gcc/ada/
[official-gcc.git] / gcc / ada / sem_type.adb
blob9b9034a74b01968c1c2868c78d7d09f934cb9c0c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ T Y P E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Alloc;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Nlists; use Nlists;
32 with Errout; use Errout;
33 with Lib; use Lib;
34 with Namet; use Namet;
35 with Opt; use Opt;
36 with Output; use Output;
37 with Sem; use Sem;
38 with Sem_Aux; use Sem_Aux;
39 with Sem_Ch6; use Sem_Ch6;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Ch12; use Sem_Ch12;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Dist; use Sem_Dist;
44 with Sem_Util; use Sem_Util;
45 with Stand; use Stand;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Table;
49 with Treepr; use Treepr;
50 with Uintp; use Uintp;
52 package body Sem_Type is
54 ---------------------
55 -- Data Structures --
56 ---------------------
58 -- The following data structures establish a mapping between nodes and
59 -- their interpretations. An overloaded node has an entry in Interp_Map,
60 -- which in turn contains a pointer into the All_Interp array. The
61 -- interpretations of a given node are contiguous in All_Interp. Each set
62 -- of interpretations is terminated with the marker No_Interp. In order to
63 -- speed up the retrieval of the interpretations of an overloaded node, the
64 -- Interp_Map table is accessed by means of a simple hashing scheme, and
65 -- the entries in Interp_Map are chained. The heads of clash lists are
66 -- stored in array Headers.
68 -- Headers Interp_Map All_Interp
70 -- _ +-----+ +--------+
71 -- |_| |_____| --->|interp1 |
72 -- |_|---------->|node | | |interp2 |
73 -- |_| |index|---------| |nointerp|
74 -- |_| |next | | |
75 -- |-----| | |
76 -- +-----+ +--------+
78 -- This scheme does not currently reclaim interpretations. In principle,
79 -- after a unit is compiled, all overloadings have been resolved, and the
80 -- candidate interpretations should be deleted. This should be easier
81 -- now than with the previous scheme???
83 package All_Interp is new Table.Table (
84 Table_Component_Type => Interp,
85 Table_Index_Type => Interp_Index,
86 Table_Low_Bound => 0,
87 Table_Initial => Alloc.All_Interp_Initial,
88 Table_Increment => Alloc.All_Interp_Increment,
89 Table_Name => "All_Interp");
91 type Interp_Ref is record
92 Node : Node_Id;
93 Index : Interp_Index;
94 Next : Int;
95 end record;
97 Header_Size : constant Int := 2 ** 12;
98 No_Entry : constant Int := -1;
99 Headers : array (0 .. Header_Size) of Int := (others => No_Entry);
101 package Interp_Map is new Table.Table (
102 Table_Component_Type => Interp_Ref,
103 Table_Index_Type => Int,
104 Table_Low_Bound => 0,
105 Table_Initial => Alloc.Interp_Map_Initial,
106 Table_Increment => Alloc.Interp_Map_Increment,
107 Table_Name => "Interp_Map");
109 function Hash (N : Node_Id) return Int;
110 -- A trivial hashing function for nodes, used to insert an overloaded
111 -- node into the Interp_Map table.
113 -------------------------------------
114 -- Handling of Overload Resolution --
115 -------------------------------------
117 -- Overload resolution uses two passes over the syntax tree of a complete
118 -- context. In the first, bottom-up pass, the types of actuals in calls
119 -- are used to resolve possibly overloaded subprogram and operator names.
120 -- In the second top-down pass, the type of the context (for example the
121 -- condition in a while statement) is used to resolve a possibly ambiguous
122 -- call, and the unique subprogram name in turn imposes a specific context
123 -- on each of its actuals.
125 -- Most expressions are in fact unambiguous, and the bottom-up pass is
126 -- sufficient to resolve most everything. To simplify the common case,
127 -- names and expressions carry a flag Is_Overloaded to indicate whether
128 -- they have more than one interpretation. If the flag is off, then each
129 -- name has already a unique meaning and type, and the bottom-up pass is
130 -- sufficient (and much simpler).
132 --------------------------
133 -- Operator Overloading --
134 --------------------------
136 -- The visibility of operators is handled differently from that of other
137 -- entities. We do not introduce explicit versions of primitive operators
138 -- for each type definition. As a result, there is only one entity
139 -- corresponding to predefined addition on all numeric types, etc. The
140 -- back-end resolves predefined operators according to their type. The
141 -- visibility of primitive operations then reduces to the visibility of the
142 -- resulting type: (a + b) is a legal interpretation of some primitive
143 -- operator + if the type of the result (which must also be the type of a
144 -- and b) is directly visible (either immediately visible or use-visible).
146 -- User-defined operators are treated like other functions, but the
147 -- visibility of these user-defined operations must be special-cased
148 -- to determine whether they hide or are hidden by predefined operators.
149 -- The form P."+" (x, y) requires additional handling.
151 -- Concatenation is treated more conventionally: for every one-dimensional
152 -- array type we introduce a explicit concatenation operator. This is
153 -- necessary to handle the case of (element & element => array) which
154 -- cannot be handled conveniently if there is no explicit instance of
155 -- resulting type of the operation.
157 -----------------------
158 -- Local Subprograms --
159 -----------------------
161 procedure All_Overloads;
162 pragma Warnings (Off, All_Overloads);
163 -- Debugging procedure: list full contents of Overloads table
165 function Binary_Op_Interp_Has_Abstract_Op
166 (N : Node_Id;
167 E : Entity_Id) return Entity_Id;
168 -- Given the node and entity of a binary operator, determine whether the
169 -- actuals of E contain an abstract interpretation with regards to the
170 -- types of their corresponding formals. Return the abstract operation or
171 -- Empty.
173 function Function_Interp_Has_Abstract_Op
174 (N : Node_Id;
175 E : Entity_Id) return Entity_Id;
176 -- Given the node and entity of a function call, determine whether the
177 -- actuals of E contain an abstract interpretation with regards to the
178 -- types of their corresponding formals. Return the abstract operation or
179 -- Empty.
181 function Has_Abstract_Op
182 (N : Node_Id;
183 Typ : Entity_Id) return Entity_Id;
184 -- Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185 -- Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186 -- abstract interpretation which yields type Typ.
188 procedure New_Interps (N : Node_Id);
189 -- Initialize collection of interpretations for the given node, which is
190 -- either an overloaded entity, or an operation whose arguments have
191 -- multiple interpretations. Interpretations can be added to only one
192 -- node at a time.
194 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
195 -- If Typ_1 and Typ_2 are compatible, return the one that is not universal
196 -- or is not a "class" type (any_character, etc).
198 --------------------
199 -- Add_One_Interp --
200 --------------------
202 procedure Add_One_Interp
203 (N : Node_Id;
204 E : Entity_Id;
205 T : Entity_Id;
206 Opnd_Type : Entity_Id := Empty)
208 Vis_Type : Entity_Id;
210 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
211 -- Add one interpretation to an overloaded node. Add a new entry if
212 -- not hidden by previous one, and remove previous one if hidden by
213 -- new one.
215 function Is_Universal_Operation (Op : Entity_Id) return Boolean;
216 -- True if the entity is a predefined operator and the operands have
217 -- a universal Interpretation.
219 ---------------
220 -- Add_Entry --
221 ---------------
223 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
224 Abstr_Op : Entity_Id := Empty;
225 I : Interp_Index;
226 It : Interp;
228 -- Start of processing for Add_Entry
230 begin
231 -- Find out whether the new entry references interpretations that
232 -- are abstract or disabled by abstract operators.
234 if Ada_Version >= Ada_2005 then
235 if Nkind (N) in N_Binary_Op then
236 Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
237 elsif Nkind (N) = N_Function_Call then
238 Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
239 end if;
240 end if;
242 Get_First_Interp (N, I, It);
243 while Present (It.Nam) loop
245 -- A user-defined subprogram hides another declared at an outer
246 -- level, or one that is use-visible. So return if previous
247 -- definition hides new one (which is either in an outer
248 -- scope, or use-visible). Note that for functions use-visible
249 -- is the same as potentially use-visible. If new one hides
250 -- previous one, replace entry in table of interpretations.
251 -- If this is a universal operation, retain the operator in case
252 -- preference rule applies.
254 if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
255 and then Ekind (Name) = Ekind (It.Nam))
256 or else (Ekind (Name) = E_Operator
257 and then Ekind (It.Nam) = E_Function))
258 and then Is_Immediately_Visible (It.Nam)
259 and then Type_Conformant (Name, It.Nam)
260 and then Base_Type (It.Typ) = Base_Type (T)
261 then
262 if Is_Universal_Operation (Name) then
263 exit;
265 -- If node is an operator symbol, we have no actuals with
266 -- which to check hiding, and this is done in full in the
267 -- caller (Analyze_Subprogram_Renaming) so we include the
268 -- predefined operator in any case.
270 elsif Nkind (N) = N_Operator_Symbol
271 or else
272 (Nkind (N) = N_Expanded_Name
273 and then Nkind (Selector_Name (N)) = N_Operator_Symbol)
274 then
275 exit;
277 elsif not In_Open_Scopes (Scope (Name))
278 or else Scope_Depth (Scope (Name)) <=
279 Scope_Depth (Scope (It.Nam))
280 then
281 -- If ambiguity within instance, and entity is not an
282 -- implicit operation, save for later disambiguation.
284 if Scope (Name) = Scope (It.Nam)
285 and then not Is_Inherited_Operation (Name)
286 and then In_Instance
287 then
288 exit;
289 else
290 return;
291 end if;
293 else
294 All_Interp.Table (I).Nam := Name;
295 return;
296 end if;
298 -- Avoid making duplicate entries in overloads
300 elsif Name = It.Nam
301 and then Base_Type (It.Typ) = Base_Type (T)
302 then
303 return;
305 -- Otherwise keep going
307 else
308 Get_Next_Interp (I, It);
309 end if;
311 end loop;
313 All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
314 All_Interp.Append (No_Interp);
315 end Add_Entry;
317 ----------------------------
318 -- Is_Universal_Operation --
319 ----------------------------
321 function Is_Universal_Operation (Op : Entity_Id) return Boolean is
322 Arg : Node_Id;
324 begin
325 if Ekind (Op) /= E_Operator then
326 return False;
328 elsif Nkind (N) in N_Binary_Op then
329 return Present (Universal_Interpretation (Left_Opnd (N)))
330 and then Present (Universal_Interpretation (Right_Opnd (N)));
332 elsif Nkind (N) in N_Unary_Op then
333 return Present (Universal_Interpretation (Right_Opnd (N)));
335 elsif Nkind (N) = N_Function_Call then
336 Arg := First_Actual (N);
337 while Present (Arg) loop
338 if No (Universal_Interpretation (Arg)) then
339 return False;
340 end if;
342 Next_Actual (Arg);
343 end loop;
345 return True;
347 else
348 return False;
349 end if;
350 end Is_Universal_Operation;
352 -- Start of processing for Add_One_Interp
354 begin
355 -- If the interpretation is a predefined operator, verify that the
356 -- result type is visible, or that the entity has already been
357 -- resolved (case of an instantiation node that refers to a predefined
358 -- operation, or an internally generated operator node, or an operator
359 -- given as an expanded name). If the operator is a comparison or
360 -- equality, it is the type of the operand that matters to determine
361 -- whether the operator is visible. In an instance, the check is not
362 -- performed, given that the operator was visible in the generic.
364 if Ekind (E) = E_Operator then
365 if Present (Opnd_Type) then
366 Vis_Type := Opnd_Type;
367 else
368 Vis_Type := Base_Type (T);
369 end if;
371 if In_Open_Scopes (Scope (Vis_Type))
372 or else Is_Potentially_Use_Visible (Vis_Type)
373 or else In_Use (Vis_Type)
374 or else (In_Use (Scope (Vis_Type))
375 and then not Is_Hidden (Vis_Type))
376 or else Nkind (N) = N_Expanded_Name
377 or else (Nkind (N) in N_Op and then E = Entity (N))
378 or else In_Instance
379 or else Ekind (Vis_Type) = E_Anonymous_Access_Type
380 then
381 null;
383 -- If the node is given in functional notation and the prefix
384 -- is an expanded name, then the operator is visible if the
385 -- prefix is the scope of the result type as well. If the
386 -- operator is (implicitly) defined in an extension of system,
387 -- it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
389 elsif Nkind (N) = N_Function_Call
390 and then Nkind (Name (N)) = N_Expanded_Name
391 and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
392 or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
393 or else Scope (Vis_Type) = System_Aux_Id)
394 then
395 null;
397 -- Save type for subsequent error message, in case no other
398 -- interpretation is found.
400 else
401 Candidate_Type := Vis_Type;
402 return;
403 end if;
405 -- In an instance, an abstract non-dispatching operation cannot be a
406 -- candidate interpretation, because it could not have been one in the
407 -- generic (it may be a spurious overloading in the instance).
409 elsif In_Instance
410 and then Is_Overloadable (E)
411 and then Is_Abstract_Subprogram (E)
412 and then not Is_Dispatching_Operation (E)
413 then
414 return;
416 -- An inherited interface operation that is implemented by some derived
417 -- type does not participate in overload resolution, only the
418 -- implementation operation does.
420 elsif Is_Hidden (E)
421 and then Is_Subprogram (E)
422 and then Present (Interface_Alias (E))
423 then
424 -- Ada 2005 (AI-251): If this primitive operation corresponds with
425 -- an immediate ancestor interface there is no need to add it to the
426 -- list of interpretations. The corresponding aliased primitive is
427 -- also in this list of primitive operations and will be used instead
428 -- because otherwise we have a dummy ambiguity between the two
429 -- subprograms which are in fact the same.
