsi
, mask
, inverted_mask
, oldval
, newval
);
7551 si_op
= generator
.fn_5 (res
, memsi
, mask
, inverted_mask
, oldval
);
7553 si_op
= generator
.fn_4 (memsi
, mask
, inverted_mask
, oldval
);
7559 /* Shift and convert the result. */
7560 mips_emit_binary (AND
, res
, res
, mask
);
7561 mips_emit_binary (LSHIFTRT
, res
, res
, shiftsi
);
7562 mips_emit_move (result
, gen_lowpart (GET_MODE (result
), res
));
7566 /* Return true if it is possible to use left/right accesses for a
7567 bitfield of WIDTH bits starting BITPOS bits into BLKmode memory OP.
7568 When returning true, update *LEFT and *RIGHT as follows:
7570 *LEFT is a QImode reference to the first byte if big endian or
7571 the last byte if little endian. This address can be used in the
7572 left-side instructions (LWL, SWL, LDL, SDL).
7574 *RIGHT is a QImode reference to the opposite end of the field and
7575 can be used in the patterning right-side instruction. */
7578 mips_get_unaligned_mem (rtx op
, HOST_WIDE_INT width
, HOST_WIDE_INT bitpos
,
7579 rtx
*left
, rtx
*right
)
7583 /* Check that the size is valid. */
7584 if (width
!= 32 && (!TARGET_64BIT
|| width
!= 64))
7587 /* We can only access byte-aligned values. Since we are always passed
7588 a reference to the first byte of the field, it is not necessary to
7589 do anything with BITPOS after this check. */
7590 if (bitpos
% BITS_PER_UNIT
!= 0)
7593 /* Reject aligned bitfields: we want to use a normal load or store
7594 instead of a left/right pair. */
7595 if (MEM_ALIGN (op
) >= width
)
7598 /* Get references to both ends of the field. */
7599 first
= adjust_address (op
, QImode
, 0);
7600 last
= adjust_address (op
, QImode
, width
/ BITS_PER_UNIT
- 1);
7602 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
7603 correspond to the MSB and RIGHT to the LSB. */
7604 if (TARGET_BIG_ENDIAN
)
7605 *left
= first
, *right
= last
;
7607 *left
= last
, *right
= first
;
7612 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
7613 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
7614 the operation is the equivalent of:
7616 (set DEST (*_extract SRC WIDTH BITPOS))
7618 Return true on success. */
7621 mips_expand_ext_as_unaligned_load (rtx dest
, rtx src
, HOST_WIDE_INT width
,
7622 HOST_WIDE_INT bitpos
, bool unsigned_p
)
7624 rtx left
, right
, temp
;
7625 rtx dest1
= NULL_RTX
;
7627 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
7628 be a DImode, create a new temp and emit a zero extend at the end. */
7629 if (GET_MODE (dest
) == DImode
7631 && GET_MODE_BITSIZE (SImode
) == width
)
7634 dest
= gen_reg_rtx (SImode
);
7637 if (!mips_get_unaligned_mem (src
, width
, bitpos
, &left
, &right
))
7640 temp
= gen_reg_rtx (GET_MODE (dest
));
7641 if (GET_MODE (dest
) == DImode
)
7643 emit_insn (gen_mov_ldl (temp
, src
, left
));
7644 emit_insn (gen_mov_ldr (dest
, copy_rtx (src
), right
, temp
));
7648 emit_insn (gen_mov_lwl (temp
, src
, left
));
7649 emit_insn (gen_mov_lwr (dest
, copy_rtx (src
), right
, temp
));
7652 /* If we were loading 32bits and the original register was DI then
7653 sign/zero extend into the orignal dest. */
7657 emit_insn (gen_zero_extendsidi2 (dest1
, dest
));
7659 emit_insn (gen_extendsidi2 (dest1
, dest
));
7664 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
7665 BITPOS and SRC are the operands passed to the expander; the operation
7666 is the equivalent of:
7668 (set (zero_extract DEST WIDTH BITPOS) SRC)
7670 Return true on success. */
7673 mips_expand_ins_as_unaligned_store (rtx dest
, rtx src
, HOST_WIDE_INT width
,
7674 HOST_WIDE_INT bitpos
)
7679 if (!mips_get_unaligned_mem (dest
, width
, bitpos
, &left
, &right
))
7682 mode
= mode_for_size (width
, MODE_INT
, 0);
7683 src
= gen_lowpart (mode
, src
);
7686 emit_insn (gen_mov_sdl (dest
, src
, left
));
7687 emit_insn (gen_mov_sdr (copy_rtx (dest
), copy_rtx (src
), right
));
7691 emit_insn (gen_mov_swl (dest
, src
, left
));
7692 emit_insn (gen_mov_swr (copy_rtx (dest
), copy_rtx (src
), right
));
7697 /* Return true if X is a MEM with the same size as MODE. */
7700 mips_mem_fits_mode_p (machine_mode mode
, rtx x
)
7703 && MEM_SIZE_KNOWN_P (x
)
7704 && MEM_SIZE (x
) == GET_MODE_SIZE (mode
));
7707 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
7708 source of an "ext" instruction or the destination of an "ins"
7709 instruction. OP must be a register operand and the following
7710 conditions must hold:
7712 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
7713 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7714 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7716 Also reject lengths equal to a word as they are better handled
7717 by the move patterns. */
7720 mips_use_ins_ext_p (rtx op
, HOST_WIDE_INT width
, HOST_WIDE_INT bitpos
)
7722 if (!ISA_HAS_EXT_INS
7723 || !register_operand (op
, VOIDmode
)
7724 || GET_MODE_BITSIZE (GET_MODE (op
)) > BITS_PER_WORD
)
7727 if (!IN_RANGE (width
, 1, GET_MODE_BITSIZE (GET_MODE (op
)) - 1))
7730 if (bitpos
< 0 || bitpos
+ width
> GET_MODE_BITSIZE (GET_MODE (op
)))
7736 /* Check if MASK and SHIFT are valid in mask-low-and-shift-left
7737 operation if MAXLEN is the maxium length of consecutive bits that
7738 can make up MASK. MODE is the mode of the operation. See
7739 mask_low_and_shift_len for the actual definition. */
7742 mask_low_and_shift_p (machine_mode mode
, rtx mask
, rtx shift
, int maxlen
)
7744 return IN_RANGE (mask_low_and_shift_len (mode
, mask
, shift
), 1, maxlen
);
7747 /* Return true iff OP1 and OP2 are valid operands together for the
7748 *and<MODE>3 and *and<MODE>3_mips16 patterns. For the cases to consider,
7749 see the table in the comment before the pattern. */
7752 and_operands_ok (machine_mode mode
, rtx op1
, rtx op2
)
7754 return (memory_operand (op1
, mode
)
7755 ? and_load_operand (op2
, mode
)
7756 : and_reg_operand (op2
, mode
));
7759 /* The canonical form of a mask-low-and-shift-left operation is
7760 (and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits
7761 cleared. Thus we need to shift MASK to the right before checking if it
7762 is a valid mask value. MODE is the mode of the operation. If true
7763 return the length of the mask, otherwise return -1. */
7766 mask_low_and_shift_len (machine_mode mode
, rtx mask
, rtx shift
)
7768 HOST_WIDE_INT shval
;
7770 shval
= INTVAL (shift
) & (GET_MODE_BITSIZE (mode
) - 1);
7771 return exact_log2 ((UINTVAL (mask
) >> shval
) + 1);
7774 /* Return true if -msplit-addresses is selected and should be honored.
7776 -msplit-addresses is a half-way house between explicit relocations
7777 and the traditional assembler macros. It can split absolute 32-bit
7778 symbolic constants into a high/lo_sum pair but uses macros for other
7781 Like explicit relocation support for REL targets, it relies
7782 on GNU extensions in the assembler and the linker.
7784 Although this code should work for -O0, it has traditionally
7785 been treated as an optimization. */
7788 mips_split_addresses_p (void)
7790 return (TARGET_SPLIT_ADDRESSES
7794 && !ABI_HAS_64BIT_SYMBOLS
);
7797 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
7800 mips_init_relocs (void)
7802 memset (mips_split_p
, '\0', sizeof (mips_split_p
));
7803 memset (mips_split_hi_p
, '\0', sizeof (mips_split_hi_p
));
7804 memset (mips_use_pcrel_pool_p
, '\0', sizeof (mips_use_pcrel_pool_p
));
7805 memset (mips_hi_relocs
, '\0', sizeof (mips_hi_relocs
));
7806 memset (mips_lo_relocs
, '\0', sizeof (mips_lo_relocs
));
7808 if (TARGET_MIPS16_PCREL_LOADS
)
7809 mips_use_pcrel_pool_p
[SYMBOL_ABSOLUTE
] = true;
7812 if (ABI_HAS_64BIT_SYMBOLS
)
7814 if (TARGET_EXPLICIT_RELOCS
)
7816 mips_split_p
[SYMBOL_64_HIGH
] = true;
7817 mips_hi_relocs
[SYMBOL_64_HIGH
] = "%highest(";
7818 mips_lo_relocs
[SYMBOL_64_HIGH
] = "%higher(";
7820 mips_split_p
[SYMBOL_64_MID
] = true;
7821 mips_hi_relocs
[SYMBOL_64_MID
] = "%higher(";
7822 mips_lo_relocs
[SYMBOL_64_MID
] = "%hi(";
7824 mips_split_p
[SYMBOL_64_LOW
] = true;
7825 mips_hi_relocs
[SYMBOL_64_LOW
] = "%hi(";
7826 mips_lo_relocs
[SYMBOL_64_LOW
] = "%lo(";
7828 mips_split_p
[SYMBOL_ABSOLUTE
] = true;
7829 mips_lo_relocs
[SYMBOL_ABSOLUTE
] = "%lo(";
7834 if (TARGET_EXPLICIT_RELOCS
7835 || mips_split_addresses_p ()
7838 mips_split_p
[SYMBOL_ABSOLUTE
] = true;
7839 mips_hi_relocs
[SYMBOL_ABSOLUTE
] = "%hi(";
7840 mips_lo_relocs
[SYMBOL_ABSOLUTE
] = "%lo(";
7847 /* The high part is provided by a pseudo copy of $gp. */
7848 mips_split_p
[SYMBOL_GP_RELATIVE
] = true;
7849 mips_lo_relocs
[SYMBOL_GP_RELATIVE
] = "%gprel(";
7851 else if (TARGET_EXPLICIT_RELOCS
)
7852 /* Small data constants are kept whole until after reload,
7853 then lowered by mips_rewrite_small_data. */
7854 mips_lo_relocs
[SYMBOL_GP_RELATIVE
] = "%gp_rel(";
7856 if (TARGET_EXPLICIT_RELOCS
)
7858 mips_split_p
[SYMBOL_GOT_PAGE_OFST
] = true;
7861 mips_lo_relocs
[SYMBOL_GOTOFF_PAGE
] = "%got_page(";
7862 mips_lo_relocs
[SYMBOL_GOT_PAGE_OFST
] = "%got_ofst(";
7866 mips_lo_relocs
[SYMBOL_GOTOFF_PAGE
] = "%got(";
7867 mips_lo_relocs
[SYMBOL_GOT_PAGE_OFST
] = "%lo(";
7870 /* Expose the use of $28 as soon as possible. */
7871 mips_split_hi_p
[SYMBOL_GOT_PAGE_OFST
] = true;
7875 /* The HIGH and LO_SUM are matched by special .md patterns. */
7876 mips_split_p
[SYMBOL_GOT_DISP
] = true;
7878 mips_split_p
[SYMBOL_GOTOFF_DISP
] = true;
7879 mips_hi_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_hi(";
7880 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_lo(";
7882 mips_split_p
[SYMBOL_GOTOFF_CALL
] = true;
7883 mips_hi_relocs
[SYMBOL_GOTOFF_CALL
] = "%call_hi(";
7884 mips_lo_relocs
[SYMBOL_GOTOFF_CALL
] = "%call_lo(";
7889 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got_disp(";
7891 mips_lo_relocs
[SYMBOL_GOTOFF_DISP
] = "%got(";
7892 mips_lo_relocs
[SYMBOL_GOTOFF_CALL
] = "%call16(";
7894 /* Expose the use of $28 as soon as possible. */
7895 mips_split_p
[SYMBOL_GOT_DISP
] = true;
7901 mips_split_p
[SYMBOL_GOTOFF_LOADGP
] = true;
7902 mips_hi_relocs
[SYMBOL_GOTOFF_LOADGP
] = "%hi(%neg(%gp_rel(";
7903 mips_lo_relocs
[SYMBOL_GOTOFF_LOADGP
] = "%lo(%neg(%gp_rel(";
7906 mips_lo_relocs
[SYMBOL_TLSGD
] = "%tlsgd(";
7907 mips_lo_relocs
[SYMBOL_TLSLDM
] = "%tlsldm(";
7909 if (TARGET_MIPS16_PCREL_LOADS
)
7911 mips_use_pcrel_pool_p
[SYMBOL_DTPREL
] = true;
7912 mips_use_pcrel_pool_p
[SYMBOL_TPREL
] = true;
7916 mips_split_p
[SYMBOL_DTPREL
] = true;
7917 mips_hi_relocs
[SYMBOL_DTPREL
] = "%dtprel_hi(";
7918 mips_lo_relocs
[SYMBOL_DTPREL
] = "%dtprel_lo(";
7920 mips_split_p
[SYMBOL_TPREL
] = true;
7921 mips_hi_relocs
[SYMBOL_TPREL
] = "%tprel_hi(";
7922 mips_lo_relocs
[SYMBOL_TPREL
] = "%tprel_lo(";
7925 mips_lo_relocs
[SYMBOL_GOTTPREL
] = "%gottprel(";
7926 mips_lo_relocs
[SYMBOL_HALF
] = "%half(";
7929 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
7930 in context CONTEXT. RELOCS is the array of relocations to use. */
7933 mips_print_operand_reloc (FILE *file
, rtx op
, enum mips_symbol_context context
,
7934 const char **relocs
)
7936 enum mips_symbol_type symbol_type
;
7939 symbol_type
= mips_classify_symbolic_expression (op
, context
);
7940 gcc_assert (relocs
[symbol_type
]);
7942 fputs (relocs
[symbol_type
], file
);
7943 output_addr_const (file
, mips_strip_unspec_address (op
));
7944 for (p
= relocs
[symbol_type
]; *p
!= 0; p
++)
7949 /* Start a new block with the given asm switch enabled. If we need
7950 to print a directive, emit PREFIX before it and SUFFIX after it. */
7953 mips_push_asm_switch_1 (struct mips_asm_switch
*asm_switch
,
7954 const char *prefix
, const char *suffix
)
7956 if (asm_switch
->nesting_level
== 0)
7957 fprintf (asm_out_file
, "%s.set\tno%s%s", prefix
, asm_switch
->name
, suffix
);
7958 asm_switch
->nesting_level
++;
7961 /* Likewise, but end a block. */
7964 mips_pop_asm_switch_1 (struct mips_asm_switch
*asm_switch
,
7965 const char *prefix
, const char *suffix
)
7967 gcc_assert (asm_switch
->nesting_level
);
7968 asm_switch
->nesting_level
--;
7969 if (asm_switch
->nesting_level
== 0)
7970 fprintf (asm_out_file
, "%s.set\t%s%s", prefix
, asm_switch
->name
, suffix
);
7973 /* Wrappers around mips_push_asm_switch_1 and mips_pop_asm_switch_1
7974 that either print a complete line or print nothing. */
7977 mips_push_asm_switch (struct mips_asm_switch
*asm_switch
)
7979 mips_push_asm_switch_1 (asm_switch
, "\t", "\n");
7983 mips_pop_asm_switch (struct mips_asm_switch
*asm_switch
)
7985 mips_pop_asm_switch_1 (asm_switch
, "\t", "\n");
7988 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
7989 The punctuation characters are:
7991 '(' Start a nested ".set noreorder" block.
7992 ')' End a nested ".set noreorder" block.
7993 '[' Start a nested ".set noat" block.
7994 ']' End a nested ".set noat" block.
7995 '<' Start a nested ".set nomacro" block.
7996 '>' End a nested ".set nomacro" block.
7997 '*' Behave like %(%< if generating a delayed-branch sequence.
7998 '#' Print a nop if in a ".set noreorder" block.
7999 '/' Like '#', but do nothing within a delayed-branch sequence.
8000 '?' Print "l" if mips_branch_likely is true
8001 '~' Print a nop if mips_branch_likely is true
8002 '.' Print the name of the register with a hard-wired zero (zero or $0).
8003 '@' Print the name of the assembler temporary register (at or $1).
8004 '^' Print the name of the pic call-through register (t9 or $25).
8005 '+' Print the name of the gp register (usually gp or $28).
8006 '$' Print the name of the stack pointer register (sp or $29).
8007 ':' Print "c" to use the compact version if the delay slot is a nop.
8008 '!' Print "s" to use the short version if the delay slot contains a
8011 See also mips_init_print_operand_pucnt. */
8014 mips_print_operand_punctuation (FILE *file
, int ch
)
8019 mips_push_asm_switch_1 (&mips_noreorder
, "", "\n\t");
8023 mips_pop_asm_switch_1 (&mips_noreorder
, "\n\t", "");
8027 mips_push_asm_switch_1 (&mips_noat
, "", "\n\t");
8031 mips_pop_asm_switch_1 (&mips_noat
, "\n\t", "");
8035 mips_push_asm_switch_1 (&mips_nomacro
, "", "\n\t");
8039 mips_pop_asm_switch_1 (&mips_nomacro
, "\n\t", "");
8043 if (final_sequence
!= 0)
8045 mips_print_operand_punctuation (file
, '(');
8046 mips_print_operand_punctuation (file
, '<');
8051 if (mips_noreorder
.nesting_level
> 0)
8052 fputs ("\n\tnop", file
);
8056 /* Print an extra newline so that the delayed insn is separated
8057 from the following ones. This looks neater and is consistent
8058 with non-nop delayed sequences. */
8059 if (mips_noreorder
.nesting_level
> 0 && final_sequence
== 0)
8060 fputs ("\n\tnop\n", file
);
8064 if (mips_branch_likely
)
8069 if (mips_branch_likely
)
8070 fputs ("\n\tnop", file
);
8074 fputs (reg_names
[GP_REG_FIRST
+ 0], file
);
8078 fputs (reg_names
[AT_REGNUM
], file
);
8082 fputs (reg_names
[PIC_FUNCTION_ADDR_REGNUM
], file
);
8086 fputs (reg_names
[PIC_OFFSET_TABLE_REGNUM
], file
);
8090 fputs (reg_names
[STACK_POINTER_REGNUM
], file
);
8094 /* When final_sequence is 0, the delay slot will be a nop. We can
8095 use the compact version for microMIPS. */
8096 if (final_sequence
== 0)
8101 /* If the delay slot instruction is short, then use the
8103 if (final_sequence
== 0
8104 || get_attr_length (final_sequence
->insn (1)) == 2)
8114 /* Initialize mips_print_operand_punct. */
8117 mips_init_print_operand_punct (void)
8121 for (p
= "()[]<>*#/?~.@^+$:!"; *p
; p
++)
8122 mips_print_operand_punct
[(unsigned char) *p
] = true;
8125 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
8126 associated with condition CODE. Print the condition part of the
8130 mips_print_int_branch_condition (FILE *file
, enum rtx_code code
, int letter
)
8144 /* Conveniently, the MIPS names for these conditions are the same
8145 as their RTL equivalents. */
8146 fputs (GET_RTX_NAME (code
), file
);
8150 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter
);
8155 /* Likewise floating-point branches. */
8158 mips_print_float_branch_condition (FILE *file
, enum rtx_code code
, int letter
)
8163 fputs ("c1f", file
);
8167 fputs ("c1t", file
);
8171 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter
);
8176 /* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
8179 mips_print_operand_punct_valid_p (unsigned char code
)
8181 return mips_print_operand_punct
[code
];
8184 /* Implement TARGET_PRINT_OPERAND. The MIPS-specific operand codes are:
8186 'X' Print CONST_INT OP in hexadecimal format.
8187 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
8188 'd' Print CONST_INT OP in decimal.
8189 'm' Print one less than CONST_INT OP in decimal.
8190 'h' Print the high-part relocation associated with OP, after stripping
8192 'R' Print the low-part relocation associated with OP.
8193 'C' Print the integer branch condition for comparison OP.
8194 'N' Print the inverse of the integer branch condition for comparison OP.
8195 'F' Print the FPU branch condition for comparison OP.
8196 'W' Print the inverse of the FPU branch condition for comparison OP.
8197 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
8198 'z' for (eq:?I ...), 'n' for (ne:?I ...).
8199 't' Like 'T', but with the EQ/NE cases reversed
8200 'Y' Print mips_fp_conditions[INTVAL (OP)]
8201 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
8202 'q' Print a DSP accumulator register.
8203 'D' Print the second part of a double-word register or memory operand.
8204 'L' Print the low-order register in a double-word register operand.
8205 'M' Print high-order register in a double-word register operand.
8206 'z' Print $0 if OP is zero, otherwise print OP normally.
8207 'b' Print the address of a memory operand, without offset. */
8210 mips_print_operand (FILE *file
, rtx op
, int letter
)
8214 if (mips_print_operand_punct_valid_p (letter
))
8216 mips_print_operand_punctuation (file
, letter
);
8221 code
= GET_CODE (op
);
8226 if (CONST_INT_P (op
))
8227 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, INTVAL (op
));
8229 output_operand_lossage ("invalid use of '%%%c'", letter
);
8233 if (CONST_INT_P (op
))
8234 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, INTVAL (op
) & 0xffff);
8236 output_operand_lossage ("invalid use of '%%%c'", letter
);
8240 if (CONST_INT_P (op
))
8241 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (op
));
8243 output_operand_lossage ("invalid use of '%%%c'", letter
);
8247 if (CONST_INT_P (op
))
8248 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (op
) - 1);
8250 output_operand_lossage ("invalid use of '%%%c'", letter
);
8256 mips_print_operand_reloc (file
, op
, SYMBOL_CONTEXT_LEA
, mips_hi_relocs
);
8260 mips_print_operand_reloc (file
, op
, SYMBOL_CONTEXT_LEA
, mips_lo_relocs
);
8264 mips_print_int_branch_condition (file
, code
, letter
);
8268 mips_print_int_branch_condition (file
, reverse_condition (code
), letter
);
8272 mips_print_float_branch_condition (file
, code
, letter
);
8276 mips_print_float_branch_condition (file
, reverse_condition (code
),
8283 int truth
= (code
== NE
) == (letter
== 'T');
8284 fputc ("zfnt"[truth
* 2 + ST_REG_P (REGNO (XEXP (op
, 0)))], file
);
8289 if (code
== CONST_INT
&& UINTVAL (op
) < ARRAY_SIZE (mips_fp_conditions
))
8290 fputs (mips_fp_conditions
[UINTVAL (op
)], file
);
8292 output_operand_lossage ("'%%%c' is not a valid operand prefix",
8299 mips_print_operand (file
, op
, 0);
8305 if (code
== REG
&& MD_REG_P (REGNO (op
)))
8306 fprintf (file
, "$ac0");
8307 else if (code
== REG
&& DSP_ACC_REG_P (REGNO (op
)))
8308 fprintf (file
, "$ac%c", reg_names
[REGNO (op
)][3]);
8310 output_operand_lossage ("invalid use of '%%%c'", letter
);
8318 unsigned int regno
= REGNO (op
);
8319 if ((letter
== 'M' && TARGET_LITTLE_ENDIAN
)
8320 || (letter
== 'L' && TARGET_BIG_ENDIAN
)
8323 else if (letter
&& letter
!= 'z' && letter
!= 'M' && letter
!= 'L')
8324 output_operand_lossage ("invalid use of '%%%c'", letter
);
8325 /* We need to print $0 .. $31 for COP0 registers. */
8326 if (COP0_REG_P (regno
))
8327 fprintf (file
, "$%s", ®_names
[regno
][4]);
8329 fprintf (file
, "%s", reg_names
[regno
]);
8335 output_address (plus_constant (Pmode
, XEXP (op
, 0), 4));
8336 else if (letter
== 'b')
8338 gcc_assert (REG_P (XEXP (op
, 0)));
8339 mips_print_operand (file
, XEXP (op
, 0), 0);
8341 else if (letter
&& letter
!= 'z')
8342 output_operand_lossage ("invalid use of '%%%c'", letter
);
8344 output_address (XEXP (op
, 0));
8348 if (letter
== 'z' && op
== CONST0_RTX (GET_MODE (op
)))
8349 fputs (reg_names
[GP_REG_FIRST
], file
);
8350 else if (letter
&& letter
!= 'z')
8351 output_operand_lossage ("invalid use of '%%%c'", letter
);
8352 else if (CONST_GP_P (op
))
8353 fputs (reg_names
[GLOBAL_POINTER_REGNUM
], file
);
8355 output_addr_const (file
, mips_strip_unspec_address (op
));
8361 /* Implement TARGET_PRINT_OPERAND_ADDRESS. */
8364 mips_print_operand_address (FILE *file
, rtx x
)
8366 struct mips_address_info addr
;
8368 if (mips_classify_address (&addr
, x
, word_mode
, true))
8372 mips_print_operand (file
, addr
.offset
, 0);
8373 fprintf (file
, "(%s)", reg_names
[REGNO (addr
.reg
)]);
8376 case ADDRESS_LO_SUM
:
8377 mips_print_operand_reloc (file
, addr
.offset
, SYMBOL_CONTEXT_MEM
,
8379 fprintf (file
, "(%s)", reg_names
[REGNO (addr
.reg
)]);
8382 case ADDRESS_CONST_INT
:
8383 output_addr_const (file
, x
);
8384 fprintf (file
, "(%s)", reg_names
[GP_REG_FIRST
]);
8387 case ADDRESS_SYMBOLIC
:
8388 output_addr_const (file
, mips_strip_unspec_address (x
));
8394 /* Implement TARGET_ENCODE_SECTION_INFO. */
8397 mips_encode_section_info (tree decl
, rtx rtl
, int first
)
8399 default_encode_section_info (decl
, rtl
, first
);
8401 if (TREE_CODE (decl
) == FUNCTION_DECL
)
8403 rtx symbol
= XEXP (rtl
, 0);
8404 tree type
= TREE_TYPE (decl
);
8406 /* Encode whether the symbol is short or long. */
8407 if ((TARGET_LONG_CALLS
&& !mips_near_type_p (type
))
8408 || mips_far_type_p (type
))
8409 SYMBOL_REF_FLAGS (symbol
) |= SYMBOL_FLAG_LONG_CALL
;
8413 /* Implement TARGET_SELECT_RTX_SECTION. */
8416 mips_select_rtx_section (machine_mode mode
, rtx x
,
8417 unsigned HOST_WIDE_INT align
)
8419 /* ??? Consider using mergeable small data sections. */
8420 if (mips_rtx_constant_in_small_data_p (mode
))
8421 return get_named_section (NULL
, ".sdata", 0);
8423 return default_elf_select_rtx_section (mode
, x
, align
);
8426 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
8428 The complication here is that, with the combination TARGET_ABICALLS
8429 && !TARGET_ABSOLUTE_ABICALLS && !TARGET_GPWORD, jump tables will use
8430 absolute addresses, and should therefore not be included in the
8431 read-only part of a DSO. Handle such cases by selecting a normal
8432 data section instead of a read-only one. The logic apes that in
8433 default_function_rodata_section. */
8436 mips_function_rodata_section (tree decl
)
8438 if (!TARGET_ABICALLS
|| TARGET_ABSOLUTE_ABICALLS
|| TARGET_GPWORD
)
8439 return default_function_rodata_section (decl
);
8441 if (decl
&& DECL_SECTION_NAME (decl
))
8443 const char *name
= DECL_SECTION_NAME (decl
);
8444 if (DECL_COMDAT_GROUP (decl
) && strncmp (name
, ".gnu.linkonce.t.", 16) == 0)
8446 char *rname
= ASTRDUP (name
);
8448 return get_section (rname
, SECTION_LINKONCE
| SECTION_WRITE
, decl
);
8450 else if (flag_function_sections
8451 && flag_data_sections
8452 && strncmp (name
, ".text.", 6) == 0)
8454 char *rname
= ASTRDUP (name
);
8455 memcpy (rname
+ 1, "data", 4);
8456 return get_section (rname
, SECTION_WRITE
, decl
);
8459 return data_section
;
8462 /* Implement TARGET_IN_SMALL_DATA_P. */
8465 mips_in_small_data_p (const_tree decl
)
8467 unsigned HOST_WIDE_INT size
;
8469 if (TREE_CODE (decl
) == STRING_CST
|| TREE_CODE (decl
) == FUNCTION_DECL
)
8472 /* We don't yet generate small-data references for -mabicalls
8473 or VxWorks RTP code. See the related -G handling in
8474 mips_option_override. */
8475 if (TARGET_ABICALLS
|| TARGET_VXWORKS_RTP
)
8478 if (TREE_CODE (decl
) == VAR_DECL
&& DECL_SECTION_NAME (decl
) != 0)
8482 /* Reject anything that isn't in a known small-data section. */
8483 name
= DECL_SECTION_NAME (decl
);
8484 if (strcmp (name
, ".sdata") != 0 && strcmp (name
, ".sbss") != 0)
8487 /* If a symbol is defined externally, the assembler will use the
8488 usual -G rules when deciding how to implement macros. */
8489 if (mips_lo_relocs
[SYMBOL_GP_RELATIVE
] || !DECL_EXTERNAL (decl
))
8492 else if (TARGET_EMBEDDED_DATA
)
8494 /* Don't put constants into the small data section: we want them
8495 to be in ROM rather than RAM. */
8496 if (TREE_CODE (decl
) != VAR_DECL
)
8499 if (TREE_READONLY (decl
)
8500 && !TREE_SIDE_EFFECTS (decl
)
8501 && (!DECL_INITIAL (decl
) || TREE_CONSTANT (DECL_INITIAL (decl
))))
8505 /* Enforce -mlocal-sdata. */
8506 if (!TARGET_LOCAL_SDATA
&& !TREE_PUBLIC (decl
))
8509 /* Enforce -mextern-sdata. */
8510 if (!TARGET_EXTERN_SDATA
&& DECL_P (decl
))
8512 if (DECL_EXTERNAL (decl
))
8514 if (DECL_COMMON (decl
) && DECL_INITIAL (decl
) == NULL
)
8518 /* We have traditionally not treated zero-sized objects as small data,
8519 so this is now effectively part of the ABI. */
8520 size
= int_size_in_bytes (TREE_TYPE (decl
));
8521 return size
> 0 && size
<= mips_small_data_threshold
;
8524 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
8525 anchors for small data: the GP register acts as an anchor in that
8526 case. We also don't want to use them for PC-relative accesses,
8527 where the PC acts as an anchor. */
8530 mips_use_anchors_for_symbol_p (const_rtx symbol
)
8532 switch (mips_classify_symbol (symbol
, SYMBOL_CONTEXT_MEM
))
8534 case SYMBOL_PC_RELATIVE
:
8535 case SYMBOL_GP_RELATIVE
:
8539 return default_use_anchors_for_symbol_p (symbol
);
8543 /* The MIPS debug format wants all automatic variables and arguments
8544 to be in terms of the virtual frame pointer (stack pointer before
8545 any adjustment in the function), while the MIPS 3.0 linker wants
8546 the frame pointer to be the stack pointer after the initial
8547 adjustment. So, we do the adjustment here. The arg pointer (which
8548 is eliminated) points to the virtual frame pointer, while the frame
8549 pointer (which may be eliminated) points to the stack pointer after
8550 the initial adjustments. */
8553 mips_debugger_offset (rtx addr
, HOST_WIDE_INT offset
)
8555 rtx offset2
= const0_rtx
;
8556 rtx reg
= eliminate_constant_term (addr
, &offset2
);
8559 offset
= INTVAL (offset2
);
8561 if (reg
== stack_pointer_rtx
8562 || reg
== frame_pointer_rtx
8563 || reg
== hard_frame_pointer_rtx
)
8565 offset
-= cfun
->machine
->frame
.total_size
;
8566 if (reg
== hard_frame_pointer_rtx
)
8567 offset
+= cfun
->machine
->frame
.hard_frame_pointer_offset
;
8573 /* Implement ASM_OUTPUT_EXTERNAL. */
8576 mips_output_external (FILE *file
, tree decl
, const char *name
)
8578 default_elf_asm_output_external (file
, decl
, name
);
8580 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
8581 set in order to avoid putting out names that are never really
8583 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl
)))
8585 if (!TARGET_EXPLICIT_RELOCS
&& mips_in_small_data_p (decl
))
8587 /* When using assembler macros, emit .extern directives for
8588 all small-data externs so that the assembler knows how
8591 In most cases it would be safe (though pointless) to emit
8592 .externs for other symbols too. One exception is when an
8593 object is within the -G limit but declared by the user to
8594 be in a section other than .sbss or .sdata. */
8595 fputs ("\t.extern\t", file
);
8596 assemble_name (file
, name
);
8597 fprintf (file
, ", " HOST_WIDE_INT_PRINT_DEC
"\n",
8598 int_size_in_bytes (TREE_TYPE (decl
)));
8603 /* Implement TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
8606 mips_output_filename (FILE *stream
, const char *name
)
8608 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
8610 if (write_symbols
== DWARF2_DEBUG
)
8612 else if (mips_output_filename_first_time
)
8614 mips_output_filename_first_time
= 0;
8615 num_source_filenames
+= 1;
8616 current_function_file
= name
;
8617 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
8618 output_quoted_string (stream
, name
);
8619 putc ('\n', stream
);
8621 /* If we are emitting stabs, let dbxout.c handle this (except for
8622 the mips_output_filename_first_time case). */
8623 else if (write_symbols
== DBX_DEBUG
)
8625 else if (name
!= current_function_file
8626 && strcmp (name
, current_function_file
) != 0)
8628 num_source_filenames
+= 1;
8629 current_function_file
= name
;
8630 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
8631 output_quoted_string (stream
, name
);
8632 putc ('\n', stream
);
8636 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
8638 static void ATTRIBUTE_UNUSED
8639 mips_output_dwarf_dtprel (FILE *file
, int size
, rtx x
)
8644 fputs ("\t.dtprelword\t", file
);
8648 fputs ("\t.dtpreldword\t", file
);
8654 output_addr_const (file
, x
);
8655 fputs ("+0x8000", file
);
8658 /* Implement TARGET_DWARF_REGISTER_SPAN. */
8661 mips_dwarf_register_span (rtx reg
)
8666 /* By default, GCC maps increasing register numbers to increasing
8667 memory locations, but paired FPRs are always little-endian,
8668 regardless of the prevailing endianness. */
8669 mode
= GET_MODE (reg
);
8670 if (FP_REG_P (REGNO (reg
))
8671 && TARGET_BIG_ENDIAN
8672 && MAX_FPRS_PER_FMT
> 1
8673 && GET_MODE_SIZE (mode
) > UNITS_PER_FPREG
)
8675 gcc_assert (GET_MODE_SIZE (mode
) == UNITS_PER_HWFPVALUE
);
8676 high
= mips_subword (reg
, true);
8677 low
= mips_subword (reg
, false);
8678 return gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, high
, low
));
8684 /* DSP ALU can bypass data with no delays for the following pairs. */
8685 enum insn_code dspalu_bypass_table
[][2] =
8687 {CODE_FOR_mips_addsc
, CODE_FOR_mips_addwc
},
8688 {CODE_FOR_mips_cmpu_eq_qb
, CODE_FOR_mips_pick_qb
},
8689 {CODE_FOR_mips_cmpu_lt_qb
, CODE_FOR_mips_pick_qb
},
8690 {CODE_FOR_mips_cmpu_le_qb
, CODE_FOR_mips_pick_qb
},
8691 {CODE_FOR_mips_cmp_eq_ph
, CODE_FOR_mips_pick_ph
},
8692 {CODE_FOR_mips_cmp_lt_ph
, CODE_FOR_mips_pick_ph
},
8693 {CODE_FOR_mips_cmp_le_ph
, CODE_FOR_mips_pick_ph
},
8694 {CODE_FOR_mips_wrdsp
, CODE_FOR_mips_insv
}
8698 mips_dspalu_bypass_p (rtx out_insn
, rtx in_insn
)
8701 int num_bypass
= ARRAY_SIZE (dspalu_bypass_table
);
8702 enum insn_code out_icode
= (enum insn_code
) INSN_CODE (out_insn
);
8703 enum insn_code in_icode
= (enum insn_code
) INSN_CODE (in_insn
);
8705 for (i
= 0; i
< num_bypass
; i
++)
8707 if (out_icode
== dspalu_bypass_table
[i
][0]
8708 && in_icode
== dspalu_bypass_table
[i
][1])
8714 /* Implement ASM_OUTPUT_ASCII. */
8717 mips_output_ascii (FILE *stream
, const char *string
, size_t len
)
8723 fprintf (stream
, "\t.ascii\t\"");
8724 for (i
= 0; i
< len
; i
++)
8728 c
= (unsigned char) string
[i
];
8731 if (c
== '\\' || c
== '\"')
8733 putc ('\\', stream
);
8741 fprintf (stream
, "\\%03o", c
);
8745 if (cur_pos
> 72 && i
+1 < len
)
8748 fprintf (stream
, "\"\n\t.ascii\t\"");
8751 fprintf (stream
, "\"\n");
8754 /* Return the pseudo-op for full SYMBOL_(D)TPREL address *ADDR.
8755 Update *ADDR with the operand that should be printed. */
8758 mips_output_tls_reloc_directive (rtx
*addr
)
8760 enum mips_symbol_type type
;
8762 type
= mips_classify_symbolic_expression (*addr
, SYMBOL_CONTEXT_LEA
);
8763 *addr
= mips_strip_unspec_address (*addr
);
8767 return Pmode
== SImode
? ".dtprelword\t%0" : ".dtpreldword\t%0";
8770 return Pmode
== SImode
? ".tprelword\t%0" : ".tpreldword\t%0";
8777 /* Emit either a label, .comm, or .lcomm directive. When using assembler
8778 macros, mark the symbol as written so that mips_asm_output_external
8779 won't emit an .extern for it. STREAM is the output file, NAME is the
8780 name of the symbol, INIT_STRING is the string that should be written
8781 before the symbol and FINAL_STRING is the string that should be
8782 written after it. FINAL_STRING is a printf format that consumes the
8783 remaining arguments. */
8786 mips_declare_object (FILE *stream
, const char *name
, const char *init_string
,
8787 const char *final_string
, ...)
8791 fputs (init_string
, stream
);
8792 assemble_name (stream
, name
);
8793 va_start (ap
, final_string
);
8794 vfprintf (stream
, final_string
, ap
);
8797 if (!TARGET_EXPLICIT_RELOCS
)
8799 tree name_tree
= get_identifier (name
);
8800 TREE_ASM_WRITTEN (name_tree
) = 1;
8804 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
8805 NAME is the name of the object and ALIGN is the required alignment
8806 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
8807 alignment argument. */
8810 mips_declare_common_object (FILE *stream
, const char *name
,
8811 const char *init_string
,
8812 unsigned HOST_WIDE_INT size
,
8813 unsigned int align
, bool takes_alignment_p
)
8815 if (!takes_alignment_p
)
8817 size
+= (align
/ BITS_PER_UNIT
) - 1;
8818 size
-= size
% (align
/ BITS_PER_UNIT
);
8819 mips_declare_object (stream
, name
, init_string
,
8820 "," HOST_WIDE_INT_PRINT_UNSIGNED
"\n", size
);
8823 mips_declare_object (stream
, name
, init_string
,
8824 "," HOST_WIDE_INT_PRINT_UNSIGNED
",%u\n",
8825 size
, align
/ BITS_PER_UNIT
);
8828 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
8829 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
8832 mips_output_aligned_decl_common (FILE *stream
, tree decl
, const char *name
,
8833 unsigned HOST_WIDE_INT size
,
8836 /* If the target wants uninitialized const declarations in
8837 .rdata then don't put them in .comm. */
8838 if (TARGET_EMBEDDED_DATA
8839 && TARGET_UNINIT_CONST_IN_RODATA
8840 && TREE_CODE (decl
) == VAR_DECL
8841 && TREE_READONLY (decl
)
8842 && (DECL_INITIAL (decl
) == 0 || DECL_INITIAL (decl
) == error_mark_node
))
8844 if (TREE_PUBLIC (decl
) && DECL_NAME (decl
))
8845 targetm
.asm_out
.globalize_label (stream
, name
);
8847 switch_to_section (readonly_data_section
);
8848 ASM_OUTPUT_ALIGN (stream
, floor_log2 (align
/ BITS_PER_UNIT
));
8849 mips_declare_object (stream
, name
, "",
8850 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED
"\n",
8854 mips_declare_common_object (stream
, name
, "\n\t.comm\t",
8858 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
8859 extern int size_directive_output
;
8861 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
8862 definitions except that it uses mips_declare_object to emit the label. */
8865 mips_declare_object_name (FILE *stream
, const char *name
,
8866 tree decl ATTRIBUTE_UNUSED
)
8868 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
8869 ASM_OUTPUT_TYPE_DIRECTIVE (stream
, name
, "object");
8872 size_directive_output
= 0;
8873 if (!flag_inhibit_size_directive
&& DECL_SIZE (decl
))
8877 size_directive_output
= 1;
8878 size
= int_size_in_bytes (TREE_TYPE (decl
));
8879 ASM_OUTPUT_SIZE_DIRECTIVE (stream
, name
, size
);
8882 mips_declare_object (stream
, name
, "", ":\n");
8885 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
8888 mips_finish_declare_object (FILE *stream
, tree decl
, int top_level
, int at_end
)
8892 name
= XSTR (XEXP (DECL_RTL (decl
), 0), 0);
8893 if (!flag_inhibit_size_directive
8894 && DECL_SIZE (decl
) != 0
8897 && DECL_INITIAL (decl
) == error_mark_node
8898 && !size_directive_output
)
8902 size_directive_output
= 1;
8903 size
= int_size_in_bytes (TREE_TYPE (decl
));
8904 ASM_OUTPUT_SIZE_DIRECTIVE (stream
, name
, size
);
8909 /* Return the FOO in the name of the ".mdebug.FOO" section associated
8910 with the current ABI. */
8913 mips_mdebug_abi_name (void)
8926 return TARGET_64BIT
? "eabi64" : "eabi32";
8932 /* Implement TARGET_ASM_FILE_START. */
8935 mips_file_start (void)
8937 default_file_start ();
8939 /* Generate a special section to describe the ABI switches used to
8940 produce the resultant binary. */
8942 /* Record the ABI itself. Modern versions of binutils encode
8943 this information in the ELF header flags, but GDB needs the
8944 information in order to correctly debug binaries produced by
8945 older binutils. See the function mips_gdbarch_init in
8947 fprintf (asm_out_file
, "\t.section .mdebug.%s\n\t.previous\n",
8948 mips_mdebug_abi_name ());
8950 /* There is no ELF header flag to distinguish long32 forms of the
8951 EABI from long64 forms. Emit a special section to help tools
8952 such as GDB. Do the same for o64, which is sometimes used with
8954 if (mips_abi
== ABI_EABI
|| mips_abi
== ABI_O64
)
8955 fprintf (asm_out_file
, "\t.section .gcc_compiled_long%d\n"
8956 "\t.previous\n", TARGET_LONG64
? 64 : 32);
8958 /* Record the NaN encoding. */
8959 if (HAVE_AS_NAN
|| mips_nan
!= MIPS_IEEE_754_DEFAULT
)
8960 fprintf (asm_out_file
, "\t.nan\t%s\n",
8961 mips_nan
== MIPS_IEEE_754_2008
? "2008" : "legacy");
8963 #ifdef HAVE_AS_GNU_ATTRIBUTE
8967 /* No floating-point operations, -mno-float. */
8968 if (TARGET_NO_FLOAT
)
8970 /* Soft-float code, -msoft-float. */
8971 else if (!TARGET_HARD_FLOAT_ABI
)
8973 /* Single-float code, -msingle-float. */
8974 else if (!TARGET_DOUBLE_FLOAT
)
8976 /* 64-bit FP registers on a 32-bit target, -mips32r2 -mfp64. */
8977 else if (!TARGET_64BIT
&& TARGET_FLOAT64
)
8979 /* Regular FP code, FP regs same size as GP regs, -mdouble-float. */
8983 fprintf (asm_out_file
, "\t.gnu_attribute 4, %d\n", attr
);
8987 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
8988 if (TARGET_ABICALLS
)
8990 fprintf (asm_out_file
, "\t.abicalls\n");
8991 if (TARGET_ABICALLS_PIC0
)
8992 fprintf (asm_out_file
, "\t.option\tpic0\n");
8995 if (flag_verbose_asm
)
8996 fprintf (asm_out_file
, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
8998 mips_small_data_threshold
, mips_arch_info
->name
, mips_isa
);
9001 /* Implement TARGET_ASM_CODE_END. */
9004 mips_code_end (void)
9006 mips_finish_stub (&mips16_rdhwr_stub
);
9007 mips_finish_stub (&mips16_get_fcsr_stub
);
9008 mips_finish_stub (&mips16_set_fcsr_stub
);
9011 /* Make the last instruction frame-related and note that it performs
9012 the operation described by FRAME_PATTERN. */
9015 mips_set_frame_expr (rtx frame_pattern
)
9019 insn
= get_last_insn ();
9020 RTX_FRAME_RELATED_P (insn
) = 1;
9021 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
9026 /* Return a frame-related rtx that stores REG at MEM.
9027 REG must be a single register. */
9030 mips_frame_set (rtx mem
, rtx reg
)
9034 set
= gen_rtx_SET (VOIDmode
, mem
, reg
);
9035 RTX_FRAME_RELATED_P (set
) = 1;
9040 /* Record that the epilogue has restored call-saved register REG. */
9043 mips_add_cfa_restore (rtx reg
)
9045 mips_epilogue
.cfa_restores
= alloc_reg_note (REG_CFA_RESTORE
, reg
,
9046 mips_epilogue
.cfa_restores
);
9049 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
9050 mips16e_s2_s8_regs[X], it must also save the registers in indexes
9051 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
9052 static const unsigned char mips16e_s2_s8_regs
[] = {
9053 30, 23, 22, 21, 20, 19, 18
9055 static const unsigned char mips16e_a0_a3_regs
[] = {
9059 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
9060 ordered from the uppermost in memory to the lowest in memory. */
9061 static const unsigned char mips16e_save_restore_regs
[] = {
9062 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
9065 /* Return the index of the lowest X in the range [0, SIZE) for which
9066 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
9069 mips16e_find_first_register (unsigned int mask
, const unsigned char *regs
,
9074 for (i
= 0; i
< size
; i
++)
9075 if (BITSET_P (mask
, regs
[i
]))
9081 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
9082 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
9083 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
9084 is true for all indexes (X, SIZE). */
9087 mips16e_mask_registers (unsigned int *mask_ptr
, const unsigned char *regs
,
9088 unsigned int size
, unsigned int *num_regs_ptr
)
9092 i
= mips16e_find_first_register (*mask_ptr
, regs
, size
);
9093 for (i
++; i
< size
; i
++)
9094 if (!BITSET_P (*mask_ptr
, regs
[i
]))
9097 *mask_ptr
|= 1 << regs
[i
];
9101 /* Return a simplified form of X using the register values in REG_VALUES.
9102 REG_VALUES[R] is the last value assigned to hard register R, or null
9103 if R has not been modified.
9105 This function is rather limited, but is good enough for our purposes. */
9108 mips16e_collect_propagate_value (rtx x
, rtx
*reg_values
)
9110 x
= avoid_constant_pool_reference (x
);
9114 rtx x0
= mips16e_collect_propagate_value (XEXP (x
, 0), reg_values
);
9115 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
),
9116 x0
, GET_MODE (XEXP (x
, 0)));
9119 if (ARITHMETIC_P (x
))
9121 rtx x0
= mips16e_collect_propagate_value (XEXP (x
, 0), reg_values
);
9122 rtx x1
= mips16e_collect_propagate_value (XEXP (x
, 1), reg_values
);
9123 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), x0
, x1
);
9127 && reg_values
[REGNO (x
)]
9128 && !rtx_unstable_p (reg_values
[REGNO (x
)]))
9129 return reg_values
[REGNO (x
)];
9134 /* Return true if (set DEST SRC) stores an argument register into its
9135 caller-allocated save slot, storing the number of that argument
9136 register in *REGNO_PTR if so. REG_VALUES is as for
9137 mips16e_collect_propagate_value. */
9140 mips16e_collect_argument_save_p (rtx dest
, rtx src
, rtx
*reg_values
,
9141 unsigned int *regno_ptr
)
9143 unsigned int argno
, regno
;
9144 HOST_WIDE_INT offset
, required_offset
;
9147 /* Check that this is a word-mode store. */
9148 if (!MEM_P (dest
) || !REG_P (src
) || GET_MODE (dest
) != word_mode
)
9151 /* Check that the register being saved is an unmodified argument
9153 regno
= REGNO (src
);
9154 if (!IN_RANGE (regno
, GP_ARG_FIRST
, GP_ARG_LAST
) || reg_values
[regno
])
9156 argno
= regno
- GP_ARG_FIRST
;
9158 /* Check whether the address is an appropriate stack-pointer or
9159 frame-pointer access. */
9160 addr
= mips16e_collect_propagate_value (XEXP (dest
, 0), reg_values
);
9161 mips_split_plus (addr
, &base
, &offset
);
9162 required_offset
= cfun
->machine
->frame
.total_size
+ argno
* UNITS_PER_WORD
;
9163 if (base
== hard_frame_pointer_rtx
)
9164 required_offset
-= cfun
->machine
->frame
.hard_frame_pointer_offset
;
9165 else if (base
!= stack_pointer_rtx
)
9167 if (offset
!= required_offset
)
9174 /* A subroutine of mips_expand_prologue, called only when generating
9175 MIPS16e SAVE instructions. Search the start of the function for any
9176 instructions that save argument registers into their caller-allocated
9177 save slots. Delete such instructions and return a value N such that
9178 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
9179 instructions redundant. */
9182 mips16e_collect_argument_saves (void)
9184 rtx reg_values
[FIRST_PSEUDO_REGISTER
];
9185 rtx_insn
*insn
, *next
;
9187 unsigned int nargs
, regno
;
9189 push_topmost_sequence ();
9191 memset (reg_values
, 0, sizeof (reg_values
));
9192 for (insn
= get_insns (); insn
; insn
= next
)
9194 next
= NEXT_INSN (insn
);
9195 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
9201 set
= PATTERN (insn
);
9202 if (GET_CODE (set
) != SET
)
9205 dest
= SET_DEST (set
);
9206 src
= SET_SRC (set
);
9207 if (mips16e_collect_argument_save_p (dest
, src
, reg_values
, ®no
))
9209 if (!BITSET_P (cfun
->machine
->frame
.mask
, regno
))
9212 nargs
= MAX (nargs
, (regno
- GP_ARG_FIRST
) + 1);
9215 else if (REG_P (dest
) && GET_MODE (dest
) == word_mode
)
9216 reg_values
[REGNO (dest
)]
9217 = mips16e_collect_propagate_value (src
, reg_values
);
9221 pop_topmost_sequence ();
9226 /* Return a move between register REGNO and memory location SP + OFFSET.
