gcc/ada/
[official-gcc.git] / gcc / config / frv / frv.c
blob41cc4974cadd58cdfec33ed68ded580e93f45bb0
1 /* Copyright (C) 1997-2014 Free Software Foundation, Inc.
2 Contributed by Red Hat, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "varasm.h"
27 #include "stor-layout.h"
28 #include "stringpool.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-flags.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "flags.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "expr.h"
40 #include "obstack.h"
41 #include "except.h"
42 #include "hashtab.h"
43 #include "hash-set.h"
44 #include "vec.h"
45 #include "machmode.h"
46 #include "input.h"
47 #include "function.h"
48 #include "optabs.h"
49 #include "diagnostic-core.h"
50 #include "predict.h"
51 #include "dominance.h"
52 #include "cfg.h"
53 #include "cfgrtl.h"
54 #include "cfganal.h"
55 #include "lcm.h"
56 #include "cfgbuild.h"
57 #include "cfgcleanup.h"
58 #include "basic-block.h"
59 #include "tm_p.h"
60 #include "ggc.h"
61 #include "target.h"
62 #include "target-def.h"
63 #include "targhooks.h"
64 #include "langhooks.h"
65 #include "df.h"
66 #include "dumpfile.h"
67 #include "builtins.h"
68 #include "ifcvt.h"
70 #ifndef FRV_INLINE
71 #define FRV_INLINE inline
72 #endif
74 /* The maximum number of distinct NOP patterns. There are three:
75 nop, fnop and mnop. */
76 #define NUM_NOP_PATTERNS 3
78 /* Classification of instructions and units: integer, floating-point/media,
79 branch and control. */
80 enum frv_insn_group { GROUP_I, GROUP_FM, GROUP_B, GROUP_C, NUM_GROUPS };
82 /* The DFA names of the units, in packet order. */
83 static const char *const frv_unit_names[] =
85 "c",
86 "i0", "f0",
87 "i1", "f1",
88 "i2", "f2",
89 "i3", "f3",
90 "b0", "b1"
93 /* The classification of each unit in frv_unit_names[]. */
94 static const enum frv_insn_group frv_unit_groups[ARRAY_SIZE (frv_unit_names)] =
96 GROUP_C,
97 GROUP_I, GROUP_FM,
98 GROUP_I, GROUP_FM,
99 GROUP_I, GROUP_FM,
100 GROUP_I, GROUP_FM,
101 GROUP_B, GROUP_B
104 /* Return the DFA unit code associated with the Nth unit of integer
105 or floating-point group GROUP, */
106 #define NTH_UNIT(GROUP, N) frv_unit_codes[(GROUP) + (N) * 2 + 1]
108 /* Return the number of integer or floating-point unit UNIT
109 (1 for I1, 2 for F2, etc.). */
110 #define UNIT_NUMBER(UNIT) (((UNIT) - 1) / 2)
112 /* The DFA unit number for each unit in frv_unit_names[]. */
113 static int frv_unit_codes[ARRAY_SIZE (frv_unit_names)];
115 /* FRV_TYPE_TO_UNIT[T] is the last unit in frv_unit_names[] that can issue
116 an instruction of type T. The value is ARRAY_SIZE (frv_unit_names) if
117 no instruction of type T has been seen. */
118 static unsigned int frv_type_to_unit[TYPE_UNKNOWN + 1];
120 /* An array of dummy nop INSNs, one for each type of nop that the
121 target supports. */
122 static GTY(()) rtx_insn *frv_nops[NUM_NOP_PATTERNS];
124 /* The number of nop instructions in frv_nops[]. */
125 static unsigned int frv_num_nops;
127 /* The type of access. FRV_IO_UNKNOWN means the access can be either
128 a read or a write. */
129 enum frv_io_type { FRV_IO_UNKNOWN, FRV_IO_READ, FRV_IO_WRITE };
131 /* Information about one __builtin_read or __builtin_write access, or
132 the combination of several such accesses. The most general value
133 is all-zeros (an unknown access to an unknown address). */
134 struct frv_io {
135 enum frv_io_type type;
137 /* The constant address being accessed, or zero if not known. */
138 HOST_WIDE_INT const_address;
140 /* The run-time address, as used in operand 0 of the membar pattern. */
141 rtx var_address;
144 /* Return true if instruction INSN should be packed with the following
145 instruction. */
146 #define PACKING_FLAG_P(INSN) (GET_MODE (INSN) == TImode)
148 /* Set the value of PACKING_FLAG_P(INSN). */
149 #define SET_PACKING_FLAG(INSN) PUT_MODE (INSN, TImode)
150 #define CLEAR_PACKING_FLAG(INSN) PUT_MODE (INSN, VOIDmode)
152 /* Loop with REG set to each hard register in rtx X. */
153 #define FOR_EACH_REGNO(REG, X) \
154 for (REG = REGNO (X); \
155 REG < REGNO (X) + HARD_REGNO_NREGS (REGNO (X), GET_MODE (X)); \
156 REG++)
158 /* This structure contains machine specific function data. */
159 struct GTY(()) machine_function
161 /* True if we have created an rtx that relies on the stack frame. */
162 int frame_needed;
164 /* True if this function contains at least one __builtin_{read,write}*. */
165 bool has_membar_p;
168 /* Temporary register allocation support structure. */
169 typedef struct frv_tmp_reg_struct
171 HARD_REG_SET regs; /* possible registers to allocate */
172 int next_reg[N_REG_CLASSES]; /* next register to allocate per class */
174 frv_tmp_reg_t;
176 /* Register state information for VLIW re-packing phase. */
177 #define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
178 #define REGSTATE_MODIFIED 0x08 /* reg modified in current VLIW insn */
179 #define REGSTATE_IF_TRUE 0x10 /* reg modified in cond exec true */
180 #define REGSTATE_IF_FALSE 0x20 /* reg modified in cond exec false */
182 #define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
184 typedef unsigned char regstate_t;
186 /* Used in frv_frame_accessor_t to indicate the direction of a register-to-
187 memory move. */
188 enum frv_stack_op
190 FRV_LOAD,
191 FRV_STORE
194 /* Information required by frv_frame_access. */
195 typedef struct
197 /* This field is FRV_LOAD if registers are to be loaded from the stack and
198 FRV_STORE if they should be stored onto the stack. FRV_STORE implies
199 the move is being done by the prologue code while FRV_LOAD implies it
200 is being done by the epilogue. */
201 enum frv_stack_op op;
203 /* The base register to use when accessing the stack. This may be the
204 frame pointer, stack pointer, or a temporary. The choice of register
205 depends on which part of the frame is being accessed and how big the
206 frame is. */
207 rtx base;
209 /* The offset of BASE from the bottom of the current frame, in bytes. */
210 int base_offset;
211 } frv_frame_accessor_t;
213 /* Conditional execution support gathered together in one structure. */
214 typedef struct
216 /* Linked list of insns to add if the conditional execution conversion was
217 successful. Each link points to an EXPR_LIST which points to the pattern
218 of the insn to add, and the insn to be inserted before. */
219 rtx added_insns_list;
221 /* Identify which registers are safe to allocate for if conversions to
222 conditional execution. We keep the last allocated register in the
223 register classes between COND_EXEC statements. This will mean we allocate
224 different registers for each different COND_EXEC group if we can. This
225 might allow the scheduler to intermix two different COND_EXEC sections. */
226 frv_tmp_reg_t tmp_reg;
228 /* For nested IFs, identify which CC registers are used outside of setting
229 via a compare isnsn, and using via a check insn. This will allow us to
230 know if we can rewrite the register to use a different register that will
231 be paired with the CR register controlling the nested IF-THEN blocks. */
232 HARD_REG_SET nested_cc_ok_rewrite;
234 /* Temporary registers allocated to hold constants during conditional
235 execution. */
236 rtx scratch_regs[FIRST_PSEUDO_REGISTER];
238 /* Current number of temp registers available. */
239 int cur_scratch_regs;
241 /* Number of nested conditional execution blocks. */
242 int num_nested_cond_exec;
244 /* Map of insns that set up constants in scratch registers. */
245 bitmap scratch_insns_bitmap;
247 /* Conditional execution test register (CC0..CC7). */
248 rtx cr_reg;
250 /* Conditional execution compare register that is paired with cr_reg, so that
251 nested compares can be done. The csubcc and caddcc instructions don't
252 have enough bits to specify both a CC register to be set and a CR register
253 to do the test on, so the same bit number is used for both. Needless to
254 say, this is rather inconvenient for GCC. */
255 rtx nested_cc_reg;
257 /* Extra CR registers used for &&, ||. */
258 rtx extra_int_cr;
259 rtx extra_fp_cr;
261 /* Previous CR used in nested if, to make sure we are dealing with the same
262 nested if as the previous statement. */
263 rtx last_nested_if_cr;
265 frv_ifcvt_t;
267 static /* GTY(()) */ frv_ifcvt_t frv_ifcvt;
269 /* Map register number to smallest register class. */
270 enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
272 /* Cached value of frv_stack_info. */
273 static frv_stack_t *frv_stack_cache = (frv_stack_t *)0;
275 /* Forward references */
277 static void frv_option_override (void);
278 static bool frv_legitimate_address_p (machine_mode, rtx, bool);
279 static int frv_default_flags_for_cpu (void);
280 static int frv_string_begins_with (const char *, const char *);
281 static FRV_INLINE bool frv_small_data_reloc_p (rtx, int);
282 static void frv_print_operand (FILE *, rtx, int);
283 static void frv_print_operand_address (FILE *, rtx);
284 static bool frv_print_operand_punct_valid_p (unsigned char code);
285 static void frv_print_operand_memory_reference_reg
286 (FILE *, rtx);
287 static void frv_print_operand_memory_reference (FILE *, rtx, int);
288 static int frv_print_operand_jump_hint (rtx_insn *);
289 static const char *comparison_string (enum rtx_code, rtx);
290 static rtx frv_function_value (const_tree, const_tree,
291 bool);
292 static rtx frv_libcall_value (machine_mode,
293 const_rtx);
294 static FRV_INLINE int frv_regno_ok_for_base_p (int, int);
295 static rtx single_set_pattern (rtx);
296 static int frv_function_contains_far_jump (void);
297 static rtx frv_alloc_temp_reg (frv_tmp_reg_t *,
298 enum reg_class,
299 machine_mode,
300 int, int);
301 static rtx frv_frame_offset_rtx (int);
302 static rtx frv_frame_mem (machine_mode, rtx, int);
303 static rtx frv_dwarf_store (rtx, int);
304 static void frv_frame_insn (rtx, rtx);
305 static void frv_frame_access (frv_frame_accessor_t*,
306 rtx, int);
307 static void frv_frame_access_multi (frv_frame_accessor_t*,
308 frv_stack_t *, int);
309 static void frv_frame_access_standard_regs (enum frv_stack_op,
310 frv_stack_t *);
311 static struct machine_function *frv_init_machine_status (void);
312 static rtx frv_int_to_acc (enum insn_code, int, rtx);
313 static machine_mode frv_matching_accg_mode (machine_mode);
314 static rtx frv_read_argument (tree, unsigned int);
315 static rtx frv_read_iacc_argument (machine_mode, tree, unsigned int);
316 static int frv_check_constant_argument (enum insn_code, int, rtx);
317 static rtx frv_legitimize_target (enum insn_code, rtx);
318 static rtx frv_legitimize_argument (enum insn_code, int, rtx);
319 static rtx frv_legitimize_tls_address (rtx, enum tls_model);
320 static rtx frv_legitimize_address (rtx, rtx, machine_mode);
321 static rtx frv_expand_set_builtin (enum insn_code, tree, rtx);
322 static rtx frv_expand_unop_builtin (enum insn_code, tree, rtx);
323 static rtx frv_expand_binop_builtin (enum insn_code, tree, rtx);
324 static rtx frv_expand_cut_builtin (enum insn_code, tree, rtx);
325 static rtx frv_expand_binopimm_builtin (enum insn_code, tree, rtx);
326 static rtx frv_expand_voidbinop_builtin (enum insn_code, tree);
327 static rtx frv_expand_int_void2arg (enum insn_code, tree);
328 static rtx frv_expand_prefetches (enum insn_code, tree);
329 static rtx frv_expand_voidtriop_builtin (enum insn_code, tree);
330 static rtx frv_expand_voidaccop_builtin (enum insn_code, tree);
331 static rtx frv_expand_mclracc_builtin (tree);
332 static rtx frv_expand_mrdacc_builtin (enum insn_code, tree);
333 static rtx frv_expand_mwtacc_builtin (enum insn_code, tree);
334 static rtx frv_expand_noargs_builtin (enum insn_code);
335 static void frv_split_iacc_move (rtx, rtx);
336 static rtx frv_emit_comparison (enum rtx_code, rtx, rtx);
337 static int frv_clear_registers_used (rtx *, void *);
338 static void frv_ifcvt_add_insn (rtx, rtx, int);
339 static rtx frv_ifcvt_rewrite_mem (rtx, machine_mode, rtx);
340 static rtx frv_ifcvt_load_value (rtx, rtx);
341 static int frv_acc_group_1 (rtx *, void *);
342 static unsigned int frv_insn_unit (rtx_insn *);
343 static bool frv_issues_to_branch_unit_p (rtx_insn *);
344 static int frv_cond_flags (rtx);
345 static bool frv_regstate_conflict_p (regstate_t, regstate_t);
346 static int frv_registers_conflict_p_1 (rtx *, void *);
347 static bool frv_registers_conflict_p (rtx);
348 static void frv_registers_update_1 (rtx, const_rtx, void *);
349 static void frv_registers_update (rtx);
350 static void frv_start_packet (void);
351 static void frv_start_packet_block (void);
352 static void frv_finish_packet (void (*) (void));
353 static bool frv_pack_insn_p (rtx_insn *);
354 static void frv_add_insn_to_packet (rtx_insn *);
355 static void frv_insert_nop_in_packet (rtx_insn *);
356 static bool frv_for_each_packet (void (*) (void));
357 static bool frv_sort_insn_group_1 (enum frv_insn_group,
358 unsigned int, unsigned int,
359 unsigned int, unsigned int,
360 state_t);
361 static int frv_compare_insns (const void *, const void *);
362 static void frv_sort_insn_group (enum frv_insn_group);
363 static void frv_reorder_packet (void);
364 static void frv_fill_unused_units (enum frv_insn_group);
365 static void frv_align_label (void);
366 static void frv_reorg_packet (void);
367 static void frv_register_nop (rtx);
368 static void frv_reorg (void);
369 static void frv_pack_insns (void);
370 static void frv_function_prologue (FILE *, HOST_WIDE_INT);
371 static void frv_function_epilogue (FILE *, HOST_WIDE_INT);
372 static bool frv_assemble_integer (rtx, unsigned, int);
373 static void frv_init_builtins (void);
374 static rtx frv_expand_builtin (tree, rtx, rtx, machine_mode, int);
375 static void frv_init_libfuncs (void);
376 static bool frv_in_small_data_p (const_tree);
377 static void frv_asm_output_mi_thunk
378 (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
379 static void frv_setup_incoming_varargs (cumulative_args_t,
380 machine_mode,
381 tree, int *, int);
382 static rtx frv_expand_builtin_saveregs (void);
383 static void frv_expand_builtin_va_start (tree, rtx);
384 static bool frv_rtx_costs (rtx, int, int, int, int*,
385 bool);
386 static int frv_register_move_cost (machine_mode,
387 reg_class_t, reg_class_t);
388 static int frv_memory_move_cost (machine_mode,
389 reg_class_t, bool);
390 static void frv_asm_out_constructor (rtx, int);
391 static void frv_asm_out_destructor (rtx, int);
392 static bool frv_function_symbol_referenced_p (rtx);
393 static bool frv_legitimate_constant_p (machine_mode, rtx);
394 static bool frv_cannot_force_const_mem (machine_mode, rtx);
395 static const char *unspec_got_name (int);
396 static void frv_output_const_unspec (FILE *,
397 const struct frv_unspec *);
398 static bool frv_function_ok_for_sibcall (tree, tree);
399 static rtx frv_struct_value_rtx (tree, int);
400 static bool frv_must_pass_in_stack (machine_mode mode, const_tree type);
401 static int frv_arg_partial_bytes (cumulative_args_t, machine_mode,
402 tree, bool);
403 static rtx frv_function_arg (cumulative_args_t, machine_mode,
404 const_tree, bool);
405 static rtx frv_function_incoming_arg (cumulative_args_t, machine_mode,
406 const_tree, bool);
407 static void frv_function_arg_advance (cumulative_args_t, machine_mode,
408 const_tree, bool);
409 static unsigned int frv_function_arg_boundary (machine_mode,
410 const_tree);
411 static void frv_output_dwarf_dtprel (FILE *, int, rtx)
412 ATTRIBUTE_UNUSED;
413 static reg_class_t frv_secondary_reload (bool, rtx, reg_class_t,
414 machine_mode,
415 secondary_reload_info *);
416 static bool frv_frame_pointer_required (void);
417 static bool frv_can_eliminate (const int, const int);
418 static void frv_conditional_register_usage (void);
419 static void frv_trampoline_init (rtx, tree, rtx);
420 static bool frv_class_likely_spilled_p (reg_class_t);
422 /* Initialize the GCC target structure. */
423 #undef TARGET_PRINT_OPERAND
424 #define TARGET_PRINT_OPERAND frv_print_operand
425 #undef TARGET_PRINT_OPERAND_ADDRESS
426 #define TARGET_PRINT_OPERAND_ADDRESS frv_print_operand_address
427 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
428 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P frv_print_operand_punct_valid_p
429 #undef TARGET_ASM_FUNCTION_PROLOGUE
430 #define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
431 #undef TARGET_ASM_FUNCTION_EPILOGUE
432 #define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
433 #undef TARGET_ASM_INTEGER
434 #define TARGET_ASM_INTEGER frv_assemble_integer
435 #undef TARGET_OPTION_OVERRIDE
436 #define TARGET_OPTION_OVERRIDE frv_option_override
437 #undef TARGET_INIT_BUILTINS
438 #define TARGET_INIT_BUILTINS frv_init_builtins
439 #undef TARGET_EXPAND_BUILTIN
440 #define TARGET_EXPAND_BUILTIN frv_expand_builtin
441 #undef TARGET_INIT_LIBFUNCS
442 #define TARGET_INIT_LIBFUNCS frv_init_libfuncs
443 #undef TARGET_IN_SMALL_DATA_P
444 #define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
445 #undef TARGET_REGISTER_MOVE_COST
446 #define TARGET_REGISTER_MOVE_COST frv_register_move_cost
447 #undef TARGET_MEMORY_MOVE_COST
448 #define TARGET_MEMORY_MOVE_COST frv_memory_move_cost
449 #undef TARGET_RTX_COSTS
450 #define TARGET_RTX_COSTS frv_rtx_costs
451 #undef TARGET_ASM_CONSTRUCTOR
452 #define TARGET_ASM_CONSTRUCTOR frv_asm_out_constructor
453 #undef TARGET_ASM_DESTRUCTOR
454 #define TARGET_ASM_DESTRUCTOR frv_asm_out_destructor
456 #undef TARGET_ASM_OUTPUT_MI_THUNK
457 #define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
458 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
459 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
461 #undef TARGET_SCHED_ISSUE_RATE
462 #define TARGET_SCHED_ISSUE_RATE frv_issue_rate
464 #undef TARGET_LEGITIMIZE_ADDRESS
465 #define TARGET_LEGITIMIZE_ADDRESS frv_legitimize_address
467 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
468 #define TARGET_FUNCTION_OK_FOR_SIBCALL frv_function_ok_for_sibcall
469 #undef TARGET_LEGITIMATE_CONSTANT_P
470 #define TARGET_LEGITIMATE_CONSTANT_P frv_legitimate_constant_p
471 #undef TARGET_CANNOT_FORCE_CONST_MEM
472 #define TARGET_CANNOT_FORCE_CONST_MEM frv_cannot_force_const_mem
474 #undef TARGET_HAVE_TLS
475 #define TARGET_HAVE_TLS HAVE_AS_TLS
477 #undef TARGET_STRUCT_VALUE_RTX
478 #define TARGET_STRUCT_VALUE_RTX frv_struct_value_rtx
479 #undef TARGET_MUST_PASS_IN_STACK
480 #define TARGET_MUST_PASS_IN_STACK frv_must_pass_in_stack
481 #undef TARGET_PASS_BY_REFERENCE
482 #define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
483 #undef TARGET_ARG_PARTIAL_BYTES
484 #define TARGET_ARG_PARTIAL_BYTES frv_arg_partial_bytes
485 #undef TARGET_FUNCTION_ARG
486 #define TARGET_FUNCTION_ARG frv_function_arg
487 #undef TARGET_FUNCTION_INCOMING_ARG
488 #define TARGET_FUNCTION_INCOMING_ARG frv_function_incoming_arg
489 #undef TARGET_FUNCTION_ARG_ADVANCE
490 #define TARGET_FUNCTION_ARG_ADVANCE frv_function_arg_advance
491 #undef TARGET_FUNCTION_ARG_BOUNDARY
492 #define TARGET_FUNCTION_ARG_BOUNDARY frv_function_arg_boundary
494 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
495 #define TARGET_EXPAND_BUILTIN_SAVEREGS frv_expand_builtin_saveregs
496 #undef TARGET_SETUP_INCOMING_VARARGS
497 #define TARGET_SETUP_INCOMING_VARARGS frv_setup_incoming_varargs
498 #undef TARGET_MACHINE_DEPENDENT_REORG
499 #define TARGET_MACHINE_DEPENDENT_REORG frv_reorg
501 #undef TARGET_EXPAND_BUILTIN_VA_START
502 #define TARGET_EXPAND_BUILTIN_VA_START frv_expand_builtin_va_start
504 #if HAVE_AS_TLS
505 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
506 #define TARGET_ASM_OUTPUT_DWARF_DTPREL frv_output_dwarf_dtprel
507 #endif
509 #undef TARGET_CLASS_LIKELY_SPILLED_P
510 #define TARGET_CLASS_LIKELY_SPILLED_P frv_class_likely_spilled_p
512 #undef TARGET_SECONDARY_RELOAD
513 #define TARGET_SECONDARY_RELOAD frv_secondary_reload
515 #undef TARGET_LEGITIMATE_ADDRESS_P
516 #define TARGET_LEGITIMATE_ADDRESS_P frv_legitimate_address_p
518 #undef TARGET_FRAME_POINTER_REQUIRED
519 #define TARGET_FRAME_POINTER_REQUIRED frv_frame_pointer_required
521 #undef TARGET_CAN_ELIMINATE
522 #define TARGET_CAN_ELIMINATE frv_can_eliminate
524 #undef TARGET_CONDITIONAL_REGISTER_USAGE
525 #define TARGET_CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage
527 #undef TARGET_TRAMPOLINE_INIT
528 #define TARGET_TRAMPOLINE_INIT frv_trampoline_init
530 #undef TARGET_FUNCTION_VALUE
531 #define TARGET_FUNCTION_VALUE frv_function_value
532 #undef TARGET_LIBCALL_VALUE
533 #define TARGET_LIBCALL_VALUE frv_libcall_value
535 struct gcc_target targetm = TARGET_INITIALIZER;
537 #define FRV_SYMBOL_REF_TLS_P(RTX) \
538 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
541 /* Any function call that satisfies the machine-independent
542 requirements is eligible on FR-V. */
544 static bool
545 frv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
546 tree exp ATTRIBUTE_UNUSED)
548 return true;
551 /* Return true if SYMBOL is a small data symbol and relocation RELOC
552 can be used to access it directly in a load or store. */
554 static FRV_INLINE bool
555 frv_small_data_reloc_p (rtx symbol, int reloc)
557 return (GET_CODE (symbol) == SYMBOL_REF
558 && SYMBOL_REF_SMALL_P (symbol)
559 && (!TARGET_FDPIC || flag_pic == 1)
560 && (reloc == R_FRV_GOTOFF12 || reloc == R_FRV_GPREL12));
563 /* Return true if X is a valid relocation unspec. If it is, fill in UNSPEC
564 appropriately. */
566 bool
567 frv_const_unspec_p (rtx x, struct frv_unspec *unspec)
569 if (GET_CODE (x) == CONST)
571 unspec->offset = 0;
572 x = XEXP (x, 0);
573 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
575 unspec->offset += INTVAL (XEXP (x, 1));
576 x = XEXP (x, 0);
578 if (GET_CODE (x) == UNSPEC && XINT (x, 1) == UNSPEC_GOT)
580 unspec->symbol = XVECEXP (x, 0, 0);
581 unspec->reloc = INTVAL (XVECEXP (x, 0, 1));
583 if (unspec->offset == 0)
584 return true;
586 if (frv_small_data_reloc_p (unspec->symbol, unspec->reloc)
587 && unspec->offset > 0
588 && unspec->offset < g_switch_value)
589 return true;
592 return false;
595 /* Decide whether we can force certain constants to memory. If we
596 decide we can't, the caller should be able to cope with it in
597 another way.
599 We never allow constants to be forced into memory for TARGET_FDPIC.
600 This is necessary for several reasons:
602 1. Since frv_legitimate_constant_p rejects constant pool addresses, the
603 target-independent code will try to force them into the constant
604 pool, thus leading to infinite recursion.
606 2. We can never introduce new constant pool references during reload.
607 Any such reference would require use of the pseudo FDPIC register.
609 3. We can't represent a constant added to a function pointer (which is
610 not the same as a pointer to a function+constant).
612 4. In many cases, it's more efficient to calculate the constant in-line. */
614 static bool
615 frv_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED,
616 rtx x ATTRIBUTE_UNUSED)
618 return TARGET_FDPIC;
621 static int
622 frv_default_flags_for_cpu (void)
624 switch (frv_cpu_type)
626 case FRV_CPU_GENERIC:
627 return MASK_DEFAULT_FRV;
629 case FRV_CPU_FR550:
630 return MASK_DEFAULT_FR550;
632 case FRV_CPU_FR500:
633 case FRV_CPU_TOMCAT:
634 return MASK_DEFAULT_FR500;
636 case FRV_CPU_FR450:
637 return MASK_DEFAULT_FR450;
639 case FRV_CPU_FR405:
640 case FRV_CPU_FR400:
641 return MASK_DEFAULT_FR400;
643 case FRV_CPU_FR300:
644 case FRV_CPU_SIMPLE:
645 return MASK_DEFAULT_SIMPLE;
647 default:
648 gcc_unreachable ();
652 /* Implement TARGET_OPTION_OVERRIDE. */
654 static void
655 frv_option_override (void)
657 int regno;
658 unsigned int i;
660 target_flags |= (frv_default_flags_for_cpu () & ~target_flags_explicit);
662 /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
663 linker about linking pic and non-pic code. */
664 if (TARGET_LIBPIC)
666 if (!flag_pic) /* -fPIC */
667 flag_pic = 2;
669 if (!global_options_set.x_g_switch_value) /* -G0 */
671 g_switch_value = 0;
675 /* A C expression whose value is a register class containing hard
676 register REGNO. In general there is more than one such class;
677 choose a class which is "minimal", meaning that no smaller class
678 also contains the register. */
680 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
682 enum reg_class rclass;
684 if (GPR_P (regno))
686 int gpr_reg = regno - GPR_FIRST;
688 if (gpr_reg == GR8_REG)
689 rclass = GR8_REGS;
691 else if (gpr_reg == GR9_REG)
692 rclass = GR9_REGS;
694 else if (gpr_reg == GR14_REG)
695 rclass = FDPIC_FPTR_REGS;
697 else if (gpr_reg == FDPIC_REGNO)
698 rclass = FDPIC_REGS;
700 else if ((gpr_reg & 3) == 0)
701 rclass = QUAD_REGS;
703 else if ((gpr_reg & 1) == 0)
704 rclass = EVEN_REGS;
706 else
707 rclass = GPR_REGS;
710 else if (FPR_P (regno))
712 int fpr_reg = regno - GPR_FIRST;
713 if ((fpr_reg & 3) == 0)
714 rclass = QUAD_FPR_REGS;
716 else if ((fpr_reg & 1) == 0)
717 rclass = FEVEN_REGS;
719 else
720 rclass = FPR_REGS;
723 else if (regno == LR_REGNO)
724 rclass = LR_REG;
726 else if (regno == LCR_REGNO)
727 rclass = LCR_REG;
729 else if (ICC_P (regno))
730 rclass = ICC_REGS;
732 else if (FCC_P (regno))
733 rclass = FCC_REGS;
735 else if (ICR_P (regno))
736 rclass = ICR_REGS;
738 else if (FCR_P (regno))
739 rclass = FCR_REGS;
741 else if (ACC_P (regno))
743 int r = regno - ACC_FIRST;
744 if ((r & 3) == 0)
745 rclass = QUAD_ACC_REGS;
746 else if ((r & 1) == 0)
747 rclass = EVEN_ACC_REGS;
748 else
749 rclass = ACC_REGS;
752 else if (ACCG_P (regno))
753 rclass = ACCG_REGS;
755 else
756 rclass = NO_REGS;
758 regno_reg_class[regno] = rclass;
761 /* Check for small data option */
762 if (!global_options_set.x_g_switch_value && !TARGET_LIBPIC)
763 g_switch_value = SDATA_DEFAULT_SIZE;
765 /* There is no single unaligned SI op for PIC code. Sometimes we
766 need to use ".4byte" and sometimes we need to use ".picptr".
767 See frv_assemble_integer for details. */
768 if (flag_pic || TARGET_FDPIC)
769 targetm.asm_out.unaligned_op.si = 0;
771 if ((target_flags_explicit & MASK_LINKED_FP) == 0)
772 target_flags |= MASK_LINKED_FP;
774 if ((target_flags_explicit & MASK_OPTIMIZE_MEMBAR) == 0)
775 target_flags |= MASK_OPTIMIZE_MEMBAR;
777 for (i = 0; i < ARRAY_SIZE (frv_unit_names); i++)
778 frv_unit_codes[i] = get_cpu_unit_code (frv_unit_names[i]);
780 for (i = 0; i < ARRAY_SIZE (frv_type_to_unit); i++)
781 frv_type_to_unit[i] = ARRAY_SIZE (frv_unit_codes);
783 init_machine_status = frv_init_machine_status;
787 /* Return true if NAME (a STRING_CST node) begins with PREFIX. */
789 static int
790 frv_string_begins_with (const char *name, const char *prefix)
792 const int prefix_len = strlen (prefix);
794 /* Remember: NAME's length includes the null terminator. */
795 return (strncmp (name, prefix, prefix_len) == 0);
798 /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
800 static void
801 frv_conditional_register_usage (void)
803 int i;
805 for (i = GPR_FIRST + NUM_GPRS; i <= GPR_LAST; i++)
806 fixed_regs[i] = call_used_regs[i] = 1;
808 for (i = FPR_FIRST + NUM_FPRS; i <= FPR_LAST; i++)
809 fixed_regs[i] = call_used_regs[i] = 1;
811 /* Reserve the registers used for conditional execution. At present, we need
812 1 ICC and 1 ICR register. */
813 fixed_regs[ICC_TEMP] = call_used_regs[ICC_TEMP] = 1;
814 fixed_regs[ICR_TEMP] = call_used_regs[ICR_TEMP] = 1;
816 if (TARGET_FIXED_CC)
818 fixed_regs[ICC_FIRST] = call_used_regs[ICC_FIRST] = 1;
819 fixed_regs[FCC_FIRST] = call_used_regs[FCC_FIRST] = 1;
820 fixed_regs[ICR_FIRST] = call_used_regs[ICR_FIRST] = 1;
821 fixed_regs[FCR_FIRST] = call_used_regs[FCR_FIRST] = 1;
824 if (TARGET_FDPIC)
825 fixed_regs[GPR_FIRST + 16] = fixed_regs[GPR_FIRST + 17] =
826 call_used_regs[GPR_FIRST + 16] = call_used_regs[GPR_FIRST + 17] = 0;
828 #if 0
829 /* If -fpic, SDA_BASE_REG is the PIC register. */
830 if (g_switch_value == 0 && !flag_pic)
831 fixed_regs[SDA_BASE_REG] = call_used_regs[SDA_BASE_REG] = 0;
833 if (!flag_pic)
834 fixed_regs[PIC_REGNO] = call_used_regs[PIC_REGNO] = 0;
835 #endif
840 * Compute the stack frame layout
842 * Register setup:
843 * +---------------+-----------------------+-----------------------+
844 * |Register |type |caller-save/callee-save|
845 * +---------------+-----------------------+-----------------------+
846 * |GR0 |Zero register | - |
847 * |GR1 |Stack pointer(SP) | - |
848 * |GR2 |Frame pointer(FP) | - |
849 * |GR3 |Hidden parameter | caller save |
850 * |GR4-GR7 | - | caller save |
851 * |GR8-GR13 |Argument register | caller save |
852 * |GR14-GR15 | - | caller save |
853 * |GR16-GR31 | - | callee save |
854 * |GR32-GR47 | - | caller save |
855 * |GR48-GR63 | - | callee save |
856 * |FR0-FR15 | - | caller save |
857 * |FR16-FR31 | - | callee save |
858 * |FR32-FR47 | - | caller save |
859 * |FR48-FR63 | - | callee save |
860 * +---------------+-----------------------+-----------------------+
862 * Stack frame setup:
863 * Low
864 * SP-> |-----------------------------------|
865 * | Argument area |
866 * |-----------------------------------|
867 * | Register save area |
868 * |-----------------------------------|
869 * | Local variable save area |
870 * FP-> |-----------------------------------|
871 * | Old FP |
872 * |-----------------------------------|
873 * | Hidden parameter save area |
874 * |-----------------------------------|
875 * | Return address(LR) storage area |
876 * |-----------------------------------|
877 * | Padding for alignment |
878 * |-----------------------------------|
879 * | Register argument area |
880 * OLD SP-> |-----------------------------------|
881 * | Parameter area |
882 * |-----------------------------------|
883 * High
885 * Argument area/Parameter area:
887 * When a function is called, this area is used for argument transfer. When
888 * the argument is set up by the caller function, this area is referred to as
889 * the argument area. When the argument is referenced by the callee function,
890 * this area is referred to as the parameter area. The area is allocated when
891 * all arguments cannot be placed on the argument register at the time of
892 * argument transfer.
894 * Register save area:
896 * This is a register save area that must be guaranteed for the caller
897 * function. This area is not secured when the register save operation is not
898 * needed.
900 * Local variable save area:
902 * This is the area for local variables and temporary variables.
904 * Old FP:
906 * This area stores the FP value of the caller function.
908 * Hidden parameter save area:
910 * This area stores the start address of the return value storage
911 * area for a struct/union return function.
912 * When a struct/union is used as the return value, the caller
913 * function stores the return value storage area start address in
914 * register GR3 and passes it to the caller function.
915 * The callee function interprets the address stored in the GR3
916 * as the return value storage area start address.
917 * When register GR3 needs to be saved into memory, the callee
918 * function saves it in the hidden parameter save area. This
919 * area is not secured when the save operation is not needed.
921 * Return address(LR) storage area:
923 * This area saves the LR. The LR stores the address of a return to the caller
924 * function for the purpose of function calling.
926 * Argument register area:
928 * This area saves the argument register. This area is not secured when the
929 * save operation is not needed.
931 * Argument:
933 * Arguments, the count of which equals the count of argument registers (6
934 * words), are positioned in registers GR8 to GR13 and delivered to the callee
935 * function. When a struct/union return function is called, the return value
936 * area address is stored in register GR3. Arguments not placed in the
937 * argument registers will be stored in the stack argument area for transfer
938 * purposes. When an 8-byte type argument is to be delivered using registers,
939 * it is divided into two and placed in two registers for transfer. When
940 * argument registers must be saved to memory, the callee function secures an
941 * argument register save area in the stack. In this case, a continuous
942 * argument register save area must be established in the parameter area. The
943 * argument register save area must be allocated as needed to cover the size of
944 * the argument register to be saved. If the function has a variable count of
945 * arguments, it saves all argument registers in the argument register save
946 * area.
948 * Argument Extension Format:
950 * When an argument is to be stored in the stack, its type is converted to an
951 * extended type in accordance with the individual argument type. The argument
952 * is freed by the caller function after the return from the callee function is
953 * made.
955 * +-----------------------+---------------+------------------------+
956 * | Argument Type |Extended Type |Stack Storage Size(byte)|
957 * +-----------------------+---------------+------------------------+
958 * |char |int | 4 |
959 * |signed char |int | 4 |
960 * |unsigned char |int | 4 |
961 * |[signed] short int |int | 4 |
962 * |unsigned short int |int | 4 |
963 * |[signed] int |No extension | 4 |
964 * |unsigned int |No extension | 4 |
965 * |[signed] long int |No extension | 4 |
966 * |unsigned long int |No extension | 4 |
967 * |[signed] long long int |No extension | 8 |
968 * |unsigned long long int |No extension | 8 |
969 * |float |double | 8 |
970 * |double |No extension | 8 |
971 * |long double |No extension | 8 |
972 * |pointer |No extension | 4 |
973 * |struct/union |- | 4 (*1) |
974 * +-----------------------+---------------+------------------------+
976 * When a struct/union is to be delivered as an argument, the caller copies it
977 * to the local variable area and delivers the address of that area.
979 * Return Value:
981 * +-------------------------------+----------------------+
982 * |Return Value Type |Return Value Interface|
983 * +-------------------------------+----------------------+
984 * |void |None |
985 * |[signed|unsigned] char |GR8 |
986 * |[signed|unsigned] short int |GR8 |
987 * |[signed|unsigned] int |GR8 |
988 * |[signed|unsigned] long int |GR8 |
989 * |pointer |GR8 |
990 * |[signed|unsigned] long long int|GR8 & GR9 |
991 * |float |GR8 |
992 * |double |GR8 & GR9 |
993 * |long double |GR8 & GR9 |
994 * |struct/union |(*1) |
995 * +-------------------------------+----------------------+
997 * When a struct/union is used as the return value, the caller function stores
998 * the start address of the return value storage area into GR3 and then passes
999 * it to the callee function. The callee function interprets GR3 as the start
1000 * address of the return value storage area. When this address needs to be
1001 * saved in memory, the callee function secures the hidden parameter save area
1002 * and saves the address in that area.