431 if not Is_Ancestor
432 (Find_Dispatching_Type (Interface_Alias (E)),
433 Find_Dispatching_Type (E))
434 then
435 Add_One_Interp (N, Interface_Alias (E), T);
436 end if;
438 return;
440 -- Calling stubs for an RACW operation never participate in resolution,
441 -- they are executed only through dispatching calls.
443 elsif Is_RACW_Stub_Type_Operation (E) then
444 return;
445 end if;
447 -- If this is the first interpretation of N, N has type Any_Type.
448 -- In that case place the new type on the node. If one interpretation
449 -- already exists, indicate that the node is overloaded, and store
450 -- both the previous and the new interpretation in All_Interp. If
451 -- this is a later interpretation, just add it to the set.
453 if Etype (N) = Any_Type then
454 if Is_Type (E) then
455 Set_Etype (N, T);
457 else
458 -- Record both the operator or subprogram name, and its type
460 if Nkind (N) in N_Op or else Is_Entity_Name (N) then
461 Set_Entity (N, E);
462 end if;
464 Set_Etype (N, T);
465 end if;
467 -- Either there is no current interpretation in the table for any
468 -- node or the interpretation that is present is for a different
469 -- node. In both cases add a new interpretation to the table.
471 elsif Interp_Map.Last < 0
472 or else
473 (Interp_Map.Table (Interp_Map.Last).Node /= N
474 and then not Is_Overloaded (N))
475 then
476 New_Interps (N);
478 if (Nkind (N) in N_Op or else Is_Entity_Name (N))
479 and then Present (Entity (N))
480 then
481 Add_Entry (Entity (N), Etype (N));
483 elsif Nkind (N) in N_Subprogram_Call
484 and then Is_Entity_Name (Name (N))
485 then
486 Add_Entry (Entity (Name (N)), Etype (N));
488 -- If this is an indirect call there will be no name associated
489 -- with the previous entry. To make diagnostics clearer, save
490 -- Subprogram_Type of first interpretation, so that the error will
491 -- point to the anonymous access to subprogram, not to the result
492 -- type of the call itself.
494 elsif (Nkind (N)) = N_Function_Call
495 and then Nkind (Name (N)) = N_Explicit_Dereference
496 and then Is_Overloaded (Name (N))
497 then
498 declare
499 It : Interp;
501 Itn : Interp_Index;
502 pragma Warnings (Off, Itn);
504 begin
505 Get_First_Interp (Name (N), Itn, It);
506 Add_Entry (It.Nam, Etype (N));
507 end;
509 else
510 -- Overloaded prefix in indexed or selected component, or call
511 -- whose name is an expression or another call.
513 Add_Entry (Etype (N), Etype (N));
514 end if;
516 Add_Entry (E, T);
518 else
519 Add_Entry (E, T);
520 end if;
521 end Add_One_Interp;
523 -------------------
524 -- All_Overloads --
525 -------------------
527 procedure All_Overloads is
528 begin
529 for J in All_Interp.First .. All_Interp.Last loop
531 if Present (All_Interp.Table (J).Nam) then
532 Write_Entity_Info (All_Interp.Table (J). Nam, " ");
533 else
534 Write_Str ("No Interp");
535 Write_Eol;
536 end if;
538 Write_Str ("=================");
539 Write_Eol;
540 end loop;
541 end All_Overloads;
543 --------------------------------------
544 -- Binary_Op_Interp_Has_Abstract_Op --
545 --------------------------------------
547 function Binary_Op_Interp_Has_Abstract_Op
548 (N : Node_Id;
549 E : Entity_Id) return Entity_Id
551 Abstr_Op : Entity_Id;
552 E_Left : constant Node_Id := First_Formal (E);
553 E_Right : constant Node_Id := Next_Formal (E_Left);
555 begin
556 Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
557 if Present (Abstr_Op) then
558 return Abstr_Op;
559 end if;
561 return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
562 end Binary_Op_Interp_Has_Abstract_Op;
564 ---------------------
565 -- Collect_Interps --
566 ---------------------
568 procedure Collect_Interps (N : Node_Id) is
569 Ent : constant Entity_Id := Entity (N);
570 H : Entity_Id;
571 First_Interp : Interp_Index;
573 function Within_Instance (E : Entity_Id) return Boolean;
574 -- Within an instance there can be spurious ambiguities between a local
575 -- entity and one declared outside of the instance. This can only happen
576 -- for subprograms, because otherwise the local entity hides the outer
577 -- one. For an overloadable entity, this predicate determines whether it
578 -- is a candidate within the instance, or must be ignored.
580 ---------------------
581 -- Within_Instance --
582 ---------------------
584 function Within_Instance (E : Entity_Id) return Boolean is
585 Inst : Entity_Id;
586 Scop : Entity_Id;
588 begin
589 if not In_Instance then
590 return False;
591 end if;
593 Inst := Current_Scope;
594 while Present (Inst) and then not Is_Generic_Instance (Inst) loop
595 Inst := Scope (Inst);
596 end loop;
598 Scop := Scope (E);
599 while Present (Scop) and then Scop /= Standard_Standard loop
600 if Scop = Inst then
601 return True;
602 end if;
604 Scop := Scope (Scop);
605 end loop;
607 return False;
608 end Within_Instance;
610 -- Start of processing for Collect_Interps
612 begin
613 New_Interps (N);
615 -- Unconditionally add the entity that was initially matched
617 First_Interp := All_Interp.Last;
618 Add_One_Interp (N, Ent, Etype (N));
620 -- For expanded name, pick up all additional entities from the
621 -- same scope, since these are obviously also visible. Note that
622 -- these are not necessarily contiguous on the homonym chain.
624 if Nkind (N) = N_Expanded_Name then
625 H := Homonym (Ent);
626 while Present (H) loop
627 if Scope (H) = Scope (Entity (N)) then
628 Add_One_Interp (N, H, Etype (H));
629 end if;
631 H := Homonym (H);
632 end loop;
634 -- Case of direct name
636 else
637 -- First, search the homonym chain for directly visible entities
639 H := Current_Entity (Ent);
640 while Present (H) loop
641 exit when (not Is_Overloadable (H))
642 and then Is_Immediately_Visible (H);
644 if Is_Immediately_Visible (H) and then H /= Ent then
646 -- Only add interpretation if not hidden by an inner
647 -- immediately visible one.
649 for J in First_Interp .. All_Interp.Last - 1 loop
651 -- Current homograph is not hidden. Add to overloads
653 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
654 exit;
656 -- Homograph is hidden, unless it is a predefined operator
658 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
660 -- A homograph in the same scope can occur within an
661 -- instantiation, the resulting ambiguity has to be
662 -- resolved later. The homographs may both be local
663 -- functions or actuals, or may be declared at different
664 -- levels within the instance. The renaming of an actual
665 -- within the instance must not be included.
667 if Within_Instance (H)
668 and then H /= Renamed_Entity (Ent)
669 and then not Is_Inherited_Operation (H)
670 then
671 All_Interp.Table (All_Interp.Last) :=
672 (H, Etype (H), Empty);
673 All_Interp.Append (No_Interp);
674 goto Next_Homograph;
676 elsif Scope (H) /= Standard_Standard then
677 goto Next_Homograph;
678 end if;
679 end if;
680 end loop;
682 -- On exit, we know that current homograph is not hidden
684 Add_One_Interp (N, H, Etype (H));
686 if Debug_Flag_E then
687 Write_Str ("Add overloaded interpretation ");
688 Write_Int (Int (H));
689 Write_Eol;
690 end if;
691 end if;
693 <<Next_Homograph>>
694 H := Homonym (H);
695 end loop;
697 -- Scan list of homographs for use-visible entities only
699 H := Current_Entity (Ent);
701 while Present (H) loop
702 if Is_Potentially_Use_Visible (H)
703 and then H /= Ent
704 and then Is_Overloadable (H)
705 then
706 for J in First_Interp .. All_Interp.Last - 1 loop
708 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
709 exit;
711 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
712 goto Next_Use_Homograph;
713 end if;
714 end loop;
716 Add_One_Interp (N, H, Etype (H));
717 end if;
719 <<Next_Use_Homograph>>
720 H := Homonym (H);
721 end loop;
722 end if;
724 if All_Interp.Last = First_Interp + 1 then
726 -- The final interpretation is in fact not overloaded. Note that the
727 -- unique legal interpretation may or may not be the original one,
728 -- so we need to update N's entity and etype now, because once N
729 -- is marked as not overloaded it is also expected to carry the
730 -- proper interpretation.
732 Set_Is_Overloaded (N, False);
733 Set_Entity (N, All_Interp.Table (First_Interp).Nam);
734 Set_Etype (N, All_Interp.Table (First_Interp).Typ);
735 end if;
736 end Collect_Interps;
738 ------------
739 -- Covers --
740 ------------
742 function Covers (T1, T2 : Entity_Id) return Boolean is
743 BT1 : Entity_Id;
744 BT2 : Entity_Id;
746 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
747 -- In an instance the proper view may not always be correct for
748 -- private types, but private and full view are compatible. This
749 -- removes spurious errors from nested instantiations that involve,
750 -- among other things, types derived from private types.
752 function Real_Actual (T : Entity_Id) return Entity_Id;
753 -- If an actual in an inner instance is the formal of an enclosing
754 -- generic, the actual in the enclosing instance is the one that can
755 -- create an accidental ambiguity, and the check on compatibily of
756 -- generic actual types must use this enclosing actual.
758 ----------------------
759 -- Full_View_Covers --
760 ----------------------
762 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
763 begin
764 return
765 Is_Private_Type (Typ1)
766 and then
767 ((Present (Full_View (Typ1))
768 and then Covers (Full_View (Typ1), Typ2))
769 or else (Present (Underlying_Full_View (Typ1))
770 and then Covers (Underlying_Full_View (Typ1), Typ2))
771 or else Base_Type (Typ1) = Typ2
772 or else Base_Type (Typ2) = Typ1);
773 end Full_View_Covers;
775 -----------------
776 -- Real_Actual --
777 -----------------
779 function Real_Actual (T : Entity_Id) return Entity_Id is
780 Par : constant Node_Id := Parent (T);
781 RA : Entity_Id;
783 begin
784 -- Retrieve parent subtype from subtype declaration for actual
786 if Nkind (Par) = N_Subtype_Declaration
787 and then not Comes_From_Source (Par)
788 and then Is_Entity_Name (Subtype_Indication (Par))
789 then
790 RA := Entity (Subtype_Indication (Par));
792 if Is_Generic_Actual_Type (RA) then
793 return RA;
794 end if;
795 end if;
797 -- Otherwise actual is not the actual of an enclosing instance
799 return T;
800 end Real_Actual;
802 -- Start of processing for Covers
804 begin
805 -- If either operand missing, then this is an error, but ignore it (and
806 -- pretend we have a cover) if errors already detected, since this may
807 -- simply mean we have malformed trees or a semantic error upstream.
809 if No (T1) or else No (T2) then
810 if Total_Errors_Detected /= 0 then
811 return True;
812 else
813 raise Program_Error;
814 end if;
815 end if;
817 -- Trivial case: same types are always compatible
819 if T1 = T2 then
820 return True;
821 end if;
823 -- First check for Standard_Void_Type, which is special. Subsequent
824 -- processing in this routine assumes T1 and T2 are bona fide types;
825 -- Standard_Void_Type is a special entity that has some, but not all,
826 -- properties of types.
828 if (T1 = Standard_Void_Type) /= (T2 = Standard_Void_Type) then
829 return False;
830 end if;
832 BT1 := Base_Type (T1);
833 BT2 := Base_Type (T2);
835 -- Handle underlying view of records with unknown discriminants
836 -- using the original entity that motivated the construction of
837 -- this underlying record view (see Build_Derived_Private_Type).
839 if Is_Underlying_Record_View (BT1) then
840 BT1 := Underlying_Record_View (BT1);
841 end if;
843 if Is_Underlying_Record_View (BT2) then
844 BT2 := Underlying_Record_View (BT2);
845 end if;
847 -- Simplest case: types that have the same base type and are not generic
848 -- actuals are compatible. Generic actuals belong to their class but are
849 -- not compatible with other types of their class, and in particular
850 -- with other generic actuals. They are however compatible with their
851 -- own subtypes, and itypes with the same base are compatible as well.
852 -- Similarly, constrained subtypes obtained from expressions of an
853 -- unconstrained nominal type are compatible with the base type (may
854 -- lead to spurious ambiguities in obscure cases ???)
856 -- Generic actuals require special treatment to avoid spurious ambi-
857 -- guities in an instance, when two formal types are instantiated with
858 -- the same actual, so that different subprograms end up with the same
859 -- signature in the instance. If a generic actual is the actual of an
860 -- enclosing instance, it is that actual that we must compare: generic
861 -- actuals are only incompatible if they appear in the same instance.
863 if BT1 = BT2
864 or else BT1 = T2
865 or else BT2 = T1
866 then
867 if not Is_Generic_Actual_Type (T1)
868 or else
869 not Is_Generic_Actual_Type (T2)
870 then
871 return True;
873 -- Both T1 and T2 are generic actual types
875 else
876 declare
877 RT1 : constant Entity_Id := Real_Actual (T1);
878 RT2 : constant Entity_Id := Real_Actual (T2);
879 begin
880 return RT1 = RT2
881 or else Is_Itype (T1)
882 or else Is_Itype (T2)
883 or else Is_Constr_Subt_For_U_Nominal (T1)
884 or else Is_Constr_Subt_For_U_Nominal (T2)
885 or else Scope (RT1) /= Scope (RT2);
886 end;
887 end if;
889 -- Literals are compatible with types in a given "class"
891 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
892 or else (T2 = Universal_Real and then Is_Real_Type (T1))
893 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
894 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
895 or else (T2 = Any_String and then Is_String_Type (T1))
896 or else (T2 = Any_Character and then Is_Character_Type (T1))
897 or else (T2 = Any_Access and then Is_Access_Type (T1))
898 then
899 return True;
901 -- The context may be class wide, and a class-wide type is compatible
902 -- with any member of the class.