9227 REG_PARM_P is true if SP + OFFSET belongs to REG_PARM_STACK_SPACE.
9228 Make the move a load if RESTORE_P, otherwise make it a store. */
9231 mips16e_save_restore_reg (bool restore_p
, bool reg_parm_p
,
9232 HOST_WIDE_INT offset
, unsigned int regno
)
9236 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
, stack_pointer_rtx
,
9238 reg
= gen_rtx_REG (SImode
, regno
);
9241 mips_add_cfa_restore (reg
);
9242 return gen_rtx_SET (VOIDmode
, reg
, mem
);
9245 return gen_rtx_SET (VOIDmode
, mem
, reg
);
9246 return mips_frame_set (mem
, reg
);
9249 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
9250 The instruction must:
9252 - Allocate or deallocate SIZE bytes in total; SIZE is known
9255 - Save or restore as many registers in *MASK_PTR as possible.
9256 The instruction saves the first registers at the top of the
9257 allocated area, with the other registers below it.
9259 - Save NARGS argument registers above the allocated area.
9261 (NARGS is always zero if RESTORE_P.)
9263 The SAVE and RESTORE instructions cannot save and restore all general
9264 registers, so there may be some registers left over for the caller to
9265 handle. Destructively modify *MASK_PTR so that it contains the registers
9266 that still need to be saved or restored. The caller can save these
9267 registers in the memory immediately below *OFFSET_PTR, which is a
9268 byte offset from the bottom of the allocated stack area. */
9271 mips16e_build_save_restore (bool restore_p
, unsigned int *mask_ptr
,
9272 HOST_WIDE_INT
*offset_ptr
, unsigned int nargs
,
9276 HOST_WIDE_INT offset
, top_offset
;
9277 unsigned int i
, regno
;
9280 gcc_assert (cfun
->machine
->frame
.num_fp
== 0);
9282 /* Calculate the number of elements in the PARALLEL. We need one element
9283 for the stack adjustment, one for each argument register save, and one
9284 for each additional register move. */
9286 for (i
= 0; i
< ARRAY_SIZE (mips16e_save_restore_regs
); i
++)
9287 if (BITSET_P (*mask_ptr
, mips16e_save_restore_regs
[i
]))
9290 /* Create the final PARALLEL. */
9291 pattern
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (n
));
9294 /* Add the stack pointer adjustment. */
9295 set
= gen_rtx_SET (VOIDmode
, stack_pointer_rtx
,
9296 plus_constant (Pmode
, stack_pointer_rtx
,
9297 restore_p
? size
: -size
));
9298 RTX_FRAME_RELATED_P (set
) = 1;
9299 XVECEXP (pattern
, 0, n
++) = set
;
9301 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9302 top_offset
= restore_p
? size
: 0;
9304 /* Save the arguments. */
9305 for (i
= 0; i
< nargs
; i
++)
9307 offset
= top_offset
+ i
* UNITS_PER_WORD
;
9308 set
= mips16e_save_restore_reg (restore_p
, true, offset
,
9310 XVECEXP (pattern
, 0, n
++) = set
;
9313 /* Then fill in the other register moves. */
9314 offset
= top_offset
;
9315 for (i
= 0; i
< ARRAY_SIZE (mips16e_save_restore_regs
); i
++)
9317 regno
= mips16e_save_restore_regs
[i
];
9318 if (BITSET_P (*mask_ptr
, regno
))
9320 offset
-= UNITS_PER_WORD
;
9321 set
= mips16e_save_restore_reg (restore_p
, false, offset
, regno
);
9322 XVECEXP (pattern
, 0, n
++) = set
;
9323 *mask_ptr
&= ~(1 << regno
);
9327 /* Tell the caller what offset it should use for the remaining registers. */
9328 *offset_ptr
= size
+ (offset
- top_offset
);
9330 gcc_assert (n
== XVECLEN (pattern
, 0));
9335 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
9336 pointer. Return true if PATTERN matches the kind of instruction
9337 generated by mips16e_build_save_restore. If INFO is nonnull,
9338 initialize it when returning true. */
9341 mips16e_save_restore_pattern_p (rtx pattern
, HOST_WIDE_INT adjust
,
9342 struct mips16e_save_restore_info
*info
)
9344 unsigned int i
, nargs
, mask
, extra
;
9345 HOST_WIDE_INT top_offset
, save_offset
, offset
;
9346 rtx set
, reg
, mem
, base
;
9349 if (!GENERATE_MIPS16E_SAVE_RESTORE
)
9352 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9353 top_offset
= adjust
> 0 ? adjust
: 0;
9355 /* Interpret all other members of the PARALLEL. */
9356 save_offset
= top_offset
- UNITS_PER_WORD
;
9360 for (n
= 1; n
< XVECLEN (pattern
, 0); n
++)
9362 /* Check that we have a SET. */
9363 set
= XVECEXP (pattern
, 0, n
);
9364 if (GET_CODE (set
) != SET
)
9367 /* Check that the SET is a load (if restoring) or a store
9369 mem
= adjust
> 0 ? SET_SRC (set
) : SET_DEST (set
);
9373 /* Check that the address is the sum of the stack pointer and a
9374 possibly-zero constant offset. */
9375 mips_split_plus (XEXP (mem
, 0), &base
, &offset
);
9376 if (base
!= stack_pointer_rtx
)
9379 /* Check that SET's other operand is a register. */
9380 reg
= adjust
> 0 ? SET_DEST (set
) : SET_SRC (set
);
9384 /* Check for argument saves. */
9385 if (offset
== top_offset
+ nargs
* UNITS_PER_WORD
9386 && REGNO (reg
) == GP_ARG_FIRST
+ nargs
)
9388 else if (offset
== save_offset
)
9390 while (mips16e_save_restore_regs
[i
++] != REGNO (reg
))
9391 if (i
== ARRAY_SIZE (mips16e_save_restore_regs
))
9394 mask
|= 1 << REGNO (reg
);
9395 save_offset
-= UNITS_PER_WORD
;
9401 /* Check that the restrictions on register ranges are met. */
9403 mips16e_mask_registers (&mask
, mips16e_s2_s8_regs
,
9404 ARRAY_SIZE (mips16e_s2_s8_regs
), &extra
);
9405 mips16e_mask_registers (&mask
, mips16e_a0_a3_regs
,
9406 ARRAY_SIZE (mips16e_a0_a3_regs
), &extra
);
9410 /* Make sure that the topmost argument register is not saved twice.
9411 The checks above ensure that the same is then true for the other
9412 argument registers. */
9413 if (nargs
> 0 && BITSET_P (mask
, GP_ARG_FIRST
+ nargs
- 1))
9416 /* Pass back information, if requested. */
9419 info
->nargs
= nargs
;
9421 info
->size
= (adjust
> 0 ? adjust
: -adjust
);
9427 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
9428 for the register range [MIN_REG, MAX_REG]. Return a pointer to
9429 the null terminator. */
9432 mips16e_add_register_range (char *s
, unsigned int min_reg
,
9433 unsigned int max_reg
)
9435 if (min_reg
!= max_reg
)
9436 s
+= sprintf (s
, ",%s-%s", reg_names
[min_reg
], reg_names
[max_reg
]);
9438 s
+= sprintf (s
, ",%s", reg_names
[min_reg
]);
9442 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
9443 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
9446 mips16e_output_save_restore (rtx pattern
, HOST_WIDE_INT adjust
)
9448 static char buffer
[300];
9450 struct mips16e_save_restore_info info
;
9451 unsigned int i
, end
;
9454 /* Parse the pattern. */
9455 if (!mips16e_save_restore_pattern_p (pattern
, adjust
, &info
))
9458 /* Add the mnemonic. */
9459 s
= strcpy (buffer
, adjust
> 0 ? "restore\t" : "save\t");
9462 /* Save the arguments. */
9464 s
+= sprintf (s
, "%s-%s,", reg_names
[GP_ARG_FIRST
],
9465 reg_names
[GP_ARG_FIRST
+ info
.nargs
- 1]);
9466 else if (info
.nargs
== 1)
9467 s
+= sprintf (s
, "%s,", reg_names
[GP_ARG_FIRST
]);
9469 /* Emit the amount of stack space to allocate or deallocate. */
9470 s
+= sprintf (s
, "%d", (int) info
.size
);
9472 /* Save or restore $16. */
9473 if (BITSET_P (info
.mask
, 16))
9474 s
+= sprintf (s
, ",%s", reg_names
[GP_REG_FIRST
+ 16]);
9476 /* Save or restore $17. */
9477 if (BITSET_P (info
.mask
, 17))
9478 s
+= sprintf (s
, ",%s", reg_names
[GP_REG_FIRST
+ 17]);
9480 /* Save or restore registers in the range $s2...$s8, which
9481 mips16e_s2_s8_regs lists in decreasing order. Note that this
9482 is a software register range; the hardware registers are not
9483 numbered consecutively. */
9484 end
= ARRAY_SIZE (mips16e_s2_s8_regs
);
9485 i
= mips16e_find_first_register (info
.mask
, mips16e_s2_s8_regs
, end
);
9487 s
= mips16e_add_register_range (s
, mips16e_s2_s8_regs
[end
- 1],
9488 mips16e_s2_s8_regs
[i
]);
9490 /* Save or restore registers in the range $a0...$a3. */
9491 end
= ARRAY_SIZE (mips16e_a0_a3_regs
);
9492 i
= mips16e_find_first_register (info
.mask
, mips16e_a0_a3_regs
, end
);
9494 s
= mips16e_add_register_range (s
, mips16e_a0_a3_regs
[i
],
9495 mips16e_a0_a3_regs
[end
- 1]);
9497 /* Save or restore $31. */
9498 if (BITSET_P (info
.mask
, RETURN_ADDR_REGNUM
))
9499 s
+= sprintf (s
, ",%s", reg_names
[RETURN_ADDR_REGNUM
]);
9504 /* Return true if the current function returns its value in a floating-point
9505 register in MIPS16 mode. */
9508 mips16_cfun_returns_in_fpr_p (void)
9510 tree return_type
= DECL_RESULT (current_function_decl
);
9511 return (TARGET_MIPS16
9512 && TARGET_HARD_FLOAT_ABI
9513 && !aggregate_value_p (return_type
, current_function_decl
)
9514 && mips_return_mode_in_fpr_p (DECL_MODE (return_type
)));
9517 /* Return true if predicate PRED is true for at least one instruction.
9518 Cache the result in *CACHE, and assume that the result is true
9519 if *CACHE is already true. */
9522 mips_find_gp_ref (bool *cache
, bool (*pred
) (rtx_insn
*))
9528 push_topmost_sequence ();
9529 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
9530 if (USEFUL_INSN_P (insn
) && pred (insn
))
9535 pop_topmost_sequence ();
9540 /* Return true if INSN refers to the global pointer in an "inflexible" way.
9541 See mips_cfun_has_inflexible_gp_ref_p for details. */
9544 mips_insn_has_inflexible_gp_ref_p (rtx_insn
*insn
)
9546 /* Uses of pic_offset_table_rtx in CALL_INSN_FUNCTION_USAGE
9547 indicate that the target could be a traditional MIPS
9548 lazily-binding stub. */
9549 return find_reg_fusage (insn
, USE
, pic_offset_table_rtx
);
9552 /* Return true if the current function refers to the global pointer
9553 in a way that forces $28 to be valid. This means that we can't
9554 change the choice of global pointer, even for NewABI code.
9556 One example of this (and one which needs several checks) is that
9557 $28 must be valid when calling traditional MIPS lazy-binding stubs.
9558 (This restriction does not apply to PLTs.) */
9561 mips_cfun_has_inflexible_gp_ref_p (void)
9563 /* If the function has a nonlocal goto, $28 must hold the correct
9564 global pointer for the target function. That is, the target
9565 of the goto implicitly uses $28. */
9566 if (crtl
->has_nonlocal_goto
)
9569 if (TARGET_ABICALLS_PIC2
)
9571 /* Symbolic accesses implicitly use the global pointer unless
9572 -mexplicit-relocs is in effect. JAL macros to symbolic addresses
9573 might go to traditional MIPS lazy-binding stubs. */
9574 if (!TARGET_EXPLICIT_RELOCS
)
9577 /* FUNCTION_PROFILER includes a JAL to _mcount, which again
9578 can be lazily-bound. */
9582 /* MIPS16 functions that return in FPRs need to call an
9583 external libgcc routine. This call is only made explict
9584 during mips_expand_epilogue, and it too might be lazily bound. */
9585 if (mips16_cfun_returns_in_fpr_p ())
9589 return mips_find_gp_ref (&cfun
->machine
->has_inflexible_gp_insn_p
,
9590 mips_insn_has_inflexible_gp_ref_p
);
9593 /* Return true if INSN refers to the global pointer in a "flexible" way.
9594 See mips_cfun_has_flexible_gp_ref_p for details. */
9597 mips_insn_has_flexible_gp_ref_p (rtx_insn
*insn
)
9599 return (get_attr_got (insn
) != GOT_UNSET
9600 || mips_small_data_pattern_p (PATTERN (insn
))
9601 || reg_overlap_mentioned_p (pic_offset_table_rtx
, PATTERN (insn
)));
9604 /* Return true if the current function references the global pointer,
9605 but if those references do not inherently require the global pointer
9606 to be $28. Assume !mips_cfun_has_inflexible_gp_ref_p (). */
9609 mips_cfun_has_flexible_gp_ref_p (void)
9611 /* Reload can sometimes introduce constant pool references
9612 into a function that otherwise didn't need them. For example,
9613 suppose we have an instruction like:
9615 (set (reg:DF R1) (float:DF (reg:SI R2)))
9617 If R2 turns out to be a constant such as 1, the instruction may
9618 have a REG_EQUAL note saying that R1 == 1.0. Reload then has
9619 the option of using this constant if R2 doesn't get allocated
9622 In cases like these, reload will have added the constant to the
9623 pool but no instruction will yet refer to it. */
9624 if (TARGET_ABICALLS_PIC2
&& !reload_completed
&& crtl
->uses_const_pool
)
9627 return mips_find_gp_ref (&cfun
->machine
->has_flexible_gp_insn_p
,
9628 mips_insn_has_flexible_gp_ref_p
);
9631 /* Return the register that should be used as the global pointer
9632 within this function. Return INVALID_REGNUM if the function
9633 doesn't need a global pointer. */
9636 mips_global_pointer (void)
9640 /* $gp is always available unless we're using a GOT. */
9641 if (!TARGET_USE_GOT
)
9642 return GLOBAL_POINTER_REGNUM
;
9644 /* If there are inflexible references to $gp, we must use the
9645 standard register. */
9646 if (mips_cfun_has_inflexible_gp_ref_p ())
9647 return GLOBAL_POINTER_REGNUM
;
9649 /* If there are no current references to $gp, then the only uses
9650 we can introduce later are those involved in long branches. */
9651 if (TARGET_ABSOLUTE_JUMPS
&& !mips_cfun_has_flexible_gp_ref_p ())
9652 return INVALID_REGNUM
;
9654 /* If the global pointer is call-saved, try to use a call-clobbered
9656 if (TARGET_CALL_SAVED_GP
&& crtl
->is_leaf
)
9657 for (regno
= GP_REG_FIRST
; regno
<= GP_REG_LAST
; regno
++)
9658 if (!df_regs_ever_live_p (regno
)
9659 && call_really_used_regs
[regno
]
9660 && !fixed_regs
[regno
]
9661 && regno
!= PIC_FUNCTION_ADDR_REGNUM
)
9664 return GLOBAL_POINTER_REGNUM
;
9667 /* Return true if the current function's prologue must load the global
9668 pointer value into pic_offset_table_rtx and store the same value in
9669 the function's cprestore slot (if any).
9671 One problem we have to deal with is that, when emitting GOT-based
9672 position independent code, long-branch sequences will need to load
9673 the address of the branch target from the GOT. We don't know until
9674 the very end of compilation whether (and where) the function needs
9675 long branches, so we must ensure that _any_ branch can access the
9676 global pointer in some form. However, we do not want to pessimize
9677 the usual case in which all branches are short.
9679 We handle this as follows:
9681 (1) During reload, we set cfun->machine->global_pointer to
9682 INVALID_REGNUM if we _know_ that the current function
9683 doesn't need a global pointer. This is only valid if
9684 long branches don't need the GOT.
9686 Otherwise, we assume that we might need a global pointer
9687 and pick an appropriate register.
9689 (2) If cfun->machine->global_pointer != INVALID_REGNUM,
9690 we ensure that the global pointer is available at every
9691 block boundary bar entry and exit. We do this in one of two ways:
9693 - If the function has a cprestore slot, we ensure that this
9694 slot is valid at every branch. However, as explained in
9695 point (6) below, there is no guarantee that pic_offset_table_rtx
9696 itself is valid if new uses of the global pointer are introduced
9697 after the first post-epilogue split.
9699 We guarantee that the cprestore slot is valid by loading it
9700 into a fake register, CPRESTORE_SLOT_REGNUM. We then make
9701 this register live at every block boundary bar function entry
9702 and exit. It is then invalid to move the load (and thus the
9703 preceding store) across a block boundary.
9705 - If the function has no cprestore slot, we guarantee that
9706 pic_offset_table_rtx itself is valid at every branch.
9708 See mips_eh_uses for the handling of the register liveness.
9710 (3) During prologue and epilogue generation, we emit "ghost"
9711 placeholder instructions to manipulate the global pointer.
9713 (4) During prologue generation, we set cfun->machine->must_initialize_gp_p
9714 and cfun->machine->must_restore_gp_when_clobbered_p if we already know
9715 that the function needs a global pointer. (There is no need to set
9716 them earlier than this, and doing it as late as possible leads to
9717 fewer false positives.)
9719 (5) If cfun->machine->must_initialize_gp_p is true during a
9720 split_insns pass, we split the ghost instructions into real
9721 instructions. These split instructions can then be optimized in
9722 the usual way. Otherwise, we keep the ghost instructions intact,
9723 and optimize for the case where they aren't needed. We still
9724 have the option of splitting them later, if we need to introduce
9725 new uses of the global pointer.
9727 For example, the scheduler ignores a ghost instruction that
9728 stores $28 to the stack, but it handles the split form of
9729 the ghost instruction as an ordinary store.
9731 (6) [OldABI only.] If cfun->machine->must_restore_gp_when_clobbered_p
9732 is true during the first post-epilogue split_insns pass, we split
9733 calls and restore_gp patterns into instructions that explicitly
9734 load pic_offset_table_rtx from the cprestore slot. Otherwise,
9735 we split these patterns into instructions that _don't_ load from
9738 If cfun->machine->must_restore_gp_when_clobbered_p is true at the
9739 time of the split, then any instructions that exist at that time
9740 can make free use of pic_offset_table_rtx. However, if we want
9741 to introduce new uses of the global pointer after the split,
9742 we must explicitly load the value from the cprestore slot, since
9743 pic_offset_table_rtx itself might not be valid at a given point
9746 The idea is that we want to be able to delete redundant
9747 loads from the cprestore slot in the usual case where no
9748 long branches are needed.
9750 (7) If cfun->machine->must_initialize_gp_p is still false at the end
9751 of md_reorg, we decide whether the global pointer is needed for
9752 long branches. If so, we set cfun->machine->must_initialize_gp_p
9753 to true and split the ghost instructions into real instructions
9756 Note that the ghost instructions must have a zero length for three reasons:
9758 - Giving the length of the underlying $gp sequence might cause
9759 us to use long branches in cases where they aren't really needed.
9761 - They would perturb things like alignment calculations.
9763 - More importantly, the hazard detection in md_reorg relies on
9764 empty instructions having a zero length.
9766 If we find a long branch and split the ghost instructions at the
9767 end of md_reorg, the split could introduce more long branches.
9768 That isn't a problem though, because we still do the split before
9769 the final shorten_branches pass.
9771 This is extremely ugly, but it seems like the best compromise between
9772 correctness and efficiency. */
9775 mips_must_initialize_gp_p (void)
9777 return cfun
->machine
->must_initialize_gp_p
;
9780 /* Return true if REGNO is a register that is ordinarily call-clobbered
9781 but must nevertheless be preserved by an interrupt handler. */
9784 mips_interrupt_extra_call_saved_reg_p (unsigned int regno
)
9786 if (MD_REG_P (regno
))
9789 if (TARGET_DSP
&& DSP_ACC_REG_P (regno
))
9792 if (GP_REG_P (regno
) && !cfun
->machine
->use_shadow_register_set_p
)
9794 /* $0 is hard-wired. */
9795 if (regno
== GP_REG_FIRST
)
9798 /* The interrupt handler can treat kernel registers as
9799 scratch registers. */
9800 if (KERNEL_REG_P (regno
))
9803 /* The function will return the stack pointer to its original value
9805 if (regno
== STACK_POINTER_REGNUM
)
9808 /* Otherwise, return true for registers that aren't ordinarily
9810 return call_really_used_regs
[regno
];
9816 /* Return true if the current function should treat register REGNO
9820 mips_cfun_call_saved_reg_p (unsigned int regno
)
9822 /* If the user makes an ordinarily-call-saved register global,
9823 that register is no longer call-saved. */
9824 if (global_regs
[regno
])
9827 /* Interrupt handlers need to save extra registers. */
9828 if (cfun
->machine
->interrupt_handler_p
9829 && mips_interrupt_extra_call_saved_reg_p (regno
))
9832 /* call_insns preserve $28 unless they explicitly say otherwise,
9833 so call_really_used_regs[] treats $28 as call-saved. However,
9834 we want the ABI property rather than the default call_insn
9836 return (regno
== GLOBAL_POINTER_REGNUM
9837 ? TARGET_CALL_SAVED_GP
9838 : !call_really_used_regs
[regno
]);
9841 /* Return true if the function body might clobber register REGNO.
9842 We know that REGNO is call-saved. */
9845 mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno
)
9847 /* Some functions should be treated as clobbering all call-saved
9849 if (crtl
->saves_all_registers
)
9852 /* DF handles cases where a register is explicitly referenced in
9853 the rtl. Incoming values are passed in call-clobbered registers,
9854 so we can assume that any live call-saved register is set within
9856 if (df_regs_ever_live_p (regno
))
9859 /* Check for registers that are clobbered by FUNCTION_PROFILER.
9860 These clobbers are not explicit in the rtl. */
9861 if (crtl
->profile
&& MIPS_SAVE_REG_FOR_PROFILING_P (regno
))
9864 /* If we're using a call-saved global pointer, the function's
9865 prologue will need to set it up. */
9866 if (cfun
->machine
->global_pointer
== regno
)
9869 /* The function's prologue will need to set the frame pointer if
9870 frame_pointer_needed. */
9871 if (regno
== HARD_FRAME_POINTER_REGNUM
&& frame_pointer_needed
)
9874 /* If a MIPS16 function returns a value in FPRs, its epilogue
9875 will need to call an external libgcc routine. This yet-to-be
9876 generated call_insn will clobber $31. */
9877 if (regno
== RETURN_ADDR_REGNUM
&& mips16_cfun_returns_in_fpr_p ())
9880 /* If REGNO is ordinarily call-clobbered, we must assume that any
9881 called function could modify it. */
9882 if (cfun
->machine
->interrupt_handler_p
9884 && mips_interrupt_extra_call_saved_reg_p (regno
))
9890 /* Return true if the current function must save register REGNO. */
9893 mips_save_reg_p (unsigned int regno
)
9895 if (mips_cfun_call_saved_reg_p (regno
))
9897 if (mips_cfun_might_clobber_call_saved_reg_p (regno
))
9900 /* Save both registers in an FPR pair if either one is used. This is
9901 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
9902 register to be used without the even register. */
9903 if (FP_REG_P (regno
)
9904 && MAX_FPRS_PER_FMT
== 2
9905 && mips_cfun_might_clobber_call_saved_reg_p (regno
+ 1))
9909 /* We need to save the incoming return address if __builtin_eh_return
9910 is being used to set a different return address. */
9911 if (regno
== RETURN_ADDR_REGNUM
&& crtl
->calls_eh_return
)
9917 /* Populate the current function's mips_frame_info structure.
9919 MIPS stack frames look like:
9921 +-------------------------------+
9923 | incoming stack arguments |
9925 +-------------------------------+
9927 | caller-allocated save area |
9928 A | for register arguments |
9930 +-------------------------------+ <-- incoming stack pointer
9932 | callee-allocated save area |
9933 B | for arguments that are |
9934 | split between registers and |
9937 +-------------------------------+ <-- arg_pointer_rtx
9939 C | callee-allocated save area |
9940 | for register varargs |
9942 +-------------------------------+ <-- frame_pointer_rtx
9943 | | + cop0_sp_offset
9944 | COP0 reg save area | + UNITS_PER_WORD
9946 +-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset
9947 | | + UNITS_PER_WORD
9948 | accumulator save area |
9950 +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
9951 | | + UNITS_PER_HWFPVALUE
9954 +-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset
9955 | | + UNITS_PER_WORD
9958 +-------------------------------+ <-- frame_pointer_rtx with
9959 | | \ -fstack-protector
9960 | local variables | | var_size
9962 +-------------------------------+
9964 | $gp save area | | cprestore_size
9966 P +-------------------------------+ <-- hard_frame_pointer_rtx for
9968 | outgoing stack arguments | |
9970 +-------------------------------+ | args_size
9972 | caller-allocated save area | |
9973 | for register arguments | |
9975 +-------------------------------+ <-- stack_pointer_rtx
9976 frame_pointer_rtx without
9978 hard_frame_pointer_rtx for
9981 At least two of A, B and C will be empty.
9983 Dynamic stack allocations such as alloca insert data at point P.
9984 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
9985 hard_frame_pointer_rtx unchanged. */
9988 mips_compute_frame_info (void)
9990 struct mips_frame_info
*frame
;
9991 HOST_WIDE_INT offset
, size
;
9992 unsigned int regno
, i
;
9994 /* Set this function's interrupt properties. */
9995 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl
)))
9997 if (mips_isa_rev
< 2)
9998 error ("the %<interrupt%> attribute requires a MIPS32r2 processor or greater");
9999 else if (TARGET_HARD_FLOAT
)
10000 error ("the %<interrupt%> attribute requires %<-msoft-float%>");
10001 else if (TARGET_MIPS16
)
10002 error ("interrupt handlers cannot be MIPS16 functions");
10005 cfun
->machine
->interrupt_handler_p
= true;
10006 cfun
->machine
->use_shadow_register_set_p
=
10007 mips_use_shadow_register_set_p (TREE_TYPE (current_function_decl
));
10008 cfun
->machine
->keep_interrupts_masked_p
=
10009 mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl
));
10010 cfun
->machine
->use_debug_exception_return_p
=
10011 mips_use_debug_exception_return_p (TREE_TYPE
10012 (current_function_decl
));
10016 frame
= &cfun
->machine
->frame
;
10017 memset (frame
, 0, sizeof (*frame
));
10018 size
= get_frame_size ();
10020 cfun
->machine
->global_pointer
= mips_global_pointer ();
10022 /* The first two blocks contain the outgoing argument area and the $gp save
10023 slot. This area isn't needed in leaf functions, but if the
10024 target-independent frame size is nonzero, we have already committed to
10025 allocating these in STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */
10026 if ((size
== 0 || FRAME_GROWS_DOWNWARD
) && crtl
->is_leaf
)
10028 /* The MIPS 3.0 linker does not like functions that dynamically
10029 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
10030 looks like we are trying to create a second frame pointer to the
10031 function, so allocate some stack space to make it happy. */
10032 if (cfun
->calls_alloca
)
10033 frame
->args_size
= REG_PARM_STACK_SPACE (cfun
->decl
);
10035 frame
->args_size
= 0;
10036 frame
->cprestore_size
= 0;
10040 frame
->args_size
= crtl
->outgoing_args_size
;
10041 frame
->cprestore_size
= MIPS_GP_SAVE_AREA_SIZE
;
10043 offset
= frame
->args_size
+ frame
->cprestore_size
;
10045 /* Move above the local variables. */
10046 frame
->var_size
= MIPS_STACK_ALIGN (size
);
10047 offset
+= frame
->var_size
;
10049 /* Find out which GPRs we need to save. */
10050 for (regno
= GP_REG_FIRST
; regno
<= GP_REG_LAST
; regno
++)
10051 if (mips_save_reg_p (regno
))
10054 frame
->mask
|= 1 << (regno
- GP_REG_FIRST
);
10057 /* If this function calls eh_return, we must also save and restore the
10058 EH data registers. */
10059 if (crtl
->calls_eh_return
)
10060 for (i
= 0; EH_RETURN_DATA_REGNO (i
) != INVALID_REGNUM
; i
++)
10063 frame
->mask
|= 1 << (EH_RETURN_DATA_REGNO (i
) - GP_REG_FIRST
);
10066 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
10067 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
10068 save all later registers too. */
10069 if (GENERATE_MIPS16E_SAVE_RESTORE
)
10071 mips16e_mask_registers (&frame
->mask
, mips16e_s2_s8_regs
,
10072 ARRAY_SIZE (mips16e_s2_s8_regs
), &frame
->num_gp
);
10073 mips16e_mask_registers (&frame
->mask
, mips16e_a0_a3_regs
,
10074 ARRAY_SIZE (mips16e_a0_a3_regs
), &frame
->num_gp
);
10077 /* Move above the GPR save area. */
10078 if (frame
->num_gp
> 0)
10080 offset
+= MIPS_STACK_ALIGN (frame
->num_gp
* UNITS_PER_WORD
);
10081 frame
->gp_sp_offset
= offset
- UNITS_PER_WORD
;
10084 /* Find out which FPRs we need to save. This loop must iterate over
10085 the same space as its companion in mips_for_each_saved_gpr_and_fpr. */
10086 if (TARGET_HARD_FLOAT
)
10087 for (regno
= FP_REG_FIRST
; regno
<= FP_REG_LAST
; regno
+= MAX_FPRS_PER_FMT
)
10088 if (mips_save_reg_p (regno
))
10090 frame
->num_fp
+= MAX_FPRS_PER_FMT
;
10091 frame
->fmask
|= ~(~0 << MAX_FPRS_PER_FMT
) << (regno
- FP_REG_FIRST
);
10094 /* Move above the FPR save area. */
10095 if (frame
->num_fp
> 0)
10097 offset
+= MIPS_STACK_ALIGN (frame
->num_fp
* UNITS_PER_FPREG
);
10098 frame
->fp_sp_offset
= offset
- UNITS_PER_HWFPVALUE
;
10101 /* Add in space for the interrupt context information. */
10102 if (cfun
->machine
->interrupt_handler_p
)
10105 if (mips_save_reg_p (LO_REGNUM
) || mips_save_reg_p (HI_REGNUM
))
10108 frame
->acc_mask
|= (1 << 0);
10111 /* Check accumulators 1, 2, 3. */
10112 for (i
= DSP_ACC_REG_FIRST
; i
<= DSP_ACC_REG_LAST
; i
+= 2)
10113 if (mips_save_reg_p (i
) || mips_save_reg_p (i
+ 1))
10116 frame
->acc_mask
|= 1 << (((i
- DSP_ACC_REG_FIRST
) / 2) + 1);
10119 /* All interrupt context functions need space to preserve STATUS. */
10120 frame
->num_cop0_regs
++;
10122 /* If we don't keep interrupts masked, we need to save EPC. */
10123 if (!cfun
->machine
->keep_interrupts_masked_p
)
10124 frame
->num_cop0_regs
++;
10127 /* Move above the accumulator save area. */
10128 if (frame
->num_acc
> 0)
10130 /* Each accumulator needs 2 words. */
10131 offset
+= frame
->num_acc
* 2 * UNITS_PER_WORD
;
10132 frame
->acc_sp_offset
= offset
- UNITS_PER_WORD
;
10135 /* Move above the COP0 register save area. */
10136 if (frame
->num_cop0_regs
> 0)
10138 offset
+= frame
->num_cop0_regs
* UNITS_PER_WORD
;
10139 frame
->cop0_sp_offset
= offset
- UNITS_PER_WORD
;
10142 /* Move above the callee-allocated varargs save area. */
10143 offset
+= MIPS_STACK_ALIGN (cfun
->machine
->varargs_size
);
10144 frame
->arg_pointer_offset
= offset
;
10146 /* Move above the callee-allocated area for pretend stack arguments. */
10147 offset
+= crtl
->args
.pretend_args_size
;
10148 frame
->total_size
= offset
;
10150 /* Work out the offsets of the save areas from the top of the frame. */
10151 if (frame
->gp_sp_offset
> 0)
10152 frame
->gp_save_offset
= frame
->gp_sp_offset
- offset
;
10153 if (frame
->fp_sp_offset
> 0)
10154 frame
->fp_save_offset
= frame
->fp_sp_offset
- offset
;
10155 if (frame
->acc_sp_offset
> 0)
10156 frame
->acc_save_offset
= frame
->acc_sp_offset
- offset
;
10157 if (frame
->num_cop0_regs
> 0)
10158 frame
->cop0_save_offset
= frame
->cop0_sp_offset
- offset
;
10160 /* MIPS16 code offsets the frame pointer by the size of the outgoing
10161 arguments. This tends to increase the chances of using unextended
10162 instructions for local variables and incoming arguments. */
10164 frame
->hard_frame_pointer_offset
= frame
->args_size
;
10167 /* Return the style of GP load sequence that is being used for the
10168 current function. */
10170 enum mips_loadgp_style
10171 mips_current_loadgp_style (void)
10173 if (!TARGET_USE_GOT
|| cfun
->machine
->global_pointer
== INVALID_REGNUM
)
10174 return LOADGP_NONE
;
10176 if (TARGET_RTP_PIC
)
10179 if (TARGET_ABSOLUTE_ABICALLS
)
10180 return LOADGP_ABSOLUTE
;
10182 return TARGET_NEWABI
? LOADGP_NEWABI
: LOADGP_OLDABI
;
10185 /* Implement TARGET_FRAME_POINTER_REQUIRED. */
10188 mips_frame_pointer_required (void)
10190 /* If the function contains dynamic stack allocations, we need to
10191 use the frame pointer to access the static parts of the frame. */
10192 if (cfun
->calls_alloca
)
10195 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
10196 reload may be unable to compute the address of a local variable,
10197 since there is no way to add a large constant to the stack pointer
10198 without using a second temporary register. */
10201 mips_compute_frame_info ();
10202 if (!SMALL_OPERAND (cfun
->machine
->frame
.total_size
))
10209 /* Make sure that we're not trying to eliminate to the wrong hard frame
10213 mips_can_eliminate (const int from ATTRIBUTE_UNUSED
, const int to
)
10215 return (to
== HARD_FRAME_POINTER_REGNUM
|| to
== STACK_POINTER_REGNUM
);
10218 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
10219 or argument pointer. TO is either the stack pointer or hard frame
10223 mips_initial_elimination_offset (int from
, int to
)
10225 HOST_WIDE_INT offset
;
10227 mips_compute_frame_info ();
10229 /* Set OFFSET to the offset from the end-of-prologue stack pointer. */
10232 case FRAME_POINTER_REGNUM
:
10233 if (FRAME_GROWS_DOWNWARD
)
10234 offset
= (cfun
->machine
->frame
.args_size
10235 + cfun
->machine
->frame
.cprestore_size
10236 + cfun
->machine
->frame
.var_size
);
10241 case ARG_POINTER_REGNUM
:
10242 offset
= cfun
->machine
->frame
.arg_pointer_offset
;
10246 gcc_unreachable ();
10249 if (to
== HARD_FRAME_POINTER_REGNUM
)
10250 offset
-= cfun
->machine
->frame
.hard_frame_pointer_offset
;
10255 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */
10258 mips_extra_live_on_entry (bitmap regs
)
10260 if (TARGET_USE_GOT
)
10262 /* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up
10263 the global pointer. */
10264 if (!TARGET_ABSOLUTE_ABICALLS
)
10265 bitmap_set_bit (regs
, PIC_FUNCTION_ADDR_REGNUM
);
10267 /* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of
10268 the global pointer. */
10270 bitmap_set_bit (regs
, MIPS16_PIC_TEMP_REGNUM
);
10272 /* See the comment above load_call<mode> for details. */
10273 bitmap_set_bit (regs
, GOT_VERSION_REGNUM
);
10277 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
10281 mips_return_addr (int count
, rtx frame ATTRIBUTE_UNUSED
)
10286 return get_hard_reg_initial_val (Pmode
, RETURN_ADDR_REGNUM
);
10289 /* Emit code to change the current function's return address to
10290 ADDRESS. SCRATCH is available as a scratch register, if needed.
10291 ADDRESS and SCRATCH are both word-mode GPRs. */
10294 mips_set_return_address (rtx address
, rtx scratch
)
10298 gcc_assert (BITSET_P (cfun
->machine
->frame
.mask
, RETURN_ADDR_REGNUM
));
10299 slot_address
= mips_add_offset (scratch
, stack_pointer_rtx
,
10300 cfun
->machine
->frame
.gp_sp_offset
);
10301 mips_emit_move (gen_frame_mem (GET_MODE (address
), slot_address
), address
);
10304 /* Return true if the current function has a cprestore slot. */
10307 mips_cfun_has_cprestore_slot_p (void)
10309 return (cfun
->machine
->global_pointer
!= INVALID_REGNUM
10310 && cfun
->machine
->frame
.cprestore_size
> 0);
10313 /* Fill *BASE and *OFFSET such that *BASE + *OFFSET refers to the
10314 cprestore slot. LOAD_P is true if the caller wants to load from
10315 the cprestore slot; it is false if the caller wants to store to
10319 mips_get_cprestore_base_and_offset (rtx
*base
, HOST_WIDE_INT
*offset
,
10322 const struct mips_frame_info
*frame
;
10324 frame
= &cfun
->machine
->frame
;
10325 /* .cprestore always uses the stack pointer instead of the frame pointer.
10326 We have a free choice for direct stores for non-MIPS16 functions,
10327 and for MIPS16 functions whose cprestore slot is in range of the
10328 stack pointer. Using the stack pointer would sometimes give more
10329 (early) scheduling freedom, but using the frame pointer would
10330 sometimes give more (late) scheduling freedom. It's hard to
10331 predict which applies to a given function, so let's keep things
10334 Loads must always use the frame pointer in functions that call
10335 alloca, and there's little benefit to using the stack pointer
10337 if (frame_pointer_needed
&& !(TARGET_CPRESTORE_DIRECTIVE
&& !load_p
))
10339 *base
= hard_frame_pointer_rtx
;
10340 *offset
= frame
->args_size
- frame
->hard_frame_pointer_offset
;
10344 *base
= stack_pointer_rtx
;
10345 *offset
= frame
->args_size
;
10349 /* Return true if X is the load or store address of the cprestore slot;
10350 LOAD_P says which. */
10353 mips_cprestore_address_p (rtx x
, bool load_p
)
10355 rtx given_base
, required_base
;
10356 HOST_WIDE_INT given_offset
, required_offset
;
10358 mips_split_plus (x
, &given_base
, &given_offset
);
10359 mips_get_cprestore_base_and_offset (&required_base
, &required_offset
, load_p
);
10360 return given_base
== required_base
&& given_offset
== required_offset
;
10363 /* Return a MEM rtx for the cprestore slot. LOAD_P is true if we are
10364 going to load from it, false if we are going to store to it.
10365 Use TEMP as a temporary register if need be. */
10368 mips_cprestore_slot (rtx temp
, bool load_p
)
10371 HOST_WIDE_INT offset
;
10373 mips_get_cprestore_base_and_offset (&base
, &offset
, load_p
);
10374 return gen_frame_mem (Pmode
, mips_add_offset (temp
, base
, offset
));
10377 /* Emit instructions to save global pointer value GP into cprestore
10378 slot MEM. OFFSET is the offset that MEM applies to the base register.
10380 MEM may not be a legitimate address. If it isn't, TEMP is a
10381 temporary register that can be used, otherwise it is a SCRATCH. */
10384 mips_save_gp_to_cprestore_slot (rtx mem
, rtx offset
, rtx gp
, rtx temp
)
10386 if (TARGET_CPRESTORE_DIRECTIVE
)
10388 gcc_assert (gp
== pic_offset_table_rtx
);
10389 emit_insn (PMODE_INSN (gen_cprestore
, (mem
, offset
)));
10392 mips_emit_move (mips_cprestore_slot (temp
, false), gp
);
10395 /* Restore $gp from its save slot, using TEMP as a temporary base register
10396 if need be. This function is for o32 and o64 abicalls only.
10398 See mips_must_initialize_gp_p for details about how we manage the
10402 mips_restore_gp_from_cprestore_slot (rtx temp
)
10404 gcc_assert (TARGET_ABICALLS
&& TARGET_OLDABI
&& epilogue_completed
);
10406 if (!cfun
->machine
->must_restore_gp_when_clobbered_p
)
10408 emit_note (NOTE_INSN_DELETED
);
10414 mips_emit_move (temp
, mips_cprestore_slot (temp
, true));
10415 mips_emit_move (pic_offset_table_rtx
, temp
);
10418 mips_emit_move (pic_offset_table_rtx
, mips_cprestore_slot (temp
, true));
10419 if (!TARGET_EXPLICIT_RELOCS
)
10420 emit_insn (gen_blockage ());
10423 /* A function to save or store a register. The first argument is the
10424 register and the second is the stack slot. */
10425 typedef void (*mips_save_restore_fn
) (rtx
, rtx
);
10427 /* Use FN to save or restore register REGNO. MODE is the register's
10428 mode and OFFSET is the offset of its save slot from the current
10432 mips_save_restore_reg (machine_mode mode
, int regno
,
10433 HOST_WIDE_INT offset
, mips_save_restore_fn fn
)
10437 mem
= gen_frame_mem (mode
, plus_constant (Pmode
, stack_pointer_rtx
,
10439 fn (gen_rtx_REG (mode
, regno
), mem
);
10442 /* Call FN for each accumlator that is saved by the current function.
10443 SP_OFFSET is the offset of the current stack pointer from the start
10447 mips_for_each_saved_acc (HOST_WIDE_INT sp_offset
, mips_save_restore_fn fn
)
10449 HOST_WIDE_INT offset
;
10452 offset
= cfun
->machine
->frame
.acc_sp_offset
- sp_offset
;
10453 if (BITSET_P (cfun
->machine
->frame
.acc_mask
, 0))
10455 mips_save_restore_reg (word_mode
, LO_REGNUM
, offset
, fn
);
10456 offset
-= UNITS_PER_WORD
;
10457 mips_save_restore_reg (word_mode
, HI_REGNUM
, offset
, fn
);
10458 offset
-= UNITS_PER_WORD
;
10461 for (regno
= DSP_ACC_REG_FIRST
; regno
<= DSP_ACC_REG_LAST
; regno
++)
10462 if (BITSET_P (cfun
->machine
->frame
.acc_mask
,
10463 ((regno
- DSP_ACC_REG_FIRST
) / 2) + 1))
10465 mips_save_restore_reg (word_mode
, regno
, offset
, fn
);
10466 offset
-= UNITS_PER_WORD
;
10470 /* Save register REG to MEM. Make the instruction frame-related. */
10473 mips_save_reg (rtx reg
, rtx mem
)
10475 if (GET_MODE (reg
) == DFmode
&& !TARGET_FLOAT64
)
10479 mips_emit_move_or_split (mem
, reg
, SPLIT_IF_NECESSARY
);
10481 x1
= mips_frame_set (mips_subword (mem
, false),
10482 mips_subword (reg
, false));
10483 x2
= mips_frame_set (mips_subword (mem
, true),
10484 mips_subword (reg
, true));
10485 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, x1
, x2
)));
10488 mips_emit_save_slot_move (mem
, reg
, MIPS_PROLOGUE_TEMP (GET_MODE (reg
)));
10491 /* Capture the register combinations that are allowed in a SWM or LWM
10492 instruction. The entries are ordered by number of registers set in
10493 the mask. We also ignore the single register encodings because a
10494 normal SW/LW is preferred. */
10496 static const unsigned int umips_swm_mask
[17] = {
10497 0xc0ff0000, 0x80ff0000, 0x40ff0000, 0x807f0000,
10498 0x00ff0000, 0x803f0000, 0x007f0000, 0x801f0000,
10499 0x003f0000, 0x800f0000, 0x001f0000, 0x80070000,
10500 0x000f0000, 0x80030000, 0x00070000, 0x80010000,
10504 static const unsigned int umips_swm_encoding
[17] = {
10505 25, 24, 9, 23, 8, 22, 7, 21, 6, 20, 5, 19, 4, 18, 3, 17, 2
10508 /* Try to use a microMIPS LWM or SWM instruction to save or restore
10509 as many GPRs in *MASK as possible. *OFFSET is the offset from the
10510 stack pointer of the topmost save slot.
10512 Remove from *MASK all registers that were handled using LWM and SWM.
10513 Update *OFFSET so that it points to the first unused save slot. */
10516 umips_build_save_restore (mips_save_restore_fn fn
,
10517 unsigned *mask
, HOST_WIDE_INT
*offset
)
10521 rtx pattern
, set
, reg
, mem
;
10522 HOST_WIDE_INT this_offset
;
10525 /* Try matching $16 to $31 (s0 to ra). */
10526 for (i
= 0; i
< ARRAY_SIZE (umips_swm_mask
); i
++)
10527 if ((*mask
& 0xffff0000) == umips_swm_mask
[i
])
10530 if (i
== ARRAY_SIZE (umips_swm_mask
))
10533 /* Get the offset of the lowest save slot. */
10534 nregs
= (umips_swm_encoding
[i
] & 0xf) + (umips_swm_encoding
[i
] >> 4);
10535 this_offset
= *offset
- UNITS_PER_WORD
* (nregs
- 1);
10537 /* LWM/SWM can only support offsets from -2048 to 2047. */
10538 if (!UMIPS_12BIT_OFFSET_P (this_offset
))
10541 /* Create the final PARALLEL. */
10542 pattern
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (nregs
));
10543 this_base
= stack_pointer_rtx
;
10545 /* For registers $16-$23 and $30. */
10546 for (j
= 0; j
< (umips_swm_encoding
[i
] & 0xf); j
++)
10548 HOST_WIDE_INT offset
= this_offset
+ j
* UNITS_PER_WORD
;
10549 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
, this_base
, offset
));
10550 unsigned int regno
= (j
!= 8) ? 16 + j
: 30;
10551 *mask
&= ~(1 << regno
);
10552 reg
= gen_rtx_REG (SImode
, regno
);
10553 if (fn
== mips_save_reg
)
10554 set
= mips_frame_set (mem
, reg
);
10557 set
= gen_rtx_SET (VOIDmode
, reg
, mem
);
10558 mips_add_cfa_restore (reg
);
10560 XVECEXP (pattern
, 0, j
) = set
;
10563 /* For register $31. */
10564 if (umips_swm_encoding
[i
] >> 4)
10566 HOST_WIDE_INT offset
= this_offset
+ j
* UNITS_PER_WORD
;
10567 *mask
&= ~(1 << 31);
10568 mem
= gen_frame_mem (SImode
, plus_constant (Pmode
, this_base
, offset
));
10569 reg
= gen_rtx_REG (SImode
, 31);
10570 if (fn
== mips_save_reg
)
10571 set
= mips_frame_set (mem
, reg
);
10574 set
= gen_rtx_SET (VOIDmode
, reg
, mem
);
10575 mips_add_cfa_restore (reg
);
10577 XVECEXP (pattern
, 0, j
) = set
;
10580 pattern
= emit_insn (pattern
);
10581 if (fn
== mips_save_reg
)
10582 RTX_FRAME_RELATED_P (pattern
) = 1;
10584 /* Adjust the last offset. */
10585 *offset
-= UNITS_PER_WORD
* nregs
;
10590 /* Call FN for each register that is saved by the current function.