1005 frv_stack_t *
1006 frv_stack_info (void)
1008 static frv_stack_t info, zero_info;
1009 frv_stack_t *info_ptr = &info;
1010 tree fndecl = current_function_decl;
1011 int varargs_p = 0;
1012 tree cur_arg;
1013 tree next_arg;
1014 int range;
1015 int alignment;
1016 int offset;
1018 /* If we've already calculated the values and reload is complete,
1019 just return now. */
1020 if (frv_stack_cache)
1021 return frv_stack_cache;
1023 /* Zero all fields. */
1024 info = zero_info;
1026 /* Set up the register range information. */
1027 info_ptr->regs[STACK_REGS_GPR].name = "gpr";
1028 info_ptr->regs[STACK_REGS_GPR].first = LAST_ARG_REGNUM + 1;
1029 info_ptr->regs[STACK_REGS_GPR].last = GPR_LAST;
1030 info_ptr->regs[STACK_REGS_GPR].dword_p = TRUE;
1032 info_ptr->regs[STACK_REGS_FPR].name = "fpr";
1033 info_ptr->regs[STACK_REGS_FPR].first = FPR_FIRST;
1034 info_ptr->regs[STACK_REGS_FPR].last = FPR_LAST;
1035 info_ptr->regs[STACK_REGS_FPR].dword_p = TRUE;
1037 info_ptr->regs[STACK_REGS_LR].name = "lr";
1038 info_ptr->regs[STACK_REGS_LR].first = LR_REGNO;
1039 info_ptr->regs[STACK_REGS_LR].last = LR_REGNO;
1040 info_ptr->regs[STACK_REGS_LR].special_p = 1;
1042 info_ptr->regs[STACK_REGS_CC].name = "cc";
1043 info_ptr->regs[STACK_REGS_CC].first = CC_FIRST;
1044 info_ptr->regs[STACK_REGS_CC].last = CC_LAST;
1045 info_ptr->regs[STACK_REGS_CC].field_p = TRUE;
1047 info_ptr->regs[STACK_REGS_LCR].name = "lcr";
1048 info_ptr->regs[STACK_REGS_LCR].first = LCR_REGNO;
1049 info_ptr->regs[STACK_REGS_LCR].last = LCR_REGNO;
1051 info_ptr->regs[STACK_REGS_STDARG].name = "stdarg";
1052 info_ptr->regs[STACK_REGS_STDARG].first = FIRST_ARG_REGNUM;
1053 info_ptr->regs[STACK_REGS_STDARG].last = LAST_ARG_REGNUM;
1054 info_ptr->regs[STACK_REGS_STDARG].dword_p = 1;
1055 info_ptr->regs[STACK_REGS_STDARG].special_p = 1;
1057 info_ptr->regs[STACK_REGS_STRUCT].name = "struct";
1058 info_ptr->regs[STACK_REGS_STRUCT].first = FRV_STRUCT_VALUE_REGNUM;
1059 info_ptr->regs[STACK_REGS_STRUCT].last = FRV_STRUCT_VALUE_REGNUM;
1060 info_ptr->regs[STACK_REGS_STRUCT].special_p = 1;
1062 info_ptr->regs[STACK_REGS_FP].name = "fp";
1063 info_ptr->regs[STACK_REGS_FP].first = FRAME_POINTER_REGNUM;
1064 info_ptr->regs[STACK_REGS_FP].last = FRAME_POINTER_REGNUM;
1065 info_ptr->regs[STACK_REGS_FP].special_p = 1;
1067 /* Determine if this is a stdarg function. If so, allocate space to store
1068 the 6 arguments. */
1069 if (cfun->stdarg)
1070 varargs_p = 1;
1072 else
1074 /* Find the last argument, and see if it is __builtin_va_alist. */
1075 for (cur_arg = DECL_ARGUMENTS (fndecl); cur_arg != (tree)0; cur_arg = next_arg)
1077 next_arg = DECL_CHAIN (cur_arg);
1078 if (next_arg == (tree)0)
1080 if (DECL_NAME (cur_arg)
1081 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg)), "__builtin_va_alist"))
1082 varargs_p = 1;
1084 break;
1089 /* Iterate over all of the register ranges. */
1090 for (range = 0; range < STACK_REGS_MAX; range++)
1092 frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
1093 int first = reg_ptr->first;
1094 int last = reg_ptr->last;
1095 int size_1word = 0;
1096 int size_2words = 0;
1097 int regno;
1099 /* Calculate which registers need to be saved & save area size. */
1100 switch (range)
1102 default:
1103 for (regno = first; regno <= last; regno++)
1105 if ((df_regs_ever_live_p (regno) && !call_used_regs[regno])
1106 || (crtl->calls_eh_return
1107 && (regno >= FIRST_EH_REGNUM && regno <= LAST_EH_REGNUM))
1108 || (!TARGET_FDPIC && flag_pic
1109 && crtl->uses_pic_offset_table && regno == PIC_REGNO))
1111 info_ptr->save_p[regno] = REG_SAVE_1WORD;
1112 size_1word += UNITS_PER_WORD;
1115 break;
1117 /* Calculate whether we need to create a frame after everything else
1118 has been processed. */
1119 case STACK_REGS_FP:
1120 break;
1122 case STACK_REGS_LR:
1123 if (df_regs_ever_live_p (LR_REGNO)
1124 || profile_flag
1125 /* This is set for __builtin_return_address, etc. */
1126 || cfun->machine->frame_needed
1127 || (TARGET_LINKED_FP && frame_pointer_needed)
1128 || (!TARGET_FDPIC && flag_pic
1129 && crtl->uses_pic_offset_table))
1131 info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
1132 size_1word += UNITS_PER_WORD;
1134 break;
1136 case STACK_REGS_STDARG:
1137 if (varargs_p)
1139 /* If this is a stdarg function with a non varardic
1140 argument split between registers and the stack,
1141 adjust the saved registers downward. */
1142 last -= (ADDR_ALIGN (crtl->args.pretend_args_size, UNITS_PER_WORD)
1143 / UNITS_PER_WORD);
1145 for (regno = first; regno <= last; regno++)
1147 info_ptr->save_p[regno] = REG_SAVE_1WORD;
1148 size_1word += UNITS_PER_WORD;
1151 info_ptr->stdarg_size = size_1word;
1153 break;
1155 case STACK_REGS_STRUCT:
1156 if (cfun->returns_struct)
1158 info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
1159 size_1word += UNITS_PER_WORD;
1161 break;
1165 if (size_1word)
1167 /* If this is a field, it only takes one word. */
1168 if (reg_ptr->field_p)
1169 size_1word = UNITS_PER_WORD;
1171 /* Determine which register pairs can be saved together. */
1172 else if (reg_ptr->dword_p && TARGET_DWORD)
1174 for (regno = first; regno < last; regno += 2)
1176 if (info_ptr->save_p[regno] && info_ptr->save_p[regno+1])
1178 size_2words += 2 * UNITS_PER_WORD;
1179 size_1word -= 2 * UNITS_PER_WORD;
1180 info_ptr->save_p[regno] = REG_SAVE_2WORDS;
1181 info_ptr->save_p[regno+1] = REG_SAVE_NO_SAVE;
1186 reg_ptr->size_1word = size_1word;
1187 reg_ptr->size_2words = size_2words;
1189 if (! reg_ptr->special_p)
1191 info_ptr->regs_size_1word += size_1word;
1192 info_ptr->regs_size_2words += size_2words;
1197 /* Set up the sizes of each each field in the frame body, making the sizes
1198 of each be divisible by the size of a dword if dword operations might
1199 be used, or the size of a word otherwise. */
1200 alignment = (TARGET_DWORD? 2 * UNITS_PER_WORD : UNITS_PER_WORD);
1202 info_ptr->parameter_size = ADDR_ALIGN (crtl->outgoing_args_size, alignment);
1203 info_ptr->regs_size = ADDR_ALIGN (info_ptr->regs_size_2words
1204 + info_ptr->regs_size_1word,
1205 alignment);
1206 info_ptr->vars_size = ADDR_ALIGN (get_frame_size (), alignment);
1208 info_ptr->pretend_size = crtl->args.pretend_args_size;
1210 /* Work out the size of the frame, excluding the header. Both the frame
1211 body and register parameter area will be dword-aligned. */
1212 info_ptr->total_size
1213 = (ADDR_ALIGN (info_ptr->parameter_size
1214 + info_ptr->regs_size
1215 + info_ptr->vars_size,
1216 2 * UNITS_PER_WORD)
1217 + ADDR_ALIGN (info_ptr->pretend_size
1218 + info_ptr->stdarg_size,
1219 2 * UNITS_PER_WORD));
1221 /* See if we need to create a frame at all, if so add header area. */
1222 if (info_ptr->total_size > 0
1223 || frame_pointer_needed
1224 || info_ptr->regs[STACK_REGS_LR].size_1word > 0
1225 || info_ptr->regs[STACK_REGS_STRUCT].size_1word > 0)
1227 offset = info_ptr->parameter_size;
1228 info_ptr->header_size = 4 * UNITS_PER_WORD;
1229 info_ptr->total_size += 4 * UNITS_PER_WORD;
1231 /* Calculate the offsets to save normal register pairs. */
1232 for (range = 0; range < STACK_REGS_MAX; range++)
1234 frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
1235 if (! reg_ptr->special_p)
1237 int first = reg_ptr->first;
1238 int last = reg_ptr->last;
1239 int regno;
1241 for (regno = first; regno <= last; regno++)
1242 if (info_ptr->save_p[regno] == REG_SAVE_2WORDS
1243 && regno != FRAME_POINTER_REGNUM
1244 && (regno < FIRST_ARG_REGNUM
1245 || regno > LAST_ARG_REGNUM))
1247 info_ptr->reg_offset[regno] = offset;
1248 offset += 2 * UNITS_PER_WORD;
1253 /* Calculate the offsets to save normal single registers. */
1254 for (range = 0; range < STACK_REGS_MAX; range++)
1256 frv_stack_regs_t *reg_ptr = &(info_ptr->regs[range]);
1257 if (! reg_ptr->special_p)
1259 int first = reg_ptr->first;
1260 int last = reg_ptr->last;
1261 int regno;
1263 for (regno = first; regno <= last; regno++)
1264 if (info_ptr->save_p[regno] == REG_SAVE_1WORD
1265 && regno != FRAME_POINTER_REGNUM
1266 && (regno < FIRST_ARG_REGNUM
1267 || regno > LAST_ARG_REGNUM))
1269 info_ptr->reg_offset[regno] = offset;
1270 offset += UNITS_PER_WORD;
1275 /* Calculate the offset to save the local variables at. */
1276 offset = ADDR_ALIGN (offset, alignment);
1277 if (info_ptr->vars_size)
1279 info_ptr->vars_offset = offset;
1280 offset += info_ptr->vars_size;
1283 /* Align header to a dword-boundary. */
1284 offset = ADDR_ALIGN (offset, 2 * UNITS_PER_WORD);
1286 /* Calculate the offsets in the fixed frame. */
1287 info_ptr->save_p[FRAME_POINTER_REGNUM] = REG_SAVE_1WORD;
1288 info_ptr->reg_offset[FRAME_POINTER_REGNUM] = offset;
1289 info_ptr->regs[STACK_REGS_FP].size_1word = UNITS_PER_WORD;
1291 info_ptr->save_p[LR_REGNO] = REG_SAVE_1WORD;
1292 info_ptr->reg_offset[LR_REGNO] = offset + 2*UNITS_PER_WORD;
1293 info_ptr->regs[STACK_REGS_LR].size_1word = UNITS_PER_WORD;
1295 if (cfun->returns_struct)
1297 info_ptr->save_p[FRV_STRUCT_VALUE_REGNUM] = REG_SAVE_1WORD;
1298 info_ptr->reg_offset[FRV_STRUCT_VALUE_REGNUM] = offset + UNITS_PER_WORD;
1299 info_ptr->regs[STACK_REGS_STRUCT].size_1word = UNITS_PER_WORD;
1302 /* Calculate the offsets to store the arguments passed in registers
1303 for stdarg functions. The register pairs are first and the single
1304 register if any is last. The register save area starts on a
1305 dword-boundary. */
1306 if (info_ptr->stdarg_size)
1308 int first = info_ptr->regs[STACK_REGS_STDARG].first;
1309 int last = info_ptr->regs[STACK_REGS_STDARG].last;
1310 int regno;
1312 /* Skip the header. */
1313 offset += 4 * UNITS_PER_WORD;
1314 for (regno = first; regno <= last; regno++)
1316 if (info_ptr->save_p[regno] == REG_SAVE_2WORDS)
1318 info_ptr->reg_offset[regno] = offset;
1319 offset += 2 * UNITS_PER_WORD;
1321 else if (info_ptr->save_p[regno] == REG_SAVE_1WORD)
1323 info_ptr->reg_offset[regno] = offset;
1324 offset += UNITS_PER_WORD;
1330 if (reload_completed)
1331 frv_stack_cache = info_ptr;
1333 return info_ptr;
1337 /* Print the information about the frv stack offsets, etc. when debugging. */
1339 void
1340 frv_debug_stack (frv_stack_t *info)
1342 int range;
1344 if (!info)
1345 info = frv_stack_info ();
1347 fprintf (stderr, "\nStack information for function %s:\n",
1348 ((current_function_decl && DECL_NAME (current_function_decl))
1349 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
1350 : "<unknown>"));
1352 fprintf (stderr, "\ttotal_size\t= %6d\n", info->total_size);
1353 fprintf (stderr, "\tvars_size\t= %6d\n", info->vars_size);
1354 fprintf (stderr, "\tparam_size\t= %6d\n", info->parameter_size);
1355 fprintf (stderr, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
1356 info->regs_size, info->regs_size_1word, info->regs_size_2words);
1358 fprintf (stderr, "\theader_size\t= %6d\n", info->header_size);
1359 fprintf (stderr, "\tpretend_size\t= %6d\n", info->pretend_size);
1360 fprintf (stderr, "\tvars_offset\t= %6d\n", info->vars_offset);
1361 fprintf (stderr, "\tregs_offset\t= %6d\n", info->regs_offset);
1363 for (range = 0; range < STACK_REGS_MAX; range++)
1365 frv_stack_regs_t *regs = &(info->regs[range]);
1366 if ((regs->size_1word + regs->size_2words) > 0)
1368 int first = regs->first;
1369 int last = regs->last;
1370 int regno;
1372 fprintf (stderr, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
1373 regs->name, regs->size_1word + regs->size_2words,
1374 regs->size_1word, regs->size_2words);
1376 for (regno = first; regno <= last; regno++)
1378 if (info->save_p[regno] == REG_SAVE_1WORD)
1379 fprintf (stderr, " %s (%d)", reg_names[regno],
1380 info->reg_offset[regno]);
1382 else if (info->save_p[regno] == REG_SAVE_2WORDS)
1383 fprintf (stderr, " %s-%s (%d)", reg_names[regno],
1384 reg_names[regno+1], info->reg_offset[regno]);
1387 fputc ('\n', stderr);
1391 fflush (stderr);
1397 /* Used during final to control the packing of insns. The value is
1398 1 if the current instruction should be packed with the next one,
1399 0 if it shouldn't or -1 if packing is disabled altogether. */
1401 static int frv_insn_packing_flag;
1403 /* True if the current function contains a far jump. */
1405 static int
1406 frv_function_contains_far_jump (void)
1408 rtx_insn *insn = get_insns ();
1409 while (insn != NULL
1410 && !(JUMP_P (insn)
1411 && get_attr_far_jump (insn) == FAR_JUMP_YES))
1412 insn = NEXT_INSN (insn);
1413 return (insn != NULL);
1416 /* For the FRV, this function makes sure that a function with far jumps
1417 will return correctly. It also does the VLIW packing. */
1419 static void
1420 frv_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1422 rtx_insn *insn, *next, *last_call;
1424 /* If no frame was created, check whether the function uses a call
1425 instruction to implement a far jump. If so, save the link in gr3 and
1426 replace all returns to LR with returns to GR3. GR3 is used because it
1427 is call-clobbered, because is not available to the register allocator,
1428 and because all functions that take a hidden argument pointer will have
1429 a stack frame. */
1430 if (frv_stack_info ()->total_size == 0 && frv_function_contains_far_jump ())
1432 rtx_insn *insn;
1434 /* Just to check that the above comment is true. */
1435 gcc_assert (!df_regs_ever_live_p (GPR_FIRST + 3));
1437 /* Generate the instruction that saves the link register. */
1438 fprintf (file, "\tmovsg lr,gr3\n");
1440 /* Replace the LR with GR3 in *return_internal patterns. The insn
1441 will now return using jmpl @(gr3,0) rather than bralr. We cannot
1442 simply emit a different assembly directive because bralr and jmpl
1443 execute in different units. */
1444 for (insn = get_insns(); insn != NULL; insn = NEXT_INSN (insn))
1445 if (JUMP_P (insn))
1447 rtx pattern = PATTERN (insn);
1448 if (GET_CODE (pattern) == PARALLEL
1449 && XVECLEN (pattern, 0) >= 2
1450 && GET_CODE (XVECEXP (pattern, 0, 0)) == RETURN
1451 && GET_CODE (XVECEXP (pattern, 0, 1)) == USE)
1453 rtx address = XEXP (XVECEXP (pattern, 0, 1), 0);
1454 if (GET_CODE (address) == REG && REGNO (address) == LR_REGNO)
1455 SET_REGNO (address, GPR_FIRST + 3);
1460 frv_pack_insns ();
1462 /* Allow the garbage collector to free the nops created by frv_reorg. */
1463 memset (frv_nops, 0, sizeof (frv_nops));
1465 /* Locate CALL_ARG_LOCATION notes that have been misplaced
1466 and move them back to where they should be located. */
1467 last_call = NULL;
1468 for (insn = get_insns (); insn; insn = next)
1470 next = NEXT_INSN (insn);
1471 if (CALL_P (insn)
1472 || (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE
1473 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1474 last_call = insn;
1476 if (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION)
1477 continue;
1479 if (NEXT_INSN (last_call) == insn)
1480 continue;
1482 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1483 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1484 SET_PREV_INSN (insn) = last_call;
1485 SET_NEXT_INSN (insn) = NEXT_INSN (last_call);
1486 SET_PREV_INSN (NEXT_INSN (insn)) = insn;
1487 SET_NEXT_INSN (PREV_INSN (insn)) = insn;
1488 last_call = insn;
1493 /* Return the next available temporary register in a given class. */
1495 static rtx
1496 frv_alloc_temp_reg (
1497 frv_tmp_reg_t *info, /* which registers are available */
1498 enum reg_class rclass, /* register class desired */
1499 machine_mode mode, /* mode to allocate register with */
1500 int mark_as_used, /* register not available after allocation */
1501 int no_abort) /* return NULL instead of aborting */
1503 int regno = info->next_reg[ (int)rclass ];
1504 int orig_regno = regno;
1505 HARD_REG_SET *reg_in_class = &reg_class_contents[ (int)rclass ];
1506 int i, nr;
1508 for (;;)
1510 if (TEST_HARD_REG_BIT (*reg_in_class, regno)
1511 && TEST_HARD_REG_BIT (info->regs, regno))
1512 break;
1514 if (++regno >= FIRST_PSEUDO_REGISTER)
1515 regno = 0;
1516 if (regno == orig_regno)
1518 gcc_assert (no_abort);
1519 return NULL_RTX;
1523 nr = HARD_REGNO_NREGS (regno, mode);
1524 info->next_reg[ (int)rclass ] = regno + nr;
1526 if (mark_as_used)
1527 for (i = 0; i < nr; i++)
1528 CLEAR_HARD_REG_BIT (info->regs, regno+i);
1530 return gen_rtx_REG (mode, regno);
1534 /* Return an rtx with the value OFFSET, which will either be a register or a
1535 signed 12-bit integer. It can be used as the second operand in an "add"
1536 instruction, or as the index in a load or store.
1538 The function returns a constant rtx if OFFSET is small enough, otherwise
1539 it loads the constant into register OFFSET_REGNO and returns that. */
1540 static rtx
1541 frv_frame_offset_rtx (int offset)
1543 rtx offset_rtx = GEN_INT (offset);
1544 if (IN_RANGE (offset, -2048, 2047))
1545 return offset_rtx;
1546 else
1548 rtx reg_rtx = gen_rtx_REG (SImode, OFFSET_REGNO);
1549 if (IN_RANGE (offset, -32768, 32767))
1550 emit_insn (gen_movsi (reg_rtx, offset_rtx));
1551 else
1553 emit_insn (gen_movsi_high (reg_rtx, offset_rtx));
1554 emit_insn (gen_movsi_lo_sum (reg_rtx, offset_rtx));
1556 return reg_rtx;
1560 /* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
1561 prologue and epilogue uses such expressions to access the stack. */
1562 static rtx
1563 frv_frame_mem (machine_mode mode, rtx base, int offset)
1565 return gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode,
1566 base,
1567 frv_frame_offset_rtx (offset)));
1570 /* Generate a frame-related expression:
1572 (set REG (mem (plus (sp) (const_int OFFSET)))).
1574 Such expressions are used in FRAME_RELATED_EXPR notes for more complex
1575 instructions. Marking the expressions as frame-related is superfluous if
1576 the note contains just a single set. But if the note contains a PARALLEL
1577 or SEQUENCE that has several sets, each set must be individually marked
1578 as frame-related. */
1579 static rtx
1580 frv_dwarf_store (rtx reg, int offset)
1582 rtx set = gen_rtx_SET (VOIDmode,
1583 gen_rtx_MEM (GET_MODE (reg),
1584 plus_constant (Pmode, stack_pointer_rtx,
1585 offset)),
1586 reg);
1587 RTX_FRAME_RELATED_P (set) = 1;
1588 return set;
1591 /* Emit a frame-related instruction whose pattern is PATTERN. The
1592 instruction is the last in a sequence that cumulatively performs the
1593 operation described by DWARF_PATTERN. The instruction is marked as
1594 frame-related and has a REG_FRAME_RELATED_EXPR note containing
1595 DWARF_PATTERN. */
1596 static void
1597 frv_frame_insn (rtx pattern, rtx dwarf_pattern)
1599 rtx insn = emit_insn (pattern);
1600 RTX_FRAME_RELATED_P (insn) = 1;
1601 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
1602 dwarf_pattern,
1603 REG_NOTES (insn));
1606 /* Emit instructions that transfer REG to or from the memory location (sp +
1607 STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
1608 FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
1609 function to store registers and only the epilogue uses it to load them.
1611 The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
1612 The generated instruction will use BASE as its base register. BASE may
1613 simply be the stack pointer, but if several accesses are being made to a
1614 region far away from the stack pointer, it may be more efficient to set
1615 up a temporary instead.
1617 Store instructions will be frame-related and will be annotated with the
1618 overall effect of the store. Load instructions will be followed by a
1619 (use) to prevent later optimizations from zapping them.
1621 The function takes care of the moves to and from SPRs, using TEMP_REGNO
1622 as a temporary in such cases. */
1623 static void
1624 frv_frame_access (frv_frame_accessor_t *accessor, rtx reg, int stack_offset)
1626 machine_mode mode = GET_MODE (reg);
1627 rtx mem = frv_frame_mem (mode,
1628 accessor->base,
1629 stack_offset - accessor->base_offset);
1631 if (accessor->op == FRV_LOAD)
1633 if (SPR_P (REGNO (reg)))
1635 rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
1636 emit_insn (gen_rtx_SET (VOIDmode, temp, mem));
1637 emit_insn (gen_rtx_SET (VOIDmode, reg, temp));
1639 else
1641 /* We cannot use reg+reg addressing for DImode access. */
1642 if (mode == DImode
1643 && GET_CODE (XEXP (mem, 0)) == PLUS
1644 && GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
1645 && GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
1647 rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
1649 emit_move_insn (temp,
1650 gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
1651 XEXP (XEXP (mem, 0), 1)));
1652 mem = gen_rtx_MEM (DImode, temp);
1654 emit_insn (gen_rtx_SET (VOIDmode, reg, mem));
1656 emit_use (reg);
1658 else
1660 if (SPR_P (REGNO (reg)))
1662 rtx temp = gen_rtx_REG (mode, TEMP_REGNO);
1663 emit_insn (gen_rtx_SET (VOIDmode, temp, reg));
1664 frv_frame_insn (gen_rtx_SET (Pmode, mem, temp),
1665 frv_dwarf_store (reg, stack_offset));
1667 else if (mode == DImode)
1669 /* For DImode saves, the dwarf2 version needs to be a SEQUENCE
1670 with a separate save for each register. */
1671 rtx reg1 = gen_rtx_REG (SImode, REGNO (reg));
1672 rtx reg2 = gen_rtx_REG (SImode, REGNO (reg) + 1);
1673 rtx set1 = frv_dwarf_store (reg1, stack_offset);
1674 rtx set2 = frv_dwarf_store (reg2, stack_offset + 4);
1676 /* Also we cannot use reg+reg addressing. */
1677 if (GET_CODE (XEXP (mem, 0)) == PLUS
1678 && GET_CODE (XEXP (XEXP (mem, 0), 0)) == REG
1679 && GET_CODE (XEXP (XEXP (mem, 0), 1)) == REG)
1681 rtx temp = gen_rtx_REG (SImode, TEMP_REGNO);
1682 emit_move_insn (temp,
1683 gen_rtx_PLUS (SImode, XEXP (XEXP (mem, 0), 0),
1684 XEXP (XEXP (mem, 0), 1)));
1685 mem = gen_rtx_MEM (DImode, temp);
1688 frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
1689 gen_rtx_PARALLEL (VOIDmode,
1690 gen_rtvec (2, set1, set2)));
1692 else
1693 frv_frame_insn (gen_rtx_SET (Pmode, mem, reg),
1694 frv_dwarf_store (reg, stack_offset));
1698 /* A function that uses frv_frame_access to transfer a group of registers to
1699 or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
1700 is the stack information generated by frv_stack_info, and REG_SET is the
1701 number of the register set to transfer. */
1702 static void
1703 frv_frame_access_multi (frv_frame_accessor_t *accessor,
1704 frv_stack_t *info,
1705 int reg_set)
1707 frv_stack_regs_t *regs_info;
1708 int regno;
1710 regs_info = &info->regs[reg_set];
1711 for (regno = regs_info->first; regno <= regs_info->last; regno++)
1712 if (info->save_p[regno])
1713 frv_frame_access (accessor,
1714 info->save_p[regno] == REG_SAVE_2WORDS
1715 ? gen_rtx_REG (DImode, regno)
1716 : gen_rtx_REG (SImode, regno),
1717 info->reg_offset[regno]);
1720 /* Save or restore callee-saved registers that are kept outside the frame
1721 header. The function saves the registers if OP is FRV_STORE and restores
1722 them if OP is FRV_LOAD. INFO is the stack information generated by
1723 frv_stack_info. */
1724 static void
1725 frv_frame_access_standard_regs (enum frv_stack_op op, frv_stack_t *info)
1727 frv_frame_accessor_t accessor;
1729 accessor.op = op;
1730 accessor.base = stack_pointer_rtx;
1731 accessor.base_offset = 0;
1732 frv_frame_access_multi (&accessor, info, STACK_REGS_GPR);
1733 frv_frame_access_multi (&accessor, info, STACK_REGS_FPR);
1734 frv_frame_access_multi (&accessor, info, STACK_REGS_LCR);
1738 /* Called after register allocation to add any instructions needed for the
1739 prologue. Using a prologue insn is favored compared to putting all of the
1740 instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
1741 it allows the scheduler to intermix instructions with the saves of
1742 the caller saved registers. In some cases, it might be necessary
1743 to emit a barrier instruction as the last insn to prevent such
1744 scheduling.
1746 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
1747 so that the debug info generation code can handle them properly. */
1748 void
1749 frv_expand_prologue (void)
1751 frv_stack_t *info = frv_stack_info ();
1752 rtx sp = stack_pointer_rtx;
1753 rtx fp = frame_pointer_rtx;
1754 frv_frame_accessor_t accessor;
1756 if (TARGET_DEBUG_STACK)
1757 frv_debug_stack (info);
1759 if (flag_stack_usage_info)
1760 current_function_static_stack_size = info->total_size;
1762 if (info->total_size == 0)
1763 return;
1765 /* We're interested in three areas of the frame here:
1767 A: the register save area
1768 B: the old FP
1769 C: the header after B
1771 If the frame pointer isn't used, we'll have to set up A, B and C
1772 using the stack pointer. If the frame pointer is used, we'll access
1773 them as follows:
1775 A: set up using sp
1776 B: set up using sp or a temporary (see below)
1777 C: set up using fp
1779 We set up B using the stack pointer if the frame is small enough.
1780 Otherwise, it's more efficient to copy the old stack pointer into a
1781 temporary and use that.
1783 Note that it's important to make sure the prologue and epilogue use the
1784 same registers to access A and C, since doing otherwise will confuse
1785 the aliasing code. */
1787 /* Set up ACCESSOR for accessing region B above. If the frame pointer
1788 isn't used, the same method will serve for C. */
1789 accessor.op = FRV_STORE;
1790 if (frame_pointer_needed && info->total_size > 2048)
1792 accessor.base = gen_rtx_REG (Pmode, OLD_SP_REGNO);
1793 accessor.base_offset = info->total_size;
1794 emit_insn (gen_movsi (accessor.base, sp));
1796 else
1798 accessor.base = stack_pointer_rtx;
1799 accessor.base_offset = 0;
1802 /* Allocate the stack space. */
1804 rtx asm_offset = frv_frame_offset_rtx (-info->total_size);
1805 rtx dwarf_offset = GEN_INT (-info->total_size);
1807 frv_frame_insn (gen_stack_adjust (sp, sp, asm_offset),
1808 gen_rtx_SET (Pmode,
1810 gen_rtx_PLUS (Pmode, sp, dwarf_offset)));
1813 /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
1814 and point the new one to that location. */
1815 if (frame_pointer_needed)
1817 int fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
1819 /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
1820 based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
1821 pointer. */
1822 rtx asm_src = plus_constant (Pmode, accessor.base,
1823 fp_offset - accessor.base_offset);
1824 rtx dwarf_src = plus_constant (Pmode, sp, fp_offset);
1826 /* Store the old frame pointer at (sp + FP_OFFSET). */
1827 frv_frame_access (&accessor, fp, fp_offset);
1829 /* Set up the new frame pointer. */
1830 frv_frame_insn (gen_rtx_SET (VOIDmode, fp, asm_src),
1831 gen_rtx_SET (VOIDmode, fp, dwarf_src));
1833 /* Access region C from the frame pointer. */
1834 accessor.base = fp;
1835 accessor.base_offset = fp_offset;
1838 /* Set up region C. */
1839 frv_frame_access_multi (&accessor, info, STACK_REGS_STRUCT);
1840 frv_frame_access_multi (&accessor, info, STACK_REGS_LR);
1841 frv_frame_access_multi (&accessor, info, STACK_REGS_STDARG);
1843 /* Set up region A. */
1844 frv_frame_access_standard_regs (FRV_STORE, info);
1846 /* If this is a varargs/stdarg function, issue a blockage to prevent the
1847 scheduler from moving loads before the stores saving the registers. */
1848 if (info->stdarg_size > 0)
1849 emit_insn (gen_blockage ());
1851 /* Set up pic register/small data register for this function. */
1852 if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
1853 emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode, PIC_REGNO),
1854 gen_rtx_REG (Pmode, LR_REGNO),
1855 gen_rtx_REG (SImode, OFFSET_REGNO)));
1859 /* Under frv, all of the work is done via frv_expand_epilogue, but
1860 this function provides a convenient place to do cleanup. */
1862 static void
1863 frv_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
1864 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1866 frv_stack_cache = (frv_stack_t *)0;
1868 /* Zap last used registers for conditional execution. */
1869 memset (&frv_ifcvt.tmp_reg, 0, sizeof (frv_ifcvt.tmp_reg));
1871 /* Release the bitmap of created insns. */
1872 BITMAP_FREE (frv_ifcvt.scratch_insns_bitmap);
1876 /* Called after register allocation to add any instructions needed for the
1877 epilogue. Using an epilogue insn is favored compared to putting all of the
1878 instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
1879 it allows the scheduler to intermix instructions with the saves of
1880 the caller saved registers. In some cases, it might be necessary
1881 to emit a barrier instruction as the last insn to prevent such
1882 scheduling. */
1884 void
1885 frv_expand_epilogue (bool emit_return)
1887 frv_stack_t *info = frv_stack_info ();
1888 rtx fp = frame_pointer_rtx;
1889 rtx sp = stack_pointer_rtx;
1890 rtx return_addr;
1891 int fp_offset;
1893 fp_offset = info->reg_offset[FRAME_POINTER_REGNUM];
1895 /* Restore the stack pointer to its original value if alloca or the like
1896 is used. */
1897 if (! crtl->sp_is_unchanging)
1898 emit_insn (gen_addsi3 (sp, fp, frv_frame_offset_rtx (-fp_offset)));
1900 /* Restore the callee-saved registers that were used in this function. */
1901 frv_frame_access_standard_regs (FRV_LOAD, info);
1903 /* Set RETURN_ADDR to the address we should return to. Set it to NULL if
1904 no return instruction should be emitted. */
1905 if (info->save_p[LR_REGNO])
1907 int lr_offset;
1908 rtx mem;
1910 /* Use the same method to access the link register's slot as we did in
1911 the prologue. In other words, use the frame pointer if available,
1912 otherwise use the stack pointer.
1914 LR_OFFSET is the offset of the link register's slot from the start
1915 of the frame and MEM is a memory rtx for it. */
1916 lr_offset = info->reg_offset[LR_REGNO];
1917 if (frame_pointer_needed)
1918 mem = frv_frame_mem (Pmode, fp, lr_offset - fp_offset);
1919 else
1920 mem = frv_frame_mem (Pmode, sp, lr_offset);
1922 /* Load the old link register into a GPR. */
1923 return_addr = gen_rtx_REG (Pmode, TEMP_REGNO);
1924 emit_insn (gen_rtx_SET (VOIDmode, return_addr, mem));
1926 else
1927 return_addr = gen_rtx_REG (Pmode, LR_REGNO);
1929 /* Restore the old frame pointer. Emit a USE afterwards to make sure
1930 the load is preserved. */
1931 if (frame_pointer_needed)
1933 emit_insn (gen_rtx_SET (VOIDmode, fp, gen_rtx_MEM (Pmode, fp)));
1934 emit_use (fp);
1937 /* Deallocate the stack frame. */
1938 if (info->total_size != 0)
1940 rtx offset = frv_frame_offset_rtx (info->total_size);
1941 emit_insn (gen_stack_adjust (sp, sp, offset));
1944 /* If this function uses eh_return, add the final stack adjustment now. */
1945 if (crtl->calls_eh_return)
1946 emit_insn (gen_stack_adjust (sp, sp, EH_RETURN_STACKADJ_RTX));
1948 if (emit_return)
1949 emit_jump_insn (gen_epilogue_return (return_addr));
1950 else
1952 rtx lr = return_addr;
1954 if (REGNO (return_addr) != LR_REGNO)
1956 lr = gen_rtx_REG (Pmode, LR_REGNO);
1957 emit_move_insn (lr, return_addr);
1960 emit_use (lr);
1965 /* Worker function for TARGET_ASM_OUTPUT_MI_THUNK. */
1967 static void
1968 frv_asm_output_mi_thunk (FILE *file,
1969 tree thunk_fndecl ATTRIBUTE_UNUSED,
1970 HOST_WIDE_INT delta,
1971 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
1972 tree function)
1974 const char *name_func = XSTR (XEXP (DECL_RTL (function), 0), 0);
1975 const char *name_arg0 = reg_names[FIRST_ARG_REGNUM];
1976 const char *name_jmp = reg_names[JUMP_REGNO];
1977 const char *parallel = (frv_issue_rate () > 1 ? ".p" : "");
1979 /* Do the add using an addi if possible. */
1980 if (IN_RANGE (delta, -2048, 2047))
1981 fprintf (file, "\taddi %s,#%d,%s\n", name_arg0, (int) delta, name_arg0);
1982 else
1984 const char *const name_add = reg_names[TEMP_REGNO];
1985 fprintf (file, "\tsethi%s #hi(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
1986 parallel, delta, name_add);
1987 fprintf (file, "\tsetlo #lo(" HOST_WIDE_INT_PRINT_DEC "),%s\n",
1988 delta, name_add);
1989 fprintf (file, "\tadd %s,%s,%s\n", name_add, name_arg0, name_arg0);
1992 if (TARGET_FDPIC)
1994 const char *name_pic = reg_names[FDPIC_REGNO];
1995 name_jmp = reg_names[FDPIC_FPTR_REGNO];
1997 if (flag_pic != 1)
1999 fprintf (file, "\tsethi%s #gotofffuncdeschi(", parallel);
2000 assemble_name (file, name_func);
2001 fprintf (file, "),%s\n", name_jmp);
2003 fprintf (file, "\tsetlo #gotofffuncdesclo(");
2004 assemble_name (file, name_func);
2005 fprintf (file, "),%s\n", name_jmp);
2007 fprintf (file, "\tldd @(%s,%s), %s\n", name_jmp, name_pic, name_jmp);
2009 else
2011 fprintf (file, "\tlddo @(%s,#gotofffuncdesc12(", name_pic);
2012 assemble_name (file, name_func);
2013 fprintf (file, "\t)), %s\n", name_jmp);
2016 else if (!flag_pic)
2018 fprintf (file, "\tsethi%s #hi(", parallel);
2019 assemble_name (file, name_func);
2020 fprintf (file, "),%s\n", name_jmp);
2022 fprintf (file, "\tsetlo #lo(");
2023 assemble_name (file, name_func);
2024 fprintf (file, "),%s\n", name_jmp);
2026 else
2028 /* Use JUMP_REGNO as a temporary PIC register. */
2029 const char *name_lr = reg_names[LR_REGNO];
2030 const char *name_gppic = name_jmp;
2031 const char *name_tmp = reg_names[TEMP_REGNO];
2033 fprintf (file, "\tmovsg %s,%s\n", name_lr, name_tmp);
2034 fprintf (file, "\tcall 1f\n");
2035 fprintf (file, "1:\tmovsg %s,%s\n", name_lr, name_gppic);
2036 fprintf (file, "\tmovgs %s,%s\n", name_tmp, name_lr);
2037 fprintf (file, "\tsethi%s #gprelhi(1b),%s\n", parallel, name_tmp);
2038 fprintf (file, "\tsetlo #gprello(1b),%s\n", name_tmp);
2039 fprintf (file, "\tsub %s,%s,%s\n", name_gppic, name_tmp, name_gppic);
2041 fprintf (file, "\tsethi%s #gprelhi(", parallel);
2042 assemble_name (file, name_func);
2043 fprintf (file, "),%s\n", name_tmp);
2045 fprintf (file, "\tsetlo #gprello(");
2046 assemble_name (file, name_func);
2047 fprintf (file, "),%s\n", name_tmp);
2049 fprintf (file, "\tadd %s,%s,%s\n", name_gppic, name_tmp, name_jmp);
2052 /* Jump to the function address. */
2053 fprintf (file, "\tjmpl @(%s,%s)\n", name_jmp, reg_names[GPR_FIRST+0]);
2058 /* On frv, create a frame whenever we need to create stack. */
2060 static bool
2061 frv_frame_pointer_required (void)
2063 /* If we forgoing the usual linkage requirements, we only need
2064 a frame pointer if the stack pointer might change. */
2065 if (!TARGET_LINKED_FP)
2066 return !crtl->sp_is_unchanging;
2068 if (! crtl->is_leaf)
2069 return true;
2071 if (get_frame_size () != 0)
2072 return true;
2074 if (cfun->stdarg)
2075 return true;
2077 if (!crtl->sp_is_unchanging)
2078 return true;
2080 if (!TARGET_FDPIC && flag_pic && crtl->uses_pic_offset_table)
2081 return true;
2083 if (profile_flag)
2084 return true;
2086 if (cfun->machine->frame_needed)
2087 return true;
2089 return false;
2093 /* Worker function for TARGET_CAN_ELIMINATE. */
2095 bool
2096 frv_can_eliminate (const int from, const int to)
2098 return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
2099 ? ! frame_pointer_needed
2100 : true);
2103 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
2104 initial difference between the specified pair of registers. This macro must
2105 be defined if `ELIMINABLE_REGS' is defined. */
2107 /* See frv_stack_info for more details on the frv stack frame. */
2110 frv_initial_elimination_offset (int from, int to)
2112 frv_stack_t *info = frv_stack_info ();
2113 int ret = 0;
2115 if (to == STACK_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
2116 ret = info->total_size - info->pretend_size;
2118 else if (to == STACK_POINTER_REGNUM && from == FRAME_POINTER_REGNUM)
2119 ret = info->reg_offset[FRAME_POINTER_REGNUM];
2121 else if (to == FRAME_POINTER_REGNUM && from == ARG_POINTER_REGNUM)
2122 ret = (info->total_size
2123 - info->reg_offset[FRAME_POINTER_REGNUM]
2124 - info->pretend_size);
2126 else
2127 gcc_unreachable ();
2129 if (TARGET_DEBUG_STACK)
2130 fprintf (stderr, "Eliminate %s to %s by adding %d\n",
2131 reg_names [from], reg_names[to], ret);
2133 return ret;
2137 /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
2139 static void
2140 frv_setup_incoming_varargs (cumulative_args_t cum_v,
2141 machine_mode mode,
2142 tree type ATTRIBUTE_UNUSED,
2143 int *pretend_size,
2144 int second_time)
2146 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2148 if (TARGET_DEBUG_ARG)
2149 fprintf (stderr,
2150 "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
2151 *cum, GET_MODE_NAME (mode), *pretend_size, second_time);
2155 /* Worker function for TARGET_EXPAND_BUILTIN_SAVEREGS. */
2157 static rtx
2158 frv_expand_builtin_saveregs (void)
2160 int offset = UNITS_PER_WORD * FRV_NUM_ARG_REGS;
2162 if (TARGET_DEBUG_ARG)
2163 fprintf (stderr, "expand_builtin_saveregs: offset from ap = %d\n",
2164 offset);
2166 return gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx, GEN_INT (- offset));
2170 /* Expand __builtin_va_start to do the va_start macro. */
2172 static void
2173 frv_expand_builtin_va_start (tree valist, rtx nextarg)
2175 tree t;
2176 int num = crtl->args.info - FIRST_ARG_REGNUM - FRV_NUM_ARG_REGS;
2178 nextarg = gen_rtx_PLUS (Pmode, virtual_incoming_args_rtx,
2179 GEN_INT (UNITS_PER_WORD * num));
2181 if (TARGET_DEBUG_ARG)
2183 fprintf (stderr, "va_start: args_info = %d, num = %d\n",
2184 crtl->args.info, num);
2186 debug_rtx (nextarg);
2189 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist,
2190 fold_convert (TREE_TYPE (valist),
2191 make_tree (sizetype, nextarg)));
2192 TREE_SIDE_EFFECTS (t) = 1;
2194 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2198 /* Expand a block move operation, and return 1 if successful. Return 0
2199 if we should let the compiler generate normal code.
2201 operands[0] is the destination
2202 operands[1] is the source
2203 operands[2] is the length
2204 operands[3] is the alignment */
2206 /* Maximum number of loads to do before doing the stores */
2207 #ifndef MAX_MOVE_REG
2208 #define MAX_MOVE_REG 4
2209 #endif
2211 /* Maximum number of total loads to do. */
2212 #ifndef TOTAL_MOVE_REG
2213 #define TOTAL_MOVE_REG 8
2214 #endif
2217 frv_expand_block_move (rtx operands[])
2219 rtx orig_dest = operands[0];
2220 rtx orig_src = operands[1];
2221 rtx bytes_rtx = operands[2];
2222 rtx align_rtx = operands[3];
2223 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
2224 int align;
2225 int bytes;
2226 int offset;
2227 int num_reg;
2228 int i;
2229 rtx src_reg;
2230 rtx dest_reg;
2231 rtx src_addr;
2232 rtx dest_addr;
2233 rtx src_mem;
2234 rtx dest_mem;
2235 rtx tmp_reg;
2236 rtx stores[MAX_MOVE_REG];
2237 int move_bytes;
2238 machine_mode mode;
2240 /* If this is not a fixed size move, just call memcpy. */
2241 if (! constp)
2242 return FALSE;
2244 /* This should be a fixed size alignment. */
2245 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
2247 align = INTVAL (align_rtx);
2249 /* Anything to move? */
2250 bytes = INTVAL (bytes_rtx);
2251 if (bytes <= 0)
2252 return TRUE;
2254 /* Don't support real large moves. */
2255 if (bytes > TOTAL_MOVE_REG*align)
2256 return FALSE;
2258 /* Move the address into scratch registers. */
2259 dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
2260 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2262 num_reg = offset = 0;
2263 for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
2265 /* Calculate the correct offset for src/dest. */
2266 if (offset == 0)
2268 src_addr = src_reg;
2269 dest_addr = dest_reg;
2271 else
2273 src_addr = plus_constant (Pmode, src_reg, offset);
2274 dest_addr = plus_constant (Pmode, dest_reg, offset);
2277 /* Generate the appropriate load and store, saving the stores
2278 for later. */
2279 if (bytes >= 4 && align >= 4)
2280 mode = SImode;
2281 else if (bytes >= 2 && align >= 2)
2282 mode = HImode;
2283 else
2284 mode = QImode;
2286 move_bytes = GET_MODE_SIZE (mode);
2287 tmp_reg = gen_reg_rtx (mode);
2288 src_mem = change_address (orig_src, mode, src_addr);
2289 dest_mem = change_address (orig_dest, mode, dest_addr);
2290 emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, src_mem));
2291 stores[num_reg++] = gen_rtx_SET (VOIDmode, dest_mem, tmp_reg);
2293 if (num_reg >= MAX_MOVE_REG)
2295 for (i = 0; i < num_reg; i++)
2296 emit_insn (stores[i]);
2297 num_reg = 0;
2301 for (i = 0; i < num_reg; i++)
2302 emit_insn (stores[i]);
2304 return TRUE;
2308 /* Expand a block clear operation, and return 1 if successful. Return 0
2309 if we should let the compiler generate normal code.