904 elsif Is_Class_Wide_Type (T1)
905 and then Is_Ancestor (Root_Type (T1), T2)
906 then
907 return True;
909 elsif Is_Class_Wide_Type (T1)
910 and then Is_Class_Wide_Type (T2)
911 and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
912 then
913 return True;
915 -- Ada 2005 (AI-345): A class-wide abstract interface type covers a
916 -- task_type or protected_type that implements the interface.
918 elsif Ada_Version >= Ada_2005
919 and then Is_Class_Wide_Type (T1)
920 and then Is_Interface (Etype (T1))
921 and then Is_Concurrent_Type (T2)
922 and then Interface_Present_In_Ancestor
923 (Typ => BT2, Iface => Etype (T1))
924 then
925 return True;
927 -- Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
928 -- object T2 implementing T1.
930 elsif Ada_Version >= Ada_2005
931 and then Is_Class_Wide_Type (T1)
932 and then Is_Interface (Etype (T1))
933 and then Is_Tagged_Type (T2)
934 then
935 if Interface_Present_In_Ancestor (Typ => T2,
936 Iface => Etype (T1))
937 then
938 return True;
939 end if;
941 declare
942 E : Entity_Id;
943 Elmt : Elmt_Id;
945 begin
946 if Is_Concurrent_Type (BT2) then
947 E := Corresponding_Record_Type (BT2);
948 else
949 E := BT2;
950 end if;
952 -- Ada 2005 (AI-251): A class-wide abstract interface type T1
953 -- covers an object T2 that implements a direct derivation of T1.
954 -- Note: test for presence of E is defense against previous error.
956 if No (E) then
957 Check_Error_Detected;
959 elsif Present (Interfaces (E)) then
960 Elmt := First_Elmt (Interfaces (E));
961 while Present (Elmt) loop
962 if Is_Ancestor (Etype (T1), Node (Elmt)) then
963 return True;
964 end if;
966 Next_Elmt (Elmt);
967 end loop;
968 end if;
970 -- We should also check the case in which T1 is an ancestor of
971 -- some implemented interface???
973 return False;
974 end;
976 -- In a dispatching call, the formal is of some specific type, and the
977 -- actual is of the corresponding class-wide type, including a subtype
978 -- of the class-wide type.
980 elsif Is_Class_Wide_Type (T2)
981 and then
982 (Class_Wide_Type (T1) = Class_Wide_Type (T2)
983 or else Base_Type (Root_Type (T2)) = BT1)
984 then
985 return True;
987 -- Some contexts require a class of types rather than a specific type.
988 -- For example, conditions require any boolean type, fixed point
989 -- attributes require some real type, etc. The built-in types Any_XXX
990 -- represent these classes.
992 elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
993 or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
994 or else (T1 = Any_Real and then Is_Real_Type (T2))
995 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
996 or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
997 then
998 return True;
1000 -- An aggregate is compatible with an array or record type
1002 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
1003 return True;
1005 -- If the expected type is an anonymous access, the designated type must
1006 -- cover that of the expression. Use the base type for this check: even
1007 -- though access subtypes are rare in sources, they are generated for
1008 -- actuals in instantiations.
1010 elsif Ekind (BT1) = E_Anonymous_Access_Type
1011 and then Is_Access_Type (T2)
1012 and then Covers (Designated_Type (T1), Designated_Type (T2))
1013 then
1014 return True;
1016 -- Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1017 -- of a named general access type. An implicit conversion will be
1018 -- applied. For the resolution, one designated type must cover the
1019 -- other.
1021 elsif Ada_Version >= Ada_2012
1022 and then Ekind (BT1) = E_General_Access_Type
1023 and then Ekind (BT2) = E_Anonymous_Access_Type
1024 and then (Covers (Designated_Type (T1), Designated_Type (T2))
1025 or else
1026 Covers (Designated_Type (T2), Designated_Type (T1)))
1027 then
1028 return True;
1030 -- An Access_To_Subprogram is compatible with itself, or with an
1031 -- anonymous type created for an attribute reference Access.
1033 elsif Ekind_In (BT1, E_Access_Subprogram_Type,
1034 E_Access_Protected_Subprogram_Type)
1035 and then Is_Access_Type (T2)
1036 and then (not Comes_From_Source (T1)
1037 or else not Comes_From_Source (T2))
1038 and then (Is_Overloadable (Designated_Type (T2))
1039 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1040 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1041 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1042 then
1043 return True;
1045 -- Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1046 -- with itself, or with an anonymous type created for an attribute
1047 -- reference Access.
1049 elsif Ekind_In (BT1, E_Anonymous_Access_Subprogram_Type,
1050 E_Anonymous_Access_Protected_Subprogram_Type)
1051 and then Is_Access_Type (T2)
1052 and then (not Comes_From_Source (T1)
1053 or else not Comes_From_Source (T2))
1054 and then (Is_Overloadable (Designated_Type (T2))
1055 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1056 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1057 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1058 then
1059 return True;
1061 -- The context can be a remote access type, and the expression the
1062 -- corresponding source type declared in a categorized package, or
1063 -- vice versa.
1065 elsif Is_Record_Type (T1)
1066 and then (Is_Remote_Call_Interface (T1) or else Is_Remote_Types (T1))
1067 and then Present (Corresponding_Remote_Type (T1))
1068 then
1069 return Covers (Corresponding_Remote_Type (T1), T2);
1071 -- and conversely.
1073 elsif Is_Record_Type (T2)
1074 and then (Is_Remote_Call_Interface (T2) or else Is_Remote_Types (T2))
1075 and then Present (Corresponding_Remote_Type (T2))
1076 then
1077 return Covers (Corresponding_Remote_Type (T2), T1);
1079 -- Synchronized types are represented at run time by their corresponding
1080 -- record type. During expansion one is replaced with the other, but
1081 -- they are compatible views of the same type.
1083 elsif Is_Record_Type (T1)
1084 and then Is_Concurrent_Type (T2)
1085 and then Present (Corresponding_Record_Type (T2))
1086 then
1087 return Covers (T1, Corresponding_Record_Type (T2));
1089 elsif Is_Concurrent_Type (T1)
1090 and then Present (Corresponding_Record_Type (T1))
1091 and then Is_Record_Type (T2)
1092 then
1093 return Covers (Corresponding_Record_Type (T1), T2);
1095 -- During analysis, an attribute reference 'Access has a special type
1096 -- kind: Access_Attribute_Type, to be replaced eventually with the type
1097 -- imposed by context.
1099 elsif Ekind (T2) = E_Access_Attribute_Type
1100 and then Ekind_In (BT1, E_General_Access_Type, E_Access_Type)
1101 and then Covers (Designated_Type (T1), Designated_Type (T2))
1102 then
1103 -- If the target type is a RACW type while the source is an access
1104 -- attribute type, we are building a RACW that may be exported.
1106 if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1107 Set_Has_RACW (Current_Sem_Unit);
1108 end if;
1110 return True;
1112 -- Ditto for allocators, which eventually resolve to the context type
1114 elsif Ekind (T2) = E_Allocator_Type and then Is_Access_Type (T1) then
1115 return Covers (Designated_Type (T1), Designated_Type (T2))
1116 or else
1117 (From_Limited_With (Designated_Type (T1))
1118 and then Covers (Designated_Type (T2), Designated_Type (T1)));
1120 -- A boolean operation on integer literals is compatible with modular
1121 -- context.
1123 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
1124 return True;
1126 -- The actual type may be the result of a previous error
1128 elsif BT2 = Any_Type then
1129 return True;
1131 -- A Raise_Expressions is legal in any expression context
1133 elsif BT2 = Raise_Type then
1134 return True;
1136 -- A packed array type covers its corresponding non-packed type. This is
1137 -- not legitimate Ada, but allows the omission of a number of otherwise
1138 -- useless unchecked conversions, and since this can only arise in
1139 -- (known correct) expanded code, no harm is done.
1141 elsif Is_Array_Type (T2)
1142 and then Is_Packed (T2)
1143 and then T1 = Packed_Array_Impl_Type (T2)
1144 then
1145 return True;
1147 -- Similarly an array type covers its corresponding packed array type
1149 elsif Is_Array_Type (T1)
1150 and then Is_Packed (T1)
1151 and then T2 = Packed_Array_Impl_Type (T1)
1152 then
1153 return True;
1155 -- In instances, or with types exported from instantiations, check
1156 -- whether a partial and a full view match. Verify that types are
1157 -- legal, to prevent cascaded errors.
1159 elsif In_Instance
1160 and then (Full_View_Covers (T1, T2) or else Full_View_Covers (T2, T1))
1161 then
1162 return True;
1164 elsif Is_Type (T2)
1165 and then Is_Generic_Actual_Type (T2)
1166 and then Full_View_Covers (T1, T2)
1167 then
1168 return True;
1170 elsif Is_Type (T1)
1171 and then Is_Generic_Actual_Type (T1)
1172 and then Full_View_Covers (T2, T1)
1173 then
1174 return True;
1176 -- In the expansion of inlined bodies, types are compatible if they
1177 -- are structurally equivalent.
1179 elsif In_Inlined_Body
1180 and then (Underlying_Type (T1) = Underlying_Type (T2)
1181 or else
1182 (Is_Access_Type (T1)
1183 and then Is_Access_Type (T2)
1184 and then Designated_Type (T1) = Designated_Type (T2))
1185 or else
1186 (T1 = Any_Access
1187 and then Is_Access_Type (Underlying_Type (T2)))
1188 or else
1189 (T2 = Any_Composite
1190 and then Is_Composite_Type (Underlying_Type (T1))))
1191 then
1192 return True;
1194 -- Ada 2005 (AI-50217): Additional branches to make the shadow entity
1195 -- obtained through a limited_with compatible with its real entity.
1197 elsif From_Limited_With (T1) then
1199 -- If the expected type is the non-limited view of a type, the
1200 -- expression may have the limited view. If that one in turn is
1201 -- incomplete, get full view if available.
1203 if Is_Incomplete_Type (T1) then
1204 return Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1206 elsif Ekind (T1) = E_Class_Wide_Type then
1207 return
1208 Covers (Class_Wide_Type (Non_Limited_View (Etype (T1))), T2);
1209 else
1210 return False;
1211 end if;
1213 elsif From_Limited_With (T2) then
1215 -- If units in the context have Limited_With clauses on each other,
1216 -- either type might have a limited view. Checks performed elsewhere
1217 -- verify that the context type is the nonlimited view.
1219 if Is_Incomplete_Type (T2) then
1220 return Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1222 elsif Ekind (T2) = E_Class_Wide_Type then
1223 return
1224 Present (Non_Limited_View (Etype (T2)))
1225 and then
1226 Covers (T1, Class_Wide_Type (Non_Limited_View (Etype (T2))));
1227 else
1228 return False;
1229 end if;
1231 -- Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1233 elsif Ekind (T1) = E_Incomplete_Subtype then
1234 return Covers (Full_View (Etype (T1)), T2);
1236 elsif Ekind (T2) = E_Incomplete_Subtype then
1237 return Covers (T1, Full_View (Etype (T2)));
1239 -- Ada 2005 (AI-423): Coverage of formal anonymous access types
1240 -- and actual anonymous access types in the context of generic
1241 -- instantiations. We have the following situation:
1243 -- generic
1244 -- type Formal is private;
1245 -- Formal_Obj : access Formal; -- T1
1246 -- package G is ...
1248 -- package P is
1249 -- type Actual is ...
1250 -- Actual_Obj : access Actual; -- T2
1251 -- package Instance is new G (Formal => Actual,
1252 -- Formal_Obj => Actual_Obj);
1254 elsif Ada_Version >= Ada_2005
1255 and then Ekind (T1) = E_Anonymous_Access_Type
1256 and then Ekind (T2) = E_Anonymous_Access_Type
1257 and then Is_Generic_Type (Directly_Designated_Type (T1))
1258 and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1259 Directly_Designated_Type (T2)
1260 then
1261 return True;
1263 -- Otherwise, types are not compatible
1265 else
1266 return False;
1267 end if;
1268 end Covers;
1270 ------------------
1271 -- Disambiguate --
1272 ------------------
1274 function Disambiguate
1275 (N : Node_Id;
1276 I1, I2 : Interp_Index;
1277 Typ : Entity_Id) return Interp
1279 I : Interp_Index;
1280 It : Interp;
1281 It1, It2 : Interp;
1282 Nam1, Nam2 : Entity_Id;
1283 Predef_Subp : Entity_Id;
1284 User_Subp : Entity_Id;
1286 function Inherited_From_Actual (S : Entity_Id) return Boolean;
1287 -- Determine whether one of the candidates is an operation inherited by
1288 -- a type that is derived from an actual in an instantiation.
1290 function In_Same_Declaration_List
1291 (Typ : Entity_Id;
1292 Op_Decl : Entity_Id) return Boolean;
1293 -- AI05-0020: a spurious ambiguity may arise when equality on anonymous
1294 -- access types is declared on the partial view of a designated type, so
1295 -- that the type declaration and equality are not in the same list of
1296 -- declarations. This AI gives a preference rule for the user-defined
1297 -- operation. Same rule applies for arithmetic operations on private
1298 -- types completed with fixed-point types: the predefined operation is
1299 -- hidden; this is already handled properly in GNAT.