10591 SP_OFFSET is the offset of the current stack pointer from the start
10595 mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset
,
10596 mips_save_restore_fn fn
)
10598 machine_mode fpr_mode
;
10600 const struct mips_frame_info
*frame
= &cfun
->machine
->frame
;
10601 HOST_WIDE_INT offset
;
10604 /* Save registers starting from high to low. The debuggers prefer at least
10605 the return register be stored at func+4, and also it allows us not to
10606 need a nop in the epilogue if at least one register is reloaded in
10607 addition to return address. */
10608 offset
= frame
->gp_sp_offset
- sp_offset
;
10609 mask
= frame
->mask
;
10611 if (TARGET_MICROMIPS
)
10612 umips_build_save_restore (fn
, &mask
, &offset
);
10614 for (regno
= GP_REG_LAST
; regno
>= GP_REG_FIRST
; regno
--)
10615 if (BITSET_P (mask
, regno
- GP_REG_FIRST
))
10617 /* Record the ra offset for use by mips_function_profiler. */
10618 if (regno
== RETURN_ADDR_REGNUM
)
10619 cfun
->machine
->frame
.ra_fp_offset
= offset
+ sp_offset
;
10620 mips_save_restore_reg (word_mode
, regno
, offset
, fn
);
10621 offset
-= UNITS_PER_WORD
;
10624 /* This loop must iterate over the same space as its companion in
10625 mips_compute_frame_info. */
10626 offset
= cfun
->machine
->frame
.fp_sp_offset
- sp_offset
;
10627 fpr_mode
= (TARGET_SINGLE_FLOAT
? SFmode
: DFmode
);
10628 for (regno
= FP_REG_LAST
- MAX_FPRS_PER_FMT
+ 1;
10629 regno
>= FP_REG_FIRST
;
10630 regno
-= MAX_FPRS_PER_FMT
)
10631 if (BITSET_P (cfun
->machine
->frame
.fmask
, regno
- FP_REG_FIRST
))
10633 mips_save_restore_reg (fpr_mode
, regno
, offset
, fn
);
10634 offset
-= GET_MODE_SIZE (fpr_mode
);
10638 /* Return true if a move between register REGNO and its save slot (MEM)
10639 can be done in a single move. LOAD_P is true if we are loading
10640 from the slot, false if we are storing to it. */
10643 mips_direct_save_slot_move_p (unsigned int regno
, rtx mem
, bool load_p
)
10645 /* There is a specific MIPS16 instruction for saving $31 to the stack. */
10646 if (TARGET_MIPS16
&& !load_p
&& regno
== RETURN_ADDR_REGNUM
)
10649 return mips_secondary_reload_class (REGNO_REG_CLASS (regno
),
10650 GET_MODE (mem
), mem
, load_p
) == NO_REGS
;
10653 /* Emit a move from SRC to DEST, given that one of them is a register
10654 save slot and that the other is a register. TEMP is a temporary
10655 GPR of the same mode that is available if need be. */
10658 mips_emit_save_slot_move (rtx dest
, rtx src
, rtx temp
)
10660 unsigned int regno
;
10665 regno
= REGNO (src
);
10670 regno
= REGNO (dest
);
10674 if (regno
== cfun
->machine
->global_pointer
&& !mips_must_initialize_gp_p ())
10676 /* We don't yet know whether we'll need this instruction or not.
10677 Postpone the decision by emitting a ghost move. This move
10678 is specifically not frame-related; only the split version is. */
10680 emit_insn (gen_move_gpdi (dest
, src
));
10682 emit_insn (gen_move_gpsi (dest
, src
));
10686 if (regno
== HI_REGNUM
)
10690 mips_emit_move (temp
, src
);
10692 emit_insn (gen_mthisi_di (gen_rtx_REG (TImode
, MD_REG_FIRST
),
10693 temp
, gen_rtx_REG (DImode
, LO_REGNUM
)));
10695 emit_insn (gen_mthisi_di (gen_rtx_REG (DImode
, MD_REG_FIRST
),
10696 temp
, gen_rtx_REG (SImode
, LO_REGNUM
)));
10701 emit_insn (gen_mfhidi_ti (temp
,
10702 gen_rtx_REG (TImode
, MD_REG_FIRST
)));
10704 emit_insn (gen_mfhisi_di (temp
,
10705 gen_rtx_REG (DImode
, MD_REG_FIRST
)));
10706 mips_emit_move (dest
, temp
);
10709 else if (mips_direct_save_slot_move_p (regno
, mem
, mem
== src
))
10710 mips_emit_move (dest
, src
);
10713 gcc_assert (!reg_overlap_mentioned_p (dest
, temp
));
10714 mips_emit_move (temp
, src
);
10715 mips_emit_move (dest
, temp
);
10718 mips_set_frame_expr (mips_frame_set (dest
, src
));
10721 /* If we're generating n32 or n64 abicalls, and the current function
10722 does not use $28 as its global pointer, emit a cplocal directive.
10723 Use pic_offset_table_rtx as the argument to the directive. */
10726 mips_output_cplocal (void)
10728 if (!TARGET_EXPLICIT_RELOCS
10729 && mips_must_initialize_gp_p ()
10730 && cfun
->machine
->global_pointer
!= GLOBAL_POINTER_REGNUM
)
10731 output_asm_insn (".cplocal %+", 0);
10734 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
10737 mips_output_function_prologue (FILE *file
, HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
10739 const char *fnname
;
10741 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
10742 floating-point arguments. */
10744 && TARGET_HARD_FLOAT_ABI
10745 && crtl
->args
.info
.fp_code
!= 0)
10746 mips16_build_function_stub ();
10748 /* Get the function name the same way that toplev.c does before calling
10749 assemble_start_function. This is needed so that the name used here
10750 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
10751 fnname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
10752 mips_start_function_definition (fnname
, TARGET_MIPS16
);
10754 /* Output MIPS-specific frame information. */
10755 if (!flag_inhibit_size_directive
)
10757 const struct mips_frame_info
*frame
;
10759 frame
= &cfun
->machine
->frame
;
10761 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
10763 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC
",%s\t\t"
10764 "# vars= " HOST_WIDE_INT_PRINT_DEC
10766 ", args= " HOST_WIDE_INT_PRINT_DEC
10767 ", gp= " HOST_WIDE_INT_PRINT_DEC
"\n",
10768 reg_names
[frame_pointer_needed
10769 ? HARD_FRAME_POINTER_REGNUM
10770 : STACK_POINTER_REGNUM
],
10771 (frame_pointer_needed
10772 ? frame
->total_size
- frame
->hard_frame_pointer_offset
10773 : frame
->total_size
),
10774 reg_names
[RETURN_ADDR_REGNUM
],
10776 frame
->num_gp
, frame
->num_fp
,
10778 frame
->cprestore_size
);
10780 /* .mask MASK, OFFSET. */
10781 fprintf (file
, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC
"\n",
10782 frame
->mask
, frame
->gp_save_offset
);
10784 /* .fmask MASK, OFFSET. */
10785 fprintf (file
, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC
"\n",
10786 frame
->fmask
, frame
->fp_save_offset
);
10789 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
10790 Also emit the ".set noreorder; .set nomacro" sequence for functions
10792 if (mips_must_initialize_gp_p ()
10793 && mips_current_loadgp_style () == LOADGP_OLDABI
)
10797 /* This is a fixed-form sequence. The position of the
10798 first two instructions is important because of the
10799 way _gp_disp is defined. */
10800 output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0);
10801 output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0);
10802 output_asm_insn ("sll\t$2,16", 0);
10803 output_asm_insn ("addu\t$2,$3", 0);
10807 /* .cpload must be in a .set noreorder but not a
10808 .set nomacro block. */
10809 mips_push_asm_switch (&mips_noreorder
);
10810 output_asm_insn (".cpload\t%^", 0);
10811 if (!cfun
->machine
->all_noreorder_p
)
10812 mips_pop_asm_switch (&mips_noreorder
);
10814 mips_push_asm_switch (&mips_nomacro
);
10817 else if (cfun
->machine
->all_noreorder_p
)
10819 mips_push_asm_switch (&mips_noreorder
);
10820 mips_push_asm_switch (&mips_nomacro
);
10823 /* Tell the assembler which register we're using as the global
10824 pointer. This is needed for thunks, since they can use either
10825 explicit relocs or assembler macros. */
10826 mips_output_cplocal ();
10829 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
10832 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED
,
10833 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
10835 const char *fnname
;
10837 /* Reinstate the normal $gp. */
10838 SET_REGNO (pic_offset_table_rtx
, GLOBAL_POINTER_REGNUM
);
10839 mips_output_cplocal ();
10841 if (cfun
->machine
->all_noreorder_p
)
10843 mips_pop_asm_switch (&mips_nomacro
);
10844 mips_pop_asm_switch (&mips_noreorder
);
10847 /* Get the function name the same way that toplev.c does before calling
10848 assemble_start_function. This is needed so that the name used here
10849 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
10850 fnname
= XSTR (XEXP (DECL_RTL (current_function_decl
), 0), 0);
10851 mips_end_function_definition (fnname
);
10854 /* Emit an optimisation barrier for accesses to the current frame. */
10857 mips_frame_barrier (void)
10859 emit_clobber (gen_frame_mem (BLKmode
, stack_pointer_rtx
));
10863 /* The __gnu_local_gp symbol. */
10865 static GTY(()) rtx mips_gnu_local_gp
;
10867 /* If we're generating n32 or n64 abicalls, emit instructions
10868 to set up the global pointer. */
10871 mips_emit_loadgp (void)
10873 rtx addr
, offset
, incoming_address
, base
, index
, pic_reg
;
10875 pic_reg
= TARGET_MIPS16
? MIPS16_PIC_TEMP
: pic_offset_table_rtx
;
10876 switch (mips_current_loadgp_style ())
10878 case LOADGP_ABSOLUTE
:
10879 if (mips_gnu_local_gp
== NULL
)
10881 mips_gnu_local_gp
= gen_rtx_SYMBOL_REF (Pmode
, "__gnu_local_gp");
10882 SYMBOL_REF_FLAGS (mips_gnu_local_gp
) |= SYMBOL_FLAG_LOCAL
;
10884 emit_insn (PMODE_INSN (gen_loadgp_absolute
,
10885 (pic_reg
, mips_gnu_local_gp
)));
10888 case LOADGP_OLDABI
:
10889 /* Added by mips_output_function_prologue. */
10892 case LOADGP_NEWABI
:
10893 addr
= XEXP (DECL_RTL (current_function_decl
), 0);
10894 offset
= mips_unspec_address (addr
, SYMBOL_GOTOFF_LOADGP
);
10895 incoming_address
= gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
);
10896 emit_insn (PMODE_INSN (gen_loadgp_newabi
,
10897 (pic_reg
, offset
, incoming_address
)));
10901 base
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (VXWORKS_GOTT_BASE
));
10902 index
= gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (VXWORKS_GOTT_INDEX
));
10903 emit_insn (PMODE_INSN (gen_loadgp_rtp
, (pic_reg
, base
, index
)));
10911 emit_insn (PMODE_INSN (gen_copygp_mips16
,
10912 (pic_offset_table_rtx
, pic_reg
)));
10914 /* Emit a blockage if there are implicit uses of the GP register.
10915 This includes profiled functions, because FUNCTION_PROFILE uses
10917 if (!TARGET_EXPLICIT_RELOCS
|| crtl
->profile
)
10918 emit_insn (gen_loadgp_blockage ());
10921 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
10923 #if PROBE_INTERVAL > 32768
10924 #error Cannot use indexed addressing mode for stack probing
10927 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
10928 inclusive. These are offsets from the current stack pointer. */
10931 mips_emit_probe_stack_range (HOST_WIDE_INT first
, HOST_WIDE_INT size
)
10934 sorry ("-fstack-check=specific not implemented for MIPS16");
10936 /* See if we have a constant small number of probes to generate. If so,
10937 that's the easy case. */
10938 if (first
+ size
<= 32768)
10942 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
10943 it exceeds SIZE. If only one probe is needed, this will not
10944 generate any code. Then probe at FIRST + SIZE. */
10945 for (i
= PROBE_INTERVAL
; i
< size
; i
+= PROBE_INTERVAL
)
10946 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
10949 emit_stack_probe (plus_constant (Pmode
, stack_pointer_rtx
,
10953 /* Otherwise, do the same as above, but in a loop. Note that we must be
10954 extra careful with variables wrapping around because we might be at
10955 the very top (or the very bottom) of the address space and we have
10956 to be able to handle this case properly; in particular, we use an
10957 equality test for the loop condition. */
10960 HOST_WIDE_INT rounded_size
;
10961 rtx r3
= MIPS_PROLOGUE_TEMP (Pmode
);
10962 rtx r12
= MIPS_PROLOGUE_TEMP2 (Pmode
);
10964 /* Sanity check for the addressing mode we're going to use. */
10965 gcc_assert (first
<= 32768);
10968 /* Step 1: round SIZE to the previous multiple of the interval. */
10970 rounded_size
= size
& -PROBE_INTERVAL
;
10973 /* Step 2: compute initial and final value of the loop counter. */
10975 /* TEST_ADDR = SP + FIRST. */
10976 emit_insn (gen_rtx_SET (VOIDmode
, r3
,
10977 plus_constant (Pmode
, stack_pointer_rtx
,
10980 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
10981 if (rounded_size
> 32768)
10983 emit_move_insn (r12
, GEN_INT (rounded_size
));
10984 emit_insn (gen_rtx_SET (VOIDmode
, r12
,
10985 gen_rtx_MINUS (Pmode
, r3
, r12
)));
10988 emit_insn (gen_rtx_SET (VOIDmode
, r12
,
10989 plus_constant (Pmode
, r3
, -rounded_size
)));
10992 /* Step 3: the loop
10994 while (TEST_ADDR != LAST_ADDR)
10996 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
11000 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
11001 until it is equal to ROUNDED_SIZE. */
11003 emit_insn (PMODE_INSN (gen_probe_stack_range
, (r3
, r3
, r12
)));
11006 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
11007 that SIZE is equal to ROUNDED_SIZE. */
11009 if (size
!= rounded_size
)
11010 emit_stack_probe (plus_constant (Pmode
, r12
, rounded_size
- size
));
11013 /* Make sure nothing is scheduled before we are done. */
11014 emit_insn (gen_blockage ());
11017 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
11018 absolute addresses. */
11021 mips_output_probe_stack_range (rtx reg1
, rtx reg2
)
11023 static int labelno
= 0;
11024 char loop_lab
[32], end_lab
[32], tmp
[64];
11027 ASM_GENERATE_INTERNAL_LABEL (loop_lab
, "LPSRL", labelno
);
11028 ASM_GENERATE_INTERNAL_LABEL (end_lab
, "LPSRE", labelno
++);
11030 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, loop_lab
);
11032 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
11035 strcpy (tmp
, "%(%<beq\t%0,%1,");
11036 output_asm_insn (strcat (tmp
, &end_lab
[1]), xops
);
11038 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
11039 xops
[1] = GEN_INT (-PROBE_INTERVAL
);
11040 if (TARGET_64BIT
&& TARGET_LONG64
)
11041 output_asm_insn ("daddiu\t%0,%0,%1", xops
);
11043 output_asm_insn ("addiu\t%0,%0,%1", xops
);
11045 /* Probe at TEST_ADDR and branch. */
11046 fprintf (asm_out_file
, "\tb\t");
11047 assemble_name_raw (asm_out_file
, loop_lab
);
11048 fputc ('\n', asm_out_file
);
11050 output_asm_insn ("sd\t$0,0(%0)%)", xops
);
11052 output_asm_insn ("sw\t$0,0(%0)%)", xops
);
11054 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, end_lab
);
11059 /* Return true if X contains a kernel register. */
11062 mips_refers_to_kernel_reg_p (const_rtx x
)
11064 subrtx_iterator::array_type array
;
11065 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
11066 if (REG_P (*iter
) && KERNEL_REG_P (REGNO (*iter
)))
11071 /* Expand the "prologue" pattern. */
11074 mips_expand_prologue (void)
11076 const struct mips_frame_info
*frame
;
11077 HOST_WIDE_INT size
;
11078 unsigned int nargs
;
11080 if (cfun
->machine
->global_pointer
!= INVALID_REGNUM
)
11082 /* Check whether an insn uses pic_offset_table_rtx, either explicitly
11083 or implicitly. If so, we can commit to using a global pointer
11084 straight away, otherwise we need to defer the decision. */
11085 if (mips_cfun_has_inflexible_gp_ref_p ()
11086 || mips_cfun_has_flexible_gp_ref_p ())
11088 cfun
->machine
->must_initialize_gp_p
= true;
11089 cfun
->machine
->must_restore_gp_when_clobbered_p
= true;
11092 SET_REGNO (pic_offset_table_rtx
, cfun
->machine
->global_pointer
);
11095 frame
= &cfun
->machine
->frame
;
11096 size
= frame
->total_size
;
11098 if (flag_stack_usage_info
)
11099 current_function_static_stack_size
= size
;
11101 if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
11103 if (crtl
->is_leaf
&& !cfun
->calls_alloca
)
11105 if (size
> PROBE_INTERVAL
&& size
> STACK_CHECK_PROTECT
)
11106 mips_emit_probe_stack_range (STACK_CHECK_PROTECT
,
11107 size
- STACK_CHECK_PROTECT
);
11110 mips_emit_probe_stack_range (STACK_CHECK_PROTECT
, size
);
11113 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
11114 bytes beforehand; this is enough to cover the register save area
11115 without going out of range. */
11116 if (((frame
->mask
| frame
->fmask
| frame
->acc_mask
) != 0)
11117 || frame
->num_cop0_regs
> 0)
11119 HOST_WIDE_INT step1
;
11121 step1
= MIN (size
, MIPS_MAX_FIRST_STACK_STEP
);
11122 if (GENERATE_MIPS16E_SAVE_RESTORE
)
11124 HOST_WIDE_INT offset
;
11125 unsigned int mask
, regno
;
11127 /* Try to merge argument stores into the save instruction. */
11128 nargs
= mips16e_collect_argument_saves ();
11130 /* Build the save instruction. */
11131 mask
= frame
->mask
;
11132 rtx insn
= mips16e_build_save_restore (false, &mask
, &offset
,
11134 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
11135 mips_frame_barrier ();
11138 /* Check if we need to save other registers. */
11139 for (regno
= GP_REG_FIRST
; regno
< GP_REG_LAST
; regno
++)
11140 if (BITSET_P (mask
, regno
- GP_REG_FIRST
))
11142 offset
-= UNITS_PER_WORD
;
11143 mips_save_restore_reg (word_mode
, regno
,
11144 offset
, mips_save_reg
);
11149 if (cfun
->machine
->interrupt_handler_p
)
11151 HOST_WIDE_INT offset
;
11154 /* If this interrupt is using a shadow register set, we need to
11155 get the stack pointer from the previous register set. */
11156 if (cfun
->machine
->use_shadow_register_set_p
)
11157 emit_insn (gen_mips_rdpgpr (stack_pointer_rtx
,
11158 stack_pointer_rtx
));
11160 if (!cfun
->machine
->keep_interrupts_masked_p
)
11162 /* Move from COP0 Cause to K0. */
11163 emit_insn (gen_cop0_move (gen_rtx_REG (SImode
, K0_REG_NUM
),
11164 gen_rtx_REG (SImode
,
11165 COP0_CAUSE_REG_NUM
)));
11166 /* Move from COP0 EPC to K1. */
11167 emit_insn (gen_cop0_move (gen_rtx_REG (SImode
, K1_REG_NUM
),
11168 gen_rtx_REG (SImode
,
11169 COP0_EPC_REG_NUM
)));
11172 /* Allocate the first part of the frame. */
11173 rtx insn
= gen_add3_insn (stack_pointer_rtx
, stack_pointer_rtx
,
11175 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
11176 mips_frame_barrier ();
11179 /* Start at the uppermost location for saving. */
11180 offset
= frame
->cop0_sp_offset
- size
;
11181 if (!cfun
->machine
->keep_interrupts_masked_p
)
11183 /* Push EPC into its stack slot. */
11184 mem
= gen_frame_mem (word_mode
,
11185 plus_constant (Pmode
, stack_pointer_rtx
,
11187 mips_emit_move (mem
, gen_rtx_REG (word_mode
, K1_REG_NUM
));
11188 offset
-= UNITS_PER_WORD
;
11191 /* Move from COP0 Status to K1. */
11192 emit_insn (gen_cop0_move (gen_rtx_REG (SImode
, K1_REG_NUM
),
11193 gen_rtx_REG (SImode
,
11194 COP0_STATUS_REG_NUM
)));
11196 /* Right justify the RIPL in k0. */
11197 if (!cfun
->machine
->keep_interrupts_masked_p
)
11198 emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode
, K0_REG_NUM
),
11199 gen_rtx_REG (SImode
, K0_REG_NUM
),
11200 GEN_INT (CAUSE_IPL
)));
11202 /* Push Status into its stack slot. */
11203 mem
= gen_frame_mem (word_mode
,
11204 plus_constant (Pmode
, stack_pointer_rtx
,
11206 mips_emit_move (mem
, gen_rtx_REG (word_mode
, K1_REG_NUM
));
11207 offset
-= UNITS_PER_WORD
;
11209 /* Insert the RIPL into our copy of SR (k1) as the new IPL. */
11210 if (!cfun
->machine
->keep_interrupts_masked_p
)
11211 emit_insn (gen_insvsi (gen_rtx_REG (SImode
, K1_REG_NUM
),
11214 gen_rtx_REG (SImode
, K0_REG_NUM
)));
11216 if (!cfun
->machine
->keep_interrupts_masked_p
)
11217 /* Enable interrupts by clearing the KSU ERL and EXL bits.
11218 IE is already the correct value, so we don't have to do
11219 anything explicit. */
11220 emit_insn (gen_insvsi (gen_rtx_REG (SImode
, K1_REG_NUM
),
11223 gen_rtx_REG (SImode
, GP_REG_FIRST
)));
11225 /* Disable interrupts by clearing the KSU, ERL, EXL,
11227 emit_insn (gen_insvsi (gen_rtx_REG (SImode
, K1_REG_NUM
),
11230 gen_rtx_REG (SImode
, GP_REG_FIRST
)));
11234 rtx insn
= gen_add3_insn (stack_pointer_rtx
,
11237 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
11238 mips_frame_barrier ();
11241 mips_for_each_saved_acc (size
, mips_save_reg
);
11242 mips_for_each_saved_gpr_and_fpr (size
, mips_save_reg
);
11246 /* Allocate the rest of the frame. */
11249 if (SMALL_OPERAND (-size
))
11250 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx
,
11252 GEN_INT (-size
)))) = 1;
11255 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode
), GEN_INT (size
));
11258 /* There are no instructions to add or subtract registers
11259 from the stack pointer, so use the frame pointer as a
11260 temporary. We should always be using a frame pointer
11261 in this case anyway. */
11262 gcc_assert (frame_pointer_needed
);
11263 mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
11264 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx
,
11265 hard_frame_pointer_rtx
,
11266 MIPS_PROLOGUE_TEMP (Pmode
)));
11267 mips_emit_move (stack_pointer_rtx
, hard_frame_pointer_rtx
);
11270 emit_insn (gen_sub3_insn (stack_pointer_rtx
,
11272 MIPS_PROLOGUE_TEMP (Pmode
)));
11274 /* Describe the combined effect of the previous instructions. */
11275 mips_set_frame_expr
11276 (gen_rtx_SET (VOIDmode
, stack_pointer_rtx
,
11277 plus_constant (Pmode
, stack_pointer_rtx
, -size
)));
11279 mips_frame_barrier ();
11282 /* Set up the frame pointer, if we're using one. */
11283 if (frame_pointer_needed
)
11285 HOST_WIDE_INT offset
;
11287 offset
= frame
->hard_frame_pointer_offset
;
11290 rtx insn
= mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
11291 RTX_FRAME_RELATED_P (insn
) = 1;
11293 else if (SMALL_OPERAND (offset
))
11295 rtx insn
= gen_add3_insn (hard_frame_pointer_rtx
,
11296 stack_pointer_rtx
, GEN_INT (offset
));
11297 RTX_FRAME_RELATED_P (emit_insn (insn
)) = 1;
11301 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode
), GEN_INT (offset
));
11302 mips_emit_move (hard_frame_pointer_rtx
, stack_pointer_rtx
);
11303 emit_insn (gen_add3_insn (hard_frame_pointer_rtx
,
11304 hard_frame_pointer_rtx
,
11305 MIPS_PROLOGUE_TEMP (Pmode
)));
11306 mips_set_frame_expr
11307 (gen_rtx_SET (VOIDmode
, hard_frame_pointer_rtx
,
11308 plus_constant (Pmode
, stack_pointer_rtx
, offset
)));
11312 mips_emit_loadgp ();
11314 /* Initialize the $gp save slot. */
11315 if (mips_cfun_has_cprestore_slot_p ())
11317 rtx base
, mem
, gp
, temp
;
11318 HOST_WIDE_INT offset
;
11320 mips_get_cprestore_base_and_offset (&base
, &offset
, false);
11321 mem
= gen_frame_mem (Pmode
, plus_constant (Pmode
, base
, offset
));
11322 gp
= TARGET_MIPS16
? MIPS16_PIC_TEMP
: pic_offset_table_rtx
;
11323 temp
= (SMALL_OPERAND (offset
)
11324 ? gen_rtx_SCRATCH (Pmode
)
11325 : MIPS_PROLOGUE_TEMP (Pmode
));
11326 emit_insn (PMODE_INSN (gen_potential_cprestore
,
11327 (mem
, GEN_INT (offset
), gp
, temp
)));
11329 mips_get_cprestore_base_and_offset (&base
, &offset
, true);
11330 mem
= gen_frame_mem (Pmode
, plus_constant (Pmode
, base
, offset
));
11331 emit_insn (PMODE_INSN (gen_use_cprestore
, (mem
)));
11334 /* We need to search back to the last use of K0 or K1. */
11335 if (cfun
->machine
->interrupt_handler_p
)
11338 for (insn
= get_last_insn (); insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
11340 && mips_refers_to_kernel_reg_p (PATTERN (insn
)))
11342 /* Emit a move from K1 to COP0 Status after insn. */
11343 gcc_assert (insn
!= NULL_RTX
);
11344 emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode
, COP0_STATUS_REG_NUM
),
11345 gen_rtx_REG (SImode
, K1_REG_NUM
)),
11349 /* If we are profiling, make sure no instructions are scheduled before
11350 the call to mcount. */
11352 emit_insn (gen_blockage ());
11355 /* Attach all pending register saves to the previous instruction.
11356 Return that instruction. */
11359 mips_epilogue_emit_cfa_restores (void)
11363 insn
= get_last_insn ();
11364 gcc_assert (insn
&& !REG_NOTES (insn
));
11365 if (mips_epilogue
.cfa_restores
)
11367 RTX_FRAME_RELATED_P (insn
) = 1;
11368 REG_NOTES (insn
) = mips_epilogue
.cfa_restores
;
11369 mips_epilogue
.cfa_restores
= 0;
11374 /* Like mips_epilogue_emit_cfa_restores, but also record that the CFA is
11375 now at REG + OFFSET. */
11378 mips_epilogue_set_cfa (rtx reg
, HOST_WIDE_INT offset
)
11382 insn
= mips_epilogue_emit_cfa_restores ();
11383 if (reg
!= mips_epilogue
.cfa_reg
|| offset
!= mips_epilogue
.cfa_offset
)
11385 RTX_FRAME_RELATED_P (insn
) = 1;
11386 REG_NOTES (insn
) = alloc_reg_note (REG_CFA_DEF_CFA
,
11387 plus_constant (Pmode
, reg
, offset
),
11389 mips_epilogue
.cfa_reg
= reg
;
11390 mips_epilogue
.cfa_offset
= offset
;
11394 /* Emit instructions to restore register REG from slot MEM. Also update
11395 the cfa_restores list. */
11398 mips_restore_reg (rtx reg
, rtx mem
)
11400 /* There's no MIPS16 instruction to load $31 directly. Load into
11401 $7 instead and adjust the return insn appropriately. */
11402 if (TARGET_MIPS16
&& REGNO (reg
) == RETURN_ADDR_REGNUM
)
11403 reg
= gen_rtx_REG (GET_MODE (reg
), GP_REG_FIRST
+ 7);
11404 else if (GET_MODE (reg
) == DFmode
&& !TARGET_FLOAT64
)
11406 mips_add_cfa_restore (mips_subword (reg
, true));
11407 mips_add_cfa_restore (mips_subword (reg
, false));
11410 mips_add_cfa_restore (reg
);
11412 mips_emit_save_slot_move (reg
, mem
, MIPS_EPILOGUE_TEMP (GET_MODE (reg
)));
11413 if (REGNO (reg
) == REGNO (mips_epilogue
.cfa_reg
))
11414 /* The CFA is currently defined in terms of the register whose
11415 value we have just restored. Redefine the CFA in terms of
11416 the stack pointer. */
11417 mips_epilogue_set_cfa (stack_pointer_rtx
,
11418 mips_epilogue
.cfa_restore_sp_offset
);
11421 /* Emit code to set the stack pointer to BASE + OFFSET, given that
11422 BASE + OFFSET is NEW_FRAME_SIZE bytes below the top of the frame.
11423 BASE, if not the stack pointer, is available as a temporary. */
11426 mips_deallocate_stack (rtx base
, rtx offset
, HOST_WIDE_INT new_frame_size
)
11428 if (base
== stack_pointer_rtx
&& offset
== const0_rtx
)
11431 mips_frame_barrier ();
11432 if (offset
== const0_rtx
)
11434 emit_move_insn (stack_pointer_rtx
, base
);
11435 mips_epilogue_set_cfa (stack_pointer_rtx
, new_frame_size
);
11437 else if (TARGET_MIPS16
&& base
!= stack_pointer_rtx
)
11439 emit_insn (gen_add3_insn (base
, base
, offset
));
11440 mips_epilogue_set_cfa (base
, new_frame_size
);
11441 emit_move_insn (stack_pointer_rtx
, base
);
11445 emit_insn (gen_add3_insn (stack_pointer_rtx
, base
, offset
));
11446 mips_epilogue_set_cfa (stack_pointer_rtx
, new_frame_size
);
11450 /* Emit any instructions needed before a return. */
11453 mips_expand_before_return (void)
11455 /* When using a call-clobbered gp, we start out with unified call
11456 insns that include instructions to restore the gp. We then split
11457 these unified calls after reload. These split calls explicitly
11458 clobber gp, so there is no need to define
11459 PIC_OFFSET_TABLE_REG_CALL_CLOBBERED.
11461 For consistency, we should also insert an explicit clobber of $28
11462 before return insns, so that the post-reload optimizers know that
11463 the register is not live on exit. */
11464 if (TARGET_CALL_CLOBBERED_GP
)
11465 emit_clobber (pic_offset_table_rtx
);
11468 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
11472 mips_expand_epilogue (bool sibcall_p
)
11474 const struct mips_frame_info
*frame
;
11475 HOST_WIDE_INT step1
, step2
;
11478 bool use_jraddiusp_p
= false;
11480 if (!sibcall_p
&& mips_can_use_return_insn ())
11482 emit_jump_insn (gen_return ());
11486 /* In MIPS16 mode, if the return value should go into a floating-point
11487 register, we need to call a helper routine to copy it over. */
11488 if (mips16_cfun_returns_in_fpr_p ())
11489 mips16_copy_fpr_return_value ();
11491 /* Split the frame into two. STEP1 is the amount of stack we should
11492 deallocate before restoring the registers. STEP2 is the amount we
11493 should deallocate afterwards.
11495 Start off by assuming that no registers need to be restored. */
11496 frame
= &cfun
->machine
->frame
;
11497 step1
= frame
->total_size
;
11500 /* Work out which register holds the frame address. */
11501 if (!frame_pointer_needed
)
11502 base
= stack_pointer_rtx
;
11505 base
= hard_frame_pointer_rtx
;
11506 step1
-= frame
->hard_frame_pointer_offset
;
11508 mips_epilogue
.cfa_reg
= base
;
11509 mips_epilogue
.cfa_offset
= step1
;
11510 mips_epilogue
.cfa_restores
= NULL_RTX
;
11512 /* If we need to restore registers, deallocate as much stack as
11513 possible in the second step without going out of range. */
11514 if ((frame
->mask
| frame
->fmask
| frame
->acc_mask
) != 0
11515 || frame
->num_cop0_regs
> 0)
11517 step2
= MIN (step1
, MIPS_MAX_FIRST_STACK_STEP
);
11521 /* Get an rtx for STEP1 that we can add to BASE. */
11522 adjust
= GEN_INT (step1
);
11523 if (!SMALL_OPERAND (step1
))
11525 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode
), adjust
);
11526 adjust
= MIPS_EPILOGUE_TEMP (Pmode
);
11528 mips_deallocate_stack (base
, adjust
, step2
);
11530 /* If we're using addressing macros, $gp is implicitly used by all
11531 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
11533 if (TARGET_CALL_SAVED_GP
&& !TARGET_EXPLICIT_RELOCS
)
11534 emit_insn (gen_blockage ());
11536 mips_epilogue
.cfa_restore_sp_offset
= step2
;
11537 if (GENERATE_MIPS16E_SAVE_RESTORE
&& frame
->mask
!= 0)
11539 unsigned int regno
, mask
;
11540 HOST_WIDE_INT offset
;
11543 /* Generate the restore instruction. */
11544 mask
= frame
->mask
;
11545 restore
= mips16e_build_save_restore (true, &mask
, &offset
, 0, step2
);
11547 /* Restore any other registers manually. */
11548 for (regno
= GP_REG_FIRST
; regno
< GP_REG_LAST
; regno
++)
11549 if (BITSET_P (mask
, regno
- GP_REG_FIRST
))
11551 offset
-= UNITS_PER_WORD
;
11552 mips_save_restore_reg (word_mode
, regno
, offset
, mips_restore_reg
);
11555 /* Restore the remaining registers and deallocate the final bit
11557 mips_frame_barrier ();
11558 emit_insn (restore
);
11559 mips_epilogue_set_cfa (stack_pointer_rtx
, 0);
11563 /* Restore the registers. */
11564 mips_for_each_saved_acc (frame
->total_size
- step2
, mips_restore_reg
);
11565 mips_for_each_saved_gpr_and_fpr (frame
->total_size
- step2
,
11568 if (cfun
->machine
->interrupt_handler_p
)
11570 HOST_WIDE_INT offset
;
11573 offset
= frame
->cop0_sp_offset
- (frame
->total_size
- step2
);
11574 if (!cfun
->machine
->keep_interrupts_masked_p
)
11576 /* Restore the original EPC. */
11577 mem
= gen_frame_mem (word_mode
,
11578 plus_constant (Pmode
, stack_pointer_rtx
,
11580 mips_emit_move (gen_rtx_REG (word_mode
, K0_REG_NUM
), mem
);
11581 offset
-= UNITS_PER_WORD
;
11583 /* Move to COP0 EPC. */
11584 emit_insn (gen_cop0_move (gen_rtx_REG (SImode
, COP0_EPC_REG_NUM
),
11585 gen_rtx_REG (SImode
, K0_REG_NUM
)));
11588 /* Restore the original Status. */
11589 mem
= gen_frame_mem (word_mode
,
11590 plus_constant (Pmode
, stack_pointer_rtx
,
11592 mips_emit_move (gen_rtx_REG (word_mode
, K0_REG_NUM
), mem
);
11593 offset
-= UNITS_PER_WORD
;
11595 /* If we don't use shadow register set, we need to update SP. */
11596 if (!cfun
->machine
->use_shadow_register_set_p
)
11597 mips_deallocate_stack (stack_pointer_rtx
, GEN_INT (step2
), 0);
11599 /* The choice of position is somewhat arbitrary in this case. */
11600 mips_epilogue_emit_cfa_restores ();
11602 /* Move to COP0 Status. */
11603 emit_insn (gen_cop0_move (gen_rtx_REG (SImode
, COP0_STATUS_REG_NUM
),
11604 gen_rtx_REG (SImode
, K0_REG_NUM
)));
11606 else if (TARGET_MICROMIPS
11607 && !crtl
->calls_eh_return
11610 && mips_unsigned_immediate_p (step2
, 5, 2))
11611 use_jraddiusp_p
= true;
11613 /* Deallocate the final bit of the frame. */
11614 mips_deallocate_stack (stack_pointer_rtx
, GEN_INT (step2
), 0);
11617 if (!use_jraddiusp_p
)
11618 gcc_assert (!mips_epilogue
.cfa_restores
);
11620 /* Add in the __builtin_eh_return stack adjustment. We need to
11621 use a temporary in MIPS16 code. */
11622 if (crtl
->calls_eh_return
)
11626 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode
), stack_pointer_rtx
);
11627 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode
),
11628 MIPS_EPILOGUE_TEMP (Pmode
),
11629 EH_RETURN_STACKADJ_RTX
));
11630 mips_emit_move (stack_pointer_rtx
, MIPS_EPILOGUE_TEMP (Pmode
));
11633 emit_insn (gen_add3_insn (stack_pointer_rtx
,
11635 EH_RETURN_STACKADJ_RTX
));
11640 mips_expand_before_return ();
11641 if (cfun
->machine
->interrupt_handler_p
)
11643 /* Interrupt handlers generate eret or deret. */
11644 if (cfun
->machine
->use_debug_exception_return_p
)
11645 emit_jump_insn (gen_mips_deret ());
11647 emit_jump_insn (gen_mips_eret ());
11653 /* When generating MIPS16 code, the normal
11654 mips_for_each_saved_gpr_and_fpr path will restore the return
11655 address into $7 rather than $31. */
11657 && !GENERATE_MIPS16E_SAVE_RESTORE
11658 && BITSET_P (frame
->mask
, RETURN_ADDR_REGNUM
))
11660 /* simple_returns cannot rely on values that are only available
11661 on paths through the epilogue (because return paths that do
11662 not pass through the epilogue may nevertheless reuse a
11663 simple_return that occurs at the end of the epilogue).
11664 Use a normal return here instead. */
11665 rtx reg
= gen_rtx_REG (Pmode
, GP_REG_FIRST
+ 7);
11666 pat
= gen_return_internal (reg
);
11668 else if (use_jraddiusp_p
)
11669 pat
= gen_jraddiusp (GEN_INT (step2
));
11672 rtx reg
= gen_rtx_REG (Pmode
, RETURN_ADDR_REGNUM
);
11673 pat
= gen_simple_return_internal (reg
);
11675 emit_jump_insn (pat
);
11676 if (use_jraddiusp_p
)
11677 mips_epilogue_set_cfa (stack_pointer_rtx
, step2
);
11681 /* Search from the beginning to the first use of K0 or K1. */
11682 if (cfun
->machine
->interrupt_handler_p
11683 && !cfun
->machine
->keep_interrupts_masked_p
)
11685 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
11687 && mips_refers_to_kernel_reg_p (PATTERN (insn
)))
11689 gcc_assert (insn
!= NULL_RTX
);
11690 /* Insert disable interrupts before the first use of K0 or K1. */
11691 emit_insn_before (gen_mips_di (), insn
);
11692 emit_insn_before (gen_mips_ehb (), insn
);
11696 /* Return nonzero if this function is known to have a null epilogue.
11697 This allows the optimizer to omit jumps to jumps if no stack
11701 mips_can_use_return_insn (void)
11703 /* Interrupt handlers need to go through the epilogue. */
11704 if (cfun
->machine
->interrupt_handler_p
)
11707 if (!reload_completed
)
11713 /* In MIPS16 mode, a function that returns a floating-point value
11714 needs to arrange to copy the return value into the floating-point
11716 if (mips16_cfun_returns_in_fpr_p ())
11719 return cfun
->machine
->frame
.total_size
== 0;
11722 /* Return true if register REGNO can store a value of mode MODE.
11723 The result of this function is cached in mips_hard_regno_mode_ok. */
11726 mips_hard_regno_mode_ok_p (unsigned int regno
, machine_mode mode
)
11729 enum mode_class mclass
;
11731 if (mode
== CCV2mode
)
11732 return (ISA_HAS_8CC
11733 && ST_REG_P (regno
)
11734 && (regno
- ST_REG_FIRST
) % 2 == 0);
11736 if (mode
== CCV4mode
)
11737 return (ISA_HAS_8CC
11738 && ST_REG_P (regno
)
11739 && (regno
- ST_REG_FIRST
) % 4 == 0);
11741 if (mode
== CCmode
)
11742 return ISA_HAS_8CC
? ST_REG_P (regno
) : regno
== FPSW_REGNUM
;
11744 size
= GET_MODE_SIZE (mode
);
11745 mclass
= GET_MODE_CLASS (mode
);
11747 if (GP_REG_P (regno
))
11748 return ((regno
- GP_REG_FIRST
) & 1) == 0 || size
<= UNITS_PER_WORD
;
11750 if (FP_REG_P (regno
)
11751 && (((regno
- FP_REG_FIRST
) % MAX_FPRS_PER_FMT
) == 0
11752 || (MIN_FPRS_PER_FMT
== 1 && size
<= UNITS_PER_FPREG
)))
11754 /* Allow 64-bit vector modes for Loongson-2E/2F. */
11755 if (TARGET_LOONGSON_VECTORS
11756 && (mode
== V2SImode
11757 || mode
== V4HImode
11758 || mode
== V8QImode
11759 || mode
== DImode
))
11762 if (mclass
== MODE_FLOAT
11763 || mclass
== MODE_COMPLEX_FLOAT
11764 || mclass
== MODE_VECTOR_FLOAT
)
11765 return size
<= UNITS_PER_FPVALUE
;
11767 /* Allow integer modes that fit into a single register. We need
11768 to put integers into FPRs when using instructions like CVT
11769 and TRUNC. There's no point allowing sizes smaller than a word,
11770 because the FPU has no appropriate load/store instructions. */
11771 if (mclass
== MODE_INT
)
11772 return size
>= MIN_UNITS_PER_WORD
&& size
<= UNITS_PER_FPREG
;
11775 if (ACC_REG_P (regno
)
11776 && (INTEGRAL_MODE_P (mode
) || ALL_FIXED_POINT_MODE_P (mode
)))
11778 if (MD_REG_P (regno
))
11780 /* After a multiplication or division, clobbering HI makes
11781 the value of LO unpredictable, and vice versa. This means
11782 that, for all interesting cases, HI and LO are effectively
11785 We model this by requiring that any value that uses HI
11787 if (size
<= UNITS_PER_WORD
* 2)
11788 return regno
== (size
<= UNITS_PER_WORD
? LO_REGNUM
: MD_REG_FIRST
);
11792 /* DSP accumulators do not have the same restrictions as
11793 HI and LO, so we can treat them as normal doubleword
11795 if (size
<= UNITS_PER_WORD
)
11798 if (size
<= UNITS_PER_WORD
* 2
11799 && ((regno
- DSP_ACC_REG_FIRST
) & 1) == 0)
11804 if (ALL_COP_REG_P (regno
))
11805 return mclass
== MODE_INT
&& size
<= UNITS_PER_WORD
;
11807 if (regno
== GOT_VERSION_REGNUM
)
11808 return mode
== SImode
;
11813 /* Implement HARD_REGNO_NREGS. */
11816 mips_hard_regno_nregs (int regno
, machine_mode mode
)
11818 if (ST_REG_P (regno
))
11819 /* The size of FP status registers is always 4, because they only hold
11820 CCmode values, and CCmode is always considered to be 4 bytes wide. */
11821 return (GET_MODE_SIZE (mode
) + 3) / 4;
11823 if (FP_REG_P (regno
))
11824 return (GET_MODE_SIZE (mode
) + UNITS_PER_FPREG
- 1) / UNITS_PER_FPREG
;
11826 /* All other registers are word-sized. */
11827 return (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
11830 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
11831 in mips_hard_regno_nregs. */
11834 mips_class_max_nregs (enum reg_class rclass
, machine_mode mode
)
11840 COPY_HARD_REG_SET (left
, reg_class_contents
[(int) rclass
]);
11841 if (hard_reg_set_intersect_p (left
, reg_class_contents
[(int) ST_REGS
]))
11843 if (HARD_REGNO_MODE_OK (ST_REG_FIRST
, mode
))
11844 size
= MIN (size
, 4);
11845 AND_COMPL_HARD_REG_SET (left
, reg_class_contents
[(int) ST_REGS
]);
11847 if (hard_reg_set_intersect_p (left
, reg_class_contents
[(int) FP_REGS
]))
11849 if (HARD_REGNO_MODE_OK (FP_REG_FIRST
, mode
))
11850 size
= MIN (size
, UNITS_PER_FPREG
);
11851 AND_COMPL_HARD_REG_SET (left
, reg_class_contents
[(int) FP_REGS
]);
11853 if (!hard_reg_set_empty_p (left
))
11854 size
= MIN (size
, UNITS_PER_WORD
);
11855 return (GET_MODE_SIZE (mode
) + size
- 1) / size
;
11858 /* Implement CANNOT_CHANGE_MODE_CLASS. */
11861 mips_cannot_change_mode_class (machine_mode from
,
11863 enum reg_class rclass
)
11865 /* Allow conversions between different Loongson integer vectors,
11866 and between those vectors and DImode. */
11867 if (GET_MODE_SIZE (from
) == 8 && GET_MODE_SIZE (to
) == 8
11868 && INTEGRAL_MODE_P (from
) && INTEGRAL_MODE_P (to
))
11871 /* Otherwise, there are several problems with changing the modes of
11872 values in floating-point registers:
11874 - When a multi-word value is stored in paired floating-point
11875 registers, the first register always holds the low word. We
11876 therefore can't allow FPRs to change between single-word and
11877 multi-word modes on big-endian targets.
11879 - GCC assumes that each word of a multiword register can be
11880 accessed individually using SUBREGs. This is not true for
11881 floating-point registers if they are bigger than a word.
11883 - Loading a 32-bit value into a 64-bit floating-point register
11884 will not sign-extend the value, despite what LOAD_EXTEND_OP
11885 says. We can't allow FPRs to change from SImode to a wider
11886 mode on 64-bit targets.
11888 - If the FPU has already interpreted a value in one format, we
11889 must not ask it to treat the value as having a different
11892 We therefore disallow all mode changes involving FPRs. */
11894 return reg_classes_intersect_p (FP_REGS
, rclass
);
11897 /* Implement target hook small_register_classes_for_mode_p. */
11900 mips_small_register_classes_for_mode_p (machine_mode mode
11903 return TARGET_MIPS16
;
11906 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
11909 mips_mode_ok_for_mov_fmt_p (machine_mode mode
)
11914 return TARGET_HARD_FLOAT
;
11917 return TARGET_HARD_FLOAT
&& TARGET_DOUBLE_FLOAT
;
11920 return TARGET_HARD_FLOAT
&& TARGET_PAIRED_SINGLE_FLOAT
;
11927 /* Implement MODES_TIEABLE_P. */
11930 mips_modes_tieable_p (machine_mode mode1
, machine_mode mode2
)
11932 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
11933 prefer to put one of them in FPRs. */
11934 return (mode1
== mode2
11935 || (!mips_mode_ok_for_mov_fmt_p (mode1
)
11936 && !mips_mode_ok_for_mov_fmt_p (mode2
)));
11939 /* Implement TARGET_PREFERRED_RELOAD_CLASS. */
11942 mips_preferred_reload_class (rtx x
, reg_class_t rclass
)
11944 if (mips_dangerous_for_la25_p (x
) && reg_class_subset_p (LEA_REGS
, rclass
))
11947 if (reg_class_subset_p (FP_REGS
, rclass
)
11948 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x
)))
11951 if (reg_class_subset_p (GR_REGS
, rclass
))
11954 if (TARGET_MIPS16
&& reg_class_subset_p (M16_REGS
, rclass
))
11960 /* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
11961 Return a "canonical" class to represent it in later calculations. */
11964 mips_canonicalize_move_class (reg_class_t rclass
)
11966 /* All moves involving accumulator registers have the same cost. */
11967 if (reg_class_subset_p (rclass
, ACC_REGS
))
11970 /* Likewise promote subclasses of general registers to the most
11971 interesting containing class. */
11972 if (TARGET_MIPS16
&& reg_class_subset_p (rclass
, M16_REGS
))
11974 else if (reg_class_subset_p (rclass
, GENERAL_REGS
))
11975 rclass
= GENERAL_REGS
;
11980 /* Return the cost of moving a value from a register of class FROM to a GPR.
11981 Return 0 for classes that are unions of other classes handled by this
11985 mips_move_to_gpr_cost (reg_class_t from
)
11991 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
11995 /* MFLO and MFHI. */
12005 /* This choice of value is historical. */
12013 /* Return the cost of moving a value from a GPR to a register of class TO.