2311 operands[0] is the destination
2312 operands[1] is the length
2313 operands[3] is the alignment */
2316 frv_expand_block_clear (rtx operands[])
2318 rtx orig_dest = operands[0];
2319 rtx bytes_rtx = operands[1];
2320 rtx align_rtx = operands[3];
2321 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
2322 int align;
2323 int bytes;
2324 int offset;
2325 rtx dest_reg;
2326 rtx dest_addr;
2327 rtx dest_mem;
2328 int clear_bytes;
2329 machine_mode mode;
2331 /* If this is not a fixed size move, just call memcpy. */
2332 if (! constp)
2333 return FALSE;
2335 /* This should be a fixed size alignment. */
2336 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
2338 align = INTVAL (align_rtx);
2340 /* Anything to move? */
2341 bytes = INTVAL (bytes_rtx);
2342 if (bytes <= 0)
2343 return TRUE;
2345 /* Don't support real large clears. */
2346 if (bytes > TOTAL_MOVE_REG*align)
2347 return FALSE;
2349 /* Move the address into a scratch register. */
2350 dest_reg = copy_addr_to_reg (XEXP (orig_dest, 0));
2352 offset = 0;
2353 for ( ; bytes > 0; (bytes -= clear_bytes), (offset += clear_bytes))
2355 /* Calculate the correct offset for src/dest. */
2356 dest_addr = ((offset == 0)
2357 ? dest_reg
2358 : plus_constant (Pmode, dest_reg, offset));
2360 /* Generate the appropriate store of gr0. */
2361 if (bytes >= 4 && align >= 4)
2362 mode = SImode;
2363 else if (bytes >= 2 && align >= 2)
2364 mode = HImode;
2365 else
2366 mode = QImode;
2368 clear_bytes = GET_MODE_SIZE (mode);
2369 dest_mem = change_address (orig_dest, mode, dest_addr);
2370 emit_insn (gen_rtx_SET (VOIDmode, dest_mem, const0_rtx));
2373 return TRUE;
2377 /* The following variable is used to output modifiers of assembler
2378 code of the current output insn. */
2380 static rtx *frv_insn_operands;
2382 /* The following function is used to add assembler insn code suffix .p
2383 if it is necessary. */
2385 const char *
2386 frv_asm_output_opcode (FILE *f, const char *ptr)
2388 int c;
2390 if (frv_insn_packing_flag <= 0)
2391 return ptr;
2393 for (; *ptr && *ptr != ' ' && *ptr != '\t';)
2395 c = *ptr++;
2396 if (c == '%' && ((*ptr >= 'a' && *ptr <= 'z')
2397 || (*ptr >= 'A' && *ptr <= 'Z')))
2399 int letter = *ptr++;
2401 c = atoi (ptr);
2402 frv_print_operand (f, frv_insn_operands [c], letter);
2403 while ((c = *ptr) >= '0' && c <= '9')
2404 ptr++;
2406 else
2407 fputc (c, f);
2410 fprintf (f, ".p");
2412 return ptr;
2415 /* Set up the packing bit for the current output insn. Note that this
2416 function is not called for asm insns. */
2418 void
2419 frv_final_prescan_insn (rtx_insn *insn, rtx *opvec,
2420 int noperands ATTRIBUTE_UNUSED)
2422 if (INSN_P (insn))
2424 if (frv_insn_packing_flag >= 0)
2426 frv_insn_operands = opvec;
2427 frv_insn_packing_flag = PACKING_FLAG_P (insn);
2429 else if (recog_memoized (insn) >= 0
2430 && get_attr_acc_group (insn) == ACC_GROUP_ODD)
2431 /* Packing optimizations have been disabled, but INSN can only
2432 be issued in M1. Insert an mnop in M0. */
2433 fprintf (asm_out_file, "\tmnop.p\n");
2439 /* A C expression whose value is RTL representing the address in a stack frame
2440 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
2441 an RTL expression for the address of the stack frame itself.
2443 If you don't define this macro, the default is to return the value of
2444 FRAMEADDR--that is, the stack frame address is also the address of the stack
2445 word that points to the previous frame. */
2447 /* The default is correct, but we need to make sure the frame gets created. */
2449 frv_dynamic_chain_address (rtx frame)
2451 cfun->machine->frame_needed = 1;
2452 return frame;
2456 /* A C expression whose value is RTL representing the value of the return
2457 address for the frame COUNT steps up from the current frame, after the
2458 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
2459 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
2460 defined.
2462 The value of the expression must always be the correct address when COUNT is
2463 zero, but may be `NULL_RTX' if there is not way to determine the return
2464 address of other frames. */
2467 frv_return_addr_rtx (int count, rtx frame)
2469 if (count != 0)
2470 return const0_rtx;
2471 cfun->machine->frame_needed = 1;
2472 return gen_rtx_MEM (Pmode, plus_constant (Pmode, frame, 8));
2475 /* Given a memory reference MEMREF, interpret the referenced memory as
2476 an array of MODE values, and return a reference to the element
2477 specified by INDEX. Assume that any pre-modification implicit in
2478 MEMREF has already happened.
2480 MEMREF must be a legitimate operand for modes larger than SImode.
2481 frv_legitimate_address_p forbids register+register addresses, which
2482 this function cannot handle. */
2484 frv_index_memory (rtx memref, machine_mode mode, int index)
2486 rtx base = XEXP (memref, 0);
2487 if (GET_CODE (base) == PRE_MODIFY)
2488 base = XEXP (base, 0);
2489 return change_address (memref, mode,
2490 plus_constant (Pmode, base,
2491 index * GET_MODE_SIZE (mode)));
2495 /* Print a memory address as an operand to reference that memory location. */
2496 static void
2497 frv_print_operand_address (FILE * stream, rtx x)
2499 if (GET_CODE (x) == MEM)
2500 x = XEXP (x, 0);
2502 switch (GET_CODE (x))
2504 case REG:
2505 fputs (reg_names [ REGNO (x)], stream);
2506 return;
2508 case CONST_INT:
2509 fprintf (stream, "%ld", (long) INTVAL (x));
2510 return;
2512 case SYMBOL_REF:
2513 assemble_name (stream, XSTR (x, 0));
2514 return;
2516 case LABEL_REF:
2517 case CONST:
2518 output_addr_const (stream, x);
2519 return;
2521 case PLUS:
2522 /* Poorly constructed asm statements can trigger this alternative.
2523 See gcc/testsuite/gcc.dg/asm-4.c for an example. */
2524 frv_print_operand_memory_reference (stream, x, 0);
2525 return;
2527 default:
2528 break;
2531 fatal_insn ("bad insn to frv_print_operand_address:", x);
2535 static void
2536 frv_print_operand_memory_reference_reg (FILE * stream, rtx x)
2538 int regno = true_regnum (x);
2539 if (GPR_P (regno))
2540 fputs (reg_names[regno], stream);
2541 else
2542 fatal_insn ("bad register to frv_print_operand_memory_reference_reg:", x);
2545 /* Print a memory reference suitable for the ld/st instructions. */
2547 static void
2548 frv_print_operand_memory_reference (FILE * stream, rtx x, int addr_offset)
2550 struct frv_unspec unspec;
2551 rtx x0 = NULL_RTX;
2552 rtx x1 = NULL_RTX;
2554 switch (GET_CODE (x))
2556 case SUBREG:
2557 case REG:
2558 x0 = x;
2559 break;
2561 case PRE_MODIFY: /* (pre_modify (reg) (plus (reg) (reg))) */
2562 x0 = XEXP (x, 0);
2563 x1 = XEXP (XEXP (x, 1), 1);
2564 break;
2566 case CONST_INT:
2567 x1 = x;
2568 break;
2570 case PLUS:
2571 x0 = XEXP (x, 0);
2572 x1 = XEXP (x, 1);
2573 if (GET_CODE (x0) == CONST_INT)
2575 x0 = XEXP (x, 1);
2576 x1 = XEXP (x, 0);
2578 break;
2580 default:
2581 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
2582 break;
2586 if (addr_offset)
2588 if (!x1)
2589 x1 = const0_rtx;
2590 else if (GET_CODE (x1) != CONST_INT)
2591 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
2594 fputs ("@(", stream);
2595 if (!x0)
2596 fputs (reg_names[GPR_R0], stream);
2597 else if (GET_CODE (x0) == REG || GET_CODE (x0) == SUBREG)
2598 frv_print_operand_memory_reference_reg (stream, x0);
2599 else
2600 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
2602 fputs (",", stream);
2603 if (!x1)
2604 fputs (reg_names [GPR_R0], stream);
2606 else
2608 switch (GET_CODE (x1))
2610 case SUBREG:
2611 case REG:
2612 frv_print_operand_memory_reference_reg (stream, x1);
2613 break;
2615 case CONST_INT:
2616 fprintf (stream, "%ld", (long) (INTVAL (x1) + addr_offset));
2617 break;
2619 case CONST:
2620 if (!frv_const_unspec_p (x1, &unspec))
2621 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x1);
2622 frv_output_const_unspec (stream, &unspec);
2623 break;
2625 default:
2626 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x);
2630 fputs (")", stream);
2634 /* Return 2 for likely branches and 0 for non-likely branches */
2636 #define FRV_JUMP_LIKELY 2
2637 #define FRV_JUMP_NOT_LIKELY 0
2639 static int
2640 frv_print_operand_jump_hint (rtx_insn *insn)
2642 rtx note;
2643 rtx labelref;
2644 int ret;
2645 int prob = -1;
2646 enum { UNKNOWN, BACKWARD, FORWARD } jump_type = UNKNOWN;
2648 gcc_assert (JUMP_P (insn));
2650 /* Assume any non-conditional jump is likely. */
2651 if (! any_condjump_p (insn))
2652 ret = FRV_JUMP_LIKELY;
2654 else
2656 labelref = condjump_label (insn);
2657 if (labelref)
2659 rtx label = XEXP (labelref, 0);
2660 jump_type = (insn_current_address > INSN_ADDRESSES (INSN_UID (label))
2661 ? BACKWARD
2662 : FORWARD);
2665 note = find_reg_note (insn, REG_BR_PROB, 0);
2666 if (!note)
2667 ret = ((jump_type == BACKWARD) ? FRV_JUMP_LIKELY : FRV_JUMP_NOT_LIKELY);
2669 else
2671 prob = XINT (note, 0);
2672 ret = ((prob >= (REG_BR_PROB_BASE / 2))
2673 ? FRV_JUMP_LIKELY
2674 : FRV_JUMP_NOT_LIKELY);
2678 #if 0
2679 if (TARGET_DEBUG)
2681 char *direction;
2683 switch (jump_type)
2685 default:
2686 case UNKNOWN: direction = "unknown jump direction"; break;
2687 case BACKWARD: direction = "jump backward"; break;
2688 case FORWARD: direction = "jump forward"; break;
2691 fprintf (stderr,
2692 "%s: uid %ld, %s, probability = %d, max prob. = %d, hint = %d\n",
2693 IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
2694 (long)INSN_UID (insn), direction, prob,
2695 REG_BR_PROB_BASE, ret);
2697 #endif
2699 return ret;
2703 /* Return the comparison operator to use for CODE given that the ICC
2704 register is OP0. */
2706 static const char *
2707 comparison_string (enum rtx_code code, rtx op0)
2709 bool is_nz_p = GET_MODE (op0) == CC_NZmode;
2710 switch (code)
2712 default: output_operand_lossage ("bad condition code");
2713 case EQ: return "eq";
2714 case NE: return "ne";
2715 case LT: return is_nz_p ? "n" : "lt";
2716 case LE: return "le";
2717 case GT: return "gt";
2718 case GE: return is_nz_p ? "p" : "ge";
2719 case LTU: return is_nz_p ? "no" : "c";
2720 case LEU: return is_nz_p ? "eq" : "ls";
2721 case GTU: return is_nz_p ? "ne" : "hi";
2722 case GEU: return is_nz_p ? "ra" : "nc";
2726 /* Print an operand to an assembler instruction.
2728 `%' followed by a letter and a digit says to output an operand in an
2729 alternate fashion. Four letters have standard, built-in meanings
2730 described below. The hook `TARGET_PRINT_OPERAND' can define
2731 additional letters with nonstandard meanings.
2733 `%cDIGIT' can be used to substitute an operand that is a constant value
2734 without the syntax that normally indicates an immediate operand.
2736 `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
2737 before printing.
2739 `%aDIGIT' can be used to substitute an operand as if it were a memory
2740 reference, with the actual operand treated as the address. This may be
2741 useful when outputting a "load address" instruction, because often the
2742 assembler syntax for such an instruction requires you to write the operand
2743 as if it were a memory reference.
2745 `%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
2747 `%=' outputs a number which is unique to each instruction in the entire
2748 compilation. This is useful for making local labels to be referred to more
2749 than once in a single template that generates multiple assembler
2750 instructions.
2752 `%' followed by a punctuation character specifies a substitution that
2753 does not use an operand. Only one case is standard: `%%' outputs a
2754 `%' into the assembler code. Other nonstandard cases can be defined
2755 in the `TARGET_PRINT_OPERAND' hook. You must also define which
2756 punctuation characters are valid with the
2757 `TARGET_PRINT_OPERAND_PUNCT_VALID_P' hook. */
2759 static void
2760 frv_print_operand (FILE * file, rtx x, int code)
2762 struct frv_unspec unspec;
2763 HOST_WIDE_INT value;
2764 int offset;
2766 if (code != 0 && !ISALPHA (code))
2767 value = 0;
2769 else if (GET_CODE (x) == CONST_INT)
2770 value = INTVAL (x);
2772 else if (GET_CODE (x) == CONST_DOUBLE)
2774 if (GET_MODE (x) == SFmode)
2776 REAL_VALUE_TYPE rv;
2777 long l;
2779 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
2780 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
2781 value = l;
2784 else if (GET_MODE (x) == VOIDmode)
2785 value = CONST_DOUBLE_LOW (x);
2787 else
2788 fatal_insn ("bad insn in frv_print_operand, bad const_double", x);
2791 else
2792 value = 0;
2794 switch (code)
2797 case '.':
2798 /* Output r0. */
2799 fputs (reg_names[GPR_R0], file);
2800 break;
2802 case '#':
2803 fprintf (file, "%d", frv_print_operand_jump_hint (current_output_insn));
2804 break;
2806 case '@':
2807 /* Output small data area base register (gr16). */
2808 fputs (reg_names[SDA_BASE_REG], file);
2809 break;
2811 case '~':
2812 /* Output pic register (gr17). */
2813 fputs (reg_names[PIC_REGNO], file);
2814 break;
2816 case '*':
2817 /* Output the temporary integer CCR register. */
2818 fputs (reg_names[ICR_TEMP], file);
2819 break;
2821 case '&':
2822 /* Output the temporary integer CC register. */
2823 fputs (reg_names[ICC_TEMP], file);
2824 break;
2826 /* case 'a': print an address. */
2828 case 'C':
2829 /* Print appropriate test for integer branch false operation. */
2830 fputs (comparison_string (reverse_condition (GET_CODE (x)),
2831 XEXP (x, 0)), file);
2832 break;
2834 case 'c':
2835 /* Print appropriate test for integer branch true operation. */
2836 fputs (comparison_string (GET_CODE (x), XEXP (x, 0)), file);
2837 break;
2839 case 'e':
2840 /* Print 1 for a NE and 0 for an EQ to give the final argument
2841 for a conditional instruction. */
2842 if (GET_CODE (x) == NE)
2843 fputs ("1", file);
2845 else if (GET_CODE (x) == EQ)
2846 fputs ("0", file);
2848 else
2849 fatal_insn ("bad insn to frv_print_operand, 'e' modifier:", x);
2850 break;
2852 case 'F':
2853 /* Print appropriate test for floating point branch false operation. */
2854 switch (GET_CODE (x))
2856 default:
2857 fatal_insn ("bad insn to frv_print_operand, 'F' modifier:", x);
2859 case EQ: fputs ("ne", file); break;
2860 case NE: fputs ("eq", file); break;
2861 case LT: fputs ("uge", file); break;
2862 case LE: fputs ("ug", file); break;
2863 case GT: fputs ("ule", file); break;
2864 case GE: fputs ("ul", file); break;
2866 break;
2868 case 'f':
2869 /* Print appropriate test for floating point branch true operation. */
2870 switch (GET_CODE (x))
2872 default:
2873 fatal_insn ("bad insn to frv_print_operand, 'f' modifier:", x);
2875 case EQ: fputs ("eq", file); break;
2876 case NE: fputs ("ne", file); break;
2877 case LT: fputs ("lt", file); break;
2878 case LE: fputs ("le", file); break;
2879 case GT: fputs ("gt", file); break;
2880 case GE: fputs ("ge", file); break;
2882 break;
2884 case 'g':
2885 /* Print appropriate GOT function. */
2886 if (GET_CODE (x) != CONST_INT)
2887 fatal_insn ("bad insn to frv_print_operand, 'g' modifier:", x);
2888 fputs (unspec_got_name (INTVAL (x)), file);
2889 break;
2891 case 'I':
2892 /* Print 'i' if the operand is a constant, or is a memory reference that
2893 adds a constant. */
2894 if (GET_CODE (x) == MEM)
2895 x = ((GET_CODE (XEXP (x, 0)) == PLUS)
2896 ? XEXP (XEXP (x, 0), 1)
2897 : XEXP (x, 0));
2898 else if (GET_CODE (x) == PLUS)
2899 x = XEXP (x, 1);
2901 switch (GET_CODE (x))
2903 default:
2904 break;
2906 case CONST_INT:
2907 case SYMBOL_REF:
2908 case CONST:
2909 fputs ("i", file);
2910 break;
2912 break;
2914 case 'i':
2915 /* For jump instructions, print 'i' if the operand is a constant or
2916 is an expression that adds a constant. */
2917 if (GET_CODE (x) == CONST_INT)
2918 fputs ("i", file);
2920 else
2922 if (GET_CODE (x) == CONST_INT
2923 || (GET_CODE (x) == PLUS
2924 && (GET_CODE (XEXP (x, 1)) == CONST_INT
2925 || GET_CODE (XEXP (x, 0)) == CONST_INT)))
2926 fputs ("i", file);
2928 break;
2930 case 'L':
2931 /* Print the lower register of a double word register pair */
2932 if (GET_CODE (x) == REG)
2933 fputs (reg_names[ REGNO (x)+1 ], file);
2934 else
2935 fatal_insn ("bad insn to frv_print_operand, 'L' modifier:", x);
2936 break;
2938 /* case 'l': print a LABEL_REF. */
2940 case 'M':
2941 case 'N':
2942 /* Print a memory reference for ld/st/jmp, %N prints a memory reference
2943 for the second word of double memory operations. */
2944 offset = (code == 'M') ? 0 : UNITS_PER_WORD;
2945 switch (GET_CODE (x))
2947 default:
2948 fatal_insn ("bad insn to frv_print_operand, 'M/N' modifier:", x);
2950 case MEM:
2951 frv_print_operand_memory_reference (file, XEXP (x, 0), offset);
2952 break;
2954 case REG:
2955 case SUBREG:
2956 case CONST_INT:
2957 case PLUS:
2958 case SYMBOL_REF:
2959 frv_print_operand_memory_reference (file, x, offset);
2960 break;
2962 break;
2964 case 'O':
2965 /* Print the opcode of a command. */
2966 switch (GET_CODE (x))
2968 default:
2969 fatal_insn ("bad insn to frv_print_operand, 'O' modifier:", x);
2971 case PLUS: fputs ("add", file); break;
2972 case MINUS: fputs ("sub", file); break;
2973 case AND: fputs ("and", file); break;
2974 case IOR: fputs ("or", file); break;
2975 case XOR: fputs ("xor", file); break;
2976 case ASHIFT: fputs ("sll", file); break;
2977 case ASHIFTRT: fputs ("sra", file); break;
2978 case LSHIFTRT: fputs ("srl", file); break;
2980 break;
2982 /* case 'n': negate and print a constant int. */
2984 case 'P':
2985 /* Print PIC label using operand as the number. */
2986 if (GET_CODE (x) != CONST_INT)
2987 fatal_insn ("bad insn to frv_print_operand, P modifier:", x);
2989 fprintf (file, ".LCF%ld", (long)INTVAL (x));
2990 break;
2992 case 'U':
2993 /* Print 'u' if the operand is a update load/store. */
2994 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
2995 fputs ("u", file);
2996 break;
2998 case 'z':
2999 /* If value is 0, print gr0, otherwise it must be a register. */
3000 if (GET_CODE (x) == CONST_INT && INTVAL (x) == 0)
3001 fputs (reg_names[GPR_R0], file);
3003 else if (GET_CODE (x) == REG)
3004 fputs (reg_names [REGNO (x)], file);
3006 else
3007 fatal_insn ("bad insn in frv_print_operand, z case", x);
3008 break;
3010 case 'x':
3011 /* Print constant in hex. */
3012 if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
3014 fprintf (file, "%s0x%.4lx", IMMEDIATE_PREFIX, (long) value);
3015 break;
3018 /* Fall through. */
3020 case '\0':
3021 if (GET_CODE (x) == REG)
3022 fputs (reg_names [REGNO (x)], file);
3024 else if (GET_CODE (x) == CONST_INT
3025 || GET_CODE (x) == CONST_DOUBLE)
3026 fprintf (file, "%s%ld", IMMEDIATE_PREFIX, (long) value);
3028 else if (frv_const_unspec_p (x, &unspec))
3029 frv_output_const_unspec (file, &unspec);
3031 else if (GET_CODE (x) == MEM)
3032 frv_print_operand_address (file, XEXP (x, 0));
3034 else if (CONSTANT_ADDRESS_P (x))
3035 frv_print_operand_address (file, x);
3037 else
3038 fatal_insn ("bad insn in frv_print_operand, 0 case", x);
3040 break;
3042 default:
3043 fatal_insn ("frv_print_operand: unknown code", x);
3044 break;
3047 return;
3050 static bool
3051 frv_print_operand_punct_valid_p (unsigned char code)
3053 return (code == '.' || code == '#' || code == '@' || code == '~'
3054 || code == '*' || code == '&');
3058 /* A C statement (sans semicolon) for initializing the variable CUM for the
3059 state at the beginning of the argument list. The variable has type
3060 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
3061 of the function which will receive the args, or 0 if the args are to a
3062 compiler support library function. The value of INDIRECT is nonzero when
3063 processing an indirect call, for example a call through a function pointer.
3064 The value of INDIRECT is zero for a call to an explicitly named function, a
3065 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
3066 arguments for the function being compiled.
3068 When processing a call to a compiler support library function, LIBNAME
3069 identifies which one. It is a `symbol_ref' rtx which contains the name of
3070 the function, as a string. LIBNAME is 0 when an ordinary C function call is
3071 being processed. Thus, each time this macro is called, either LIBNAME or
3072 FNTYPE is nonzero, but never both of them at once. */
3074 void
3075 frv_init_cumulative_args (CUMULATIVE_ARGS *cum,
3076 tree fntype,
3077 rtx libname,
3078 tree fndecl,
3079 int incoming)
3081 *cum = FIRST_ARG_REGNUM;
3083 if (TARGET_DEBUG_ARG)
3085 fprintf (stderr, "\ninit_cumulative_args:");
3086 if (!fndecl && fntype)
3087 fputs (" indirect", stderr);
3089 if (incoming)
3090 fputs (" incoming", stderr);
3092 if (fntype)
3094 tree ret_type = TREE_TYPE (fntype);
3095 fprintf (stderr, " return=%s,",
3096 get_tree_code_name (TREE_CODE (ret_type)));
3099 if (libname && GET_CODE (libname) == SYMBOL_REF)
3100 fprintf (stderr, " libname=%s", XSTR (libname, 0));
3102 if (cfun->returns_struct)
3103 fprintf (stderr, " return-struct");
3105 putc ('\n', stderr);
3110 /* Return true if we should pass an argument on the stack rather than
3111 in registers. */
3113 static bool
3114 frv_must_pass_in_stack (machine_mode mode, const_tree type)
3116 if (mode == BLKmode)
3117 return true;
3118 if (type == NULL)
3119 return false;
3120 return AGGREGATE_TYPE_P (type);
3123 /* If defined, a C expression that gives the alignment boundary, in bits, of an
3124 argument with the specified mode and type. If it is not defined,
3125 `PARM_BOUNDARY' is used for all arguments. */
3127 static unsigned int
3128 frv_function_arg_boundary (machine_mode mode ATTRIBUTE_UNUSED,
3129 const_tree type ATTRIBUTE_UNUSED)
3131 return BITS_PER_WORD;
3134 static rtx
3135 frv_function_arg_1 (cumulative_args_t cum_v, machine_mode mode,
3136 const_tree type ATTRIBUTE_UNUSED, bool named,
3137 bool incoming ATTRIBUTE_UNUSED)
3139 const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
3141 machine_mode xmode = (mode == BLKmode) ? SImode : mode;
3142 int arg_num = *cum;
3143 rtx ret;
3144 const char *debstr;
3146 /* Return a marker for use in the call instruction. */
3147 if (xmode == VOIDmode)
3149 ret = const0_rtx;
3150 debstr = "<0>";
3153 else if (arg_num <= LAST_ARG_REGNUM)
3155 ret = gen_rtx_REG (xmode, arg_num);
3156 debstr = reg_names[arg_num];
3159 else
3161 ret = NULL_RTX;
3162 debstr = "memory";
3165 if (TARGET_DEBUG_ARG)
3166 fprintf (stderr,
3167 "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
3168 arg_num, GET_MODE_NAME (mode), named, GET_MODE_SIZE (mode), debstr);
3170 return ret;
3173 static rtx
3174 frv_function_arg (cumulative_args_t cum, machine_mode mode,
3175 const_tree type, bool named)
3177 return frv_function_arg_1 (cum, mode, type, named, false);
3180 static rtx
3181 frv_function_incoming_arg (cumulative_args_t cum, machine_mode mode,
3182 const_tree type, bool named)
3184 return frv_function_arg_1 (cum, mode, type, named, true);
3188 /* A C statement (sans semicolon) to update the summarizer variable CUM to
3189 advance past an argument in the argument list. The values MODE, TYPE and
3190 NAMED describe that argument. Once this is done, the variable CUM is
3191 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
3193 This macro need not do anything if the argument in question was passed on
3194 the stack. The compiler knows how to track the amount of stack space used
3195 for arguments without any special help. */
3197 static void
3198 frv_function_arg_advance (cumulative_args_t cum_v,
3199 machine_mode mode,
3200 const_tree type ATTRIBUTE_UNUSED,
3201 bool named)
3203 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
3205 machine_mode xmode = (mode == BLKmode) ? SImode : mode;
3206 int bytes = GET_MODE_SIZE (xmode);
3207 int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3208 int arg_num = *cum;
3210 *cum = arg_num + words;
3212 if (TARGET_DEBUG_ARG)
3213 fprintf (stderr,
3214 "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
3215 arg_num, GET_MODE_NAME (mode), named, words * UNITS_PER_WORD);
3219 /* A C expression for the number of words, at the beginning of an argument,
3220 must be put in registers. The value must be zero for arguments that are
3221 passed entirely in registers or that are entirely pushed on the stack.
3223 On some machines, certain arguments must be passed partially in registers
3224 and partially in memory. On these machines, typically the first N words of
3225 arguments are passed in registers, and the rest on the stack. If a
3226 multi-word argument (a `double' or a structure) crosses that boundary, its
3227 first few words must be passed in registers and the rest must be pushed.
3228 This macro tells the compiler when this occurs, and how many of the words
3229 should go in registers.
3231 `FUNCTION_ARG' for these arguments should return the first register to be
3232 used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
3233 the called function. */
3235 static int
3236 frv_arg_partial_bytes (cumulative_args_t cum, machine_mode mode,
3237 tree type ATTRIBUTE_UNUSED, bool named ATTRIBUTE_UNUSED)
3240 machine_mode xmode = (mode == BLKmode) ? SImode : mode;
3241 int bytes = GET_MODE_SIZE (xmode);
3242 int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3243 int arg_num = *get_cumulative_args (cum);
3244 int ret;
3246 ret = ((arg_num <= LAST_ARG_REGNUM && arg_num + words > LAST_ARG_REGNUM+1)
3247 ? LAST_ARG_REGNUM - arg_num + 1
3248 : 0);
3249 ret *= UNITS_PER_WORD;
3251 if (TARGET_DEBUG_ARG && ret)
3252 fprintf (stderr, "frv_arg_partial_bytes: %d\n", ret);
3254 return ret;
3258 /* Implements TARGET_FUNCTION_VALUE. */
3260 static rtx
3261 frv_function_value (const_tree valtype,
3262 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
3263 bool outgoing ATTRIBUTE_UNUSED)
3265 return gen_rtx_REG (TYPE_MODE (valtype), RETURN_VALUE_REGNUM);
3269 /* Implements TARGET_LIBCALL_VALUE. */
3271 static rtx
3272 frv_libcall_value (machine_mode mode,
3273 const_rtx fun ATTRIBUTE_UNUSED)
3275 return gen_rtx_REG (mode, RETURN_VALUE_REGNUM);
3279 /* Implements FUNCTION_VALUE_REGNO_P. */
3281 bool
3282 frv_function_value_regno_p (const unsigned int regno)
3284 return (regno == RETURN_VALUE_REGNUM);
3287 /* Return true if a register is ok to use as a base or index register. */
3289 static FRV_INLINE int
3290 frv_regno_ok_for_base_p (int regno, int strict_p)
3292 if (GPR_P (regno))
3293 return TRUE;
3295 if (strict_p)
3296 return (reg_renumber[regno] >= 0 && GPR_P (reg_renumber[regno]));
3298 if (regno == ARG_POINTER_REGNUM)
3299 return TRUE;
3301 return (regno >= FIRST_PSEUDO_REGISTER);
3305 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
3306 RTX) is a legitimate memory address on the target machine for a memory
3307 operand of mode MODE.
3309 It usually pays to define several simpler macros to serve as subroutines for
3310 this one. Otherwise it may be too complicated to understand.
3312 This macro must exist in two variants: a strict variant and a non-strict
3313 one. The strict variant is used in the reload pass. It must be defined so
3314 that any pseudo-register that has not been allocated a hard register is
3315 considered a memory reference. In contexts where some kind of register is
3316 required, a pseudo-register with no hard register must be rejected.
3318 The non-strict variant is used in other passes. It must be defined to
3319 accept all pseudo-registers in every context where some kind of register is
3320 required.
3322 Compiler source files that want to use the strict variant of this macro
3323 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
3324 conditional to define the strict variant in that case and the non-strict
3325 variant otherwise.
3327 Normally, constant addresses which are the sum of a `symbol_ref' and an
3328 integer are stored inside a `const' RTX to mark them as constant.
3329 Therefore, there is no need to recognize such sums specifically as
3330 legitimate addresses. Normally you would simply recognize any `const' as
3331 legitimate.
3333 Usually `TARGET_PRINT_OPERAND_ADDRESS' is not prepared to handle
3334 constant sums that are not marked with `const'. It assumes that a
3335 naked `plus' indicates indexing. If so, then you *must* reject such
3336 naked constant sums as illegitimate addresses, so that none of them
3337 will be given to `TARGET_PRINT_OPERAND_ADDRESS'. */
3340 frv_legitimate_address_p_1 (machine_mode mode,
3341 rtx x,
3342 int strict_p,
3343 int condexec_p,
3344 int allow_double_reg_p)
3346 rtx x0, x1;
3347 int ret = 0;
3348 HOST_WIDE_INT value;
3349 unsigned regno0;
3351 if (FRV_SYMBOL_REF_TLS_P (x))
3352 return 0;
3354 switch (GET_CODE (x))
3356 default:
3357 break;
3359 case SUBREG:
3360 x = SUBREG_REG (x);
3361 if (GET_CODE (x) != REG)
3362 break;
3364 /* Fall through. */
3366 case REG:
3367 ret = frv_regno_ok_for_base_p (REGNO (x), strict_p);
3368 break;
3370 case PRE_MODIFY:
3371 x0 = XEXP (x, 0);
3372 x1 = XEXP (x, 1);
3373 if (GET_CODE (x0) != REG
3374 || ! frv_regno_ok_for_base_p (REGNO (x0), strict_p)
3375 || GET_CODE (x1) != PLUS
3376 || ! rtx_equal_p (x0, XEXP (x1, 0))
3377 || GET_CODE (XEXP (x1, 1)) != REG
3378 || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1, 1)), strict_p))
3379 break;
3381 ret = 1;
3382 break;
3384 case CONST_INT:
3385 /* 12-bit immediate */
3386 if (condexec_p)
3387 ret = FALSE;
3388 else
3390 ret = IN_RANGE (INTVAL (x), -2048, 2047);
3392 /* If we can't use load/store double operations, make sure we can
3393 address the second word. */
3394 if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3395 ret = IN_RANGE (INTVAL (x) + GET_MODE_SIZE (mode) - 1,
3396 -2048, 2047);
3398 break;
3400 case PLUS:
3401 x0 = XEXP (x, 0);
3402 x1 = XEXP (x, 1);
3404 if (GET_CODE (x0) == SUBREG)
3405 x0 = SUBREG_REG (x0);
3407 if (GET_CODE (x0) != REG)
3408 break;
3410 regno0 = REGNO (x0);
3411 if (!frv_regno_ok_for_base_p (regno0, strict_p))
3412 break;
3414 switch (GET_CODE (x1))
3416 default:
3417 break;
3419 case SUBREG:
3420 x1 = SUBREG_REG (x1);
3421 if (GET_CODE (x1) != REG)
3422 break;
3424 /* Fall through. */
3426 case REG:
3427 /* Do not allow reg+reg addressing for modes > 1 word if we
3428 can't depend on having move double instructions. */
3429 if (!allow_double_reg_p && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3430 ret = FALSE;
3431 else
3432 ret = frv_regno_ok_for_base_p (REGNO (x1), strict_p);
3433 break;
3435 case CONST_INT:
3436 /* 12-bit immediate */
3437 if (condexec_p)
3438 ret = FALSE;
3439 else
3441 value = INTVAL (x1);
3442 ret = IN_RANGE (value, -2048, 2047);
3444 /* If we can't use load/store double operations, make sure we can
3445 address the second word. */
3446 if (ret && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3447 ret = IN_RANGE (value + GET_MODE_SIZE (mode) - 1, -2048, 2047);
3449 break;
3451 case CONST:
3452 if (!condexec_p && got12_operand (x1, VOIDmode))
3453 ret = TRUE;
3454 break;
3457 break;
3460 if (TARGET_DEBUG_ADDR)
3462 fprintf (stderr, "\n========== legitimate_address_p, mode = %s, result = %d, addresses are %sstrict%s\n",
3463 GET_MODE_NAME (mode), ret, (strict_p) ? "" : "not ",
3464 (condexec_p) ? ", inside conditional code" : "");
3465 debug_rtx (x);
3468 return ret;
3471 bool
3472 frv_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
3474 return frv_legitimate_address_p_1 (mode, x, strict_p, FALSE, FALSE);
3477 /* Given an ADDR, generate code to inline the PLT. */
3478 static rtx
3479 gen_inlined_tls_plt (rtx addr)
3481 rtx retval, dest;
3482 rtx picreg = get_hard_reg_initial_val (Pmode, FDPIC_REG);
3485 dest = gen_reg_rtx (DImode);
3487 if (flag_pic == 1)
3490 -fpic version:
3492 lddi.p @(gr15, #gottlsdesc12(ADDR)), gr8
3493 calll #gettlsoff(ADDR)@(gr8, gr0)
3495 emit_insn (gen_tls_lddi (dest, addr, picreg));
3497 else
3500 -fPIC version:
3502 sethi.p #gottlsdeschi(ADDR), gr8
3503 setlo #gottlsdesclo(ADDR), gr8
3504 ldd #tlsdesc(ADDR)@(gr15, gr8), gr8
3505 calll #gettlsoff(ADDR)@(gr8, gr0)
3507 rtx reguse = gen_reg_rtx (Pmode);
3508 emit_insn (gen_tlsoff_hilo (reguse, addr, GEN_INT (R_FRV_GOTTLSDESCHI)));
3509 emit_insn (gen_tls_tlsdesc_ldd (dest, picreg, reguse, addr));
3512 retval = gen_reg_rtx (Pmode);
3513 emit_insn (gen_tls_indirect_call (retval, addr, dest, picreg));
3514 return retval;
3517 /* Emit a TLSMOFF or TLSMOFF12 offset, depending on -mTLS. Returns
3518 the destination address. */
3519 static rtx
3520 gen_tlsmoff (rtx addr, rtx reg)
3522 rtx dest = gen_reg_rtx (Pmode);
3524 if (TARGET_BIG_TLS)
3526 /* sethi.p #tlsmoffhi(x), grA
3527 setlo #tlsmofflo(x), grA
3529 dest = gen_reg_rtx (Pmode);
3530 emit_insn (gen_tlsoff_hilo (dest, addr,
3531 GEN_INT (R_FRV_TLSMOFFHI)));
3532 dest = gen_rtx_PLUS (Pmode, dest, reg);
3534 else
3536 /* addi grB, #tlsmoff12(x), grC
3537 -or-
3538 ld/st @(grB, #tlsmoff12(x)), grC
3540 dest = gen_reg_rtx (Pmode);
3541 emit_insn (gen_symGOTOFF2reg_i (dest, addr, reg,
3542 GEN_INT (R_FRV_TLSMOFF12)));
3544 return dest;
3547 /* Generate code for a TLS address. */
3548 static rtx
3549 frv_legitimize_tls_address (rtx addr, enum tls_model model)
3551 rtx dest, tp = gen_rtx_REG (Pmode, 29);
3552 rtx picreg = get_hard_reg_initial_val (Pmode, 15);
3554 switch (model)
3556 case TLS_MODEL_INITIAL_EXEC:
3557 if (flag_pic == 1)
3559 /* -fpic version.
3560 ldi @(gr15, #gottlsoff12(x)), gr5
3562 dest = gen_reg_rtx (Pmode);
3563 emit_insn (gen_tls_load_gottlsoff12 (dest, addr, picreg));
3564 dest = gen_rtx_PLUS (Pmode, tp, dest);
3566 else
3568 /* -fPIC or anything else.