1301 function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1302 -- Determine whether a subprogram is an actual in an enclosing instance.
1303 -- An overloading between such a subprogram and one declared outside the
1304 -- instance is resolved in favor of the first, because it resolved in
1305 -- the generic. Within the instance the actual is represented by a
1306 -- constructed subprogram renaming.
1308 function Matches (Actual, Formal : Node_Id) return Boolean;
1309 -- Look for exact type match in an instance, to remove spurious
1310 -- ambiguities when two formal types have the same actual.
1312 function Operand_Type return Entity_Id;
1313 -- Determine type of operand for an equality operation, to apply
1314 -- Ada 2005 rules to equality on anonymous access types.
1316 function Standard_Operator return Boolean;
1317 -- Check whether subprogram is predefined operator declared in Standard.
1318 -- It may given by an operator name, or by an expanded name whose prefix
1319 -- is Standard.
1321 function Remove_Conversions return Interp;
1322 -- Last chance for pathological cases involving comparisons on literals,
1323 -- and user overloadings of the same operator. Such pathologies have
1324 -- been removed from the ACVC, but still appear in two DEC tests, with
1325 -- the following notable quote from Ben Brosgol:
1327 -- [Note: I disclaim all credit/responsibility/blame for coming up with
1328 -- this example; Robert Dewar brought it to our attention, since it is
1329 -- apparently found in the ACVC 1.5. I did not attempt to find the
1330 -- reason in the Reference Manual that makes the example legal, since I
1331 -- was too nauseated by it to want to pursue it further.]
1333 -- Accordingly, this is not a fully recursive solution, but it handles
1334 -- DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1335 -- pathology in the other direction with calls whose multiple overloaded
1336 -- actuals make them truly unresolvable.
1338 -- The new rules concerning abstract operations create additional need
1339 -- for special handling of expressions with universal operands, see
1340 -- comments to Has_Abstract_Interpretation below.
1342 ---------------------------
1343 -- Inherited_From_Actual --
1344 ---------------------------
1346 function Inherited_From_Actual (S : Entity_Id) return Boolean is
1347 Par : constant Node_Id := Parent (S);
1348 begin
1349 if Nkind (Par) /= N_Full_Type_Declaration
1350 or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1351 then
1352 return False;
1353 else
1354 return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1355 and then
1356 Is_Generic_Actual_Type (
1357 Entity (Subtype_Indication (Type_Definition (Par))));
1358 end if;
1359 end Inherited_From_Actual;
1361 ------------------------------
1362 -- In_Same_Declaration_List --
1363 ------------------------------
1365 function In_Same_Declaration_List
1366 (Typ : Entity_Id;
1367 Op_Decl : Entity_Id) return Boolean
1369 Scop : constant Entity_Id := Scope (Typ);
1371 begin
1372 return In_Same_List (Parent (Typ), Op_Decl)
1373 or else
1374 (Ekind_In (Scop, E_Package, E_Generic_Package)
1375 and then List_Containing (Op_Decl) =
1376 Visible_Declarations (Parent (Scop))
1377 and then List_Containing (Parent (Typ)) =
1378 Private_Declarations (Parent (Scop)));
1379 end In_Same_Declaration_List;
1381 --------------------------
1382 -- Is_Actual_Subprogram --
1383 --------------------------
1385 function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1386 begin
1387 return In_Open_Scopes (Scope (S))
1388 and then Nkind (Unit_Declaration_Node (S)) =
1389 N_Subprogram_Renaming_Declaration
1391 -- Why the Comes_From_Source test here???
1393 and then not Comes_From_Source (Unit_Declaration_Node (S))
1395 and then
1396 (Is_Generic_Instance (Scope (S))
1397 or else Is_Wrapper_Package (Scope (S)));
1398 end Is_Actual_Subprogram;
1400 -------------
1401 -- Matches --
1402 -------------
1404 function Matches (Actual, Formal : Node_Id) return Boolean is
1405 T1 : constant Entity_Id := Etype (Actual);
1406 T2 : constant Entity_Id := Etype (Formal);
1407 begin
1408 return T1 = T2
1409 or else
1410 (Is_Numeric_Type (T2)
1411 and then (T1 = Universal_Real or else T1 = Universal_Integer));
1412 end Matches;
1414 ------------------
1415 -- Operand_Type --
1416 ------------------
1418 function Operand_Type return Entity_Id is
1419 Opnd : Node_Id;
1421 begin
1422 if Nkind (N) = N_Function_Call then
1423 Opnd := First_Actual (N);
1424 else
1425 Opnd := Left_Opnd (N);
1426 end if;
1428 return Etype (Opnd);
1429 end Operand_Type;
1431 ------------------------
1432 -- Remove_Conversions --
1433 ------------------------
1435 function Remove_Conversions return Interp is
1436 I : Interp_Index;
1437 It : Interp;
1438 It1 : Interp;
1439 F1 : Entity_Id;
1440 Act1 : Node_Id;
1441 Act2 : Node_Id;
1443 function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1444 -- If an operation has universal operands the universal operation
1445 -- is present among its interpretations. If there is an abstract
1446 -- interpretation for the operator, with a numeric result, this
1447 -- interpretation was already removed in sem_ch4, but the universal
1448 -- one is still visible. We must rescan the list of operators and
1449 -- remove the universal interpretation to resolve the ambiguity.
1451 ---------------------------------
1452 -- Has_Abstract_Interpretation --
1453 ---------------------------------
1455 function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1456 E : Entity_Id;
1458 begin
1459 if Nkind (N) not in N_Op
1460 or else Ada_Version < Ada_2005
1461 or else not Is_Overloaded (N)
1462 or else No (Universal_Interpretation (N))
1463 then
1464 return False;
1466 else
1467 E := Get_Name_Entity_Id (Chars (N));
1468 while Present (E) loop
1469 if Is_Overloadable (E)
1470 and then Is_Abstract_Subprogram (E)
1471 and then Is_Numeric_Type (Etype (E))
1472 then
1473 return True;
1474 else
1475 E := Homonym (E);
1476 end if;
1477 end loop;
1479 -- Finally, if an operand of the binary operator is itself
1480 -- an operator, recurse to see whether its own abstract
1481 -- interpretation is responsible for the spurious ambiguity.
1483 if Nkind (N) in N_Binary_Op then
1484 return Has_Abstract_Interpretation (Left_Opnd (N))
1485 or else Has_Abstract_Interpretation (Right_Opnd (N));
1487 elsif Nkind (N) in N_Unary_Op then
1488 return Has_Abstract_Interpretation (Right_Opnd (N));
1490 else
1491 return False;
1492 end if;
1493 end if;
1494 end Has_Abstract_Interpretation;
1496 -- Start of processing for Remove_Conversions
1498 begin
1499 It1 := No_Interp;
1501 Get_First_Interp (N, I, It);
1502 while Present (It.Typ) loop
1503 if not Is_Overloadable (It.Nam) then
1504 return No_Interp;
1505 end if;
1507 F1 := First_Formal (It.Nam);
1509 if No (F1) then
1510 return It1;
1512 else
1513 if Nkind (N) in N_Subprogram_Call then
1514 Act1 := First_Actual (N);
1516 if Present (Act1) then
1517 Act2 := Next_Actual (Act1);
1518 else
1519 Act2 := Empty;
1520 end if;
1522 elsif Nkind (N) in N_Unary_Op then
1523 Act1 := Right_Opnd (N);
1524 Act2 := Empty;
1526 elsif Nkind (N) in N_Binary_Op then
1527 Act1 := Left_Opnd (N);
1528 Act2 := Right_Opnd (N);
1530 -- Use type of second formal, so as to include
1531 -- exponentiation, where the exponent may be
1532 -- ambiguous and the result non-universal.
1534 Next_Formal (F1);
1536 else
1537 return It1;
1538 end if;
1540 if Nkind (Act1) in N_Op
1541 and then Is_Overloaded (Act1)
1542 and then Nkind_In (Right_Opnd (Act1), N_Integer_Literal,
1543 N_Real_Literal)
1544 and then Has_Compatible_Type (Act1, Standard_Boolean)
1545 and then Etype (F1) = Standard_Boolean
1546 then
1547 -- If the two candidates are the original ones, the
1548 -- ambiguity is real. Otherwise keep the original, further
1549 -- calls to Disambiguate will take care of others in the
1550 -- list of candidates.
1552 if It1 /= No_Interp then
1553 if It = Disambiguate.It1
1554 or else It = Disambiguate.It2
1555 then
1556 if It1 = Disambiguate.It1
1557 or else It1 = Disambiguate.It2
1558 then
1559 return No_Interp;
1560 else
1561 It1 := It;
1562 end if;
1563 end if;
1565 elsif Present (Act2)
1566 and then Nkind (Act2) in N_Op
1567 and then Is_Overloaded (Act2)
1568 and then Nkind_In (Right_Opnd (Act2), N_Integer_Literal,
1569 N_Real_Literal)
1570 and then Has_Compatible_Type (Act2, Standard_Boolean)
1571 then
1572 -- The preference rule on the first actual is not
1573 -- sufficient to disambiguate.
1575 goto Next_Interp;
1577 else
1578 It1 := It;
1579 end if;
1581 elsif Is_Numeric_Type (Etype (F1))
1582 and then Has_Abstract_Interpretation (Act1)
1583 then
1584 -- Current interpretation is not the right one because it
1585 -- expects a numeric operand. Examine all the other ones.
1587 declare
1588 I : Interp_Index;
1589 It : Interp;
1591 begin
1592 Get_First_Interp (N, I, It);
1593 while Present (It.Typ) loop
1595 not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1596 then
1597 if No (Act2)
1598 or else not Has_Abstract_Interpretation (Act2)
1599 or else not
1600 Is_Numeric_Type
1601 (Etype (Next_Formal (First_Formal (It.Nam))))
1602 then
1603 return It;
1604 end if;
1605 end if;
1607 Get_Next_Interp (I, It);
1608 end loop;
1610 return No_Interp;
1611 end;
1612 end if;
1613 end if;
1615 <<Next_Interp>>
1616 Get_Next_Interp (I, It);
1617 end loop;
1619 -- After some error, a formal may have Any_Type and yield a spurious
1620 -- match. To avoid cascaded errors if possible, check for such a
1621 -- formal in either candidate.
1623 if Serious_Errors_Detected > 0 then
1624 declare
1625 Formal : Entity_Id;
1627 begin
1628 Formal := First_Formal (Nam1);
1629 while Present (Formal) loop
1630 if Etype (Formal) = Any_Type then
1631 return Disambiguate.It2;
1632 end if;
1634 Next_Formal (Formal);
1635 end loop;
1637 Formal := First_Formal (Nam2);
1638 while Present (Formal) loop
1639 if Etype (Formal) = Any_Type then
1640 return Disambiguate.It1;
1641 end if;
1643 Next_Formal (Formal);
1644 end loop;
1645 end;
1646 end if;
1648 return It1;
1649 end Remove_Conversions;
1651 -----------------------
1652 -- Standard_Operator --
1653 -----------------------
1655 function Standard_Operator return Boolean is
1656 Nam : Node_Id;
1658 begin
1659 if Nkind (N) in N_Op then
1660 return True;
1662 elsif Nkind (N) = N_Function_Call then
1663 Nam := Name (N);
1665 if Nkind (Nam) /= N_Expanded_Name then
1666 return True;
1667 else
1668 return Entity (Prefix (Nam)) = Standard_Standard;
1669 end if;
1670 else
1671 return False;
1672 end if;
1673 end Standard_Operator;
1675 -- Start of processing for Disambiguate
1677 begin
1678 -- Recover the two legal interpretations
1680 Get_First_Interp (N, I, It);
1681 while I /= I1 loop
1682 Get_Next_Interp (I, It);
1683 end loop;
1685 It1 := It;
1686 Nam1 := It.Nam;
1687 while I /= I2 loop
1688 Get_Next_Interp (I, It);
1689 end loop;
1691 It2 := It;
1692 Nam2 := It.Nam;
1694 -- Check whether one of the entities is an Ada 2005/2012 and we are
1695 -- operating in an earlier mode, in which case we discard the Ada
1696 -- 2005/2012 entity, so that we get proper Ada 95 overload resolution.
1698 if Ada_Version < Ada_2005 then
1699 if Is_Ada_2005_Only (Nam1) or else Is_Ada_2012_Only (Nam1) then
1700 return It2;
1701 elsif Is_Ada_2005_Only (Nam2) or else Is_Ada_2012_Only (Nam1) then
1702 return It1;
1703 end if;
1704 end if;
1706 -- Check whether one of the entities is an Ada 2012 entity and we are
1707 -- operating in Ada 2005 mode, in which case we discard the Ada 2012
1708 -- entity, so that we get proper Ada 2005 overload resolution.
1710 if Ada_Version = Ada_2005 then
1711 if Is_Ada_2012_Only (Nam1) then
1712 return It2;
1713 elsif Is_Ada_2012_Only (Nam2) then
1714 return It1;
1715 end if;
1716 end if;
1718 -- Check for overloaded CIL convention stuff because the CIL libraries
1719 -- do sick things like Console.Write_Line where it matches two different
1720 -- overloads, so just pick the first ???
1722 if Convention (Nam1) = Convention_CIL
1723 and then Convention (Nam2) = Convention_CIL
1724 and then Ekind (Nam1) = Ekind (Nam2)
1725 and then Ekind_In (Nam1, E_Procedure, E_Function)
1726 then
1727 return It2;
1728 end if;
1730 -- If the context is universal, the predefined operator is preferred.