12014 Return 0 for classes that are unions of other classes handled by this
12018 mips_move_from_gpr_cost (reg_class_t to
)
12024 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
12028 /* MTLO and MTHI. */
12038 /* This choice of value is historical. */
12046 /* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the
12047 maximum of the move costs for subclasses; regclass will work out
12048 the maximum for us. */
12051 mips_register_move_cost (machine_mode mode
,
12052 reg_class_t from
, reg_class_t to
)
12057 from
= mips_canonicalize_move_class (from
);
12058 to
= mips_canonicalize_move_class (to
);
12060 /* Handle moves that can be done without using general-purpose registers. */
12061 if (from
== FP_REGS
)
12063 if (to
== FP_REGS
&& mips_mode_ok_for_mov_fmt_p (mode
))
12068 /* Handle cases in which only one class deviates from the ideal. */
12069 dregs
= TARGET_MIPS16
? M16_REGS
: GENERAL_REGS
;
12071 return mips_move_from_gpr_cost (to
);
12073 return mips_move_to_gpr_cost (from
);
12075 /* Handles cases that require a GPR temporary. */
12076 cost1
= mips_move_to_gpr_cost (from
);
12079 cost2
= mips_move_from_gpr_cost (to
);
12081 return cost1
+ cost2
;
12087 /* Implement TARGET_REGISTER_PRIORITY. */
12090 mips_register_priority (int hard_regno
)
12092 /* Treat MIPS16 registers with higher priority than other regs. */
12094 && TEST_HARD_REG_BIT (reg_class_contents
[M16_REGS
], hard_regno
))
12099 /* Implement TARGET_MEMORY_MOVE_COST. */
12102 mips_memory_move_cost (machine_mode mode
, reg_class_t rclass
, bool in
)
12104 return (mips_cost
->memory_latency
12105 + memory_move_secondary_cost (mode
, rclass
, in
));
12108 /* Return the register class required for a secondary register when
12109 copying between one of the registers in RCLASS and value X, which
12110 has mode MODE. X is the source of the move if IN_P, otherwise it
12111 is the destination. Return NO_REGS if no secondary register is
12115 mips_secondary_reload_class (enum reg_class rclass
,
12116 machine_mode mode
, rtx x
, bool)
12120 /* If X is a constant that cannot be loaded into $25, it must be loaded
12121 into some other GPR. No other register class allows a direct move. */
12122 if (mips_dangerous_for_la25_p (x
))
12123 return reg_class_subset_p (rclass
, LEA_REGS
) ? NO_REGS
: LEA_REGS
;
12125 regno
= true_regnum (x
);
12128 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
12129 if (!reg_class_subset_p (rclass
, M16_REGS
) && !M16_REG_P (regno
))
12135 /* Copying from accumulator registers to anywhere other than a general
12136 register requires a temporary general register. */
12137 if (reg_class_subset_p (rclass
, ACC_REGS
))
12138 return GP_REG_P (regno
) ? NO_REGS
: GR_REGS
;
12139 if (ACC_REG_P (regno
))
12140 return reg_class_subset_p (rclass
, GR_REGS
) ? NO_REGS
: GR_REGS
;
12142 if (reg_class_subset_p (rclass
, FP_REGS
))
12146 && (GET_MODE_SIZE (mode
) == 4 || GET_MODE_SIZE (mode
) == 8)))
12147 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
12148 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
12151 if (GP_REG_P (regno
) || x
== CONST0_RTX (mode
))
12152 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
12155 if (CONSTANT_P (x
) && !targetm
.cannot_force_const_mem (mode
, x
))
12156 /* We can force the constant to memory and use lwc1
12157 and ldc1. As above, we will use pairs of lwc1s if
12158 ldc1 is not supported. */
12161 if (FP_REG_P (regno
) && mips_mode_ok_for_mov_fmt_p (mode
))
12162 /* In this case we can use mov.fmt. */
12165 /* Otherwise, we need to reload through an integer register. */
12168 if (FP_REG_P (regno
))
12169 return reg_class_subset_p (rclass
, GR_REGS
) ? NO_REGS
: GR_REGS
;
12174 /* Implement TARGET_MODE_REP_EXTENDED. */
12177 mips_mode_rep_extended (machine_mode mode
, machine_mode mode_rep
)
12179 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
12180 if (TARGET_64BIT
&& mode
== SImode
&& mode_rep
== DImode
)
12181 return SIGN_EXTEND
;
12186 /* Implement TARGET_VALID_POINTER_MODE. */
12189 mips_valid_pointer_mode (machine_mode mode
)
12191 return mode
== SImode
|| (TARGET_64BIT
&& mode
== DImode
);
12194 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
12197 mips_vector_mode_supported_p (machine_mode mode
)
12202 return TARGET_PAIRED_SINGLE_FLOAT
;
12217 return TARGET_LOONGSON_VECTORS
;
12224 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
12227 mips_scalar_mode_supported_p (machine_mode mode
)
12229 if (ALL_FIXED_POINT_MODE_P (mode
)
12230 && GET_MODE_PRECISION (mode
) <= 2 * BITS_PER_WORD
)
12233 return default_scalar_mode_supported_p (mode
);
12236 /* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
12238 static machine_mode
12239 mips_preferred_simd_mode (machine_mode mode ATTRIBUTE_UNUSED
)
12241 if (TARGET_PAIRED_SINGLE_FLOAT
12247 /* Implement TARGET_INIT_LIBFUNCS. */
12250 mips_init_libfuncs (void)
12252 if (TARGET_FIX_VR4120
)
12254 /* Register the special divsi3 and modsi3 functions needed to work
12255 around VR4120 division errata. */
12256 set_optab_libfunc (sdiv_optab
, SImode
, "__vr4120_divsi3");
12257 set_optab_libfunc (smod_optab
, SImode
, "__vr4120_modsi3");
12260 if (TARGET_MIPS16
&& TARGET_HARD_FLOAT_ABI
)
12262 /* Register the MIPS16 -mhard-float stubs. */
12263 set_optab_libfunc (add_optab
, SFmode
, "__mips16_addsf3");
12264 set_optab_libfunc (sub_optab
, SFmode
, "__mips16_subsf3");
12265 set_optab_libfunc (smul_optab
, SFmode
, "__mips16_mulsf3");
12266 set_optab_libfunc (sdiv_optab
, SFmode
, "__mips16_divsf3");
12268 set_optab_libfunc (eq_optab
, SFmode
, "__mips16_eqsf2");
12269 set_optab_libfunc (ne_optab
, SFmode
, "__mips16_nesf2");
12270 set_optab_libfunc (gt_optab
, SFmode
, "__mips16_gtsf2");
12271 set_optab_libfunc (ge_optab
, SFmode
, "__mips16_gesf2");
12272 set_optab_libfunc (lt_optab
, SFmode
, "__mips16_ltsf2");
12273 set_optab_libfunc (le_optab
, SFmode
, "__mips16_lesf2");
12274 set_optab_libfunc (unord_optab
, SFmode
, "__mips16_unordsf2");
12276 set_conv_libfunc (sfix_optab
, SImode
, SFmode
, "__mips16_fix_truncsfsi");
12277 set_conv_libfunc (sfloat_optab
, SFmode
, SImode
, "__mips16_floatsisf");
12278 set_conv_libfunc (ufloat_optab
, SFmode
, SImode
, "__mips16_floatunsisf");
12280 if (TARGET_DOUBLE_FLOAT
)
12282 set_optab_libfunc (add_optab
, DFmode
, "__mips16_adddf3");
12283 set_optab_libfunc (sub_optab
, DFmode
, "__mips16_subdf3");
12284 set_optab_libfunc (smul_optab
, DFmode
, "__mips16_muldf3");
12285 set_optab_libfunc (sdiv_optab
, DFmode
, "__mips16_divdf3");
12287 set_optab_libfunc (eq_optab
, DFmode
, "__mips16_eqdf2");
12288 set_optab_libfunc (ne_optab
, DFmode
, "__mips16_nedf2");
12289 set_optab_libfunc (gt_optab
, DFmode
, "__mips16_gtdf2");
12290 set_optab_libfunc (ge_optab
, DFmode
, "__mips16_gedf2");
12291 set_optab_libfunc (lt_optab
, DFmode
, "__mips16_ltdf2");
12292 set_optab_libfunc (le_optab
, DFmode
, "__mips16_ledf2");
12293 set_optab_libfunc (unord_optab
, DFmode
, "__mips16_unorddf2");
12295 set_conv_libfunc (sext_optab
, DFmode
, SFmode
,
12296 "__mips16_extendsfdf2");
12297 set_conv_libfunc (trunc_optab
, SFmode
, DFmode
,
12298 "__mips16_truncdfsf2");
12299 set_conv_libfunc (sfix_optab
, SImode
, DFmode
,
12300 "__mips16_fix_truncdfsi");
12301 set_conv_libfunc (sfloat_optab
, DFmode
, SImode
,
12302 "__mips16_floatsidf");
12303 set_conv_libfunc (ufloat_optab
, DFmode
, SImode
,
12304 "__mips16_floatunsidf");
12308 /* The MIPS16 ISA does not have an encoding for "sync", so we rely
12309 on an external non-MIPS16 routine to implement __sync_synchronize.
12310 Similarly for the rest of the ll/sc libfuncs. */
12313 synchronize_libfunc
= init_one_libfunc ("__sync_synchronize");
12314 init_sync_libfuncs (UNITS_PER_WORD
);
12318 /* Build up a multi-insn sequence that loads label TARGET into $AT. */
12321 mips_process_load_label (rtx target
)
12323 rtx base
, gp
, intop
;
12324 HOST_WIDE_INT offset
;
12326 mips_multi_start ();
12330 mips_multi_add_insn ("lw\t%@,%%got_page(%0)(%+)", target
, 0);
12331 mips_multi_add_insn ("addiu\t%@,%@,%%got_ofst(%0)", target
, 0);
12335 mips_multi_add_insn ("ld\t%@,%%got_page(%0)(%+)", target
, 0);
12336 mips_multi_add_insn ("daddiu\t%@,%@,%%got_ofst(%0)", target
, 0);
12340 gp
= pic_offset_table_rtx
;
12341 if (mips_cfun_has_cprestore_slot_p ())
12343 gp
= gen_rtx_REG (Pmode
, AT_REGNUM
);
12344 mips_get_cprestore_base_and_offset (&base
, &offset
, true);
12345 if (!SMALL_OPERAND (offset
))
12347 intop
= GEN_INT (CONST_HIGH_PART (offset
));
12348 mips_multi_add_insn ("lui\t%0,%1", gp
, intop
, 0);
12349 mips_multi_add_insn ("addu\t%0,%0,%1", gp
, base
, 0);
12352 offset
= CONST_LOW_PART (offset
);
12354 intop
= GEN_INT (offset
);
12355 if (ISA_HAS_LOAD_DELAY
)
12356 mips_multi_add_insn ("lw\t%0,%1(%2)%#", gp
, intop
, base
, 0);
12358 mips_multi_add_insn ("lw\t%0,%1(%2)", gp
, intop
, base
, 0);
12360 if (ISA_HAS_LOAD_DELAY
)
12361 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)%#", target
, gp
, 0);
12363 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)", target
, gp
, 0);
12364 mips_multi_add_insn ("addiu\t%@,%@,%%lo(%0)", target
, 0);
12369 /* Return the number of instructions needed to load a label into $AT. */
12371 static unsigned int
12372 mips_load_label_num_insns (void)
12374 if (cfun
->machine
->load_label_num_insns
== 0)
12376 mips_process_load_label (pc_rtx
);
12377 cfun
->machine
->load_label_num_insns
= mips_multi_num_insns
;
12379 return cfun
->machine
->load_label_num_insns
;
12382 /* Emit an asm sequence to start a noat block and load the address
12383 of a label into $1. */
12386 mips_output_load_label (rtx target
)
12388 mips_push_asm_switch (&mips_noat
);
12389 if (TARGET_EXPLICIT_RELOCS
)
12391 mips_process_load_label (target
);
12392 mips_multi_write ();
12396 if (Pmode
== DImode
)
12397 output_asm_insn ("dla\t%@,%0", &target
);
12399 output_asm_insn ("la\t%@,%0", &target
);
12403 /* Return the length of INSN. LENGTH is the initial length computed by
12404 attributes in the machine-description file. */
12407 mips_adjust_insn_length (rtx_insn
*insn
, int length
)
12409 /* mips.md uses MAX_PIC_BRANCH_LENGTH as a placeholder for the length
12410 of a PIC long-branch sequence. Substitute the correct value. */
12411 if (length
== MAX_PIC_BRANCH_LENGTH
12413 && INSN_CODE (insn
) >= 0
12414 && get_attr_type (insn
) == TYPE_BRANCH
)
12416 /* Add the branch-over instruction and its delay slot, if this
12417 is a conditional branch. */
12418 length
= simplejump_p (insn
) ? 0 : 8;
12420 /* Add the size of a load into $AT. */
12421 length
+= BASE_INSN_LENGTH
* mips_load_label_num_insns ();
12423 /* Add the length of an indirect jump, ignoring the delay slot. */
12424 length
+= TARGET_COMPRESSION
? 2 : 4;
12427 /* A unconditional jump has an unfilled delay slot if it is not part
12428 of a sequence. A conditional jump normally has a delay slot, but
12429 does not on MIPS16. */
12430 if (CALL_P (insn
) || (TARGET_MIPS16
? simplejump_p (insn
) : JUMP_P (insn
)))
12431 length
+= TARGET_MIPS16
? 2 : 4;
12433 /* See how many nops might be needed to avoid hardware hazards. */
12434 if (!cfun
->machine
->ignore_hazard_length_p
12436 && INSN_CODE (insn
) >= 0)
12437 switch (get_attr_hazard (insn
))
12443 length
+= NOP_INSN_LENGTH
;
12447 length
+= NOP_INSN_LENGTH
* 2;
12454 /* Return the assembly code for INSN, which has the operands given by
12455 OPERANDS, and which branches to OPERANDS[0] if some condition is true.
12456 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0]
12457 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
12458 version of BRANCH_IF_TRUE. */
12461 mips_output_conditional_branch (rtx_insn
*insn
, rtx
*operands
,
12462 const char *branch_if_true
,
12463 const char *branch_if_false
)
12465 unsigned int length
;
12468 gcc_assert (LABEL_P (operands
[0]));
12470 length
= get_attr_length (insn
);
12473 /* Just a simple conditional branch. */
12474 mips_branch_likely
= (final_sequence
&& INSN_ANNULLED_BRANCH_P (insn
));
12475 return branch_if_true
;
12478 /* Generate a reversed branch around a direct jump. This fallback does
12479 not use branch-likely instructions. */
12480 mips_branch_likely
= false;
12481 rtx_code_label
*not_taken
= gen_label_rtx ();
12482 taken
= operands
[0];
12484 /* Generate the reversed branch to NOT_TAKEN. */
12485 operands
[0] = not_taken
;
12486 output_asm_insn (branch_if_false
, operands
);
12488 /* If INSN has a delay slot, we must provide delay slots for both the
12489 branch to NOT_TAKEN and the conditional jump. We must also ensure
12490 that INSN's delay slot is executed in the appropriate cases. */
12491 if (final_sequence
)
12493 /* This first delay slot will always be executed, so use INSN's
12494 delay slot if is not annulled. */
12495 if (!INSN_ANNULLED_BRANCH_P (insn
))
12497 final_scan_insn (final_sequence
->insn (1),
12498 asm_out_file
, optimize
, 1, NULL
);
12499 final_sequence
->insn (1)->set_deleted ();
12502 output_asm_insn ("nop", 0);
12503 fprintf (asm_out_file
, "\n");
12506 /* Output the unconditional branch to TAKEN. */
12507 if (TARGET_ABSOLUTE_JUMPS
)
12508 output_asm_insn (MIPS_ABSOLUTE_JUMP ("j\t%0%/"), &taken
);
12511 mips_output_load_label (taken
);
12512 output_asm_insn ("jr\t%@%]%/", 0);
12515 /* Now deal with its delay slot; see above. */
12516 if (final_sequence
)
12518 /* This delay slot will only be executed if the branch is taken.
12519 Use INSN's delay slot if is annulled. */
12520 if (INSN_ANNULLED_BRANCH_P (insn
))
12522 final_scan_insn (final_sequence
->insn (1),
12523 asm_out_file
, optimize
, 1, NULL
);
12524 final_sequence
->insn (1)->set_deleted ();
12527 output_asm_insn ("nop", 0);
12528 fprintf (asm_out_file
, "\n");
12531 /* Output NOT_TAKEN. */
12532 targetm
.asm_out
.internal_label (asm_out_file
, "L",
12533 CODE_LABEL_NUMBER (not_taken
));
12537 /* Return the assembly code for INSN, which branches to OPERANDS[0]
12538 if some ordering condition is true. The condition is given by
12539 OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
12540 OPERANDS[1]. OPERANDS[2] is the comparison's first operand;
12541 its second is always zero. */
12544 mips_output_order_conditional_branch (rtx_insn
*insn
, rtx
*operands
, bool inverted_p
)
12546 const char *branch
[2];
12548 /* Make BRANCH[1] branch to OPERANDS[0] when the condition is true.
12549 Make BRANCH[0] branch on the inverse condition. */
12550 switch (GET_CODE (operands
[1]))
12552 /* These cases are equivalent to comparisons against zero. */
12554 inverted_p
= !inverted_p
;
12555 /* Fall through. */
12557 branch
[!inverted_p
] = MIPS_BRANCH ("bne", "%2,%.,%0");
12558 branch
[inverted_p
] = MIPS_BRANCH ("beq", "%2,%.,%0");
12561 /* These cases are always true or always false. */
12563 inverted_p
= !inverted_p
;
12564 /* Fall through. */
12566 branch
[!inverted_p
] = MIPS_BRANCH ("beq", "%.,%.,%0");
12567 branch
[inverted_p
] = MIPS_BRANCH ("bne", "%.,%.,%0");
12571 branch
[!inverted_p
] = MIPS_BRANCH ("b%C1z", "%2,%0");
12572 branch
[inverted_p
] = MIPS_BRANCH ("b%N1z", "%2,%0");
12575 return mips_output_conditional_branch (insn
, operands
, branch
[1], branch
[0]);
12578 /* Start a block of code that needs access to the LL, SC and SYNC
12582 mips_start_ll_sc_sync_block (void)
12584 if (!ISA_HAS_LL_SC
)
12586 output_asm_insn (".set\tpush", 0);
12588 output_asm_insn (".set\tmips3", 0);
12590 output_asm_insn (".set\tmips2", 0);
12594 /* End a block started by mips_start_ll_sc_sync_block. */
12597 mips_end_ll_sc_sync_block (void)
12599 if (!ISA_HAS_LL_SC
)
12600 output_asm_insn (".set\tpop", 0);
12603 /* Output and/or return the asm template for a sync instruction. */
12606 mips_output_sync (void)
12608 mips_start_ll_sc_sync_block ();
12609 output_asm_insn ("sync", 0);
12610 mips_end_ll_sc_sync_block ();
12614 /* Return the asm template associated with sync_insn1 value TYPE.
12615 IS_64BIT_P is true if we want a 64-bit rather than 32-bit operation. */
12617 static const char *
12618 mips_sync_insn1_template (enum attr_sync_insn1 type
, bool is_64bit_p
)
12622 case SYNC_INSN1_MOVE
:
12623 return "move\t%0,%z2";
12624 case SYNC_INSN1_LI
:
12625 return "li\t%0,%2";
12626 case SYNC_INSN1_ADDU
:
12627 return is_64bit_p
? "daddu\t%0,%1,%z2" : "addu\t%0,%1,%z2";
12628 case SYNC_INSN1_ADDIU
:
12629 return is_64bit_p
? "daddiu\t%0,%1,%2" : "addiu\t%0,%1,%2";
12630 case SYNC_INSN1_SUBU
:
12631 return is_64bit_p
? "dsubu\t%0,%1,%z2" : "subu\t%0,%1,%z2";
12632 case SYNC_INSN1_AND
:
12633 return "and\t%0,%1,%z2";
12634 case SYNC_INSN1_ANDI
:
12635 return "andi\t%0,%1,%2";
12636 case SYNC_INSN1_OR
:
12637 return "or\t%0,%1,%z2";
12638 case SYNC_INSN1_ORI
:
12639 return "ori\t%0,%1,%2";
12640 case SYNC_INSN1_XOR
:
12641 return "xor\t%0,%1,%z2";
12642 case SYNC_INSN1_XORI
:
12643 return "xori\t%0,%1,%2";
12645 gcc_unreachable ();
12648 /* Return the asm template associated with sync_insn2 value TYPE. */
12650 static const char *
12651 mips_sync_insn2_template (enum attr_sync_insn2 type
)
12655 case SYNC_INSN2_NOP
:
12656 gcc_unreachable ();
12657 case SYNC_INSN2_AND
:
12658 return "and\t%0,%1,%z2";
12659 case SYNC_INSN2_XOR
:
12660 return "xor\t%0,%1,%z2";
12661 case SYNC_INSN2_NOT
:
12662 return "nor\t%0,%1,%.";
12664 gcc_unreachable ();
12667 /* OPERANDS are the operands to a sync loop instruction and INDEX is
12668 the value of the one of the sync_* attributes. Return the operand
12669 referred to by the attribute, or DEFAULT_VALUE if the insn doesn't
12670 have the associated attribute. */
12673 mips_get_sync_operand (rtx
*operands
, int index
, rtx default_value
)
12676 default_value
= operands
[index
- 1];
12677 return default_value
;
12680 /* INSN is a sync loop with operands OPERANDS. Build up a multi-insn
12681 sequence for it. */
12684 mips_process_sync_loop (rtx_insn
*insn
, rtx
*operands
)
12686 rtx at
, mem
, oldval
, newval
, inclusive_mask
, exclusive_mask
;
12687 rtx required_oldval
, insn1_op2
, tmp1
, tmp2
, tmp3
, cmp
;
12688 unsigned int tmp3_insn
;
12689 enum attr_sync_insn1 insn1
;
12690 enum attr_sync_insn2 insn2
;
12693 enum memmodel model
;
12695 /* Read an operand from the sync_WHAT attribute and store it in
12696 variable WHAT. DEFAULT is the default value if no attribute
12698 #define READ_OPERAND(WHAT, DEFAULT) \
12699 WHAT = mips_get_sync_operand (operands, (int) get_attr_sync_##WHAT (insn), \
12702 /* Read the memory. */
12703 READ_OPERAND (mem
, 0);
12705 is_64bit_p
= (GET_MODE_BITSIZE (GET_MODE (mem
)) == 64);
12707 /* Read the other attributes. */
12708 at
= gen_rtx_REG (GET_MODE (mem
), AT_REGNUM
);
12709 READ_OPERAND (oldval
, at
);
12710 READ_OPERAND (cmp
, 0);
12711 READ_OPERAND (newval
, at
);
12712 READ_OPERAND (inclusive_mask
, 0);
12713 READ_OPERAND (exclusive_mask
, 0);
12714 READ_OPERAND (required_oldval
, 0);
12715 READ_OPERAND (insn1_op2
, 0);
12716 insn1
= get_attr_sync_insn1 (insn
);
12717 insn2
= get_attr_sync_insn2 (insn
);
12719 /* Don't bother setting CMP result that is never used. */
12720 if (cmp
&& find_reg_note (insn
, REG_UNUSED
, cmp
))
12723 memmodel_attr
= get_attr_sync_memmodel (insn
);
12724 switch (memmodel_attr
)
12727 model
= MEMMODEL_ACQ_REL
;
12730 model
= MEMMODEL_ACQUIRE
;
12733 model
= (enum memmodel
) INTVAL (operands
[memmodel_attr
]);
12736 mips_multi_start ();
12738 /* Output the release side of the memory barrier. */
12739 if (need_atomic_barrier_p (model
, true))
12741 if (required_oldval
== 0 && TARGET_OCTEON
)
12743 /* Octeon doesn't reorder reads, so a full barrier can be
12744 created by using SYNCW to order writes combined with the
12745 write from the following SC. When the SC successfully
12746 completes, we know that all preceding writes are also
12747 committed to the coherent memory system. It is possible
12748 for a single SYNCW to fail, but a pair of them will never
12749 fail, so we use two. */
12750 mips_multi_add_insn ("syncw", NULL
);
12751 mips_multi_add_insn ("syncw", NULL
);
12754 mips_multi_add_insn ("sync", NULL
);
12757 /* Output the branch-back label. */
12758 mips_multi_add_label ("1:");
12760 /* OLDVAL = *MEM. */
12761 mips_multi_add_insn (is_64bit_p
? "lld\t%0,%1" : "ll\t%0,%1",
12762 oldval
, mem
, NULL
);
12764 /* if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2. */
12765 if (required_oldval
)
12767 if (inclusive_mask
== 0)
12771 gcc_assert (oldval
!= at
);
12772 mips_multi_add_insn ("and\t%0,%1,%2",
12773 at
, oldval
, inclusive_mask
, NULL
);
12776 mips_multi_add_insn ("bne\t%0,%z1,2f", tmp1
, required_oldval
, NULL
);
12778 /* CMP = 0 [delay slot]. */
12780 mips_multi_add_insn ("li\t%0,0", cmp
, NULL
);
12783 /* $TMP1 = OLDVAL & EXCLUSIVE_MASK. */
12784 if (exclusive_mask
== 0)
12788 gcc_assert (oldval
!= at
);
12789 mips_multi_add_insn ("and\t%0,%1,%z2",
12790 at
, oldval
, exclusive_mask
, NULL
);
12794 /* $TMP2 = INSN1 (OLDVAL, INSN1_OP2).
12796 We can ignore moves if $TMP4 != INSN1_OP2, since we'll still emit
12797 at least one instruction in that case. */
12798 if (insn1
== SYNC_INSN1_MOVE
12799 && (tmp1
!= const0_rtx
|| insn2
!= SYNC_INSN2_NOP
))
12803 mips_multi_add_insn (mips_sync_insn1_template (insn1
, is_64bit_p
),
12804 newval
, oldval
, insn1_op2
, NULL
);
12808 /* $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK). */
12809 if (insn2
== SYNC_INSN2_NOP
)
12813 mips_multi_add_insn (mips_sync_insn2_template (insn2
),
12814 newval
, tmp2
, inclusive_mask
, NULL
);
12817 tmp3_insn
= mips_multi_last_index ();
12819 /* $AT = $TMP1 | $TMP3. */
12820 if (tmp1
== const0_rtx
|| tmp3
== const0_rtx
)
12822 mips_multi_set_operand (tmp3_insn
, 0, at
);
12827 gcc_assert (tmp1
!= tmp3
);
12828 mips_multi_add_insn ("or\t%0,%1,%2", at
, tmp1
, tmp3
, NULL
);
12831 /* if (!commit (*MEM = $AT)) goto 1.
12833 This will sometimes be a delayed branch; see the write code below
12835 mips_multi_add_insn (is_64bit_p
? "scd\t%0,%1" : "sc\t%0,%1", at
, mem
, NULL
);
12836 mips_multi_add_insn ("beq%?\t%0,%.,1b", at
, NULL
);
12838 /* if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]. */
12839 if (insn1
!= SYNC_INSN1_MOVE
&& insn1
!= SYNC_INSN1_LI
&& tmp3
!= newval
)
12841 mips_multi_copy_insn (tmp3_insn
);
12842 mips_multi_set_operand (mips_multi_last_index (), 0, newval
);
12844 else if (!(required_oldval
&& cmp
))
12845 mips_multi_add_insn ("nop", NULL
);
12847 /* CMP = 1 -- either standalone or in a delay slot. */
12848 if (required_oldval
&& cmp
)
12849 mips_multi_add_insn ("li\t%0,1", cmp
, NULL
);
12851 /* Output the acquire side of the memory barrier. */
12852 if (TARGET_SYNC_AFTER_SC
&& need_atomic_barrier_p (model
, false))
12853 mips_multi_add_insn ("sync", NULL
);
12855 /* Output the exit label, if needed. */
12856 if (required_oldval
)
12857 mips_multi_add_label ("2:");
12859 #undef READ_OPERAND
12862 /* Output and/or return the asm template for sync loop INSN, which has
12863 the operands given by OPERANDS. */
12866 mips_output_sync_loop (rtx_insn
*insn
, rtx
*operands
)
12868 mips_process_sync_loop (insn
, operands
);
12870 /* Use branch-likely instructions to work around the LL/SC R10000
12872 mips_branch_likely
= TARGET_FIX_R10000
;
12874 mips_push_asm_switch (&mips_noreorder
);
12875 mips_push_asm_switch (&mips_nomacro
);
12876 mips_push_asm_switch (&mips_noat
);
12877 mips_start_ll_sc_sync_block ();
12879 mips_multi_write ();
12881 mips_end_ll_sc_sync_block ();
12882 mips_pop_asm_switch (&mips_noat
);
12883 mips_pop_asm_switch (&mips_nomacro
);
12884 mips_pop_asm_switch (&mips_noreorder
);
12889 /* Return the number of individual instructions in sync loop INSN,
12890 which has the operands given by OPERANDS. */
12893 mips_sync_loop_insns (rtx_insn
*insn
, rtx
*operands
)
12895 mips_process_sync_loop (insn
, operands
);
12896 return mips_multi_num_insns
;
12899 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
12900 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
12902 When working around R4000 and R4400 errata, we need to make sure that
12903 the division is not immediately followed by a shift[1][2]. We also
12904 need to stop the division from being put into a branch delay slot[3].
12905 The easiest way to avoid both problems is to add a nop after the
12906 division. When a divide-by-zero check is needed, this nop can be
12907 used to fill the branch delay slot.
12909 [1] If a double-word or a variable shift executes immediately
12910 after starting an integer division, the shift may give an
12911 incorrect result. See quotations of errata #16 and #28 from
12912 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
12913 in mips.md for details.
12915 [2] A similar bug to [1] exists for all revisions of the
12916 R4000 and the R4400 when run in an MC configuration.
12917 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
12919 "19. In this following sequence:
12921 ddiv (or ddivu or div or divu)
12922 dsll32 (or dsrl32, dsra32)
12924 if an MPT stall occurs, while the divide is slipping the cpu
12925 pipeline, then the following double shift would end up with an
12928 Workaround: The compiler needs to avoid generating any
12929 sequence with divide followed by extended double shift."
12931 This erratum is also present in "MIPS R4400MC Errata, Processor
12932 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
12933 & 3.0" as errata #10 and #4, respectively.
12935 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
12936 (also valid for MIPS R4000MC processors):
12938 "52. R4000SC: This bug does not apply for the R4000PC.
12940 There are two flavors of this bug:
12942 1) If the instruction just after divide takes an RF exception
12943 (tlb-refill, tlb-invalid) and gets an instruction cache
12944 miss (both primary and secondary) and the line which is
12945 currently in secondary cache at this index had the first
12946 data word, where the bits 5..2 are set, then R4000 would
12947 get a wrong result for the div.
12952 ------------------- # end-of page. -tlb-refill
12957 ------------------- # end-of page. -tlb-invalid
12960 2) If the divide is in the taken branch delay slot, where the
12961 target takes RF exception and gets an I-cache miss for the
12962 exception vector or where I-cache miss occurs for the
12963 target address, under the above mentioned scenarios, the
12964 div would get wrong results.
12967 j r2 # to next page mapped or unmapped
12968 div r8,r9 # this bug would be there as long
12969 # as there is an ICache miss and
12970 nop # the "data pattern" is present
12973 beq r0, r0, NextPage # to Next page
12977 This bug is present for div, divu, ddiv, and ddivu
12980 Workaround: For item 1), OS could make sure that the next page
12981 after the divide instruction is also mapped. For item 2), the
12982 compiler could make sure that the divide instruction is not in
12983 the branch delay slot."
12985 These processors have PRId values of 0x00004220 and 0x00004300 for
12986 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
12989 mips_output_division (const char *division
, rtx
*operands
)
12994 if (TARGET_FIX_R4000
|| TARGET_FIX_R4400
)
12996 output_asm_insn (s
, operands
);
12999 if (TARGET_CHECK_ZERO_DIV
)
13003 output_asm_insn (s
, operands
);
13004 s
= "bnez\t%2,1f\n\tbreak\t7\n1:";
13006 else if (GENERATE_DIVIDE_TRAPS
)
13008 /* Avoid long replay penalty on load miss by putting the trap before
13011 output_asm_insn ("teq\t%2,%.,7", operands
);
13014 output_asm_insn (s
, operands
);
13015 s
= "teq\t%2,%.,7";
13020 output_asm_insn ("%(bne\t%2,%.,1f", operands
);
13021 output_asm_insn (s
, operands
);
13022 s
= "break\t7%)\n1:";
13028 /* Return true if destination of IN_INSN is used as add source in
13029 OUT_INSN. Both IN_INSN and OUT_INSN are of type fmadd. Example:
13030 madd.s dst, x, y, z
13031 madd.s a, dst, b, c */
13034 mips_fmadd_bypass (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
13036 int dst_reg
, src_reg
;
13038 gcc_assert (get_attr_type (in_insn
) == TYPE_FMADD
);
13039 gcc_assert (get_attr_type (out_insn
) == TYPE_FMADD
);
13041 extract_insn (in_insn
);
13042 dst_reg
= REG_P (recog_data
.operand
[0]);
13044 extract_insn (out_insn
);
13045 src_reg
= REG_P (recog_data
.operand
[1]);
13047 if (dst_reg
== src_reg
)
13053 /* Return true if IN_INSN is a multiply-add or multiply-subtract
13054 instruction and if OUT_INSN assigns to the accumulator operand. */
13057 mips_linked_madd_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
13059 enum attr_accum_in accum_in
;
13060 int accum_in_opnum
;
13063 if (recog_memoized (in_insn
) < 0)
13066 accum_in
= get_attr_accum_in (in_insn
);
13067 if (accum_in
== ACCUM_IN_NONE
)
13070 accum_in_opnum
= accum_in
- ACCUM_IN_0
;
13072 extract_insn (in_insn
);
13073 gcc_assert (accum_in_opnum
< recog_data
.n_operands
);
13074 accum_in_op
= recog_data
.operand
[accum_in_opnum
];
13076 return reg_set_p (accum_in_op
, out_insn
);
13079 /* True if the dependency between OUT_INSN and IN_INSN is on the store
13080 data rather than the address. We need this because the cprestore
13081 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
13082 which causes the default routine to abort. We just return false
13086 mips_store_data_bypass_p (rtx_insn
*out_insn
, rtx_insn
*in_insn
)
13088 if (GET_CODE (PATTERN (in_insn
)) == UNSPEC_VOLATILE
)
13091 return !store_data_bypass_p (out_insn
, in_insn
);
13095 /* Variables and flags used in scheduler hooks when tuning for
13099 /* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch
13102 /* If true, then next ALU1/2 instruction will go to ALU1. */
13105 /* If true, then next FALU1/2 unstruction will go to FALU1. */
13108 /* Codes to query if [f]alu{1,2}_core units are subscribed or not. */
13109 int alu1_core_unit_code
;
13110 int alu2_core_unit_code
;
13111 int falu1_core_unit_code
;
13112 int falu2_core_unit_code
;
13114 /* True if current cycle has a multi instruction.
13115 This flag is used in mips_ls2_dfa_post_advance_cycle. */
13116 bool cycle_has_multi_p
;
13118 /* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units.
13119 These are used in mips_ls2_dfa_post_advance_cycle to initialize
13121 E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2
13122 instruction to go ALU1. */
13123 rtx_insn
*alu1_turn_enabled_insn
;
13124 rtx_insn
*alu2_turn_enabled_insn
;
13125 rtx_insn
*falu1_turn_enabled_insn
;
13126 rtx_insn
*falu2_turn_enabled_insn
;
13129 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
13130 dependencies have no cost, except on the 20Kc where output-dependence
13131 is treated like input-dependence. */
13134 mips_adjust_cost (rtx_insn
*insn ATTRIBUTE_UNUSED
, rtx link
,
13135 rtx_insn
*dep ATTRIBUTE_UNUSED
, int cost
)
13137 if (REG_NOTE_KIND (link
) == REG_DEP_OUTPUT
13140 if (REG_NOTE_KIND (link
) != 0)
13145 /* Return the number of instructions that can be issued per cycle. */
13148 mips_issue_rate (void)
13152 case PROCESSOR_74KC
:
13153 case PROCESSOR_74KF2_1
:
13154 case PROCESSOR_74KF1_1
:
13155 case PROCESSOR_74KF3_2
:
13156 /* The 74k is not strictly quad-issue cpu, but can be seen as one
13157 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
13158 but in reality only a maximum of 3 insns can be issued as
13159 floating-point loads and stores also require a slot in the
13161 case PROCESSOR_R10000
:
13162 /* All R10K Processors are quad-issue (being the first MIPS
13163 processors to support this feature). */
13166 case PROCESSOR_20KC
:
13167 case PROCESSOR_R4130
:
13168 case PROCESSOR_R5400
:
13169 case PROCESSOR_R5500
:
13170 case PROCESSOR_R5900
:
13171 case PROCESSOR_R7000
:
13172 case PROCESSOR_R9000
:
13173 case PROCESSOR_OCTEON
:
13174 case PROCESSOR_OCTEON2
:
13177 case PROCESSOR_SB1
:
13178 case PROCESSOR_SB1A
:
13179 /* This is actually 4, but we get better performance if we claim 3.
13180 This is partly because of unwanted speculative code motion with the
13181 larger number, and partly because in most common cases we can't
13182 reach the theoretical max of 4. */
13185 case PROCESSOR_LOONGSON_2E
:
13186 case PROCESSOR_LOONGSON_2F
:
13187 case PROCESSOR_LOONGSON_3A
:
13188 case PROCESSOR_P5600
:
13191 case PROCESSOR_XLP
:
13192 return (reload_completed
? 4 : 3);
13199 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */
13202 mips_ls2_init_dfa_post_cycle_insn (void)
13205 emit_insn (gen_ls2_alu1_turn_enabled_insn ());
13206 mips_ls2
.alu1_turn_enabled_insn
= get_insns ();
13210 emit_insn (gen_ls2_alu2_turn_enabled_insn ());
13211 mips_ls2
.alu2_turn_enabled_insn
= get_insns ();
13215 emit_insn (gen_ls2_falu1_turn_enabled_insn ());
13216 mips_ls2
.falu1_turn_enabled_insn
= get_insns ();
13220 emit_insn (gen_ls2_falu2_turn_enabled_insn ());
13221 mips_ls2
.falu2_turn_enabled_insn
= get_insns ();
13224 mips_ls2
.alu1_core_unit_code
= get_cpu_unit_code ("ls2_alu1_core");
13225 mips_ls2
.alu2_core_unit_code
= get_cpu_unit_code ("ls2_alu2_core");
13226 mips_ls2
.falu1_core_unit_code
= get_cpu_unit_code ("ls2_falu1_core");
13227 mips_ls2
.falu2_core_unit_code
= get_cpu_unit_code ("ls2_falu2_core");
13230 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook.
13231 Init data used in mips_dfa_post_advance_cycle. */
13234 mips_init_dfa_post_cycle_insn (void)
13236 if (TUNE_LOONGSON_2EF
)
13237 mips_ls2_init_dfa_post_cycle_insn ();
13240 /* Initialize STATE when scheduling for Loongson 2E/2F.
13241 Support round-robin dispatch scheme by enabling only one of
13242 ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions
13246 mips_ls2_dfa_post_advance_cycle (state_t state
)
13248 if (cpu_unit_reservation_p (state
, mips_ls2
.alu1_core_unit_code
))
13250 /* Though there are no non-pipelined ALU1 insns,
13251 we can get an instruction of type 'multi' before reload. */
13252 gcc_assert (mips_ls2
.cycle_has_multi_p
);
13253 mips_ls2
.alu1_turn_p
= false;
13256 mips_ls2
.cycle_has_multi_p
= false;
13258 if (cpu_unit_reservation_p (state
, mips_ls2
.alu2_core_unit_code
))
13259 /* We have a non-pipelined alu instruction in the core,
13260 adjust round-robin counter. */
13261 mips_ls2
.alu1_turn_p
= true;
13263 if (mips_ls2
.alu1_turn_p
)
13265 if (state_transition (state
, mips_ls2
.alu1_turn_enabled_insn
) >= 0)
13266 gcc_unreachable ();
13270 if (state_transition (state
, mips_ls2
.alu2_turn_enabled_insn
) >= 0)
13271 gcc_unreachable ();
13274 if (cpu_unit_reservation_p (state
, mips_ls2
.falu1_core_unit_code
))
13276 /* There are no non-pipelined FALU1 insns. */
13277 gcc_unreachable ();
13278 mips_ls2
.falu1_turn_p
= false;
13281 if (cpu_unit_reservation_p (state
, mips_ls2
.falu2_core_unit_code
))
13282 /* We have a non-pipelined falu instruction in the core,
13283 adjust round-robin counter. */
13284 mips_ls2
.falu1_turn_p
= true;
13286 if (mips_ls2
.falu1_turn_p
)
13288 if (state_transition (state
, mips_ls2
.falu1_turn_enabled_insn
) >= 0)
13289 gcc_unreachable ();
13293 if (state_transition (state
, mips_ls2
.falu2_turn_enabled_insn
) >= 0)
13294 gcc_unreachable ();
13298 /* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE.
13299 This hook is being called at the start of each cycle. */
13302 mips_dfa_post_advance_cycle (void)
13304 if (TUNE_LOONGSON_2EF
)
13305 mips_ls2_dfa_post_advance_cycle (curr_state
);
13308 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
13309 be as wide as the scheduling freedom in the DFA. */
13312 mips_multipass_dfa_lookahead (void)
13314 /* Can schedule up to 4 of the 6 function units in any one cycle. */
13318 if (TUNE_LOONGSON_2EF
|| TUNE_LOONGSON_3A
)
13330 /* Remove the instruction at index LOWER from ready queue READY and
13331 reinsert it in front of the instruction at index HIGHER. LOWER must
13335 mips_promote_ready (rtx_insn
**ready
, int lower
, int higher
)
13337 rtx_insn
*new_head
;
13340 new_head
= ready
[lower
];
13341 for (i
= lower
; i
< higher
; i
++)
13342 ready
[i
] = ready
[i
+ 1];
13343 ready
[i
] = new_head
;
13346 /* If the priority of the instruction at POS2 in the ready queue READY
13347 is within LIMIT units of that of the instruction at POS1, swap the
13348 instructions if POS2 is not already less than POS1. */
13351 mips_maybe_swap_ready (rtx_insn
**ready
, int pos1
, int pos2
, int limit
)
13354 && INSN_PRIORITY (ready
[pos1
]) + limit
>= INSN_PRIORITY (ready
[pos2
]))
13358 temp
= ready
[pos1
];
13359 ready
[pos1
] = ready
[pos2
];
13360 ready
[pos2
] = temp
;
13364 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
13365 that may clobber hi or lo. */
13366 static rtx_insn
*mips_macc_chains_last_hilo
;
13368 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
13369 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
13372 mips_macc_chains_record (rtx_insn
*insn
)
13374 if (get_attr_may_clobber_hilo (insn
))
13375 mips_macc_chains_last_hilo
= insn
;
13378 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
13379 has NREADY elements, looking for a multiply-add or multiply-subtract
13380 instruction that is cumulative with mips_macc_chains_last_hilo.
13381 If there is one, promote it ahead of anything else that might
13382 clobber hi or lo. */
13385 mips_macc_chains_reorder (rtx_insn
**ready
, int nready
)
13389 if (mips_macc_chains_last_hilo
!= 0)
13390 for (i
= nready
- 1; i
>= 0; i
--)
13391 if (mips_linked_madd_p (mips_macc_chains_last_hilo
, ready
[i
]))
13393 for (j
= nready
- 1; j
> i
; j
--)
13394 if (recog_memoized (ready
[j
]) >= 0
13395 && get_attr_may_clobber_hilo (ready
[j
]))
13397 mips_promote_ready (ready
, i
, j
);
13404 /* The last instruction to be scheduled. */
13405 static rtx_insn
*vr4130_last_insn
;
13407 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
13408 points to an rtx that is initially an instruction. Nullify the rtx
13409 if the instruction uses the value of register X. */
13412 vr4130_true_reg_dependence_p_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
,
13417 insn_ptr
= (rtx
*) data
;
13420 && reg_referenced_p (x
, PATTERN (*insn_ptr
)))
13424 /* Return true if there is true register dependence between vr4130_last_insn
13428 vr4130_true_reg_dependence_p (rtx insn
)
13430 note_stores (PATTERN (vr4130_last_insn
),
13431 vr4130_true_reg_dependence_p_1
, &insn
);
13435 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
13436 the ready queue and that INSN2 is the instruction after it, return
13437 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
13438 in which INSN1 and INSN2 can probably issue in parallel, but for
13439 which (INSN2, INSN1) should be less sensitive to instruction
13440 alignment than (INSN1, INSN2). See 4130.md for more details. */
13443 vr4130_swap_insns_p (rtx_insn
*insn1
, rtx_insn
*insn2
)
13445 sd_iterator_def sd_it
;
13448 /* Check for the following case:
13450 1) there is some other instruction X with an anti dependence on INSN1;
13451 2) X has a higher priority than INSN2; and
13452 3) X is an arithmetic instruction (and thus has no unit restrictions).
13454 If INSN1 is the last instruction blocking X, it would better to
13455 choose (INSN1, X) over (INSN2, INSN1). */
13456 FOR_EACH_DEP (insn1
, SD_LIST_FORW
, sd_it
, dep
)
13457 if (DEP_TYPE (dep
) == REG_DEP_ANTI
13458 && INSN_PRIORITY (DEP_CON (dep
)) > INSN_PRIORITY (insn2
)
13459 && recog_memoized (DEP_CON (dep
)) >= 0
13460 && get_attr_vr4130_class (DEP_CON (dep
)) == VR4130_CLASS_ALU
)
13463 if (vr4130_last_insn
!= 0
13464 && recog_memoized (insn1
) >= 0
13465 && recog_memoized (insn2
) >= 0)
13467 /* See whether INSN1 and INSN2 use different execution units,
13468 or if they are both ALU-type instructions. If so, they can
13469 probably execute in parallel. */
13470 enum attr_vr4130_class class1
= get_attr_vr4130_class (insn1
);
13471 enum attr_vr4130_class class2
= get_attr_vr4130_class (insn2
);
13472 if (class1
!= class2
|| class1
== VR4130_CLASS_ALU
)
13474 /* If only one of the instructions has a dependence on
13475 vr4130_last_insn, prefer to schedule the other one first. */
13476 bool dep1_p
= vr4130_true_reg_dependence_p (insn1
);
13477 bool dep2_p
= vr4130_true_reg_dependence_p (insn2
);
13478 if (dep1_p
!= dep2_p
)
13481 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
13482 is not an ALU-type instruction and if INSN1 uses the same
13483 execution unit. (Note that if this condition holds, we already
13484 know that INSN2 uses a different execution unit.) */
13485 if (class1
!= VR4130_CLASS_ALU
13486 && recog_memoized (vr4130_last_insn
) >= 0
13487 && class1
== get_attr_vr4130_class (vr4130_last_insn
))
13494 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
13495 queue with at least two instructions. Swap the first two if
13496 vr4130_swap_insns_p says that it could be worthwhile. */
13499 vr4130_reorder (rtx_insn
**ready
, int nready
)
13501 if (vr4130_swap_insns_p (ready
[nready
- 1], ready
[nready
- 2]))
13502 mips_promote_ready (ready
, nready
- 2, nready
- 1);
13505 /* Record whether last 74k AGEN instruction was a load or store. */
13506 static enum attr_type mips_last_74k_agen_insn
= TYPE_UNKNOWN
;
13508 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
13509 resets to TYPE_UNKNOWN state. */
13512 mips_74k_agen_init (rtx_insn
*insn
)
13514 if (!insn
|| CALL_P (insn
) || JUMP_P (insn
))
13515 mips_last_74k_agen_insn
= TYPE_UNKNOWN
;
13518 enum attr_type type
= get_attr_type (insn
);
13519 if (type
== TYPE_LOAD
|| type
== TYPE_STORE
)
13520 mips_last_74k_agen_insn
= type
;
13524 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
13525 loads to be grouped together, and multiple stores to be grouped
13526 together. Swap things around in the ready queue to make this happen. */
13529 mips_74k_agen_reorder (rtx_insn
**ready
, int nready
)
13532 int store_pos
, load_pos
;
13537 for (i
= nready
- 1; i
>= 0; i
--)
13539 rtx_insn
*insn
= ready
[i
];
13540 if (USEFUL_INSN_P (insn
))
13541 switch (get_attr_type (insn
))
13544 if (store_pos
== -1)
13549 if (load_pos
== -1)
13558 if (load_pos
== -1 || store_pos
== -1)
13561 switch (mips_last_74k_agen_insn
)
13564 /* Prefer to schedule loads since they have a higher latency. */
13566 /* Swap loads to the front of the queue. */
13567 mips_maybe_swap_ready (ready
, load_pos
, store_pos
, 4);
13570 /* Swap stores to the front of the queue. */
13571 mips_maybe_swap_ready (ready
, store_pos
, load_pos
, 4);
13578 /* Implement TARGET_SCHED_INIT. */
13581 mips_sched_init (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
13582 int max_ready ATTRIBUTE_UNUSED
)
13584 mips_macc_chains_last_hilo
= 0;
13585 vr4130_last_insn
= 0;
13586 mips_74k_agen_init (NULL
);
13588 /* When scheduling for Loongson2, branch instructions go to ALU1,
13589 therefore basic block is most likely to start with round-robin counter
13590 pointed to ALU2. */
13591 mips_ls2
.alu1_turn_p
= false;
13592 mips_ls2
.falu1_turn_p
= true;
13595 /* Subroutine used by TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
13598 mips_sched_reorder_1 (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
13599 rtx_insn
**ready
, int *nreadyp
, int cycle ATTRIBUTE_UNUSED
)
13601 if (!reload_completed
13602 && TUNE_MACC_CHAINS
13604 mips_macc_chains_reorder (ready
, *nreadyp
);
13606 if (reload_completed
13608 && !TARGET_VR4130_ALIGN
13610 vr4130_reorder (ready
, *nreadyp
);
13613 mips_74k_agen_reorder (ready
, *nreadyp
);
13616 /* Implement TARGET_SCHED_REORDER. */
13619 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
13620 rtx_insn
**ready
, int *nreadyp
, int cycle ATTRIBUTE_UNUSED
)
13622 mips_sched_reorder_1 (file
, verbose
, ready
, nreadyp
, cycle
);
13623 return mips_issue_rate ();
13626 /* Implement TARGET_SCHED_REORDER2. */
13629 mips_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
13630 rtx_insn
**ready
, int *nreadyp
, int cycle ATTRIBUTE_UNUSED
)
13632 mips_sched_reorder_1 (file
, verbose
, ready
, nreadyp
, cycle
);
13633 return cached_can_issue_more
;
13636 /* Update round-robin counters for ALU1/2 and FALU1/2. */
13639 mips_ls2_variable_issue (rtx_insn
*insn
)
13641 if (mips_ls2
.alu1_turn_p
)
13643 if (cpu_unit_reservation_p (curr_state
, mips_ls2
.alu1_core_unit_code
))
13644 mips_ls2
.alu1_turn_p
= false;
13648 if (cpu_unit_reservation_p (curr_state
, mips_ls2
.alu2_core_unit_code
))
13649 mips_ls2
.alu1_turn_p
= true;
13652 if (mips_ls2
.falu1_turn_p
)
13654 if (cpu_unit_reservation_p (curr_state
, mips_ls2
.falu1_core_unit_code
))
13655 mips_ls2
.falu1_turn_p
= false;
13659 if (cpu_unit_reservation_p (curr_state
, mips_ls2
.falu2_core_unit_code
))
13660 mips_ls2
.falu1_turn_p
= true;
13663 if (recog_memoized (insn
) >= 0)
13664 mips_ls2
.cycle_has_multi_p
|= (get_attr_type (insn
) == TYPE_MULTI
);
13667 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
13670 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED
, int verbose ATTRIBUTE_UNUSED
,
13671 rtx_insn
*insn
, int more
)
13673 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
13674 if (USEFUL_INSN_P (insn
))
13676 if (get_attr_type (insn
) != TYPE_GHOST
)
13678 if (!reload_completed
&& TUNE_MACC_CHAINS
)
13679 mips_macc_chains_record (insn
);
13680 vr4130_last_insn
= insn
;
13682 mips_74k_agen_init (insn
);
13683 else if (TUNE_LOONGSON_2EF
)
13684 mips_ls2_variable_issue (insn
);
13687 /* Instructions of type 'multi' should all be split before
13688 the second scheduling pass. */
13689 gcc_assert (!reload_completed
13690 || recog_memoized (insn
) < 0
13691 || get_attr_type (insn
) != TYPE_MULTI
);
13693 cached_can_issue_more
= more
;
13697 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
13698 return the first operand of the associated PREF or PREFX insn. */
13701 mips_prefetch_cookie (rtx write
, rtx locality
)
13703 /* store_streamed / load_streamed. */
13704 if (INTVAL (locality
) <= 0)
13705 return GEN_INT (INTVAL (write
) + 4);
13707 /* store / load. */
13708 if (INTVAL (locality
) <= 2)
13711 /* store_retained / load_retained. */
13712 return GEN_INT (INTVAL (write
) + 6);
13715 /* Flags that indicate when a built-in function is available.