3570 sethi.p #gottlsoffhi(x), gr14
3571 setlo #gottlsofflo(x), gr14
3572 ld #tlsoff(x)@(gr15, gr14), gr9
3574 rtx tmp = gen_reg_rtx (Pmode);
3575 dest = gen_reg_rtx (Pmode);
3576 emit_insn (gen_tlsoff_hilo (tmp, addr,
3577 GEN_INT (R_FRV_GOTTLSOFF_HI)));
3579 emit_insn (gen_tls_tlsoff_ld (dest, picreg, tmp, addr));
3580 dest = gen_rtx_PLUS (Pmode, tp, dest);
3582 break;
3583 case TLS_MODEL_LOCAL_DYNAMIC:
3585 rtx reg, retval;
3587 if (TARGET_INLINE_PLT)
3588 retval = gen_inlined_tls_plt (GEN_INT (0));
3589 else
3591 /* call #gettlsoff(0) */
3592 retval = gen_reg_rtx (Pmode);
3593 emit_insn (gen_call_gettlsoff (retval, GEN_INT (0), picreg));
3596 reg = gen_reg_rtx (Pmode);
3597 emit_insn (gen_rtx_SET (VOIDmode, reg,
3598 gen_rtx_PLUS (Pmode,
3599 retval, tp)));
3601 dest = gen_tlsmoff (addr, reg);
3604 dest = gen_reg_rtx (Pmode);
3605 emit_insn (gen_tlsoff_hilo (dest, addr,
3606 GEN_INT (R_FRV_TLSMOFFHI)));
3607 dest = gen_rtx_PLUS (Pmode, dest, reg);
3609 break;
3611 case TLS_MODEL_LOCAL_EXEC:
3612 dest = gen_tlsmoff (addr, gen_rtx_REG (Pmode, 29));
3613 break;
3614 case TLS_MODEL_GLOBAL_DYNAMIC:
3616 rtx retval;
3618 if (TARGET_INLINE_PLT)
3619 retval = gen_inlined_tls_plt (addr);
3620 else
3622 /* call #gettlsoff(x) */
3623 retval = gen_reg_rtx (Pmode);
3624 emit_insn (gen_call_gettlsoff (retval, addr, picreg));
3626 dest = gen_rtx_PLUS (Pmode, retval, tp);
3627 break;
3629 default:
3630 gcc_unreachable ();
3633 return dest;
3637 frv_legitimize_address (rtx x,
3638 rtx oldx ATTRIBUTE_UNUSED,
3639 machine_mode mode ATTRIBUTE_UNUSED)
3641 if (GET_CODE (x) == SYMBOL_REF)
3643 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
3644 if (model != 0)
3645 return frv_legitimize_tls_address (x, model);
3648 return x;
3651 /* Test whether a local function descriptor is canonical, i.e.,
3652 whether we can use FUNCDESC_GOTOFF to compute the address of the
3653 function. */
3655 static bool
3656 frv_local_funcdesc_p (rtx fnx)
3658 tree fn;
3659 enum symbol_visibility vis;
3660 bool ret;
3662 if (! SYMBOL_REF_LOCAL_P (fnx))
3663 return FALSE;
3665 fn = SYMBOL_REF_DECL (fnx);
3667 if (! fn)
3668 return FALSE;
3670 vis = DECL_VISIBILITY (fn);
3672 if (vis == VISIBILITY_PROTECTED)
3673 /* Private function descriptors for protected functions are not
3674 canonical. Temporarily change the visibility to global. */
3675 vis = VISIBILITY_DEFAULT;
3676 else if (flag_shlib)
3677 /* If we're already compiling for a shared library (that, unlike
3678 executables, can't assume that the existence of a definition
3679 implies local binding), we can skip the re-testing. */
3680 return TRUE;
3682 ret = default_binds_local_p_1 (fn, flag_pic);
3684 DECL_VISIBILITY (fn) = vis;
3686 return ret;
3689 /* Load the _gp symbol into DEST. SRC is supposed to be the FDPIC
3690 register. */
3693 frv_gen_GPsym2reg (rtx dest, rtx src)
3695 tree gp = get_identifier ("_gp");
3696 rtx gp_sym = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (gp));
3698 return gen_symGOT2reg (dest, gp_sym, src, GEN_INT (R_FRV_GOT12));
3701 static const char *
3702 unspec_got_name (int i)
3704 switch (i)
3706 case R_FRV_GOT12: return "got12";
3707 case R_FRV_GOTHI: return "gothi";
3708 case R_FRV_GOTLO: return "gotlo";
3709 case R_FRV_FUNCDESC: return "funcdesc";
3710 case R_FRV_FUNCDESC_GOT12: return "gotfuncdesc12";
3711 case R_FRV_FUNCDESC_GOTHI: return "gotfuncdeschi";
3712 case R_FRV_FUNCDESC_GOTLO: return "gotfuncdesclo";
3713 case R_FRV_FUNCDESC_VALUE: return "funcdescvalue";
3714 case R_FRV_FUNCDESC_GOTOFF12: return "gotofffuncdesc12";
3715 case R_FRV_FUNCDESC_GOTOFFHI: return "gotofffuncdeschi";
3716 case R_FRV_FUNCDESC_GOTOFFLO: return "gotofffuncdesclo";
3717 case R_FRV_GOTOFF12: return "gotoff12";
3718 case R_FRV_GOTOFFHI: return "gotoffhi";
3719 case R_FRV_GOTOFFLO: return "gotofflo";
3720 case R_FRV_GPREL12: return "gprel12";
3721 case R_FRV_GPRELHI: return "gprelhi";
3722 case R_FRV_GPRELLO: return "gprello";
3723 case R_FRV_GOTTLSOFF_HI: return "gottlsoffhi";
3724 case R_FRV_GOTTLSOFF_LO: return "gottlsofflo";
3725 case R_FRV_TLSMOFFHI: return "tlsmoffhi";
3726 case R_FRV_TLSMOFFLO: return "tlsmofflo";
3727 case R_FRV_TLSMOFF12: return "tlsmoff12";
3728 case R_FRV_TLSDESCHI: return "tlsdeschi";
3729 case R_FRV_TLSDESCLO: return "tlsdesclo";
3730 case R_FRV_GOTTLSDESCHI: return "gottlsdeschi";
3731 case R_FRV_GOTTLSDESCLO: return "gottlsdesclo";
3732 default: gcc_unreachable ();
3736 /* Write the assembler syntax for UNSPEC to STREAM. Note that any offset
3737 is added inside the relocation operator. */
3739 static void
3740 frv_output_const_unspec (FILE *stream, const struct frv_unspec *unspec)
3742 fprintf (stream, "#%s(", unspec_got_name (unspec->reloc));
3743 output_addr_const (stream, plus_constant (Pmode, unspec->symbol,
3744 unspec->offset));
3745 fputs (")", stream);
3748 /* Implement FIND_BASE_TERM. See whether ORIG_X represents #gprel12(foo)
3749 or #gotoff12(foo) for some small data symbol foo. If so, return foo,
3750 otherwise return ORIG_X. */
3753 frv_find_base_term (rtx x)
3755 struct frv_unspec unspec;
3757 if (frv_const_unspec_p (x, &unspec)
3758 && frv_small_data_reloc_p (unspec.symbol, unspec.reloc))
3759 return plus_constant (Pmode, unspec.symbol, unspec.offset);
3761 return x;
3764 /* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
3765 the operand is used by a predicated instruction. */
3768 frv_legitimate_memory_operand (rtx op, machine_mode mode, int condexec_p)
3770 return ((GET_MODE (op) == mode || mode == VOIDmode)
3771 && GET_CODE (op) == MEM
3772 && frv_legitimate_address_p_1 (mode, XEXP (op, 0),
3773 reload_completed, condexec_p, FALSE));
3776 void
3777 frv_expand_fdpic_call (rtx *operands, bool ret_value, bool sibcall)
3779 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
3780 rtx picreg = get_hard_reg_initial_val (SImode, FDPIC_REG);
3781 rtx c, rvrtx=0;
3782 rtx addr;
3784 if (ret_value)
3786 rvrtx = operands[0];
3787 operands ++;
3790 addr = XEXP (operands[0], 0);
3792 /* Inline PLTs if we're optimizing for speed. We'd like to inline
3793 any calls that would involve a PLT, but can't tell, since we
3794 don't know whether an extern function is going to be provided by
3795 a separate translation unit or imported from a separate module.
3796 When compiling for shared libraries, if the function has default
3797 visibility, we assume it's overridable, so we inline the PLT, but
3798 for executables, we don't really have a way to make a good
3799 decision: a function is as likely to be imported from a shared
3800 library as it is to be defined in the executable itself. We
3801 assume executables will get global functions defined locally,
3802 whereas shared libraries will have them potentially overridden,
3803 so we only inline PLTs when compiling for shared libraries.
3805 In order to mark a function as local to a shared library, any
3806 non-default visibility attribute suffices. Unfortunately,
3807 there's no simple way to tag a function declaration as ``in a
3808 different module'', which we could then use to trigger PLT
3809 inlining on executables. There's -minline-plt, but it affects
3810 all external functions, so one would have to also mark function
3811 declarations available in the same module with non-default
3812 visibility, which is advantageous in itself. */
3813 if (GET_CODE (addr) == SYMBOL_REF
3814 && ((!SYMBOL_REF_LOCAL_P (addr) && TARGET_INLINE_PLT)
3815 || sibcall))
3817 rtx x, dest;
3818 dest = gen_reg_rtx (SImode);
3819 if (flag_pic != 1)
3820 x = gen_symGOTOFF2reg_hilo (dest, addr, OUR_FDPIC_REG,
3821 GEN_INT (R_FRV_FUNCDESC_GOTOFF12));
3822 else
3823 x = gen_symGOTOFF2reg (dest, addr, OUR_FDPIC_REG,
3824 GEN_INT (R_FRV_FUNCDESC_GOTOFF12));
3825 emit_insn (x);
3826 crtl->uses_pic_offset_table = TRUE;
3827 addr = dest;
3829 else if (GET_CODE (addr) == SYMBOL_REF)
3831 /* These are always either local, or handled through a local
3832 PLT. */
3833 if (ret_value)
3834 c = gen_call_value_fdpicsi (rvrtx, addr, operands[1],
3835 operands[2], picreg, lr);
3836 else
3837 c = gen_call_fdpicsi (addr, operands[1], operands[2], picreg, lr);
3838 emit_call_insn (c);
3839 return;
3841 else if (! ldd_address_operand (addr, Pmode))
3842 addr = force_reg (Pmode, addr);
3844 picreg = gen_reg_rtx (DImode);
3845 emit_insn (gen_movdi_ldd (picreg, addr));
3847 if (sibcall && ret_value)
3848 c = gen_sibcall_value_fdpicdi (rvrtx, picreg, const0_rtx);
3849 else if (sibcall)
3850 c = gen_sibcall_fdpicdi (picreg, const0_rtx);
3851 else if (ret_value)
3852 c = gen_call_value_fdpicdi (rvrtx, picreg, const0_rtx, lr);
3853 else
3854 c = gen_call_fdpicdi (picreg, const0_rtx, lr);
3855 emit_call_insn (c);
3858 /* Look for a SYMBOL_REF of a function in an rtx. We always want to
3859 process these separately from any offsets, such that we add any
3860 offsets to the function descriptor (the actual pointer), not to the
3861 function address. */
3863 static bool
3864 frv_function_symbol_referenced_p (rtx x)
3866 const char *format;
3867 int length;
3868 int j;
3870 if (GET_CODE (x) == SYMBOL_REF)
3871 return SYMBOL_REF_FUNCTION_P (x);
3873 length = GET_RTX_LENGTH (GET_CODE (x));
3874 format = GET_RTX_FORMAT (GET_CODE (x));
3876 for (j = 0; j < length; ++j)
3878 switch (format[j])
3880 case 'e':
3881 if (frv_function_symbol_referenced_p (XEXP (x, j)))
3882 return TRUE;
3883 break;
3885 case 'V':
3886 case 'E':
3887 if (XVEC (x, j) != 0)
3889 int k;
3890 for (k = 0; k < XVECLEN (x, j); ++k)
3891 if (frv_function_symbol_referenced_p (XVECEXP (x, j, k)))
3892 return TRUE;
3894 break;
3896 default:
3897 /* Nothing to do. */
3898 break;
3902 return FALSE;
3905 /* Return true if the memory operand is one that can be conditionally
3906 executed. */
3909 condexec_memory_operand (rtx op, machine_mode mode)
3911 machine_mode op_mode = GET_MODE (op);
3912 rtx addr;
3914 if (mode != VOIDmode && op_mode != mode)
3915 return FALSE;
3917 switch (op_mode)
3919 default:
3920 return FALSE;
3922 case QImode:
3923 case HImode:
3924 case SImode:
3925 case SFmode:
3926 break;
3929 if (GET_CODE (op) != MEM)
3930 return FALSE;
3932 addr = XEXP (op, 0);
3933 return frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE);
3936 /* Return true if the bare return instruction can be used outside of the
3937 epilog code. For frv, we only do it if there was no stack allocation. */
3940 direct_return_p (void)
3942 frv_stack_t *info;
3944 if (!reload_completed)
3945 return FALSE;
3947 info = frv_stack_info ();
3948 return (info->total_size == 0);
3952 void
3953 frv_emit_move (machine_mode mode, rtx dest, rtx src)
3955 if (GET_CODE (src) == SYMBOL_REF)
3957 enum tls_model model = SYMBOL_REF_TLS_MODEL (src);
3958 if (model != 0)
3959 src = frv_legitimize_tls_address (src, model);
3962 switch (mode)
3964 case SImode:
3965 if (frv_emit_movsi (dest, src))
3966 return;
3967 break;
3969 case QImode:
3970 case HImode:
3971 case DImode:
3972 case SFmode:
3973 case DFmode:
3974 if (!reload_in_progress
3975 && !reload_completed
3976 && !register_operand (dest, mode)
3977 && !reg_or_0_operand (src, mode))
3978 src = copy_to_mode_reg (mode, src);
3979 break;
3981 default:
3982 gcc_unreachable ();
3985 emit_insn (gen_rtx_SET (VOIDmode, dest, src));
3988 /* Emit code to handle a MOVSI, adding in the small data register or pic
3989 register if needed to load up addresses. Return TRUE if the appropriate
3990 instructions are emitted. */
3993 frv_emit_movsi (rtx dest, rtx src)
3995 int base_regno = -1;
3996 int unspec = 0;
3997 rtx sym = src;
3998 struct frv_unspec old_unspec;
4000 if (!reload_in_progress
4001 && !reload_completed
4002 && !register_operand (dest, SImode)
4003 && (!reg_or_0_operand (src, SImode)
4004 /* Virtual registers will almost always be replaced by an
4005 add instruction, so expose this to CSE by copying to
4006 an intermediate register. */
4007 || (GET_CODE (src) == REG
4008 && IN_RANGE (REGNO (src),
4009 FIRST_VIRTUAL_REGISTER,
4010 LAST_VIRTUAL_POINTER_REGISTER))))
4012 emit_insn (gen_rtx_SET (VOIDmode, dest, copy_to_mode_reg (SImode, src)));
4013 return TRUE;
4016 /* Explicitly add in the PIC or small data register if needed. */
4017 switch (GET_CODE (src))
4019 default:
4020 break;
4022 case LABEL_REF:
4023 handle_label:
4024 if (TARGET_FDPIC)
4026 /* Using GPREL12, we use a single GOT entry for all symbols
4027 in read-only sections, but trade sequences such as:
4029 sethi #gothi(label), gr#
4030 setlo #gotlo(label), gr#
4031 ld @(gr15,gr#), gr#
4035 ld @(gr15,#got12(_gp)), gr#
4036 sethi #gprelhi(label), gr##
4037 setlo #gprello(label), gr##
4038 add gr#, gr##, gr##
4040 We may often be able to share gr# for multiple
4041 computations of GPREL addresses, and we may often fold
4042 the final add into the pair of registers of a load or
4043 store instruction, so it's often profitable. Even when
4044 optimizing for size, we're trading a GOT entry for an
4045 additional instruction, which trades GOT space
4046 (read-write) for code size (read-only, shareable), as
4047 long as the symbol is not used in more than two different
4048 locations.
4050 With -fpie/-fpic, we'd be trading a single load for a
4051 sequence of 4 instructions, because the offset of the
4052 label can't be assumed to be addressable with 12 bits, so
4053 we don't do this. */
4054 if (TARGET_GPREL_RO)
4055 unspec = R_FRV_GPREL12;
4056 else
4057 unspec = R_FRV_GOT12;
4059 else if (flag_pic)
4060 base_regno = PIC_REGNO;
4062 break;
4064 case CONST:
4065 if (frv_const_unspec_p (src, &old_unspec))
4066 break;
4068 if (TARGET_FDPIC && frv_function_symbol_referenced_p (XEXP (src, 0)))
4070 handle_whatever:
4071 src = force_reg (GET_MODE (XEXP (src, 0)), XEXP (src, 0));
4072 emit_move_insn (dest, src);
4073 return TRUE;
4075 else
4077 sym = XEXP (sym, 0);
4078 if (GET_CODE (sym) == PLUS
4079 && GET_CODE (XEXP (sym, 0)) == SYMBOL_REF
4080 && GET_CODE (XEXP (sym, 1)) == CONST_INT)
4081 sym = XEXP (sym, 0);
4082 if (GET_CODE (sym) == SYMBOL_REF)
4083 goto handle_sym;
4084 else if (GET_CODE (sym) == LABEL_REF)
4085 goto handle_label;
4086 else
4087 goto handle_whatever;
4089 break;
4091 case SYMBOL_REF:
4092 handle_sym:
4093 if (TARGET_FDPIC)
4095 enum tls_model model = SYMBOL_REF_TLS_MODEL (sym);
4097 if (model != 0)
4099 src = frv_legitimize_tls_address (src, model);
4100 emit_move_insn (dest, src);
4101 return TRUE;
4104 if (SYMBOL_REF_FUNCTION_P (sym))
4106 if (frv_local_funcdesc_p (sym))
4107 unspec = R_FRV_FUNCDESC_GOTOFF12;
4108 else
4109 unspec = R_FRV_FUNCDESC_GOT12;
4111 else
4113 if (CONSTANT_POOL_ADDRESS_P (sym))
4114 switch (GET_CODE (get_pool_constant (sym)))
4116 case CONST:
4117 case SYMBOL_REF:
4118 case LABEL_REF:
4119 if (flag_pic)
4121 unspec = R_FRV_GOTOFF12;
4122 break;
4124 /* Fall through. */
4125 default:
4126 if (TARGET_GPREL_RO)
4127 unspec = R_FRV_GPREL12;
4128 else
4129 unspec = R_FRV_GOT12;
4130 break;
4132 else if (SYMBOL_REF_LOCAL_P (sym)
4133 && !SYMBOL_REF_EXTERNAL_P (sym)
4134 && SYMBOL_REF_DECL (sym)
4135 && (!DECL_P (SYMBOL_REF_DECL (sym))
4136 || !DECL_COMMON (SYMBOL_REF_DECL (sym))))
4138 tree decl = SYMBOL_REF_DECL (sym);
4139 tree init = TREE_CODE (decl) == VAR_DECL
4140 ? DECL_INITIAL (decl)
4141 : TREE_CODE (decl) == CONSTRUCTOR
4142 ? decl : 0;
4143 int reloc = 0;
4144 bool named_section, readonly;
4146 if (init && init != error_mark_node)
4147 reloc = compute_reloc_for_constant (init);
4149 named_section = TREE_CODE (decl) == VAR_DECL
4150 && lookup_attribute ("section", DECL_ATTRIBUTES (decl));
4151 readonly = decl_readonly_section (decl, reloc);
4153 if (named_section)
4154 unspec = R_FRV_GOT12;
4155 else if (!readonly)
4156 unspec = R_FRV_GOTOFF12;
4157 else if (readonly && TARGET_GPREL_RO)
4158 unspec = R_FRV_GPREL12;
4159 else
4160 unspec = R_FRV_GOT12;
4162 else
4163 unspec = R_FRV_GOT12;
4167 else if (SYMBOL_REF_SMALL_P (sym))
4168 base_regno = SDA_BASE_REG;
4170 else if (flag_pic)
4171 base_regno = PIC_REGNO;
4173 break;
4176 if (base_regno >= 0)
4178 if (GET_CODE (sym) == SYMBOL_REF && SYMBOL_REF_SMALL_P (sym))
4179 emit_insn (gen_symGOTOFF2reg (dest, src,
4180 gen_rtx_REG (Pmode, base_regno),
4181 GEN_INT (R_FRV_GPREL12)));
4182 else
4183 emit_insn (gen_symGOTOFF2reg_hilo (dest, src,
4184 gen_rtx_REG (Pmode, base_regno),
4185 GEN_INT (R_FRV_GPREL12)));
4186 if (base_regno == PIC_REGNO)
4187 crtl->uses_pic_offset_table = TRUE;
4188 return TRUE;
4191 if (unspec)
4193 rtx x;
4195 /* Since OUR_FDPIC_REG is a pseudo register, we can't safely introduce
4196 new uses of it once reload has begun. */
4197 gcc_assert (!reload_in_progress && !reload_completed);
4199 switch (unspec)
4201 case R_FRV_GOTOFF12:
4202 if (!frv_small_data_reloc_p (sym, unspec))
4203 x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG,
4204 GEN_INT (unspec));
4205 else
4206 x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
4207 break;
4208 case R_FRV_GPREL12:
4209 if (!frv_small_data_reloc_p (sym, unspec))
4210 x = gen_symGPREL2reg_hilo (dest, src, OUR_FDPIC_REG,
4211 GEN_INT (unspec));
4212 else
4213 x = gen_symGPREL2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
4214 break;
4215 case R_FRV_FUNCDESC_GOTOFF12:
4216 if (flag_pic != 1)
4217 x = gen_symGOTOFF2reg_hilo (dest, src, OUR_FDPIC_REG,
4218 GEN_INT (unspec));
4219 else
4220 x = gen_symGOTOFF2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
4221 break;
4222 default:
4223 if (flag_pic != 1)
4224 x = gen_symGOT2reg_hilo (dest, src, OUR_FDPIC_REG,
4225 GEN_INT (unspec));
4226 else
4227 x = gen_symGOT2reg (dest, src, OUR_FDPIC_REG, GEN_INT (unspec));
4228 break;
4230 emit_insn (x);
4231 crtl->uses_pic_offset_table = TRUE;
4232 return TRUE;
4236 return FALSE;
4240 /* Return a string to output a single word move. */
4242 const char *
4243 output_move_single (rtx operands[], rtx insn)
4245 rtx dest = operands[0];
4246 rtx src = operands[1];
4248 if (GET_CODE (dest) == REG)
4250 int dest_regno = REGNO (dest);
4251 machine_mode mode = GET_MODE (dest);
4253 if (GPR_P (dest_regno))
4255 if (GET_CODE (src) == REG)
4257 /* gpr <- some sort of register */
4258 int src_regno = REGNO (src);
4260 if (GPR_P (src_regno))
4261 return "mov %1, %0";
4263 else if (FPR_P (src_regno))
4264 return "movfg %1, %0";
4266 else if (SPR_P (src_regno))
4267 return "movsg %1, %0";
4270 else if (GET_CODE (src) == MEM)
4272 /* gpr <- memory */
4273 switch (mode)
4275 default:
4276 break;
4278 case QImode:
4279 return "ldsb%I1%U1 %M1,%0";
4281 case HImode:
4282 return "ldsh%I1%U1 %M1,%0";
4284 case SImode:
4285 case SFmode:
4286 return "ld%I1%U1 %M1, %0";
4290 else if (GET_CODE (src) == CONST_INT
4291 || GET_CODE (src) == CONST_DOUBLE)
4293 /* gpr <- integer/floating constant */
4294 HOST_WIDE_INT value;
4296 if (GET_CODE (src) == CONST_INT)
4297 value = INTVAL (src);
4299 else if (mode == SFmode)
4301 REAL_VALUE_TYPE rv;
4302 long l;
4304 REAL_VALUE_FROM_CONST_DOUBLE (rv, src);
4305 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
4306 value = l;
4309 else
4310 value = CONST_DOUBLE_LOW (src);
4312 if (IN_RANGE (value, -32768, 32767))
4313 return "setlos %1, %0";
4315 return "#";
4318 else if (GET_CODE (src) == SYMBOL_REF
4319 || GET_CODE (src) == LABEL_REF
4320 || GET_CODE (src) == CONST)
4322 return "#";
4326 else if (FPR_P (dest_regno))
4328 if (GET_CODE (src) == REG)
4330 /* fpr <- some sort of register */
4331 int src_regno = REGNO (src);
4333 if (GPR_P (src_regno))
4334 return "movgf %1, %0";
4336 else if (FPR_P (src_regno))
4338 if (TARGET_HARD_FLOAT)
4339 return "fmovs %1, %0";
4340 else
4341 return "mor %1, %1, %0";
4345 else if (GET_CODE (src) == MEM)
4347 /* fpr <- memory */
4348 switch (mode)
4350 default:
4351 break;
4353 case QImode:
4354 return "ldbf%I1%U1 %M1,%0";
4356 case HImode:
4357 return "ldhf%I1%U1 %M1,%0";
4359 case SImode:
4360 case SFmode:
4361 return "ldf%I1%U1 %M1, %0";
4365 else if (ZERO_P (src))
4366 return "movgf %., %0";
4369 else if (SPR_P (dest_regno))
4371 if (GET_CODE (src) == REG)
4373 /* spr <- some sort of register */
4374 int src_regno = REGNO (src);
4376 if (GPR_P (src_regno))
4377 return "movgs %1, %0";
4379 else if (ZERO_P (src))
4380 return "movgs %., %0";
4384 else if (GET_CODE (dest) == MEM)
4386 if (GET_CODE (src) == REG)
4388 int src_regno = REGNO (src);
4389 machine_mode mode = GET_MODE (dest);
4391 if (GPR_P (src_regno))
4393 switch (mode)
4395 default:
4396 break;
4398 case QImode:
4399 return "stb%I0%U0 %1, %M0";
4401 case HImode:
4402 return "sth%I0%U0 %1, %M0";
4404 case SImode:
4405 case SFmode:
4406 return "st%I0%U0 %1, %M0";
4410 else if (FPR_P (src_regno))
4412 switch (mode)
4414 default:
4415 break;
4417 case QImode:
4418 return "stbf%I0%U0 %1, %M0";
4420 case HImode:
4421 return "sthf%I0%U0 %1, %M0";
4423 case SImode:
4424 case SFmode:
4425 return "stf%I0%U0 %1, %M0";
4430 else if (ZERO_P (src))
4432 switch (GET_MODE (dest))
4434 default:
4435 break;
4437 case QImode:
4438 return "stb%I0%U0 %., %M0";
4440 case HImode:
4441 return "sth%I0%U0 %., %M0";
4443 case SImode:
4444 case SFmode:
4445 return "st%I0%U0 %., %M0";
4450 fatal_insn ("bad output_move_single operand", insn);
4451 return "";
4455 /* Return a string to output a double word move. */
4457 const char *
4458 output_move_double (rtx operands[], rtx insn)
4460 rtx dest = operands[0];
4461 rtx src = operands[1];
4462 machine_mode mode = GET_MODE (dest);
4464 if (GET_CODE (dest) == REG)
4466 int dest_regno = REGNO (dest);
4468 if (GPR_P (dest_regno))
4470 if (GET_CODE (src) == REG)
4472 /* gpr <- some sort of register */
4473 int src_regno = REGNO (src);
4475 if (GPR_P (src_regno))
4476 return "#";
4478 else if (FPR_P (src_regno))
4480 if (((dest_regno - GPR_FIRST) & 1) == 0
4481 && ((src_regno - FPR_FIRST) & 1) == 0)
4482 return "movfgd %1, %0";
4484 return "#";
4488 else if (GET_CODE (src) == MEM)
4490 /* gpr <- memory */
4491 if (dbl_memory_one_insn_operand (src, mode))
4492 return "ldd%I1%U1 %M1, %0";
4494 return "#";
4497 else if (GET_CODE (src) == CONST_INT
4498 || GET_CODE (src) == CONST_DOUBLE)
4499 return "#";
4502 else if (FPR_P (dest_regno))
4504 if (GET_CODE (src) == REG)
4506 /* fpr <- some sort of register */
4507 int src_regno = REGNO (src);
4509 if (GPR_P (src_regno))
4511 if (((dest_regno - FPR_FIRST) & 1) == 0
4512 && ((src_regno - GPR_FIRST) & 1) == 0)
4513 return "movgfd %1, %0";
4515 return "#";
4518 else if (FPR_P (src_regno))
4520 if (TARGET_DOUBLE
4521 && ((dest_regno - FPR_FIRST) & 1) == 0
4522 && ((src_regno - FPR_FIRST) & 1) == 0)
4523 return "fmovd %1, %0";
4525 return "#";
4529 else if (GET_CODE (src) == MEM)
4531 /* fpr <- memory */
4532 if (dbl_memory_one_insn_operand (src, mode))
4533 return "lddf%I1%U1 %M1, %0";
4535 return "#";
4538 else if (ZERO_P (src))
4539 return "#";
4543 else if (GET_CODE (dest) == MEM)
4545 if (GET_CODE (src) == REG)
4547 int src_regno = REGNO (src);
4549 if (GPR_P (src_regno))
4551 if (((src_regno - GPR_FIRST) & 1) == 0
4552 && dbl_memory_one_insn_operand (dest, mode))
4553 return "std%I0%U0 %1, %M0";
4555 return "#";
4558 if (FPR_P (src_regno))
4560 if (((src_regno - FPR_FIRST) & 1) == 0
4561 && dbl_memory_one_insn_operand (dest, mode))
4562 return "stdf%I0%U0 %1, %M0";
4564 return "#";
4568 else if (ZERO_P (src))
4570 if (dbl_memory_one_insn_operand (dest, mode))
4571 return "std%I0%U0 %., %M0";
4573 return "#";
4577 fatal_insn ("bad output_move_double operand", insn);
4578 return "";
4582 /* Return a string to output a single word conditional move.
4583 Operand0 -- EQ/NE of ccr register and 0
4584 Operand1 -- CCR register
4585 Operand2 -- destination
4586 Operand3 -- source */
4588 const char *
4589 output_condmove_single (rtx operands[], rtx insn)
4591 rtx dest = operands[2];
4592 rtx src = operands[3];
4594 if (GET_CODE (dest) == REG)
4596 int dest_regno = REGNO (dest);
4597 machine_mode mode = GET_MODE (dest);
4599 if (GPR_P (dest_regno))
4601 if (GET_CODE (src) == REG)
4603 /* gpr <- some sort of register */
4604 int src_regno = REGNO (src);
4606 if (GPR_P (src_regno))
4607 return "cmov %z3, %2, %1, %e0";
4609 else if (FPR_P (src_regno))
4610 return "cmovfg %3, %2, %1, %e0";
4613 else if (GET_CODE (src) == MEM)
4615 /* gpr <- memory */
4616 switch (mode)
4618 default:
4619 break;
4621 case QImode:
4622 return "cldsb%I3%U3 %M3, %2, %1, %e0";
4624 case HImode:
4625 return "cldsh%I3%U3 %M3, %2, %1, %e0";
4627 case SImode:
4628 case SFmode:
4629 return "cld%I3%U3 %M3, %2, %1, %e0";
4633 else if (ZERO_P (src))
4634 return "cmov %., %2, %1, %e0";
4637 else if (FPR_P (dest_regno))
4639 if (GET_CODE (src) == REG)
4641 /* fpr <- some sort of register */
4642 int src_regno = REGNO (src);
4644 if (GPR_P (src_regno))
4645 return "cmovgf %3, %2, %1, %e0";
4647 else if (FPR_P (src_regno))
4649 if (TARGET_HARD_FLOAT)
4650 return "cfmovs %3,%2,%1,%e0";
4651 else
4652 return "cmor %3, %3, %2, %1, %e0";
4656 else if (GET_CODE (src) == MEM)
4658 /* fpr <- memory */
4659 if (mode == SImode || mode == SFmode)
4660 return "cldf%I3%U3 %M3, %2, %1, %e0";
4663 else if (ZERO_P (src))
4664 return "cmovgf %., %2, %1, %e0";
4668 else if (GET_CODE (dest) == MEM)
4670 if (GET_CODE (src) == REG)
4672 int src_regno = REGNO (src);
4673 machine_mode mode = GET_MODE (dest);
4675 if (GPR_P (src_regno))
4677 switch (mode)
4679 default:
4680 break;
4682 case QImode:
4683 return "cstb%I2%U2 %3, %M2, %1, %e0";
4685 case HImode:
4686 return "csth%I2%U2 %3, %M2, %1, %e0";
4688 case SImode:
4689 case SFmode:
4690 return "cst%I2%U2 %3, %M2, %1, %e0";
4694 else if (FPR_P (src_regno) && (mode == SImode || mode == SFmode))
4695 return "cstf%I2%U2 %3, %M2, %1, %e0";
4698 else if (ZERO_P (src))
4700 machine_mode mode = GET_MODE (dest);
4701 switch (mode)
4703 default:
4704 break;
4706 case QImode:
4707 return "cstb%I2%U2 %., %M2, %1, %e0";
4709 case HImode:
4710 return "csth%I2%U2 %., %M2, %1, %e0";
4712 case SImode:
4713 case SFmode:
4714 return "cst%I2%U2 %., %M2, %1, %e0";
4719 fatal_insn ("bad output_condmove_single operand", insn);
4720 return "";
4724 /* Emit the appropriate code to do a comparison, returning the register the
4725 comparison was done it. */
4727 static rtx
4728 frv_emit_comparison (enum rtx_code test, rtx op0, rtx op1)
4730 machine_mode cc_mode;
4731 rtx cc_reg;
4733 /* Floating point doesn't have comparison against a constant. */
4734 if (GET_MODE (op0) == CC_FPmode && GET_CODE (op1) != REG)
4735 op1 = force_reg (GET_MODE (op0), op1);
4737 /* Possibly disable using anything but a fixed register in order to work
4738 around cse moving comparisons past function calls. */
4739 cc_mode = SELECT_CC_MODE (test, op0, op1);
4740 cc_reg = ((TARGET_ALLOC_CC)
4741 ? gen_reg_rtx (cc_mode)
4742 : gen_rtx_REG (cc_mode,
4743 (cc_mode == CC_FPmode) ? FCC_FIRST : ICC_FIRST));
4745 emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
4746 gen_rtx_COMPARE (cc_mode, op0, op1)));
4748 return cc_reg;
4752 /* Emit code for a conditional branch.
4753 XXX: I originally wanted to add a clobber of a CCR register to use in
4754 conditional execution, but that confuses the rest of the compiler. */
4757 frv_emit_cond_branch (rtx operands[])
4759 rtx test_rtx;
4760 rtx label_ref;
4761 rtx if_else;
4762 enum rtx_code test = GET_CODE (operands[0]);
4763 rtx cc_reg = frv_emit_comparison (test, operands[1], operands[2]);
4764 machine_mode cc_mode = GET_MODE (cc_reg);
4766 /* Branches generate:
4767 (set (pc)
4768 (if_then_else (<test>, <cc_reg>, (const_int 0))
4769 (label_ref <branch_label>)
4770 (pc))) */
4771 label_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
4772 test_rtx = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
4773 if_else = gen_rtx_IF_THEN_ELSE (cc_mode, test_rtx, label_ref, pc_rtx);
4774 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, if_else));
4775 return TRUE;
4779 /* Emit code to set a gpr to 1/0 based on a comparison. */
4782 frv_emit_scc (rtx operands[])
4784 rtx set;
4785 rtx test_rtx;
4786 rtx clobber;
4787 rtx cr_reg;
4788 enum rtx_code test = GET_CODE (operands[1]);
4789 rtx cc_reg = frv_emit_comparison (test, operands[2], operands[3]);
4791 /* SCC instructions generate:
4792 (parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
4793 (clobber (<ccr_reg>))]) */
4794 test_rtx = gen_rtx_fmt_ee (test, SImode, cc_reg, const0_rtx);
4795 set = gen_rtx_SET (VOIDmode, operands[0], test_rtx);
4797 cr_reg = ((TARGET_ALLOC_CC)
4798 ? gen_reg_rtx (CC_CCRmode)
4799 : gen_rtx_REG (CC_CCRmode,
4800 ((GET_MODE (cc_reg) == CC_FPmode)
4801 ? FCR_FIRST
4802 : ICR_FIRST)));
4804 clobber = gen_rtx_CLOBBER (VOIDmode, cr_reg);
4805 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
4806 return TRUE;
4810 /* Split a SCC instruction into component parts, returning a SEQUENCE to hold
4811 the separate insns. */
4814 frv_split_scc (rtx dest, rtx test, rtx cc_reg, rtx cr_reg, HOST_WIDE_INT value)
4816 rtx ret;
4818 start_sequence ();
4820 /* Set the appropriate CCR bit. */
4821 emit_insn (gen_rtx_SET (VOIDmode,
4822 cr_reg,
4823 gen_rtx_fmt_ee (GET_CODE (test),
4824 GET_MODE (cr_reg),
4825 cc_reg,
4826 const0_rtx)));
4828 /* Move the value into the destination. */
4829 emit_move_insn (dest, GEN_INT (value));
4831 /* Move 0 into the destination if the test failed */
4832 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
4833 gen_rtx_EQ (GET_MODE (cr_reg),
4834 cr_reg,
4835 const0_rtx),
4836 gen_rtx_SET (VOIDmode, dest, const0_rtx)));
4838 /* Finish up, return sequence. */
4839 ret = get_insns ();
4840 end_sequence ();
4841 return ret;
4845 /* Emit the code for a conditional move, return TRUE if we could do the
4846 move. */
4849 frv_emit_cond_move (rtx dest, rtx test_rtx, rtx src1, rtx src2)
4851 rtx set;
4852 rtx clobber_cc;
4853 rtx test2;
4854 rtx cr_reg;
4855 rtx if_rtx;
4856 enum rtx_code test = GET_CODE (test_rtx);
4857 rtx cc_reg = frv_emit_comparison (test,
4858 XEXP (test_rtx, 0), XEXP (test_rtx, 1));
4859 machine_mode cc_mode = GET_MODE (cc_reg);
4861 /* Conditional move instructions generate:
4862 (parallel [(set <target>
4863 (if_then_else (<test> <cc_reg> (const_int 0))
4864 <src1>
4865 <src2>))
4866 (clobber (<ccr_reg>))]) */
4868 /* Handle various cases of conditional move involving two constants. */
4869 if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
4871 HOST_WIDE_INT value1 = INTVAL (src1);
4872 HOST_WIDE_INT value2 = INTVAL (src2);
4874 /* Having 0 as one of the constants can be done by loading the other
4875 constant, and optionally moving in gr0. */
4876 if (value1 == 0 || value2 == 0)
4879 /* If the first value is within an addi range and also the difference
4880 between the two fits in an addi's range, load up the difference, then
4881 conditionally move in 0, and then unconditionally add the first
4882 value. */
4883 else if (IN_RANGE (value1, -2048, 2047)
4884 && IN_RANGE (value2 - value1, -2048, 2047))
4887 /* If neither condition holds, just force the constant into a
4888 register. */
4889 else
4891 src1 = force_reg (GET_MODE (dest), src1);
4892 src2 = force_reg (GET_MODE (dest), src2);
4896 /* If one value is a register, insure the other value is either 0 or a
4897 register. */
4898 else
4900 if (GET_CODE (src1) == CONST_INT && INTVAL (src1) != 0)
4901 src1 = force_reg (GET_MODE (dest), src1);
4903 if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
4904 src2 = force_reg (GET_MODE (dest), src2);
4907 test2 = gen_rtx_fmt_ee (test, cc_mode, cc_reg, const0_rtx);
4908 if_rtx = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), test2, src1, src2);
4910 set = gen_rtx_SET (VOIDmode, dest, if_rtx);
4912 cr_reg = ((TARGET_ALLOC_CC)
4913 ? gen_reg_rtx (CC_CCRmode)
4914 : gen_rtx_REG (CC_CCRmode,
4915 (cc_mode == CC_FPmode) ? FCR_FIRST : ICR_FIRST));
4917 clobber_cc = gen_rtx_CLOBBER (VOIDmode, cr_reg);
4918 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber_cc)));
4919 return TRUE;
4923 /* Split a conditional move into constituent parts, returning a SEQUENCE
4924 containing all of the insns. */
4927 frv_split_cond_move (rtx operands[])
4929 rtx dest = operands[0];
4930 rtx test = operands[1];
4931 rtx cc_reg = operands[2];
4932 rtx src1 = operands[3];
4933 rtx src2 = operands[4];
4934 rtx cr_reg = operands[5];
4935 rtx ret;
4936 machine_mode cr_mode = GET_MODE (cr_reg);
4938 start_sequence ();
4940 /* Set the appropriate CCR bit. */
4941 emit_insn (gen_rtx_SET (VOIDmode,
4942 cr_reg,
4943 gen_rtx_fmt_ee (GET_CODE (test),
4944 GET_MODE (cr_reg),
4945 cc_reg,
4946 const0_rtx)));
4948 /* Handle various cases of conditional move involving two constants. */
4949 if (GET_CODE (src1) == CONST_INT && GET_CODE (src2) == CONST_INT)
4951 HOST_WIDE_INT value1 = INTVAL (src1);
4952 HOST_WIDE_INT value2 = INTVAL (src2);
4954 /* Having 0 as one of the constants can be done by loading the other
4955 constant, and optionally moving in gr0. */
4956 if (value1 == 0)
4958 emit_move_insn (dest, src2);
4959 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
4960 gen_rtx_NE (cr_mode, cr_reg,
4961 const0_rtx),
4962 gen_rtx_SET (VOIDmode, dest, src1)));
4965 else if (value2 == 0)
4967 emit_move_insn (dest, src1);
4968 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
4969 gen_rtx_EQ (cr_mode, cr_reg,
4970 const0_rtx),
4971 gen_rtx_SET (VOIDmode, dest, src2)));
4974 /* If the first value is within an addi range and also the difference
4975 between the two fits in an addi's range, load up the difference, then
4976 conditionally move in 0, and then unconditionally add the first
4977 value. */
4978 else if (IN_RANGE (value1, -2048, 2047)
4979 && IN_RANGE (value2 - value1, -2048, 2047))
4981 rtx dest_si = ((GET_MODE (dest) == SImode)
4982 ? dest
4983 : gen_rtx_SUBREG (SImode, dest, 0));
4985 emit_move_insn (dest_si, GEN_INT (value2 - value1));
4986 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
4987 gen_rtx_NE (cr_mode, cr_reg,
4988 const0_rtx),
4989 gen_rtx_SET (VOIDmode, dest_si,
4990 const0_rtx)));
4991 emit_insn (gen_addsi3 (dest_si, dest_si, src1));
4994 else
4995 gcc_unreachable ();
4997 else
4999 /* Emit the conditional move for the test being true if needed. */
5000 if (! rtx_equal_p (dest, src1))
5001 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5002 gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
5003 gen_rtx_SET (VOIDmode, dest, src1)));
5005 /* Emit the conditional move for the test being false if needed. */
5006 if (! rtx_equal_p (dest, src2))
5007 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5008 gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
5009 gen_rtx_SET (VOIDmode, dest, src2)));
5012 /* Finish up, return sequence. */
5013 ret = get_insns ();
5014 end_sequence ();
5015 return ret;
5019 /* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
5020 memory location that is not known to be dword-aligned. */
5021 void
5022 frv_split_double_load (rtx dest, rtx source)
5024 int regno = REGNO (dest);
5025 rtx dest1 = gen_highpart (SImode, dest);
5026 rtx dest2 = gen_lowpart (SImode, dest);
5027 rtx address = XEXP (source, 0);
5029 /* If the address is pre-modified, load the lower-numbered register
5030 first, then load the other register using an integer offset from
5031 the modified base register. This order should always be safe,
5032 since the pre-modification cannot affect the same registers as the
5033 load does.