1731 -- This includes bounds in numeric type declarations, and expressions
1732 -- in type conversions. If no interpretation yields a universal type,
1733 -- then we must check whether the user-defined entity hides the prede-
1734 -- fined one.
1736 if Chars (Nam1) in Any_Operator_Name and then Standard_Operator then
1737 if Typ = Universal_Integer
1738 or else Typ = Universal_Real
1739 or else Typ = Any_Integer
1740 or else Typ = Any_Discrete
1741 or else Typ = Any_Real
1742 or else Typ = Any_Type
1743 then
1744 -- Find an interpretation that yields the universal type, or else
1745 -- a predefined operator that yields a predefined numeric type.
1747 declare
1748 Candidate : Interp := No_Interp;
1750 begin
1751 Get_First_Interp (N, I, It);
1752 while Present (It.Typ) loop
1753 if (Covers (Typ, It.Typ) or else Typ = Any_Type)
1754 and then
1755 (It.Typ = Universal_Integer
1756 or else It.Typ = Universal_Real)
1757 then
1758 return It;
1760 elsif Covers (Typ, It.Typ)
1761 and then Scope (It.Typ) = Standard_Standard
1762 and then Scope (It.Nam) = Standard_Standard
1763 and then Is_Numeric_Type (It.Typ)
1764 then
1765 Candidate := It;
1766 end if;
1768 Get_Next_Interp (I, It);
1769 end loop;
1771 if Candidate /= No_Interp then
1772 return Candidate;
1773 end if;
1774 end;
1776 elsif Chars (Nam1) /= Name_Op_Not
1777 and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1778 then
1779 -- Equality or comparison operation. Choose predefined operator if
1780 -- arguments are universal. The node may be an operator, name, or
1781 -- a function call, so unpack arguments accordingly.
1783 declare
1784 Arg1, Arg2 : Node_Id;
1786 begin
1787 if Nkind (N) in N_Op then
1788 Arg1 := Left_Opnd (N);
1789 Arg2 := Right_Opnd (N);
1791 elsif Is_Entity_Name (N) then
1792 Arg1 := First_Entity (Entity (N));
1793 Arg2 := Next_Entity (Arg1);
1795 else
1796 Arg1 := First_Actual (N);
1797 Arg2 := Next_Actual (Arg1);
1798 end if;
1800 if Present (Arg2)
1801 and then Present (Universal_Interpretation (Arg1))
1802 and then Universal_Interpretation (Arg2) =
1803 Universal_Interpretation (Arg1)
1804 then
1805 Get_First_Interp (N, I, It);
1806 while Scope (It.Nam) /= Standard_Standard loop
1807 Get_Next_Interp (I, It);
1808 end loop;
1810 return It;
1811 end if;
1812 end;
1813 end if;
1814 end if;
1816 -- If no universal interpretation, check whether user-defined operator
1817 -- hides predefined one, as well as other special cases. If the node
1818 -- is a range, then one or both bounds are ambiguous. Each will have
1819 -- to be disambiguated w.r.t. the context type. The type of the range
1820 -- itself is imposed by the context, so we can return either legal
1821 -- interpretation.
1823 if Ekind (Nam1) = E_Operator then
1824 Predef_Subp := Nam1;
1825 User_Subp := Nam2;
1827 elsif Ekind (Nam2) = E_Operator then
1828 Predef_Subp := Nam2;
1829 User_Subp := Nam1;
1831 elsif Nkind (N) = N_Range then
1832 return It1;
1834 -- Implement AI05-105: A renaming declaration with an access
1835 -- definition must resolve to an anonymous access type. This
1836 -- is a resolution rule and can be used to disambiguate.
1838 elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1839 and then Present (Access_Definition (Parent (N)))
1840 then
1841 if Ekind_In (It1.Typ, E_Anonymous_Access_Type,
1842 E_Anonymous_Access_Subprogram_Type)
1843 then
1844 if Ekind (It2.Typ) = Ekind (It1.Typ) then
1846 -- True ambiguity
1848 return No_Interp;
1850 else
1851 return It1;
1852 end if;
1854 elsif Ekind_In (It2.Typ, E_Anonymous_Access_Type,
1855 E_Anonymous_Access_Subprogram_Type)
1856 then
1857 return It2;
1859 -- No legal interpretation
1861 else
1862 return No_Interp;
1863 end if;
1865 -- If two user defined-subprograms are visible, it is a true ambiguity,
1866 -- unless one of them is an entry and the context is a conditional or
1867 -- timed entry call, or unless we are within an instance and this is
1868 -- results from two formals types with the same actual.
1870 else
1871 if Nkind (N) = N_Procedure_Call_Statement
1872 and then Nkind (Parent (N)) = N_Entry_Call_Alternative
1873 and then N = Entry_Call_Statement (Parent (N))
1874 then
1875 if Ekind (Nam2) = E_Entry then
1876 return It2;
1877 elsif Ekind (Nam1) = E_Entry then
1878 return It1;
1879 else
1880 return No_Interp;
1881 end if;
1883 -- If the ambiguity occurs within an instance, it is due to several
1884 -- formal types with the same actual. Look for an exact match between
1885 -- the types of the formals of the overloadable entities, and the
1886 -- actuals in the call, to recover the unambiguous match in the
1887 -- original generic.
1889 -- The ambiguity can also be due to an overloading between a formal
1890 -- subprogram and a subprogram declared outside the generic. If the
1891 -- node is overloaded, it did not resolve to the global entity in
1892 -- the generic, and we choose the formal subprogram.
1894 -- Finally, the ambiguity can be between an explicit subprogram and
1895 -- one inherited (with different defaults) from an actual. In this
1896 -- case the resolution was to the explicit declaration in the
1897 -- generic, and remains so in the instance.
1899 -- The same sort of disambiguation needed for calls is also required
1900 -- for the name given in a subprogram renaming, and that case is
1901 -- handled here as well. We test Comes_From_Source to exclude this
1902 -- treatment for implicit renamings created for formal subprograms.
1904 elsif In_Instance and then not In_Generic_Actual (N) then
1905 if Nkind (N) in N_Subprogram_Call
1906 or else
1907 (Nkind (N) in N_Has_Entity
1908 and then
1909 Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
1910 and then Comes_From_Source (Parent (N)))
1911 then
1912 declare
1913 Actual : Node_Id;
1914 Formal : Entity_Id;
1915 Renam : Entity_Id := Empty;
1916 Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
1917 Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
1919 begin
1920 if Is_Act1 and then not Is_Act2 then
1921 return It1;
1923 elsif Is_Act2 and then not Is_Act1 then
1924 return It2;
1926 elsif Inherited_From_Actual (Nam1)
1927 and then Comes_From_Source (Nam2)
1928 then
1929 return It2;
1931 elsif Inherited_From_Actual (Nam2)
1932 and then Comes_From_Source (Nam1)
1933 then
1934 return It1;
1935 end if;
1937 -- In the case of a renamed subprogram, pick up the entity
1938 -- of the renaming declaration so we can traverse its
1939 -- formal parameters.
1941 if Nkind (N) in N_Has_Entity then
1942 Renam := Defining_Unit_Name (Specification (Parent (N)));
1943 end if;
1945 if Present (Renam) then
1946 Actual := First_Formal (Renam);
1947 else
1948 Actual := First_Actual (N);
1949 end if;
1951 Formal := First_Formal (Nam1);
1952 while Present (Actual) loop
1953 if Etype (Actual) /= Etype (Formal) then
1954 return It2;
1955 end if;
1957 if Present (Renam) then
1958 Next_Formal (Actual);
1959 else
1960 Next_Actual (Actual);
1961 end if;
1963 Next_Formal (Formal);
1964 end loop;
1966 return It1;
1967 end;
1969 elsif Nkind (N) in N_Binary_Op then
1970 if Matches (Left_Opnd (N), First_Formal (Nam1))
1971 and then
1972 Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
1973 then
1974 return It1;
1975 else
1976 return It2;
1977 end if;
1979 elsif Nkind (N) in N_Unary_Op then
1980 if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
1981 return It1;
1982 else
1983 return It2;
1984 end if;
1986 else
1987 return Remove_Conversions;
1988 end if;
1989 else
1990 return Remove_Conversions;
1991 end if;
1992 end if;
1994 -- An implicit concatenation operator on a string type cannot be
1995 -- disambiguated from the predefined concatenation. This can only
1996 -- happen with concatenation of string literals.
1998 if Chars (User_Subp) = Name_Op_Concat
1999 and then Ekind (User_Subp) = E_Operator
2000 and then Is_String_Type (Etype (First_Formal (User_Subp)))
2001 then
2002 return No_Interp;
2004 -- If the user-defined operator is in an open scope, or in the scope
2005 -- of the resulting type, or given by an expanded name that names its
2006 -- scope, it hides the predefined operator for the type. Exponentiation
2007 -- has to be special-cased because the implicit operator does not have
2008 -- a symmetric signature, and may not be hidden by the explicit one.
2010 elsif (Nkind (N) = N_Function_Call
2011 and then Nkind (Name (N)) = N_Expanded_Name
2012 and then (Chars (Predef_Subp) /= Name_Op_Expon
2013 or else Hides_Op (User_Subp, Predef_Subp))
2014 and then Scope (User_Subp) = Entity (Prefix (Name (N))))
2015 or else Hides_Op (User_Subp, Predef_Subp)
2016 then
2017 if It1.Nam = User_Subp then
2018 return It1;
2019 else
2020 return It2;
2021 end if;
2023 -- Otherwise, the predefined operator has precedence, or if the user-
2024 -- defined operation is directly visible we have a true ambiguity.
2026 -- If this is a fixed-point multiplication and division in Ada 83 mode,
2027 -- exclude the universal_fixed operator, which often causes ambiguities
2028 -- in legacy code.
2030 -- Ditto in Ada 2012, where an ambiguity may arise for an operation
2031 -- on a partial view that is completed with a fixed point type. See
2032 -- AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2033 -- user-defined type and subprogram, so that a client of the package
2034 -- has the same resolution as the body of the package.
2036 else
2037 if (In_Open_Scopes (Scope (User_Subp))
2038 or else Is_Potentially_Use_Visible (User_Subp))
2039 and then not In_Instance
2040 then
2041 if Is_Fixed_Point_Type (Typ)
2042 and then Nam_In (Chars (Nam1), Name_Op_Multiply, Name_Op_Divide)
2043 and then
2044 (Ada_Version = Ada_83
2045 or else (Ada_Version >= Ada_2012
2046 and then In_Same_Declaration_List
2047 (First_Subtype (Typ),
2048 Unit_Declaration_Node (User_Subp))))
2049 then
2050 if It2.Nam = Predef_Subp then
2051 return It1;
2052 else
2053 return It2;
2054 end if;
2056 -- Ada 2005, AI-420: preference rule for "=" on Universal_Access
2057 -- states that the operator defined in Standard is not available
2058 -- if there is a user-defined equality with the proper signature,
2059 -- declared in the same declarative list as the type. The node
2060 -- may be an operator or a function call.
2062 elsif Nam_In (Chars (Nam1), Name_Op_Eq, Name_Op_Ne)
2063 and then Ada_Version >= Ada_2005
2064 and then Etype (User_Subp) = Standard_Boolean
2065 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
2066 and then
2067 In_Same_Declaration_List
2068 (Designated_Type (Operand_Type),
2069 Unit_Declaration_Node (User_Subp))
2070 then
2071 if It2.Nam = Predef_Subp then
2072 return It1;
2073 else
2074 return It2;
2075 end if;
2077 -- An immediately visible operator hides a use-visible user-
2078 -- defined operation. This disambiguation cannot take place
2079 -- earlier because the visibility of the predefined operator
2080 -- can only be established when operand types are known.
2082 elsif Ekind (User_Subp) = E_Function
2083 and then Ekind (Predef_Subp) = E_Operator
2084 and then Nkind (N) in N_Op
2085 and then not Is_Overloaded (Right_Opnd (N))
2086 and then
2087 Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2088 and then Is_Potentially_Use_Visible (User_Subp)
2089 then
2090 if It2.Nam = Predef_Subp then
2091 return It1;
2092 else
2093 return It2;
2094 end if;
2096 else
2097 return No_Interp;
2098 end if;
2100 elsif It1.Nam = Predef_Subp then
2101 return It1;
2103 else
2104 return It2;
2105 end if;
2106 end if;
2107 end Disambiguate;
2109 ---------------------
2110 -- End_Interp_List --
2111 ---------------------
2113 procedure End_Interp_List is
2114 begin
2115 All_Interp.Table (All_Interp.Last) := No_Interp;
2116 All_Interp.Increment_Last;
2117 end End_Interp_List;
2119 -------------------------
2120 -- Entity_Matches_Spec --
2121 -------------------------
2123 function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2124 begin
2125 -- Simple case: same entity kinds, type conformance is required. A
2126 -- parameterless function can also rename a literal.
2128 if Ekind (Old_S) = Ekind (New_S)
2129 or else (Ekind (New_S) = E_Function
2130 and then Ekind (Old_S) = E_Enumeration_Literal)
2131 then
2132 return Type_Conformant (New_S, Old_S);
2134 elsif Ekind (New_S) = E_Function and then Ekind (Old_S) = E_Operator then
2135 return Operator_Matches_Spec (Old_S, New_S);
2137 elsif Ekind (New_S) = E_Procedure and then Is_Entry (Old_S) then
2138 return Type_Conformant (New_S, Old_S);
2140 else
2141 return False;
2142 end if;
2143 end Entity_Matches_Spec;
2145 ----------------------
2146 -- Find_Unique_Type --
2147 ----------------------
2149 function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2150 T : constant Entity_Id := Etype (L);
2151 I : Interp_Index;
2152 It : Interp;
2153 TR : Entity_Id := Any_Type;
2155 begin
2156 if Is_Overloaded (R) then
2157 Get_First_Interp (R, I, It);
2158 while Present (It.Typ) loop
2159 if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2161 -- If several interpretations are possible and L is universal,
2162 -- apply preference rule.