13717 BUILTIN_AVAIL_NON_MIPS16
13718 The function is available on the current target if !TARGET_MIPS16.
13720 BUILTIN_AVAIL_MIPS16
13721 The function is available on the current target if TARGET_MIPS16. */
13722 #define BUILTIN_AVAIL_NON_MIPS16 1
13723 #define BUILTIN_AVAIL_MIPS16 2
13725 /* Declare an availability predicate for built-in functions that
13726 require non-MIPS16 mode and also require COND to be true.
13727 NAME is the main part of the predicate's name. */
13728 #define AVAIL_NON_MIPS16(NAME, COND) \
13729 static unsigned int \
13730 mips_builtin_avail_##NAME (void) \
13732 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \
13735 /* Declare an availability predicate for built-in functions that
13736 support both MIPS16 and non-MIPS16 code and also require COND
13737 to be true. NAME is the main part of the predicate's name. */
13738 #define AVAIL_ALL(NAME, COND) \
13739 static unsigned int \
13740 mips_builtin_avail_##NAME (void) \
13742 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 | BUILTIN_AVAIL_MIPS16 : 0; \
13745 /* This structure describes a single built-in function. */
13746 struct mips_builtin_description
{
13747 /* The code of the main .md file instruction. See mips_builtin_type
13748 for more information. */
13749 enum insn_code icode
;
13751 /* The floating-point comparison code to use with ICODE, if any. */
13752 enum mips_fp_condition cond
;
13754 /* The name of the built-in function. */
13757 /* Specifies how the function should be expanded. */
13758 enum mips_builtin_type builtin_type
;
13760 /* The function's prototype. */
13761 enum mips_function_type function_type
;
13763 /* Whether the function is available. */
13764 unsigned int (*avail
) (void);
13767 AVAIL_ALL (hard_float
, TARGET_HARD_FLOAT_ABI
)
13768 AVAIL_NON_MIPS16 (paired_single
, TARGET_PAIRED_SINGLE_FLOAT
)
13769 AVAIL_NON_MIPS16 (sb1_paired_single
, TARGET_SB1
&& TARGET_PAIRED_SINGLE_FLOAT
)
13770 AVAIL_NON_MIPS16 (mips3d
, TARGET_MIPS3D
)
13771 AVAIL_NON_MIPS16 (dsp
, TARGET_DSP
)
13772 AVAIL_NON_MIPS16 (dspr2
, TARGET_DSPR2
)
13773 AVAIL_NON_MIPS16 (dsp_32
, !TARGET_64BIT
&& TARGET_DSP
)
13774 AVAIL_NON_MIPS16 (dsp_64
, TARGET_64BIT
&& TARGET_DSP
)
13775 AVAIL_NON_MIPS16 (dspr2_32
, !TARGET_64BIT
&& TARGET_DSPR2
)
13776 AVAIL_NON_MIPS16 (loongson
, TARGET_LOONGSON_VECTORS
)
13777 AVAIL_NON_MIPS16 (cache
, TARGET_CACHE_BUILTIN
)
13779 /* Construct a mips_builtin_description from the given arguments.
13781 INSN is the name of the associated instruction pattern, without the
13782 leading CODE_FOR_mips_.
13784 CODE is the floating-point condition code associated with the
13785 function. It can be 'f' if the field is not applicable.
13787 NAME is the name of the function itself, without the leading
13790 BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields.
13792 AVAIL is the name of the availability predicate, without the leading
13793 mips_builtin_avail_. */
13794 #define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \
13795 FUNCTION_TYPE, AVAIL) \
13796 { CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \
13797 "__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \
13798 mips_builtin_avail_ ## AVAIL }
13800 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT function
13801 mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE and AVAIL
13802 are as for MIPS_BUILTIN. */
13803 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
13804 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
13806 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
13807 are subject to mips_builtin_avail_<AVAIL>. */
13808 #define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \
13809 MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \
13810 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL), \
13811 MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \
13812 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL)
13814 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
13815 The lower and upper forms are subject to mips_builtin_avail_<AVAIL>
13816 while the any and all forms are subject to mips_builtin_avail_mips3d. */
13817 #define CMP_PS_BUILTINS(INSN, COND, AVAIL) \
13818 MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \
13819 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \
13821 MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \
13822 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \
13824 MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \
13825 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \
13827 MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \
13828 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \
13831 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
13832 are subject to mips_builtin_avail_mips3d. */
13833 #define CMP_4S_BUILTINS(INSN, COND) \
13834 MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \
13835 MIPS_BUILTIN_CMP_ANY, \
13836 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d), \
13837 MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \
13838 MIPS_BUILTIN_CMP_ALL, \
13839 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d)
13841 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
13842 instruction requires mips_builtin_avail_<AVAIL>. */
13843 #define MOVTF_BUILTINS(INSN, COND, AVAIL) \
13844 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \
13845 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
13847 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \
13848 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
13851 /* Define all the built-in functions related to C.cond.fmt condition COND. */
13852 #define CMP_BUILTINS(COND) \
13853 MOVTF_BUILTINS (c, COND, paired_single), \
13854 MOVTF_BUILTINS (cabs, COND, mips3d), \
13855 CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \
13856 CMP_PS_BUILTINS (c, COND, paired_single), \
13857 CMP_PS_BUILTINS (cabs, COND, mips3d), \
13858 CMP_4S_BUILTINS (c, COND), \
13859 CMP_4S_BUILTINS (cabs, COND)
13861 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT_NO_TARGET
13862 function mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE
13863 and AVAIL are as for MIPS_BUILTIN. */
13864 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
13865 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \
13866 FUNCTION_TYPE, AVAIL)
13868 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
13869 branch instruction. AVAIL is as for MIPS_BUILTIN. */
13870 #define BPOSGE_BUILTIN(VALUE, AVAIL) \
13871 MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \
13872 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL)
13874 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<FN_NAME>
13875 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
13876 builtin_description field. */
13877 #define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \
13878 { CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \
13879 "__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \
13880 FUNCTION_TYPE, mips_builtin_avail_loongson }
13882 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<INSN>
13883 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
13884 builtin_description field. */
13885 #define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \
13886 LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE)
13888 /* Like LOONGSON_BUILTIN, but add _<SUFFIX> to the end of the function name.
13889 We use functions of this form when the same insn can be usefully applied
13890 to more than one datatype. */
13891 #define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \
13892 LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE)
13894 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
13895 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
13896 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
13897 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
13898 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
13899 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
13900 #define CODE_FOR_mips_mult CODE_FOR_mulsidi3_32bit
13901 #define CODE_FOR_mips_multu CODE_FOR_umulsidi3_32bit
13903 #define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si
13904 #define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi
13905 #define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi
13906 #define CODE_FOR_loongson_paddw CODE_FOR_addv2si3
13907 #define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3
13908 #define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3
13909 #define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3
13910 #define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3
13911 #define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3
13912 #define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3
13913 #define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3
13914 #define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3
13915 #define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3
13916 #define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3
13917 #define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart
13918 #define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart
13919 #define CODE_FOR_loongson_pmullh CODE_FOR_mulv4hi3
13920 #define CODE_FOR_loongson_psllh CODE_FOR_ashlv4hi3
13921 #define CODE_FOR_loongson_psllw CODE_FOR_ashlv2si3
13922 #define CODE_FOR_loongson_psrlh CODE_FOR_lshrv4hi3
13923 #define CODE_FOR_loongson_psrlw CODE_FOR_lshrv2si3
13924 #define CODE_FOR_loongson_psrah CODE_FOR_ashrv4hi3
13925 #define CODE_FOR_loongson_psraw CODE_FOR_ashrv2si3
13926 #define CODE_FOR_loongson_psubw CODE_FOR_subv2si3
13927 #define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3
13928 #define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3
13929 #define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3
13930 #define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3
13931 #define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3
13932 #define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3
13934 static const struct mips_builtin_description mips_builtins
[] = {
13935 #define MIPS_GET_FCSR 0
13936 DIRECT_BUILTIN (get_fcsr
, MIPS_USI_FTYPE_VOID
, hard_float
),
13937 #define MIPS_SET_FCSR 1
13938 DIRECT_NO_TARGET_BUILTIN (set_fcsr
, MIPS_VOID_FTYPE_USI
, hard_float
),
13940 DIRECT_BUILTIN (pll_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, paired_single
),
13941 DIRECT_BUILTIN (pul_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, paired_single
),
13942 DIRECT_BUILTIN (plu_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, paired_single
),
13943 DIRECT_BUILTIN (puu_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, paired_single
),
13944 DIRECT_BUILTIN (cvt_ps_s
, MIPS_V2SF_FTYPE_SF_SF
, paired_single
),
13945 DIRECT_BUILTIN (cvt_s_pl
, MIPS_SF_FTYPE_V2SF
, paired_single
),
13946 DIRECT_BUILTIN (cvt_s_pu
, MIPS_SF_FTYPE_V2SF
, paired_single
),
13947 DIRECT_BUILTIN (abs_ps
, MIPS_V2SF_FTYPE_V2SF
, paired_single
),
13949 DIRECT_BUILTIN (alnv_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF_INT
, paired_single
),
13950 DIRECT_BUILTIN (addr_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, mips3d
),
13951 DIRECT_BUILTIN (mulr_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, mips3d
),
13952 DIRECT_BUILTIN (cvt_pw_ps
, MIPS_V2SF_FTYPE_V2SF
, mips3d
),
13953 DIRECT_BUILTIN (cvt_ps_pw
, MIPS_V2SF_FTYPE_V2SF
, mips3d
),
13955 DIRECT_BUILTIN (recip1_s
, MIPS_SF_FTYPE_SF
, mips3d
),
13956 DIRECT_BUILTIN (recip1_d
, MIPS_DF_FTYPE_DF
, mips3d
),
13957 DIRECT_BUILTIN (recip1_ps
, MIPS_V2SF_FTYPE_V2SF
, mips3d
),
13958 DIRECT_BUILTIN (recip2_s
, MIPS_SF_FTYPE_SF_SF
, mips3d
),
13959 DIRECT_BUILTIN (recip2_d
, MIPS_DF_FTYPE_DF_DF
, mips3d
),
13960 DIRECT_BUILTIN (recip2_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, mips3d
),
13962 DIRECT_BUILTIN (rsqrt1_s
, MIPS_SF_FTYPE_SF
, mips3d
),
13963 DIRECT_BUILTIN (rsqrt1_d
, MIPS_DF_FTYPE_DF
, mips3d
),
13964 DIRECT_BUILTIN (rsqrt1_ps
, MIPS_V2SF_FTYPE_V2SF
, mips3d
),
13965 DIRECT_BUILTIN (rsqrt2_s
, MIPS_SF_FTYPE_SF_SF
, mips3d
),
13966 DIRECT_BUILTIN (rsqrt2_d
, MIPS_DF_FTYPE_DF_DF
, mips3d
),
13967 DIRECT_BUILTIN (rsqrt2_ps
, MIPS_V2SF_FTYPE_V2SF_V2SF
, mips3d
),
13969 MIPS_FP_CONDITIONS (CMP_BUILTINS
),
13971 /* Built-in functions for the SB-1 processor. */
13972 DIRECT_BUILTIN (sqrt_ps
, MIPS_V2SF_FTYPE_V2SF
, sb1_paired_single
),
13974 /* Built-in functions for the DSP ASE (32-bit and 64-bit). */
13975 DIRECT_BUILTIN (addq_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
13976 DIRECT_BUILTIN (addq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
13977 DIRECT_BUILTIN (addq_s_w
, MIPS_SI_FTYPE_SI_SI
, dsp
),
13978 DIRECT_BUILTIN (addu_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dsp
),
13979 DIRECT_BUILTIN (addu_s_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dsp
),
13980 DIRECT_BUILTIN (subq_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
13981 DIRECT_BUILTIN (subq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
13982 DIRECT_BUILTIN (subq_s_w
, MIPS_SI_FTYPE_SI_SI
, dsp
),
13983 DIRECT_BUILTIN (subu_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dsp
),
13984 DIRECT_BUILTIN (subu_s_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dsp
),
13985 DIRECT_BUILTIN (addsc
, MIPS_SI_FTYPE_SI_SI
, dsp
),
13986 DIRECT_BUILTIN (addwc
, MIPS_SI_FTYPE_SI_SI
, dsp
),
13987 DIRECT_BUILTIN (modsub
, MIPS_SI_FTYPE_SI_SI
, dsp
),
13988 DIRECT_BUILTIN (raddu_w_qb
, MIPS_SI_FTYPE_V4QI
, dsp
),
13989 DIRECT_BUILTIN (absq_s_ph
, MIPS_V2HI_FTYPE_V2HI
, dsp
),
13990 DIRECT_BUILTIN (absq_s_w
, MIPS_SI_FTYPE_SI
, dsp
),
13991 DIRECT_BUILTIN (precrq_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, dsp
),
13992 DIRECT_BUILTIN (precrq_ph_w
, MIPS_V2HI_FTYPE_SI_SI
, dsp
),
13993 DIRECT_BUILTIN (precrq_rs_ph_w
, MIPS_V2HI_FTYPE_SI_SI
, dsp
),
13994 DIRECT_BUILTIN (precrqu_s_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, dsp
),
13995 DIRECT_BUILTIN (preceq_w_phl
, MIPS_SI_FTYPE_V2HI
, dsp
),
13996 DIRECT_BUILTIN (preceq_w_phr
, MIPS_SI_FTYPE_V2HI
, dsp
),
13997 DIRECT_BUILTIN (precequ_ph_qbl
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
13998 DIRECT_BUILTIN (precequ_ph_qbr
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
13999 DIRECT_BUILTIN (precequ_ph_qbla
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14000 DIRECT_BUILTIN (precequ_ph_qbra
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14001 DIRECT_BUILTIN (preceu_ph_qbl
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14002 DIRECT_BUILTIN (preceu_ph_qbr
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14003 DIRECT_BUILTIN (preceu_ph_qbla
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14004 DIRECT_BUILTIN (preceu_ph_qbra
, MIPS_V2HI_FTYPE_V4QI
, dsp
),
14005 DIRECT_BUILTIN (shll_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, dsp
),
14006 DIRECT_BUILTIN (shll_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, dsp
),
14007 DIRECT_BUILTIN (shll_s_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, dsp
),
14008 DIRECT_BUILTIN (shll_s_w
, MIPS_SI_FTYPE_SI_SI
, dsp
),
14009 DIRECT_BUILTIN (shrl_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, dsp
),
14010 DIRECT_BUILTIN (shra_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, dsp
),
14011 DIRECT_BUILTIN (shra_r_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, dsp
),
14012 DIRECT_BUILTIN (shra_r_w
, MIPS_SI_FTYPE_SI_SI
, dsp
),
14013 DIRECT_BUILTIN (muleu_s_ph_qbl
, MIPS_V2HI_FTYPE_V4QI_V2HI
, dsp
),
14014 DIRECT_BUILTIN (muleu_s_ph_qbr
, MIPS_V2HI_FTYPE_V4QI_V2HI
, dsp
),
14015 DIRECT_BUILTIN (mulq_rs_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
14016 DIRECT_BUILTIN (muleq_s_w_phl
, MIPS_SI_FTYPE_V2HI_V2HI
, dsp
),
14017 DIRECT_BUILTIN (muleq_s_w_phr
, MIPS_SI_FTYPE_V2HI_V2HI
, dsp
),
14018 DIRECT_BUILTIN (bitrev
, MIPS_SI_FTYPE_SI
, dsp
),
14019 DIRECT_BUILTIN (insv
, MIPS_SI_FTYPE_SI_SI
, dsp
),
14020 DIRECT_BUILTIN (repl_qb
, MIPS_V4QI_FTYPE_SI
, dsp
),
14021 DIRECT_BUILTIN (repl_ph
, MIPS_V2HI_FTYPE_SI
, dsp
),
14022 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, dsp
),
14023 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, dsp
),
14024 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb
, MIPS_VOID_FTYPE_V4QI_V4QI
, dsp
),
14025 DIRECT_BUILTIN (cmpgu_eq_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dsp
),
14026 DIRECT_BUILTIN (cmpgu_lt_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dsp
),
14027 DIRECT_BUILTIN (cmpgu_le_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dsp
),
14028 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, dsp
),
14029 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, dsp
),
14030 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph
, MIPS_VOID_FTYPE_V2HI_V2HI
, dsp
),
14031 DIRECT_BUILTIN (pick_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dsp
),
14032 DIRECT_BUILTIN (pick_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
14033 DIRECT_BUILTIN (packrl_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dsp
),
14034 DIRECT_NO_TARGET_BUILTIN (wrdsp
, MIPS_VOID_FTYPE_SI_SI
, dsp
),
14035 DIRECT_BUILTIN (rddsp
, MIPS_SI_FTYPE_SI
, dsp
),
14036 DIRECT_BUILTIN (lbux
, MIPS_SI_FTYPE_POINTER_SI
, dsp
),
14037 DIRECT_BUILTIN (lhx
, MIPS_SI_FTYPE_POINTER_SI
, dsp
),
14038 DIRECT_BUILTIN (lwx
, MIPS_SI_FTYPE_POINTER_SI
, dsp
),
14039 BPOSGE_BUILTIN (32, dsp
),
14041 /* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */
14042 DIRECT_BUILTIN (absq_s_qb
, MIPS_V4QI_FTYPE_V4QI
, dspr2
),
14043 DIRECT_BUILTIN (addu_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14044 DIRECT_BUILTIN (addu_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14045 DIRECT_BUILTIN (adduh_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dspr2
),
14046 DIRECT_BUILTIN (adduh_r_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dspr2
),
14047 DIRECT_BUILTIN (append
, MIPS_SI_FTYPE_SI_SI_SI
, dspr2
),
14048 DIRECT_BUILTIN (balign
, MIPS_SI_FTYPE_SI_SI_SI
, dspr2
),
14049 DIRECT_BUILTIN (cmpgdu_eq_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dspr2
),
14050 DIRECT_BUILTIN (cmpgdu_lt_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dspr2
),
14051 DIRECT_BUILTIN (cmpgdu_le_qb
, MIPS_SI_FTYPE_V4QI_V4QI
, dspr2
),
14052 DIRECT_BUILTIN (mul_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14053 DIRECT_BUILTIN (mul_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14054 DIRECT_BUILTIN (mulq_rs_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14055 DIRECT_BUILTIN (mulq_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14056 DIRECT_BUILTIN (mulq_s_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14057 DIRECT_BUILTIN (precr_qb_ph
, MIPS_V4QI_FTYPE_V2HI_V2HI
, dspr2
),
14058 DIRECT_BUILTIN (precr_sra_ph_w
, MIPS_V2HI_FTYPE_SI_SI_SI
, dspr2
),
14059 DIRECT_BUILTIN (precr_sra_r_ph_w
, MIPS_V2HI_FTYPE_SI_SI_SI
, dspr2
),
14060 DIRECT_BUILTIN (prepend
, MIPS_SI_FTYPE_SI_SI_SI
, dspr2
),
14061 DIRECT_BUILTIN (shra_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, dspr2
),
14062 DIRECT_BUILTIN (shra_r_qb
, MIPS_V4QI_FTYPE_V4QI_SI
, dspr2
),
14063 DIRECT_BUILTIN (shrl_ph
, MIPS_V2HI_FTYPE_V2HI_SI
, dspr2
),
14064 DIRECT_BUILTIN (subu_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14065 DIRECT_BUILTIN (subu_s_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14066 DIRECT_BUILTIN (subuh_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dspr2
),
14067 DIRECT_BUILTIN (subuh_r_qb
, MIPS_V4QI_FTYPE_V4QI_V4QI
, dspr2
),
14068 DIRECT_BUILTIN (addqh_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14069 DIRECT_BUILTIN (addqh_r_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14070 DIRECT_BUILTIN (addqh_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14071 DIRECT_BUILTIN (addqh_r_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14072 DIRECT_BUILTIN (subqh_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14073 DIRECT_BUILTIN (subqh_r_ph
, MIPS_V2HI_FTYPE_V2HI_V2HI
, dspr2
),
14074 DIRECT_BUILTIN (subqh_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14075 DIRECT_BUILTIN (subqh_r_w
, MIPS_SI_FTYPE_SI_SI
, dspr2
),
14077 /* Built-in functions for the DSP ASE (32-bit only). */
14078 DIRECT_BUILTIN (dpau_h_qbl
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, dsp_32
),
14079 DIRECT_BUILTIN (dpau_h_qbr
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, dsp_32
),
14080 DIRECT_BUILTIN (dpsu_h_qbl
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, dsp_32
),
14081 DIRECT_BUILTIN (dpsu_h_qbr
, MIPS_DI_FTYPE_DI_V4QI_V4QI
, dsp_32
),
14082 DIRECT_BUILTIN (dpaq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14083 DIRECT_BUILTIN (dpsq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14084 DIRECT_BUILTIN (mulsaq_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14085 DIRECT_BUILTIN (dpaq_sa_l_w
, MIPS_DI_FTYPE_DI_SI_SI
, dsp_32
),
14086 DIRECT_BUILTIN (dpsq_sa_l_w
, MIPS_DI_FTYPE_DI_SI_SI
, dsp_32
),
14087 DIRECT_BUILTIN (maq_s_w_phl
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14088 DIRECT_BUILTIN (maq_s_w_phr
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14089 DIRECT_BUILTIN (maq_sa_w_phl
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14090 DIRECT_BUILTIN (maq_sa_w_phr
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dsp_32
),
14091 DIRECT_BUILTIN (extr_w
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14092 DIRECT_BUILTIN (extr_r_w
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14093 DIRECT_BUILTIN (extr_rs_w
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14094 DIRECT_BUILTIN (extr_s_h
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14095 DIRECT_BUILTIN (extp
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14096 DIRECT_BUILTIN (extpdp
, MIPS_SI_FTYPE_DI_SI
, dsp_32
),
14097 DIRECT_BUILTIN (shilo
, MIPS_DI_FTYPE_DI_SI
, dsp_32
),
14098 DIRECT_BUILTIN (mthlip
, MIPS_DI_FTYPE_DI_SI
, dsp_32
),
14099 DIRECT_BUILTIN (madd
, MIPS_DI_FTYPE_DI_SI_SI
, dsp_32
),
14100 DIRECT_BUILTIN (maddu
, MIPS_DI_FTYPE_DI_USI_USI
, dsp_32
),
14101 DIRECT_BUILTIN (msub
, MIPS_DI_FTYPE_DI_SI_SI
, dsp_32
),
14102 DIRECT_BUILTIN (msubu
, MIPS_DI_FTYPE_DI_USI_USI
, dsp_32
),
14103 DIRECT_BUILTIN (mult
, MIPS_DI_FTYPE_SI_SI
, dsp_32
),
14104 DIRECT_BUILTIN (multu
, MIPS_DI_FTYPE_USI_USI
, dsp_32
),
14106 /* Built-in functions for the DSP ASE (64-bit only). */
14107 DIRECT_BUILTIN (ldx
, MIPS_DI_FTYPE_POINTER_SI
, dsp_64
),
14109 /* The following are for the MIPS DSP ASE REV 2 (32-bit only). */
14110 DIRECT_BUILTIN (dpa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14111 DIRECT_BUILTIN (dps_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14112 DIRECT_BUILTIN (mulsa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14113 DIRECT_BUILTIN (dpax_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14114 DIRECT_BUILTIN (dpsx_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14115 DIRECT_BUILTIN (dpaqx_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14116 DIRECT_BUILTIN (dpaqx_sa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14117 DIRECT_BUILTIN (dpsqx_s_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14118 DIRECT_BUILTIN (dpsqx_sa_w_ph
, MIPS_DI_FTYPE_DI_V2HI_V2HI
, dspr2_32
),
14120 /* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */
14121 LOONGSON_BUILTIN (packsswh
, MIPS_V4HI_FTYPE_V2SI_V2SI
),
14122 LOONGSON_BUILTIN (packsshb
, MIPS_V8QI_FTYPE_V4HI_V4HI
),
14123 LOONGSON_BUILTIN (packushb
, MIPS_UV8QI_FTYPE_UV4HI_UV4HI
),
14124 LOONGSON_BUILTIN_SUFFIX (paddw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14125 LOONGSON_BUILTIN_SUFFIX (paddh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14126 LOONGSON_BUILTIN_SUFFIX (paddb
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14127 LOONGSON_BUILTIN_SUFFIX (paddw
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14128 LOONGSON_BUILTIN_SUFFIX (paddh
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14129 LOONGSON_BUILTIN_SUFFIX (paddb
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14130 LOONGSON_BUILTIN_SUFFIX (paddd
, u
, MIPS_UDI_FTYPE_UDI_UDI
),
14131 LOONGSON_BUILTIN_SUFFIX (paddd
, s
, MIPS_DI_FTYPE_DI_DI
),
14132 LOONGSON_BUILTIN (paddsh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14133 LOONGSON_BUILTIN (paddsb
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14134 LOONGSON_BUILTIN (paddush
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14135 LOONGSON_BUILTIN (paddusb
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14136 LOONGSON_BUILTIN_ALIAS (pandn_d
, pandn_ud
, MIPS_UDI_FTYPE_UDI_UDI
),
14137 LOONGSON_BUILTIN_ALIAS (pandn_w
, pandn_uw
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14138 LOONGSON_BUILTIN_ALIAS (pandn_h
, pandn_uh
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14139 LOONGSON_BUILTIN_ALIAS (pandn_b
, pandn_ub
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14140 LOONGSON_BUILTIN_ALIAS (pandn_d
, pandn_sd
, MIPS_DI_FTYPE_DI_DI
),
14141 LOONGSON_BUILTIN_ALIAS (pandn_w
, pandn_sw
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14142 LOONGSON_BUILTIN_ALIAS (pandn_h
, pandn_sh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14143 LOONGSON_BUILTIN_ALIAS (pandn_b
, pandn_sb
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14144 LOONGSON_BUILTIN (pavgh
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14145 LOONGSON_BUILTIN (pavgb
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14146 LOONGSON_BUILTIN_SUFFIX (pcmpeqw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14147 LOONGSON_BUILTIN_SUFFIX (pcmpeqh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14148 LOONGSON_BUILTIN_SUFFIX (pcmpeqb
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14149 LOONGSON_BUILTIN_SUFFIX (pcmpeqw
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14150 LOONGSON_BUILTIN_SUFFIX (pcmpeqh
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14151 LOONGSON_BUILTIN_SUFFIX (pcmpeqb
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14152 LOONGSON_BUILTIN_SUFFIX (pcmpgtw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14153 LOONGSON_BUILTIN_SUFFIX (pcmpgth
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14154 LOONGSON_BUILTIN_SUFFIX (pcmpgtb
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14155 LOONGSON_BUILTIN_SUFFIX (pcmpgtw
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14156 LOONGSON_BUILTIN_SUFFIX (pcmpgth
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14157 LOONGSON_BUILTIN_SUFFIX (pcmpgtb
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14158 LOONGSON_BUILTIN_SUFFIX (pextrh
, u
, MIPS_UV4HI_FTYPE_UV4HI_USI
),
14159 LOONGSON_BUILTIN_SUFFIX (pextrh
, s
, MIPS_V4HI_FTYPE_V4HI_USI
),
14160 LOONGSON_BUILTIN_SUFFIX (pinsrh_0
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14161 LOONGSON_BUILTIN_SUFFIX (pinsrh_1
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14162 LOONGSON_BUILTIN_SUFFIX (pinsrh_2
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14163 LOONGSON_BUILTIN_SUFFIX (pinsrh_3
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14164 LOONGSON_BUILTIN_SUFFIX (pinsrh_0
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14165 LOONGSON_BUILTIN_SUFFIX (pinsrh_1
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14166 LOONGSON_BUILTIN_SUFFIX (pinsrh_2
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14167 LOONGSON_BUILTIN_SUFFIX (pinsrh_3
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14168 LOONGSON_BUILTIN (pmaddhw
, MIPS_V2SI_FTYPE_V4HI_V4HI
),
14169 LOONGSON_BUILTIN (pmaxsh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14170 LOONGSON_BUILTIN (pmaxub
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14171 LOONGSON_BUILTIN (pminsh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14172 LOONGSON_BUILTIN (pminub
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14173 LOONGSON_BUILTIN_SUFFIX (pmovmskb
, u
, MIPS_UV8QI_FTYPE_UV8QI
),
14174 LOONGSON_BUILTIN_SUFFIX (pmovmskb
, s
, MIPS_V8QI_FTYPE_V8QI
),
14175 LOONGSON_BUILTIN (pmulhuh
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14176 LOONGSON_BUILTIN (pmulhh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14177 LOONGSON_BUILTIN (pmullh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14178 LOONGSON_BUILTIN (pmuluw
, MIPS_UDI_FTYPE_UV2SI_UV2SI
),
14179 LOONGSON_BUILTIN (pasubub
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14180 LOONGSON_BUILTIN (biadd
, MIPS_UV4HI_FTYPE_UV8QI
),
14181 LOONGSON_BUILTIN (psadbh
, MIPS_UV4HI_FTYPE_UV8QI_UV8QI
),
14182 LOONGSON_BUILTIN_SUFFIX (pshufh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UQI
),
14183 LOONGSON_BUILTIN_SUFFIX (pshufh
, s
, MIPS_V4HI_FTYPE_V4HI_UQI
),
14184 LOONGSON_BUILTIN_SUFFIX (psllh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UQI
),
14185 LOONGSON_BUILTIN_SUFFIX (psllh
, s
, MIPS_V4HI_FTYPE_V4HI_UQI
),
14186 LOONGSON_BUILTIN_SUFFIX (psllw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UQI
),
14187 LOONGSON_BUILTIN_SUFFIX (psllw
, s
, MIPS_V2SI_FTYPE_V2SI_UQI
),
14188 LOONGSON_BUILTIN_SUFFIX (psrah
, u
, MIPS_UV4HI_FTYPE_UV4HI_UQI
),
14189 LOONGSON_BUILTIN_SUFFIX (psrah
, s
, MIPS_V4HI_FTYPE_V4HI_UQI
),
14190 LOONGSON_BUILTIN_SUFFIX (psraw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UQI
),
14191 LOONGSON_BUILTIN_SUFFIX (psraw
, s
, MIPS_V2SI_FTYPE_V2SI_UQI
),
14192 LOONGSON_BUILTIN_SUFFIX (psrlh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UQI
),
14193 LOONGSON_BUILTIN_SUFFIX (psrlh
, s
, MIPS_V4HI_FTYPE_V4HI_UQI
),
14194 LOONGSON_BUILTIN_SUFFIX (psrlw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UQI
),
14195 LOONGSON_BUILTIN_SUFFIX (psrlw
, s
, MIPS_V2SI_FTYPE_V2SI_UQI
),
14196 LOONGSON_BUILTIN_SUFFIX (psubw
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14197 LOONGSON_BUILTIN_SUFFIX (psubh
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14198 LOONGSON_BUILTIN_SUFFIX (psubb
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14199 LOONGSON_BUILTIN_SUFFIX (psubw
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14200 LOONGSON_BUILTIN_SUFFIX (psubh
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14201 LOONGSON_BUILTIN_SUFFIX (psubb
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14202 LOONGSON_BUILTIN_SUFFIX (psubd
, u
, MIPS_UDI_FTYPE_UDI_UDI
),
14203 LOONGSON_BUILTIN_SUFFIX (psubd
, s
, MIPS_DI_FTYPE_DI_DI
),
14204 LOONGSON_BUILTIN (psubsh
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14205 LOONGSON_BUILTIN (psubsb
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14206 LOONGSON_BUILTIN (psubush
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14207 LOONGSON_BUILTIN (psubusb
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14208 LOONGSON_BUILTIN_SUFFIX (punpckhbh
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14209 LOONGSON_BUILTIN_SUFFIX (punpckhhw
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14210 LOONGSON_BUILTIN_SUFFIX (punpckhwd
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14211 LOONGSON_BUILTIN_SUFFIX (punpckhbh
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14212 LOONGSON_BUILTIN_SUFFIX (punpckhhw
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14213 LOONGSON_BUILTIN_SUFFIX (punpckhwd
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14214 LOONGSON_BUILTIN_SUFFIX (punpcklbh
, u
, MIPS_UV8QI_FTYPE_UV8QI_UV8QI
),
14215 LOONGSON_BUILTIN_SUFFIX (punpcklhw
, u
, MIPS_UV4HI_FTYPE_UV4HI_UV4HI
),
14216 LOONGSON_BUILTIN_SUFFIX (punpcklwd
, u
, MIPS_UV2SI_FTYPE_UV2SI_UV2SI
),
14217 LOONGSON_BUILTIN_SUFFIX (punpcklbh
, s
, MIPS_V8QI_FTYPE_V8QI_V8QI
),
14218 LOONGSON_BUILTIN_SUFFIX (punpcklhw
, s
, MIPS_V4HI_FTYPE_V4HI_V4HI
),
14219 LOONGSON_BUILTIN_SUFFIX (punpcklwd
, s
, MIPS_V2SI_FTYPE_V2SI_V2SI
),
14221 /* Sundry other built-in functions. */
14222 DIRECT_NO_TARGET_BUILTIN (cache
, MIPS_VOID_FTYPE_SI_CVPOINTER
, cache
)
14225 /* Index I is the function declaration for mips_builtins[I], or null if the
14226 function isn't defined on this target. */
14227 static GTY(()) tree mips_builtin_decls
[ARRAY_SIZE (mips_builtins
)];
14229 /* MODE is a vector mode whose elements have type TYPE. Return the type
14230 of the vector itself. */
14233 mips_builtin_vector_type (tree type
, machine_mode mode
)
14235 static tree types
[2 * (int) MAX_MACHINE_MODE
];
14238 mode_index
= (int) mode
;
14240 if (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
))
14241 mode_index
+= MAX_MACHINE_MODE
;
14243 if (types
[mode_index
] == NULL_TREE
)
14244 types
[mode_index
] = build_vector_type_for_mode (type
, mode
);
14245 return types
[mode_index
];
14248 /* Return a type for 'const volatile void *'. */
14251 mips_build_cvpointer_type (void)
14255 if (cache
== NULL_TREE
)
14256 cache
= build_pointer_type (build_qualified_type
14258 TYPE_QUAL_CONST
| TYPE_QUAL_VOLATILE
));
14262 /* Source-level argument types. */
14263 #define MIPS_ATYPE_VOID void_type_node
14264 #define MIPS_ATYPE_INT integer_type_node
14265 #define MIPS_ATYPE_POINTER ptr_type_node
14266 #define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type ()
14268 /* Standard mode-based argument types. */
14269 #define MIPS_ATYPE_UQI unsigned_intQI_type_node
14270 #define MIPS_ATYPE_SI intSI_type_node
14271 #define MIPS_ATYPE_USI unsigned_intSI_type_node
14272 #define MIPS_ATYPE_DI intDI_type_node
14273 #define MIPS_ATYPE_UDI unsigned_intDI_type_node
14274 #define MIPS_ATYPE_SF float_type_node
14275 #define MIPS_ATYPE_DF double_type_node
14277 /* Vector argument types. */
14278 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
14279 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
14280 #define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode)
14281 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
14282 #define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode)
14283 #define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode)
14284 #define MIPS_ATYPE_UV2SI \
14285 mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode)
14286 #define MIPS_ATYPE_UV4HI \
14287 mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode)
14288 #define MIPS_ATYPE_UV8QI \
14289 mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode)
14291 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
14292 their associated MIPS_ATYPEs. */
14293 #define MIPS_FTYPE_ATYPES1(A, B) \
14294 MIPS_ATYPE_##A, MIPS_ATYPE_##B
14296 #define MIPS_FTYPE_ATYPES2(A, B, C) \
14297 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
14299 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
14300 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
14302 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
14303 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
14306 /* Return the function type associated with function prototype TYPE. */
14309 mips_build_function_type (enum mips_function_type type
)
14311 static tree types
[(int) MIPS_MAX_FTYPE_MAX
];
14313 if (types
[(int) type
] == NULL_TREE
)
14316 #define DEF_MIPS_FTYPE(NUM, ARGS) \
14317 case MIPS_FTYPE_NAME##NUM ARGS: \
14318 types[(int) type] \
14319 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
14322 #include "config/mips/mips-ftypes.def"
14323 #undef DEF_MIPS_FTYPE
14325 gcc_unreachable ();
14328 return types
[(int) type
];
14331 /* Implement TARGET_INIT_BUILTINS. */
14334 mips_init_builtins (void)
14336 const struct mips_builtin_description
*d
;
14339 /* Iterate through all of the bdesc arrays, initializing all of the
14340 builtin functions. */
14341 for (i
= 0; i
< ARRAY_SIZE (mips_builtins
); i
++)
14343 d
= &mips_builtins
[i
];
14345 mips_builtin_decls
[i
]
14346 = add_builtin_function (d
->name
,
14347 mips_build_function_type (d
->function_type
),
14348 i
, BUILT_IN_MD
, NULL
, NULL
);
14352 /* Implement TARGET_BUILTIN_DECL. */
14355 mips_builtin_decl (unsigned int code
, bool initialize_p ATTRIBUTE_UNUSED
)
14357 if (code
>= ARRAY_SIZE (mips_builtins
))
14358 return error_mark_node
;
14359 return mips_builtin_decls
[code
];
14362 /* Take argument ARGNO from EXP's argument list and convert it into
14363 an expand operand. Store the operand in *OP. */
14366 mips_prepare_builtin_arg (struct expand_operand
*op
, tree exp
,
14367 unsigned int argno
)
14372 arg
= CALL_EXPR_ARG (exp
, argno
);
14373 value
= expand_normal (arg
);
14374 create_input_operand (op
, value
, TYPE_MODE (TREE_TYPE (arg
)));
14377 /* Expand instruction ICODE as part of a built-in function sequence.
14378 Use the first NOPS elements of OPS as the instruction's operands.
14379 HAS_TARGET_P is true if operand 0 is a target; it is false if the
14380 instruction has no target.
14382 Return the target rtx if HAS_TARGET_P, otherwise return const0_rtx. */
14385 mips_expand_builtin_insn (enum insn_code icode
, unsigned int nops
,
14386 struct expand_operand
*ops
, bool has_target_p
)
14388 if (!maybe_expand_insn (icode
, nops
, ops
))
14390 error ("invalid argument to built-in function");
14391 return has_target_p
? gen_reg_rtx (ops
[0].mode
) : const0_rtx
;
14393 return has_target_p
? ops
[0].value
: const0_rtx
;
14396 /* Expand a floating-point comparison for built-in function call EXP.
14397 The first NARGS arguments are the values to be compared. ICODE is
14398 the .md pattern that does the comparison and COND is the condition
14399 that is being tested. Return an rtx for the result. */
14402 mips_expand_builtin_compare_1 (enum insn_code icode
,
14403 enum mips_fp_condition cond
,
14404 tree exp
, int nargs
)
14406 struct expand_operand ops
[MAX_RECOG_OPERANDS
];
14410 /* The instruction should have a target operand, an operand for each
14411 argument, and an operand for COND. */
14412 gcc_assert (nargs
+ 2 == insn_data
[(int) icode
].n_generator_args
);
14414 output
= mips_allocate_fcc (insn_data
[(int) icode
].operand
[0].mode
);
14416 create_fixed_operand (&ops
[opno
++], output
);
14417 for (argno
= 0; argno
< nargs
; argno
++)
14418 mips_prepare_builtin_arg (&ops
[opno
++], exp
, argno
);
14419 create_integer_operand (&ops
[opno
++], (int) cond
);
14420 return mips_expand_builtin_insn (icode
, opno
, ops
, true);
14423 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
14424 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
14425 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
14426 suggests a good place to put the result. */
14429 mips_expand_builtin_direct (enum insn_code icode
, rtx target
, tree exp
,
14432 struct expand_operand ops
[MAX_RECOG_OPERANDS
];
14435 /* Map any target to operand 0. */
14438 create_output_operand (&ops
[opno
++], target
, TYPE_MODE (TREE_TYPE (exp
)));
14440 /* Map the arguments to the other operands. */
14441 gcc_assert (opno
+ call_expr_nargs (exp
)
14442 == insn_data
[icode
].n_generator_args
);
14443 for (argno
= 0; argno
< call_expr_nargs (exp
); argno
++)
14444 mips_prepare_builtin_arg (&ops
[opno
++], exp
, argno
);
14446 return mips_expand_builtin_insn (icode
, opno
, ops
, has_target_p
);
14449 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
14450 function; TYPE says which. EXP is the CALL_EXPR that calls the
14451 function, ICODE is the instruction that should be used to compare
14452 the first two arguments, and COND is the condition it should test.
14453 TARGET, if nonnull, suggests a good place to put the result. */
14456 mips_expand_builtin_movtf (enum mips_builtin_type type
,
14457 enum insn_code icode
, enum mips_fp_condition cond
,
14458 rtx target
, tree exp
)
14460 struct expand_operand ops
[4];
14463 cmp_result
= mips_expand_builtin_compare_1 (icode
, cond
, exp
, 2);
14464 create_output_operand (&ops
[0], target
, TYPE_MODE (TREE_TYPE (exp
)));
14465 if (type
== MIPS_BUILTIN_MOVT
)
14467 mips_prepare_builtin_arg (&ops
[2], exp
, 2);
14468 mips_prepare_builtin_arg (&ops
[1], exp
, 3);
14472 mips_prepare_builtin_arg (&ops
[1], exp
, 2);
14473 mips_prepare_builtin_arg (&ops
[2], exp
, 3);
14475 create_fixed_operand (&ops
[3], cmp_result
);
14476 return mips_expand_builtin_insn (CODE_FOR_mips_cond_move_tf_ps
,
14480 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
14481 into TARGET otherwise. Return TARGET. */
14484 mips_builtin_branch_and_move (rtx condition
, rtx target
,
14485 rtx value_if_true
, rtx value_if_false
)
14487 rtx_code_label
*true_label
, *done_label
;
14489 true_label
= gen_label_rtx ();
14490 done_label
= gen_label_rtx ();
14492 /* First assume that CONDITION is false. */
14493 mips_emit_move (target
, value_if_false
);
14495 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
14496 emit_jump_insn (gen_condjump (condition
, true_label
));
14497 emit_jump_insn (gen_jump (done_label
));
14500 /* Fix TARGET if CONDITION is true. */
14501 emit_label (true_label
);
14502 mips_emit_move (target
, value_if_true
);
14504 emit_label (done_label
);
14508 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
14509 the CALL_EXPR that calls the function, ICODE is the code of the
14510 comparison instruction, and COND is the condition it should test.
14511 TARGET, if nonnull, suggests a good place to put the boolean result. */
14514 mips_expand_builtin_compare (enum mips_builtin_type builtin_type
,
14515 enum insn_code icode
, enum mips_fp_condition cond
,
14516 rtx target
, tree exp
)
14518 rtx offset
, condition
, cmp_result
;
14520 if (target
== 0 || GET_MODE (target
) != SImode
)
14521 target
= gen_reg_rtx (SImode
);
14522 cmp_result
= mips_expand_builtin_compare_1 (icode
, cond
, exp
,
14523 call_expr_nargs (exp
));
14525 /* If the comparison sets more than one register, we define the result
14526 to be 0 if all registers are false and -1 if all registers are true.
14527 The value of the complete result is indeterminate otherwise. */
14528 switch (builtin_type
)
14530 case MIPS_BUILTIN_CMP_ALL
:
14531 condition
= gen_rtx_NE (VOIDmode
, cmp_result
, constm1_rtx
);
14532 return mips_builtin_branch_and_move (condition
, target
,
14533 const0_rtx
, const1_rtx
);
14535 case MIPS_BUILTIN_CMP_UPPER
:
14536 case MIPS_BUILTIN_CMP_LOWER
:
14537 offset
= GEN_INT (builtin_type
== MIPS_BUILTIN_CMP_UPPER
);
14538 condition
= gen_single_cc (cmp_result
, offset
);
14539 return mips_builtin_branch_and_move (condition
, target
,
14540 const1_rtx
, const0_rtx
);
14543 condition
= gen_rtx_NE (VOIDmode
, cmp_result
, const0_rtx
);
14544 return mips_builtin_branch_and_move (condition
, target
,
14545 const1_rtx
, const0_rtx
);
14549 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
14550 if nonnull, suggests a good place to put the boolean result. */
14553 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type
, rtx target
)
14555 rtx condition
, cmp_result
;
14558 if (target
== 0 || GET_MODE (target
) != SImode
)
14559 target
= gen_reg_rtx (SImode
);
14561 cmp_result
= gen_rtx_REG (CCDSPmode
, CCDSP_PO_REGNUM
);
14563 if (builtin_type
== MIPS_BUILTIN_BPOSGE32
)
14568 condition
= gen_rtx_GE (VOIDmode
, cmp_result
, GEN_INT (cmp_value
));
14569 return mips_builtin_branch_and_move (condition
, target
,
14570 const1_rtx
, const0_rtx
);
14573 /* Implement TARGET_EXPAND_BUILTIN. */
14576 mips_expand_builtin (tree exp
, rtx target
, rtx subtarget ATTRIBUTE_UNUSED
,
14577 machine_mode mode
, int ignore
)
14580 unsigned int fcode
, avail
;
14581 const struct mips_builtin_description
*d
;
14583 fndecl
= TREE_OPERAND (CALL_EXPR_FN (exp
), 0);
14584 fcode
= DECL_FUNCTION_CODE (fndecl
);
14585 gcc_assert (fcode
< ARRAY_SIZE (mips_builtins
));
14586 d
= &mips_builtins
[fcode
];
14587 avail
= d
->avail ();
14588 gcc_assert (avail
!= 0);
14589 if (TARGET_MIPS16
&& !(avail
& BUILTIN_AVAIL_MIPS16
))
14591 error ("built-in function %qE not supported for MIPS16",
14592 DECL_NAME (fndecl
));
14593 return ignore
? const0_rtx
: CONST0_RTX (mode
);
14595 switch (d
->builtin_type
)
14597 case MIPS_BUILTIN_DIRECT
:
14598 return mips_expand_builtin_direct (d
->icode
, target
, exp
, true);
14600 case MIPS_BUILTIN_DIRECT_NO_TARGET
:
14601 return mips_expand_builtin_direct (d
->icode
, target
, exp
, false);
14603 case MIPS_BUILTIN_MOVT
:
14604 case MIPS_BUILTIN_MOVF
:
14605 return mips_expand_builtin_movtf (d
->builtin_type
, d
->icode
,
14606 d
->cond
, target
, exp
);
14608 case MIPS_BUILTIN_CMP_ANY
:
14609 case MIPS_BUILTIN_CMP_ALL
:
14610 case MIPS_BUILTIN_CMP_UPPER
:
14611 case MIPS_BUILTIN_CMP_LOWER
:
14612 case MIPS_BUILTIN_CMP_SINGLE
:
14613 return mips_expand_builtin_compare (d
->builtin_type
, d
->icode
,
14614 d
->cond
, target
, exp
);
14616 case MIPS_BUILTIN_BPOSGE32
:
14617 return mips_expand_builtin_bposge (d
->builtin_type
, target
);
14619 gcc_unreachable ();
14622 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
14623 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
14624 struct mips16_constant
{
14625 struct mips16_constant
*next
;
14627 rtx_code_label
*label
;
14631 /* Information about an incomplete MIPS16 constant pool. FIRST is the
14632 first constant, HIGHEST_ADDRESS is the highest address that the first
14633 byte of the pool can have, and INSN_ADDRESS is the current instruction
14635 struct mips16_constant_pool
{
14636 struct mips16_constant
*first
;
14637 int highest_address
;
14641 /* Add constant VALUE to POOL and return its label. MODE is the
14642 value's mode (used for CONST_INTs, etc.). */
14644 static rtx_code_label
*
14645 mips16_add_constant (struct mips16_constant_pool
*pool
,
14646 rtx value
, machine_mode mode
)
14648 struct mips16_constant
**p
, *c
;
14649 bool first_of_size_p
;
14651 /* See whether the constant is already in the pool. If so, return the
14652 existing label, otherwise leave P pointing to the place where the
14653 constant should be added.
14655 Keep the pool sorted in increasing order of mode size so that we can
14656 reduce the number of alignments needed. */
14657 first_of_size_p
= true;
14658 for (p
= &pool
->first
; *p
!= 0; p
= &(*p
)->next
)
14660 if (mode
== (*p
)->mode
&& rtx_equal_p (value
, (*p
)->value
))
14661 return (*p
)->label
;
14662 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE ((*p
)->mode
))
14664 if (GET_MODE_SIZE (mode
) == GET_MODE_SIZE ((*p
)->mode
))
14665 first_of_size_p
= false;
14668 /* In the worst case, the constant needed by the earliest instruction
14669 will end up at the end of the pool. The entire pool must then be
14670 accessible from that instruction.