5035 The situation for other loads is more complicated. Loading one
5036 of the registers could affect the value of ADDRESS, so we must
5037 be careful which order we do them in. */
5038 if (GET_CODE (address) == PRE_MODIFY
5039 || ! refers_to_regno_p (regno, regno + 1, address, NULL))
5041 /* It is safe to load the lower-numbered register first. */
5042 emit_move_insn (dest1, change_address (source, SImode, NULL));
5043 emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
5045 else
5047 /* ADDRESS is not pre-modified and the address depends on the
5048 lower-numbered register. Load the higher-numbered register
5049 first. */
5050 emit_move_insn (dest2, frv_index_memory (source, SImode, 1));
5051 emit_move_insn (dest1, change_address (source, SImode, NULL));
5055 /* Split (set DEST SOURCE), where DEST refers to a dword memory location
5056 and SOURCE is either a double register or the constant zero. */
5057 void
5058 frv_split_double_store (rtx dest, rtx source)
5060 rtx dest1 = change_address (dest, SImode, NULL);
5061 rtx dest2 = frv_index_memory (dest, SImode, 1);
5062 if (ZERO_P (source))
5064 emit_move_insn (dest1, CONST0_RTX (SImode));
5065 emit_move_insn (dest2, CONST0_RTX (SImode));
5067 else
5069 emit_move_insn (dest1, gen_highpart (SImode, source));
5070 emit_move_insn (dest2, gen_lowpart (SImode, source));
5075 /* Split a min/max operation returning a SEQUENCE containing all of the
5076 insns. */
5079 frv_split_minmax (rtx operands[])
5081 rtx dest = operands[0];
5082 rtx minmax = operands[1];
5083 rtx src1 = operands[2];
5084 rtx src2 = operands[3];
5085 rtx cc_reg = operands[4];
5086 rtx cr_reg = operands[5];
5087 rtx ret;
5088 enum rtx_code test_code;
5089 machine_mode cr_mode = GET_MODE (cr_reg);
5091 start_sequence ();
5093 /* Figure out which test to use. */
5094 switch (GET_CODE (minmax))
5096 default:
5097 gcc_unreachable ();
5099 case SMIN: test_code = LT; break;
5100 case SMAX: test_code = GT; break;
5101 case UMIN: test_code = LTU; break;
5102 case UMAX: test_code = GTU; break;
5105 /* Issue the compare instruction. */
5106 emit_insn (gen_rtx_SET (VOIDmode,
5107 cc_reg,
5108 gen_rtx_COMPARE (GET_MODE (cc_reg),
5109 src1, src2)));
5111 /* Set the appropriate CCR bit. */
5112 emit_insn (gen_rtx_SET (VOIDmode,
5113 cr_reg,
5114 gen_rtx_fmt_ee (test_code,
5115 GET_MODE (cr_reg),
5116 cc_reg,
5117 const0_rtx)));
5119 /* If are taking the min/max of a nonzero constant, load that first, and
5120 then do a conditional move of the other value. */
5121 if (GET_CODE (src2) == CONST_INT && INTVAL (src2) != 0)
5123 gcc_assert (!rtx_equal_p (dest, src1));
5125 emit_move_insn (dest, src2);
5126 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5127 gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
5128 gen_rtx_SET (VOIDmode, dest, src1)));
5131 /* Otherwise, do each half of the move. */
5132 else
5134 /* Emit the conditional move for the test being true if needed. */
5135 if (! rtx_equal_p (dest, src1))
5136 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5137 gen_rtx_NE (cr_mode, cr_reg, const0_rtx),
5138 gen_rtx_SET (VOIDmode, dest, src1)));
5140 /* Emit the conditional move for the test being false if needed. */
5141 if (! rtx_equal_p (dest, src2))
5142 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5143 gen_rtx_EQ (cr_mode, cr_reg, const0_rtx),
5144 gen_rtx_SET (VOIDmode, dest, src2)));
5147 /* Finish up, return sequence. */
5148 ret = get_insns ();
5149 end_sequence ();
5150 return ret;
5154 /* Split an integer abs operation returning a SEQUENCE containing all of the
5155 insns. */
5158 frv_split_abs (rtx operands[])
5160 rtx dest = operands[0];
5161 rtx src = operands[1];
5162 rtx cc_reg = operands[2];
5163 rtx cr_reg = operands[3];
5164 rtx ret;
5166 start_sequence ();
5168 /* Issue the compare < 0 instruction. */
5169 emit_insn (gen_rtx_SET (VOIDmode,
5170 cc_reg,
5171 gen_rtx_COMPARE (CCmode, src, const0_rtx)));
5173 /* Set the appropriate CCR bit. */
5174 emit_insn (gen_rtx_SET (VOIDmode,
5175 cr_reg,
5176 gen_rtx_fmt_ee (LT, CC_CCRmode, cc_reg, const0_rtx)));
5178 /* Emit the conditional negate if the value is negative. */
5179 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5180 gen_rtx_NE (CC_CCRmode, cr_reg, const0_rtx),
5181 gen_negsi2 (dest, src)));
5183 /* Emit the conditional move for the test being false if needed. */
5184 if (! rtx_equal_p (dest, src))
5185 emit_insn (gen_rtx_COND_EXEC (VOIDmode,
5186 gen_rtx_EQ (CC_CCRmode, cr_reg, const0_rtx),
5187 gen_rtx_SET (VOIDmode, dest, src)));
5189 /* Finish up, return sequence. */
5190 ret = get_insns ();
5191 end_sequence ();
5192 return ret;
5196 /* An internal function called by for_each_rtx to clear in a hard_reg set each
5197 register used in an insn. */
5199 static int
5200 frv_clear_registers_used (rtx *ptr, void *data)
5202 if (GET_CODE (*ptr) == REG)
5204 int regno = REGNO (*ptr);
5205 HARD_REG_SET *p_regs = (HARD_REG_SET *)data;
5207 if (regno < FIRST_PSEUDO_REGISTER)
5209 int reg_max = regno + HARD_REGNO_NREGS (regno, GET_MODE (*ptr));
5211 while (regno < reg_max)
5213 CLEAR_HARD_REG_BIT (*p_regs, regno);
5214 regno++;
5219 return 0;
5223 /* Initialize machine-specific if-conversion data.
5224 On the FR-V, we don't have any extra fields per se, but it is useful hook to
5225 initialize the static storage. */
5226 void
5227 frv_ifcvt_machdep_init (void *ce_info ATTRIBUTE_UNUSED)
5229 frv_ifcvt.added_insns_list = NULL_RTX;
5230 frv_ifcvt.cur_scratch_regs = 0;
5231 frv_ifcvt.num_nested_cond_exec = 0;
5232 frv_ifcvt.cr_reg = NULL_RTX;
5233 frv_ifcvt.nested_cc_reg = NULL_RTX;
5234 frv_ifcvt.extra_int_cr = NULL_RTX;
5235 frv_ifcvt.extra_fp_cr = NULL_RTX;
5236 frv_ifcvt.last_nested_if_cr = NULL_RTX;
5240 /* Internal function to add a potential insn to the list of insns to be inserted
5241 if the conditional execution conversion is successful. */
5243 static void
5244 frv_ifcvt_add_insn (rtx pattern, rtx insn, int before_p)
5246 rtx link = alloc_EXPR_LIST (VOIDmode, pattern, insn);
5248 link->jump = before_p; /* Mark to add this before or after insn. */
5249 frv_ifcvt.added_insns_list = alloc_EXPR_LIST (VOIDmode, link,
5250 frv_ifcvt.added_insns_list);
5252 if (TARGET_DEBUG_COND_EXEC)
5254 fprintf (stderr,
5255 "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
5256 (before_p) ? "before" : "after",
5257 (int)INSN_UID (insn));
5259 debug_rtx (pattern);
5264 /* A C expression to modify the code described by the conditional if
5265 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
5266 FALSE_EXPR for converting if-then and if-then-else code to conditional
5267 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
5268 tests cannot be converted. */
5270 void
5271 frv_ifcvt_modify_tests (ce_if_block *ce_info, rtx *p_true, rtx *p_false)
5273 basic_block test_bb = ce_info->test_bb; /* test basic block */
5274 basic_block then_bb = ce_info->then_bb; /* THEN */
5275 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
5276 basic_block join_bb = ce_info->join_bb; /* join block or NULL */
5277 rtx true_expr = *p_true;
5278 rtx cr;
5279 rtx cc;
5280 rtx nested_cc;
5281 machine_mode mode = GET_MODE (true_expr);
5282 int j;
5283 basic_block *bb;
5284 int num_bb;
5285 frv_tmp_reg_t *tmp_reg = &frv_ifcvt.tmp_reg;
5286 rtx check_insn;
5287 rtx sub_cond_exec_reg;
5288 enum rtx_code code;
5289 enum rtx_code code_true;
5290 enum rtx_code code_false;
5291 enum reg_class cc_class;
5292 enum reg_class cr_class;
5293 int cc_first;
5294 int cc_last;
5295 reg_set_iterator rsi;
5297 /* Make sure we are only dealing with hard registers. Also honor the
5298 -mno-cond-exec switch, and -mno-nested-cond-exec switches if
5299 applicable. */
5300 if (!reload_completed || !TARGET_COND_EXEC
5301 || (!TARGET_NESTED_CE && ce_info->pass > 1))
5302 goto fail;
5304 /* Figure out which registers we can allocate for our own purposes. Only
5305 consider registers that are not preserved across function calls and are
5306 not fixed. However, allow the ICC/ICR temporary registers to be allocated
5307 if we did not need to use them in reloading other registers. */
5308 memset (&tmp_reg->regs, 0, sizeof (tmp_reg->regs));
5309 COPY_HARD_REG_SET (tmp_reg->regs, call_used_reg_set);
5310 AND_COMPL_HARD_REG_SET (tmp_reg->regs, fixed_reg_set);
5311 SET_HARD_REG_BIT (tmp_reg->regs, ICC_TEMP);
5312 SET_HARD_REG_BIT (tmp_reg->regs, ICR_TEMP);
5314 /* If this is a nested IF, we need to discover whether the CC registers that
5315 are set/used inside of the block are used anywhere else. If not, we can
5316 change them to be the CC register that is paired with the CR register that
5317 controls the outermost IF block. */
5318 if (ce_info->pass > 1)
5320 CLEAR_HARD_REG_SET (frv_ifcvt.nested_cc_ok_rewrite);
5321 for (j = CC_FIRST; j <= CC_LAST; j++)
5322 if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
5324 if (REGNO_REG_SET_P (df_get_live_in (then_bb), j))
5325 continue;
5327 if (else_bb
5328 && REGNO_REG_SET_P (df_get_live_in (else_bb), j))
5329 continue;
5331 if (join_bb
5332 && REGNO_REG_SET_P (df_get_live_in (join_bb), j))
5333 continue;
5335 SET_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j);
5339 for (j = 0; j < frv_ifcvt.cur_scratch_regs; j++)
5340 frv_ifcvt.scratch_regs[j] = NULL_RTX;
5342 frv_ifcvt.added_insns_list = NULL_RTX;
5343 frv_ifcvt.cur_scratch_regs = 0;
5345 bb = (basic_block *) alloca ((2 + ce_info->num_multiple_test_blocks)
5346 * sizeof (basic_block));
5348 if (join_bb)
5350 unsigned int regno;
5352 /* Remove anything live at the beginning of the join block from being
5353 available for allocation. */
5354 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (join_bb), 0, regno, rsi)
5356 if (regno < FIRST_PSEUDO_REGISTER)
5357 CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
5361 /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
5362 num_bb = 0;
5363 if (ce_info->num_multiple_test_blocks)
5365 basic_block multiple_test_bb = ce_info->last_test_bb;
5367 while (multiple_test_bb != test_bb)
5369 bb[num_bb++] = multiple_test_bb;
5370 multiple_test_bb = EDGE_PRED (multiple_test_bb, 0)->src;
5374 /* Add in the THEN and ELSE blocks to be scanned. */
5375 bb[num_bb++] = then_bb;
5376 if (else_bb)
5377 bb[num_bb++] = else_bb;
5379 sub_cond_exec_reg = NULL_RTX;
5380 frv_ifcvt.num_nested_cond_exec = 0;
5382 /* Scan all of the blocks for registers that must not be allocated. */
5383 for (j = 0; j < num_bb; j++)
5385 rtx_insn *last_insn = BB_END (bb[j]);
5386 rtx_insn *insn = BB_HEAD (bb[j]);
5387 unsigned int regno;
5389 if (dump_file)
5390 fprintf (dump_file, "Scanning %s block %d, start %d, end %d\n",
5391 (bb[j] == else_bb) ? "else" : ((bb[j] == then_bb) ? "then" : "test"),
5392 (int) bb[j]->index,
5393 (int) INSN_UID (BB_HEAD (bb[j])),
5394 (int) INSN_UID (BB_END (bb[j])));
5396 /* Anything live at the beginning of the block is obviously unavailable
5397 for allocation. */
5398 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb[j]), 0, regno, rsi)
5400 if (regno < FIRST_PSEUDO_REGISTER)
5401 CLEAR_HARD_REG_BIT (tmp_reg->regs, regno);
5404 /* Loop through the insns in the block. */
5405 for (;;)
5407 /* Mark any new registers that are created as being unavailable for
5408 allocation. Also see if the CC register used in nested IFs can be
5409 reallocated. */
5410 if (INSN_P (insn))
5412 rtx pattern;
5413 rtx set;
5414 int skip_nested_if = FALSE;
5416 for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
5417 (void *)&tmp_reg->regs);
5419 pattern = PATTERN (insn);
5420 if (GET_CODE (pattern) == COND_EXEC)
5422 rtx reg = XEXP (COND_EXEC_TEST (pattern), 0);
5424 if (reg != sub_cond_exec_reg)
5426 sub_cond_exec_reg = reg;
5427 frv_ifcvt.num_nested_cond_exec++;
5431 set = single_set_pattern (pattern);
5432 if (set)
5434 rtx dest = SET_DEST (set);
5435 rtx src = SET_SRC (set);
5437 if (GET_CODE (dest) == REG)
5439 int regno = REGNO (dest);
5440 enum rtx_code src_code = GET_CODE (src);
5442 if (CC_P (regno) && src_code == COMPARE)
5443 skip_nested_if = TRUE;
5445 else if (CR_P (regno)
5446 && (src_code == IF_THEN_ELSE
5447 || COMPARISON_P (src)))
5448 skip_nested_if = TRUE;
5452 if (! skip_nested_if)
5453 for_each_rtx (&PATTERN (insn), frv_clear_registers_used,
5454 (void *)&frv_ifcvt.nested_cc_ok_rewrite);
5457 if (insn == last_insn)
5458 break;
5460 insn = NEXT_INSN (insn);
5464 /* If this is a nested if, rewrite the CC registers that are available to
5465 include the ones that can be rewritten, to increase the chance of being
5466 able to allocate a paired CC/CR register combination. */
5467 if (ce_info->pass > 1)
5469 for (j = CC_FIRST; j <= CC_LAST; j++)
5470 if (TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, j))
5471 SET_HARD_REG_BIT (tmp_reg->regs, j);
5472 else
5473 CLEAR_HARD_REG_BIT (tmp_reg->regs, j);
5476 if (dump_file)
5478 int num_gprs = 0;
5479 fprintf (dump_file, "Available GPRs: ");
5481 for (j = GPR_FIRST; j <= GPR_LAST; j++)
5482 if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
5484 fprintf (dump_file, " %d [%s]", j, reg_names[j]);
5485 if (++num_gprs > GPR_TEMP_NUM+2)
5486 break;
5489 fprintf (dump_file, "%s\nAvailable CRs: ",
5490 (num_gprs > GPR_TEMP_NUM+2) ? " ..." : "");
5492 for (j = CR_FIRST; j <= CR_LAST; j++)
5493 if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
5494 fprintf (dump_file, " %d [%s]", j, reg_names[j]);
5496 fputs ("\n", dump_file);
5498 if (ce_info->pass > 1)
5500 fprintf (dump_file, "Modifiable CCs: ");
5501 for (j = CC_FIRST; j <= CC_LAST; j++)
5502 if (TEST_HARD_REG_BIT (tmp_reg->regs, j))
5503 fprintf (dump_file, " %d [%s]", j, reg_names[j]);
5505 fprintf (dump_file, "\n%d nested COND_EXEC statements\n",
5506 frv_ifcvt.num_nested_cond_exec);
5510 /* Allocate the appropriate temporary condition code register. Try to
5511 allocate the ICR/FCR register that corresponds to the ICC/FCC register so
5512 that conditional cmp's can be done. */
5513 if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode)
5515 cr_class = ICR_REGS;
5516 cc_class = ICC_REGS;
5517 cc_first = ICC_FIRST;
5518 cc_last = ICC_LAST;
5520 else if (mode == CC_FPmode)
5522 cr_class = FCR_REGS;
5523 cc_class = FCC_REGS;
5524 cc_first = FCC_FIRST;
5525 cc_last = FCC_LAST;
5527 else
5529 cc_first = cc_last = 0;
5530 cr_class = cc_class = NO_REGS;
5533 cc = XEXP (true_expr, 0);
5534 nested_cc = cr = NULL_RTX;
5535 if (cc_class != NO_REGS)
5537 /* For nested IFs and &&/||, see if we can find a CC and CR register pair
5538 so we can execute a csubcc/caddcc/cfcmps instruction. */
5539 int cc_regno;
5541 for (cc_regno = cc_first; cc_regno <= cc_last; cc_regno++)
5543 int cr_regno = cc_regno - CC_FIRST + CR_FIRST;
5545 if (TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cc_regno)
5546 && TEST_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, cr_regno))
5548 frv_ifcvt.tmp_reg.next_reg[ (int)cr_class ] = cr_regno;
5549 cr = frv_alloc_temp_reg (tmp_reg, cr_class, CC_CCRmode, TRUE,
5550 TRUE);
5552 frv_ifcvt.tmp_reg.next_reg[ (int)cc_class ] = cc_regno;
5553 nested_cc = frv_alloc_temp_reg (tmp_reg, cc_class, CCmode,
5554 TRUE, TRUE);
5555 break;
5560 if (! cr)
5562 if (dump_file)
5563 fprintf (dump_file, "Could not allocate a CR temporary register\n");
5565 goto fail;
5568 if (dump_file)
5569 fprintf (dump_file,
5570 "Will use %s for conditional execution, %s for nested comparisons\n",
5571 reg_names[ REGNO (cr)],
5572 (nested_cc) ? reg_names[ REGNO (nested_cc) ] : "<none>");
5574 /* Set the CCR bit. Note for integer tests, we reverse the condition so that
5575 in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
5576 bit being true. We don't do this for floating point, because of NaNs. */
5577 code = GET_CODE (true_expr);
5578 if (GET_MODE (cc) != CC_FPmode)
5580 code = reverse_condition (code);
5581 code_true = EQ;
5582 code_false = NE;
5584 else
5586 code_true = NE;
5587 code_false = EQ;
5590 check_insn = gen_rtx_SET (VOIDmode, cr,
5591 gen_rtx_fmt_ee (code, CC_CCRmode, cc, const0_rtx));
5593 /* Record the check insn to be inserted later. */
5594 frv_ifcvt_add_insn (check_insn, BB_END (test_bb), TRUE);
5596 /* Update the tests. */
5597 frv_ifcvt.cr_reg = cr;
5598 frv_ifcvt.nested_cc_reg = nested_cc;
5599 *p_true = gen_rtx_fmt_ee (code_true, CC_CCRmode, cr, const0_rtx);
5600 *p_false = gen_rtx_fmt_ee (code_false, CC_CCRmode, cr, const0_rtx);
5601 return;
5603 /* Fail, don't do this conditional execution. */
5604 fail:
5605 *p_true = NULL_RTX;
5606 *p_false = NULL_RTX;
5607 if (dump_file)
5608 fprintf (dump_file, "Disabling this conditional execution.\n");
5610 return;
5614 /* A C expression to modify the code described by the conditional if
5615 information CE_INFO, for the basic block BB, possibly updating the tests in
5616 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
5617 if-then-else code to conditional instructions. Set either TRUE_EXPR or
5618 FALSE_EXPR to a null pointer if the tests cannot be converted. */
5620 /* p_true and p_false are given expressions of the form:
5622 (and (eq:CC_CCR (reg:CC_CCR)
5623 (const_int 0))
5624 (eq:CC (reg:CC)
5625 (const_int 0))) */
5627 void
5628 frv_ifcvt_modify_multiple_tests (ce_if_block *ce_info,
5629 basic_block bb,
5630 rtx *p_true,
5631 rtx *p_false)
5633 rtx old_true = XEXP (*p_true, 0);
5634 rtx old_false = XEXP (*p_false, 0);
5635 rtx true_expr = XEXP (*p_true, 1);
5636 rtx false_expr = XEXP (*p_false, 1);
5637 rtx test_expr;
5638 rtx old_test;
5639 rtx cr = XEXP (old_true, 0);
5640 rtx check_insn;
5641 rtx new_cr = NULL_RTX;
5642 rtx *p_new_cr = (rtx *)0;
5643 rtx if_else;
5644 rtx compare;
5645 rtx cc;
5646 enum reg_class cr_class;
5647 machine_mode mode = GET_MODE (true_expr);
5648 rtx (*logical_func)(rtx, rtx, rtx);
5650 if (TARGET_DEBUG_COND_EXEC)
5652 fprintf (stderr,
5653 "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
5654 ce_info->and_and_p ? "&&" : "||");
5656 debug_rtx (*p_true);
5658 fputs ("\nfalse insn:\n", stderr);
5659 debug_rtx (*p_false);
5662 if (!TARGET_MULTI_CE)
5663 goto fail;
5665 if (GET_CODE (cr) != REG)
5666 goto fail;
5668 if (mode == CCmode || mode == CC_UNSmode || mode == CC_NZmode)
5670 cr_class = ICR_REGS;
5671 p_new_cr = &frv_ifcvt.extra_int_cr;
5673 else if (mode == CC_FPmode)
5675 cr_class = FCR_REGS;
5676 p_new_cr = &frv_ifcvt.extra_fp_cr;
5678 else
5679 goto fail;
5681 /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
5682 more &&/|| tests. */
5683 new_cr = *p_new_cr;
5684 if (! new_cr)
5686 new_cr = *p_new_cr = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, cr_class,
5687 CC_CCRmode, TRUE, TRUE);
5688 if (! new_cr)
5689 goto fail;
5692 if (ce_info->and_and_p)
5694 old_test = old_false;
5695 test_expr = true_expr;
5696 logical_func = (GET_CODE (old_true) == EQ) ? gen_andcr : gen_andncr;
5697 *p_true = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
5698 *p_false = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
5700 else
5702 old_test = old_false;
5703 test_expr = false_expr;
5704 logical_func = (GET_CODE (old_false) == EQ) ? gen_orcr : gen_orncr;
5705 *p_true = gen_rtx_EQ (CC_CCRmode, cr, const0_rtx);
5706 *p_false = gen_rtx_NE (CC_CCRmode, cr, const0_rtx);
5709 /* First add the andcr/andncr/orcr/orncr, which will be added after the
5710 conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
5711 stack. */
5712 frv_ifcvt_add_insn ((*logical_func) (cr, cr, new_cr), BB_END (bb), TRUE);
5714 /* Now add the conditional check insn. */
5715 cc = XEXP (test_expr, 0);
5716 compare = gen_rtx_fmt_ee (GET_CODE (test_expr), CC_CCRmode, cc, const0_rtx);
5717 if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, old_test, compare, const0_rtx);
5719 check_insn = gen_rtx_SET (VOIDmode, new_cr, if_else);
5721 /* Add the new check insn to the list of check insns that need to be
5722 inserted. */
5723 frv_ifcvt_add_insn (check_insn, BB_END (bb), TRUE);
5725 if (TARGET_DEBUG_COND_EXEC)
5727 fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
5728 stderr);
5730 debug_rtx (*p_true);
5732 fputs ("\nfalse insn:\n", stderr);
5733 debug_rtx (*p_false);
5736 return;
5738 fail:
5739 *p_true = *p_false = NULL_RTX;
5741 /* If we allocated a CR register, release it. */
5742 if (new_cr)
5744 CLEAR_HARD_REG_BIT (frv_ifcvt.tmp_reg.regs, REGNO (new_cr));
5745 *p_new_cr = NULL_RTX;
5748 if (TARGET_DEBUG_COND_EXEC)
5749 fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr);
5751 return;
5755 /* Return a register which will be loaded with a value if an IF block is
5756 converted to conditional execution. This is used to rewrite instructions
5757 that use constants to ones that just use registers. */
5759 static rtx
5760 frv_ifcvt_load_value (rtx value, rtx insn ATTRIBUTE_UNUSED)
5762 int num_alloc = frv_ifcvt.cur_scratch_regs;
5763 int i;
5764 rtx reg;
5766 /* We know gr0 == 0, so replace any errant uses. */
5767 if (value == const0_rtx)
5768 return gen_rtx_REG (SImode, GPR_FIRST);
5770 /* First search all registers currently loaded to see if we have an
5771 applicable constant. */
5772 if (CONSTANT_P (value)
5773 || (GET_CODE (value) == REG && REGNO (value) == LR_REGNO))
5775 for (i = 0; i < num_alloc; i++)
5777 if (rtx_equal_p (SET_SRC (frv_ifcvt.scratch_regs[i]), value))
5778 return SET_DEST (frv_ifcvt.scratch_regs[i]);
5782 /* Have we exhausted the number of registers available? */
5783 if (num_alloc >= GPR_TEMP_NUM)
5785 if (dump_file)
5786 fprintf (dump_file, "Too many temporary registers allocated\n");
5788 return NULL_RTX;
5791 /* Allocate the new register. */
5792 reg = frv_alloc_temp_reg (&frv_ifcvt.tmp_reg, GPR_REGS, SImode, TRUE, TRUE);
5793 if (! reg)
5795 if (dump_file)
5796 fputs ("Could not find a scratch register\n", dump_file);
5798 return NULL_RTX;
5801 frv_ifcvt.cur_scratch_regs++;
5802 frv_ifcvt.scratch_regs[num_alloc] = gen_rtx_SET (VOIDmode, reg, value);
5804 if (dump_file)
5806 if (GET_CODE (value) == CONST_INT)
5807 fprintf (dump_file, "Register %s will hold %ld\n",
5808 reg_names[ REGNO (reg)], (long)INTVAL (value));
5810 else if (GET_CODE (value) == REG && REGNO (value) == LR_REGNO)
5811 fprintf (dump_file, "Register %s will hold LR\n",
5812 reg_names[ REGNO (reg)]);
5814 else
5815 fprintf (dump_file, "Register %s will hold a saved value\n",
5816 reg_names[ REGNO (reg)]);
5819 return reg;
5823 /* Update a MEM used in conditional code that might contain an offset to put
5824 the offset into a scratch register, so that the conditional load/store
5825 operations can be used. This function returns the original pointer if the
5826 MEM is valid to use in conditional code, NULL if we can't load up the offset
5827 into a temporary register, or the new MEM if we were successful. */
5829 static rtx
5830 frv_ifcvt_rewrite_mem (rtx mem, machine_mode mode, rtx insn)
5832 rtx addr = XEXP (mem, 0);
5834 if (!frv_legitimate_address_p_1 (mode, addr, reload_completed, TRUE, FALSE))
5836 if (GET_CODE (addr) == PLUS)
5838 rtx addr_op0 = XEXP (addr, 0);
5839 rtx addr_op1 = XEXP (addr, 1);
5841 if (GET_CODE (addr_op0) == REG && CONSTANT_P (addr_op1))
5843 rtx reg = frv_ifcvt_load_value (addr_op1, insn);
5844 if (!reg)
5845 return NULL_RTX;
5847 addr = gen_rtx_PLUS (Pmode, addr_op0, reg);
5850 else
5851 return NULL_RTX;
5854 else if (CONSTANT_P (addr))
5855 addr = frv_ifcvt_load_value (addr, insn);
5857 else
5858 return NULL_RTX;
5860 if (addr == NULL_RTX)
5861 return NULL_RTX;
5863 else if (XEXP (mem, 0) != addr)
5864 return change_address (mem, mode, addr);
5867 return mem;
5871 /* Given a PATTERN, return a SET expression if this PATTERN has only a single
5872 SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
5874 static rtx
5875 single_set_pattern (rtx pattern)
5877 rtx set;
5878 int i;
5880 if (GET_CODE (pattern) == COND_EXEC)
5881 pattern = COND_EXEC_CODE (pattern);
5883 if (GET_CODE (pattern) == SET)
5884 return pattern;
5886 else if (GET_CODE (pattern) == PARALLEL)
5888 for (i = 0, set = 0; i < XVECLEN (pattern, 0); i++)
5890 rtx sub = XVECEXP (pattern, 0, i);
5892 switch (GET_CODE (sub))
5894 case USE:
5895 case CLOBBER:
5896 break;
5898 case SET:
5899 if (set)
5900 return 0;
5901 else
5902 set = sub;
5903 break;
5905 default:
5906 return 0;
5909 return set;
5912 return 0;
5916 /* A C expression to modify the code described by the conditional if
5917 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
5918 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
5919 insn cannot be converted to be executed conditionally. */
5922 frv_ifcvt_modify_insn (ce_if_block *ce_info,
5923 rtx pattern,
5924 rtx insn)
5926 rtx orig_ce_pattern = pattern;
5927 rtx set;
5928 rtx op0;
5929 rtx op1;
5930 rtx test;
5932 gcc_assert (GET_CODE (pattern) == COND_EXEC);
5934 test = COND_EXEC_TEST (pattern);
5935 if (GET_CODE (test) == AND)
5937 rtx cr = frv_ifcvt.cr_reg;
5938 rtx test_reg;
5940 op0 = XEXP (test, 0);
5941 if (! rtx_equal_p (cr, XEXP (op0, 0)))
5942 goto fail;
5944 op1 = XEXP (test, 1);
5945 test_reg = XEXP (op1, 0);
5946 if (GET_CODE (test_reg) != REG)
5947 goto fail;
5949 /* Is this the first nested if block in this sequence? If so, generate
5950 an andcr or andncr. */
5951 if (! frv_ifcvt.last_nested_if_cr)
5953 rtx and_op;
5955 frv_ifcvt.last_nested_if_cr = test_reg;
5956 if (GET_CODE (op0) == NE)
5957 and_op = gen_andcr (test_reg, cr, test_reg);
5958 else
5959 and_op = gen_andncr (test_reg, cr, test_reg);
5961 frv_ifcvt_add_insn (and_op, insn, TRUE);
5964 /* If this isn't the first statement in the nested if sequence, see if we
5965 are dealing with the same register. */
5966 else if (! rtx_equal_p (test_reg, frv_ifcvt.last_nested_if_cr))
5967 goto fail;
5969 COND_EXEC_TEST (pattern) = test = op1;
5972 /* If this isn't a nested if, reset state variables. */
5973 else
5975 frv_ifcvt.last_nested_if_cr = NULL_RTX;
5978 set = single_set_pattern (pattern);
5979 if (set)
5981 rtx dest = SET_DEST (set);
5982 rtx src = SET_SRC (set);
5983 machine_mode mode = GET_MODE (dest);
5985 /* Check for normal binary operators. */
5986 if (mode == SImode && ARITHMETIC_P (src))
5988 op0 = XEXP (src, 0);
5989 op1 = XEXP (src, 1);
5991 if (integer_register_operand (op0, SImode) && CONSTANT_P (op1))
5993 op1 = frv_ifcvt_load_value (op1, insn);
5994 if (op1)
5995 COND_EXEC_CODE (pattern)
5996 = gen_rtx_SET (VOIDmode, dest, gen_rtx_fmt_ee (GET_CODE (src),
5997 GET_MODE (src),
5998 op0, op1));
5999 else
6000 goto fail;
6004 /* For multiply by a constant, we need to handle the sign extending
6005 correctly. Add a USE of the value after the multiply to prevent flow
6006 from cratering because only one register out of the two were used. */
6007 else if (mode == DImode && GET_CODE (src) == MULT)
6009 op0 = XEXP (src, 0);
6010 op1 = XEXP (src, 1);
6011 if (GET_CODE (op0) == SIGN_EXTEND && GET_CODE (op1) == CONST_INT)
6013 op1 = frv_ifcvt_load_value (op1, insn);
6014 if (op1)
6016 op1 = gen_rtx_SIGN_EXTEND (DImode, op1);
6017 COND_EXEC_CODE (pattern)
6018 = gen_rtx_SET (VOIDmode, dest,
6019 gen_rtx_MULT (DImode, op0, op1));
6021 else
6022 goto fail;
6025 frv_ifcvt_add_insn (gen_use (dest), insn, FALSE);
6028 /* If we are just loading a constant created for a nested conditional
6029 execution statement, just load the constant without any conditional
6030 execution, since we know that the constant will not interfere with any
6031 other registers. */
6032 else if (frv_ifcvt.scratch_insns_bitmap
6033 && bitmap_bit_p (frv_ifcvt.scratch_insns_bitmap,
6034 INSN_UID (insn))
6035 && REG_P (SET_DEST (set))
6036 /* We must not unconditionally set a scratch reg chosen
6037 for a nested if-converted block if its incoming
6038 value from the TEST block (or the result of the THEN
6039 branch) could/should propagate to the JOIN block.
6040 It suffices to test whether the register is live at
6041 the JOIN point: if it's live there, we can infer
6042 that we set it in the former JOIN block of the
6043 nested if-converted block (otherwise it wouldn't
6044 have been available as a scratch register), and it
6045 is either propagated through or set in the other
6046 conditional block. It's probably not worth trying
6047 to catch the latter case, and it could actually
6048 limit scheduling of the combined block quite
6049 severely. */
6050 && ce_info->join_bb
6051 && ! (REGNO_REG_SET_P (df_get_live_in (ce_info->join_bb),
6052 REGNO (SET_DEST (set))))
6053 /* Similarly, we must not unconditionally set a reg
6054 used as scratch in the THEN branch if the same reg
6055 is live in the ELSE branch. */
6056 && (! ce_info->else_bb
6057 || BLOCK_FOR_INSN (insn) == ce_info->else_bb
6058 || ! (REGNO_REG_SET_P (df_get_live_in (ce_info->else_bb),
6059 REGNO (SET_DEST (set))))))
6060 pattern = set;
6062 else if (mode == QImode || mode == HImode || mode == SImode
6063 || mode == SFmode)
6065 int changed_p = FALSE;
6067 /* Check for just loading up a constant */
6068 if (CONSTANT_P (src) && integer_register_operand (dest, mode))
6070 src = frv_ifcvt_load_value (src, insn);
6071 if (!src)
6072 goto fail;
6074 changed_p = TRUE;
6077 /* See if we need to fix up stores */
6078 if (GET_CODE (dest) == MEM)
6080 rtx new_mem = frv_ifcvt_rewrite_mem (dest, mode, insn);
6082 if (!new_mem)
6083 goto fail;
6085 else if (new_mem != dest)
6087 changed_p = TRUE;
6088 dest = new_mem;
6092 /* See if we need to fix up loads */
6093 if (GET_CODE (src) == MEM)
6095 rtx new_mem = frv_ifcvt_rewrite_mem (src, mode, insn);
6097 if (!new_mem)
6098 goto fail;
6100 else if (new_mem != src)
6102 changed_p = TRUE;
6103 src = new_mem;
6107 /* If either src or destination changed, redo SET. */
6108 if (changed_p)
6109 COND_EXEC_CODE (pattern) = gen_rtx_SET (VOIDmode, dest, src);
6112 /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
6113 rewriting the CC register to be the same as the paired CC/CR register
6114 for nested ifs. */
6115 else if (mode == CC_CCRmode && COMPARISON_P (src))
6117 int regno = REGNO (XEXP (src, 0));
6118 rtx if_else;
6120 if (ce_info->pass > 1
6121 && regno != (int)REGNO (frv_ifcvt.nested_cc_reg)
6122 && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite, regno))
6124 src = gen_rtx_fmt_ee (GET_CODE (src),
6125 CC_CCRmode,
6126 frv_ifcvt.nested_cc_reg,
6127 XEXP (src, 1));
6130 if_else = gen_rtx_IF_THEN_ELSE (CC_CCRmode, test, src, const0_rtx);
6131 pattern = gen_rtx_SET (VOIDmode, dest, if_else);
6134 /* Remap a nested compare instruction to use the paired CC/CR reg. */
6135 else if (ce_info->pass > 1
6136 && GET_CODE (dest) == REG
6137 && CC_P (REGNO (dest))
6138 && REGNO (dest) != REGNO (frv_ifcvt.nested_cc_reg)
6139 && TEST_HARD_REG_BIT (frv_ifcvt.nested_cc_ok_rewrite,
6140 REGNO (dest))
6141 && GET_CODE (src) == COMPARE)
6143 PUT_MODE (frv_ifcvt.nested_cc_reg, GET_MODE (dest));
6144 COND_EXEC_CODE (pattern)
6145 = gen_rtx_SET (VOIDmode, frv_ifcvt.nested_cc_reg, copy_rtx (src));
6149 if (TARGET_DEBUG_COND_EXEC)
6151 rtx orig_pattern = PATTERN (insn);
6153 PATTERN (insn) = pattern;
6154 fprintf (stderr,
6155 "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
6156 ce_info->pass);
6158 debug_rtx (insn);
6159 PATTERN (insn) = orig_pattern;
6162 return pattern;
6164 fail:
6165 if (TARGET_DEBUG_COND_EXEC)
6167 rtx orig_pattern = PATTERN (insn);
6169 PATTERN (insn) = orig_ce_pattern;
6170 fprintf (stderr,
6171 "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
6172 ce_info->pass);
6174 debug_rtx (insn);
6175 PATTERN (insn) = orig_pattern;
6178 return NULL_RTX;
6182 /* A C expression to perform any final machine dependent modifications in
6183 converting code to conditional execution in the code described by the
6184 conditional if information CE_INFO. */
6186 void
6187 frv_ifcvt_modify_final (ce_if_block *ce_info ATTRIBUTE_UNUSED)
6189 rtx existing_insn;
6190 rtx check_insn;
6191 rtx p = frv_ifcvt.added_insns_list;
6192 int i;
6194 /* Loop inserting the check insns. The last check insn is the first test,
6195 and is the appropriate place to insert constants. */
6196 gcc_assert (p);
6200 rtx check_and_insert_insns = XEXP (p, 0);
6201 rtx old_p = p;
6203 check_insn = XEXP (check_and_insert_insns, 0);
6204 existing_insn = XEXP (check_and_insert_insns, 1);
6205 p = XEXP (p, 1);
6207 /* The jump bit is used to say that the new insn is to be inserted BEFORE
6208 the existing insn, otherwise it is to be inserted AFTER. */
6209 if (check_and_insert_insns->jump)
6211 emit_insn_before (check_insn, existing_insn);
6212 check_and_insert_insns->jump = 0;
6214 else
6215 emit_insn_after (check_insn, existing_insn);
6217 free_EXPR_LIST_node (check_and_insert_insns);
6218 free_EXPR_LIST_node (old_p);
6220 while (p != NULL_RTX);
6222 /* Load up any constants needed into temp gprs */
6223 for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
6225 rtx insn = emit_insn_before (frv_ifcvt.scratch_regs[i], existing_insn);
6226 if (! frv_ifcvt.scratch_insns_bitmap)
6227 frv_ifcvt.scratch_insns_bitmap = BITMAP_ALLOC (NULL);
6228 bitmap_set_bit (frv_ifcvt.scratch_insns_bitmap, INSN_UID (insn));
6229 frv_ifcvt.scratch_regs[i] = NULL_RTX;
6232 frv_ifcvt.added_insns_list = NULL_RTX;
6233 frv_ifcvt.cur_scratch_regs = 0;
6237 /* A C expression to cancel any machine dependent modifications in converting
6238 code to conditional execution in the code described by the conditional if
6239 information CE_INFO. */
6241 void
6242 frv_ifcvt_modify_cancel (ce_if_block *ce_info ATTRIBUTE_UNUSED)
6244 int i;
6245 rtx p = frv_ifcvt.added_insns_list;
6247 /* Loop freeing up the EXPR_LIST's allocated. */
6248 while (p != NULL_RTX)
6250 rtx check_and_jump = XEXP (p, 0);
6251 rtx old_p = p;
6253 p = XEXP (p, 1);
6254 free_EXPR_LIST_node (check_and_jump);
6255 free_EXPR_LIST_node (old_p);
6258 /* Release any temporary gprs allocated. */
6259 for (i = 0; i < frv_ifcvt.cur_scratch_regs; i++)
6260 frv_ifcvt.scratch_regs[i] = NULL_RTX;
6262 frv_ifcvt.added_insns_list = NULL_RTX;
6263 frv_ifcvt.cur_scratch_regs = 0;
6264 return;
6267 /* A C expression for the size in bytes of the trampoline, as an integer.
6268 The template is:
6270 setlo #0, <jmp_reg>
6271 setlo #0, <static_chain>
6272 sethi #0, <jmp_reg>
6273 sethi #0, <static_chain>
6274 jmpl @(gr0,<jmp_reg>) */
6277 frv_trampoline_size (void)
6279 if (TARGET_FDPIC)
6280 /* Allocate room for the function descriptor and the lddi
6281 instruction. */
6282 return 8 + 6 * 4;
6283 return 5 /* instructions */ * 4 /* instruction size. */;
6287 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
6288 RTX for the address of the trampoline; FNADDR is an RTX for the address of
6289 the nested function; STATIC_CHAIN is an RTX for the static chain value that
6290 should be passed to the function when it is called.
6292 The template is:
6294 setlo #0, <jmp_reg>
6295 setlo #0, <static_chain>
6296 sethi #0, <jmp_reg>
6297 sethi #0, <static_chain>
6298 jmpl @(gr0,<jmp_reg>) */
6300 static void
6301 frv_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
6303 rtx addr = XEXP (m_tramp, 0);
6304 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6305 rtx sc_reg = force_reg (Pmode, static_chain);
6307 emit_library_call (gen_rtx_SYMBOL_REF (SImode, "__trampoline_setup"),
6308 LCT_NORMAL, VOIDmode, 4,
6309 addr, Pmode,
6310 GEN_INT (frv_trampoline_size ()), SImode,
6311 fnaddr, Pmode,
6312 sc_reg, Pmode);
6316 /* Many machines have some registers that cannot be copied directly to or from
6317 memory or even from other types of registers. An example is the `MQ'
6318 register, which on most machines, can only be copied to or from general
6319 registers, but not memory. Some machines allow copying all registers to and
6320 from memory, but require a scratch register for stores to some memory
6321 locations (e.g., those with symbolic address on the RT, and those with
6322 certain symbolic address on the SPARC when compiling PIC). In some cases,
6323 both an intermediate and a scratch register are required.