2164 if TR /= Any_Type then
2165 if (T = Universal_Integer or else T = Universal_Real)
2166 and then It.Typ = T
2167 then
2168 TR := It.Typ;
2169 end if;
2171 else
2172 TR := It.Typ;
2173 end if;
2174 end if;
2176 Get_Next_Interp (I, It);
2177 end loop;
2179 Set_Etype (R, TR);
2181 -- In the non-overloaded case, the Etype of R is already set correctly
2183 else
2184 null;
2185 end if;
2187 -- If one of the operands is Universal_Fixed, the type of the other
2188 -- operand provides the context.
2190 if Etype (R) = Universal_Fixed then
2191 return T;
2193 elsif T = Universal_Fixed then
2194 return Etype (R);
2196 -- Ada 2005 (AI-230): Support the following operators:
2198 -- function "=" (L, R : universal_access) return Boolean;
2199 -- function "/=" (L, R : universal_access) return Boolean;
2201 -- Pool specific access types (E_Access_Type) are not covered by these
2202 -- operators because of the legality rule of 4.5.2(9.2): "The operands
2203 -- of the equality operators for universal_access shall be convertible
2204 -- to one another (see 4.6)". For example, considering the type decla-
2205 -- ration "type P is access Integer" and an anonymous access to Integer,
2206 -- P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2207 -- is no rule in 4.6 that allows "access Integer" to be converted to P.
2209 elsif Ada_Version >= Ada_2005
2210 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
2211 E_Anonymous_Access_Subprogram_Type)
2212 and then Is_Access_Type (Etype (R))
2213 and then Ekind (Etype (R)) /= E_Access_Type
2214 then
2215 return Etype (L);
2217 elsif Ada_Version >= Ada_2005
2218 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
2219 E_Anonymous_Access_Subprogram_Type)
2220 and then Is_Access_Type (Etype (L))
2221 and then Ekind (Etype (L)) /= E_Access_Type
2222 then
2223 return Etype (R);
2225 -- If one operand is a raise_expression, use type of other operand
2227 elsif Nkind (L) = N_Raise_Expression then
2228 return Etype (R);
2230 else
2231 return Specific_Type (T, Etype (R));
2232 end if;
2233 end Find_Unique_Type;
2235 -------------------------------------
2236 -- Function_Interp_Has_Abstract_Op --
2237 -------------------------------------
2239 function Function_Interp_Has_Abstract_Op
2240 (N : Node_Id;
2241 E : Entity_Id) return Entity_Id
2243 Abstr_Op : Entity_Id;
2244 Act : Node_Id;
2245 Act_Parm : Node_Id;
2246 Form_Parm : Node_Id;
2248 begin
2249 -- Why is check on E needed below ???
2250 -- In any case this para needs comments ???
2252 if Is_Overloaded (N) and then Is_Overloadable (E) then
2253 Act_Parm := First_Actual (N);
2254 Form_Parm := First_Formal (E);
2255 while Present (Act_Parm) and then Present (Form_Parm) loop
2256 Act := Act_Parm;
2258 if Nkind (Act) = N_Parameter_Association then
2259 Act := Explicit_Actual_Parameter (Act);
2260 end if;
2262 Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2264 if Present (Abstr_Op) then
2265 return Abstr_Op;
2266 end if;
2268 Next_Actual (Act_Parm);
2269 Next_Formal (Form_Parm);
2270 end loop;
2271 end if;
2273 return Empty;
2274 end Function_Interp_Has_Abstract_Op;
2276 ----------------------
2277 -- Get_First_Interp --
2278 ----------------------
2280 procedure Get_First_Interp
2281 (N : Node_Id;
2282 I : out Interp_Index;
2283 It : out Interp)
2285 Int_Ind : Interp_Index;
2286 Map_Ptr : Int;
2287 O_N : Node_Id;
2289 begin
2290 -- If a selected component is overloaded because the selector has
2291 -- multiple interpretations, the node is a call to a protected
2292 -- operation or an indirect call. Retrieve the interpretation from
2293 -- the selector name. The selected component may be overloaded as well
2294 -- if the prefix is overloaded. That case is unchanged.
2296 if Nkind (N) = N_Selected_Component
2297 and then Is_Overloaded (Selector_Name (N))
2298 then
2299 O_N := Selector_Name (N);
2300 else
2301 O_N := N;
2302 end if;
2304 Map_Ptr := Headers (Hash (O_N));
2305 while Map_Ptr /= No_Entry loop
2306 if Interp_Map.Table (Map_Ptr).Node = O_N then
2307 Int_Ind := Interp_Map.Table (Map_Ptr).Index;
2308 It := All_Interp.Table (Int_Ind);
2309 I := Int_Ind;
2310 return;
2311 else
2312 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2313 end if;
2314 end loop;
2316 -- Procedure should never be called if the node has no interpretations
2318 raise Program_Error;
2319 end Get_First_Interp;
2321 ---------------------
2322 -- Get_Next_Interp --
2323 ---------------------
2325 procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2326 begin
2327 I := I + 1;
2328 It := All_Interp.Table (I);
2329 end Get_Next_Interp;
2331 -------------------------
2332 -- Has_Compatible_Type --
2333 -------------------------
2335 function Has_Compatible_Type
2336 (N : Node_Id;
2337 Typ : Entity_Id) return Boolean
2339 I : Interp_Index;
2340 It : Interp;
2342 begin
2343 if N = Error then
2344 return False;
2345 end if;
2347 if Nkind (N) = N_Subtype_Indication
2348 or else not Is_Overloaded (N)
2349 then
2350 return
2351 Covers (Typ, Etype (N))
2353 -- Ada 2005 (AI-345): The context may be a synchronized interface.
2354 -- If the type is already frozen use the corresponding_record
2355 -- to check whether it is a proper descendant.
2357 or else
2358 (Is_Record_Type (Typ)
2359 and then Is_Concurrent_Type (Etype (N))
2360 and then Present (Corresponding_Record_Type (Etype (N)))
2361 and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2363 or else
2364 (Is_Concurrent_Type (Typ)
2365 and then Is_Record_Type (Etype (N))
2366 and then Present (Corresponding_Record_Type (Typ))
2367 and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2369 or else
2370 (not Is_Tagged_Type (Typ)
2371 and then Ekind (Typ) /= E_Anonymous_Access_Type
2372 and then Covers (Etype (N), Typ));
2374 -- Overloaded case
2376 else
2377 Get_First_Interp (N, I, It);
2378 while Present (It.Typ) loop
2379 if (Covers (Typ, It.Typ)
2380 and then
2381 (Scope (It.Nam) /= Standard_Standard
2382 or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2384 -- Ada 2005 (AI-345)
2386 or else
2387 (Is_Concurrent_Type (It.Typ)
2388 and then Present (Corresponding_Record_Type
2389 (Etype (It.Typ)))
2390 and then Covers (Typ, Corresponding_Record_Type
2391 (Etype (It.Typ))))
2393 or else (not Is_Tagged_Type (Typ)
2394 and then Ekind (Typ) /= E_Anonymous_Access_Type
2395 and then Covers (It.Typ, Typ))
2396 then
2397 return True;
2398 end if;
2400 Get_Next_Interp (I, It);
2401 end loop;
2403 return False;
2404 end if;
2405 end Has_Compatible_Type;
2407 ---------------------
2408 -- Has_Abstract_Op --
2409 ---------------------
2411 function Has_Abstract_Op
2412 (N : Node_Id;
2413 Typ : Entity_Id) return Entity_Id
2415 I : Interp_Index;
2416 It : Interp;
2418 begin
2419 if Is_Overloaded (N) then
2420 Get_First_Interp (N, I, It);
2421 while Present (It.Nam) loop
2422 if Present (It.Abstract_Op)
2423 and then Etype (It.Abstract_Op) = Typ
2424 then
2425 return It.Abstract_Op;
2426 end if;
2428 Get_Next_Interp (I, It);
2429 end loop;
2430 end if;
2432 return Empty;
2433 end Has_Abstract_Op;
2435 ----------
2436 -- Hash --
2437 ----------
2439 function Hash (N : Node_Id) return Int is
2440 begin
2441 -- Nodes have a size that is power of two, so to select significant
2442 -- bits only we remove the low-order bits.
2444 return ((Int (N) / 2 ** 5) mod Header_Size);
2445 end Hash;
2447 --------------
2448 -- Hides_Op --
2449 --------------
2451 function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2452 Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2453 begin
2454 return Operator_Matches_Spec (Op, F)
2455 and then (In_Open_Scopes (Scope (F))
2456 or else Scope (F) = Scope (Btyp)
2457 or else (not In_Open_Scopes (Scope (Btyp))
2458 and then not In_Use (Btyp)
2459 and then not In_Use (Scope (Btyp))));
2460 end Hides_Op;
2462 ------------------------
2463 -- Init_Interp_Tables --
2464 ------------------------
2466 procedure Init_Interp_Tables is
2467 begin
2468 All_Interp.Init;
2469 Interp_Map.Init;
2470 Headers := (others => No_Entry);
2471 end Init_Interp_Tables;
2473 -----------------------------------
2474 -- Interface_Present_In_Ancestor --
2475 -----------------------------------
2477 function Interface_Present_In_Ancestor
2478 (Typ : Entity_Id;
2479 Iface : Entity_Id) return Boolean
2481 Target_Typ : Entity_Id;
2482 Iface_Typ : Entity_Id;
2484 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2485 -- Returns True if Typ or some ancestor of Typ implements Iface
2487 -------------------------------
2488 -- Iface_Present_In_Ancestor --
2489 -------------------------------
2491 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2492 E : Entity_Id;
2493 AI : Entity_Id;
2494 Elmt : Elmt_Id;
2496 begin
2497 if Typ = Iface_Typ then
2498 return True;
2499 end if;
2501 -- Handle private types
2503 if Present (Full_View (Typ))
2504 and then not Is_Concurrent_Type (Full_View (Typ))
2505 then
2506 E := Full_View (Typ);
2507 else
2508 E := Typ;
2509 end if;
2511 loop
2512 if Present (Interfaces (E))
2513 and then Present (Interfaces (E))
2514 and then not Is_Empty_Elmt_List (Interfaces (E))
2515 then
2516 Elmt := First_Elmt (Interfaces (E));
2517 while Present (Elmt) loop
2518 AI := Node (Elmt);
2520 if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2521 return True;
2522 end if;
2524 Next_Elmt (Elmt);
2525 end loop;
2526 end if;
2528 exit when Etype (E) = E
2530 -- Handle private types
2532 or else (Present (Full_View (Etype (E)))
2533 and then Full_View (Etype (E)) = E);
2535 -- Check if the current type is a direct derivation of the
2536 -- interface
2538 if Etype (E) = Iface_Typ then
2539 return True;
2540 end if;
2542 -- Climb to the immediate ancestor handling private types
2544 if Present (Full_View (Etype (E))) then
2545 E := Full_View (Etype (E));
2546 else
2547 E := Etype (E);
2548 end if;
2549 end loop;
2551 return False;
2552 end Iface_Present_In_Ancestor;
2554 -- Start of processing for Interface_Present_In_Ancestor
2556 begin
2557 -- Iface might be a class-wide subtype, so we have to apply Base_Type
2559 if Is_Class_Wide_Type (Iface) then
2560 Iface_Typ := Etype (Base_Type (Iface));
2561 else
2562 Iface_Typ := Iface;
2563 end if;
2565 -- Handle subtypes
2567 Iface_Typ := Base_Type (Iface_Typ);
2569 if Is_Access_Type (Typ) then
2570 Target_Typ := Etype (Directly_Designated_Type (Typ));
2571 else
2572 Target_Typ := Typ;
2573 end if;
2575 if Is_Concurrent_Record_Type (Target_Typ) then
2576 Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2577 end if;
2579 Target_Typ := Base_Type (Target_Typ);
2581 -- In case of concurrent types we can't use the Corresponding Record_Typ
2582 -- to look for the interface because it is built by the expander (and
2583 -- hence it is not always available). For this reason we traverse the
2584 -- list of interfaces (available in the parent of the concurrent type)
2586 if Is_Concurrent_Type (Target_Typ) then
2587 if Present (Interface_List (Parent (Target_Typ))) then
2588 declare
2589 AI : Node_Id;
2591 begin
2592 AI := First (Interface_List (Parent (Target_Typ)));
2594 -- The progenitor itself may be a subtype of an interface type.
