ada: Fix renaming of predefined equality operator for unchecked union types
[official-gcc.git] / gcc / ada / inline.adb
blobedb90a9fe20bf84a6370af07addb14e49c99a99c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Alloc;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Fname.UF; use Fname.UF;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Nlists; use Nlists;
45 with Output; use Output;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Ch10; use Sem_Ch10;
49 with Sem_Ch12; use Sem_Ch12;
50 with Sem_Prag; use Sem_Prag;
51 with Sem_Res; use Sem_Res;
52 with Sem_Util; use Sem_Util;
53 with Sinfo; use Sinfo;
54 with Sinfo.Nodes; use Sinfo.Nodes;
55 with Sinfo.Utils; use Sinfo.Utils;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Stand; use Stand;
59 with Table;
60 with Tbuild; use Tbuild;
61 with Uintp; use Uintp;
62 with Uname; use Uname;
64 with GNAT.HTable;
66 package body Inline is
68 Check_Inlining_Restrictions : constant Boolean := True;
69 -- In the following cases the frontend rejects inlining because they
70 -- are not handled well by the backend. This variable facilitates
71 -- disabling these restrictions to evaluate future versions of the
72 -- GCC backend in which some of the restrictions may be supported.
74 -- - subprograms that have:
75 -- - nested subprograms
76 -- - instantiations
77 -- - package declarations
78 -- - task or protected object declarations
79 -- - some of the following statements:
80 -- - abort
81 -- - asynchronous-select
82 -- - conditional-entry-call
83 -- - delay-relative
84 -- - delay-until
85 -- - selective-accept
86 -- - timed-entry-call
88 Inlined_Calls : Elist_Id;
89 -- List of frontend inlined calls
91 Backend_Calls : Elist_Id;
92 -- List of inline calls passed to the backend
94 Backend_Instances : Elist_Id;
95 -- List of instances inlined for the backend
97 Backend_Inlined_Subps : Elist_Id;
98 -- List of subprograms inlined by the backend
100 Backend_Not_Inlined_Subps : Elist_Id;
101 -- List of subprograms that cannot be inlined by the backend
103 -----------------------------
104 -- Pending_Instantiations --
105 -----------------------------
107 -- We make entries in this table for the pending instantiations of generic
108 -- bodies that are created during semantic analysis. After the analysis is
109 -- complete, calling Instantiate_Bodies performs the actual instantiations.
111 package Pending_Instantiations is new Table.Table (
112 Table_Component_Type => Pending_Body_Info,
113 Table_Index_Type => Int,
114 Table_Low_Bound => 0,
115 Table_Initial => Alloc.Pending_Instantiations_Initial,
116 Table_Increment => Alloc.Pending_Instantiations_Increment,
117 Table_Name => "Pending_Instantiations");
119 -------------------------------------
120 -- Called_Pending_Instantiations --
121 -------------------------------------
123 -- With back-end inlining, the pending instantiations that are not in the
124 -- main unit or subunit are performed only after a call to the subprogram
125 -- instance, or to a subprogram within the package instance, is inlined.
126 -- Since such a call can be within a subsequent pending instantiation,
127 -- we make entries in this table that stores the index of these "called"
128 -- pending instantiations and perform them when the table is populated.
130 package Called_Pending_Instantiations is new Table.Table (
131 Table_Component_Type => Int,
132 Table_Index_Type => Int,
133 Table_Low_Bound => 0,
134 Table_Initial => Alloc.Pending_Instantiations_Initial,
135 Table_Increment => Alloc.Pending_Instantiations_Increment,
136 Table_Name => "Called_Pending_Instantiations");
138 ---------------------------------
139 -- To_Pending_Instantiations --
140 ---------------------------------
142 -- With back-end inlining, we also need to have a map from the pending
143 -- instantiations to their index in the Pending_Instantiations table.