6325 You should define these macros to indicate to the reload phase that it may
6326 need to allocate at least one register for a reload in addition to the
6327 register to contain the data. Specifically, if copying X to a register
6328 RCLASS in MODE requires an intermediate register, you should define
6329 `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
6330 whose registers can be used as intermediate registers or scratch registers.
6332 If copying a register RCLASS in MODE to X requires an intermediate or scratch
6333 register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
6334 largest register class required. If the requirements for input and output
6335 reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
6336 instead of defining both macros identically.
6338 The values returned by these macros are often `GENERAL_REGS'. Return
6339 `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
6340 to or from a register of RCLASS in MODE without requiring a scratch register.
6341 Do not define this macro if it would always return `NO_REGS'.
6343 If a scratch register is required (either with or without an intermediate
6344 register), you should define patterns for `reload_inM' or `reload_outM', as
6345 required.. These patterns, which will normally be implemented with a
6346 `define_expand', should be similar to the `movM' patterns, except that
6347 operand 2 is the scratch register.
6349 Define constraints for the reload register and scratch register that contain
6350 a single register class. If the original reload register (whose class is
6351 RCLASS) can meet the constraint given in the pattern, the value returned by
6352 these macros is used for the class of the scratch register. Otherwise, two
6353 additional reload registers are required. Their classes are obtained from
6354 the constraints in the insn pattern.
6356 X might be a pseudo-register or a `subreg' of a pseudo-register, which could
6357 either be in a hard register or in memory. Use `true_regnum' to find out;
6358 it will return -1 if the pseudo is in memory and the hard register number if
6359 it is in a register.
6361 These macros should not be used in the case where a particular class of
6362 registers can only be copied to memory and not to another class of
6363 registers. In that case, secondary reload registers are not needed and
6364 would not be helpful. Instead, a stack location must be used to perform the
6365 copy and the `movM' pattern should use memory as an intermediate storage.
6366 This case often occurs between floating-point and general registers. */
6368 enum reg_class
6369 frv_secondary_reload_class (enum reg_class rclass,
6370 machine_mode mode ATTRIBUTE_UNUSED,
6371 rtx x)
6373 enum reg_class ret;
6375 switch (rclass)
6377 default:
6378 ret = NO_REGS;
6379 break;
6381 /* Accumulators/Accumulator guard registers need to go through floating
6382 point registers. */
6383 case QUAD_REGS:
6384 case GPR_REGS:
6385 ret = NO_REGS;
6386 if (x && GET_CODE (x) == REG)
6388 int regno = REGNO (x);
6390 if (ACC_P (regno) || ACCG_P (regno))
6391 ret = FPR_REGS;
6393 break;
6395 /* Nonzero constants should be loaded into an FPR through a GPR. */
6396 case QUAD_FPR_REGS:
6397 if (x && CONSTANT_P (x) && !ZERO_P (x))
6398 ret = GPR_REGS;
6399 else
6400 ret = NO_REGS;
6401 break;
6403 /* All of these types need gpr registers. */
6404 case ICC_REGS:
6405 case FCC_REGS:
6406 case CC_REGS:
6407 case ICR_REGS:
6408 case FCR_REGS:
6409 case CR_REGS:
6410 case LCR_REG:
6411 case LR_REG:
6412 ret = GPR_REGS;
6413 break;
6415 /* The accumulators need fpr registers. */
6416 case QUAD_ACC_REGS:
6417 case ACCG_REGS:
6418 ret = FPR_REGS;
6419 break;
6422 return ret;
6425 /* This hook exists to catch the case where secondary_reload_class() is
6426 called from init_reg_autoinc() in regclass.c - before the reload optabs
6427 have been initialised. */
6429 static reg_class_t
6430 frv_secondary_reload (bool in_p, rtx x, reg_class_t reload_class_i,
6431 machine_mode reload_mode,
6432 secondary_reload_info * sri)
6434 enum reg_class rclass = NO_REGS;
6435 enum reg_class reload_class = (enum reg_class) reload_class_i;
6437 if (sri->prev_sri && sri->prev_sri->t_icode != CODE_FOR_nothing)
6439 sri->icode = sri->prev_sri->t_icode;
6440 return NO_REGS;
6443 rclass = frv_secondary_reload_class (reload_class, reload_mode, x);
6445 if (rclass != NO_REGS)
6447 enum insn_code icode
6448 = direct_optab_handler (in_p ? reload_in_optab : reload_out_optab,
6449 reload_mode);
6450 if (icode == 0)
6452 /* This happens when then the reload_[in|out]_optabs have
6453 not been initialised. */
6454 sri->t_icode = CODE_FOR_nothing;
6455 return rclass;
6459 /* Fall back to the default secondary reload handler. */
6460 return default_secondary_reload (in_p, x, reload_class, reload_mode, sri);
6464 /* Worker function for TARGET_CLASS_LIKELY_SPILLED_P. */
6466 static bool
6467 frv_class_likely_spilled_p (reg_class_t rclass)
6469 switch (rclass)
6471 default:
6472 break;
6474 case GR8_REGS:
6475 case GR9_REGS:
6476 case GR89_REGS:
6477 case FDPIC_FPTR_REGS:
6478 case FDPIC_REGS:
6479 case ICC_REGS:
6480 case FCC_REGS:
6481 case CC_REGS:
6482 case ICR_REGS:
6483 case FCR_REGS:
6484 case CR_REGS:
6485 case LCR_REG:
6486 case LR_REG:
6487 case SPR_REGS:
6488 case QUAD_ACC_REGS:
6489 case ACCG_REGS:
6490 return true;
6493 return false;
6497 /* An expression for the alignment of a structure field FIELD if the
6498 alignment computed in the usual way is COMPUTED. GCC uses this
6499 value instead of the value in `BIGGEST_ALIGNMENT' or
6500 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
6502 /* The definition type of the bit field data is either char, short, long or
6503 long long. The maximum bit size is the number of bits of its own type.
6505 The bit field data is assigned to a storage unit that has an adequate size
6506 for bit field data retention and is located at the smallest address.
6508 Consecutive bit field data are packed at consecutive bits having the same
6509 storage unit, with regard to the type, beginning with the MSB and continuing
6510 toward the LSB.
6512 If a field to be assigned lies over a bit field type boundary, its
6513 assignment is completed by aligning it with a boundary suitable for the
6514 type.
6516 When a bit field having a bit length of 0 is declared, it is forcibly
6517 assigned to the next storage unit.
6519 e.g)
6520 struct {
6521 int a:2;
6522 int b:6;
6523 char c:4;
6524 int d:10;
6525 int :0;
6526 int f:2;
6527 } x;
6529 +0 +1 +2 +3
6530 &x 00000000 00000000 00000000 00000000
6531 MLM----L
6533 &x+4 00000000 00000000 00000000 00000000
6534 M--L
6536 &x+8 00000000 00000000 00000000 00000000
6537 M----------L
6539 &x+12 00000000 00000000 00000000 00000000
6545 frv_adjust_field_align (tree field, int computed)
6547 /* Make sure that the bitfield is not wider than the type. */
6548 if (DECL_BIT_FIELD (field)
6549 && !DECL_ARTIFICIAL (field))
6551 tree parent = DECL_CONTEXT (field);
6552 tree prev = NULL_TREE;
6553 tree cur;
6555 for (cur = TYPE_FIELDS (parent); cur && cur != field; cur = DECL_CHAIN (cur))
6557 if (TREE_CODE (cur) != FIELD_DECL)
6558 continue;
6560 prev = cur;
6563 gcc_assert (cur);
6565 /* If this isn't a :0 field and if the previous element is a bitfield
6566 also, see if the type is different, if so, we will need to align the
6567 bit-field to the next boundary. */
6568 if (prev
6569 && ! DECL_PACKED (field)
6570 && ! integer_zerop (DECL_SIZE (field))
6571 && DECL_BIT_FIELD_TYPE (field) != DECL_BIT_FIELD_TYPE (prev))
6573 int prev_align = TYPE_ALIGN (TREE_TYPE (prev));
6574 int cur_align = TYPE_ALIGN (TREE_TYPE (field));
6575 computed = (prev_align > cur_align) ? prev_align : cur_align;
6579 return computed;
6583 /* A C expression that is nonzero if it is permissible to store a value of mode
6584 MODE in hard register number REGNO (or in several registers starting with
6585 that one). For a machine where all registers are equivalent, a suitable
6586 definition is
6588 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
6590 It is not necessary for this macro to check for the numbers of fixed
6591 registers, because the allocation mechanism considers them to be always
6592 occupied.
6594 On some machines, double-precision values must be kept in even/odd register
6595 pairs. The way to implement that is to define this macro to reject odd
6596 register numbers for such modes.
6598 The minimum requirement for a mode to be OK in a register is that the
6599 `movMODE' instruction pattern support moves between the register and any
6600 other hard register for which the mode is OK; and that moving a value into
6601 the register and back out not alter it.
6603 Since the same instruction used to move `SImode' will work for all narrower
6604 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
6605 to distinguish between these modes, provided you define patterns `movhi',
6606 etc., to take advantage of this. This is useful because of the interaction
6607 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
6608 all integer modes to be tieable.
6610 Many machines have special registers for floating point arithmetic. Often
6611 people assume that floating point machine modes are allowed only in floating
6612 point registers. This is not true. Any registers that can hold integers
6613 can safely *hold* a floating point machine mode, whether or not floating
6614 arithmetic can be done on it in those registers. Integer move instructions
6615 can be used to move the values.
6617 On some machines, though, the converse is true: fixed-point machine modes
6618 may not go in floating registers. This is true if the floating registers
6619 normalize any value stored in them, because storing a non-floating value
6620 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
6621 fixed-point machine modes in floating registers. But if the floating
6622 registers do not automatically normalize, if you can store any bit pattern
6623 in one and retrieve it unchanged without a trap, then any machine mode may
6624 go in a floating register, so you can define this macro to say so.
6626 The primary significance of special floating registers is rather that they
6627 are the registers acceptable in floating point arithmetic instructions.
6628 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
6629 writing the proper constraints for those instructions.
6631 On some machines, the floating registers are especially slow to access, so
6632 that it is better to store a value in a stack frame than in such a register
6633 if floating point arithmetic is not being done. As long as the floating
6634 registers are not in class `GENERAL_REGS', they will not be used unless some
6635 pattern's constraint asks for one. */
6638 frv_hard_regno_mode_ok (int regno, machine_mode mode)
6640 int base;
6641 int mask;
6643 switch (mode)
6645 case CCmode:
6646 case CC_UNSmode:
6647 case CC_NZmode:
6648 return ICC_P (regno) || GPR_P (regno);
6650 case CC_CCRmode:
6651 return CR_P (regno) || GPR_P (regno);
6653 case CC_FPmode:
6654 return FCC_P (regno) || GPR_P (regno);
6656 default:
6657 break;
6660 /* Set BASE to the first register in REGNO's class. Set MASK to the
6661 bits that must be clear in (REGNO - BASE) for the register to be
6662 well-aligned. */
6663 if (INTEGRAL_MODE_P (mode) || FLOAT_MODE_P (mode) || VECTOR_MODE_P (mode))
6665 if (ACCG_P (regno))
6667 /* ACCGs store one byte. Two-byte quantities must start in
6668 even-numbered registers, four-byte ones in registers whose
6669 numbers are divisible by four, and so on. */
6670 base = ACCG_FIRST;
6671 mask = GET_MODE_SIZE (mode) - 1;
6673 else
6675 /* The other registers store one word. */
6676 if (GPR_P (regno) || regno == AP_FIRST)
6677 base = GPR_FIRST;
6679 else if (FPR_P (regno))
6680 base = FPR_FIRST;
6682 else if (ACC_P (regno))
6683 base = ACC_FIRST;
6685 else if (SPR_P (regno))
6686 return mode == SImode;
6688 /* Fill in the table. */
6689 else
6690 return 0;
6692 /* Anything smaller than an SI is OK in any word-sized register. */
6693 if (GET_MODE_SIZE (mode) < 4)
6694 return 1;
6696 mask = (GET_MODE_SIZE (mode) / 4) - 1;
6698 return (((regno - base) & mask) == 0);
6701 return 0;
6705 /* A C expression for the number of consecutive hard registers, starting at
6706 register number REGNO, required to hold a value of mode MODE.
6708 On a machine where all registers are exactly one word, a suitable definition
6709 of this macro is
6711 #define HARD_REGNO_NREGS(REGNO, MODE) \
6712 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
6713 / UNITS_PER_WORD)) */
6715 /* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
6716 that we can build the appropriate instructions to properly reload the
6717 values. Also, make the byte-sized accumulator guards use one guard
6718 for each byte. */
6721 frv_hard_regno_nregs (int regno, machine_mode mode)
6723 if (ACCG_P (regno))
6724 return GET_MODE_SIZE (mode);
6725 else
6726 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
6730 /* A C expression for the maximum number of consecutive registers of
6731 class RCLASS needed to hold a value of mode MODE.
6733 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
6734 of the macro `CLASS_MAX_NREGS (RCLASS, MODE)' should be the maximum value of
6735 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS.
6737 This macro helps control the handling of multiple-word values in
6738 the reload pass.
6740 This declaration is required. */
6743 frv_class_max_nregs (enum reg_class rclass, machine_mode mode)
6745 if (rclass == ACCG_REGS)
6746 /* An N-byte value requires N accumulator guards. */
6747 return GET_MODE_SIZE (mode);
6748 else
6749 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
6753 /* A C expression that is nonzero if X is a legitimate constant for an
6754 immediate operand on the target machine. You can assume that X satisfies
6755 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
6756 definition for this macro on machines where anything `CONSTANT_P' is valid. */
6758 static bool
6759 frv_legitimate_constant_p (machine_mode mode, rtx x)
6761 /* frv_cannot_force_const_mem always returns true for FDPIC. This
6762 means that the move expanders will be expected to deal with most
6763 kinds of constant, regardless of what we return here.
6765 However, among its other duties, frv_legitimate_constant_p decides whether
6766 a constant can be entered into reg_equiv_constant[]. If we return true,
6767 reload can create new instances of the constant whenever it likes.
6769 The idea is therefore to accept as many constants as possible (to give
6770 reload more freedom) while rejecting constants that can only be created
6771 at certain times. In particular, anything with a symbolic component will
6772 require use of the pseudo FDPIC register, which is only available before
6773 reload. */
6774 if (TARGET_FDPIC)
6775 return LEGITIMATE_PIC_OPERAND_P (x);
6777 /* All of the integer constants are ok. */
6778 if (GET_CODE (x) != CONST_DOUBLE)
6779 return TRUE;
6781 /* double integer constants are ok. */
6782 if (GET_MODE (x) == VOIDmode || mode == DImode)
6783 return TRUE;
6785 /* 0 is always ok. */
6786 if (x == CONST0_RTX (mode))
6787 return TRUE;
6789 /* If floating point is just emulated, allow any constant, since it will be
6790 constructed in the GPRs. */
6791 if (!TARGET_HAS_FPRS)
6792 return TRUE;
6794 if (mode == DFmode && !TARGET_DOUBLE)
6795 return TRUE;
6797 /* Otherwise store the constant away and do a load. */
6798 return FALSE;
6801 /* Implement SELECT_CC_MODE. Choose CC_FP for floating-point comparisons,
6802 CC_NZ for comparisons against zero in which a single Z or N flag test
6803 is enough, CC_UNS for other unsigned comparisons, and CC for other
6804 signed comparisons. */
6806 machine_mode
6807 frv_select_cc_mode (enum rtx_code code, rtx x, rtx y)
6809 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
6810 return CC_FPmode;
6812 switch (code)
6814 case EQ:
6815 case NE:
6816 case LT:
6817 case GE:
6818 return y == const0_rtx ? CC_NZmode : CCmode;
6820 case GTU:
6821 case GEU:
6822 case LTU:
6823 case LEU:
6824 return y == const0_rtx ? CC_NZmode : CC_UNSmode;
6826 default:
6827 return CCmode;
6832 /* Worker function for TARGET_REGISTER_MOVE_COST. */
6834 #define HIGH_COST 40
6835 #define MEDIUM_COST 3
6836 #define LOW_COST 1
6838 static int
6839 frv_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
6840 reg_class_t from, reg_class_t to)
6842 switch (from)
6844 default:
6845 break;
6847 case QUAD_REGS:
6848 case GPR_REGS:
6849 case GR8_REGS:
6850 case GR9_REGS:
6851 case GR89_REGS:
6852 case FDPIC_REGS:
6853 case FDPIC_FPTR_REGS:
6854 case FDPIC_CALL_REGS:
6856 switch (to)
6858 default:
6859 break;
6861 case QUAD_REGS:
6862 case GPR_REGS:
6863 case GR8_REGS:
6864 case GR9_REGS:
6865 case GR89_REGS:
6866 case FDPIC_REGS:
6867 case FDPIC_FPTR_REGS:
6868 case FDPIC_CALL_REGS:
6870 return LOW_COST;
6872 case FPR_REGS:
6873 return LOW_COST;
6875 case LCR_REG:
6876 case LR_REG:
6877 case SPR_REGS:
6878 return LOW_COST;
6881 case QUAD_FPR_REGS:
6882 switch (to)
6884 default:
6885 break;
6887 case QUAD_REGS:
6888 case GPR_REGS:
6889 case GR8_REGS:
6890 case GR9_REGS:
6891 case GR89_REGS:
6892 case FDPIC_REGS:
6893 case FDPIC_FPTR_REGS:
6894 case FDPIC_CALL_REGS:
6896 case QUAD_ACC_REGS:
6897 case ACCG_REGS:
6898 return MEDIUM_COST;
6900 case QUAD_FPR_REGS:
6901 return LOW_COST;
6904 case LCR_REG:
6905 case LR_REG:
6906 case SPR_REGS:
6907 switch (to)
6909 default:
6910 break;
6912 case QUAD_REGS:
6913 case GPR_REGS:
6914 case GR8_REGS:
6915 case GR9_REGS:
6916 case GR89_REGS:
6917 case FDPIC_REGS:
6918 case FDPIC_FPTR_REGS:
6919 case FDPIC_CALL_REGS:
6921 return MEDIUM_COST;
6924 case QUAD_ACC_REGS:
6925 case ACCG_REGS:
6926 switch (to)
6928 default:
6929 break;
6931 case QUAD_FPR_REGS:
6932 return MEDIUM_COST;
6937 return HIGH_COST;
6940 /* Worker function for TARGET_MEMORY_MOVE_COST. */
6942 static int
6943 frv_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
6944 reg_class_t rclass ATTRIBUTE_UNUSED,
6945 bool in ATTRIBUTE_UNUSED)
6947 return 4;
6951 /* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
6952 use ".picptr" to generate safe relocations for PIC code. We also
6953 need a fixup entry for aligned (non-debugging) code. */
6955 static bool
6956 frv_assemble_integer (rtx value, unsigned int size, int aligned_p)
6958 if ((flag_pic || TARGET_FDPIC) && size == UNITS_PER_WORD)
6960 if (GET_CODE (value) == CONST
6961 || GET_CODE (value) == SYMBOL_REF
6962 || GET_CODE (value) == LABEL_REF)
6964 if (TARGET_FDPIC && GET_CODE (value) == SYMBOL_REF
6965 && SYMBOL_REF_FUNCTION_P (value))
6967 fputs ("\t.picptr\tfuncdesc(", asm_out_file);
6968 output_addr_const (asm_out_file, value);
6969 fputs (")\n", asm_out_file);
6970 return true;
6972 else if (TARGET_FDPIC && GET_CODE (value) == CONST
6973 && frv_function_symbol_referenced_p (value))
6974 return false;
6975 if (aligned_p && !TARGET_FDPIC)
6977 static int label_num = 0;
6978 char buf[256];
6979 const char *p;
6981 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", label_num++);
6982 p = (* targetm.strip_name_encoding) (buf);
6984 fprintf (asm_out_file, "%s:\n", p);
6985 fprintf (asm_out_file, "%s\n", FIXUP_SECTION_ASM_OP);
6986 fprintf (asm_out_file, "\t.picptr\t%s\n", p);
6987 fprintf (asm_out_file, "\t.previous\n");
6989 assemble_integer_with_op ("\t.picptr\t", value);
6990 return true;
6992 if (!aligned_p)
6994 /* We've set the unaligned SI op to NULL, so we always have to
6995 handle the unaligned case here. */
6996 assemble_integer_with_op ("\t.4byte\t", value);
6997 return true;
7000 return default_assemble_integer (value, size, aligned_p);
7003 /* Function to set up the backend function structure. */
7005 static struct machine_function *
7006 frv_init_machine_status (void)
7008 return ggc_cleared_alloc<machine_function> ();
7011 /* Implement TARGET_SCHED_ISSUE_RATE. */
7014 frv_issue_rate (void)
7016 if (!TARGET_PACK)
7017 return 1;
7019 switch (frv_cpu_type)
7021 default:
7022 case FRV_CPU_FR300:
7023 case FRV_CPU_SIMPLE:
7024 return 1;
7026 case FRV_CPU_FR400:
7027 case FRV_CPU_FR405:
7028 case FRV_CPU_FR450:
7029 return 2;
7031 case FRV_CPU_GENERIC:
7032 case FRV_CPU_FR500:
7033 case FRV_CPU_TOMCAT:
7034 return 4;
7036 case FRV_CPU_FR550:
7037 return 8;
7041 /* A for_each_rtx callback. If X refers to an accumulator, return
7042 ACC_GROUP_ODD if the bit 2 of the register number is set and
7043 ACC_GROUP_EVEN if it is clear. Return 0 (ACC_GROUP_NONE)
7044 otherwise. */
7046 static int
7047 frv_acc_group_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
7049 if (REG_P (*x))
7051 if (ACC_P (REGNO (*x)))
7052 return (REGNO (*x) - ACC_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN;
7053 if (ACCG_P (REGNO (*x)))
7054 return (REGNO (*x) - ACCG_FIRST) & 4 ? ACC_GROUP_ODD : ACC_GROUP_EVEN;
7056 return 0;
7059 /* Return the value of INSN's acc_group attribute. */
7062 frv_acc_group (rtx insn)
7064 /* This distinction only applies to the FR550 packing constraints. */
7065 if (frv_cpu_type != FRV_CPU_FR550)
7066 return ACC_GROUP_NONE;
7067 return for_each_rtx (&PATTERN (insn), frv_acc_group_1, 0);
7070 /* Return the index of the DFA unit in FRV_UNIT_NAMES[] that instruction
7071 INSN will try to claim first. Since this value depends only on the
7072 type attribute, we can cache the results in FRV_TYPE_TO_UNIT[]. */
7074 static unsigned int
7075 frv_insn_unit (rtx_insn *insn)
7077 enum attr_type type;
7079 type = get_attr_type (insn);
7080 if (frv_type_to_unit[type] == ARRAY_SIZE (frv_unit_codes))
7082 /* We haven't seen this type of instruction before. */
7083 state_t state;
7084 unsigned int unit;
7086 /* Issue the instruction on its own to see which unit it prefers. */
7087 state = alloca (state_size ());
7088 state_reset (state);
7089 state_transition (state, insn);
7091 /* Find out which unit was taken. */
7092 for (unit = 0; unit < ARRAY_SIZE (frv_unit_codes); unit++)
7093 if (cpu_unit_reservation_p (state, frv_unit_codes[unit]))
7094 break;
7096 gcc_assert (unit != ARRAY_SIZE (frv_unit_codes));
7098 frv_type_to_unit[type] = unit;
7100 return frv_type_to_unit[type];
7103 /* Return true if INSN issues to a branch unit. */
7105 static bool
7106 frv_issues_to_branch_unit_p (rtx_insn *insn)
7108 return frv_unit_groups[frv_insn_unit (insn)] == GROUP_B;
7111 /* The instructions in the packet, partitioned into groups. */
7112 struct frv_packet_group {
7113 /* How many instructions in the packet belong to this group. */
7114 unsigned int num_insns;
7116 /* A list of the instructions that belong to this group, in the order
7117 they appear in the rtl stream. */
7118 rtx_insn *insns[ARRAY_SIZE (frv_unit_codes)];
7120 /* The contents of INSNS after they have been sorted into the correct
7121 assembly-language order. Element X issues to unit X. The list may
7122 contain extra nops. */
7123 rtx_insn *sorted[ARRAY_SIZE (frv_unit_codes)];
7125 /* The member of frv_nops[] to use in sorted[]. */
7126 rtx_insn *nop;
7129 /* The current state of the packing pass, implemented by frv_pack_insns. */
7130 static struct {
7131 /* The state of the pipeline DFA. */
7132 state_t dfa_state;
7134 /* Which hardware registers are set within the current packet,
7135 and the conditions under which they are set. */
7136 regstate_t regstate[FIRST_PSEUDO_REGISTER];
7138 /* The memory locations that have been modified so far in this
7139 packet. MEM is the memref and COND is the regstate_t condition
7140 under which it is set. */
7141 struct {
7142 rtx mem;
7143 regstate_t cond;
7144 } mems[2];
7146 /* The number of valid entries in MEMS. The value is larger than
7147 ARRAY_SIZE (mems) if there were too many mems to record. */
7148 unsigned int num_mems;
7150 /* The maximum number of instructions that can be packed together. */
7151 unsigned int issue_rate;
7153 /* The instructions in the packet, partitioned into groups. */
7154 struct frv_packet_group groups[NUM_GROUPS];
7156 /* The instructions that make up the current packet. */
7157 rtx_insn *insns[ARRAY_SIZE (frv_unit_codes)];
7158 unsigned int num_insns;
7159 } frv_packet;
7161 /* Return the regstate_t flags for the given COND_EXEC condition.
7162 Abort if the condition isn't in the right form. */
7164 static int
7165 frv_cond_flags (rtx cond)
7167 gcc_assert ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
7168 && GET_CODE (XEXP (cond, 0)) == REG
7169 && CR_P (REGNO (XEXP (cond, 0)))
7170 && XEXP (cond, 1) == const0_rtx);
7171 return ((REGNO (XEXP (cond, 0)) - CR_FIRST)
7172 | (GET_CODE (cond) == NE
7173 ? REGSTATE_IF_TRUE
7174 : REGSTATE_IF_FALSE));
7178 /* Return true if something accessed under condition COND2 can
7179 conflict with something written under condition COND1. */
7181 static bool
7182 frv_regstate_conflict_p (regstate_t cond1, regstate_t cond2)
7184 /* If either reference was unconditional, we have a conflict. */
7185 if ((cond1 & REGSTATE_IF_EITHER) == 0
7186 || (cond2 & REGSTATE_IF_EITHER) == 0)
7187 return true;
7189 /* The references might conflict if they were controlled by
7190 different CRs. */
7191 if ((cond1 & REGSTATE_CC_MASK) != (cond2 & REGSTATE_CC_MASK))
7192 return true;
7194 /* They definitely conflict if they are controlled by the
7195 same condition. */
7196 if ((cond1 & cond2 & REGSTATE_IF_EITHER) != 0)
7197 return true;
7199 return false;
7203 /* A for_each_rtx callback. Return 1 if *X depends on an instruction in
7204 the current packet. DATA points to a regstate_t that describes the
7205 condition under which *X might be set or used. */
7207 static int
7208 frv_registers_conflict_p_1 (rtx *x, void *data)
7210 unsigned int regno, i;
7211 regstate_t cond;
7213 cond = *(regstate_t *) data;
7215 if (GET_CODE (*x) == REG)
7216 FOR_EACH_REGNO (regno, *x)
7217 if ((frv_packet.regstate[regno] & REGSTATE_MODIFIED) != 0)
7218 if (frv_regstate_conflict_p (frv_packet.regstate[regno], cond))
7219 return 1;
7221 if (GET_CODE (*x) == MEM)
7223 /* If we ran out of memory slots, assume a conflict. */
7224 if (frv_packet.num_mems > ARRAY_SIZE (frv_packet.mems))
7225 return 1;
7227 /* Check for output or true dependencies with earlier MEMs. */
7228 for (i = 0; i < frv_packet.num_mems; i++)
7229 if (frv_regstate_conflict_p (frv_packet.mems[i].cond, cond))
7231 if (true_dependence (frv_packet.mems[i].mem, VOIDmode, *x))
7232 return 1;
7234 if (output_dependence (frv_packet.mems[i].mem, *x))
7235 return 1;
7239 /* The return values of calls aren't significant: they describe
7240 the effect of the call as a whole, not of the insn itself. */
7241 if (GET_CODE (*x) == SET && GET_CODE (SET_SRC (*x)) == CALL)
7243 if (for_each_rtx (&SET_SRC (*x), frv_registers_conflict_p_1, data))
7244 return 1;
7245 return -1;
7248 /* Check subexpressions. */
7249 return 0;
7253 /* Return true if something in X might depend on an instruction
7254 in the current packet. */
7256 static bool
7257 frv_registers_conflict_p (rtx x)
7259 regstate_t flags;
7261 flags = 0;
7262 if (GET_CODE (x) == COND_EXEC)
7264 if (for_each_rtx (&XEXP (x, 0), frv_registers_conflict_p_1, &flags))
7265 return true;
7267 flags |= frv_cond_flags (XEXP (x, 0));
7268 x = XEXP (x, 1);
7270 return for_each_rtx (&x, frv_registers_conflict_p_1, &flags);
7274 /* A note_stores callback. DATA points to the regstate_t condition
7275 under which X is modified. Update FRV_PACKET accordingly. */
7277 static void
7278 frv_registers_update_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7280 unsigned int regno;
7282 if (GET_CODE (x) == REG)
7283 FOR_EACH_REGNO (regno, x)
7284 frv_packet.regstate[regno] |= *(regstate_t *) data;
7286 if (GET_CODE (x) == MEM)
7288 if (frv_packet.num_mems < ARRAY_SIZE (frv_packet.mems))
7290 frv_packet.mems[frv_packet.num_mems].mem = x;
7291 frv_packet.mems[frv_packet.num_mems].cond = *(regstate_t *) data;
7293 frv_packet.num_mems++;
7298 /* Update the register state information for an instruction whose
7299 body is X. */
7301 static void
7302 frv_registers_update (rtx x)
7304 regstate_t flags;
7306 flags = REGSTATE_MODIFIED;
7307 if (GET_CODE (x) == COND_EXEC)
7309 flags |= frv_cond_flags (XEXP (x, 0));
7310 x = XEXP (x, 1);
7312 note_stores (x, frv_registers_update_1, &flags);
7316 /* Initialize frv_packet for the start of a new packet. */
7318 static void
7319 frv_start_packet (void)
7321 enum frv_insn_group group;
7323 memset (frv_packet.regstate, 0, sizeof (frv_packet.regstate));
7324 frv_packet.num_mems = 0;
7325 frv_packet.num_insns = 0;
7326 for (group = GROUP_I; group < NUM_GROUPS;
7327 group = (enum frv_insn_group) (group + 1))
7328 frv_packet.groups[group].num_insns = 0;
7332 /* Likewise for the start of a new basic block. */
7334 static void
7335 frv_start_packet_block (void)
7337 state_reset (frv_packet.dfa_state);
7338 frv_start_packet ();
7342 /* Finish the current packet, if any, and start a new one. Call
7343 HANDLE_PACKET with FRV_PACKET describing the completed packet. */
7345 static void
7346 frv_finish_packet (void (*handle_packet) (void))
7348 if (frv_packet.num_insns > 0)
7350 handle_packet ();
7351 state_transition (frv_packet.dfa_state, 0);
7352 frv_start_packet ();
7357 /* Return true if INSN can be added to the current packet. Update
7358 the DFA state on success. */
7360 static bool
7361 frv_pack_insn_p (rtx_insn *insn)
7363 /* See if the packet is already as long as it can be. */
7364 if (frv_packet.num_insns == frv_packet.issue_rate)
7365 return false;
7367 /* If the scheduler thought that an instruction should start a packet,
7368 it's usually a good idea to believe it. It knows much more about
7369 the latencies than we do.
7371 There are some exceptions though:
7373 - Conditional instructions are scheduled on the assumption that
7374 they will be executed. This is usually a good thing, since it
7375 tends to avoid unnecessary stalls in the conditional code.
7376 But we want to pack conditional instructions as tightly as
7377 possible, in order to optimize the case where they aren't
7378 executed.
7380 - The scheduler will always put branches on their own, even
7381 if there's no real dependency.
7383 - There's no point putting a call in its own packet unless
7384 we have to. */
7385 if (frv_packet.num_insns > 0
7386 && NONJUMP_INSN_P (insn)
7387 && GET_MODE (insn) == TImode
7388 && GET_CODE (PATTERN (insn)) != COND_EXEC)
7389 return false;
7391 /* Check for register conflicts. Don't do this for setlo since any
7392 conflict will be with the partnering sethi, with which it can
7393 be packed. */
7394 if (get_attr_type (insn) != TYPE_SETLO)
7395 if (frv_registers_conflict_p (PATTERN (insn)))
7396 return false;
7398 return state_transition (frv_packet.dfa_state, insn) < 0;
7402 /* Add instruction INSN to the current packet. */
7404 static void
7405 frv_add_insn_to_packet (rtx_insn *insn)
7407 struct frv_packet_group *packet_group;
7409 packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]];
7410 packet_group->insns[packet_group->num_insns++] = insn;
7411 frv_packet.insns[frv_packet.num_insns++] = insn;
7413 frv_registers_update (PATTERN (insn));
7417 /* Insert INSN (a member of frv_nops[]) into the current packet. If the
7418 packet ends in a branch or call, insert the nop before it, otherwise
7419 add to the end. */
7421 static void
7422 frv_insert_nop_in_packet (rtx_insn *insn)
7424 struct frv_packet_group *packet_group;
7425 rtx_insn *last;
7427 packet_group = &frv_packet.groups[frv_unit_groups[frv_insn_unit (insn)]];
7428 last = frv_packet.insns[frv_packet.num_insns - 1];
7429 if (! NONJUMP_INSN_P (last))
7431 insn = emit_insn_before (PATTERN (insn), last);
7432 frv_packet.insns[frv_packet.num_insns - 1] = insn;
7433 frv_packet.insns[frv_packet.num_insns++] = last;
7435 else
7437 insn = emit_insn_after (PATTERN (insn), last);
7438 frv_packet.insns[frv_packet.num_insns++] = insn;
7440 packet_group->insns[packet_group->num_insns++] = insn;
7444 /* If packing is enabled, divide the instructions into packets and
7445 return true. Call HANDLE_PACKET for each complete packet. */
7447 static bool
7448 frv_for_each_packet (void (*handle_packet) (void))
7450 rtx_insn *insn, *next_insn;
7452 frv_packet.issue_rate = frv_issue_rate ();
7454 /* Early exit if we don't want to pack insns. */
7455 if (!optimize
7456 || !flag_schedule_insns_after_reload
7457 || !TARGET_VLIW_BRANCH
7458 || frv_packet.issue_rate == 1)
7459 return false;
7461 /* Set up the initial packing state. */
7462 dfa_start ();
7463 frv_packet.dfa_state = alloca (state_size ());
7465 frv_start_packet_block ();
7466 for (insn = get_insns (); insn != 0; insn = next_insn)
7468 enum rtx_code code;
7469 bool eh_insn_p;
7471 code = GET_CODE (insn);
7472 next_insn = NEXT_INSN (insn);
7474 if (code == CODE_LABEL)
7476 frv_finish_packet (handle_packet);
7477 frv_start_packet_block ();
7480 if (INSN_P (insn))
7481 switch (GET_CODE (PATTERN (insn)))
7483 case USE:
7484 case CLOBBER:
7485 break;
7487 default:
7488 /* Calls mustn't be packed on a TOMCAT. */
7489 if (CALL_P (insn) && frv_cpu_type == FRV_CPU_TOMCAT)
7490 frv_finish_packet (handle_packet);
7492 /* Since the last instruction in a packet determines the EH
7493 region, any exception-throwing instruction must come at
7494 the end of reordered packet. Insns that issue to a
7495 branch unit are bound to come last; for others it's
7496 too hard to predict. */
7497 eh_insn_p = (find_reg_note (insn, REG_EH_REGION, NULL) != NULL);
7498 if (eh_insn_p && !frv_issues_to_branch_unit_p (insn))
7499 frv_finish_packet (handle_packet);
7501 /* Finish the current packet if we can't add INSN to it.
7502 Simulate cycles until INSN is ready to issue. */
7503 if (!frv_pack_insn_p (insn))
7505 frv_finish_packet (handle_packet);
7506 while (!frv_pack_insn_p (insn))
7507 state_transition (frv_packet.dfa_state, 0);
7510 /* Add the instruction to the packet. */
7511 frv_add_insn_to_packet (insn);
7513 /* Calls and jumps end a packet, as do insns that throw
7514 an exception. */
7515 if (code == CALL_INSN || code == JUMP_INSN || eh_insn_p)
7516 frv_finish_packet (handle_packet);
7517 break;
7520 frv_finish_packet (handle_packet);
7521 dfa_finish ();
7522 return true;
7525 /* Subroutine of frv_sort_insn_group. We are trying to sort
7526 frv_packet.groups[GROUP].sorted[0...NUM_INSNS-1] into assembly
7527 language order. We have already picked a new position for
7528 frv_packet.groups[GROUP].sorted[X] if bit X of ISSUED is set.
7529 These instructions will occupy elements [0, LOWER_SLOT) and
7530 [UPPER_SLOT, NUM_INSNS) of the final (sorted) array. STATE is
7531 the DFA state after issuing these instructions.
7533 Try filling elements [LOWER_SLOT, UPPER_SLOT) with every permutation
7534 of the unused instructions. Return true if one such permutation gives
7535 a valid ordering, leaving the successful permutation in sorted[].
7536 Do not modify sorted[] until a valid permutation is found. */
7538 static bool
7539 frv_sort_insn_group_1 (enum frv_insn_group group,
7540 unsigned int lower_slot, unsigned int upper_slot,
7541 unsigned int issued, unsigned int num_insns,
7542 state_t state)
7544 struct frv_packet_group *packet_group;
7545 unsigned int i;
7546 state_t test_state;
7547 size_t dfa_size;
7548 rtx_insn *insn;
7550 /* Early success if we've filled all the slots. */
7551 if (lower_slot == upper_slot)
7552 return true;
7554 packet_group = &frv_packet.groups[group];
7555 dfa_size = state_size ();
7556 test_state = alloca (dfa_size);
7558 /* Try issuing each unused instruction. */
7559 for (i = num_insns - 1; i + 1 != 0; i--)
7560 if (~issued & (1 << i))
7562 insn = packet_group->sorted[i];
7563 memcpy (test_state, state, dfa_size);
7564 if (state_transition (test_state, insn) < 0
7565 && cpu_unit_reservation_p (test_state,
7566 NTH_UNIT (group, upper_slot - 1))
7567 && frv_sort_insn_group_1 (group, lower_slot, upper_slot - 1,
7568 issued | (1 << i), num_insns,
7569 test_state))
7571 packet_group->sorted[upper_slot - 1] = insn;
7572 return true;
7576 return false;
7579 /* Compare two instructions by their frv_insn_unit. */
7581 static int
7582 frv_compare_insns (const void *first, const void *second)
7584 rtx_insn * const *insn1 = (rtx_insn * const *) first;
7585 rtx_insn * const *insn2 = (rtx_insn * const *) second;
7586 return frv_insn_unit (*insn1) - frv_insn_unit (*insn2);
7589 /* Copy frv_packet.groups[GROUP].insns[] to frv_packet.groups[GROUP].sorted[]
7590 and sort it into assembly language order. See frv.md for a description of
7591 the algorithm. */
7593 static void
7594 frv_sort_insn_group (enum frv_insn_group group)
7596 struct frv_packet_group *packet_group;
7597 unsigned int first, i, nop, max_unit, num_slots;
7598 state_t state, test_state;
7599 size_t dfa_size;
7601 packet_group = &frv_packet.groups[group];
7603 /* Assume no nop is needed. */
7604 packet_group->nop = 0;
7606 if (packet_group->num_insns == 0)
7607 return;
7609 /* Copy insns[] to sorted[]. */
7610 memcpy (packet_group->sorted, packet_group->insns,
7611 sizeof (rtx) * packet_group->num_insns);
7613 /* Sort sorted[] by the unit that each insn tries to take first. */
7614 if (packet_group->num_insns > 1)
7615 qsort (packet_group->sorted, packet_group->num_insns,
7616 sizeof (rtx), frv_compare_insns);
7618 /* That's always enough for branch and control insns. */
7619 if (group == GROUP_B || group == GROUP_C)
7620 return;
7622 dfa_size = state_size ();
7623 state = alloca (dfa_size);
7624 test_state = alloca (dfa_size);
7626 /* Find the highest FIRST such that sorted[0...FIRST-1] can issue
7627 consecutively and such that the DFA takes unit X when sorted[X]
7628 is added. Set STATE to the new DFA state. */
7629 state_reset (test_state);
7630 for (first = 0; first < packet_group->num_insns; first++)
7632 memcpy (state, test_state, dfa_size);
7633 if (state_transition (test_state, packet_group->sorted[first]) >= 0
7634 || !cpu_unit_reservation_p (test_state, NTH_UNIT (group, first)))
7635 break;
7638 /* If all the instructions issued in ascending order, we're done. */
7639 if (first == packet_group->num_insns)
7640 return;
7642 /* Add nops to the end of sorted[] and try each permutation until
7643 we find one that works. */
7644 for (nop = 0; nop < frv_num_nops; nop++)
7646 max_unit = frv_insn_unit (frv_nops[nop]);
7647 if (frv_unit_groups[max_unit] == group)
7649 packet_group->nop = frv_nops[nop];
7650 num_slots = UNIT_NUMBER (max_unit) + 1;
7651 for (i = packet_group->num_insns; i < num_slots; i++)
7652 packet_group->sorted[i] = frv_nops[nop];
7653 if (frv_sort_insn_group_1 (group, first, num_slots,
7654 (1 << first) - 1, num_slots, state))
7655 return;
7658 gcc_unreachable ();
7661 /* Sort the current packet into assembly-language order. Set packing
7662 flags as appropriate. */
7664 static void
7665 frv_reorder_packet (void)
7667 unsigned int cursor[NUM_GROUPS];
7668 rtx insns[ARRAY_SIZE (frv_unit_groups)];
7669 unsigned int unit, to, from;
7670 enum frv_insn_group group;
7671 struct frv_packet_group *packet_group;
7673 /* First sort each group individually. */
7674 for (group = GROUP_I; group < NUM_GROUPS;
7675 group = (enum frv_insn_group) (group + 1))
7677 cursor[group] = 0;
7678 frv_sort_insn_group (group);
7681 /* Go through the unit template and try add an instruction from
7682 that unit's group. */
7683 to = 0;
7684 for (unit = 0; unit < ARRAY_SIZE (frv_unit_groups); unit++)
7686 group = frv_unit_groups[unit];
7687 packet_group = &frv_packet.groups[group];
7688 if (cursor[group] < packet_group->num_insns)
7690 /* frv_reorg should have added nops for us. */
7691 gcc_assert (packet_group->sorted[cursor[group]]
7692 != packet_group->nop);
7693 insns[to++] = packet_group->sorted[cursor[group]++];
7697 gcc_assert (to == frv_packet.num_insns);
7699 /* Clear the last instruction's packing flag, thus marking the end of
7700 a packet. Reorder the other instructions relative to it. */
7701 CLEAR_PACKING_FLAG (insns[to - 1]);
7702 for (from = 0; from < to - 1; from++)
7704 remove_insn (insns[from]);
7705 add_insn_before (insns[from], insns[to - 1], NULL);
7706 SET_PACKING_FLAG (insns[from]);
7711 /* Divide instructions into packets. Reorder the contents of each
7712 packet so that they are in the correct assembly-language order.