2596 while Present (AI) loop
2597 if Etype (AI) = Iface_Typ
2598 or else Base_Type (Etype (AI)) = Iface_Typ
2599 then
2600 return True;
2602 elsif Present (Interfaces (Etype (AI)))
2603 and then Iface_Present_In_Ancestor (Etype (AI))
2604 then
2605 return True;
2606 end if;
2608 Next (AI);
2609 end loop;
2610 end;
2611 end if;
2613 return False;
2614 end if;
2616 if Is_Class_Wide_Type (Target_Typ) then
2617 Target_Typ := Etype (Target_Typ);
2618 end if;
2620 if Ekind (Target_Typ) = E_Incomplete_Type then
2621 pragma Assert (Present (Non_Limited_View (Target_Typ)));
2622 Target_Typ := Non_Limited_View (Target_Typ);
2624 -- Protect the frontend against previously detected errors
2626 if Ekind (Target_Typ) = E_Incomplete_Type then
2627 return False;
2628 end if;
2629 end if;
2631 return Iface_Present_In_Ancestor (Target_Typ);
2632 end Interface_Present_In_Ancestor;
2634 ---------------------
2635 -- Intersect_Types --
2636 ---------------------
2638 function Intersect_Types (L, R : Node_Id) return Entity_Id is
2639 Index : Interp_Index;
2640 It : Interp;
2641 Typ : Entity_Id;
2643 function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2644 -- Find interpretation of right arg that has type compatible with T
2646 --------------------------
2647 -- Check_Right_Argument --
2648 --------------------------
2650 function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2651 Index : Interp_Index;
2652 It : Interp;
2653 T2 : Entity_Id;
2655 begin
2656 if not Is_Overloaded (R) then
2657 return Specific_Type (T, Etype (R));
2659 else
2660 Get_First_Interp (R, Index, It);
2661 loop
2662 T2 := Specific_Type (T, It.Typ);
2664 if T2 /= Any_Type then
2665 return T2;
2666 end if;
2668 Get_Next_Interp (Index, It);
2669 exit when No (It.Typ);
2670 end loop;
2672 return Any_Type;
2673 end if;
2674 end Check_Right_Argument;
2676 -- Start of processing for Intersect_Types
2678 begin
2679 if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2680 return Any_Type;
2681 end if;
2683 if not Is_Overloaded (L) then
2684 Typ := Check_Right_Argument (Etype (L));
2686 else
2687 Typ := Any_Type;
2688 Get_First_Interp (L, Index, It);
2689 while Present (It.Typ) loop
2690 Typ := Check_Right_Argument (It.Typ);
2691 exit when Typ /= Any_Type;
2692 Get_Next_Interp (Index, It);
2693 end loop;
2695 end if;
2697 -- If Typ is Any_Type, it means no compatible pair of types was found
2699 if Typ = Any_Type then
2700 if Nkind (Parent (L)) in N_Op then
2701 Error_Msg_N ("incompatible types for operator", Parent (L));
2703 elsif Nkind (Parent (L)) = N_Range then
2704 Error_Msg_N ("incompatible types given in constraint", Parent (L));
2706 -- Ada 2005 (AI-251): Complete the error notification
2708 elsif Is_Class_Wide_Type (Etype (R))
2709 and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2710 then
2711 Error_Msg_NE ("(Ada 2005) does not implement interface }",
2712 L, Etype (Class_Wide_Type (Etype (R))));
2713 else
2714 Error_Msg_N ("incompatible types", Parent (L));
2715 end if;
2716 end if;
2718 return Typ;
2719 end Intersect_Types;
2721 -----------------------
2722 -- In_Generic_Actual --
2723 -----------------------
2725 function In_Generic_Actual (Exp : Node_Id) return Boolean is
2726 Par : constant Node_Id := Parent (Exp);
2728 begin
2729 if No (Par) then
2730 return False;
2732 elsif Nkind (Par) in N_Declaration then
2733 if Nkind (Par) = N_Object_Declaration then
2734 return Present (Corresponding_Generic_Association (Par));
2735 else
2736 return False;
2737 end if;
2739 elsif Nkind (Par) = N_Object_Renaming_Declaration then
2740 return Present (Corresponding_Generic_Association (Par));
2742 elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2743 return False;
2745 else
2746 return In_Generic_Actual (Parent (Par));
2747 end if;
2748 end In_Generic_Actual;
2750 -----------------
2751 -- Is_Ancestor --
2752 -----------------
2754 function Is_Ancestor
2755 (T1 : Entity_Id;
2756 T2 : Entity_Id;
2757 Use_Full_View : Boolean := False) return Boolean
2759 BT1 : Entity_Id;
2760 BT2 : Entity_Id;
2761 Par : Entity_Id;
2763 begin
2764 BT1 := Base_Type (T1);
2765 BT2 := Base_Type (T2);
2767 -- Handle underlying view of records with unknown discriminants using
2768 -- the original entity that motivated the construction of this
2769 -- underlying record view (see Build_Derived_Private_Type).
2771 if Is_Underlying_Record_View (BT1) then
2772 BT1 := Underlying_Record_View (BT1);
2773 end if;
2775 if Is_Underlying_Record_View (BT2) then
2776 BT2 := Underlying_Record_View (BT2);
2777 end if;
2779 if BT1 = BT2 then
2780 return True;
2782 -- The predicate must look past privacy
2784 elsif Is_Private_Type (T1)
2785 and then Present (Full_View (T1))
2786 and then BT2 = Base_Type (Full_View (T1))
2787 then
2788 return True;
2790 elsif Is_Private_Type (T2)
2791 and then Present (Full_View (T2))
2792 and then BT1 = Base_Type (Full_View (T2))
2793 then
2794 return True;
2796 else
2797 -- Obtain the parent of the base type of T2 (use the full view if
2798 -- allowed).
2800 if Use_Full_View
2801 and then Is_Private_Type (BT2)
2802 and then Present (Full_View (BT2))
2803 then
2804 -- No climbing needed if its full view is the root type
2806 if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2807 return False;
2808 end if;
2810 Par := Etype (Full_View (BT2));
2812 else
2813 Par := Etype (BT2);
2814 end if;
2816 loop
2817 -- If there was a error on the type declaration, do not recurse
2819 if Error_Posted (Par) then
2820 return False;
2822 elsif BT1 = Base_Type (Par)
2823 or else (Is_Private_Type (T1)
2824 and then Present (Full_View (T1))
2825 and then Base_Type (Par) = Base_Type (Full_View (T1)))
2826 then
2827 return True;
2829 elsif Is_Private_Type (Par)
2830 and then Present (Full_View (Par))
2831 and then Full_View (Par) = BT1
2832 then
2833 return True;
2835 -- Root type found
2837 elsif Par = Root_Type (Par) then
2838 return False;
2840 -- Continue climbing
2842 else
2843 -- Use the full-view of private types (if allowed)
2845 if Use_Full_View
2846 and then Is_Private_Type (Par)
2847 and then Present (Full_View (Par))
2848 then
2849 Par := Etype (Full_View (Par));
2850 else
2851 Par := Etype (Par);
2852 end if;
2853 end if;
2854 end loop;
2855 end if;
2856 end Is_Ancestor;
2858 ---------------------------
2859 -- Is_Invisible_Operator --
2860 ---------------------------
2862 function Is_Invisible_Operator
2863 (N : Node_Id;
2864 T : Entity_Id) return Boolean
2866 Orig_Node : constant Node_Id := Original_Node (N);
2868 begin
2869 if Nkind (N) not in N_Op then
2870 return False;
2872 elsif not Comes_From_Source (N) then
2873 return False;
2875 elsif No (Universal_Interpretation (Right_Opnd (N))) then
2876 return False;
2878 elsif Nkind (N) in N_Binary_Op
2879 and then No (Universal_Interpretation (Left_Opnd (N)))
2880 then
2881 return False;
2883 else
2884 return Is_Numeric_Type (T)
2885 and then not In_Open_Scopes (Scope (T))
2886 and then not Is_Potentially_Use_Visible (T)
2887 and then not In_Use (T)
2888 and then not In_Use (Scope (T))
2889 and then
2890 (Nkind (Orig_Node) /= N_Function_Call
2891 or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
2892 or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
2893 and then not In_Instance;
2894 end if;
2895 end Is_Invisible_Operator;
2897 --------------------
2898 -- Is_Progenitor --
2899 --------------------
2901 function Is_Progenitor
2902 (Iface : Entity_Id;
2903 Typ : Entity_Id) return Boolean
2905 begin
2906 return Implements_Interface (Typ, Iface, Exclude_Parents => True);
2907 end Is_Progenitor;
2909 -------------------
2910 -- Is_Subtype_Of --
2911 -------------------
2913 function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
2914 S : Entity_Id;
2916 begin
2917 S := Ancestor_Subtype (T1);
2918 while Present (S) loop
2919 if S = T2 then
2920 return True;
2921 else
2922 S := Ancestor_Subtype (S);
2923 end if;
2924 end loop;
2926 return False;
2927 end Is_Subtype_Of;
2929 ------------------
2930 -- List_Interps --
2931 ------------------
2933 procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
2934 Index : Interp_Index;
2935 It : Interp;
2937 begin
2938 Get_First_Interp (Nam, Index, It);
2939 while Present (It.Nam) loop
2940 if Scope (It.Nam) = Standard_Standard
2941 and then Scope (It.Typ) /= Standard_Standard
2942 then
2943 Error_Msg_Sloc := Sloc (Parent (It.Typ));
2944 Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
2946 else
2947 Error_Msg_Sloc := Sloc (It.Nam);
2948 Error_Msg_NE ("\\& declared#!", Err, It.Nam);
2949 end if;
2951 Get_Next_Interp (Index, It);
2952 end loop;
2953 end List_Interps;
2955 -----------------
2956 -- New_Interps --
2957 -----------------
2959 procedure New_Interps (N : Node_Id) is
2960 Map_Ptr : Int;
2962 begin
2963 All_Interp.Append (No_Interp);
2965 Map_Ptr := Headers (Hash (N));
2967 if Map_Ptr = No_Entry then
2969 -- Place new node at end of table
2971 Interp_Map.Increment_Last;
2972 Headers (Hash (N)) := Interp_Map.Last;
2974 else
2975 -- Place node at end of chain, or locate its previous entry
2977 loop
2978 if Interp_Map.Table (Map_Ptr).Node = N then
2980 -- Node is already in the table, and is being rewritten.
2981 -- Start a new interp section, retain hash link.
2983 Interp_Map.Table (Map_Ptr).Node := N;
2984 Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
2985 Set_Is_Overloaded (N, True);
2986 return;
2988 else
2989 exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
2990 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2991 end if;
2992 end loop;
2994 -- Chain the new node
2996 Interp_Map.Increment_Last;
2997 Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
2998 end if;
3000 Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
3001 Set_Is_Overloaded (N, True);
3002 end New_Interps;
3004 ---------------------------
3005 -- Operator_Matches_Spec --
3006 ---------------------------
3008 function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
3009 Op_Name : constant Name_Id := Chars (Op);
3010 T : constant Entity_Id := Etype (New_S);
3011 New_F : Entity_Id;
3012 Old_F : Entity_Id;
3013 Num : Int;
3014 T1 : Entity_Id;
3015 T2 : Entity_Id;
3017 begin
3018 -- To verify that a predefined operator matches a given signature,
3019 -- do a case analysis of the operator classes. Function can have one
3020 -- or two formals and must have the proper result type.
3022 New_F := First_Formal (New_S);
3023 Old_F := First_Formal (Op);
3024 Num := 0;
3025 while Present (New_F) and then Present (Old_F) loop
3026 Num := Num + 1;
3027 Next_Formal (New_F);
3028 Next_Formal (Old_F);
3029 end loop;
3031 -- Definite mismatch if different number of parameters
3033 if Present (Old_F) or else Present (New_F) then
3034 return False;
3036 -- Unary operators
3038 elsif Num = 1 then
3039 T1 := Etype (First_Formal (New_S));
3041 if Nam_In (Op_Name, Name_Op_Subtract, Name_Op_Add, Name_Op_Abs) then
3042 return Base_Type (T1) = Base_Type (T)
3043 and then Is_Numeric_Type (T);
3045 elsif Op_Name = Name_Op_Not then
3046 return Base_Type (T1) = Base_Type (T)
3047 and then Valid_Boolean_Arg (Base_Type (T));
3049 else
3050 return False;
3051 end if;
3053 -- Binary operators
3055 else
3056 T1 := Etype (First_Formal (New_S));
3057 T2 := Etype (Next_Formal (First_Formal (New_S)));
3059 if Nam_In (Op_Name, Name_Op_And, Name_Op_Or, Name_Op_Xor) then
3060 return Base_Type (T1) = Base_Type (T2)
3061 and then Base_Type (T1) = Base_Type (T)
3062 and then Valid_Boolean_Arg (Base_Type (T));
3064 elsif Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne) then
3065 return Base_Type (T1) = Base_Type (T2)
3066 and then not Is_Limited_Type (T1)
3067 and then Is_Boolean_Type (T);
3069 elsif Nam_In (Op_Name, Name_Op_Lt, Name_Op_Le,
3070 Name_Op_Gt, Name_Op_Ge)
3071 then
3072 return Base_Type (T1) = Base_Type (T2)
3073 and then Valid_Comparison_Arg (T1)
3074 and then Is_Boolean_Type (T);
3076 elsif Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
3077 return Base_Type (T1) = Base_Type (T2)
3078 and then Base_Type (T1) = Base_Type (T)
3079 and then Is_Numeric_Type (T);
3081 -- For division and multiplication, a user-defined function does not
3082 -- match the predefined universal_fixed operation, except in Ada 83.
3084 elsif Op_Name = Name_Op_Divide then
3085 return (Base_Type (T1) = Base_Type (T2)
3086 and then Base_Type (T1) = Base_Type (T)
3087 and then Is_Numeric_Type (T)
3088 and then (not Is_Fixed_Point_Type (T)
3089 or else Ada_Version = Ada_83))
3091 -- Mixed_Mode operations on fixed-point types
3093 or else (Base_Type (T1) = Base_Type (T)
3094 and then Base_Type (T2) = Base_Type (Standard_Integer)
3095 and then Is_Fixed_Point_Type (T))
3097 -- A user defined operator can also match (and hide) a mixed
3098 -- operation on universal literals.