145 Node_Table_Size : constant := 257;
146 -- Number of headers in hash table
148 subtype Node_Header_Num is Integer range 0 .. Node_Table_Size - 1;
149 -- Range of headers in hash table
151 function Node_Hash (Id : Node_Id) return Node_Header_Num;
152 -- Simple hash function for Node_Ids
154 package To_Pending_Instantiations is new GNAT.Htable.Simple_HTable
155 (Header_Num => Node_Header_Num,
156 Element => Int,
157 No_Element => -1,
158 Key => Node_Id,
159 Hash => Node_Hash,
160 Equal => "=");
162 -----------------
163 -- Node_Hash --
164 -----------------
166 function Node_Hash (Id : Node_Id) return Node_Header_Num is
167 begin
168 return Node_Header_Num (Id mod Node_Table_Size);
169 end Node_Hash;
171 --------------------
172 -- Inlined Bodies --
173 --------------------
175 -- Inlined functions are actually placed in line by the backend if the
176 -- corresponding bodies are available (i.e. compiled). Whenever we find
177 -- a call to an inlined subprogram, we add the name of the enclosing
178 -- compilation unit to a worklist. After all compilation, and after
179 -- expansion of generic bodies, we traverse the list of pending bodies
180 -- and compile them as well.
182 package Inlined_Bodies is new Table.Table (
183 Table_Component_Type => Entity_Id,
184 Table_Index_Type => Int,
185 Table_Low_Bound => 0,
186 Table_Initial => Alloc.Inlined_Bodies_Initial,
187 Table_Increment => Alloc.Inlined_Bodies_Increment,
188 Table_Name => "Inlined_Bodies");
190 -----------------------
191 -- Inline Processing --
192 -----------------------
194 -- For each call to an inlined subprogram, we make entries in a table
195 -- that stores caller and callee, and indicates the call direction from
196 -- one to the other. We also record the compilation unit that contains
197 -- the callee. After analyzing the bodies of all such compilation units,
198 -- we compute the transitive closure of inlined subprograms called from
199 -- the main compilation unit and make it available to the code generator
200 -- in no particular order, thus allowing cycles in the call graph.
202 Last_Inlined : Entity_Id := Empty;
204 -- For each entry in the table we keep a list of successors in topological
205 -- order, i.e. callers of the current subprogram.
207 type Subp_Index is new Nat;
208 No_Subp : constant Subp_Index := 0;
210 -- The subprogram entities are hashed into the Inlined table
212 Num_Hash_Headers : constant := 512;
214 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
215 of Subp_Index;
217 type Succ_Index is new Nat;
218 No_Succ : constant Succ_Index := 0;
220 type Succ_Info is record
221 Subp : Subp_Index;
222 Next : Succ_Index;
223 end record;
225 -- The following table stores list elements for the successor lists. These
226 -- lists cannot be chained directly through entries in the Inlined table,
227 -- because a given subprogram can appear in several such lists.
229 package Successors is new Table.Table (
230 Table_Component_Type => Succ_Info,
231 Table_Index_Type => Succ_Index,
232 Table_Low_Bound => 1,
233 Table_Initial => Alloc.Successors_Initial,
234 Table_Increment => Alloc.Successors_Increment,
235 Table_Name => "Successors");
237 type Subp_Info is record
238 Name : Entity_Id := Empty;
239 Next : Subp_Index := No_Subp;
240 First_Succ : Succ_Index := No_Succ;
241 Main_Call : Boolean := False;
242 Processed : Boolean := False;
243 end record;
245 package Inlined is new Table.Table (
246 Table_Component_Type => Subp_Info,
247 Table_Index_Type => Subp_Index,
248 Table_Low_Bound => 1,
249 Table_Initial => Alloc.Inlined_Initial,
250 Table_Increment => Alloc.Inlined_Increment,
251 Table_Name => "Inlined");
253 -----------------------
254 -- Local Subprograms --
255 -----------------------
257 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
258 -- Make two entries in Inlined table, for an inlined subprogram being
259 -- called, and for the inlined subprogram that contains the call. If
260 -- the call is in the main compilation unit, Caller is Empty.
262 procedure Add_Inlined_Instance (E : Entity_Id);
263 -- Add instance E to the list of inlined instances for the unit
265 procedure Add_Inlined_Subprogram (E : Entity_Id);
266 -- Add subprogram E to the list of inlined subprograms for the unit
268 function Add_Subp (E : Entity_Id) return Subp_Index;
269 -- Make entry in Inlined table for subprogram E, or return table index
270 -- that already holds E.
272 procedure Establish_Actual_Mapping_For_Inlined_Call
273 (N : Node_Id;
274 Subp : Entity_Id;
275 Decls : List_Id;
276 Body_Or_Expr_To_Check : Node_Id);
277 -- Establish a mapping from formals to actuals in the call N for the target
278 -- subprogram Subp, and create temporaries or renamings when needed for the
279 -- actuals that are expressions (except for actuals given by simple entity
280 -- names or literals) or that are scalars that require copying to preserve
281 -- semantics. Any temporary objects that are created are inserted in Decls.