14672 When adding the first constant, set the pool's highest address to
14673 the address of the first out-of-range byte. Adjust this address
14674 downwards each time a new constant is added. */
14675 if (pool
->first
== 0)
14676 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
14677 of the instruction with the lowest two bits clear. The base PC
14678 value for LDPC has the lowest three bits clear. Assume the worst
14679 case here; namely that the PC-relative instruction occupies the
14680 last 2 bytes in an aligned word. */
14681 pool
->highest_address
= pool
->insn_address
- (UNITS_PER_WORD
- 2) + 0x8000;
14682 pool
->highest_address
-= GET_MODE_SIZE (mode
);
14683 if (first_of_size_p
)
14684 /* Take into account the worst possible padding due to alignment. */
14685 pool
->highest_address
-= GET_MODE_SIZE (mode
) - 1;
14687 /* Create a new entry. */
14688 c
= XNEW (struct mips16_constant
);
14691 c
->label
= gen_label_rtx ();
14698 /* Output constant VALUE after instruction INSN and return the last
14699 instruction emitted. MODE is the mode of the constant. */
14702 mips16_emit_constants_1 (machine_mode mode
, rtx value
, rtx_insn
*insn
)
14704 if (SCALAR_INT_MODE_P (mode
) || ALL_SCALAR_FIXED_POINT_MODE_P (mode
))
14706 rtx size
= GEN_INT (GET_MODE_SIZE (mode
));
14707 return emit_insn_after (gen_consttable_int (value
, size
), insn
);
14710 if (SCALAR_FLOAT_MODE_P (mode
))
14711 return emit_insn_after (gen_consttable_float (value
), insn
);
14713 if (VECTOR_MODE_P (mode
))
14717 for (i
= 0; i
< CONST_VECTOR_NUNITS (value
); i
++)
14718 insn
= mips16_emit_constants_1 (GET_MODE_INNER (mode
),
14719 CONST_VECTOR_ELT (value
, i
), insn
);
14723 gcc_unreachable ();
14726 /* Dump out the constants in CONSTANTS after INSN. */
14729 mips16_emit_constants (struct mips16_constant
*constants
, rtx_insn
*insn
)
14731 struct mips16_constant
*c
, *next
;
14735 for (c
= constants
; c
!= NULL
; c
= next
)
14737 /* If necessary, increase the alignment of PC. */
14738 if (align
< GET_MODE_SIZE (c
->mode
))
14740 int align_log
= floor_log2 (GET_MODE_SIZE (c
->mode
));
14741 insn
= emit_insn_after (gen_align (GEN_INT (align_log
)), insn
);
14743 align
= GET_MODE_SIZE (c
->mode
);
14745 insn
= emit_label_after (c
->label
, insn
);
14746 insn
= mips16_emit_constants_1 (c
->mode
, c
->value
, insn
);
14752 emit_barrier_after (insn
);
14755 /* Return the length of instruction INSN. */
14758 mips16_insn_length (rtx_insn
*insn
)
14760 if (JUMP_TABLE_DATA_P (insn
))
14762 rtx body
= PATTERN (insn
);
14763 if (GET_CODE (body
) == ADDR_VEC
)
14764 return GET_MODE_SIZE (GET_MODE (body
)) * XVECLEN (body
, 0);
14765 else if (GET_CODE (body
) == ADDR_DIFF_VEC
)
14766 return GET_MODE_SIZE (GET_MODE (body
)) * XVECLEN (body
, 1);
14768 gcc_unreachable ();
14770 return get_attr_length (insn
);
14773 /* If *X is a symbolic constant that refers to the constant pool, add
14774 the constant to POOL and rewrite *X to use the constant's label. */
14777 mips16_rewrite_pool_constant (struct mips16_constant_pool
*pool
, rtx
*x
)
14780 rtx_code_label
*label
;
14782 split_const (*x
, &base
, &offset
);
14783 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
14785 label
= mips16_add_constant (pool
, copy_rtx (get_pool_constant (base
)),
14786 get_pool_mode (base
));
14787 base
= gen_rtx_LABEL_REF (Pmode
, label
);
14788 *x
= mips_unspec_address_offset (base
, offset
, SYMBOL_PC_RELATIVE
);
14792 /* Rewrite INSN so that constant pool references refer to the constant's
14796 mips16_rewrite_pool_refs (rtx_insn
*insn
, struct mips16_constant_pool
*pool
)
14798 subrtx_ptr_iterator::array_type array
;
14799 FOR_EACH_SUBRTX_PTR (iter
, array
, &PATTERN (insn
), ALL
)
14803 if (force_to_mem_operand (*loc
, Pmode
))
14805 rtx mem
= force_const_mem (GET_MODE (*loc
), *loc
);
14806 validate_change (insn
, loc
, mem
, false);
14811 mips16_rewrite_pool_constant (pool
, &XEXP (*loc
, 0));
14812 iter
.skip_subrtxes ();
14816 if (TARGET_MIPS16_TEXT_LOADS
)
14817 mips16_rewrite_pool_constant (pool
, loc
);
14818 if (GET_CODE (*loc
) == CONST
14819 /* Don't rewrite the __mips16_rdwr symbol. */
14820 || (GET_CODE (*loc
) == UNSPEC
14821 && XINT (*loc
, 1) == UNSPEC_TLS_GET_TP
))
14822 iter
.skip_subrtxes ();
14827 /* Return whether CFG is used in mips_reorg. */
14830 mips_cfg_in_reorg (void)
14832 return (mips_r10k_cache_barrier
!= R10K_CACHE_BARRIER_NONE
14833 || TARGET_RELAX_PIC_CALLS
);
14836 /* Build MIPS16 constant pools. Split the instructions if SPLIT_P,
14837 otherwise assume that they are already split. */
14840 mips16_lay_out_constants (bool split_p
)
14842 struct mips16_constant_pool pool
;
14843 rtx_insn
*insn
, *barrier
;
14845 if (!TARGET_MIPS16_PCREL_LOADS
)
14850 if (mips_cfg_in_reorg ())
14851 split_all_insns ();
14853 split_all_insns_noflow ();
14856 memset (&pool
, 0, sizeof (pool
));
14857 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
14859 /* Rewrite constant pool references in INSN. */
14860 if (USEFUL_INSN_P (insn
))
14861 mips16_rewrite_pool_refs (insn
, &pool
);
14863 pool
.insn_address
+= mips16_insn_length (insn
);
14865 if (pool
.first
!= NULL
)
14867 /* If there are no natural barriers between the first user of
14868 the pool and the highest acceptable address, we'll need to
14869 create a new instruction to jump around the constant pool.
14870 In the worst case, this instruction will be 4 bytes long.
14872 If it's too late to do this transformation after INSN,
14873 do it immediately before INSN. */
14874 if (barrier
== 0 && pool
.insn_address
+ 4 > pool
.highest_address
)
14876 rtx_code_label
*label
;
14879 label
= gen_label_rtx ();
14881 jump
= emit_jump_insn_before (gen_jump (label
), insn
);
14882 JUMP_LABEL (jump
) = label
;
14883 LABEL_NUSES (label
) = 1;
14884 barrier
= emit_barrier_after (jump
);
14886 emit_label_after (label
, barrier
);
14887 pool
.insn_address
+= 4;
14890 /* See whether the constant pool is now out of range of the first
14891 user. If so, output the constants after the previous barrier.
14892 Note that any instructions between BARRIER and INSN (inclusive)
14893 will use negative offsets to refer to the pool. */
14894 if (pool
.insn_address
> pool
.highest_address
)
14896 mips16_emit_constants (pool
.first
, barrier
);
14900 else if (BARRIER_P (insn
))
14904 mips16_emit_constants (pool
.first
, get_last_insn ());
14907 /* Return true if it is worth r10k_simplify_address's while replacing
14908 an address with X. We are looking for constants, and for addresses
14909 at a known offset from the incoming stack pointer. */
14912 r10k_simplified_address_p (rtx x
)
14914 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
14916 return x
== virtual_incoming_args_rtx
|| CONSTANT_P (x
);
14919 /* X is an expression that appears in INSN. Try to use the UD chains
14920 to simplify it, returning the simplified form on success and the
14921 original form otherwise. Replace the incoming value of $sp with
14922 virtual_incoming_args_rtx (which should never occur in X otherwise). */
14925 r10k_simplify_address (rtx x
, rtx_insn
*insn
)
14927 rtx newx
, op0
, op1
, set
, note
;
14928 rtx_insn
*def_insn
;
14930 struct df_link
*defs
;
14935 op0
= r10k_simplify_address (XEXP (x
, 0), insn
);
14936 if (op0
!= XEXP (x
, 0))
14937 newx
= simplify_gen_unary (GET_CODE (x
), GET_MODE (x
),
14938 op0
, GET_MODE (XEXP (x
, 0)));
14940 else if (BINARY_P (x
))
14942 op0
= r10k_simplify_address (XEXP (x
, 0), insn
);
14943 op1
= r10k_simplify_address (XEXP (x
, 1), insn
);
14944 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
14945 newx
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
14947 else if (GET_CODE (x
) == LO_SUM
)
14949 /* LO_SUMs can be offset from HIGHs, if we know they won't
14950 overflow. See mips_classify_address for the rationale behind
14952 op0
= r10k_simplify_address (XEXP (x
, 0), insn
);
14953 if (GET_CODE (op0
) == HIGH
)
14954 newx
= XEXP (x
, 1);
14956 else if (REG_P (x
))
14958 /* Uses are recorded by regno_reg_rtx, not X itself. */
14959 use
= df_find_use (insn
, regno_reg_rtx
[REGNO (x
)]);
14961 defs
= DF_REF_CHAIN (use
);
14963 /* Require a single definition. */
14964 if (defs
&& defs
->next
== NULL
)
14967 if (DF_REF_IS_ARTIFICIAL (def
))
14969 /* Replace the incoming value of $sp with
14970 virtual_incoming_args_rtx. */
14971 if (x
== stack_pointer_rtx
14972 && DF_REF_BB (def
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
14973 newx
= virtual_incoming_args_rtx
;
14975 else if (dominated_by_p (CDI_DOMINATORS
, DF_REF_BB (use
),
14978 /* Make sure that DEF_INSN is a single set of REG. */
14979 def_insn
= DF_REF_INSN (def
);
14980 if (NONJUMP_INSN_P (def_insn
))
14982 set
= single_set (def_insn
);
14983 if (set
&& rtx_equal_p (SET_DEST (set
), x
))
14985 /* Prefer to use notes, since the def-use chains
14986 are often shorter. */
14987 note
= find_reg_equal_equiv_note (def_insn
);
14989 newx
= XEXP (note
, 0);
14991 newx
= SET_SRC (set
);
14992 newx
= r10k_simplify_address (newx
, def_insn
);
14998 if (newx
&& r10k_simplified_address_p (newx
))
15003 /* Return true if ADDRESS is known to be an uncached address
15004 on R10K systems. */
15007 r10k_uncached_address_p (unsigned HOST_WIDE_INT address
)
15009 unsigned HOST_WIDE_INT upper
;
15011 /* Check for KSEG1. */
15012 if (address
+ 0x60000000 < 0x20000000)
15015 /* Check for uncached XKPHYS addresses. */
15016 if (Pmode
== DImode
)
15018 upper
= (address
>> 40) & 0xf9ffff;
15019 if (upper
== 0x900000 || upper
== 0xb80000)
15025 /* Return true if we can prove that an access to address X in instruction
15026 INSN would be safe from R10K speculation. This X is a general
15027 expression; it might not be a legitimate address. */
15030 r10k_safe_address_p (rtx x
, rtx_insn
*insn
)
15033 HOST_WIDE_INT offset_val
;
15035 x
= r10k_simplify_address (x
, insn
);
15037 /* Check for references to the stack frame. It doesn't really matter
15038 how much of the frame has been allocated at INSN; -mr10k-cache-barrier
15039 allows us to assume that accesses to any part of the eventual frame
15040 is safe from speculation at any point in the function. */
15041 mips_split_plus (x
, &base
, &offset_val
);
15042 if (base
== virtual_incoming_args_rtx
15043 && offset_val
>= -cfun
->machine
->frame
.total_size
15044 && offset_val
< cfun
->machine
->frame
.args_size
)
15047 /* Check for uncached addresses. */
15048 if (CONST_INT_P (x
))
15049 return r10k_uncached_address_p (INTVAL (x
));
15051 /* Check for accesses to a static object. */
15052 split_const (x
, &base
, &offset
);
15053 return offset_within_block_p (base
, INTVAL (offset
));
15056 /* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is
15057 an in-range access to an automatic variable, or to an object with
15058 a link-time-constant address. */
15061 r10k_safe_mem_expr_p (tree expr
, unsigned HOST_WIDE_INT offset
)
15063 HOST_WIDE_INT bitoffset
, bitsize
;
15064 tree inner
, var_offset
;
15066 int unsigned_p
, volatile_p
;
15068 inner
= get_inner_reference (expr
, &bitsize
, &bitoffset
, &var_offset
, &mode
,
15069 &unsigned_p
, &volatile_p
, false);
15070 if (!DECL_P (inner
) || !DECL_SIZE_UNIT (inner
) || var_offset
)
15073 offset
+= bitoffset
/ BITS_PER_UNIT
;
15074 return offset
< tree_to_uhwi (DECL_SIZE_UNIT (inner
));
15077 /* Return true if X contains a MEM that is not safe from R10K speculation.
15078 INSN is the instruction that contains X. */
15081 r10k_needs_protection_p_1 (rtx x
, rtx_insn
*insn
)
15083 subrtx_var_iterator::array_type array
;
15084 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
15089 if ((MEM_EXPR (mem
)
15090 && MEM_OFFSET_KNOWN_P (mem
)
15091 && r10k_safe_mem_expr_p (MEM_EXPR (mem
), MEM_OFFSET (mem
)))
15092 || r10k_safe_address_p (XEXP (mem
, 0), insn
))
15093 iter
.skip_subrtxes ();
15101 /* A note_stores callback for which DATA points to an instruction pointer.
15102 If *DATA is nonnull, make it null if it X contains a MEM that is not
15103 safe from R10K speculation. */
15106 r10k_needs_protection_p_store (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
,
15109 rtx_insn
**insn_ptr
;
15111 insn_ptr
= (rtx_insn
**) data
;
15112 if (*insn_ptr
&& r10k_needs_protection_p_1 (x
, *insn_ptr
))
15116 /* X is the pattern of a call instruction. Return true if the call is
15117 not to a declared function. */
15120 r10k_needs_protection_p_call (const_rtx x
)
15122 subrtx_iterator::array_type array
;
15123 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
15125 const_rtx mem
= *iter
;
15128 const_rtx addr
= XEXP (mem
, 0);
15129 if (GET_CODE (addr
) == SYMBOL_REF
&& SYMBOL_REF_DECL (addr
))
15130 iter
.skip_subrtxes ();
15138 /* Return true if instruction INSN needs to be protected by an R10K
15142 r10k_needs_protection_p (rtx_insn
*insn
)
15145 return r10k_needs_protection_p_call (PATTERN (insn
));
15147 if (mips_r10k_cache_barrier
== R10K_CACHE_BARRIER_STORE
)
15149 note_stores (PATTERN (insn
), r10k_needs_protection_p_store
, &insn
);
15150 return insn
== NULL_RTX
;
15153 return r10k_needs_protection_p_1 (PATTERN (insn
), insn
);
15156 /* Return true if BB is only reached by blocks in PROTECTED_BBS and if every
15157 edge is unconditional. */
15160 r10k_protected_bb_p (basic_block bb
, sbitmap protected_bbs
)
15165 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
15166 if (!single_succ_p (e
->src
)
15167 || !bitmap_bit_p (protected_bbs
, e
->src
->index
)
15168 || (e
->flags
& EDGE_COMPLEX
) != 0)
15173 /* Implement -mr10k-cache-barrier= for the current function. */
15176 r10k_insert_cache_barriers (void)
15178 int *rev_post_order
;
15181 sbitmap protected_bbs
;
15182 rtx_insn
*insn
, *end
;
15183 rtx unprotected_region
;
15187 sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier");
15191 /* Calculate dominators. */
15192 calculate_dominance_info (CDI_DOMINATORS
);
15194 /* Bit X of PROTECTED_BBS is set if the last operation in basic block
15195 X is protected by a cache barrier. */
15196 protected_bbs
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
15197 bitmap_clear (protected_bbs
);
15199 /* Iterate over the basic blocks in reverse post-order. */
15200 rev_post_order
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
15201 n
= pre_and_rev_post_order_compute (NULL
, rev_post_order
, false);
15202 for (i
= 0; i
< n
; i
++)
15204 bb
= BASIC_BLOCK_FOR_FN (cfun
, rev_post_order
[i
]);
15206 /* If this block is only reached by unconditional edges, and if the
15207 source of every edge is protected, the beginning of the block is
15209 if (r10k_protected_bb_p (bb
, protected_bbs
))
15210 unprotected_region
= NULL_RTX
;
15212 unprotected_region
= pc_rtx
;
15213 end
= NEXT_INSN (BB_END (bb
));
15215 /* UNPROTECTED_REGION is:
15217 - null if we are processing a protected region,
15218 - pc_rtx if we are processing an unprotected region but have
15219 not yet found the first instruction in it
15220 - the first instruction in an unprotected region otherwise. */
15221 for (insn
= BB_HEAD (bb
); insn
!= end
; insn
= NEXT_INSN (insn
))
15223 if (unprotected_region
&& USEFUL_INSN_P (insn
))
15225 if (recog_memoized (insn
) == CODE_FOR_mips_cache
)
15226 /* This CACHE instruction protects the following code. */
15227 unprotected_region
= NULL_RTX
;
15230 /* See if INSN is the first instruction in this
15231 unprotected region. */
15232 if (unprotected_region
== pc_rtx
)
15233 unprotected_region
= insn
;
15235 /* See if INSN needs to be protected. If so,
15236 we must insert a cache barrier somewhere between
15237 PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't
15238 clear which position is better performance-wise,
15239 but as a tie-breaker, we assume that it is better
15240 to allow delay slots to be back-filled where
15241 possible, and that it is better not to insert
15242 barriers in the middle of already-scheduled code.
15243 We therefore insert the barrier at the beginning
15245 if (r10k_needs_protection_p (insn
))
15247 emit_insn_before (gen_r10k_cache_barrier (),
15248 unprotected_region
);
15249 unprotected_region
= NULL_RTX
;
15255 /* The called function is not required to protect the exit path.
15256 The code that follows a call is therefore unprotected. */
15257 unprotected_region
= pc_rtx
;
15260 /* Record whether the end of this block is protected. */
15261 if (unprotected_region
== NULL_RTX
)
15262 bitmap_set_bit (protected_bbs
, bb
->index
);
15264 XDELETEVEC (rev_post_order
);
15266 sbitmap_free (protected_bbs
);
15268 free_dominance_info (CDI_DOMINATORS
);
15271 /* If INSN is a call, return the underlying CALL expr. Return NULL_RTX
15272 otherwise. If INSN has two call rtx, then store the second one in
15276 mips_call_expr_from_insn (rtx_insn
*insn
, rtx
*second_call
)
15281 if (!CALL_P (insn
))
15284 x
= PATTERN (insn
);
15285 if (GET_CODE (x
) == PARALLEL
)
15287 /* Calls returning complex values have two CALL rtx. Look for the second
15288 one here, and return it via the SECOND_CALL arg. */
15289 x2
= XVECEXP (x
, 0, 1);
15290 if (GET_CODE (x2
) == SET
)
15292 if (GET_CODE (x2
) == CALL
)
15295 x
= XVECEXP (x
, 0, 0);
15297 if (GET_CODE (x
) == SET
)
15299 gcc_assert (GET_CODE (x
) == CALL
);
15304 /* REG is set in DEF. See if the definition is one of the ways we load a
15305 register with a symbol address for a mips_use_pic_fn_addr_reg_p call.
15306 If it is, return the symbol reference of the function, otherwise return
15309 If RECURSE_P is true, use mips_find_pic_call_symbol to interpret
15310 the values of source registers, otherwise treat such registers as
15311 having an unknown value. */
15314 mips_pic_call_symbol_from_set (df_ref def
, rtx reg
, bool recurse_p
)
15316 rtx_insn
*def_insn
;
15319 if (DF_REF_IS_ARTIFICIAL (def
))
15322 def_insn
= DF_REF_INSN (def
);
15323 set
= single_set (def_insn
);
15324 if (set
&& rtx_equal_p (SET_DEST (set
), reg
))
15326 rtx note
, src
, symbol
;
15328 /* First see whether the source is a plain symbol. This is used
15329 when calling symbols that are not lazily bound. */
15330 src
= SET_SRC (set
);
15331 if (GET_CODE (src
) == SYMBOL_REF
)
15334 /* Handle %call16 references. */
15335 symbol
= mips_strip_unspec_call (src
);
15338 gcc_assert (GET_CODE (symbol
) == SYMBOL_REF
);
15342 /* If we have something more complicated, look for a
15343 REG_EQUAL or REG_EQUIV note. */
15344 note
= find_reg_equal_equiv_note (def_insn
);
15345 if (note
&& GET_CODE (XEXP (note
, 0)) == SYMBOL_REF
)
15346 return XEXP (note
, 0);
15348 /* Follow at most one simple register copy. Such copies are
15349 interesting in cases like:
15353 locally_binding_fn (...);
15358 locally_binding_fn (...);
15360 locally_binding_fn (...);
15362 where the load of locally_binding_fn can legitimately be
15363 hoisted or shared. However, we do not expect to see complex
15364 chains of copies, so a full worklist solution to the problem
15365 would probably be overkill. */
15366 if (recurse_p
&& REG_P (src
))
15367 return mips_find_pic_call_symbol (def_insn
, src
, false);
15373 /* Find the definition of the use of REG in INSN. See if the definition
15374 is one of the ways we load a register with a symbol address for a
15375 mips_use_pic_fn_addr_reg_p call. If it is return the symbol reference
15376 of the function, otherwise return NULL_RTX. RECURSE_P is as for
15377 mips_pic_call_symbol_from_set. */
15380 mips_find_pic_call_symbol (rtx_insn
*insn
, rtx reg
, bool recurse_p
)
15383 struct df_link
*defs
;
15386 use
= df_find_use (insn
, regno_reg_rtx
[REGNO (reg
)]);
15389 defs
= DF_REF_CHAIN (use
);
15392 symbol
= mips_pic_call_symbol_from_set (defs
->ref
, reg
, recurse_p
);
15396 /* If we have more than one definition, they need to be identical. */
15397 for (defs
= defs
->next
; defs
; defs
= defs
->next
)
15401 other
= mips_pic_call_symbol_from_set (defs
->ref
, reg
, recurse_p
);
15402 if (!rtx_equal_p (symbol
, other
))
15409 /* Replace the args_size operand of the call expression CALL with the
15410 call-attribute UNSPEC and fill in SYMBOL as the function symbol. */
15413 mips_annotate_pic_call_expr (rtx call
, rtx symbol
)
15417 args_size
= XEXP (call
, 1);
15418 XEXP (call
, 1) = gen_rtx_UNSPEC (GET_MODE (args_size
),
15419 gen_rtvec (2, args_size
, symbol
),
15423 /* OPERANDS[ARGS_SIZE_OPNO] is the arg_size operand of a CALL expression. See
15424 if instead of the arg_size argument it contains the call attributes. If
15425 yes return true along with setting OPERANDS[ARGS_SIZE_OPNO] to the function
15426 symbol from the call attributes. Also return false if ARGS_SIZE_OPNO is
15430 mips_get_pic_call_symbol (rtx
*operands
, int args_size_opno
)
15432 rtx args_size
, symbol
;
15434 if (!TARGET_RELAX_PIC_CALLS
|| args_size_opno
== -1)
15437 args_size
= operands
[args_size_opno
];
15438 if (GET_CODE (args_size
) != UNSPEC
)
15440 gcc_assert (XINT (args_size
, 1) == UNSPEC_CALL_ATTR
);
15442 symbol
= XVECEXP (args_size
, 0, 1);
15443 gcc_assert (GET_CODE (symbol
) == SYMBOL_REF
);
15445 operands
[args_size_opno
] = symbol
;
15449 /* Use DF to annotate PIC indirect calls with the function symbol they
15453 mips_annotate_pic_calls (void)
15458 FOR_EACH_BB_FN (bb
, cfun
)
15459 FOR_BB_INSNS (bb
, insn
)
15461 rtx call
, reg
, symbol
, second_call
;
15464 call
= mips_call_expr_from_insn (insn
, &second_call
);
15467 gcc_assert (MEM_P (XEXP (call
, 0)));
15468 reg
= XEXP (XEXP (call
, 0), 0);
15472 symbol
= mips_find_pic_call_symbol (insn
, reg
, true);
15475 mips_annotate_pic_call_expr (call
, symbol
);
15477 mips_annotate_pic_call_expr (second_call
, symbol
);
15482 /* A temporary variable used by note_uses callbacks, etc. */
15483 static rtx_insn
*mips_sim_insn
;
15485 /* A structure representing the state of the processor pipeline.
15486 Used by the mips_sim_* family of functions. */
15488 /* The maximum number of instructions that can be issued in a cycle.
15489 (Caches mips_issue_rate.) */
15490 unsigned int issue_rate
;
15492 /* The current simulation time. */
15495 /* How many more instructions can be issued in the current cycle. */
15496 unsigned int insns_left
;
15498 /* LAST_SET[X].INSN is the last instruction to set register X.
15499 LAST_SET[X].TIME is the time at which that instruction was issued.
15500 INSN is null if no instruction has yet set register X. */
15504 } last_set
[FIRST_PSEUDO_REGISTER
];
15506 /* The pipeline's current DFA state. */
15510 /* Reset STATE to the initial simulation state. */
15513 mips_sim_reset (struct mips_sim
*state
)
15515 curr_state
= state
->dfa_state
;
15518 state
->insns_left
= state
->issue_rate
;
15519 memset (&state
->last_set
, 0, sizeof (state
->last_set
));
15520 state_reset (curr_state
);
15522 targetm
.sched
.init (0, false, 0);
15523 advance_state (curr_state
);
15526 /* Initialize STATE before its first use. DFA_STATE points to an
15527 allocated but uninitialized DFA state. */
15530 mips_sim_init (struct mips_sim
*state
, state_t dfa_state
)
15532 if (targetm
.sched
.init_dfa_pre_cycle_insn
)
15533 targetm
.sched
.init_dfa_pre_cycle_insn ();
15535 if (targetm
.sched
.init_dfa_post_cycle_insn
)
15536 targetm
.sched
.init_dfa_post_cycle_insn ();
15538 state
->issue_rate
= mips_issue_rate ();
15539 state
->dfa_state
= dfa_state
;
15540 mips_sim_reset (state
);
15543 /* Advance STATE by one clock cycle. */
15546 mips_sim_next_cycle (struct mips_sim
*state
)
15548 curr_state
= state
->dfa_state
;
15551 state
->insns_left
= state
->issue_rate
;
15552 advance_state (curr_state
);
15555 /* Advance simulation state STATE until instruction INSN can read
15559 mips_sim_wait_reg (struct mips_sim
*state
, rtx_insn
*insn
, rtx reg
)
15561 unsigned int regno
, end_regno
;
15563 end_regno
= END_REGNO (reg
);
15564 for (regno
= REGNO (reg
); regno
< end_regno
; regno
++)
15565 if (state
->last_set
[regno
].insn
!= 0)
15569 t
= (state
->last_set
[regno
].time
15570 + insn_latency (state
->last_set
[regno
].insn
, insn
));
15571 while (state
->time
< t
)
15572 mips_sim_next_cycle (state
);
15576 /* A note_uses callback. For each register in *X, advance simulation
15577 state DATA until mips_sim_insn can read the register's value. */
15580 mips_sim_wait_regs_1 (rtx
*x
, void *data
)
15582 subrtx_var_iterator::array_type array
;
15583 FOR_EACH_SUBRTX_VAR (iter
, array
, *x
, NONCONST
)
15585 mips_sim_wait_reg ((struct mips_sim
*) data
, mips_sim_insn
, *iter
);
15588 /* Advance simulation state STATE until all of INSN's register
15589 dependencies are satisfied. */
15592 mips_sim_wait_regs (struct mips_sim
*state
, rtx_insn
*insn
)
15594 mips_sim_insn
= insn
;
15595 note_uses (&PATTERN (insn
), mips_sim_wait_regs_1
, state
);
15598 /* Advance simulation state STATE until the units required by
15599 instruction INSN are available. */
15602 mips_sim_wait_units (struct mips_sim
*state
, rtx_insn
*insn
)
15606 tmp_state
= alloca (state_size ());
15607 while (state
->insns_left
== 0
15608 || (memcpy (tmp_state
, state
->dfa_state
, state_size ()),
15609 state_transition (tmp_state
, insn
) >= 0))
15610 mips_sim_next_cycle (state
);
15613 /* Advance simulation state STATE until INSN is ready to issue. */
15616 mips_sim_wait_insn (struct mips_sim
*state
, rtx_insn
*insn
)
15618 mips_sim_wait_regs (state
, insn
);
15619 mips_sim_wait_units (state
, insn
);
15622 /* mips_sim_insn has just set X. Update the LAST_SET array
15623 in simulation state DATA. */
15626 mips_sim_record_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
15628 struct mips_sim
*state
;
15630 state
= (struct mips_sim
*) data
;
15633 unsigned int regno
, end_regno
;
15635 end_regno
= END_REGNO (x
);
15636 for (regno
= REGNO (x
); regno
< end_regno
; regno
++)
15638 state
->last_set
[regno
].insn
= mips_sim_insn
;
15639 state
->last_set
[regno
].time
= state
->time
;
15644 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
15645 can issue immediately (i.e., that mips_sim_wait_insn has already
15649 mips_sim_issue_insn (struct mips_sim
*state
, rtx_insn
*insn
)
15651 curr_state
= state
->dfa_state
;
15653 state_transition (curr_state
, insn
);
15654 state
->insns_left
= targetm
.sched
.variable_issue (0, false, insn
,
15655 state
->insns_left
);
15657 mips_sim_insn
= insn
;
15658 note_stores (PATTERN (insn
), mips_sim_record_set
, state
);
15661 /* Simulate issuing a NOP in state STATE. */
15664 mips_sim_issue_nop (struct mips_sim
*state
)
15666 if (state
->insns_left
== 0)
15667 mips_sim_next_cycle (state
);
15668 state
->insns_left
--;
15671 /* Update simulation state STATE so that it's ready to accept the instruction
15672 after INSN. INSN should be part of the main rtl chain, not a member of a
15676 mips_sim_finish_insn (struct mips_sim
*state
, rtx_insn
*insn
)
15678 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
15680 mips_sim_issue_nop (state
);
15682 switch (GET_CODE (SEQ_BEGIN (insn
)))
15686 /* We can't predict the processor state after a call or label. */
15687 mips_sim_reset (state
);
15691 /* The delay slots of branch likely instructions are only executed
15692 when the branch is taken. Therefore, if the caller has simulated
15693 the delay slot instruction, STATE does not really reflect the state
15694 of the pipeline for the instruction after the delay slot. Also,
15695 branch likely instructions tend to incur a penalty when not taken,
15696 so there will probably be an extra delay between the branch and
15697 the instruction after the delay slot. */
15698 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn
)))
15699 mips_sim_reset (state
);
15707 /* Use simulator state STATE to calculate the execution time of
15708 instruction sequence SEQ. */
15710 static unsigned int
15711 mips_seq_time (struct mips_sim
*state
, rtx_insn
*seq
)
15713 mips_sim_reset (state
);
15714 for (rtx_insn
*insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
15716 mips_sim_wait_insn (state
, insn
);
15717 mips_sim_issue_insn (state
, insn
);
15719 return state
->time
;
15722 /* Return the execution-time cost of mips_tuning_info.fast_mult_zero_zero_p
15723 setting SETTING, using STATE to simulate instruction sequences. */
15725 static unsigned int
15726 mips_mult_zero_zero_cost (struct mips_sim
*state
, bool setting
)
15728 mips_tuning_info
.fast_mult_zero_zero_p
= setting
;
15731 machine_mode dword_mode
= TARGET_64BIT
? TImode
: DImode
;
15732 rtx hilo
= gen_rtx_REG (dword_mode
, MD_REG_FIRST
);
15733 mips_emit_move_or_split (hilo
, const0_rtx
, SPLIT_FOR_SPEED
);
15735 /* If the target provides mulsidi3_32bit then that's the most likely
15736 consumer of the result. Test for bypasses. */
15737 if (dword_mode
== DImode
&& HAVE_maddsidi4
)
15739 rtx gpr
= gen_rtx_REG (SImode
, GP_REG_FIRST
+ 4);
15740 emit_insn (gen_maddsidi4 (hilo
, gpr
, gpr
, hilo
));
15743 unsigned int time
= mips_seq_time (state
, get_insns ());
15748 /* Check the relative speeds of "MULT $0,$0" and "MTLO $0; MTHI $0"
15749 and set up mips_tuning_info.fast_mult_zero_zero_p accordingly.
15750 Prefer MULT -- which is shorter -- in the event of a tie. */
15753 mips_set_fast_mult_zero_zero_p (struct mips_sim
*state
)
15756 /* No MTLO or MTHI available. */
15757 mips_tuning_info
.fast_mult_zero_zero_p
= true;
15760 unsigned int true_time
= mips_mult_zero_zero_cost (state
, true);
15761 unsigned int false_time
= mips_mult_zero_zero_cost (state
, false);
15762 mips_tuning_info
.fast_mult_zero_zero_p
= (true_time
<= false_time
);
15766 /* Set up costs based on the current architecture and tuning settings. */
15769 mips_set_tuning_info (void)
15771 if (mips_tuning_info
.initialized_p
15772 && mips_tuning_info
.arch
== mips_arch
15773 && mips_tuning_info
.tune
== mips_tune
15774 && mips_tuning_info
.mips16_p
== TARGET_MIPS16
)
15777 mips_tuning_info
.arch
= mips_arch
;
15778 mips_tuning_info
.tune
= mips_tune
;
15779 mips_tuning_info
.mips16_p
= TARGET_MIPS16
;
15780 mips_tuning_info
.initialized_p
= true;
15784 struct mips_sim state
;
15785 mips_sim_init (&state
, alloca (state_size ()));
15787 mips_set_fast_mult_zero_zero_p (&state
);
15792 /* Implement TARGET_EXPAND_TO_RTL_HOOK. */
15795 mips_expand_to_rtl_hook (void)
15797 /* We need to call this at a point where we can safely create sequences
15798 of instructions, so TARGET_OVERRIDE_OPTIONS is too early. We also
15799 need to call it at a point where the DFA infrastructure is not
15800 already in use, so we can't just call it lazily on demand.
15802 At present, mips_tuning_info is only needed during post-expand
15803 RTL passes such as split_insns, so this hook should be early enough.
15804 We may need to move the call elsewhere if mips_tuning_info starts
15805 to be used for other things (such as rtx_costs, or expanders that
15806 could be called during gimple optimization). */
15807 mips_set_tuning_info ();
15810 /* The VR4130 pipeline issues aligned pairs of instructions together,
15811 but it stalls the second instruction if it depends on the first.
15812 In order to cut down the amount of logic required, this dependence
15813 check is not based on a full instruction decode. Instead, any non-SPECIAL
15814 instruction is assumed to modify the register specified by bits 20-16
15815 (which is usually the "rt" field).
15817 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
15818 input, so we can end up with a false dependence between the branch
15819 and its delay slot. If this situation occurs in instruction INSN,
15820 try to avoid it by swapping rs and rt. */
15823 vr4130_avoid_branch_rt_conflict (rtx_insn
*insn
)
15825 rtx_insn
*first
, *second
;
15827 first
= SEQ_BEGIN (insn
);
15828 second
= SEQ_END (insn
);
15830 && NONJUMP_INSN_P (second
)
15831 && GET_CODE (PATTERN (first
)) == SET
15832 && GET_CODE (SET_DEST (PATTERN (first
))) == PC
15833 && GET_CODE (SET_SRC (PATTERN (first
))) == IF_THEN_ELSE
)
15835 /* Check for the right kind of condition. */
15836 rtx cond
= XEXP (SET_SRC (PATTERN (first
)), 0);
15837 if ((GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
15838 && REG_P (XEXP (cond
, 0))
15839 && REG_P (XEXP (cond
, 1))
15840 && reg_referenced_p (XEXP (cond
, 1), PATTERN (second
))
15841 && !reg_referenced_p (XEXP (cond
, 0), PATTERN (second
)))
15843 /* SECOND mentions the rt register but not the rs register. */
15844 rtx tmp
= XEXP (cond
, 0);
15845 XEXP (cond
, 0) = XEXP (cond
, 1);
15846 XEXP (cond
, 1) = tmp
;
15851 /* Implement -mvr4130-align. Go through each basic block and simulate the
15852 processor pipeline. If we find that a pair of instructions could execute
15853 in parallel, and the first of those instructions is not 8-byte aligned,
15854 insert a nop to make it aligned. */
15857 vr4130_align_insns (void)
15859 struct mips_sim state
;
15860 rtx_insn
*insn
, *subinsn
, *last
, *last2
, *next
;
15865 /* LAST is the last instruction before INSN to have a nonzero length.
15866 LAST2 is the last such instruction before LAST. */
15870 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
15873 mips_sim_init (&state
, alloca (state_size ()));
15874 for (insn
= get_insns (); insn
!= 0; insn
= next
)
15876 unsigned int length
;
15878 next
= NEXT_INSN (insn
);
15880 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
15881 This isn't really related to the alignment pass, but we do it on
15882 the fly to avoid a separate instruction walk. */
15883 vr4130_avoid_branch_rt_conflict (insn
);
15885 length
= get_attr_length (insn
);
15886 if (length
> 0 && USEFUL_INSN_P (insn
))
15887 FOR_EACH_SUBINSN (subinsn
, insn
)
15889 mips_sim_wait_insn (&state
, subinsn
);
15891 /* If we want this instruction to issue in parallel with the
15892 previous one, make sure that the previous instruction is
15893 aligned. There are several reasons why this isn't worthwhile
15894 when the second instruction is a call:
15896 - Calls are less likely to be performance critical,
15897 - There's a good chance that the delay slot can execute
15898 in parallel with the call.
15899 - The return address would then be unaligned.
15901 In general, if we're going to insert a nop between instructions
15902 X and Y, it's better to insert it immediately after X. That
15903 way, if the nop makes Y aligned, it will also align any labels
15904 between X and Y. */
15905 if (state
.insns_left
!= state
.issue_rate
15906 && !CALL_P (subinsn
))
15908 if (subinsn
== SEQ_BEGIN (insn
) && aligned_p
)
15910 /* SUBINSN is the first instruction in INSN and INSN is
15911 aligned. We want to align the previous instruction
15912 instead, so insert a nop between LAST2 and LAST.
15914 Note that LAST could be either a single instruction
15915 or a branch with a delay slot. In the latter case,
15916 LAST, like INSN, is already aligned, but the delay
15917 slot must have some extra delay that stops it from
15918 issuing at the same time as the branch. We therefore
15919 insert a nop before the branch in order to align its
15921 gcc_assert (last2
);
15922 emit_insn_after (gen_nop (), last2
);
15925 else if (subinsn
!= SEQ_BEGIN (insn
) && !aligned_p
)
15927 /* SUBINSN is the delay slot of INSN, but INSN is
15928 currently unaligned. Insert a nop between
15929 LAST and INSN to align it. */
15931 emit_insn_after (gen_nop (), last
);
15935 mips_sim_issue_insn (&state
, subinsn
);
15937 mips_sim_finish_insn (&state
, insn
);
15939 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
15940 length
= get_attr_length (insn
);
15943 /* If the instruction is an asm statement or multi-instruction
15944 mips.md patern, the length is only an estimate. Insert an
15945 8 byte alignment after it so that the following instructions
15946 can be handled correctly. */
15947 if (NONJUMP_INSN_P (SEQ_BEGIN (insn
))
15948 && (recog_memoized (insn
) < 0 || length
>= 8))
15950 next
= emit_insn_after (gen_align (GEN_INT (3)), insn
);
15951 next
= NEXT_INSN (next
);
15952 mips_sim_next_cycle (&state
);
15955 else if (length
& 4)
15956 aligned_p
= !aligned_p
;
15961 /* See whether INSN is an aligned label. */
15962 if (LABEL_P (insn
) && label_to_alignment (insn
) >= 3)
15968 /* This structure records that the current function has a LO_SUM
15969 involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
15970 the largest offset applied to BASE by all such LO_SUMs. */
15971 struct mips_lo_sum_offset
{
15973 HOST_WIDE_INT offset
;
15976 /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
15979 mips_hash_base (rtx base
)
15981 int do_not_record_p
;
15983 return hash_rtx (base
, GET_MODE (base
), &do_not_record_p
, NULL
, false);
15986 /* Hashtable helpers. */
15988 struct mips_lo_sum_offset_hasher
: typed_free_remove
<mips_lo_sum_offset
>
15990 typedef mips_lo_sum_offset value_type
;
15991 typedef rtx_def compare_type
;
15992 static inline hashval_t
hash (const value_type
*);
15993 static inline bool equal (const value_type
*, const compare_type
*);
15996 /* Hash-table callbacks for mips_lo_sum_offsets. */
15999 mips_lo_sum_offset_hasher::hash (const value_type
*entry
)
16001 return mips_hash_base (entry
->base
);
16005 mips_lo_sum_offset_hasher::equal (const value_type
*entry
,
16006 const compare_type
*value
)
16008 return rtx_equal_p (entry
->base
, value
);
16011 typedef hash_table
<mips_lo_sum_offset_hasher
> mips_offset_table
;
16013 /* Look up symbolic constant X in HTAB, which is a hash table of
16014 mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
16015 paired with a recorded LO_SUM, otherwise record X in the table. */
16018 mips_lo_sum_offset_lookup (mips_offset_table
*htab
, rtx x
,
16019 enum insert_option option
)
16022 mips_lo_sum_offset
**slot
;
16023 struct mips_lo_sum_offset
*entry
;
16025 /* Split X into a base and offset. */
16026 split_const (x
, &base
, &offset
);
16027 if (UNSPEC_ADDRESS_P (base
))
16028 base
= UNSPEC_ADDRESS (base
);
16030 /* Look up the base in the hash table. */
16031 slot
= htab
->find_slot_with_hash (base
, mips_hash_base (base
), option
);
16035 entry
= (struct mips_lo_sum_offset
*) *slot
;
16036 if (option
== INSERT
)
16040 entry
= XNEW (struct mips_lo_sum_offset
);
16041 entry
->base
= base
;
16042 entry
->offset
= INTVAL (offset
);
16047 if (INTVAL (offset
) > entry
->offset
)
16048 entry
->offset
= INTVAL (offset
);
16051 return INTVAL (offset
) <= entry
->offset
;
16054 /* Search X for LO_SUMs and record them in HTAB. */
16057 mips_record_lo_sums (const_rtx x
, mips_offset_table
*htab
)
16059 subrtx_iterator::array_type array
;
16060 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
16061 if (GET_CODE (*iter
) == LO_SUM
)
16062 mips_lo_sum_offset_lookup (htab
, XEXP (*iter
, 1), INSERT
);
16065 /* Return true if INSN is a SET of an orphaned high-part relocation.
16066 HTAB is a hash table of mips_lo_sum_offsets that describes all the
16067 LO_SUMs in the current function. */
16070 mips_orphaned_high_part_p (mips_offset_table
*htab
, rtx_insn
*insn
)
16072 enum mips_symbol_type type
;
16075 set
= single_set (insn
);
16078 /* Check for %his. */
16080 if (GET_CODE (x
) == HIGH
16081 && absolute_symbolic_operand (XEXP (x
, 0), VOIDmode
))
16082 return !mips_lo_sum_offset_lookup (htab
, XEXP (x
, 0), NO_INSERT
);
16084 /* Check for local %gots (and %got_pages, which is redundant but OK). */
16085 if (GET_CODE (x
) == UNSPEC
16086 && XINT (x
, 1) == UNSPEC_LOAD_GOT
16087 && mips_symbolic_constant_p (XVECEXP (x
, 0, 1),
16088 SYMBOL_CONTEXT_LEA
, &type
)
16089 && type
== SYMBOL_GOTOFF_PAGE
)
16090 return !mips_lo_sum_offset_lookup (htab
, XVECEXP (x
, 0, 1), NO_INSERT
);
16095 /* Subroutine of mips_reorg_process_insns. If there is a hazard between
16096 INSN and a previous instruction, avoid it by inserting nops after
16099 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
16100 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
16101 before using the value of that register. *HILO_DELAY counts the
16102 number of instructions since the last hilo hazard (that is,
16103 the number of instructions since the last MFLO or MFHI).
16105 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
16106 for the next instruction.
16108 LO_REG is an rtx for the LO register, used in dependence checking. */
16111 mips_avoid_hazard (rtx_insn
*after
, rtx_insn
*insn
, int *hilo_delay
,
16112 rtx
*delayed_reg
, rtx lo_reg
)
16117 pattern
= PATTERN (insn
);
16119 /* Do not put the whole function in .set noreorder if it contains
16120 an asm statement. We don't know whether there will be hazards
16121 between the asm statement and the gcc-generated code. */
16122 if (GET_CODE (pattern
) == ASM_INPUT
|| asm_noperands (pattern
) >= 0)
16123 cfun
->machine
->all_noreorder_p
= false;
16125 /* Ignore zero-length instructions (barriers and the like). */
16126 ninsns
= get_attr_length (insn
) / 4;
16130 /* Work out how many nops are needed. Note that we only care about
16131 registers that are explicitly mentioned in the instruction's pattern.
16132 It doesn't matter that calls use the argument registers or that they
16133 clobber hi and lo. */
16134 if (*hilo_delay
< 2 && reg_set_p (lo_reg
, pattern
))
16135 nops
= 2 - *hilo_delay
;
16136 else if (*delayed_reg
!= 0 && reg_referenced_p (*delayed_reg
, pattern
))
16141 /* Insert the nops between this instruction and the previous one.
16142 Each new nop takes us further from the last hilo hazard. */
16143 *hilo_delay
+= nops
;
16145 emit_insn_after (gen_hazard_nop (), after
);
16147 /* Set up the state for the next instruction. */
16148 *hilo_delay
+= ninsns
;
16150 if (INSN_CODE (insn
) >= 0)
16151 switch (get_attr_hazard (insn
))
16161 set
= single_set (insn
);
16163 *delayed_reg
= SET_DEST (set
);
16168 /* Go through the instruction stream and insert nops where necessary.
16169 Also delete any high-part relocations whose partnering low parts
16170 are now all dead. See if the whole function can then be put into
16171 .set noreorder and .set nomacro. */
16174 mips_reorg_process_insns (void)
16176 rtx_insn
*insn
, *last_insn
, *subinsn
, *next_insn
;
16177 rtx lo_reg
, delayed_reg
;
16180 /* Force all instructions to be split into their final form. */
16181 split_all_insns_noflow ();
16183 /* Recalculate instruction lengths without taking nops into account. */
16184 cfun
->machine
->ignore_hazard_length_p
= true;
16185 shorten_branches (get_insns ());
16187 cfun
->machine
->all_noreorder_p
= true;
16189 /* We don't track MIPS16 PC-relative offsets closely enough to make
16190 a good job of "set .noreorder" code in MIPS16 mode. */
16192 cfun
->machine
->all_noreorder_p
= false;
16194 /* Code that doesn't use explicit relocs can't be ".set nomacro". */
16195 if (!TARGET_EXPLICIT_RELOCS
)
16196 cfun
->machine
->all_noreorder_p
= false;
16198 /* Profiled functions can't be all noreorder because the profiler
16199 support uses assembler macros. */
16201 cfun
->machine
->all_noreorder_p
= false;
16203 /* Code compiled with -mfix-vr4120, -mfix-rm7000 or -mfix-24k can't be
16204 all noreorder because we rely on the assembler to work around some
16205 errata. The R5900 too has several bugs. */
16206 if (TARGET_FIX_VR4120
16207 || TARGET_FIX_RM7000
16209 || TARGET_MIPS5900
)
16210 cfun
->machine
->all_noreorder_p
= false;
16212 /* The same is true for -mfix-vr4130 if we might generate MFLO or
16213 MFHI instructions. Note that we avoid using MFLO and MFHI if
16214 the VR4130 MACC and DMACC instructions are available instead;
16215 see the *mfhilo_{si,di}_macc patterns. */
16216 if (TARGET_FIX_VR4130
&& !ISA_HAS_MACCHI
)
16217 cfun
->machine
->all_noreorder_p
= false;
16219 mips_offset_table
htab (37);
16221 /* Make a first pass over the instructions, recording all the LO_SUMs. */
16222 for (insn
= get_insns (); insn
!= 0; insn
= NEXT_INSN (insn
))
16223 FOR_EACH_SUBINSN (subinsn
, insn
)
16224 if (USEFUL_INSN_P (subinsn
))
16226 rtx body
= PATTERN (insn
);
16227 int noperands
= asm_noperands (body
);
16228 if (noperands
>= 0)
16230 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
16231 bool *used
= XALLOCAVEC (bool, noperands
);
16232 const char *string
= decode_asm_operands (body
, ops
, NULL
, NULL
,
16234 get_referenced_operands (string
, used
, noperands
);
16235 for (int i
= 0; i
< noperands
; ++i
)
16237 mips_record_lo_sums (ops
[i
], &htab
);
16240 mips_record_lo_sums (PATTERN (subinsn
), &htab
);
16246 lo_reg
= gen_rtx_REG (SImode
, LO_REGNUM
);
16248 /* Make a second pass over the instructions. Delete orphaned
16249 high-part relocations or turn them into NOPs. Avoid hazards
16250 by inserting NOPs. */
16251 for (insn
= get_insns (); insn
!= 0; insn
= next_insn
)
16253 next_insn
= NEXT_INSN (insn
);
16254 if (USEFUL_INSN_P (insn
))
16256 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
16258 /* If we find an orphaned high-part relocation in a delay
16259 slot, it's easier to turn that instruction into a NOP than
16260 to delete it. The delay slot will be a NOP either way. */
16261 FOR_EACH_SUBINSN (subinsn
, insn
)
16262 if (INSN_P (subinsn
))
16264 if (mips_orphaned_high_part_p (&htab
, subinsn
))
16266 PATTERN (subinsn
) = gen_nop ();
16267 INSN_CODE (subinsn
) = CODE_FOR_nop
;
16269 mips_avoid_hazard (last_insn
, subinsn
, &hilo_delay
,
16270 &delayed_reg
, lo_reg
);
16276 /* INSN is a single instruction. Delete it if it's an
16277 orphaned high-part relocation. */
16278 if (mips_orphaned_high_part_p (&htab
, insn
))
16279 delete_insn (insn
);
16280 /* Also delete cache barriers if the last instruction
16281 was an annulled branch. INSN will not be speculatively
16283 else if (recog_memoized (insn
) == CODE_FOR_r10k_cache_barrier
16285 && JUMP_P (SEQ_BEGIN (last_insn
))
16286 && INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn
)))
16287 delete_insn (insn
);
16290 mips_avoid_hazard (last_insn
, insn
, &hilo_delay
,
16291 &delayed_reg
, lo_reg
);
16299 /* Return true if the function has a long branch instruction. */
16302 mips_has_long_branch_p (void)
16304 rtx_insn
*insn
, *subinsn
;
16307 /* We need up-to-date instruction lengths. */
16308 shorten_branches (get_insns ());
16310 /* Look for a branch that is longer than normal. The normal length for
16311 non-MIPS16 branches is 8, because the length includes the delay slot.