7714 Since this pass can change the raw meaning of the rtl stream, it must
7715 only be called at the last minute, just before the instructions are
7716 written out. */
7718 static void
7719 frv_pack_insns (void)
7721 if (frv_for_each_packet (frv_reorder_packet))
7722 frv_insn_packing_flag = 0;
7723 else
7724 frv_insn_packing_flag = -1;
7727 /* See whether we need to add nops to group GROUP in order to
7728 make a valid packet. */
7730 static void
7731 frv_fill_unused_units (enum frv_insn_group group)
7733 unsigned int non_nops, nops, i;
7734 struct frv_packet_group *packet_group;
7736 packet_group = &frv_packet.groups[group];
7738 /* Sort the instructions into assembly-language order.
7739 Use nops to fill slots that are otherwise unused. */
7740 frv_sort_insn_group (group);
7742 /* See how many nops are needed before the final useful instruction. */
7743 i = nops = 0;
7744 for (non_nops = 0; non_nops < packet_group->num_insns; non_nops++)
7745 while (packet_group->sorted[i++] == packet_group->nop)
7746 nops++;
7748 /* Insert that many nops into the instruction stream. */
7749 while (nops-- > 0)
7750 frv_insert_nop_in_packet (packet_group->nop);
7753 /* Return true if accesses IO1 and IO2 refer to the same doubleword. */
7755 static bool
7756 frv_same_doubleword_p (const struct frv_io *io1, const struct frv_io *io2)
7758 if (io1->const_address != 0 && io2->const_address != 0)
7759 return io1->const_address == io2->const_address;
7761 if (io1->var_address != 0 && io2->var_address != 0)
7762 return rtx_equal_p (io1->var_address, io2->var_address);
7764 return false;
7767 /* Return true if operations IO1 and IO2 are guaranteed to complete
7768 in order. */
7770 static bool
7771 frv_io_fixed_order_p (const struct frv_io *io1, const struct frv_io *io2)
7773 /* The order of writes is always preserved. */
7774 if (io1->type == FRV_IO_WRITE && io2->type == FRV_IO_WRITE)
7775 return true;
7777 /* The order of reads isn't preserved. */
7778 if (io1->type != FRV_IO_WRITE && io2->type != FRV_IO_WRITE)
7779 return false;
7781 /* One operation is a write and the other is (or could be) a read.
7782 The order is only guaranteed if the accesses are to the same
7783 doubleword. */
7784 return frv_same_doubleword_p (io1, io2);
7787 /* Generalize I/O operation X so that it covers both X and Y. */
7789 static void
7790 frv_io_union (struct frv_io *x, const struct frv_io *y)
7792 if (x->type != y->type)
7793 x->type = FRV_IO_UNKNOWN;
7794 if (!frv_same_doubleword_p (x, y))
7796 x->const_address = 0;
7797 x->var_address = 0;
7801 /* Fill IO with information about the load or store associated with
7802 membar instruction INSN. */
7804 static void
7805 frv_extract_membar (struct frv_io *io, rtx_insn *insn)
7807 extract_insn (insn);
7808 io->type = (enum frv_io_type) INTVAL (recog_data.operand[2]);
7809 io->const_address = INTVAL (recog_data.operand[1]);
7810 io->var_address = XEXP (recog_data.operand[0], 0);
7813 /* A note_stores callback for which DATA points to an rtx. Nullify *DATA
7814 if X is a register and *DATA depends on X. */
7816 static void
7817 frv_io_check_address (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7819 rtx *other = (rtx *) data;
7821 if (REG_P (x) && *other != 0 && reg_overlap_mentioned_p (x, *other))
7822 *other = 0;
7825 /* A note_stores callback for which DATA points to a HARD_REG_SET.
7826 Remove every modified register from the set. */
7828 static void
7829 frv_io_handle_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
7831 HARD_REG_SET *set = (HARD_REG_SET *) data;
7832 unsigned int regno;
7834 if (REG_P (x))
7835 FOR_EACH_REGNO (regno, x)
7836 CLEAR_HARD_REG_BIT (*set, regno);
7839 /* A for_each_rtx callback for which DATA points to a HARD_REG_SET.
7840 Add every register in *X to the set. */
7842 static int
7843 frv_io_handle_use_1 (rtx *x, void *data)
7845 HARD_REG_SET *set = (HARD_REG_SET *) data;
7846 unsigned int regno;
7848 if (REG_P (*x))
7849 FOR_EACH_REGNO (regno, *x)
7850 SET_HARD_REG_BIT (*set, regno);
7852 return 0;
7855 /* A note_stores callback that applies frv_io_handle_use_1 to an
7856 entire rhs value. */
7858 static void
7859 frv_io_handle_use (rtx *x, void *data)
7861 for_each_rtx (x, frv_io_handle_use_1, data);
7864 /* Go through block BB looking for membars to remove. There are two
7865 cases where intra-block analysis is enough:
7867 - a membar is redundant if it occurs between two consecutive I/O
7868 operations and if those operations are guaranteed to complete
7869 in order.
7871 - a membar for a __builtin_read is redundant if the result is
7872 used before the next I/O operation is issued.
7874 If the last membar in the block could not be removed, and there
7875 are guaranteed to be no I/O operations between that membar and
7876 the end of the block, store the membar in *LAST_MEMBAR, otherwise
7877 store null.
7879 Describe the block's first I/O operation in *NEXT_IO. Describe
7880 an unknown operation if the block doesn't do any I/O. */
7882 static void
7883 frv_optimize_membar_local (basic_block bb, struct frv_io *next_io,
7884 rtx_insn **last_membar)
7886 HARD_REG_SET used_regs;
7887 rtx next_membar, set;
7888 rtx_insn *insn;
7889 bool next_is_end_p;
7891 /* NEXT_IO is the next I/O operation to be performed after the current
7892 instruction. It starts off as being an unknown operation. */
7893 memset (next_io, 0, sizeof (*next_io));
7895 /* NEXT_IS_END_P is true if NEXT_IO describes the end of the block. */
7896 next_is_end_p = true;
7898 /* If the current instruction is a __builtin_read or __builtin_write,
7899 NEXT_MEMBAR is the membar instruction associated with it. NEXT_MEMBAR
7900 is null if the membar has already been deleted.
7902 Note that the initialization here should only be needed to
7903 suppress warnings. */
7904 next_membar = 0;
7906 /* USED_REGS is the set of registers that are used before the
7907 next I/O instruction. */
7908 CLEAR_HARD_REG_SET (used_regs);
7910 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
7911 if (CALL_P (insn))
7913 /* We can't predict what a call will do to volatile memory. */
7914 memset (next_io, 0, sizeof (struct frv_io));
7915 next_is_end_p = false;
7916 CLEAR_HARD_REG_SET (used_regs);
7918 else if (INSN_P (insn))
7919 switch (recog_memoized (insn))
7921 case CODE_FOR_optional_membar_qi:
7922 case CODE_FOR_optional_membar_hi:
7923 case CODE_FOR_optional_membar_si:
7924 case CODE_FOR_optional_membar_di:
7925 next_membar = insn;
7926 if (next_is_end_p)
7928 /* Local information isn't enough to decide whether this
7929 membar is needed. Stash it away for later. */
7930 *last_membar = insn;
7931 frv_extract_membar (next_io, insn);
7932 next_is_end_p = false;
7934 else
7936 /* Check whether the I/O operation before INSN could be
7937 reordered with one described by NEXT_IO. If it can't,
7938 INSN will not be needed. */
7939 struct frv_io prev_io;
7941 frv_extract_membar (&prev_io, insn);
7942 if (frv_io_fixed_order_p (&prev_io, next_io))
7944 if (dump_file)
7945 fprintf (dump_file,
7946 ";; [Local] Removing membar %d since order"
7947 " of accesses is guaranteed\n",
7948 INSN_UID (next_membar));
7950 insn = NEXT_INSN (insn);
7951 delete_insn (next_membar);
7952 next_membar = 0;
7954 *next_io = prev_io;
7956 break;
7958 default:
7959 /* Invalidate NEXT_IO's address if it depends on something that
7960 is clobbered by INSN. */
7961 if (next_io->var_address)
7962 note_stores (PATTERN (insn), frv_io_check_address,
7963 &next_io->var_address);
7965 /* If the next membar is associated with a __builtin_read,
7966 see if INSN reads from that address. If it does, and if
7967 the destination register is used before the next I/O access,
7968 there is no need for the membar. */
7969 set = PATTERN (insn);
7970 if (next_io->type == FRV_IO_READ
7971 && next_io->var_address != 0
7972 && next_membar != 0
7973 && GET_CODE (set) == SET
7974 && GET_CODE (SET_DEST (set)) == REG
7975 && TEST_HARD_REG_BIT (used_regs, REGNO (SET_DEST (set))))
7977 rtx src;
7979 src = SET_SRC (set);
7980 if (GET_CODE (src) == ZERO_EXTEND)
7981 src = XEXP (src, 0);
7983 if (GET_CODE (src) == MEM
7984 && rtx_equal_p (XEXP (src, 0), next_io->var_address))
7986 if (dump_file)
7987 fprintf (dump_file,
7988 ";; [Local] Removing membar %d since the target"
7989 " of %d is used before the I/O operation\n",
7990 INSN_UID (next_membar), INSN_UID (insn));
7992 if (next_membar == *last_membar)
7993 *last_membar = 0;
7995 delete_insn (next_membar);
7996 next_membar = 0;
8000 /* If INSN has volatile references, forget about any registers
8001 that are used after it. Otherwise forget about uses that
8002 are (or might be) defined by INSN. */
8003 if (volatile_refs_p (PATTERN (insn)))
8004 CLEAR_HARD_REG_SET (used_regs);
8005 else
8006 note_stores (PATTERN (insn), frv_io_handle_set, &used_regs);
8008 note_uses (&PATTERN (insn), frv_io_handle_use, &used_regs);
8009 break;
8013 /* See if MEMBAR, the last membar instruction in BB, can be removed.
8014 FIRST_IO[X] describes the first operation performed by basic block X. */
8016 static void
8017 frv_optimize_membar_global (basic_block bb, struct frv_io *first_io,
8018 rtx_insn *membar)
8020 struct frv_io this_io, next_io;
8021 edge succ;
8022 edge_iterator ei;
8024 /* We need to keep the membar if there is an edge to the exit block. */
8025 FOR_EACH_EDGE (succ, ei, bb->succs)
8026 /* for (succ = bb->succ; succ != 0; succ = succ->succ_next) */
8027 if (succ->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8028 return;
8030 /* Work out the union of all successor blocks. */
8031 ei = ei_start (bb->succs);
8032 ei_cond (ei, &succ);
8033 /* next_io = first_io[bb->succ->dest->index]; */
8034 next_io = first_io[succ->dest->index];
8035 ei = ei_start (bb->succs);
8036 if (ei_cond (ei, &succ))
8038 for (ei_next (&ei); ei_cond (ei, &succ); ei_next (&ei))
8039 /*for (succ = bb->succ->succ_next; succ != 0; succ = succ->succ_next)*/
8040 frv_io_union (&next_io, &first_io[succ->dest->index]);
8042 else
8043 gcc_unreachable ();
8045 frv_extract_membar (&this_io, membar);
8046 if (frv_io_fixed_order_p (&this_io, &next_io))
8048 if (dump_file)
8049 fprintf (dump_file,
8050 ";; [Global] Removing membar %d since order of accesses"
8051 " is guaranteed\n", INSN_UID (membar));
8053 delete_insn (membar);
8057 /* Remove redundant membars from the current function. */
8059 static void
8060 frv_optimize_membar (void)
8062 basic_block bb;
8063 struct frv_io *first_io;
8064 rtx_insn **last_membar;
8066 compute_bb_for_insn ();
8067 first_io = XCNEWVEC (struct frv_io, last_basic_block_for_fn (cfun));
8068 last_membar = XCNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8070 FOR_EACH_BB_FN (bb, cfun)
8071 frv_optimize_membar_local (bb, &first_io[bb->index],
8072 &last_membar[bb->index]);
8074 FOR_EACH_BB_FN (bb, cfun)
8075 if (last_membar[bb->index] != 0)
8076 frv_optimize_membar_global (bb, first_io, last_membar[bb->index]);
8078 free (first_io);
8079 free (last_membar);
8082 /* Used by frv_reorg to keep track of the current packet's address. */
8083 static unsigned int frv_packet_address;
8085 /* If the current packet falls through to a label, try to pad the packet
8086 with nops in order to fit the label's alignment requirements. */
8088 static void
8089 frv_align_label (void)
8091 unsigned int alignment, target, nop;
8092 rtx_insn *x, *last, *barrier, *label;
8094 /* Walk forward to the start of the next packet. Set ALIGNMENT to the
8095 maximum alignment of that packet, LABEL to the last label between
8096 the packets, and BARRIER to the last barrier. */
8097 last = frv_packet.insns[frv_packet.num_insns - 1];
8098 label = barrier = 0;
8099 alignment = 4;
8100 for (x = NEXT_INSN (last); x != 0 && !INSN_P (x); x = NEXT_INSN (x))
8102 if (LABEL_P (x))
8104 unsigned int subalign = 1 << label_to_alignment (x);
8105 alignment = MAX (alignment, subalign);
8106 label = x;
8108 if (BARRIER_P (x))
8109 barrier = x;
8112 /* If -malign-labels, and the packet falls through to an unaligned
8113 label, try introducing a nop to align that label to 8 bytes. */
8114 if (TARGET_ALIGN_LABELS
8115 && label != 0
8116 && barrier == 0
8117 && frv_packet.num_insns < frv_packet.issue_rate)
8118 alignment = MAX (alignment, 8);
8120 /* Advance the address to the end of the current packet. */
8121 frv_packet_address += frv_packet.num_insns * 4;
8123 /* Work out the target address, after alignment. */
8124 target = (frv_packet_address + alignment - 1) & -alignment;
8126 /* If the packet falls through to the label, try to find an efficient
8127 padding sequence. */
8128 if (barrier == 0)
8130 /* First try adding nops to the current packet. */
8131 for (nop = 0; nop < frv_num_nops; nop++)
8132 while (frv_packet_address < target && frv_pack_insn_p (frv_nops[nop]))
8134 frv_insert_nop_in_packet (frv_nops[nop]);
8135 frv_packet_address += 4;
8138 /* If we still haven't reached the target, add some new packets that
8139 contain only nops. If there are two types of nop, insert an
8140 alternating sequence of frv_nops[0] and frv_nops[1], which will
8141 lead to packets like:
8143 nop.p
8144 mnop.p/fnop.p
8145 nop.p
8146 mnop/fnop
8148 etc. Just emit frv_nops[0] if that's the only nop we have. */
8149 last = frv_packet.insns[frv_packet.num_insns - 1];
8150 nop = 0;
8151 while (frv_packet_address < target)
8153 last = emit_insn_after (PATTERN (frv_nops[nop]), last);
8154 frv_packet_address += 4;
8155 if (frv_num_nops > 1)
8156 nop ^= 1;
8160 frv_packet_address = target;
8163 /* Subroutine of frv_reorg, called after each packet has been constructed
8164 in frv_packet. */
8166 static void
8167 frv_reorg_packet (void)
8169 frv_fill_unused_units (GROUP_I);
8170 frv_fill_unused_units (GROUP_FM);
8171 frv_align_label ();
8174 /* Add an instruction with pattern NOP to frv_nops[]. */
8176 static void
8177 frv_register_nop (rtx nop)
8179 rtx_insn *nop_insn = make_insn_raw (nop);
8180 SET_NEXT_INSN (nop_insn) = 0;
8181 SET_PREV_INSN (nop_insn) = 0;
8182 frv_nops[frv_num_nops++] = nop_insn;
8185 /* Implement TARGET_MACHINE_DEPENDENT_REORG. Divide the instructions
8186 into packets and check whether we need to insert nops in order to
8187 fulfill the processor's issue requirements. Also, if the user has
8188 requested a certain alignment for a label, try to meet that alignment
8189 by inserting nops in the previous packet. */
8191 static void
8192 frv_reorg (void)
8194 if (optimize > 0 && TARGET_OPTIMIZE_MEMBAR && cfun->machine->has_membar_p)
8195 frv_optimize_membar ();
8197 frv_num_nops = 0;
8198 frv_register_nop (gen_nop ());
8199 if (TARGET_MEDIA)
8200 frv_register_nop (gen_mnop ());
8201 if (TARGET_HARD_FLOAT)
8202 frv_register_nop (gen_fnop ());
8204 /* Estimate the length of each branch. Although this may change after
8205 we've inserted nops, it will only do so in big functions. */
8206 shorten_branches (get_insns ());
8208 frv_packet_address = 0;
8209 frv_for_each_packet (frv_reorg_packet);
8212 #define def_builtin(name, type, code) \
8213 add_builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
8215 struct builtin_description
8217 enum insn_code icode;
8218 const char *name;
8219 enum frv_builtins code;
8220 enum rtx_code comparison;
8221 unsigned int flag;
8224 /* Media intrinsics that take a single, constant argument. */
8226 static struct builtin_description bdesc_set[] =
8228 { CODE_FOR_mhdsets, "__MHDSETS", FRV_BUILTIN_MHDSETS, UNKNOWN, 0 }
8231 /* Media intrinsics that take just one argument. */
8233 static struct builtin_description bdesc_1arg[] =
8235 { CODE_FOR_mnot, "__MNOT", FRV_BUILTIN_MNOT, UNKNOWN, 0 },
8236 { CODE_FOR_munpackh, "__MUNPACKH", FRV_BUILTIN_MUNPACKH, UNKNOWN, 0 },
8237 { CODE_FOR_mbtoh, "__MBTOH", FRV_BUILTIN_MBTOH, UNKNOWN, 0 },
8238 { CODE_FOR_mhtob, "__MHTOB", FRV_BUILTIN_MHTOB, UNKNOWN, 0},
8239 { CODE_FOR_mabshs, "__MABSHS", FRV_BUILTIN_MABSHS, UNKNOWN, 0 },
8240 { CODE_FOR_scutss, "__SCUTSS", FRV_BUILTIN_SCUTSS, UNKNOWN, 0 }
8243 /* Media intrinsics that take two arguments. */
8245 static struct builtin_description bdesc_2arg[] =
8247 { CODE_FOR_mand, "__MAND", FRV_BUILTIN_MAND, UNKNOWN, 0},
8248 { CODE_FOR_mor, "__MOR", FRV_BUILTIN_MOR, UNKNOWN, 0},
8249 { CODE_FOR_mxor, "__MXOR", FRV_BUILTIN_MXOR, UNKNOWN, 0},
8250 { CODE_FOR_maveh, "__MAVEH", FRV_BUILTIN_MAVEH, UNKNOWN, 0},
8251 { CODE_FOR_msaths, "__MSATHS", FRV_BUILTIN_MSATHS, UNKNOWN, 0},
8252 { CODE_FOR_msathu, "__MSATHU", FRV_BUILTIN_MSATHU, UNKNOWN, 0},
8253 { CODE_FOR_maddhss, "__MADDHSS", FRV_BUILTIN_MADDHSS, UNKNOWN, 0},
8254 { CODE_FOR_maddhus, "__MADDHUS", FRV_BUILTIN_MADDHUS, UNKNOWN, 0},
8255 { CODE_FOR_msubhss, "__MSUBHSS", FRV_BUILTIN_MSUBHSS, UNKNOWN, 0},
8256 { CODE_FOR_msubhus, "__MSUBHUS", FRV_BUILTIN_MSUBHUS, UNKNOWN, 0},
8257 { CODE_FOR_mqaddhss, "__MQADDHSS", FRV_BUILTIN_MQADDHSS, UNKNOWN, 0},
8258 { CODE_FOR_mqaddhus, "__MQADDHUS", FRV_BUILTIN_MQADDHUS, UNKNOWN, 0},
8259 { CODE_FOR_mqsubhss, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS, UNKNOWN, 0},
8260 { CODE_FOR_mqsubhus, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS, UNKNOWN, 0},
8261 { CODE_FOR_mpackh, "__MPACKH", FRV_BUILTIN_MPACKH, UNKNOWN, 0},
8262 { CODE_FOR_mcop1, "__Mcop1", FRV_BUILTIN_MCOP1, UNKNOWN, 0},
8263 { CODE_FOR_mcop2, "__Mcop2", FRV_BUILTIN_MCOP2, UNKNOWN, 0},
8264 { CODE_FOR_mwcut, "__MWCUT", FRV_BUILTIN_MWCUT, UNKNOWN, 0},
8265 { CODE_FOR_mqsaths, "__MQSATHS", FRV_BUILTIN_MQSATHS, UNKNOWN, 0},
8266 { CODE_FOR_mqlclrhs, "__MQLCLRHS", FRV_BUILTIN_MQLCLRHS, UNKNOWN, 0},
8267 { CODE_FOR_mqlmths, "__MQLMTHS", FRV_BUILTIN_MQLMTHS, UNKNOWN, 0},
8268 { CODE_FOR_smul, "__SMUL", FRV_BUILTIN_SMUL, UNKNOWN, 0},
8269 { CODE_FOR_umul, "__UMUL", FRV_BUILTIN_UMUL, UNKNOWN, 0},
8270 { CODE_FOR_addss, "__ADDSS", FRV_BUILTIN_ADDSS, UNKNOWN, 0},
8271 { CODE_FOR_subss, "__SUBSS", FRV_BUILTIN_SUBSS, UNKNOWN, 0},
8272 { CODE_FOR_slass, "__SLASS", FRV_BUILTIN_SLASS, UNKNOWN, 0},
8273 { CODE_FOR_scan, "__SCAN", FRV_BUILTIN_SCAN, UNKNOWN, 0}
8276 /* Integer intrinsics that take two arguments and have no return value. */
8278 static struct builtin_description bdesc_int_void2arg[] =
8280 { CODE_FOR_smass, "__SMASS", FRV_BUILTIN_SMASS, UNKNOWN, 0},
8281 { CODE_FOR_smsss, "__SMSSS", FRV_BUILTIN_SMSSS, UNKNOWN, 0},
8282 { CODE_FOR_smu, "__SMU", FRV_BUILTIN_SMU, UNKNOWN, 0}
8285 static struct builtin_description bdesc_prefetches[] =
8287 { CODE_FOR_frv_prefetch0, "__data_prefetch0", FRV_BUILTIN_PREFETCH0, UNKNOWN,
8289 { CODE_FOR_frv_prefetch, "__data_prefetch", FRV_BUILTIN_PREFETCH, UNKNOWN, 0}
8292 /* Media intrinsics that take two arguments, the first being an ACC number. */
8294 static struct builtin_description bdesc_cut[] =
8296 { CODE_FOR_mcut, "__MCUT", FRV_BUILTIN_MCUT, UNKNOWN, 0},
8297 { CODE_FOR_mcutss, "__MCUTSS", FRV_BUILTIN_MCUTSS, UNKNOWN, 0},
8298 { CODE_FOR_mdcutssi, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI, UNKNOWN, 0}
8301 /* Two-argument media intrinsics with an immediate second argument. */
8303 static struct builtin_description bdesc_2argimm[] =
8305 { CODE_FOR_mrotli, "__MROTLI", FRV_BUILTIN_MROTLI, UNKNOWN, 0},
8306 { CODE_FOR_mrotri, "__MROTRI", FRV_BUILTIN_MROTRI, UNKNOWN, 0},
8307 { CODE_FOR_msllhi, "__MSLLHI", FRV_BUILTIN_MSLLHI, UNKNOWN, 0},
8308 { CODE_FOR_msrlhi, "__MSRLHI", FRV_BUILTIN_MSRLHI, UNKNOWN, 0},
8309 { CODE_FOR_msrahi, "__MSRAHI", FRV_BUILTIN_MSRAHI, UNKNOWN, 0},
8310 { CODE_FOR_mexpdhw, "__MEXPDHW", FRV_BUILTIN_MEXPDHW, UNKNOWN, 0},
8311 { CODE_FOR_mexpdhd, "__MEXPDHD", FRV_BUILTIN_MEXPDHD, UNKNOWN, 0},
8312 { CODE_FOR_mdrotli, "__MDROTLI", FRV_BUILTIN_MDROTLI, UNKNOWN, 0},
8313 { CODE_FOR_mcplhi, "__MCPLHI", FRV_BUILTIN_MCPLHI, UNKNOWN, 0},
8314 { CODE_FOR_mcpli, "__MCPLI", FRV_BUILTIN_MCPLI, UNKNOWN, 0},
8315 { CODE_FOR_mhsetlos, "__MHSETLOS", FRV_BUILTIN_MHSETLOS, UNKNOWN, 0},
8316 { CODE_FOR_mhsetloh, "__MHSETLOH", FRV_BUILTIN_MHSETLOH, UNKNOWN, 0},
8317 { CODE_FOR_mhsethis, "__MHSETHIS", FRV_BUILTIN_MHSETHIS, UNKNOWN, 0},
8318 { CODE_FOR_mhsethih, "__MHSETHIH", FRV_BUILTIN_MHSETHIH, UNKNOWN, 0},
8319 { CODE_FOR_mhdseth, "__MHDSETH", FRV_BUILTIN_MHDSETH, UNKNOWN, 0},
8320 { CODE_FOR_mqsllhi, "__MQSLLHI", FRV_BUILTIN_MQSLLHI, UNKNOWN, 0},
8321 { CODE_FOR_mqsrahi, "__MQSRAHI", FRV_BUILTIN_MQSRAHI, UNKNOWN, 0}
8324 /* Media intrinsics that take two arguments and return void, the first argument
8325 being a pointer to 4 words in memory. */
8327 static struct builtin_description bdesc_void2arg[] =
8329 { CODE_FOR_mdunpackh, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH, UNKNOWN, 0},
8330 { CODE_FOR_mbtohe, "__MBTOHE", FRV_BUILTIN_MBTOHE, UNKNOWN, 0},
8333 /* Media intrinsics that take three arguments, the first being a const_int that
8334 denotes an accumulator, and that return void. */
8336 static struct builtin_description bdesc_void3arg[] =
8338 { CODE_FOR_mcpxrs, "__MCPXRS", FRV_BUILTIN_MCPXRS, UNKNOWN, 0},
8339 { CODE_FOR_mcpxru, "__MCPXRU", FRV_BUILTIN_MCPXRU, UNKNOWN, 0},
8340 { CODE_FOR_mcpxis, "__MCPXIS", FRV_BUILTIN_MCPXIS, UNKNOWN, 0},
8341 { CODE_FOR_mcpxiu, "__MCPXIU", FRV_BUILTIN_MCPXIU, UNKNOWN, 0},
8342 { CODE_FOR_mmulhs, "__MMULHS", FRV_BUILTIN_MMULHS, UNKNOWN, 0},
8343 { CODE_FOR_mmulhu, "__MMULHU", FRV_BUILTIN_MMULHU, UNKNOWN, 0},
8344 { CODE_FOR_mmulxhs, "__MMULXHS", FRV_BUILTIN_MMULXHS, UNKNOWN, 0},
8345 { CODE_FOR_mmulxhu, "__MMULXHU", FRV_BUILTIN_MMULXHU, UNKNOWN, 0},
8346 { CODE_FOR_mmachs, "__MMACHS", FRV_BUILTIN_MMACHS, UNKNOWN, 0},
8347 { CODE_FOR_mmachu, "__MMACHU", FRV_BUILTIN_MMACHU, UNKNOWN, 0},
8348 { CODE_FOR_mmrdhs, "__MMRDHS", FRV_BUILTIN_MMRDHS, UNKNOWN, 0},
8349 { CODE_FOR_mmrdhu, "__MMRDHU", FRV_BUILTIN_MMRDHU, UNKNOWN, 0},
8350 { CODE_FOR_mqcpxrs, "__MQCPXRS", FRV_BUILTIN_MQCPXRS, UNKNOWN, 0},
8351 { CODE_FOR_mqcpxru, "__MQCPXRU", FRV_BUILTIN_MQCPXRU, UNKNOWN, 0},
8352 { CODE_FOR_mqcpxis, "__MQCPXIS", FRV_BUILTIN_MQCPXIS, UNKNOWN, 0},
8353 { CODE_FOR_mqcpxiu, "__MQCPXIU", FRV_BUILTIN_MQCPXIU, UNKNOWN, 0},
8354 { CODE_FOR_mqmulhs, "__MQMULHS", FRV_BUILTIN_MQMULHS, UNKNOWN, 0},
8355 { CODE_FOR_mqmulhu, "__MQMULHU", FRV_BUILTIN_MQMULHU, UNKNOWN, 0},
8356 { CODE_FOR_mqmulxhs, "__MQMULXHS", FRV_BUILTIN_MQMULXHS, UNKNOWN, 0},
8357 { CODE_FOR_mqmulxhu, "__MQMULXHU", FRV_BUILTIN_MQMULXHU, UNKNOWN, 0},
8358 { CODE_FOR_mqmachs, "__MQMACHS", FRV_BUILTIN_MQMACHS, UNKNOWN, 0},
8359 { CODE_FOR_mqmachu, "__MQMACHU", FRV_BUILTIN_MQMACHU, UNKNOWN, 0},
8360 { CODE_FOR_mqxmachs, "__MQXMACHS", FRV_BUILTIN_MQXMACHS, UNKNOWN, 0},
8361 { CODE_FOR_mqxmacxhs, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS, UNKNOWN, 0},
8362 { CODE_FOR_mqmacxhs, "__MQMACXHS", FRV_BUILTIN_MQMACXHS, UNKNOWN, 0}
8365 /* Media intrinsics that take two accumulator numbers as argument and
8366 return void. */
8368 static struct builtin_description bdesc_voidacc[] =
8370 { CODE_FOR_maddaccs, "__MADDACCS", FRV_BUILTIN_MADDACCS, UNKNOWN, 0},
8371 { CODE_FOR_msubaccs, "__MSUBACCS", FRV_BUILTIN_MSUBACCS, UNKNOWN, 0},
8372 { CODE_FOR_masaccs, "__MASACCS", FRV_BUILTIN_MASACCS, UNKNOWN, 0},
8373 { CODE_FOR_mdaddaccs, "__MDADDACCS", FRV_BUILTIN_MDADDACCS, UNKNOWN, 0},
8374 { CODE_FOR_mdsubaccs, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS, UNKNOWN, 0},
8375 { CODE_FOR_mdasaccs, "__MDASACCS", FRV_BUILTIN_MDASACCS, UNKNOWN, 0}
8378 /* Intrinsics that load a value and then issue a MEMBAR. The load is
8379 a normal move and the ICODE is for the membar. */
8381 static struct builtin_description bdesc_loads[] =
8383 { CODE_FOR_optional_membar_qi, "__builtin_read8",
8384 FRV_BUILTIN_READ8, UNKNOWN, 0},
8385 { CODE_FOR_optional_membar_hi, "__builtin_read16",
8386 FRV_BUILTIN_READ16, UNKNOWN, 0},
8387 { CODE_FOR_optional_membar_si, "__builtin_read32",
8388 FRV_BUILTIN_READ32, UNKNOWN, 0},
8389 { CODE_FOR_optional_membar_di, "__builtin_read64",
8390 FRV_BUILTIN_READ64, UNKNOWN, 0}
8393 /* Likewise stores. */
8395 static struct builtin_description bdesc_stores[] =
8397 { CODE_FOR_optional_membar_qi, "__builtin_write8",
8398 FRV_BUILTIN_WRITE8, UNKNOWN, 0},
8399 { CODE_FOR_optional_membar_hi, "__builtin_write16",
8400 FRV_BUILTIN_WRITE16, UNKNOWN, 0},
8401 { CODE_FOR_optional_membar_si, "__builtin_write32",
8402 FRV_BUILTIN_WRITE32, UNKNOWN, 0},
8403 { CODE_FOR_optional_membar_di, "__builtin_write64",
8404 FRV_BUILTIN_WRITE64, UNKNOWN, 0},
8407 /* Initialize media builtins. */
8409 static void
8410 frv_init_builtins (void)
8412 tree accumulator = integer_type_node;
8413 tree integer = integer_type_node;
8414 tree voidt = void_type_node;
8415 tree uhalf = short_unsigned_type_node;
8416 tree sword1 = long_integer_type_node;
8417 tree uword1 = long_unsigned_type_node;
8418 tree sword2 = long_long_integer_type_node;
8419 tree uword2 = long_long_unsigned_type_node;
8420 tree uword4 = build_pointer_type (uword1);
8421 tree vptr = build_pointer_type (build_type_variant (void_type_node, 0, 1));
8422 tree ubyte = unsigned_char_type_node;
8423 tree iacc = integer_type_node;
8425 #define UNARY(RET, T1) \
8426 build_function_type_list (RET, T1, NULL_TREE)
8428 #define BINARY(RET, T1, T2) \
8429 build_function_type_list (RET, T1, T2, NULL_TREE)
8431 #define TRINARY(RET, T1, T2, T3) \
8432 build_function_type_list (RET, T1, T2, T3, NULL_TREE)
8434 #define QUAD(RET, T1, T2, T3, T4) \
8435 build_function_type_list (RET, T1, T2, T3, T4, NULL_TREE)
8437 tree void_ftype_void = build_function_type_list (voidt, NULL_TREE);
8439 tree void_ftype_acc = UNARY (voidt, accumulator);
8440 tree void_ftype_uw4_uw1 = BINARY (voidt, uword4, uword1);
8441 tree void_ftype_uw4_uw2 = BINARY (voidt, uword4, uword2);
8442 tree void_ftype_acc_uw1 = BINARY (voidt, accumulator, uword1);
8443 tree void_ftype_acc_acc = BINARY (voidt, accumulator, accumulator);
8444 tree void_ftype_acc_uw1_uw1 = TRINARY (voidt, accumulator, uword1, uword1);
8445 tree void_ftype_acc_sw1_sw1 = TRINARY (voidt, accumulator, sword1, sword1);
8446 tree void_ftype_acc_uw2_uw2 = TRINARY (voidt, accumulator, uword2, uword2);
8447 tree void_ftype_acc_sw2_sw2 = TRINARY (voidt, accumulator, sword2, sword2);
8449 tree uw1_ftype_uw1 = UNARY (uword1, uword1);
8450 tree uw1_ftype_sw1 = UNARY (uword1, sword1);
8451 tree uw1_ftype_uw2 = UNARY (uword1, uword2);
8452 tree uw1_ftype_acc = UNARY (uword1, accumulator);
8453 tree uw1_ftype_uh_uh = BINARY (uword1, uhalf, uhalf);
8454 tree uw1_ftype_uw1_uw1 = BINARY (uword1, uword1, uword1);
8455 tree uw1_ftype_uw1_int = BINARY (uword1, uword1, integer);
8456 tree uw1_ftype_acc_uw1 = BINARY (uword1, accumulator, uword1);
8457 tree uw1_ftype_acc_sw1 = BINARY (uword1, accumulator, sword1);
8458 tree uw1_ftype_uw2_uw1 = BINARY (uword1, uword2, uword1);
8459 tree uw1_ftype_uw2_int = BINARY (uword1, uword2, integer);
8461 tree sw1_ftype_int = UNARY (sword1, integer);
8462 tree sw1_ftype_sw1_sw1 = BINARY (sword1, sword1, sword1);
8463 tree sw1_ftype_sw1_int = BINARY (sword1, sword1, integer);
8465 tree uw2_ftype_uw1 = UNARY (uword2, uword1);
8466 tree uw2_ftype_uw1_int = BINARY (uword2, uword1, integer);
8467 tree uw2_ftype_uw2_uw2 = BINARY (uword2, uword2, uword2);
8468 tree uw2_ftype_uw2_int = BINARY (uword2, uword2, integer);
8469 tree uw2_ftype_acc_int = BINARY (uword2, accumulator, integer);
8470 tree uw2_ftype_uh_uh_uh_uh = QUAD (uword2, uhalf, uhalf, uhalf, uhalf);
8472 tree sw2_ftype_sw2_sw2 = BINARY (sword2, sword2, sword2);
8473 tree sw2_ftype_sw2_int = BINARY (sword2, sword2, integer);
8474 tree uw2_ftype_uw1_uw1 = BINARY (uword2, uword1, uword1);
8475 tree sw2_ftype_sw1_sw1 = BINARY (sword2, sword1, sword1);
8476 tree void_ftype_sw1_sw1 = BINARY (voidt, sword1, sword1);
8477 tree void_ftype_iacc_sw2 = BINARY (voidt, iacc, sword2);
8478 tree void_ftype_iacc_sw1 = BINARY (voidt, iacc, sword1);
8479 tree sw1_ftype_sw1 = UNARY (sword1, sword1);
8480 tree sw2_ftype_iacc = UNARY (sword2, iacc);
8481 tree sw1_ftype_iacc = UNARY (sword1, iacc);
8482 tree void_ftype_ptr = UNARY (voidt, const_ptr_type_node);
8483 tree uw1_ftype_vptr = UNARY (uword1, vptr);
8484 tree uw2_ftype_vptr = UNARY (uword2, vptr);
8485 tree void_ftype_vptr_ub = BINARY (voidt, vptr, ubyte);
8486 tree void_ftype_vptr_uh = BINARY (voidt, vptr, uhalf);
8487 tree void_ftype_vptr_uw1 = BINARY (voidt, vptr, uword1);
8488 tree void_ftype_vptr_uw2 = BINARY (voidt, vptr, uword2);
8490 def_builtin ("__MAND", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAND);
8491 def_builtin ("__MOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MOR);
8492 def_builtin ("__MXOR", uw1_ftype_uw1_uw1, FRV_BUILTIN_MXOR);
8493 def_builtin ("__MNOT", uw1_ftype_uw1, FRV_BUILTIN_MNOT);
8494 def_builtin ("__MROTLI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTLI);
8495 def_builtin ("__MROTRI", uw1_ftype_uw1_int, FRV_BUILTIN_MROTRI);
8496 def_builtin ("__MWCUT", uw1_ftype_uw2_uw1, FRV_BUILTIN_MWCUT);
8497 def_builtin ("__MAVEH", uw1_ftype_uw1_uw1, FRV_BUILTIN_MAVEH);
8498 def_builtin ("__MSLLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSLLHI);
8499 def_builtin ("__MSRLHI", uw1_ftype_uw1_int, FRV_BUILTIN_MSRLHI);
8500 def_builtin ("__MSRAHI", sw1_ftype_sw1_int, FRV_BUILTIN_MSRAHI);
8501 def_builtin ("__MSATHS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSATHS);
8502 def_builtin ("__MSATHU", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSATHU);
8503 def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MADDHSS);
8504 def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MADDHUS);
8505 def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_MSUBHSS);
8506 def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1, FRV_BUILTIN_MSUBHUS);
8507 def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULHS);
8508 def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULHU);
8509 def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMULXHS);
8510 def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMULXHU);
8511 def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMACHS);
8512 def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMACHU);
8513 def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MMRDHS);
8514 def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MMRDHU);
8515 def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQADDHSS);
8516 def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQADDHUS);
8517 def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSUBHSS);
8518 def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2, FRV_BUILTIN_MQSUBHUS);
8519 def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULHS);
8520 def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULHU);
8521 def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMULXHS);
8522 def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMULXHU);
8523 def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACHS);
8524 def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQMACHU);
8525 def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXRS);
8526 def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXRU);
8527 def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1, FRV_BUILTIN_MCPXIS);
8528 def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1, FRV_BUILTIN_MCPXIU);
8529 def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXRS);
8530 def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXRU);
8531 def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQCPXIS);
8532 def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2, FRV_BUILTIN_MQCPXIU);
8533 def_builtin ("__MCUT", uw1_ftype_acc_uw1, FRV_BUILTIN_MCUT);
8534 def_builtin ("__MCUTSS", uw1_ftype_acc_sw1, FRV_BUILTIN_MCUTSS);
8535 def_builtin ("__MEXPDHW", uw1_ftype_uw1_int, FRV_BUILTIN_MEXPDHW);
8536 def_builtin ("__MEXPDHD", uw2_ftype_uw1_int, FRV_BUILTIN_MEXPDHD);
8537 def_builtin ("__MPACKH", uw1_ftype_uh_uh, FRV_BUILTIN_MPACKH);
8538 def_builtin ("__MUNPACKH", uw2_ftype_uw1, FRV_BUILTIN_MUNPACKH);
8539 def_builtin ("__MDPACKH", uw2_ftype_uh_uh_uh_uh, FRV_BUILTIN_MDPACKH);
8540 def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2, FRV_BUILTIN_MDUNPACKH);
8541 def_builtin ("__MBTOH", uw2_ftype_uw1, FRV_BUILTIN_MBTOH);
8542 def_builtin ("__MHTOB", uw1_ftype_uw2, FRV_BUILTIN_MHTOB);
8543 def_builtin ("__MBTOHE", void_ftype_uw4_uw1, FRV_BUILTIN_MBTOHE);
8544 def_builtin ("__MCLRACC", void_ftype_acc, FRV_BUILTIN_MCLRACC);
8545 def_builtin ("__MCLRACCA", void_ftype_void, FRV_BUILTIN_MCLRACCA);
8546 def_builtin ("__MRDACC", uw1_ftype_acc, FRV_BUILTIN_MRDACC);
8547 def_builtin ("__MRDACCG", uw1_ftype_acc, FRV_BUILTIN_MRDACCG);
8548 def_builtin ("__MWTACC", void_ftype_acc_uw1, FRV_BUILTIN_MWTACC);
8549 def_builtin ("__MWTACCG", void_ftype_acc_uw1, FRV_BUILTIN_MWTACCG);
8550 def_builtin ("__Mcop1", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP1);
8551 def_builtin ("__Mcop2", uw1_ftype_uw1_uw1, FRV_BUILTIN_MCOP2);
8552 def_builtin ("__MTRAP", void_ftype_void, FRV_BUILTIN_MTRAP);
8553 def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACHS);
8554 def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQXMACXHS);
8555 def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2, FRV_BUILTIN_MQMACXHS);
8556 def_builtin ("__MADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MADDACCS);
8557 def_builtin ("__MSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MSUBACCS);
8558 def_builtin ("__MASACCS", void_ftype_acc_acc, FRV_BUILTIN_MASACCS);
8559 def_builtin ("__MDADDACCS", void_ftype_acc_acc, FRV_BUILTIN_MDADDACCS);
8560 def_builtin ("__MDSUBACCS", void_ftype_acc_acc, FRV_BUILTIN_MDSUBACCS);
8561 def_builtin ("__MDASACCS", void_ftype_acc_acc, FRV_BUILTIN_MDASACCS);
8562 def_builtin ("__MABSHS", uw1_ftype_sw1, FRV_BUILTIN_MABSHS);
8563 def_builtin ("__MDROTLI", uw2_ftype_uw2_int, FRV_BUILTIN_MDROTLI);
8564 def_builtin ("__MCPLHI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLHI);
8565 def_builtin ("__MCPLI", uw1_ftype_uw2_int, FRV_BUILTIN_MCPLI);
8566 def_builtin ("__MDCUTSSI", uw2_ftype_acc_int, FRV_BUILTIN_MDCUTSSI);
8567 def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQSATHS);
8568 def_builtin ("__MHSETLOS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETLOS);
8569 def_builtin ("__MHSETHIS", sw1_ftype_sw1_int, FRV_BUILTIN_MHSETHIS);
8570 def_builtin ("__MHDSETS", sw1_ftype_int, FRV_BUILTIN_MHDSETS);
8571 def_builtin ("__MHSETLOH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETLOH);
8572 def_builtin ("__MHSETHIH", uw1_ftype_uw1_int, FRV_BUILTIN_MHSETHIH);
8573 def_builtin ("__MHDSETH", uw1_ftype_uw1_int, FRV_BUILTIN_MHDSETH);
8574 def_builtin ("__MQLCLRHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLCLRHS);
8575 def_builtin ("__MQLMTHS", sw2_ftype_sw2_sw2, FRV_BUILTIN_MQLMTHS);
8576 def_builtin ("__MQSLLHI", uw2_ftype_uw2_int, FRV_BUILTIN_MQSLLHI);
8577 def_builtin ("__MQSRAHI", sw2_ftype_sw2_int, FRV_BUILTIN_MQSRAHI);
8578 def_builtin ("__SMUL", sw2_ftype_sw1_sw1, FRV_BUILTIN_SMUL);
8579 def_builtin ("__UMUL", uw2_ftype_uw1_uw1, FRV_BUILTIN_UMUL);
8580 def_builtin ("__SMASS", void_ftype_sw1_sw1, FRV_BUILTIN_SMASS);
8581 def_builtin ("__SMSSS", void_ftype_sw1_sw1, FRV_BUILTIN_SMSSS);
8582 def_builtin ("__SMU", void_ftype_sw1_sw1, FRV_BUILTIN_SMU);
8583 def_builtin ("__ADDSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_ADDSS);
8584 def_builtin ("__SUBSS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SUBSS);
8585 def_builtin ("__SLASS", sw1_ftype_sw1_sw1, FRV_BUILTIN_SLASS);
8586 def_builtin ("__SCAN", sw1_ftype_sw1_sw1, FRV_BUILTIN_SCAN);
8587 def_builtin ("__SCUTSS", sw1_ftype_sw1, FRV_BUILTIN_SCUTSS);
8588 def_builtin ("__IACCreadll", sw2_ftype_iacc, FRV_BUILTIN_IACCreadll);
8589 def_builtin ("__IACCreadl", sw1_ftype_iacc, FRV_BUILTIN_IACCreadl);
8590 def_builtin ("__IACCsetll", void_ftype_iacc_sw2, FRV_BUILTIN_IACCsetll);
8591 def_builtin ("__IACCsetl", void_ftype_iacc_sw1, FRV_BUILTIN_IACCsetl);
8592 def_builtin ("__data_prefetch0", void_ftype_ptr, FRV_BUILTIN_PREFETCH0);
8593 def_builtin ("__data_prefetch", void_ftype_ptr, FRV_BUILTIN_PREFETCH);
8594 def_builtin ("__builtin_read8", uw1_ftype_vptr, FRV_BUILTIN_READ8);
8595 def_builtin ("__builtin_read16", uw1_ftype_vptr, FRV_BUILTIN_READ16);
8596 def_builtin ("__builtin_read32", uw1_ftype_vptr, FRV_BUILTIN_READ32);
8597 def_builtin ("__builtin_read64", uw2_ftype_vptr, FRV_BUILTIN_READ64);
8599 def_builtin ("__builtin_write8", void_ftype_vptr_ub, FRV_BUILTIN_WRITE8);
8600 def_builtin ("__builtin_write16", void_ftype_vptr_uh, FRV_BUILTIN_WRITE16);
8601 def_builtin ("__builtin_write32", void_ftype_vptr_uw1, FRV_BUILTIN_WRITE32);
8602 def_builtin ("__builtin_write64", void_ftype_vptr_uw2, FRV_BUILTIN_WRITE64);
8604 #undef UNARY
8605 #undef BINARY
8606 #undef TRINARY
8607 #undef QUAD
8610 /* Set the names for various arithmetic operations according to the
8611 FRV ABI. */
8612 static void
8613 frv_init_libfuncs (void)
8615 set_optab_libfunc (smod_optab, SImode, "__modi");
8616 set_optab_libfunc (umod_optab, SImode, "__umodi");
8618 set_optab_libfunc (add_optab, DImode, "__addll");
8619 set_optab_libfunc (sub_optab, DImode, "__subll");
8620 set_optab_libfunc (smul_optab, DImode, "__mulll");
8621 set_optab_libfunc (sdiv_optab, DImode, "__divll");
8622 set_optab_libfunc (smod_optab, DImode, "__modll");
8623 set_optab_libfunc (umod_optab, DImode, "__umodll");
8624 set_optab_libfunc (and_optab, DImode, "__andll");
8625 set_optab_libfunc (ior_optab, DImode, "__orll");
8626 set_optab_libfunc (xor_optab, DImode, "__xorll");
8627 set_optab_libfunc (one_cmpl_optab, DImode, "__notll");
8629 set_optab_libfunc (add_optab, SFmode, "__addf");
8630 set_optab_libfunc (sub_optab, SFmode, "__subf");
8631 set_optab_libfunc (smul_optab, SFmode, "__mulf");
8632 set_optab_libfunc (sdiv_optab, SFmode, "__divf");
8634 set_optab_libfunc (add_optab, DFmode, "__addd");
8635 set_optab_libfunc (sub_optab, DFmode, "__subd");
8636 set_optab_libfunc (smul_optab, DFmode, "__muld");
8637 set_optab_libfunc (sdiv_optab, DFmode, "__divd");
8639 set_conv_libfunc (sext_optab, DFmode, SFmode, "__ftod");
8640 set_conv_libfunc (trunc_optab, SFmode, DFmode, "__dtof");
8642 set_conv_libfunc (sfix_optab, SImode, SFmode, "__ftoi");
8643 set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll");
8644 set_conv_libfunc (sfix_optab, SImode, DFmode, "__dtoi");
8645 set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll");
8647 set_conv_libfunc (ufix_optab, SImode, SFmode, "__ftoui");
8648 set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull");
8649 set_conv_libfunc (ufix_optab, SImode, DFmode, "__dtoui");
8650 set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull");
8652 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__itof");
8653 set_conv_libfunc (sfloat_optab, SFmode, DImode, "__lltof");
8654 set_conv_libfunc (sfloat_optab, DFmode, SImode, "__itod");
8655 set_conv_libfunc (sfloat_optab, DFmode, DImode, "__lltod");
8658 /* Convert an integer constant to an accumulator register. ICODE is the
8659 code of the target instruction, OPNUM is the number of the
8660 accumulator operand and OPVAL is the constant integer. Try both
8661 ACC and ACCG registers; only report an error if neither fit the
8662 instruction. */
8664 static rtx
8665 frv_int_to_acc (enum insn_code icode, int opnum, rtx opval)
8667 rtx reg;
8668 int i;
8670 /* ACCs and ACCGs are implicit global registers if media intrinsics
8671 are being used. We set up this lazily to avoid creating lots of
8672 unnecessary call_insn rtl in non-media code. */
8673 for (i = 0; i <= ACC_MASK; i++)
8674 if ((i & ACC_MASK) == i)
8675 global_regs[i + ACC_FIRST] = global_regs[i + ACCG_FIRST] = 1;
8677 if (GET_CODE (opval) != CONST_INT)
8679 error ("accumulator is not a constant integer");
8680 return NULL_RTX;
8682 if ((INTVAL (opval) & ~ACC_MASK) != 0)
8684 error ("accumulator number is out of bounds");
8685 return NULL_RTX;
8688 reg = gen_rtx_REG (insn_data[icode].operand[opnum].mode,
8689 ACC_FIRST + INTVAL (opval));
8690 if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
8691 SET_REGNO (reg, ACCG_FIRST + INTVAL (opval));
8693 if (! (*insn_data[icode].operand[opnum].predicate) (reg, VOIDmode))
8695 error ("inappropriate accumulator for %qs", insn_data[icode].name);
8696 return NULL_RTX;
8698 return reg;
8701 /* If an ACC rtx has mode MODE, return the mode that the matching ACCG
8702 should have. */
8704 static machine_mode
8705 frv_matching_accg_mode (machine_mode mode)
8707 switch (mode)
8709 case V4SImode:
8710 return V4QImode;
8712 case DImode:
8713 return HImode;
8715 case SImode:
8716 return QImode;
8718 default:
8719 gcc_unreachable ();
8723 /* Given that a __builtin_read or __builtin_write function is accessing
8724 address ADDRESS, return the value that should be used as operand 1
8725 of the membar. */
8727 static rtx
8728 frv_io_address_cookie (rtx address)
8730 return (GET_CODE (address) == CONST_INT
8731 ? GEN_INT (INTVAL (address) / 8 * 8)
8732 : const0_rtx);
8735 /* Return the accumulator guard that should be paired with accumulator
8736 register ACC. The mode of the returned register is in the same
8737 class as ACC, but is four times smaller. */
8740 frv_matching_accg_for_acc (rtx acc)
8742 return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc)),
8743 REGNO (acc) - ACC_FIRST + ACCG_FIRST);
8746 /* Read the requested argument from the call EXP given by INDEX.