3100 or else (Is_Integer_Type (T2)
3101 and then Is_Floating_Point_Type (T1)
3102 and then Base_Type (T1) = Base_Type (T));
3104 elsif Op_Name = Name_Op_Multiply then
3105 return (Base_Type (T1) = Base_Type (T2)
3106 and then Base_Type (T1) = Base_Type (T)
3107 and then Is_Numeric_Type (T)
3108 and then (not Is_Fixed_Point_Type (T)
3109 or else Ada_Version = Ada_83))
3111 -- Mixed_Mode operations on fixed-point types
3113 or else (Base_Type (T1) = Base_Type (T)
3114 and then Base_Type (T2) = Base_Type (Standard_Integer)
3115 and then Is_Fixed_Point_Type (T))
3117 or else (Base_Type (T2) = Base_Type (T)
3118 and then Base_Type (T1) = Base_Type (Standard_Integer)
3119 and then Is_Fixed_Point_Type (T))
3121 or else (Is_Integer_Type (T2)
3122 and then Is_Floating_Point_Type (T1)
3123 and then Base_Type (T1) = Base_Type (T))
3125 or else (Is_Integer_Type (T1)
3126 and then Is_Floating_Point_Type (T2)
3127 and then Base_Type (T2) = Base_Type (T));
3129 elsif Nam_In (Op_Name, Name_Op_Mod, Name_Op_Rem) then
3130 return Base_Type (T1) = Base_Type (T2)
3131 and then Base_Type (T1) = Base_Type (T)
3132 and then Is_Integer_Type (T);
3134 elsif Op_Name = Name_Op_Expon then
3135 return Base_Type (T1) = Base_Type (T)
3136 and then Is_Numeric_Type (T)
3137 and then Base_Type (T2) = Base_Type (Standard_Integer);
3139 elsif Op_Name = Name_Op_Concat then
3140 return Is_Array_Type (T)
3141 and then (Base_Type (T) = Base_Type (Etype (Op)))
3142 and then (Base_Type (T1) = Base_Type (T)
3143 or else
3144 Base_Type (T1) = Base_Type (Component_Type (T)))
3145 and then (Base_Type (T2) = Base_Type (T)
3146 or else
3147 Base_Type (T2) = Base_Type (Component_Type (T)));
3149 else
3150 return False;
3151 end if;
3152 end if;
3153 end Operator_Matches_Spec;
3155 -------------------
3156 -- Remove_Interp --
3157 -------------------
3159 procedure Remove_Interp (I : in out Interp_Index) is
3160 II : Interp_Index;
3162 begin
3163 -- Find end of interp list and copy downward to erase the discarded one
3165 II := I + 1;
3166 while Present (All_Interp.Table (II).Typ) loop
3167 II := II + 1;
3168 end loop;
3170 for J in I + 1 .. II loop
3171 All_Interp.Table (J - 1) := All_Interp.Table (J);
3172 end loop;
3174 -- Back up interp index to insure that iterator will pick up next
3175 -- available interpretation.
3177 I := I - 1;
3178 end Remove_Interp;
3180 ------------------
3181 -- Save_Interps --
3182 ------------------
3184 procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3185 Map_Ptr : Int;
3186 O_N : Node_Id := Old_N;
3188 begin
3189 if Is_Overloaded (Old_N) then
3190 Set_Is_Overloaded (New_N);
3192 if Nkind (Old_N) = N_Selected_Component
3193 and then Is_Overloaded (Selector_Name (Old_N))
3194 then
3195 O_N := Selector_Name (Old_N);
3196 end if;
3198 Map_Ptr := Headers (Hash (O_N));
3200 while Interp_Map.Table (Map_Ptr).Node /= O_N loop
3201 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3202 pragma Assert (Map_Ptr /= No_Entry);
3203 end loop;
3205 New_Interps (New_N);
3206 Interp_Map.Table (Interp_Map.Last).Index :=
3207 Interp_Map.Table (Map_Ptr).Index;
3208 end if;
3209 end Save_Interps;
3211 -------------------
3212 -- Specific_Type --
3213 -------------------
3215 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3216 T1 : constant Entity_Id := Available_View (Typ_1);
3217 T2 : constant Entity_Id := Available_View (Typ_2);
3218 B1 : constant Entity_Id := Base_Type (T1);
3219 B2 : constant Entity_Id := Base_Type (T2);
3221 function Is_Remote_Access (T : Entity_Id) return Boolean;
3222 -- Check whether T is the equivalent type of a remote access type.
3223 -- If distribution is enabled, T is a legal context for Null.
3225 ----------------------
3226 -- Is_Remote_Access --
3227 ----------------------
3229 function Is_Remote_Access (T : Entity_Id) return Boolean is
3230 begin
3231 return Is_Record_Type (T)
3232 and then (Is_Remote_Call_Interface (T)
3233 or else Is_Remote_Types (T))
3234 and then Present (Corresponding_Remote_Type (T))
3235 and then Is_Access_Type (Corresponding_Remote_Type (T));
3236 end Is_Remote_Access;
3238 -- Start of processing for Specific_Type
3240 begin
3241 if T1 = Any_Type or else T2 = Any_Type then
3242 return Any_Type;
3243 end if;
3245 if B1 = B2 then
3246 return B1;
3248 elsif (T1 = Universal_Integer and then Is_Integer_Type (T2))
3249 or else (T1 = Universal_Real and then Is_Real_Type (T2))
3250 or else (T1 = Universal_Fixed and then Is_Fixed_Point_Type (T2))
3251 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
3252 then
3253 return B2;
3255 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
3256 or else (T2 = Universal_Real and then Is_Real_Type (T1))
3257 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
3258 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
3259 then
3260 return B1;
3262 elsif T2 = Any_String and then Is_String_Type (T1) then
3263 return B1;
3265 elsif T1 = Any_String and then Is_String_Type (T2) then
3266 return B2;
3268 elsif T2 = Any_Character and then Is_Character_Type (T1) then
3269 return B1;
3271 elsif T1 = Any_Character and then Is_Character_Type (T2) then
3272 return B2;
3274 elsif T1 = Any_Access
3275 and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3276 then
3277 return T2;
3279 elsif T2 = Any_Access
3280 and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3281 then
3282 return T1;
3284 -- In an instance, the specific type may have a private view. Use full
3285 -- view to check legality.
3287 elsif T2 = Any_Access
3288 and then Is_Private_Type (T1)
3289 and then Present (Full_View (T1))
3290 and then Is_Access_Type (Full_View (T1))
3291 and then In_Instance
3292 then
3293 return T1;
3295 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
3296 return T1;
3298 elsif T1 = Any_Composite and then Is_Aggregate_Type (T2) then
3299 return T2;
3301 elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3302 return T2;
3304 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3305 return T1;
3307 -- ----------------------------------------------------------
3308 -- Special cases for equality operators (all other predefined
3309 -- operators can never apply to tagged types)
3310 -- ----------------------------------------------------------
3312 -- Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3313 -- interface
3315 elsif Is_Class_Wide_Type (T1)
3316 and then Is_Class_Wide_Type (T2)
3317 and then Is_Interface (Etype (T2))
3318 then
3319 return T1;
3321 -- Ada 2005 (AI-251): T1 is a concrete type that implements the
3322 -- class-wide interface T2
3324 elsif Is_Class_Wide_Type (T2)
3325 and then Is_Interface (Etype (T2))
3326 and then Interface_Present_In_Ancestor (Typ => T1,
3327 Iface => Etype (T2))
3328 then
3329 return T1;
3331 elsif Is_Class_Wide_Type (T1)
3332 and then Is_Ancestor (Root_Type (T1), T2)
3333 then
3334 return T1;
3336 elsif Is_Class_Wide_Type (T2)
3337 and then Is_Ancestor (Root_Type (T2), T1)
3338 then
3339 return T2;
3341 elsif Ekind_In (B1, E_Access_Subprogram_Type,
3342 E_Access_Protected_Subprogram_Type)
3343 and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3344 and then Is_Access_Type (T2)
3345 then
3346 return T2;
3348 elsif Ekind_In (B2, E_Access_Subprogram_Type,
3349 E_Access_Protected_Subprogram_Type)
3350 and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3351 and then Is_Access_Type (T1)
3352 then
3353 return T1;
3355 elsif Ekind_In (T1, E_Allocator_Type,
3356 E_Access_Attribute_Type,
3357 E_Anonymous_Access_Type)
3358 and then Is_Access_Type (T2)
3359 then
3360 return T2;
3362 elsif Ekind_In (T2, E_Allocator_Type,
3363 E_Access_Attribute_Type,
3364 E_Anonymous_Access_Type)
3365 and then Is_Access_Type (T1)
3366 then
3367 return T1;
3369 -- If none of the above cases applies, types are not compatible
3371 else
3372 return Any_Type;
3373 end if;
3374 end Specific_Type;
3376 ---------------------
3377 -- Set_Abstract_Op --
3378 ---------------------
3380 procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3381 begin
3382 All_Interp.Table (I).Abstract_Op := V;
3383 end Set_Abstract_Op;
3385 -----------------------
3386 -- Valid_Boolean_Arg --
3387 -----------------------
3389 -- In addition to booleans and arrays of booleans, we must include
3390 -- aggregates as valid boolean arguments, because in the first pass of
3391 -- resolution their components are not examined. If it turns out not to be
3392 -- an aggregate of booleans, this will be diagnosed in Resolve.
3393 -- Any_Composite must be checked for prior to the array type checks because
3394 -- Any_Composite does not have any associated indexes.
3396 function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3397 begin
3398 if Is_Boolean_Type (T)
3399 or else Is_Modular_Integer_Type (T)
3400 or else T = Universal_Integer
3401 or else T = Any_Composite
3402 then
3403 return True;
3405 elsif Is_Array_Type (T)
3406 and then T /= Any_String
3407 and then Number_Dimensions (T) = 1
3408 and then Is_Boolean_Type (Component_Type (T))
3409 and then
3410 ((not Is_Private_Composite (T) and then not Is_Limited_Composite (T))
3411 or else In_Instance
3412 or else Available_Full_View_Of_Component (T))
3413 then
3414 return True;
3416 else
3417 return False;
3418 end if;
3419 end Valid_Boolean_Arg;
3421 --------------------------
3422 -- Valid_Comparison_Arg --
3423 --------------------------
3425 function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3426 begin
3428 if T = Any_Composite then
3429 return False;
3431 elsif Is_Discrete_Type (T)
3432 or else Is_Real_Type (T)
3433 then
3434 return True;
3436 elsif Is_Array_Type (T)
3437 and then Number_Dimensions (T) = 1
3438 and then Is_Discrete_Type (Component_Type (T))
3439 and then (not Is_Private_Composite (T) or else In_Instance)
3440 and then (not Is_Limited_Composite (T) or else In_Instance)
3441 then
3442 return True;
3444 elsif Is_Array_Type (T)
3445 and then Number_Dimensions (T) = 1
3446 and then Is_Discrete_Type (Component_Type (T))
3447 and then Available_Full_View_Of_Component (T)
3448 then
3449 return True;
3451 elsif Is_String_Type (T) then
3452 return True;
3453 else
3454 return False;
3455 end if;
3456 end Valid_Comparison_Arg;
3458 ------------------
3459 -- Write_Interp --
3460 ------------------
3462 procedure Write_Interp (It : Interp) is
3463 begin
3464 Write_Str ("Nam: ");
3465 Print_Tree_Node (It.Nam);
3466 Write_Str ("Typ: ");
3467 Print_Tree_Node (It.Typ);
3468 Write_Str ("Abstract_Op: ");
3469 Print_Tree_Node (It.Abstract_Op);
3470 end Write_Interp;
3472 ----------------------
3473 -- Write_Interp_Ref --
3474 ----------------------
3476 procedure Write_Interp_Ref (Map_Ptr : Int) is
3477 begin
3478 Write_Str (" Node: ");
3479 Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
3480 Write_Str (" Index: ");
3481 Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
3482 Write_Str (" Next: ");
3483 Write_Int (Interp_Map.Table (Map_Ptr).Next);
3484 Write_Eol;
3485 end Write_Interp_Ref;
3487 ---------------------
3488 -- Write_Overloads --
3489 ---------------------
3491 procedure Write_Overloads (N : Node_Id) is
3492 I : Interp_Index;
3493 It : Interp;
3494 Nam : Entity_Id;
3496 begin
3497 Write_Str ("Overloads: ");
3498 Print_Node_Briefly (N);
3500 if Nkind (N) not in N_Has_Entity then
3501 return;
3502 end if;
3504 if not Is_Overloaded (N) then
3505 Write_Str ("Non-overloaded entity ");
3506 Write_Eol;
3507 Write_Entity_Info (Entity (N), " ");
3509 else
3510 Get_First_Interp (N, I, It);
3511 Write_Str ("Overloaded entity ");
3512 Write_Eol;
3513 Write_Str (" Name Type Abstract Op");
3514 Write_Eol;
3515 Write_Str ("===============================================");
3516 Write_Eol;
3517 Nam := It.Nam;
3519 while Present (Nam) loop
3520 Write_Int (Int (Nam));
3521 Write_Str (" ");
3522 Write_Name (Chars (Nam));
3523 Write_Str (" ");
3524 Write_Int (Int (It.Typ));
3525 Write_Str (" ");
3526 Write_Name (Chars (It.Typ));
3528 if Present (It.Abstract_Op) then
3529 Write_Str (" ");
3530 Write_Int (Int (It.Abstract_Op));
3531 Write_Str (" ");
3532 Write_Name (Chars (It.Abstract_Op));
3533 end if;
3535 Write_Eol;
3536 Get_Next_Interp (I, It);
3537 Nam := It.Nam;
3538 end loop;
3539 end if;
3540 end Write_Overloads;
3542 end Sem_Type;