16312 It is 4 for MIPS16, because MIPS16 branches are extended instructions,
16313 but they have no delay slot. */
16314 normal_length
= (TARGET_MIPS16
? 4 : 8);
16315 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
16316 FOR_EACH_SUBINSN (subinsn
, insn
)
16317 if (JUMP_P (subinsn
)
16318 && get_attr_length (subinsn
) > normal_length
16319 && (any_condjump_p (subinsn
) || any_uncondjump_p (subinsn
)))
16325 /* If we are using a GOT, but have not decided to use a global pointer yet,
16326 see whether we need one to implement long branches. Convert the ghost
16327 global-pointer instructions into real ones if so. */
16330 mips_expand_ghost_gp_insns (void)
16332 /* Quick exit if we already know that we will or won't need a
16334 if (!TARGET_USE_GOT
16335 || cfun
->machine
->global_pointer
== INVALID_REGNUM
16336 || mips_must_initialize_gp_p ())
16339 /* Run a full check for long branches. */
16340 if (!mips_has_long_branch_p ())
16343 /* We've now established that we need $gp. */
16344 cfun
->machine
->must_initialize_gp_p
= true;
16345 split_all_insns_noflow ();
16350 /* Subroutine of mips_reorg to manage passes that require DF. */
16353 mips_df_reorg (void)
16355 /* Create def-use chains. */
16356 df_set_flags (DF_EQ_NOTES
);
16357 df_chain_add_problem (DF_UD_CHAIN
);
16360 if (TARGET_RELAX_PIC_CALLS
)
16361 mips_annotate_pic_calls ();
16363 if (mips_r10k_cache_barrier
!= R10K_CACHE_BARRIER_NONE
)
16364 r10k_insert_cache_barriers ();
16366 df_finish_pass (false);
16369 /* Emit code to load LABEL_REF SRC into MIPS16 register DEST. This is
16370 called very late in mips_reorg, but the caller is required to run
16371 mips16_lay_out_constants on the result. */
16374 mips16_load_branch_target (rtx dest
, rtx src
)
16376 if (TARGET_ABICALLS
&& !TARGET_ABSOLUTE_ABICALLS
)
16380 if (mips_cfun_has_cprestore_slot_p ())
16381 mips_emit_move (dest
, mips_cprestore_slot (dest
, true));
16383 mips_emit_move (dest
, pic_offset_table_rtx
);
16384 page
= mips_unspec_address (src
, SYMBOL_GOTOFF_PAGE
);
16385 low
= mips_unspec_address (src
, SYMBOL_GOT_PAGE_OFST
);
16386 emit_insn (gen_rtx_SET (VOIDmode
, dest
,
16387 PMODE_INSN (gen_unspec_got
, (dest
, page
))));
16388 emit_insn (gen_rtx_SET (VOIDmode
, dest
,
16389 gen_rtx_LO_SUM (Pmode
, dest
, low
)));
16393 src
= mips_unspec_address (src
, SYMBOL_ABSOLUTE
);
16394 mips_emit_move (dest
, src
);
16398 /* If we're compiling a MIPS16 function, look for and split any long branches.
16399 This must be called after all other instruction modifications in
16403 mips16_split_long_branches (void)
16405 bool something_changed
;
16407 if (!TARGET_MIPS16
)
16410 /* Loop until the alignments for all targets are sufficient. */
16415 shorten_branches (get_insns ());
16416 something_changed
= false;
16417 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
16419 && get_attr_length (insn
) > 4
16420 && (any_condjump_p (insn
) || any_uncondjump_p (insn
)))
16422 rtx old_label
, temp
, saved_temp
;
16423 rtx_code_label
*new_label
;
16425 rtx_insn
*jump
, *jump_sequence
;
16429 /* Free up a MIPS16 register by saving it in $1. */
16430 saved_temp
= gen_rtx_REG (Pmode
, AT_REGNUM
);
16431 temp
= gen_rtx_REG (Pmode
, GP_REG_FIRST
+ 2);
16432 emit_move_insn (saved_temp
, temp
);
16434 /* Load the branch target into TEMP. */
16435 old_label
= JUMP_LABEL (insn
);
16436 target
= gen_rtx_LABEL_REF (Pmode
, old_label
);
16437 mips16_load_branch_target (temp
, target
);
16439 /* Jump to the target and restore the register's
16441 jump
= emit_jump_insn (PMODE_INSN (gen_indirect_jump_and_restore
,
16442 (temp
, temp
, saved_temp
)));
16443 JUMP_LABEL (jump
) = old_label
;
16444 LABEL_NUSES (old_label
)++;
16446 /* Rewrite any symbolic references that are supposed to use
16447 a PC-relative constant pool. */
16448 mips16_lay_out_constants (false);
16450 if (simplejump_p (insn
))
16451 /* We're going to replace INSN with a longer form. */
16455 /* Create a branch-around label for the original
16457 new_label
= gen_label_rtx ();
16458 emit_label (new_label
);
16461 jump_sequence
= get_insns ();
16464 emit_insn_after (jump_sequence
, insn
);
16466 invert_jump (insn
, new_label
, false);
16468 delete_insn (insn
);
16469 something_changed
= true;
16472 while (something_changed
);
16475 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
16480 /* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. Also during
16481 insn splitting in mips16_lay_out_constants, DF insn info is only kept up
16482 to date if the CFG is available. */
16483 if (mips_cfg_in_reorg ())
16484 compute_bb_for_insn ();
16485 mips16_lay_out_constants (true);
16486 if (mips_cfg_in_reorg ())
16489 free_bb_for_insn ();
16493 /* We use a machine specific pass to do a second machine dependent reorg
16494 pass after delay branch scheduling. */
16496 static unsigned int
16497 mips_machine_reorg2 (void)
16499 mips_reorg_process_insns ();
16501 && TARGET_EXPLICIT_RELOCS
16503 && TARGET_VR4130_ALIGN
)
16504 vr4130_align_insns ();
16505 if (mips_expand_ghost_gp_insns ())
16506 /* The expansion could invalidate some of the VR4130 alignment
16507 optimizations, but this should be an extremely rare case anyhow. */
16508 mips_reorg_process_insns ();
16509 mips16_split_long_branches ();
16515 const pass_data pass_data_mips_machine_reorg2
=
16517 RTL_PASS
, /* type */
16518 "mach2", /* name */
16519 OPTGROUP_NONE
, /* optinfo_flags */
16520 TV_MACH_DEP
, /* tv_id */
16521 0, /* properties_required */
16522 0, /* properties_provided */
16523 0, /* properties_destroyed */
16524 0, /* todo_flags_start */
16525 0, /* todo_flags_finish */
16528 class pass_mips_machine_reorg2
: public rtl_opt_pass
16531 pass_mips_machine_reorg2(gcc::context
*ctxt
)
16532 : rtl_opt_pass(pass_data_mips_machine_reorg2
, ctxt
)
16535 /* opt_pass methods: */
16536 virtual unsigned int execute (function
*) { return mips_machine_reorg2 (); }
16538 }; // class pass_mips_machine_reorg2
16540 } // anon namespace
16543 make_pass_mips_machine_reorg2 (gcc::context
*ctxt
)
16545 return new pass_mips_machine_reorg2 (ctxt
);
16549 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
16550 in order to avoid duplicating too much logic from elsewhere. */
16553 mips_output_mi_thunk (FILE *file
, tree thunk_fndecl ATTRIBUTE_UNUSED
,
16554 HOST_WIDE_INT delta
, HOST_WIDE_INT vcall_offset
,
16557 rtx this_rtx
, temp1
, temp2
, fnaddr
;
16559 bool use_sibcall_p
;
16561 /* Pretend to be a post-reload pass while generating rtl. */
16562 reload_completed
= 1;
16564 /* Mark the end of the (empty) prologue. */
16565 emit_note (NOTE_INSN_PROLOGUE_END
);
16567 /* Determine if we can use a sibcall to call FUNCTION directly. */
16568 fnaddr
= XEXP (DECL_RTL (function
), 0);
16569 use_sibcall_p
= (mips_function_ok_for_sibcall (function
, NULL
)
16570 && const_call_insn_operand (fnaddr
, Pmode
));
16572 /* Determine if we need to load FNADDR from the GOT. */
16574 && (mips_got_symbol_type_p
16575 (mips_classify_symbol (fnaddr
, SYMBOL_CONTEXT_LEA
))))
16577 /* Pick a global pointer. Use a call-clobbered register if
16578 TARGET_CALL_SAVED_GP. */
16579 cfun
->machine
->global_pointer
16580 = TARGET_CALL_SAVED_GP
? 15 : GLOBAL_POINTER_REGNUM
;
16581 cfun
->machine
->must_initialize_gp_p
= true;
16582 SET_REGNO (pic_offset_table_rtx
, cfun
->machine
->global_pointer
);
16584 /* Set up the global pointer for n32 or n64 abicalls. */
16585 mips_emit_loadgp ();
16588 /* We need two temporary registers in some cases. */
16589 temp1
= gen_rtx_REG (Pmode
, 2);
16590 temp2
= gen_rtx_REG (Pmode
, 3);
16592 /* Find out which register contains the "this" pointer. */
16593 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function
)), function
))
16594 this_rtx
= gen_rtx_REG (Pmode
, GP_ARG_FIRST
+ 1);
16596 this_rtx
= gen_rtx_REG (Pmode
, GP_ARG_FIRST
);
16598 /* Add DELTA to THIS_RTX. */
16601 rtx offset
= GEN_INT (delta
);
16602 if (!SMALL_OPERAND (delta
))
16604 mips_emit_move (temp1
, offset
);
16607 emit_insn (gen_add3_insn (this_rtx
, this_rtx
, offset
));
16610 /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
16611 if (vcall_offset
!= 0)
16615 /* Set TEMP1 to *THIS_RTX. */
16616 mips_emit_move (temp1
, gen_rtx_MEM (Pmode
, this_rtx
));
16618 /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
16619 addr
= mips_add_offset (temp2
, temp1
, vcall_offset
);
16621 /* Load the offset and add it to THIS_RTX. */
16622 mips_emit_move (temp1
, gen_rtx_MEM (Pmode
, addr
));
16623 emit_insn (gen_add3_insn (this_rtx
, this_rtx
, temp1
));
16626 /* Jump to the target function. Use a sibcall if direct jumps are
16627 allowed, otherwise load the address into a register first. */
16630 insn
= emit_call_insn (gen_sibcall_internal (fnaddr
, const0_rtx
));
16631 SIBLING_CALL_P (insn
) = 1;
16635 /* This is messy. GAS treats "la $25,foo" as part of a call
16636 sequence and may allow a global "foo" to be lazily bound.
16637 The general move patterns therefore reject this combination.
16639 In this context, lazy binding would actually be OK
16640 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
16641 TARGET_CALL_SAVED_GP; see mips_load_call_address.
16642 We must therefore load the address via a temporary
16643 register if mips_dangerous_for_la25_p.
16645 If we jump to the temporary register rather than $25,
16646 the assembler can use the move insn to fill the jump's
16649 We can use the same technique for MIPS16 code, where $25
16650 is not a valid JR register. */
16651 if (TARGET_USE_PIC_FN_ADDR_REG
16653 && !mips_dangerous_for_la25_p (fnaddr
))
16654 temp1
= gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
);
16655 mips_load_call_address (MIPS_CALL_SIBCALL
, temp1
, fnaddr
);
16657 if (TARGET_USE_PIC_FN_ADDR_REG
16658 && REGNO (temp1
) != PIC_FUNCTION_ADDR_REGNUM
)
16659 mips_emit_move (gen_rtx_REG (Pmode
, PIC_FUNCTION_ADDR_REGNUM
), temp1
);
16660 emit_jump_insn (gen_indirect_jump (temp1
));
16663 /* Run just enough of rest_of_compilation. This sequence was
16664 "borrowed" from alpha.c. */
16665 insn
= get_insns ();
16666 split_all_insns_noflow ();
16667 mips16_lay_out_constants (true);
16668 shorten_branches (insn
);
16669 final_start_function (insn
, file
, 1);
16670 final (insn
, file
, 1);
16671 final_end_function ();
16673 /* Clean up the vars set above. Note that final_end_function resets
16674 the global pointer for us. */
16675 reload_completed
= 0;
16679 /* The last argument passed to mips_set_compression_mode,
16680 or negative if the function hasn't been called yet. */
16681 static unsigned int old_compression_mode
= -1;
16683 /* Set up the target-dependent global state for ISA mode COMPRESSION_MODE,
16684 which is either MASK_MIPS16 or MASK_MICROMIPS. */
16687 mips_set_compression_mode (unsigned int compression_mode
)
16690 if (compression_mode
== old_compression_mode
)
16693 /* Restore base settings of various flags. */
16694 target_flags
= mips_base_target_flags
;
16695 flag_schedule_insns
= mips_base_schedule_insns
;
16696 flag_reorder_blocks_and_partition
= mips_base_reorder_blocks_and_partition
;
16697 flag_move_loop_invariants
= mips_base_move_loop_invariants
;
16698 align_loops
= mips_base_align_loops
;
16699 align_jumps
= mips_base_align_jumps
;
16700 align_functions
= mips_base_align_functions
;
16701 target_flags
&= ~(MASK_MIPS16
| MASK_MICROMIPS
);
16702 target_flags
|= compression_mode
;
16704 if (compression_mode
& MASK_MIPS16
)
16706 /* Switch to MIPS16 mode. */
16707 target_flags
|= MASK_MIPS16
;
16709 /* Turn off SYNCI if it was on, MIPS16 doesn't support it. */
16710 target_flags
&= ~MASK_SYNCI
;
16712 /* Don't run the scheduler before reload, since it tends to
16713 increase register pressure. */
16714 flag_schedule_insns
= 0;
16716 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
16717 the whole function to be in a single section. */
16718 flag_reorder_blocks_and_partition
= 0;
16720 /* Don't move loop invariants, because it tends to increase
16721 register pressure. It also introduces an extra move in cases
16722 where the constant is the first operand in a two-operand binary
16723 instruction, or when it forms a register argument to a functon
16725 flag_move_loop_invariants
= 0;
16727 target_flags
|= MASK_EXPLICIT_RELOCS
;
16729 /* Experiments suggest we get the best overall section-anchor
16730 results from using the range of an unextended LW or SW. Code
16731 that makes heavy use of byte or short accesses can do better
16732 with ranges of 0...31 and 0...63 respectively, but most code is
16733 sensitive to the range of LW and SW instead. */
16734 targetm
.min_anchor_offset
= 0;
16735 targetm
.max_anchor_offset
= 127;
16737 targetm
.const_anchor
= 0;
16739 /* MIPS16 has no BAL instruction. */
16740 target_flags
&= ~MASK_RELAX_PIC_CALLS
;
16742 /* The R4000 errata don't apply to any known MIPS16 cores.
16743 It's simpler to make the R4000 fixes and MIPS16 mode
16744 mutually exclusive. */
16745 target_flags
&= ~MASK_FIX_R4000
;
16747 if (flag_pic
&& !TARGET_OLDABI
)
16748 sorry ("MIPS16 PIC for ABIs other than o32 and o64");
16751 sorry ("MIPS16 -mxgot code");
16753 if (TARGET_HARD_FLOAT_ABI
&& !TARGET_OLDABI
)
16754 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
16758 /* Switch to microMIPS or the standard encoding. */
16760 if (TARGET_MICROMIPS
)
16761 /* Avoid branch likely. */
16762 target_flags
&= ~MASK_BRANCHLIKELY
;
16764 /* Provide default values for align_* for 64-bit targets. */
16767 if (align_loops
== 0)
16769 if (align_jumps
== 0)
16771 if (align_functions
== 0)
16772 align_functions
= 8;
16775 targetm
.min_anchor_offset
= -32768;
16776 targetm
.max_anchor_offset
= 32767;
16778 targetm
.const_anchor
= 0x8000;
16781 /* (Re)initialize MIPS target internals for new ISA. */
16782 mips_init_relocs ();
16784 if (compression_mode
& MASK_MIPS16
)
16786 if (!mips16_globals
)
16787 mips16_globals
= save_target_globals_default_opts ();
16789 restore_target_globals (mips16_globals
);
16792 restore_target_globals (&default_target_globals
);
16794 old_compression_mode
= compression_mode
;
16797 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
16798 function should use the MIPS16 or microMIPS ISA and switch modes
16802 mips_set_current_function (tree fndecl
)
16804 mips_set_compression_mode (mips_get_compress_mode (fndecl
));
16807 /* Allocate a chunk of memory for per-function machine-dependent data. */
16809 static struct machine_function
*
16810 mips_init_machine_status (void)
16812 return ggc_cleared_alloc
<machine_function
> ();
16815 /* Return the processor associated with the given ISA level, or null
16816 if the ISA isn't valid. */
16818 static const struct mips_cpu_info
*
16819 mips_cpu_info_from_isa (int isa
)
16823 for (i
= 0; i
< ARRAY_SIZE (mips_cpu_info_table
); i
++)
16824 if (mips_cpu_info_table
[i
].isa
== isa
)
16825 return mips_cpu_info_table
+ i
;
16830 /* Return a mips_cpu_info entry determined by an option valued
16833 static const struct mips_cpu_info
*
16834 mips_cpu_info_from_opt (int opt
)
16838 case MIPS_ARCH_OPTION_FROM_ABI
:
16839 /* 'from-abi' selects the most compatible architecture for the
16840 given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit
16841 ABIs. For the EABIs, we have to decide whether we're using
16842 the 32-bit or 64-bit version. */
16843 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS
? 1
16844 : ABI_NEEDS_64BIT_REGS
? 3
16845 : (TARGET_64BIT
? 3 : 1));
16847 case MIPS_ARCH_OPTION_NATIVE
:
16848 gcc_unreachable ();
16851 return &mips_cpu_info_table
[opt
];
16855 /* Return a default mips_cpu_info entry, given that no -march= option
16856 was explicitly specified. */
16858 static const struct mips_cpu_info
*
16859 mips_default_arch (void)
16861 #if defined (MIPS_CPU_STRING_DEFAULT)
16863 for (i
= 0; i
< ARRAY_SIZE (mips_cpu_info_table
); i
++)
16864 if (strcmp (mips_cpu_info_table
[i
].name
, MIPS_CPU_STRING_DEFAULT
) == 0)
16865 return mips_cpu_info_table
+ i
;
16866 gcc_unreachable ();
16867 #elif defined (MIPS_ISA_DEFAULT)
16868 return mips_cpu_info_from_isa (MIPS_ISA_DEFAULT
);
16870 /* 'from-abi' makes a good default: you get whatever the ABI
16872 return mips_cpu_info_from_opt (MIPS_ARCH_OPTION_FROM_ABI
);
16876 /* Set up globals to generate code for the ISA or processor
16877 described by INFO. */
16880 mips_set_architecture (const struct mips_cpu_info
*info
)
16884 mips_arch_info
= info
;
16885 mips_arch
= info
->cpu
;
16886 mips_isa
= info
->isa
;
16890 mips_isa_rev
= (mips_isa
& 31) + 1;
16894 /* Likewise for tuning. */
16897 mips_set_tune (const struct mips_cpu_info
*info
)
16901 mips_tune_info
= info
;
16902 mips_tune
= info
->cpu
;
16906 /* Implement TARGET_OPTION_OVERRIDE. */
16909 mips_option_override (void)
16911 int i
, start
, regno
, mode
;
16913 if (global_options_set
.x_mips_isa_option
)
16914 mips_isa_option_info
= &mips_cpu_info_table
[mips_isa_option
];
16916 #ifdef SUBTARGET_OVERRIDE_OPTIONS
16917 SUBTARGET_OVERRIDE_OPTIONS
;
16920 /* MIPS16 and microMIPS cannot coexist. */
16921 if (TARGET_MICROMIPS
&& TARGET_MIPS16
)
16922 error ("unsupported combination: %s", "-mips16 -mmicromips");
16924 /* Save the base compression state and process flags as though we
16925 were generating uncompressed code. */
16926 mips_base_compression_flags
= TARGET_COMPRESSION
;
16927 target_flags
&= ~TARGET_COMPRESSION
;
16929 /* -mno-float overrides -mhard-float and -msoft-float. */
16930 if (TARGET_NO_FLOAT
)
16932 target_flags
|= MASK_SOFT_FLOAT_ABI
;
16933 target_flags_explicit
|= MASK_SOFT_FLOAT_ABI
;
16936 if (TARGET_FLIP_MIPS16
)
16937 TARGET_INTERLINK_COMPRESSED
= 1;
16939 /* Set the small data limit. */
16940 mips_small_data_threshold
= (global_options_set
.x_g_switch_value
16942 : MIPS_DEFAULT_GVALUE
);
16944 /* The following code determines the architecture and register size.
16945 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
16946 The GAS and GCC code should be kept in sync as much as possible. */
16948 if (global_options_set
.x_mips_arch_option
)
16949 mips_set_architecture (mips_cpu_info_from_opt (mips_arch_option
));
16951 if (mips_isa_option_info
!= 0)
16953 if (mips_arch_info
== 0)
16954 mips_set_architecture (mips_isa_option_info
);
16955 else if (mips_arch_info
->isa
!= mips_isa_option_info
->isa
)
16956 error ("%<-%s%> conflicts with the other architecture options, "
16957 "which specify a %s processor",
16958 mips_isa_option_info
->name
,
16959 mips_cpu_info_from_isa (mips_arch_info
->isa
)->name
);
16962 if (mips_arch_info
== 0)
16963 mips_set_architecture (mips_default_arch ());
16965 if (ABI_NEEDS_64BIT_REGS
&& !ISA_HAS_64BIT_REGS
)
16966 error ("%<-march=%s%> is not compatible with the selected ABI",
16967 mips_arch_info
->name
);
16969 /* Optimize for mips_arch, unless -mtune selects a different processor. */
16970 if (global_options_set
.x_mips_tune_option
)
16971 mips_set_tune (mips_cpu_info_from_opt (mips_tune_option
));
16973 if (mips_tune_info
== 0)
16974 mips_set_tune (mips_arch_info
);
16976 if ((target_flags_explicit
& MASK_64BIT
) != 0)
16978 /* The user specified the size of the integer registers. Make sure
16979 it agrees with the ABI and ISA. */
16980 if (TARGET_64BIT
&& !ISA_HAS_64BIT_REGS
)
16981 error ("%<-mgp64%> used with a 32-bit processor");
16982 else if (!TARGET_64BIT
&& ABI_NEEDS_64BIT_REGS
)
16983 error ("%<-mgp32%> used with a 64-bit ABI");
16984 else if (TARGET_64BIT
&& ABI_NEEDS_32BIT_REGS
)
16985 error ("%<-mgp64%> used with a 32-bit ABI");
16989 /* Infer the integer register size from the ABI and processor.
16990 Restrict ourselves to 32-bit registers if that's all the
16991 processor has, or if the ABI cannot handle 64-bit registers. */
16992 if (ABI_NEEDS_32BIT_REGS
|| !ISA_HAS_64BIT_REGS
)
16993 target_flags
&= ~MASK_64BIT
;
16995 target_flags
|= MASK_64BIT
;
16998 if ((target_flags_explicit
& MASK_FLOAT64
) != 0)
17000 if (TARGET_SINGLE_FLOAT
&& TARGET_FLOAT64
)
17001 error ("unsupported combination: %s", "-mfp64 -msingle-float");
17002 else if (TARGET_64BIT
&& TARGET_DOUBLE_FLOAT
&& !TARGET_FLOAT64
)
17003 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
17004 else if (!TARGET_64BIT
&& TARGET_FLOAT64
)
17006 if (!ISA_HAS_MXHC1
)
17007 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
17008 " the target supports the mfhc1 and mthc1 instructions");
17009 else if (mips_abi
!= ABI_32
)
17010 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
17016 /* -msingle-float selects 32-bit float registers. Otherwise the
17017 float registers should be the same size as the integer ones. */
17018 if (TARGET_64BIT
&& TARGET_DOUBLE_FLOAT
)
17019 target_flags
|= MASK_FLOAT64
;
17021 target_flags
&= ~MASK_FLOAT64
;
17024 /* End of code shared with GAS. */
17026 /* The R5900 FPU only supports single precision. */
17027 if (TARGET_MIPS5900
&& TARGET_HARD_FLOAT_ABI
&& TARGET_DOUBLE_FLOAT
)
17028 error ("unsupported combination: %s",
17029 "-march=r5900 -mhard-float -mdouble-float");
17031 /* If a -mlong* option was given, check that it matches the ABI,
17032 otherwise infer the -mlong* setting from the other options. */
17033 if ((target_flags_explicit
& MASK_LONG64
) != 0)
17037 if (mips_abi
== ABI_N32
)
17038 error ("%qs is incompatible with %qs", "-mabi=n32", "-mlong64");
17039 else if (mips_abi
== ABI_32
)
17040 error ("%qs is incompatible with %qs", "-mabi=32", "-mlong64");
17041 else if (mips_abi
== ABI_O64
&& TARGET_ABICALLS
)
17042 /* We have traditionally allowed non-abicalls code to use
17043 an LP64 form of o64. However, it would take a bit more
17044 effort to support the combination of 32-bit GOT entries
17045 and 64-bit pointers, so we treat the abicalls case as
17047 error ("the combination of %qs and %qs is incompatible with %qs",
17048 "-mabi=o64", "-mabicalls", "-mlong64");
17052 if (mips_abi
== ABI_64
)
17053 error ("%qs is incompatible with %qs", "-mabi=64", "-mlong32");
17058 if ((mips_abi
== ABI_EABI
&& TARGET_64BIT
) || mips_abi
== ABI_64
)
17059 target_flags
|= MASK_LONG64
;
17061 target_flags
&= ~MASK_LONG64
;
17064 if (!TARGET_OLDABI
)
17065 flag_pcc_struct_return
= 0;
17067 /* Decide which rtx_costs structure to use. */
17069 mips_cost
= &mips_rtx_cost_optimize_size
;
17071 mips_cost
= &mips_rtx_cost_data
[mips_tune
];
17073 /* If the user hasn't specified a branch cost, use the processor's
17075 if (mips_branch_cost
== 0)
17076 mips_branch_cost
= mips_cost
->branch_cost
;
17078 /* If neither -mbranch-likely nor -mno-branch-likely was given
17079 on the command line, set MASK_BRANCHLIKELY based on the target
17080 architecture and tuning flags. Annulled delay slots are a
17081 size win, so we only consider the processor-specific tuning
17082 for !optimize_size. */
17083 if ((target_flags_explicit
& MASK_BRANCHLIKELY
) == 0)
17085 if (ISA_HAS_BRANCHLIKELY
17087 || (mips_tune_info
->tune_flags
& PTF_AVOID_BRANCHLIKELY
) == 0))
17088 target_flags
|= MASK_BRANCHLIKELY
;
17090 target_flags
&= ~MASK_BRANCHLIKELY
;
17092 else if (TARGET_BRANCHLIKELY
&& !ISA_HAS_BRANCHLIKELY
)
17093 warning (0, "the %qs architecture does not support branch-likely"
17094 " instructions", mips_arch_info
->name
);
17096 /* If the user hasn't specified -mimadd or -mno-imadd set
17097 MASK_IMADD based on the target architecture and tuning
17099 if ((target_flags_explicit
& MASK_IMADD
) == 0)
17101 if (ISA_HAS_MADD_MSUB
&&
17102 (mips_tune_info
->tune_flags
& PTF_AVOID_IMADD
) == 0)
17103 target_flags
|= MASK_IMADD
;
17105 target_flags
&= ~MASK_IMADD
;
17107 else if (TARGET_IMADD
&& !ISA_HAS_MADD_MSUB
)
17108 warning (0, "the %qs architecture does not support madd or msub"
17109 " instructions", mips_arch_info
->name
);
17111 /* The effect of -mabicalls isn't defined for the EABI. */
17112 if (mips_abi
== ABI_EABI
&& TARGET_ABICALLS
)
17114 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
17115 target_flags
&= ~MASK_ABICALLS
;
17118 /* PIC requires -mabicalls. */
17121 if (mips_abi
== ABI_EABI
)
17122 error ("cannot generate position-independent code for %qs",
17124 else if (!TARGET_ABICALLS
)
17125 error ("position-independent code requires %qs", "-mabicalls");
17128 if (TARGET_ABICALLS_PIC2
)
17129 /* We need to set flag_pic for executables as well as DSOs
17130 because we may reference symbols that are not defined in
17131 the final executable. (MIPS does not use things like
17132 copy relocs, for example.)
17134 There is a body of code that uses __PIC__ to distinguish
17135 between -mabicalls and -mno-abicalls code. The non-__PIC__
17136 variant is usually appropriate for TARGET_ABICALLS_PIC0, as
17137 long as any indirect jumps use $25. */
17140 /* -mvr4130-align is a "speed over size" optimization: it usually produces
17141 faster code, but at the expense of more nops. Enable it at -O3 and
17143 if (optimize
> 2 && (target_flags_explicit
& MASK_VR4130_ALIGN
) == 0)
17144 target_flags
|= MASK_VR4130_ALIGN
;
17146 /* Prefer a call to memcpy over inline code when optimizing for size,
17147 though see MOVE_RATIO in mips.h. */
17148 if (optimize_size
&& (target_flags_explicit
& MASK_MEMCPY
) == 0)
17149 target_flags
|= MASK_MEMCPY
;
17151 /* If we have a nonzero small-data limit, check that the -mgpopt
17152 setting is consistent with the other target flags. */
17153 if (mips_small_data_threshold
> 0)
17157 if (!TARGET_EXPLICIT_RELOCS
)
17158 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
17160 TARGET_LOCAL_SDATA
= false;
17161 TARGET_EXTERN_SDATA
= false;
17165 if (TARGET_VXWORKS_RTP
)
17166 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
17168 if (TARGET_ABICALLS
)
17169 warning (0, "cannot use small-data accesses for %qs",
17174 /* Pre-IEEE 754-2008 MIPS hardware has a quirky almost-IEEE format
17175 for all its floating point. */
17176 if (mips_nan
!= MIPS_IEEE_754_2008
)
17178 REAL_MODE_FORMAT (SFmode
) = &mips_single_format
;
17179 REAL_MODE_FORMAT (DFmode
) = &mips_double_format
;
17180 REAL_MODE_FORMAT (TFmode
) = &mips_quad_format
;
17183 /* Make sure that the user didn't turn off paired single support when
17184 MIPS-3D support is requested. */
17186 && (target_flags_explicit
& MASK_PAIRED_SINGLE_FLOAT
)
17187 && !TARGET_PAIRED_SINGLE_FLOAT
)
17188 error ("%<-mips3d%> requires %<-mpaired-single%>");
17190 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
17192 target_flags
|= MASK_PAIRED_SINGLE_FLOAT
;
17194 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
17195 and TARGET_HARD_FLOAT_ABI are both true. */
17196 if (TARGET_PAIRED_SINGLE_FLOAT
&& !(TARGET_FLOAT64
&& TARGET_HARD_FLOAT_ABI
))
17198 error ("%qs must be used with %qs",
17199 TARGET_MIPS3D
? "-mips3d" : "-mpaired-single",
17200 TARGET_HARD_FLOAT_ABI
? "-mfp64" : "-mhard-float");
17201 target_flags
&= ~MASK_PAIRED_SINGLE_FLOAT
;
17205 /* Make sure that -mpaired-single is only used on ISAs that support it.
17206 We must disable it otherwise since it relies on other ISA properties
17207 like ISA_HAS_8CC having their normal values. */
17208 if (TARGET_PAIRED_SINGLE_FLOAT
&& !ISA_HAS_PAIRED_SINGLE
)
17210 error ("the %qs architecture does not support paired-single"
17211 " instructions", mips_arch_info
->name
);
17212 target_flags
&= ~MASK_PAIRED_SINGLE_FLOAT
;
17216 if (mips_r10k_cache_barrier
!= R10K_CACHE_BARRIER_NONE
17217 && !TARGET_CACHE_BUILTIN
)
17219 error ("%qs requires a target that provides the %qs instruction",
17220 "-mr10k-cache-barrier", "cache");
17221 mips_r10k_cache_barrier
= R10K_CACHE_BARRIER_NONE
;
17224 /* If TARGET_DSPR2, enable TARGET_DSP. */
17228 /* .eh_frame addresses should be the same width as a C pointer.
17229 Most MIPS ABIs support only one pointer size, so the assembler
17230 will usually know exactly how big an .eh_frame address is.
17232 Unfortunately, this is not true of the 64-bit EABI. The ABI was
17233 originally defined to use 64-bit pointers (i.e. it is LP64), and
17234 this is still the default mode. However, we also support an n32-like
17235 ILP32 mode, which is selected by -mlong32. The problem is that the
17236 assembler has traditionally not had an -mlong option, so it has
17237 traditionally not known whether we're using the ILP32 or LP64 form.
17239 As it happens, gas versions up to and including 2.19 use _32-bit_
17240 addresses for EABI64 .cfi_* directives. This is wrong for the
17241 default LP64 mode, so we can't use the directives by default.
17242 Moreover, since gas's current behavior is at odds with gcc's
17243 default behavior, it seems unwise to rely on future versions
17244 of gas behaving the same way. We therefore avoid using .cfi
17245 directives for -mlong32 as well. */
17246 if (mips_abi
== ABI_EABI
&& TARGET_64BIT
)
17247 flag_dwarf2_cfi_asm
= 0;
17249 /* .cfi_* directives generate a read-only section, so fall back on
17250 manual .eh_frame creation if we need the section to be writable. */
17251 if (TARGET_WRITABLE_EH_FRAME
)
17252 flag_dwarf2_cfi_asm
= 0;
17254 mips_init_print_operand_punct ();
17256 /* Set up array to map GCC register number to debug register number.
17257 Ignore the special purpose register numbers. */
17259 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
17261 mips_dbx_regno
[i
] = IGNORED_DWARF_REGNUM
;
17262 if (GP_REG_P (i
) || FP_REG_P (i
) || ALL_COP_REG_P (i
))
17263 mips_dwarf_regno
[i
] = i
;
17265 mips_dwarf_regno
[i
] = INVALID_REGNUM
;
17268 start
= GP_DBX_FIRST
- GP_REG_FIRST
;
17269 for (i
= GP_REG_FIRST
; i
<= GP_REG_LAST
; i
++)
17270 mips_dbx_regno
[i
] = i
+ start
;
17272 start
= FP_DBX_FIRST
- FP_REG_FIRST
;
17273 for (i
= FP_REG_FIRST
; i
<= FP_REG_LAST
; i
++)
17274 mips_dbx_regno
[i
] = i
+ start
;
17276 /* Accumulator debug registers use big-endian ordering. */
17277 mips_dbx_regno
[HI_REGNUM
] = MD_DBX_FIRST
+ 0;
17278 mips_dbx_regno
[LO_REGNUM
] = MD_DBX_FIRST
+ 1;
17279 mips_dwarf_regno
[HI_REGNUM
] = MD_REG_FIRST
+ 0;
17280 mips_dwarf_regno
[LO_REGNUM
] = MD_REG_FIRST
+ 1;
17281 for (i
= DSP_ACC_REG_FIRST
; i
<= DSP_ACC_REG_LAST
; i
+= 2)
17283 mips_dwarf_regno
[i
+ TARGET_LITTLE_ENDIAN
] = i
;
17284 mips_dwarf_regno
[i
+ TARGET_BIG_ENDIAN
] = i
+ 1;
17287 /* Set up mips_hard_regno_mode_ok. */
17288 for (mode
= 0; mode
< MAX_MACHINE_MODE
; mode
++)
17289 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
17290 mips_hard_regno_mode_ok
[mode
][regno
]
17291 = mips_hard_regno_mode_ok_p (regno
, (machine_mode
) mode
);
17293 /* Function to allocate machine-dependent function status. */
17294 init_machine_status
= &mips_init_machine_status
;
17296 /* Default to working around R4000 errata only if the processor
17297 was selected explicitly. */
17298 if ((target_flags_explicit
& MASK_FIX_R4000
) == 0
17299 && strcmp (mips_arch_info
->name
, "r4000") == 0)
17300 target_flags
|= MASK_FIX_R4000
;
17302 /* Default to working around R4400 errata only if the processor
17303 was selected explicitly. */
17304 if ((target_flags_explicit
& MASK_FIX_R4400
) == 0
17305 && strcmp (mips_arch_info
->name
, "r4400") == 0)
17306 target_flags
|= MASK_FIX_R4400
;
17308 /* Default to working around R10000 errata only if the processor
17309 was selected explicitly. */
17310 if ((target_flags_explicit
& MASK_FIX_R10000
) == 0
17311 && strcmp (mips_arch_info
->name
, "r10000") == 0)
17312 target_flags
|= MASK_FIX_R10000
;
17314 /* Make sure that branch-likely instructions available when using
17315 -mfix-r10000. The instructions are not available if either:
17317 1. -mno-branch-likely was passed.
17318 2. The selected ISA does not support branch-likely and
17319 the command line does not include -mbranch-likely. */
17320 if (TARGET_FIX_R10000
17321 && ((target_flags_explicit
& MASK_BRANCHLIKELY
) == 0
17322 ? !ISA_HAS_BRANCHLIKELY
17323 : !TARGET_BRANCHLIKELY
))
17324 sorry ("%qs requires branch-likely instructions", "-mfix-r10000");
17326 if (TARGET_SYNCI
&& !ISA_HAS_SYNCI
)
17328 warning (0, "the %qs architecture does not support the synci "
17329 "instruction", mips_arch_info
->name
);
17330 target_flags
&= ~MASK_SYNCI
;
17333 /* Only optimize PIC indirect calls if they are actually required. */
17334 if (!TARGET_USE_GOT
|| !TARGET_EXPLICIT_RELOCS
)
17335 target_flags
&= ~MASK_RELAX_PIC_CALLS
;
17337 /* Save base state of options. */
17338 mips_base_target_flags
= target_flags
;
17339 mips_base_schedule_insns
= flag_schedule_insns
;
17340 mips_base_reorder_blocks_and_partition
= flag_reorder_blocks_and_partition
;
17341 mips_base_move_loop_invariants
= flag_move_loop_invariants
;
17342 mips_base_align_loops
= align_loops
;
17343 mips_base_align_jumps
= align_jumps
;
17344 mips_base_align_functions
= align_functions
;
17346 /* Now select the ISA mode.
17348 Do all CPP-sensitive stuff in uncompressed mode; we'll switch modes
17349 later if required. */
17350 mips_set_compression_mode (0);
17352 /* We register a second machine specific reorg pass after delay slot
17353 filling. Registering the pass must be done at start up. It's
17354 convenient to do it here. */
17355 opt_pass
*new_pass
= make_pass_mips_machine_reorg2 (g
);
17356 struct register_pass_info insert_pass_mips_machine_reorg2
=
17358 new_pass
, /* pass */
17359 "dbr", /* reference_pass_name */
17360 1, /* ref_pass_instance_number */
17361 PASS_POS_INSERT_AFTER
/* po_op */
17363 register_pass (&insert_pass_mips_machine_reorg2
);
17365 if (TARGET_HARD_FLOAT_ABI
&& TARGET_MIPS5900
)
17366 REAL_MODE_FORMAT (SFmode
) = &spu_single_format
;
17369 /* Swap the register information for registers I and I + 1, which
17370 currently have the wrong endianness. Note that the registers'
17371 fixedness and call-clobberedness might have been set on the
17375 mips_swap_registers (unsigned int i
)
17380 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
17381 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
17383 SWAP_INT (fixed_regs
[i
], fixed_regs
[i
+ 1]);
17384 SWAP_INT (call_used_regs
[i
], call_used_regs
[i
+ 1]);
17385 SWAP_INT (call_really_used_regs
[i
], call_really_used_regs
[i
+ 1]);
17386 SWAP_STRING (reg_names
[i
], reg_names
[i
+ 1]);
17392 /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
17395 mips_conditional_register_usage (void)
17400 /* These DSP control register fields are global. */
17401 global_regs
[CCDSP_PO_REGNUM
] = 1;
17402 global_regs
[CCDSP_SC_REGNUM
] = 1;
17405 AND_COMPL_HARD_REG_SET (accessible_reg_set
,
17406 reg_class_contents
[(int) DSP_ACC_REGS
]);
17408 if (!TARGET_HARD_FLOAT
)
17410 AND_COMPL_HARD_REG_SET (accessible_reg_set
,
17411 reg_class_contents
[(int) FP_REGS
]);
17412 AND_COMPL_HARD_REG_SET (accessible_reg_set
,
17413 reg_class_contents
[(int) ST_REGS
]);
17415 else if (!ISA_HAS_8CC
)
17417 /* We only have a single condition-code register. We implement
17418 this by fixing all the condition-code registers and generating
17419 RTL that refers directly to ST_REG_FIRST. */
17420 AND_COMPL_HARD_REG_SET (accessible_reg_set
,
17421 reg_class_contents
[(int) ST_REGS
]);
17422 SET_HARD_REG_BIT (accessible_reg_set
, FPSW_REGNUM
);
17423 fixed_regs
[FPSW_REGNUM
] = call_used_regs
[FPSW_REGNUM
] = 1;
17427 /* In MIPS16 mode, we prohibit the unused $s registers, since they
17428 are call-saved, and saving them via a MIPS16 register would
17429 probably waste more time than just reloading the value.
17431 We permit the $t temporary registers when optimizing for speed
17432 but not when optimizing for space because using them results in
17433 code that is larger (but faster) then not using them. We do
17434 allow $24 (t8) because it is used in CMP and CMPI instructions
17435 and $25 (t9) because it is used as the function call address in
17438 fixed_regs
[18] = call_used_regs
[18] = 1;
17439 fixed_regs
[19] = call_used_regs
[19] = 1;
17440 fixed_regs
[20] = call_used_regs
[20] = 1;
17441 fixed_regs
[21] = call_used_regs
[21] = 1;
17442 fixed_regs
[22] = call_used_regs
[22] = 1;
17443 fixed_regs
[23] = call_used_regs
[23] = 1;
17444 fixed_regs
[26] = call_used_regs
[26] = 1;
17445 fixed_regs
[27] = call_used_regs
[27] = 1;
17446 fixed_regs
[30] = call_used_regs
[30] = 1;
17449 fixed_regs
[8] = call_used_regs
[8] = 1;
17450 fixed_regs
[9] = call_used_regs
[9] = 1;
17451 fixed_regs
[10] = call_used_regs
[10] = 1;
17452 fixed_regs
[11] = call_used_regs
[11] = 1;
17453 fixed_regs
[12] = call_used_regs
[12] = 1;
17454 fixed_regs
[13] = call_used_regs
[13] = 1;
17455 fixed_regs
[14] = call_used_regs
[14] = 1;
17456 fixed_regs
[15] = call_used_regs
[15] = 1;
17459 /* Do not allow HI and LO to be treated as register operands.
17460 There are no MTHI or MTLO instructions (or any real need
17461 for them) and one-way registers cannot easily be reloaded. */
17462 AND_COMPL_HARD_REG_SET (operand_reg_set
,
17463 reg_class_contents
[(int) MD_REGS
]);
17465 /* $f20-$f23 are call-clobbered for n64. */
17466 if (mips_abi
== ABI_64
)
17469 for (regno
= FP_REG_FIRST
+ 20; regno
< FP_REG_FIRST
+ 24; regno
++)
17470 call_really_used_regs
[regno
] = call_used_regs
[regno
] = 1;
17472 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
17474 if (mips_abi
== ABI_N32
)
17477 for (regno
= FP_REG_FIRST
+ 21; regno
<= FP_REG_FIRST
+ 31; regno
+=2)
17478 call_really_used_regs
[regno
] = call_used_regs
[regno
] = 1;
17480 /* Make sure that double-register accumulator values are correctly
17481 ordered for the current endianness. */
17482 if (TARGET_LITTLE_ENDIAN
)
17484 unsigned int regno
;
17486 mips_swap_registers (MD_REG_FIRST
);
17487 for (regno
= DSP_ACC_REG_FIRST
; regno
<= DSP_ACC_REG_LAST
; regno
+= 2)
17488 mips_swap_registers (regno
);
17492 /* Implement EH_USES. */
17495 mips_eh_uses (unsigned int regno
)
17497 if (reload_completed
&& !TARGET_ABSOLUTE_JUMPS
)
17499 /* We need to force certain registers to be live in order to handle
17500 PIC long branches correctly. See mips_must_initialize_gp_p for
17502 if (mips_cfun_has_cprestore_slot_p ())
17504 if (regno
== CPRESTORE_SLOT_REGNUM
)
17509 if (cfun
->machine
->global_pointer
== regno
)
17517 /* Implement EPILOGUE_USES. */
17520 mips_epilogue_uses (unsigned int regno
)
17522 /* Say that the epilogue uses the return address register. Note that
17523 in the case of sibcalls, the values "used by the epilogue" are
17524 considered live at the start of the called function. */
17525 if (regno
== RETURN_ADDR_REGNUM
)
17528 /* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
17529 See the comment above load_call<mode> for details. */
17530 if (TARGET_USE_GOT
&& (regno
) == GOT_VERSION_REGNUM
)
17533 /* An interrupt handler must preserve some registers that are
17534 ordinarily call-clobbered. */
17535 if (cfun
->machine
->interrupt_handler_p
17536 && mips_interrupt_extra_call_saved_reg_p (regno
))
17542 /* Return true if INSN needs to be wrapped in ".set noat".
17543 INSN has NOPERANDS operands, stored in OPVEC. */
17546 mips_need_noat_wrapper_p (rtx_insn
*insn
, rtx
*opvec
, int noperands
)
17548 if (recog_memoized (insn
) >= 0)
17550 subrtx_iterator::array_type array
;
17551 for (int i
= 0; i
< noperands
; i
++)
17552 FOR_EACH_SUBRTX (iter
, array
, opvec
[i
], NONCONST
)
17553 if (REG_P (*iter
) && REGNO (*iter
) == AT_REGNUM
)
17559 /* Implement FINAL_PRESCAN_INSN. */
17562 mips_final_prescan_insn (rtx_insn
*insn
, rtx
*opvec
, int noperands
)
17564 if (mips_need_noat_wrapper_p (insn
, opvec
, noperands
))
17565 mips_push_asm_switch (&mips_noat
);
17568 /* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. */
17571 mips_final_postscan_insn (FILE *file ATTRIBUTE_UNUSED
, rtx_insn
*insn
,
17572 rtx
*opvec
, int noperands
)
17574 if (mips_need_noat_wrapper_p (insn
, opvec
, noperands
))
17575 mips_pop_asm_switch (&mips_noat
);
17578 /* Return the function that is used to expand the <u>mulsidi3 pattern.
17579 EXT_CODE is the code of the extension used. Return NULL if widening
17580 multiplication shouldn't be used. */
17583 mips_mulsidi3_gen_fn (enum rtx_code ext_code
)
17587 signed_p
= ext_code
== SIGN_EXTEND
;
17590 /* Don't use widening multiplication with MULT when we have DMUL. Even
17591 with the extension of its input operands DMUL is faster. Note that
17592 the extension is not needed for signed multiplication. In order to
17593 ensure that we always remove the redundant sign-extension in this
17594 case we still expand mulsidi3 for DMUL. */
17596 return signed_p
? gen_mulsidi3_64bit_dmul
: NULL
;
17599 ? gen_mulsidi3_64bit_mips16
17600 : gen_umulsidi3_64bit_mips16
);
17601 if (TARGET_FIX_R4000
)
17603 return signed_p
? gen_mulsidi3_64bit
: gen_umulsidi3_64bit
;
17609 ? gen_mulsidi3_32bit_mips16
17610 : gen_umulsidi3_32bit_mips16
);
17611 if (TARGET_FIX_R4000
&& !ISA_HAS_DSP
)
17612 return signed_p
? gen_mulsidi3_32bit_r4000
: gen_umulsidi3_32bit_r4000
;
17613 return signed_p
? gen_mulsidi3_32bit
: gen_umulsidi3_32bit
;
17617 /* Return true if PATTERN matches the kind of instruction generated by
17618 umips_build_save_restore. SAVE_P is true for store. */
17621 umips_save_restore_pattern_p (bool save_p
, rtx pattern
)
17625 HOST_WIDE_INT first_offset
= 0;
17626 rtx first_base
= 0;
17627 unsigned int regmask
= 0;
17629 for (n
= 0; n
< XVECLEN (pattern
, 0); n
++)
17631 rtx set
, reg
, mem
, this_base
;
17632 HOST_WIDE_INT this_offset
;
17634 /* Check that we have a SET. */
17635 set
= XVECEXP (pattern
, 0, n
);
17636 if (GET_CODE (set
) != SET
)
17639 /* Check that the SET is a load (if restoring) or a store
17641 mem
= save_p
? SET_DEST (set
) : SET_SRC (set
);
17642 if (!MEM_P (mem
) || MEM_VOLATILE_P (mem
))
17645 /* Check that the address is the sum of base and a possibly-zero
17646 constant offset. Determine if the offset is in range. */
17647 mips_split_plus (XEXP (mem
, 0), &this_base
, &this_offset
);
17648 if (!REG_P (this_base
))
17653 if (!UMIPS_12BIT_OFFSET_P (this_offset
))
17655 first_base
= this_base
;
17656 first_offset
= this_offset
;
17660 /* Check that the save slots are consecutive. */
17661 if (REGNO (this_base
) != REGNO (first_base
)
17662 || this_offset
!= first_offset
+ UNITS_PER_WORD
* n
)
17666 /* Check that SET's other operand is a register. */
17667 reg
= save_p
? SET_SRC (set
) : SET_DEST (set
);
17671 regmask
|= 1 << REGNO (reg
);
17674 for (i
= 0; i
< ARRAY_SIZE (umips_swm_mask
); i
++)
17675 if (regmask
== umips_swm_mask
[i
])
17681 /* Return the assembly instruction for microMIPS LWM or SWM.