8747 Return the value as an rtx. */
8749 static rtx
8750 frv_read_argument (tree exp, unsigned int index)
8752 return expand_normal (CALL_EXPR_ARG (exp, index));
8755 /* Like frv_read_argument, but interpret the argument as the number
8756 of an IACC register and return a (reg:MODE ...) rtx for it. */
8758 static rtx
8759 frv_read_iacc_argument (machine_mode mode, tree call,
8760 unsigned int index)
8762 int i, regno;
8763 rtx op;
8765 op = frv_read_argument (call, index);
8766 if (GET_CODE (op) != CONST_INT
8767 || INTVAL (op) < 0
8768 || INTVAL (op) > IACC_LAST - IACC_FIRST
8769 || ((INTVAL (op) * 4) & (GET_MODE_SIZE (mode) - 1)) != 0)
8771 error ("invalid IACC argument");
8772 op = const0_rtx;
8775 /* IACCs are implicit global registers. We set up this lazily to
8776 avoid creating lots of unnecessary call_insn rtl when IACCs aren't
8777 being used. */
8778 regno = INTVAL (op) + IACC_FIRST;
8779 for (i = 0; i < HARD_REGNO_NREGS (regno, mode); i++)
8780 global_regs[regno + i] = 1;
8782 return gen_rtx_REG (mode, regno);
8785 /* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
8786 The instruction should require a constant operand of some sort. The
8787 function prints an error if OPVAL is not valid. */
8789 static int
8790 frv_check_constant_argument (enum insn_code icode, int opnum, rtx opval)
8792 if (GET_CODE (opval) != CONST_INT)
8794 error ("%qs expects a constant argument", insn_data[icode].name);
8795 return FALSE;
8797 if (! (*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode))
8799 error ("constant argument out of range for %qs", insn_data[icode].name);
8800 return FALSE;
8802 return TRUE;
8805 /* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
8806 if it's not null, has the right mode, and satisfies operand 0's
8807 predicate. */
8809 static rtx
8810 frv_legitimize_target (enum insn_code icode, rtx target)
8812 machine_mode mode = insn_data[icode].operand[0].mode;
8814 if (! target
8815 || GET_MODE (target) != mode
8816 || ! (*insn_data[icode].operand[0].predicate) (target, mode))
8817 return gen_reg_rtx (mode);
8818 else
8819 return target;
8822 /* Given that ARG is being passed as operand OPNUM to instruction ICODE,
8823 check whether ARG satisfies the operand's constraints. If it doesn't,
8824 copy ARG to a temporary register and return that. Otherwise return ARG
8825 itself. */
8827 static rtx
8828 frv_legitimize_argument (enum insn_code icode, int opnum, rtx arg)
8830 machine_mode mode = insn_data[icode].operand[opnum].mode;
8832 if ((*insn_data[icode].operand[opnum].predicate) (arg, mode))
8833 return arg;
8834 else
8835 return copy_to_mode_reg (mode, arg);
8838 /* Return a volatile memory reference of mode MODE whose address is ARG. */
8840 static rtx
8841 frv_volatile_memref (machine_mode mode, rtx arg)
8843 rtx mem;
8845 mem = gen_rtx_MEM (mode, memory_address (mode, arg));
8846 MEM_VOLATILE_P (mem) = 1;
8847 return mem;
8850 /* Expand builtins that take a single, constant argument. At the moment,
8851 only MHDSETS falls into this category. */
8853 static rtx
8854 frv_expand_set_builtin (enum insn_code icode, tree call, rtx target)
8856 rtx pat;
8857 rtx op0 = frv_read_argument (call, 0);
8859 if (! frv_check_constant_argument (icode, 1, op0))
8860 return NULL_RTX;
8862 target = frv_legitimize_target (icode, target);
8863 pat = GEN_FCN (icode) (target, op0);
8864 if (! pat)
8865 return NULL_RTX;
8867 emit_insn (pat);
8868 return target;
8871 /* Expand builtins that take one operand. */
8873 static rtx
8874 frv_expand_unop_builtin (enum insn_code icode, tree call, rtx target)
8876 rtx pat;
8877 rtx op0 = frv_read_argument (call, 0);
8879 target = frv_legitimize_target (icode, target);
8880 op0 = frv_legitimize_argument (icode, 1, op0);
8881 pat = GEN_FCN (icode) (target, op0);
8882 if (! pat)
8883 return NULL_RTX;
8885 emit_insn (pat);
8886 return target;
8889 /* Expand builtins that take two operands. */
8891 static rtx
8892 frv_expand_binop_builtin (enum insn_code icode, tree call, rtx target)
8894 rtx pat;
8895 rtx op0 = frv_read_argument (call, 0);
8896 rtx op1 = frv_read_argument (call, 1);
8898 target = frv_legitimize_target (icode, target);
8899 op0 = frv_legitimize_argument (icode, 1, op0);
8900 op1 = frv_legitimize_argument (icode, 2, op1);
8901 pat = GEN_FCN (icode) (target, op0, op1);
8902 if (! pat)
8903 return NULL_RTX;
8905 emit_insn (pat);
8906 return target;
8909 /* Expand cut-style builtins, which take two operands and an implicit ACCG
8910 one. */
8912 static rtx
8913 frv_expand_cut_builtin (enum insn_code icode, tree call, rtx target)
8915 rtx pat;
8916 rtx op0 = frv_read_argument (call, 0);
8917 rtx op1 = frv_read_argument (call, 1);
8918 rtx op2;
8920 target = frv_legitimize_target (icode, target);
8921 op0 = frv_int_to_acc (icode, 1, op0);
8922 if (! op0)
8923 return NULL_RTX;
8925 if (icode == CODE_FOR_mdcutssi || GET_CODE (op1) == CONST_INT)
8927 if (! frv_check_constant_argument (icode, 2, op1))
8928 return NULL_RTX;
8930 else
8931 op1 = frv_legitimize_argument (icode, 2, op1);
8933 op2 = frv_matching_accg_for_acc (op0);
8934 pat = GEN_FCN (icode) (target, op0, op1, op2);
8935 if (! pat)
8936 return NULL_RTX;
8938 emit_insn (pat);
8939 return target;
8942 /* Expand builtins that take two operands and the second is immediate. */
8944 static rtx
8945 frv_expand_binopimm_builtin (enum insn_code icode, tree call, rtx target)
8947 rtx pat;
8948 rtx op0 = frv_read_argument (call, 0);
8949 rtx op1 = frv_read_argument (call, 1);
8951 if (! frv_check_constant_argument (icode, 2, op1))
8952 return NULL_RTX;
8954 target = frv_legitimize_target (icode, target);
8955 op0 = frv_legitimize_argument (icode, 1, op0);
8956 pat = GEN_FCN (icode) (target, op0, op1);
8957 if (! pat)
8958 return NULL_RTX;
8960 emit_insn (pat);
8961 return target;
8964 /* Expand builtins that take two operands, the first operand being a pointer to
8965 ints and return void. */
8967 static rtx
8968 frv_expand_voidbinop_builtin (enum insn_code icode, tree call)
8970 rtx pat;
8971 rtx op0 = frv_read_argument (call, 0);
8972 rtx op1 = frv_read_argument (call, 1);
8973 machine_mode mode0 = insn_data[icode].operand[0].mode;
8974 rtx addr;
8976 if (GET_CODE (op0) != MEM)
8978 rtx reg = op0;
8980 if (! offsettable_address_p (0, mode0, op0))
8982 reg = gen_reg_rtx (Pmode);
8983 emit_insn (gen_rtx_SET (VOIDmode, reg, op0));
8986 op0 = gen_rtx_MEM (SImode, reg);
8989 addr = XEXP (op0, 0);
8990 if (! offsettable_address_p (0, mode0, addr))
8991 addr = copy_to_mode_reg (Pmode, op0);
8993 op0 = change_address (op0, V4SImode, addr);
8994 op1 = frv_legitimize_argument (icode, 1, op1);
8995 pat = GEN_FCN (icode) (op0, op1);
8996 if (! pat)
8997 return 0;
8999 emit_insn (pat);
9000 return 0;
9003 /* Expand builtins that take two long operands and return void. */
9005 static rtx
9006 frv_expand_int_void2arg (enum insn_code icode, tree call)
9008 rtx pat;
9009 rtx op0 = frv_read_argument (call, 0);
9010 rtx op1 = frv_read_argument (call, 1);
9012 op0 = frv_legitimize_argument (icode, 1, op0);
9013 op1 = frv_legitimize_argument (icode, 1, op1);
9014 pat = GEN_FCN (icode) (op0, op1);
9015 if (! pat)
9016 return NULL_RTX;
9018 emit_insn (pat);
9019 return NULL_RTX;
9022 /* Expand prefetch builtins. These take a single address as argument. */
9024 static rtx
9025 frv_expand_prefetches (enum insn_code icode, tree call)
9027 rtx pat;
9028 rtx op0 = frv_read_argument (call, 0);
9030 pat = GEN_FCN (icode) (force_reg (Pmode, op0));
9031 if (! pat)
9032 return 0;
9034 emit_insn (pat);
9035 return 0;
9038 /* Expand builtins that take three operands and return void. The first
9039 argument must be a constant that describes a pair or quad accumulators. A
9040 fourth argument is created that is the accumulator guard register that
9041 corresponds to the accumulator. */
9043 static rtx
9044 frv_expand_voidtriop_builtin (enum insn_code icode, tree call)
9046 rtx pat;
9047 rtx op0 = frv_read_argument (call, 0);
9048 rtx op1 = frv_read_argument (call, 1);
9049 rtx op2 = frv_read_argument (call, 2);
9050 rtx op3;
9052 op0 = frv_int_to_acc (icode, 0, op0);
9053 if (! op0)
9054 return NULL_RTX;
9056 op1 = frv_legitimize_argument (icode, 1, op1);
9057 op2 = frv_legitimize_argument (icode, 2, op2);
9058 op3 = frv_matching_accg_for_acc (op0);
9059 pat = GEN_FCN (icode) (op0, op1, op2, op3);
9060 if (! pat)
9061 return NULL_RTX;
9063 emit_insn (pat);
9064 return NULL_RTX;
9067 /* Expand builtins that perform accumulator-to-accumulator operations.
9068 These builtins take two accumulator numbers as argument and return
9069 void. */
9071 static rtx
9072 frv_expand_voidaccop_builtin (enum insn_code icode, tree call)
9074 rtx pat;
9075 rtx op0 = frv_read_argument (call, 0);
9076 rtx op1 = frv_read_argument (call, 1);
9077 rtx op2;
9078 rtx op3;
9080 op0 = frv_int_to_acc (icode, 0, op0);
9081 if (! op0)
9082 return NULL_RTX;
9084 op1 = frv_int_to_acc (icode, 1, op1);
9085 if (! op1)
9086 return NULL_RTX;
9088 op2 = frv_matching_accg_for_acc (op0);
9089 op3 = frv_matching_accg_for_acc (op1);
9090 pat = GEN_FCN (icode) (op0, op1, op2, op3);
9091 if (! pat)
9092 return NULL_RTX;
9094 emit_insn (pat);
9095 return NULL_RTX;
9098 /* Expand a __builtin_read* function. ICODE is the instruction code for the
9099 membar and TARGET_MODE is the mode that the loaded value should have. */
9101 static rtx
9102 frv_expand_load_builtin (enum insn_code icode, machine_mode target_mode,
9103 tree call, rtx target)
9105 rtx op0 = frv_read_argument (call, 0);
9106 rtx cookie = frv_io_address_cookie (op0);
9108 if (target == 0 || !REG_P (target))
9109 target = gen_reg_rtx (target_mode);
9110 op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0);
9111 convert_move (target, op0, 1);
9112 emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_READ)));
9113 cfun->machine->has_membar_p = 1;
9114 return target;
9117 /* Likewise __builtin_write* functions. */
9119 static rtx
9120 frv_expand_store_builtin (enum insn_code icode, tree call)
9122 rtx op0 = frv_read_argument (call, 0);
9123 rtx op1 = frv_read_argument (call, 1);
9124 rtx cookie = frv_io_address_cookie (op0);
9126 op0 = frv_volatile_memref (insn_data[icode].operand[0].mode, op0);
9127 convert_move (op0, force_reg (insn_data[icode].operand[0].mode, op1), 1);
9128 emit_insn (GEN_FCN (icode) (copy_rtx (op0), cookie, GEN_INT (FRV_IO_WRITE)));
9129 cfun->machine->has_membar_p = 1;
9130 return NULL_RTX;
9133 /* Expand the MDPACKH builtin. It takes four unsigned short arguments and
9134 each argument forms one word of the two double-word input registers.
9135 CALL is the tree for the call and TARGET, if nonnull, suggests a good place
9136 to put the return value. */
9138 static rtx
9139 frv_expand_mdpackh_builtin (tree call, rtx target)
9141 enum insn_code icode = CODE_FOR_mdpackh;
9142 rtx pat, op0, op1;
9143 rtx arg1 = frv_read_argument (call, 0);
9144 rtx arg2 = frv_read_argument (call, 1);
9145 rtx arg3 = frv_read_argument (call, 2);
9146 rtx arg4 = frv_read_argument (call, 3);
9148 target = frv_legitimize_target (icode, target);
9149 op0 = gen_reg_rtx (DImode);
9150 op1 = gen_reg_rtx (DImode);
9152 /* The high half of each word is not explicitly initialized, so indicate
9153 that the input operands are not live before this point. */
9154 emit_clobber (op0);
9155 emit_clobber (op1);
9157 /* Move each argument into the low half of its associated input word. */
9158 emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 2), arg1);
9159 emit_move_insn (simplify_gen_subreg (HImode, op0, DImode, 6), arg2);
9160 emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 2), arg3);
9161 emit_move_insn (simplify_gen_subreg (HImode, op1, DImode, 6), arg4);
9163 pat = GEN_FCN (icode) (target, op0, op1);
9164 if (! pat)
9165 return NULL_RTX;
9167 emit_insn (pat);
9168 return target;
9171 /* Expand the MCLRACC builtin. This builtin takes a single accumulator
9172 number as argument. */
9174 static rtx
9175 frv_expand_mclracc_builtin (tree call)
9177 enum insn_code icode = CODE_FOR_mclracc;
9178 rtx pat;
9179 rtx op0 = frv_read_argument (call, 0);
9181 op0 = frv_int_to_acc (icode, 0, op0);
9182 if (! op0)
9183 return NULL_RTX;
9185 pat = GEN_FCN (icode) (op0);
9186 if (pat)
9187 emit_insn (pat);
9189 return NULL_RTX;
9192 /* Expand builtins that take no arguments. */
9194 static rtx
9195 frv_expand_noargs_builtin (enum insn_code icode)
9197 rtx pat = GEN_FCN (icode) (const0_rtx);
9198 if (pat)
9199 emit_insn (pat);
9201 return NULL_RTX;
9204 /* Expand MRDACC and MRDACCG. These builtins take a single accumulator
9205 number or accumulator guard number as argument and return an SI integer. */
9207 static rtx
9208 frv_expand_mrdacc_builtin (enum insn_code icode, tree call)
9210 rtx pat;
9211 rtx target = gen_reg_rtx (SImode);
9212 rtx op0 = frv_read_argument (call, 0);
9214 op0 = frv_int_to_acc (icode, 1, op0);
9215 if (! op0)
9216 return NULL_RTX;
9218 pat = GEN_FCN (icode) (target, op0);
9219 if (! pat)
9220 return NULL_RTX;
9222 emit_insn (pat);
9223 return target;
9226 /* Expand MWTACC and MWTACCG. These builtins take an accumulator or
9227 accumulator guard as their first argument and an SImode value as their
9228 second. */
9230 static rtx
9231 frv_expand_mwtacc_builtin (enum insn_code icode, tree call)
9233 rtx pat;
9234 rtx op0 = frv_read_argument (call, 0);
9235 rtx op1 = frv_read_argument (call, 1);
9237 op0 = frv_int_to_acc (icode, 0, op0);
9238 if (! op0)
9239 return NULL_RTX;
9241 op1 = frv_legitimize_argument (icode, 1, op1);
9242 pat = GEN_FCN (icode) (op0, op1);
9243 if (pat)
9244 emit_insn (pat);
9246 return NULL_RTX;
9249 /* Emit a move from SRC to DEST in SImode chunks. This can be used
9250 to move DImode values into and out of IACC0. */
9252 static void
9253 frv_split_iacc_move (rtx dest, rtx src)
9255 machine_mode inner;
9256 int i;
9258 inner = GET_MODE (dest);
9259 for (i = 0; i < GET_MODE_SIZE (inner); i += GET_MODE_SIZE (SImode))
9260 emit_move_insn (simplify_gen_subreg (SImode, dest, inner, i),
9261 simplify_gen_subreg (SImode, src, inner, i));
9264 /* Expand builtins. */
9266 static rtx
9267 frv_expand_builtin (tree exp,
9268 rtx target,
9269 rtx subtarget ATTRIBUTE_UNUSED,
9270 machine_mode mode ATTRIBUTE_UNUSED,
9271 int ignore ATTRIBUTE_UNUSED)
9273 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
9274 unsigned fcode = (unsigned)DECL_FUNCTION_CODE (fndecl);
9275 unsigned i;
9276 struct builtin_description *d;
9278 if (fcode < FRV_BUILTIN_FIRST_NONMEDIA && !TARGET_MEDIA)
9280 error ("media functions are not available unless -mmedia is used");
9281 return NULL_RTX;
9284 switch (fcode)
9286 case FRV_BUILTIN_MCOP1:
9287 case FRV_BUILTIN_MCOP2:
9288 case FRV_BUILTIN_MDUNPACKH:
9289 case FRV_BUILTIN_MBTOHE:
9290 if (! TARGET_MEDIA_REV1)
9292 error ("this media function is only available on the fr500");
9293 return NULL_RTX;
9295 break;
9297 case FRV_BUILTIN_MQXMACHS:
9298 case FRV_BUILTIN_MQXMACXHS:
9299 case FRV_BUILTIN_MQMACXHS:
9300 case FRV_BUILTIN_MADDACCS:
9301 case FRV_BUILTIN_MSUBACCS:
9302 case FRV_BUILTIN_MASACCS:
9303 case FRV_BUILTIN_MDADDACCS:
9304 case FRV_BUILTIN_MDSUBACCS:
9305 case FRV_BUILTIN_MDASACCS:
9306 case FRV_BUILTIN_MABSHS:
9307 case FRV_BUILTIN_MDROTLI:
9308 case FRV_BUILTIN_MCPLHI:
9309 case FRV_BUILTIN_MCPLI:
9310 case FRV_BUILTIN_MDCUTSSI:
9311 case FRV_BUILTIN_MQSATHS:
9312 case FRV_BUILTIN_MHSETLOS:
9313 case FRV_BUILTIN_MHSETLOH:
9314 case FRV_BUILTIN_MHSETHIS:
9315 case FRV_BUILTIN_MHSETHIH:
9316 case FRV_BUILTIN_MHDSETS:
9317 case FRV_BUILTIN_MHDSETH:
9318 if (! TARGET_MEDIA_REV2)
9320 error ("this media function is only available on the fr400"
9321 " and fr550");
9322 return NULL_RTX;
9324 break;
9326 case FRV_BUILTIN_SMASS:
9327 case FRV_BUILTIN_SMSSS:
9328 case FRV_BUILTIN_SMU:
9329 case FRV_BUILTIN_ADDSS:
9330 case FRV_BUILTIN_SUBSS:
9331 case FRV_BUILTIN_SLASS:
9332 case FRV_BUILTIN_SCUTSS:
9333 case FRV_BUILTIN_IACCreadll:
9334 case FRV_BUILTIN_IACCreadl:
9335 case FRV_BUILTIN_IACCsetll:
9336 case FRV_BUILTIN_IACCsetl:
9337 if (!TARGET_FR405_BUILTINS)
9339 error ("this builtin function is only available"
9340 " on the fr405 and fr450");
9341 return NULL_RTX;
9343 break;
9345 case FRV_BUILTIN_PREFETCH:
9346 if (!TARGET_FR500_FR550_BUILTINS)
9348 error ("this builtin function is only available on the fr500"
9349 " and fr550");
9350 return NULL_RTX;
9352 break;
9354 case FRV_BUILTIN_MQLCLRHS:
9355 case FRV_BUILTIN_MQLMTHS:
9356 case FRV_BUILTIN_MQSLLHI:
9357 case FRV_BUILTIN_MQSRAHI:
9358 if (!TARGET_MEDIA_FR450)
9360 error ("this builtin function is only available on the fr450");
9361 return NULL_RTX;
9363 break;
9365 default:
9366 break;
9369 /* Expand unique builtins. */
9371 switch (fcode)
9373 case FRV_BUILTIN_MTRAP:
9374 return frv_expand_noargs_builtin (CODE_FOR_mtrap);
9376 case FRV_BUILTIN_MCLRACC:
9377 return frv_expand_mclracc_builtin (exp);
9379 case FRV_BUILTIN_MCLRACCA:
9380 if (TARGET_ACC_8)
9381 return frv_expand_noargs_builtin (CODE_FOR_mclracca8);
9382 else
9383 return frv_expand_noargs_builtin (CODE_FOR_mclracca4);
9385 case FRV_BUILTIN_MRDACC:
9386 return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc, exp);
9388 case FRV_BUILTIN_MRDACCG:
9389 return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg, exp);
9391 case FRV_BUILTIN_MWTACC:
9392 return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc, exp);
9394 case FRV_BUILTIN_MWTACCG:
9395 return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg, exp);
9397 case FRV_BUILTIN_MDPACKH:
9398 return frv_expand_mdpackh_builtin (exp, target);
9400 case FRV_BUILTIN_IACCreadll:
9402 rtx src = frv_read_iacc_argument (DImode, exp, 0);
9403 if (target == 0 || !REG_P (target))
9404 target = gen_reg_rtx (DImode);
9405 frv_split_iacc_move (target, src);
9406 return target;
9409 case FRV_BUILTIN_IACCreadl:
9410 return frv_read_iacc_argument (SImode, exp, 0);
9412 case FRV_BUILTIN_IACCsetll:
9414 rtx dest = frv_read_iacc_argument (DImode, exp, 0);
9415 rtx src = frv_read_argument (exp, 1);
9416 frv_split_iacc_move (dest, force_reg (DImode, src));
9417 return 0;
9420 case FRV_BUILTIN_IACCsetl:
9422 rtx dest = frv_read_iacc_argument (SImode, exp, 0);
9423 rtx src = frv_read_argument (exp, 1);
9424 emit_move_insn (dest, force_reg (SImode, src));
9425 return 0;
9428 default:
9429 break;
9432 /* Expand groups of builtins. */
9434 for (i = 0, d = bdesc_set; i < ARRAY_SIZE (bdesc_set); i++, d++)
9435 if (d->code == fcode)
9436 return frv_expand_set_builtin (d->icode, exp, target);
9438 for (i = 0, d = bdesc_1arg; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
9439 if (d->code == fcode)
9440 return frv_expand_unop_builtin (d->icode, exp, target);
9442 for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
9443 if (d->code == fcode)
9444 return frv_expand_binop_builtin (d->icode, exp, target);
9446 for (i = 0, d = bdesc_cut; i < ARRAY_SIZE (bdesc_cut); i++, d++)
9447 if (d->code == fcode)
9448 return frv_expand_cut_builtin (d->icode, exp, target);
9450 for (i = 0, d = bdesc_2argimm; i < ARRAY_SIZE (bdesc_2argimm); i++, d++)
9451 if (d->code == fcode)
9452 return frv_expand_binopimm_builtin (d->icode, exp, target);
9454 for (i = 0, d = bdesc_void2arg; i < ARRAY_SIZE (bdesc_void2arg); i++, d++)
9455 if (d->code == fcode)
9456 return frv_expand_voidbinop_builtin (d->icode, exp);
9458 for (i = 0, d = bdesc_void3arg; i < ARRAY_SIZE (bdesc_void3arg); i++, d++)
9459 if (d->code == fcode)
9460 return frv_expand_voidtriop_builtin (d->icode, exp);
9462 for (i = 0, d = bdesc_voidacc; i < ARRAY_SIZE (bdesc_voidacc); i++, d++)
9463 if (d->code == fcode)
9464 return frv_expand_voidaccop_builtin (d->icode, exp);
9466 for (i = 0, d = bdesc_int_void2arg;
9467 i < ARRAY_SIZE (bdesc_int_void2arg); i++, d++)
9468 if (d->code == fcode)
9469 return frv_expand_int_void2arg (d->icode, exp);
9471 for (i = 0, d = bdesc_prefetches;
9472 i < ARRAY_SIZE (bdesc_prefetches); i++, d++)
9473 if (d->code == fcode)
9474 return frv_expand_prefetches (d->icode, exp);
9476 for (i = 0, d = bdesc_loads; i < ARRAY_SIZE (bdesc_loads); i++, d++)
9477 if (d->code == fcode)
9478 return frv_expand_load_builtin (d->icode, TYPE_MODE (TREE_TYPE (exp)),
9479 exp, target);
9481 for (i = 0, d = bdesc_stores; i < ARRAY_SIZE (bdesc_stores); i++, d++)
9482 if (d->code == fcode)
9483 return frv_expand_store_builtin (d->icode, exp);
9485 return 0;
9488 static bool
9489 frv_in_small_data_p (const_tree decl)
9491 HOST_WIDE_INT size;
9492 const char *section_name;
9494 /* Don't apply the -G flag to internal compiler structures. We
9495 should leave such structures in the main data section, partly
9496 for efficiency and partly because the size of some of them
9497 (such as C++ typeinfos) is not known until later. */
9498 if (TREE_CODE (decl) != VAR_DECL || DECL_ARTIFICIAL (decl))
9499 return false;
9501 /* If we already know which section the decl should be in, see if
9502 it's a small data section. */
9503 section_name = DECL_SECTION_NAME (decl);
9504 if (section_name)
9506 if (frv_string_begins_with (section_name, ".sdata"))
9507 return true;
9508 if (frv_string_begins_with (section_name, ".sbss"))
9509 return true;
9510 return false;
9513 size = int_size_in_bytes (TREE_TYPE (decl));
9514 if (size > 0 && size <= g_switch_value)
9515 return true;
9517 return false;
9520 static bool
9521 frv_rtx_costs (rtx x,
9522 int code ATTRIBUTE_UNUSED,
9523 int outer_code ATTRIBUTE_UNUSED,
9524 int opno ATTRIBUTE_UNUSED,
9525 int *total,
9526 bool speed ATTRIBUTE_UNUSED)
9528 if (outer_code == MEM)
9530 /* Don't differentiate between memory addresses. All the ones
9531 we accept have equal cost. */
9532 *total = COSTS_N_INSNS (0);
9533 return true;
9536 switch (code)
9538 case CONST_INT:
9539 /* Make 12-bit integers really cheap. */
9540 if (IN_RANGE (INTVAL (x), -2048, 2047))
9542 *total = 0;
9543 return true;
9545 /* Fall through. */
9547 case CONST:
9548 case LABEL_REF:
9549 case SYMBOL_REF:
9550 case CONST_DOUBLE:
9551 *total = COSTS_N_INSNS (2);
9552 return true;
9554 case PLUS:
9555 case MINUS:
9556 case AND:
9557 case IOR:
9558 case XOR:
9559 case ASHIFT:
9560 case ASHIFTRT:
9561 case LSHIFTRT:
9562 case NOT:
9563 case NEG:
9564 case COMPARE:
9565 if (GET_MODE (x) == SImode)
9566 *total = COSTS_N_INSNS (1);
9567 else if (GET_MODE (x) == DImode)
9568 *total = COSTS_N_INSNS (2);
9569 else
9570 *total = COSTS_N_INSNS (3);
9571 return true;
9573 case MULT:
9574 if (GET_MODE (x) == SImode)
9575 *total = COSTS_N_INSNS (2);
9576 else
9577 *total = COSTS_N_INSNS (6); /* guess */
9578 return true;
9580 case DIV:
9581 case UDIV:
9582 case MOD:
9583 case UMOD:
9584 *total = COSTS_N_INSNS (18);
9585 return true;
9587 case MEM:
9588 *total = COSTS_N_INSNS (3);
9589 return true;
9591 default:
9592 return false;
9596 static void
9597 frv_asm_out_constructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9599 switch_to_section (ctors_section);
9600 assemble_align (POINTER_SIZE);
9601 if (TARGET_FDPIC)
9603 int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1);
9605 gcc_assert (ok);
9606 return;
9608 assemble_integer_with_op ("\t.picptr\t", symbol);
9611 static void
9612 frv_asm_out_destructor (rtx symbol, int priority ATTRIBUTE_UNUSED)
9614 switch_to_section (dtors_section);
9615 assemble_align (POINTER_SIZE);
9616 if (TARGET_FDPIC)
9618 int ok = frv_assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, 1);
9620 gcc_assert (ok);
9621 return;
9623 assemble_integer_with_op ("\t.picptr\t", symbol);
9626 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
9628 static rtx
9629 frv_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
9630 int incoming ATTRIBUTE_UNUSED)
9632 return gen_rtx_REG (Pmode, FRV_STRUCT_VALUE_REGNUM);
9635 #define TLS_BIAS (2048 - 16)
9637 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
9638 We need to emit DTP-relative relocations. */
9640 static void
9641 frv_output_dwarf_dtprel (FILE *file, int size, rtx x)
9643 gcc_assert (size == 4);
9644 fputs ("\t.picptr\ttlsmoff(", file);
9645 /* We want the unbiased TLS offset, so add the bias to the
9646 expression, such that the implicit biasing cancels out. */
9647 output_addr_const (file, plus_constant (Pmode, x, TLS_BIAS));
9648 fputs (")", file);
9651 #include "gt-frv.h"