17682 SAVE_P and PATTERN are as for umips_save_restore_pattern_p. */
17685 umips_output_save_restore (bool save_p
, rtx pattern
)
17687 static char buffer
[300];
17690 HOST_WIDE_INT offset
;
17691 rtx base
, mem
, set
, last_set
, last_reg
;
17693 /* Parse the pattern. */
17694 gcc_assert (umips_save_restore_pattern_p (save_p
, pattern
));
17696 s
= strcpy (buffer
, save_p
? "swm\t" : "lwm\t");
17698 n
= XVECLEN (pattern
, 0);
17700 set
= XVECEXP (pattern
, 0, 0);
17701 mem
= save_p
? SET_DEST (set
) : SET_SRC (set
);
17702 mips_split_plus (XEXP (mem
, 0), &base
, &offset
);
17704 last_set
= XVECEXP (pattern
, 0, n
- 1);
17705 last_reg
= save_p
? SET_SRC (last_set
) : SET_DEST (last_set
);
17707 if (REGNO (last_reg
) == 31)
17710 gcc_assert (n
<= 9);
17714 s
+= sprintf (s
, "%s,", reg_names
[16]);
17716 s
+= sprintf (s
, "%s-%s,", reg_names
[16], reg_names
[15 + n
]);
17718 s
+= sprintf (s
, "%s-%s,%s,", reg_names
[16], reg_names
[23],
17721 if (REGNO (last_reg
) == 31)
17722 s
+= sprintf (s
, "%s,", reg_names
[31]);
17724 s
+= sprintf (s
, "%d(%s)", (int)offset
, reg_names
[REGNO (base
)]);
17728 /* Return true if MEM1 and MEM2 use the same base register, and the
17729 offset of MEM2 equals the offset of MEM1 plus 4. FIRST_REG is the
17730 register into (from) which the contents of MEM1 will be loaded
17731 (stored), depending on the value of LOAD_P.
17732 SWAP_P is true when the 1st and 2nd instructions are swapped. */
17735 umips_load_store_pair_p_1 (bool load_p
, bool swap_p
,
17736 rtx first_reg
, rtx mem1
, rtx mem2
)
17739 HOST_WIDE_INT offset1
, offset2
;
17741 if (!MEM_P (mem1
) || !MEM_P (mem2
))
17744 mips_split_plus (XEXP (mem1
, 0), &base1
, &offset1
);
17745 mips_split_plus (XEXP (mem2
, 0), &base2
, &offset2
);
17747 if (!REG_P (base1
) || !rtx_equal_p (base1
, base2
))
17750 /* Avoid invalid load pair instructions. */
17751 if (load_p
&& REGNO (first_reg
) == REGNO (base1
))
17754 /* We must avoid this case for anti-dependence.
17757 first_reg is $2, but the base is $3. */
17760 && REGNO (first_reg
) + 1 == REGNO (base1
))
17763 if (offset2
!= offset1
+ 4)
17766 if (!UMIPS_12BIT_OFFSET_P (offset1
))
17772 /* OPERANDS describes the operands to a pair of SETs, in the order
17773 dest1, src1, dest2, src2. Return true if the operands can be used
17774 in an LWP or SWP instruction; LOAD_P says which. */
17777 umips_load_store_pair_p (bool load_p
, rtx
*operands
)
17779 rtx reg1
, reg2
, mem1
, mem2
;
17783 reg1
= operands
[0];
17784 reg2
= operands
[2];
17785 mem1
= operands
[1];
17786 mem2
= operands
[3];
17790 reg1
= operands
[1];
17791 reg2
= operands
[3];
17792 mem1
= operands
[0];
17793 mem2
= operands
[2];
17796 if (REGNO (reg2
) == REGNO (reg1
) + 1)
17797 return umips_load_store_pair_p_1 (load_p
, false, reg1
, mem1
, mem2
);
17799 if (REGNO (reg1
) == REGNO (reg2
) + 1)
17800 return umips_load_store_pair_p_1 (load_p
, true, reg2
, mem2
, mem1
);
17805 /* Return the assembly instruction for a microMIPS LWP or SWP in which
17806 the first register is REG and the first memory slot is MEM.
17807 LOAD_P is true for LWP. */
17810 umips_output_load_store_pair_1 (bool load_p
, rtx reg
, rtx mem
)
17812 rtx ops
[] = {reg
, mem
};
17815 output_asm_insn ("lwp\t%0,%1", ops
);
17817 output_asm_insn ("swp\t%0,%1", ops
);
17820 /* Output the assembly instruction for a microMIPS LWP or SWP instruction.
17821 LOAD_P and OPERANDS are as for umips_load_store_pair_p. */
17824 umips_output_load_store_pair (bool load_p
, rtx
*operands
)
17826 rtx reg1
, reg2
, mem1
, mem2
;
17829 reg1
= operands
[0];
17830 reg2
= operands
[2];
17831 mem1
= operands
[1];
17832 mem2
= operands
[3];
17836 reg1
= operands
[1];
17837 reg2
= operands
[3];
17838 mem1
= operands
[0];
17839 mem2
= operands
[2];
17842 if (REGNO (reg2
) == REGNO (reg1
) + 1)
17844 umips_output_load_store_pair_1 (load_p
, reg1
, mem1
);
17848 gcc_assert (REGNO (reg1
) == REGNO (reg2
) + 1);
17849 umips_output_load_store_pair_1 (load_p
, reg2
, mem2
);
17852 /* Return true if REG1 and REG2 match the criteria for a movep insn. */
17855 umips_movep_target_p (rtx reg1
, rtx reg2
)
17857 int regno1
, regno2
, pair
;
17859 static const int match
[8] = {
17860 0x00000060, /* 5, 6 */
17861 0x000000a0, /* 5, 7 */
17862 0x000000c0, /* 6, 7 */
17863 0x00200010, /* 4, 21 */
17864 0x00400010, /* 4, 22 */
17865 0x00000030, /* 4, 5 */
17866 0x00000050, /* 4, 6 */
17867 0x00000090 /* 4, 7 */
17870 if (!REG_P (reg1
) || !REG_P (reg2
))
17873 regno1
= REGNO (reg1
);
17874 regno2
= REGNO (reg2
);
17876 if (!GP_REG_P (regno1
) || !GP_REG_P (regno2
))
17879 pair
= (1 << regno1
) | (1 << regno2
);
17881 for (i
= 0; i
< ARRAY_SIZE (match
); i
++)
17882 if (pair
== match
[i
])
17888 /* Return the size in bytes of the trampoline code, padded to
17889 TRAMPOLINE_ALIGNMENT bits. The static chain pointer and target
17890 function address immediately follow. */
17893 mips_trampoline_code_size (void)
17895 if (TARGET_USE_PIC_FN_ADDR_REG
)
17897 else if (ptr_mode
== DImode
)
17899 else if (ISA_HAS_LOAD_DELAY
)
17905 /* Implement TARGET_TRAMPOLINE_INIT. */
17908 mips_trampoline_init (rtx m_tramp
, tree fndecl
, rtx chain_value
)
17910 rtx addr
, end_addr
, high
, low
, opcode
, mem
;
17913 HOST_WIDE_INT end_addr_offset
, static_chain_offset
, target_function_offset
;
17915 /* Work out the offsets of the pointers from the start of the
17916 trampoline code. */
17917 end_addr_offset
= mips_trampoline_code_size ();
17918 static_chain_offset
= end_addr_offset
;
17919 target_function_offset
= static_chain_offset
+ GET_MODE_SIZE (ptr_mode
);
17921 /* Get pointers to the beginning and end of the code block. */
17922 addr
= force_reg (Pmode
, XEXP (m_tramp
, 0));
17923 end_addr
= mips_force_binary (Pmode
, PLUS
, addr
, GEN_INT (end_addr_offset
));
17925 #define OP(X) gen_int_mode (X, SImode)
17927 /* Build up the code in TRAMPOLINE. */
17929 if (TARGET_USE_PIC_FN_ADDR_REG
)
17931 /* $25 contains the address of the trampoline. Emit code of the form:
17933 l[wd] $1, target_function_offset($25)
17934 l[wd] $static_chain, static_chain_offset($25)
17937 trampoline
[i
++] = OP (MIPS_LOAD_PTR (AT_REGNUM
,
17938 target_function_offset
,
17939 PIC_FUNCTION_ADDR_REGNUM
));
17940 trampoline
[i
++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM
,
17941 static_chain_offset
,
17942 PIC_FUNCTION_ADDR_REGNUM
));
17943 trampoline
[i
++] = OP (MIPS_JR (AT_REGNUM
));
17944 trampoline
[i
++] = OP (MIPS_MOVE (PIC_FUNCTION_ADDR_REGNUM
, AT_REGNUM
));
17946 else if (ptr_mode
== DImode
)
17948 /* It's too cumbersome to create the full 64-bit address, so let's
17954 1: l[wd] $25, target_function_offset - 12($31)
17955 l[wd] $static_chain, static_chain_offset - 12($31)
17959 where 12 is the offset of "1:" from the start of the code block. */
17960 trampoline
[i
++] = OP (MIPS_MOVE (AT_REGNUM
, RETURN_ADDR_REGNUM
));
17961 trampoline
[i
++] = OP (MIPS_BAL (1));
17962 trampoline
[i
++] = OP (MIPS_NOP
);
17963 trampoline
[i
++] = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM
,
17964 target_function_offset
- 12,
17965 RETURN_ADDR_REGNUM
));
17966 trampoline
[i
++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM
,
17967 static_chain_offset
- 12,
17968 RETURN_ADDR_REGNUM
));
17969 trampoline
[i
++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM
));
17970 trampoline
[i
++] = OP (MIPS_MOVE (RETURN_ADDR_REGNUM
, AT_REGNUM
));
17974 /* If the target has load delays, emit:
17976 lui $1, %hi(end_addr)
17977 lw $25, %lo(end_addr + ...)($1)
17978 lw $static_chain, %lo(end_addr + ...)($1)
17984 lui $1, %hi(end_addr)
17985 lw $25, %lo(end_addr + ...)($1)
17987 lw $static_chain, %lo(end_addr + ...)($1). */
17989 /* Split END_ADDR into %hi and %lo values. Trampolines are aligned
17990 to 64 bits, so the %lo value will have the bottom 3 bits clear. */
17991 high
= expand_simple_binop (SImode
, PLUS
, end_addr
, GEN_INT (0x8000),
17992 NULL
, false, OPTAB_WIDEN
);
17993 high
= expand_simple_binop (SImode
, LSHIFTRT
, high
, GEN_INT (16),
17994 NULL
, false, OPTAB_WIDEN
);
17995 low
= convert_to_mode (SImode
, gen_lowpart (HImode
, end_addr
), true);
17997 /* Emit the LUI. */
17998 opcode
= OP (MIPS_LUI (AT_REGNUM
, 0));
17999 trampoline
[i
++] = expand_simple_binop (SImode
, IOR
, opcode
, high
,
18000 NULL
, false, OPTAB_WIDEN
);
18002 /* Emit the load of the target function. */
18003 opcode
= OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM
,
18004 target_function_offset
- end_addr_offset
,
18006 trampoline
[i
++] = expand_simple_binop (SImode
, IOR
, opcode
, low
,
18007 NULL
, false, OPTAB_WIDEN
);
18009 /* Emit the JR here, if we can. */
18010 if (!ISA_HAS_LOAD_DELAY
)
18011 trampoline
[i
++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM
));
18013 /* Emit the load of the static chain register. */
18014 opcode
= OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM
,
18015 static_chain_offset
- end_addr_offset
,
18017 trampoline
[i
++] = expand_simple_binop (SImode
, IOR
, opcode
, low
,
18018 NULL
, false, OPTAB_WIDEN
);
18020 /* Emit the JR, if we couldn't above. */
18021 if (ISA_HAS_LOAD_DELAY
)
18023 trampoline
[i
++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM
));
18024 trampoline
[i
++] = OP (MIPS_NOP
);
18030 /* Copy the trampoline code. Leave any padding uninitialized. */
18031 for (j
= 0; j
< i
; j
++)
18033 mem
= adjust_address (m_tramp
, SImode
, j
* GET_MODE_SIZE (SImode
));
18034 mips_emit_move (mem
, trampoline
[j
]);
18037 /* Set up the static chain pointer field. */
18038 mem
= adjust_address (m_tramp
, ptr_mode
, static_chain_offset
);
18039 mips_emit_move (mem
, chain_value
);
18041 /* Set up the target function field. */
18042 mem
= adjust_address (m_tramp
, ptr_mode
, target_function_offset
);
18043 mips_emit_move (mem
, XEXP (DECL_RTL (fndecl
), 0));
18045 /* Flush the code part of the trampoline. */
18046 emit_insn (gen_add3_insn (end_addr
, addr
, GEN_INT (TRAMPOLINE_SIZE
)));
18047 emit_insn (gen_clear_cache (addr
, end_addr
));
18050 /* Implement FUNCTION_PROFILER. */
18052 void mips_function_profiler (FILE *file
)
18055 sorry ("mips16 function profiling");
18056 if (TARGET_LONG_CALLS
)
18058 /* For TARGET_LONG_CALLS use $3 for the address of _mcount. */
18059 if (Pmode
== DImode
)
18060 fprintf (file
, "\tdla\t%s,_mcount\n", reg_names
[3]);
18062 fprintf (file
, "\tla\t%s,_mcount\n", reg_names
[3]);
18064 mips_push_asm_switch (&mips_noat
);
18065 fprintf (file
, "\tmove\t%s,%s\t\t# save current return address\n",
18066 reg_names
[AT_REGNUM
], reg_names
[RETURN_ADDR_REGNUM
]);
18067 /* _mcount treats $2 as the static chain register. */
18068 if (cfun
->static_chain_decl
!= NULL
)
18069 fprintf (file
, "\tmove\t%s,%s\n", reg_names
[2],
18070 reg_names
[STATIC_CHAIN_REGNUM
]);
18071 if (TARGET_MCOUNT_RA_ADDRESS
)
18073 /* If TARGET_MCOUNT_RA_ADDRESS load $12 with the address of the
18074 ra save location. */
18075 if (cfun
->machine
->frame
.ra_fp_offset
== 0)
18076 /* ra not saved, pass zero. */
18077 fprintf (file
, "\tmove\t%s,%s\n", reg_names
[12], reg_names
[0]);
18079 fprintf (file
, "\t%s\t%s," HOST_WIDE_INT_PRINT_DEC
"(%s)\n",
18080 Pmode
== DImode
? "dla" : "la", reg_names
[12],
18081 cfun
->machine
->frame
.ra_fp_offset
,
18082 reg_names
[STACK_POINTER_REGNUM
]);
18084 if (!TARGET_NEWABI
)
18086 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n",
18087 TARGET_64BIT
? "dsubu" : "subu",
18088 reg_names
[STACK_POINTER_REGNUM
],
18089 reg_names
[STACK_POINTER_REGNUM
],
18090 Pmode
== DImode
? 16 : 8);
18092 if (TARGET_LONG_CALLS
)
18093 fprintf (file
, "\tjalr\t%s\n", reg_names
[3]);
18095 fprintf (file
, "\tjal\t_mcount\n");
18096 mips_pop_asm_switch (&mips_noat
);
18097 /* _mcount treats $2 as the static chain register. */
18098 if (cfun
->static_chain_decl
!= NULL
)
18099 fprintf (file
, "\tmove\t%s,%s\n", reg_names
[STATIC_CHAIN_REGNUM
],
18103 /* Implement TARGET_SHIFT_TRUNCATION_MASK. We want to keep the default
18104 behaviour of TARGET_SHIFT_TRUNCATION_MASK for non-vector modes even
18105 when TARGET_LOONGSON_VECTORS is true. */
18107 static unsigned HOST_WIDE_INT
18108 mips_shift_truncation_mask (machine_mode mode
)
18110 if (TARGET_LOONGSON_VECTORS
&& VECTOR_MODE_P (mode
))
18113 return GET_MODE_BITSIZE (mode
) - 1;
18116 /* Implement TARGET_PREPARE_PCH_SAVE. */
18119 mips_prepare_pch_save (void)
18121 /* We are called in a context where the current MIPS16 vs. non-MIPS16
18122 setting should be irrelevant. The question then is: which setting
18123 makes most sense at load time?
18125 The PCH is loaded before the first token is read. We should never
18126 have switched into MIPS16 mode by that point, and thus should not
18127 have populated mips16_globals. Nor can we load the entire contents
18128 of mips16_globals from the PCH file, because mips16_globals contains
18129 a combination of GGC and non-GGC data.
18131 There is therefore no point in trying save the GGC part of
18132 mips16_globals to the PCH file, or to preserve MIPS16ness across
18133 the PCH save and load. The loading compiler would not have access
18134 to the non-GGC parts of mips16_globals (either from the PCH file,
18135 or from a copy that the loading compiler generated itself) and would
18136 have to call target_reinit anyway.
18138 It therefore seems best to switch back to non-MIPS16 mode at
18139 save time, and to ensure that mips16_globals remains null after
18141 mips_set_compression_mode (0);
18142 mips16_globals
= 0;
18145 /* Generate or test for an insn that supports a constant permutation. */
18147 #define MAX_VECT_LEN 8
18149 struct expand_vec_perm_d
18151 rtx target
, op0
, op1
;
18152 unsigned char perm
[MAX_VECT_LEN
];
18153 machine_mode vmode
;
18154 unsigned char nelt
;
18159 /* Construct (set target (vec_select op0 (parallel perm))) and
18160 return true if that's a valid instruction in the active ISA. */
18163 mips_expand_vselect (rtx target
, rtx op0
,
18164 const unsigned char *perm
, unsigned nelt
)
18166 rtx rperm
[MAX_VECT_LEN
], x
;
18170 for (i
= 0; i
< nelt
; ++i
)
18171 rperm
[i
] = GEN_INT (perm
[i
]);
18173 x
= gen_rtx_PARALLEL (VOIDmode
, gen_rtvec_v (nelt
, rperm
));
18174 x
= gen_rtx_VEC_SELECT (GET_MODE (target
), op0
, x
);
18175 x
= gen_rtx_SET (VOIDmode
, target
, x
);
18177 insn
= emit_insn (x
);
18178 if (recog_memoized (insn
) < 0)
18180 remove_insn (insn
);
18186 /* Similar, but generate a vec_concat from op0 and op1 as well. */
18189 mips_expand_vselect_vconcat (rtx target
, rtx op0
, rtx op1
,
18190 const unsigned char *perm
, unsigned nelt
)
18192 machine_mode v2mode
;
18195 v2mode
= GET_MODE_2XWIDER_MODE (GET_MODE (op0
));
18196 x
= gen_rtx_VEC_CONCAT (v2mode
, op0
, op1
);
18197 return mips_expand_vselect (target
, x
, perm
, nelt
);
18200 /* Recognize patterns for even-odd extraction. */
18203 mips_expand_vpc_loongson_even_odd (struct expand_vec_perm_d
*d
)
18205 unsigned i
, odd
, nelt
= d
->nelt
;
18206 rtx t0
, t1
, t2
, t3
;
18208 if (!(TARGET_HARD_FLOAT
&& TARGET_LOONGSON_VECTORS
))
18210 /* Even-odd for V2SI/V2SFmode is matched by interleave directly. */
18217 for (i
= 1; i
< nelt
; ++i
)
18218 if (d
->perm
[i
] != i
* 2 + odd
)
18224 /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */
18225 t0
= gen_reg_rtx (d
->vmode
);
18226 t1
= gen_reg_rtx (d
->vmode
);
18230 emit_insn (gen_loongson_punpckhhw (t0
, d
->op0
, d
->op1
));
18231 emit_insn (gen_loongson_punpcklhw (t1
, d
->op0
, d
->op1
));
18233 emit_insn (gen_loongson_punpckhhw (d
->target
, t1
, t0
));
18235 emit_insn (gen_loongson_punpcklhw (d
->target
, t1
, t0
));
18239 t2
= gen_reg_rtx (d
->vmode
);
18240 t3
= gen_reg_rtx (d
->vmode
);
18241 emit_insn (gen_loongson_punpckhbh (t0
, d
->op0
, d
->op1
));
18242 emit_insn (gen_loongson_punpcklbh (t1
, d
->op0
, d
->op1
));
18243 emit_insn (gen_loongson_punpckhbh (t2
, t1
, t0
));
18244 emit_insn (gen_loongson_punpcklbh (t3
, t1
, t0
));
18246 emit_insn (gen_loongson_punpckhbh (d
->target
, t3
, t2
));
18248 emit_insn (gen_loongson_punpcklbh (d
->target
, t3
, t2
));
18252 gcc_unreachable ();
18257 /* Recognize patterns for the Loongson PSHUFH instruction. */
18260 mips_expand_vpc_loongson_pshufh (struct expand_vec_perm_d
*d
)
18265 if (!(TARGET_HARD_FLOAT
&& TARGET_LOONGSON_VECTORS
))
18267 if (d
->vmode
!= V4HImode
)
18272 /* Convert the selector into the packed 8-bit form for pshufh. */
18273 /* Recall that loongson is little-endian only. No big-endian
18274 adjustment required. */
18275 for (i
= mask
= 0; i
< 4; i
++)
18276 mask
|= (d
->perm
[i
] & 3) << (i
* 2);
18277 rmask
= force_reg (SImode
, GEN_INT (mask
));
18279 if (d
->one_vector_p
)
18280 emit_insn (gen_loongson_pshufh (d
->target
, d
->op0
, rmask
));
18283 rtx t0
, t1
, x
, merge
, rmerge
[4];
18285 t0
= gen_reg_rtx (V4HImode
);
18286 t1
= gen_reg_rtx (V4HImode
);
18287 emit_insn (gen_loongson_pshufh (t1
, d
->op1
, rmask
));
18288 emit_insn (gen_loongson_pshufh (t0
, d
->op0
, rmask
));
18290 for (i
= 0; i
< 4; ++i
)
18291 rmerge
[i
] = (d
->perm
[i
] & 4 ? constm1_rtx
: const0_rtx
);
18292 merge
= gen_rtx_CONST_VECTOR (V4HImode
, gen_rtvec_v (4, rmerge
));
18293 merge
= force_reg (V4HImode
, merge
);
18295 x
= gen_rtx_AND (V4HImode
, merge
, t1
);
18296 emit_insn (gen_rtx_SET (VOIDmode
, t1
, x
));
18298 x
= gen_rtx_NOT (V4HImode
, merge
);
18299 x
= gen_rtx_AND (V4HImode
, x
, t0
);
18300 emit_insn (gen_rtx_SET (VOIDmode
, t0
, x
));
18302 x
= gen_rtx_IOR (V4HImode
, t0
, t1
);
18303 emit_insn (gen_rtx_SET (VOIDmode
, d
->target
, x
));
18309 /* Recognize broadcast patterns for the Loongson. */
18312 mips_expand_vpc_loongson_bcast (struct expand_vec_perm_d
*d
)
18317 if (!(TARGET_HARD_FLOAT
&& TARGET_LOONGSON_VECTORS
))
18319 /* Note that we've already matched V2SI via punpck and V4HI via pshufh. */
18320 if (d
->vmode
!= V8QImode
)
18322 if (!d
->one_vector_p
)
18326 for (i
= 1; i
< 8; ++i
)
18327 if (d
->perm
[i
] != elt
)
18333 /* With one interleave we put two of the desired element adjacent. */
18334 t0
= gen_reg_rtx (V8QImode
);
18336 emit_insn (gen_loongson_punpcklbh (t0
, d
->op0
, d
->op0
));
18338 emit_insn (gen_loongson_punpckhbh (t0
, d
->op0
, d
->op0
));
18340 /* Shuffle that one HImode element into all locations. */
18343 t1
= gen_reg_rtx (V4HImode
);
18344 emit_insn (gen_loongson_pshufh (t1
, gen_lowpart (V4HImode
, t0
),
18345 force_reg (SImode
, GEN_INT (elt
))));
18347 emit_move_insn (d
->target
, gen_lowpart (V8QImode
, t1
));
18352 mips_expand_vec_perm_const_1 (struct expand_vec_perm_d
*d
)
18354 unsigned int i
, nelt
= d
->nelt
;
18355 unsigned char perm2
[MAX_VECT_LEN
];
18357 if (d
->one_vector_p
)
18359 /* Try interleave with alternating operands. */
18360 memcpy (perm2
, d
->perm
, sizeof(perm2
));
18361 for (i
= 1; i
< nelt
; i
+= 2)
18363 if (mips_expand_vselect_vconcat (d
->target
, d
->op0
, d
->op1
, perm2
, nelt
))
18368 if (mips_expand_vselect_vconcat (d
->target
, d
->op0
, d
->op1
,
18372 /* Try again with swapped operands. */
18373 for (i
= 0; i
< nelt
; ++i
)
18374 perm2
[i
] = (d
->perm
[i
] + nelt
) & (2 * nelt
- 1);
18375 if (mips_expand_vselect_vconcat (d
->target
, d
->op1
, d
->op0
, perm2
, nelt
))
18379 if (mips_expand_vpc_loongson_even_odd (d
))
18381 if (mips_expand_vpc_loongson_pshufh (d
))
18383 if (mips_expand_vpc_loongson_bcast (d
))
18388 /* Expand a vec_perm_const pattern. */
18391 mips_expand_vec_perm_const (rtx operands
[4])
18393 struct expand_vec_perm_d d
;
18394 int i
, nelt
, which
;
18395 unsigned char orig_perm
[MAX_VECT_LEN
];
18399 d
.target
= operands
[0];
18400 d
.op0
= operands
[1];
18401 d
.op1
= operands
[2];
18404 d
.vmode
= GET_MODE (d
.target
);
18405 gcc_assert (VECTOR_MODE_P (d
.vmode
));
18406 d
.nelt
= nelt
= GET_MODE_NUNITS (d
.vmode
);
18407 d
.testing_p
= false;
18409 for (i
= which
= 0; i
< nelt
; ++i
)
18411 rtx e
= XVECEXP (sel
, 0, i
);
18412 int ei
= INTVAL (e
) & (2 * nelt
- 1);
18413 which
|= (ei
< nelt
? 1 : 2);
18416 memcpy (d
.perm
, orig_perm
, MAX_VECT_LEN
);
18424 d
.one_vector_p
= false;
18425 if (!rtx_equal_p (d
.op0
, d
.op1
))
18430 for (i
= 0; i
< nelt
; ++i
)
18431 d
.perm
[i
] &= nelt
- 1;
18433 d
.one_vector_p
= true;
18438 d
.one_vector_p
= true;
18442 ok
= mips_expand_vec_perm_const_1 (&d
);
18444 /* If we were given a two-vector permutation which just happened to
18445 have both input vectors equal, we folded this into a one-vector
18446 permutation. There are several loongson patterns that are matched
18447 via direct vec_select+vec_concat expansion, but we do not have
18448 support in mips_expand_vec_perm_const_1 to guess the adjustment
18449 that should be made for a single operand. Just try again with
18450 the original permutation. */
18451 if (!ok
&& which
== 3)
18453 d
.op0
= operands
[1];
18454 d
.op1
= operands
[2];
18455 d
.one_vector_p
= false;
18456 memcpy (d
.perm
, orig_perm
, MAX_VECT_LEN
);
18457 ok
= mips_expand_vec_perm_const_1 (&d
);
18463 /* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK. */
18466 mips_vectorize_vec_perm_const_ok (machine_mode vmode
,
18467 const unsigned char *sel
)
18469 struct expand_vec_perm_d d
;
18470 unsigned int i
, nelt
, which
;
18474 d
.nelt
= nelt
= GET_MODE_NUNITS (d
.vmode
);
18475 d
.testing_p
= true;
18476 memcpy (d
.perm
, sel
, nelt
);
18478 /* Categorize the set of elements in the selector. */
18479 for (i
= which
= 0; i
< nelt
; ++i
)
18481 unsigned char e
= d
.perm
[i
];
18482 gcc_assert (e
< 2 * nelt
);
18483 which
|= (e
< nelt
? 1 : 2);
18486 /* For all elements from second vector, fold the elements to first. */
18488 for (i
= 0; i
< nelt
; ++i
)
18491 /* Check whether the mask can be applied to the vector type. */
18492 d
.one_vector_p
= (which
!= 3);
18494 d
.target
= gen_raw_REG (d
.vmode
, LAST_VIRTUAL_REGISTER
+ 1);
18495 d
.op1
= d
.op0
= gen_raw_REG (d
.vmode
, LAST_VIRTUAL_REGISTER
+ 2);
18496 if (!d
.one_vector_p
)
18497 d
.op1
= gen_raw_REG (d
.vmode
, LAST_VIRTUAL_REGISTER
+ 3);
18500 ret
= mips_expand_vec_perm_const_1 (&d
);
18506 /* Expand an integral vector unpack operation. */
18509 mips_expand_vec_unpack (rtx operands
[2], bool unsigned_p
, bool high_p
)
18511 machine_mode imode
= GET_MODE (operands
[1]);
18512 rtx (*unpack
) (rtx
, rtx
, rtx
);
18513 rtx (*cmpgt
) (rtx
, rtx
, rtx
);
18514 rtx tmp
, dest
, zero
;
18520 unpack
= gen_loongson_punpckhbh
;
18522 unpack
= gen_loongson_punpcklbh
;
18523 cmpgt
= gen_loongson_pcmpgtb
;
18527 unpack
= gen_loongson_punpckhhw
;
18529 unpack
= gen_loongson_punpcklhw
;
18530 cmpgt
= gen_loongson_pcmpgth
;
18533 gcc_unreachable ();
18536 zero
= force_reg (imode
, CONST0_RTX (imode
));
18541 tmp
= gen_reg_rtx (imode
);
18542 emit_insn (cmpgt (tmp
, zero
, operands
[1]));
18545 dest
= gen_reg_rtx (imode
);
18546 emit_insn (unpack (dest
, operands
[1], tmp
));
18548 emit_move_insn (operands
[0], gen_lowpart (GET_MODE (operands
[0]), dest
));
18551 /* A subroutine of mips_expand_vec_init, match constant vector elements. */
18554 mips_constant_elt_p (rtx x
)
18556 return CONST_INT_P (x
) || GET_CODE (x
) == CONST_DOUBLE
;
18559 /* A subroutine of mips_expand_vec_init, expand via broadcast. */
18562 mips_expand_vi_broadcast (machine_mode vmode
, rtx target
, rtx elt
)
18564 struct expand_vec_perm_d d
;
18568 if (elt
!= const0_rtx
)
18569 elt
= force_reg (GET_MODE_INNER (vmode
), elt
);
18571 elt
= gen_lowpart (DImode
, elt
);
18573 t1
= gen_reg_rtx (vmode
);
18577 emit_insn (gen_loongson_vec_init1_v8qi (t1
, elt
));
18580 emit_insn (gen_loongson_vec_init1_v4hi (t1
, elt
));
18583 gcc_unreachable ();
18586 memset (&d
, 0, sizeof (d
));
18591 d
.nelt
= GET_MODE_NUNITS (vmode
);
18592 d
.one_vector_p
= true;
18594 ok
= mips_expand_vec_perm_const_1 (&d
);
18598 /* A subroutine of mips_expand_vec_init, replacing all of the non-constant
18599 elements of VALS with zeros, copy the constant vector to TARGET. */
18602 mips_expand_vi_constant (machine_mode vmode
, unsigned nelt
,
18603 rtx target
, rtx vals
)
18605 rtvec vec
= shallow_copy_rtvec (XVEC (vals
, 0));
18608 for (i
= 0; i
< nelt
; ++i
)
18610 if (!mips_constant_elt_p (RTVEC_ELT (vec
, i
)))
18611 RTVEC_ELT (vec
, i
) = const0_rtx
;
18614 emit_move_insn (target
, gen_rtx_CONST_VECTOR (vmode
, vec
));
18618 /* A subroutine of mips_expand_vec_init, expand via pinsrh. */
18621 mips_expand_vi_loongson_one_pinsrh (rtx target
, rtx vals
, unsigned one_var
)
18623 mips_expand_vi_constant (V4HImode
, 4, target
, vals
);
18625 emit_insn (gen_vec_setv4hi (target
, target
, XVECEXP (vals
, 0, one_var
),
18626 GEN_INT (one_var
)));
18629 /* A subroutine of mips_expand_vec_init, expand anything via memory. */
18632 mips_expand_vi_general (machine_mode vmode
, machine_mode imode
,
18633 unsigned nelt
, unsigned nvar
, rtx target
, rtx vals
)
18635 rtx mem
= assign_stack_temp (vmode
, GET_MODE_SIZE (vmode
));
18636 unsigned int i
, isize
= GET_MODE_SIZE (imode
);
18639 mips_expand_vi_constant (vmode
, nelt
, mem
, vals
);
18641 for (i
= 0; i
< nelt
; ++i
)
18643 rtx x
= XVECEXP (vals
, 0, i
);
18644 if (!mips_constant_elt_p (x
))
18645 emit_move_insn (adjust_address (mem
, imode
, i
* isize
), x
);
18648 emit_move_insn (target
, mem
);
18651 /* Expand a vector initialization. */
18654 mips_expand_vector_init (rtx target
, rtx vals
)
18656 machine_mode vmode
= GET_MODE (target
);
18657 machine_mode imode
= GET_MODE_INNER (vmode
);
18658 unsigned i
, nelt
= GET_MODE_NUNITS (vmode
);
18659 unsigned nvar
= 0, one_var
= -1u;
18660 bool all_same
= true;
18663 for (i
= 0; i
< nelt
; ++i
)
18665 x
= XVECEXP (vals
, 0, i
);
18666 if (!mips_constant_elt_p (x
))
18667 nvar
++, one_var
= i
;
18668 if (i
> 0 && !rtx_equal_p (x
, XVECEXP (vals
, 0, 0)))
18672 /* Load constants from the pool, or whatever's handy. */
18675 emit_move_insn (target
, gen_rtx_CONST_VECTOR (vmode
, XVEC (vals
, 0)));
18679 /* For two-part initialization, always use CONCAT. */
18682 rtx op0
= force_reg (imode
, XVECEXP (vals
, 0, 0));
18683 rtx op1
= force_reg (imode
, XVECEXP (vals
, 0, 1));
18684 x
= gen_rtx_VEC_CONCAT (vmode
, op0
, op1
);
18685 emit_insn (gen_rtx_SET (VOIDmode
, target
, x
));
18689 /* Loongson is the only cpu with vectors with more elements. */
18690 gcc_assert (TARGET_HARD_FLOAT
&& TARGET_LOONGSON_VECTORS
);
18692 /* If all values are identical, broadcast the value. */
18695 mips_expand_vi_broadcast (vmode
, target
, XVECEXP (vals
, 0, 0));
18699 /* If we've only got one non-variable V4HImode, use PINSRH. */
18700 if (nvar
== 1 && vmode
== V4HImode
)
18702 mips_expand_vi_loongson_one_pinsrh (target
, vals
, one_var
);
18706 mips_expand_vi_general (vmode
, imode
, nelt
, nvar
, target
, vals
);
18709 /* Expand a vector reduction. */
18712 mips_expand_vec_reduc (rtx target
, rtx in
, rtx (*gen
)(rtx
, rtx
, rtx
))
18714 machine_mode vmode
= GET_MODE (in
);
18715 unsigned char perm2
[2];
18716 rtx last
, next
, fold
, x
;
18720 fold
= gen_reg_rtx (vmode
);
18724 /* Use PUL/PLU to produce { L, H } op { H, L }.
18725 By reversing the pair order, rather than a pure interleave high,
18726 we avoid erroneous exceptional conditions that we might otherwise
18727 produce from the computation of H op H. */
18730 ok
= mips_expand_vselect_vconcat (fold
, last
, last
, perm2
, 2);
18735 /* Use interleave to produce { H, L } op { H, H }. */
18736 emit_insn (gen_loongson_punpckhwd (fold
, last
, last
));
18740 /* Perform the first reduction with interleave,
18741 and subsequent reductions with shifts. */
18742 emit_insn (gen_loongson_punpckhwd_hi (fold
, last
, last
));
18744 next
= gen_reg_rtx (vmode
);
18745 emit_insn (gen (next
, last
, fold
));
18748 fold
= gen_reg_rtx (vmode
);
18749 x
= force_reg (SImode
, GEN_INT (16));
18750 emit_insn (gen_vec_shr_v4hi (fold
, last
, x
));
18754 emit_insn (gen_loongson_punpckhwd_qi (fold
, last
, last
));
18756 next
= gen_reg_rtx (vmode
);
18757 emit_insn (gen (next
, last
, fold
));
18760 fold
= gen_reg_rtx (vmode
);
18761 x
= force_reg (SImode
, GEN_INT (16));
18762 emit_insn (gen_vec_shr_v8qi (fold
, last
, x
));
18764 next
= gen_reg_rtx (vmode
);
18765 emit_insn (gen (next
, last
, fold
));
18768 fold
= gen_reg_rtx (vmode
);
18769 x
= force_reg (SImode
, GEN_INT (8));
18770 emit_insn (gen_vec_shr_v8qi (fold
, last
, x
));
18774 gcc_unreachable ();
18777 emit_insn (gen (target
, last
, fold
));
18780 /* Expand a vector minimum/maximum. */
18783 mips_expand_vec_minmax (rtx target
, rtx op0
, rtx op1
,
18784 rtx (*cmp
) (rtx
, rtx
, rtx
), bool min_p
)
18786 machine_mode vmode
= GET_MODE (target
);
18789 tc
= gen_reg_rtx (vmode
);
18790 t0
= gen_reg_rtx (vmode
);
18791 t1
= gen_reg_rtx (vmode
);
18794 emit_insn (cmp (tc
, op0
, op1
));
18796 x
= gen_rtx_AND (vmode
, tc
, (min_p
? op1
: op0
));
18797 emit_insn (gen_rtx_SET (VOIDmode
, t0
, x
));
18799 x
= gen_rtx_NOT (vmode
, tc
);
18800 x
= gen_rtx_AND (vmode
, x
, (min_p
? op0
: op1
));
18801 emit_insn (gen_rtx_SET (VOIDmode
, t1
, x
));
18803 x
= gen_rtx_IOR (vmode
, t0
, t1
);
18804 emit_insn (gen_rtx_SET (VOIDmode
, target
, x
));
18807 /* Implement TARGET_CASE_VALUES_THRESHOLD. */
18810 mips_case_values_threshold (void)
18812 /* In MIPS16 mode using a larger case threshold generates smaller code. */
18813 if (TARGET_MIPS16
&& optimize_size
)
18816 return default_case_values_threshold ();
18819 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
18822 mips_atomic_assign_expand_fenv (tree
*hold
, tree
*clear
, tree
*update
)
18824 if (!TARGET_HARD_FLOAT_ABI
)
18826 tree exceptions_var
= create_tmp_var (MIPS_ATYPE_USI
, NULL
);
18827 tree fcsr_orig_var
= create_tmp_var (MIPS_ATYPE_USI
, NULL
);
18828 tree fcsr_mod_var
= create_tmp_var (MIPS_ATYPE_USI
, NULL
);
18829 tree get_fcsr
= mips_builtin_decls
[MIPS_GET_FCSR
];
18830 tree set_fcsr
= mips_builtin_decls
[MIPS_SET_FCSR
];
18831 tree get_fcsr_hold_call
= build_call_expr (get_fcsr
, 0);
18832 tree hold_assign_orig
= build2 (MODIFY_EXPR
, MIPS_ATYPE_USI
,
18833 fcsr_orig_var
, get_fcsr_hold_call
);
18834 tree hold_mod_val
= build2 (BIT_AND_EXPR
, MIPS_ATYPE_USI
, fcsr_orig_var
,
18835 build_int_cst (MIPS_ATYPE_USI
, 0xfffff003));
18836 tree hold_assign_mod
= build2 (MODIFY_EXPR
, MIPS_ATYPE_USI
,
18837 fcsr_mod_var
, hold_mod_val
);
18838 tree set_fcsr_hold_call
= build_call_expr (set_fcsr
, 1, fcsr_mod_var
);
18839 tree hold_all
= build2 (COMPOUND_EXPR
, MIPS_ATYPE_USI
,
18840 hold_assign_orig
, hold_assign_mod
);
18841 *hold
= build2 (COMPOUND_EXPR
, void_type_node
, hold_all
,
18842 set_fcsr_hold_call
);
18844 *clear
= build_call_expr (set_fcsr
, 1, fcsr_mod_var
);
18846 tree get_fcsr_update_call
= build_call_expr (get_fcsr
, 0);
18847 *update
= build2 (MODIFY_EXPR
, MIPS_ATYPE_USI
,
18848 exceptions_var
, get_fcsr_update_call
);
18849 tree set_fcsr_update_call
= build_call_expr (set_fcsr
, 1, fcsr_orig_var
);
18850 *update
= build2 (COMPOUND_EXPR
, void_type_node
, *update
,
18851 set_fcsr_update_call
);
18852 tree atomic_feraiseexcept
18853 = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT
);
18854 tree int_exceptions_var
= fold_convert (integer_type_node
,
18856 tree atomic_feraiseexcept_call
= build_call_expr (atomic_feraiseexcept
,
18857 1, int_exceptions_var
);
18858 *update
= build2 (COMPOUND_EXPR
, void_type_node
, *update
,
18859 atomic_feraiseexcept_call
);
18862 /* Implement TARGET_SPILL_CLASS. */
18865 mips_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED
,
18866 machine_mode mode ATTRIBUTE_UNUSED
)
18873 /* Implement TARGET_LRA_P. */
18878 return mips_lra_flag
;
18881 /* Initialize the GCC target structure. */
18882 #undef TARGET_ASM_ALIGNED_HI_OP
18883 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
18884 #undef TARGET_ASM_ALIGNED_SI_OP
18885 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
18886 #undef TARGET_ASM_ALIGNED_DI_OP
18887 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
18889 #undef TARGET_OPTION_OVERRIDE
18890 #define TARGET_OPTION_OVERRIDE mips_option_override
18892 #undef TARGET_LEGITIMIZE_ADDRESS
18893 #define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address
18895 #undef TARGET_ASM_FUNCTION_PROLOGUE
18896 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
18897 #undef TARGET_ASM_FUNCTION_EPILOGUE
18898 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
18899 #undef TARGET_ASM_SELECT_RTX_SECTION
18900 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
18901 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
18902 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
18904 #undef TARGET_SCHED_INIT
18905 #define TARGET_SCHED_INIT mips_sched_init
18906 #undef TARGET_SCHED_REORDER
18907 #define TARGET_SCHED_REORDER mips_sched_reorder
18908 #undef TARGET_SCHED_REORDER2
18909 #define TARGET_SCHED_REORDER2 mips_sched_reorder2
18910 #undef TARGET_SCHED_VARIABLE_ISSUE
18911 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
18912 #undef TARGET_SCHED_ADJUST_COST
18913 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
18914 #undef TARGET_SCHED_ISSUE_RATE
18915 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
18916 #undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
18917 #define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn
18918 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
18919 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle
18920 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
18921 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
18922 mips_multipass_dfa_lookahead
18923 #undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
18924 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
18925 mips_small_register_classes_for_mode_p
18927 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
18928 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
18930 #undef TARGET_INSERT_ATTRIBUTES
18931 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
18932 #undef TARGET_MERGE_DECL_ATTRIBUTES
18933 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
18934 #undef TARGET_CAN_INLINE_P
18935 #define TARGET_CAN_INLINE_P mips_can_inline_p
18936 #undef TARGET_SET_CURRENT_FUNCTION
18937 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
18939 #undef TARGET_VALID_POINTER_MODE
18940 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
18941 #undef TARGET_REGISTER_MOVE_COST
18942 #define TARGET_REGISTER_MOVE_COST mips_register_move_cost
18943 #undef TARGET_REGISTER_PRIORITY
18944 #define TARGET_REGISTER_PRIORITY mips_register_priority
18945 #undef TARGET_MEMORY_MOVE_COST
18946 #define TARGET_MEMORY_MOVE_COST mips_memory_move_cost
18947 #undef TARGET_RTX_COSTS
18948 #define TARGET_RTX_COSTS mips_rtx_costs
18949 #undef TARGET_ADDRESS_COST
18950 #define TARGET_ADDRESS_COST mips_address_cost
18952 #undef TARGET_IN_SMALL_DATA_P
18953 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
18955 #undef TARGET_MACHINE_DEPENDENT_REORG
18956 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
18958 #undef TARGET_PREFERRED_RELOAD_CLASS
18959 #define TARGET_PREFERRED_RELOAD_CLASS mips_preferred_reload_class
18961 #undef TARGET_EXPAND_TO_RTL_HOOK
18962 #define TARGET_EXPAND_TO_RTL_HOOK mips_expand_to_rtl_hook
18963 #undef TARGET_ASM_FILE_START
18964 #define TARGET_ASM_FILE_START mips_file_start
18965 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
18966 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
18967 #undef TARGET_ASM_CODE_END
18968 #define TARGET_ASM_CODE_END mips_code_end
18970 #undef TARGET_INIT_LIBFUNCS
18971 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
18973 #undef TARGET_BUILD_BUILTIN_VA_LIST
18974 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
18975 #undef TARGET_EXPAND_BUILTIN_VA_START
18976 #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
18977 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
18978 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
18980 #undef TARGET_PROMOTE_FUNCTION_MODE
18981 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
18982 #undef TARGET_PROMOTE_PROTOTYPES
18983 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
18985 #undef TARGET_FUNCTION_VALUE
18986 #define TARGET_FUNCTION_VALUE mips_function_value
18987 #undef TARGET_LIBCALL_VALUE
18988 #define TARGET_LIBCALL_VALUE mips_libcall_value
18989 #undef TARGET_FUNCTION_VALUE_REGNO_P
18990 #define TARGET_FUNCTION_VALUE_REGNO_P mips_function_value_regno_p
18991 #undef TARGET_RETURN_IN_MEMORY
18992 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
18993 #undef TARGET_RETURN_IN_MSB
18994 #define TARGET_RETURN_IN_MSB mips_return_in_msb
18996 #undef TARGET_ASM_OUTPUT_MI_THUNK
18997 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
18998 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
18999 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
19001 #undef TARGET_PRINT_OPERAND
19002 #define TARGET_PRINT_OPERAND mips_print_operand
19003 #undef TARGET_PRINT_OPERAND_ADDRESS
19004 #define TARGET_PRINT_OPERAND_ADDRESS mips_print_operand_address
19005 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
19006 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mips_print_operand_punct_valid_p
19008 #undef TARGET_SETUP_INCOMING_VARARGS
19009 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
19010 #undef TARGET_STRICT_ARGUMENT_NAMING
19011 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
19012 #undef TARGET_MUST_PASS_IN_STACK
19013 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
19014 #undef TARGET_PASS_BY_REFERENCE
19015 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
19016 #undef TARGET_CALLEE_COPIES
19017 #define TARGET_CALLEE_COPIES mips_callee_copies
19018 #undef TARGET_ARG_PARTIAL_BYTES
19019 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
19020 #undef TARGET_FUNCTION_ARG
19021 #define TARGET_FUNCTION_ARG mips_function_arg
19022 #undef TARGET_FUNCTION_ARG_ADVANCE
19023 #define TARGET_FUNCTION_ARG_ADVANCE mips_function_arg_advance
19024 #undef TARGET_FUNCTION_ARG_BOUNDARY
19025 #define TARGET_FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
19027 #undef TARGET_MODE_REP_EXTENDED
19028 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
19030 #undef TARGET_VECTOR_MODE_SUPPORTED_P
19031 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
19033 #undef TARGET_SCALAR_MODE_SUPPORTED_P
19034 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
19036 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
19037 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE mips_preferred_simd_mode
19039 #undef TARGET_INIT_BUILTINS
19040 #define TARGET_INIT_BUILTINS mips_init_builtins
19041 #undef TARGET_BUILTIN_DECL
19042 #define TARGET_BUILTIN_DECL mips_builtin_decl
19043 #undef TARGET_EXPAND_BUILTIN
19044 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
19046 #undef TARGET_HAVE_TLS
19047 #define TARGET_HAVE_TLS HAVE_AS_TLS
19049 #undef TARGET_CANNOT_FORCE_CONST_MEM
19050 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
19052 #undef TARGET_LEGITIMATE_CONSTANT_P
19053 #define TARGET_LEGITIMATE_CONSTANT_P mips_legitimate_constant_p
19055 #undef TARGET_ENCODE_SECTION_INFO
19056 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
19058 #undef TARGET_ATTRIBUTE_TABLE
19059 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
19060 /* All our function attributes are related to how out-of-line copies should
19061 be compiled or called. They don't in themselves prevent inlining. */
19062 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
19063 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
19065 #undef TARGET_EXTRA_LIVE_ON_ENTRY
19066 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
19068 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
19069 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
19070 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
19071 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
19073 #undef TARGET_COMP_TYPE_ATTRIBUTES
19074 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
19076 #ifdef HAVE_AS_DTPRELWORD
19077 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
19078 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
19080 #undef TARGET_DWARF_REGISTER_SPAN
19081 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
19083 #undef TARGET_ASM_FINAL_POSTSCAN_INSN
19084 #define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn
19086 #undef TARGET_LEGITIMATE_ADDRESS_P
19087 #define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p
19089 #undef TARGET_FRAME_POINTER_REQUIRED
19090 #define TARGET_FRAME_POINTER_REQUIRED mips_frame_pointer_required
19092 #undef TARGET_CAN_ELIMINATE
19093 #define TARGET_CAN_ELIMINATE mips_can_eliminate
19095 #undef TARGET_CONDITIONAL_REGISTER_USAGE
19096 #define TARGET_CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage
19098 #undef TARGET_TRAMPOLINE_INIT
19099 #define TARGET_TRAMPOLINE_INIT mips_trampoline_init
19101 #undef TARGET_ASM_OUTPUT_SOURCE_FILENAME
19102 #define TARGET_ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
19104 #undef TARGET_SHIFT_TRUNCATION_MASK
19105 #define TARGET_SHIFT_TRUNCATION_MASK mips_shift_truncation_mask
19107 #undef TARGET_PREPARE_PCH_SAVE
19108 #define TARGET_PREPARE_PCH_SAVE mips_prepare_pch_save
19110 #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
19111 #define TARGET_VECTORIZE_VEC_PERM_CONST_OK mips_vectorize_vec_perm_const_ok
19113 #undef TARGET_CASE_VALUES_THRESHOLD
19114 #define TARGET_CASE_VALUES_THRESHOLD mips_case_values_threshold
19116 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
19117 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV mips_atomic_assign_expand_fenv
19119 #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
19120 #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true
19122 #undef TARGET_SPILL_CLASS
19123 #define TARGET_SPILL_CLASS mips_spill_class
19124 #undef TARGET_LRA_P
19125 #define TARGET_LRA_P mips_lra_p
19127 struct gcc_target targetm
= TARGET_INITIALIZER
;
19129 #include "gt-mips.h"