282 -- Body_Or_Expr_To_Check indicates the target body (or possibly expression
283 -- of an expression function), which may be traversed to count formal uses.
285 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
286 pragma Inline (Get_Code_Unit_Entity);
287 -- Return the entity node for the unit containing E. Always return the spec
288 -- for a package.
290 function Has_Initialized_Type (E : Entity_Id) return Boolean;
291 -- If a candidate for inlining contains type declarations for types with
292 -- nontrivial initialization procedures, they are not worth inlining.
294 function Has_Single_Return (N : Node_Id) return Boolean;
295 -- In general we cannot inline functions that return unconstrained type.
296 -- However, we can handle such functions if all return statements return
297 -- a local variable that is the first declaration in the body of the
298 -- function. In that case the call can be replaced by that local
299 -- variable as is done for other inlined calls.
301 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
302 -- Return True if E is in the main unit or its spec or in a subunit
304 function Is_Nested (E : Entity_Id) return Boolean;
305 -- If the function is nested inside some other function, it will always
306 -- be compiled if that function is, so don't add it to the inline list.
307 -- We cannot compile a nested function outside the scope of the containing
308 -- function anyway. This is also the case if the function is defined in a
309 -- task body or within an entry (for example, an initialization procedure).
311 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
312 -- Remove all aspects and/or pragmas that have no meaning in inlined body
313 -- Body_Decl. The analysis of these items is performed on the non-inlined
314 -- body. The items currently removed are:
315 -- Always_Terminates
316 -- Contract_Cases
317 -- Global
318 -- Depends
319 -- Exceptional_Cases
320 -- Postcondition
321 -- Precondition
322 -- Refined_Global
323 -- Refined_Depends
324 -- Refined_Post
325 -- Subprogram_Variant
326 -- Test_Case
327 -- Unmodified
328 -- Unreferenced
330 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id);
331 -- Reset the Renamed_Object field to Empty on all formals of Subp, which
332 -- can be set by a call to Establish_Actual_Mapping_For_Inlined_Call.
334 ------------------------------
335 -- Deferred Cleanup Actions --
336 ------------------------------
338 -- The cleanup actions for scopes that contain package instantiations with
339 -- a body are delayed until after the package body is instantiated. because
340 -- the body may contain finalizable objects or other constructs that affect
341 -- the cleanup code. A scope that contains such instantiations only needs
342 -- to be finalized once, even though it may contain more than one instance.
343 -- We keep a list of scopes that must still be finalized and Cleanup_Scopes
344 -- will be invoked after all the body instantiations have been completed.
346 To_Clean : Elist_Id;
348 procedure Add_Scope_To_Clean (Scop : Entity_Id);
349 -- Build set of scopes on which cleanup actions must be performed
351 procedure Cleanup_Scopes;
352 -- Complete cleanup actions on scopes that need it
354 --------------
355 -- Add_Call --
356 --------------
358 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
359 P1 : constant Subp_Index := Add_Subp (Called);
360 P2 : Subp_Index;
361 J : Succ_Index;
363 begin
364 if Present (Caller) then
365 P2 := Add_Subp (Caller);
367 -- Add P1 to the list of successors of P2, if not already there.
368 -- Note that P2 may contain more than one call to P1, and only
369 -- one needs to be recorded.
371 J := Inlined.Table (P2).First_Succ;
372 while J /= No_Succ loop
373 if Successors.Table (J).Subp = P1 then
374 return;
375 end if;
377 J := Successors.Table (J).Next;
378 end loop;
380 -- On exit, make a successor entry for P1
382 Successors.Increment_Last;
383 Successors.Table (Successors.Last).Subp := P1;
384 Successors.Table (Successors.Last).Next :=
385 Inlined.Table (P2).First_Succ;
386 Inlined.Table (P2).First_Succ := Successors.Last;
387 else
388 Inlined.Table (P1).Main_Call := True;
389 end if;
390 end Add_Call;
392 ----------------------
393 -- Add_Inlined_Body --
394 ----------------------
396 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
398 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
399 -- Level of inlining for the call: Dont_Inline means no inlining,
400 -- Inline_Call means that only the call is considered for inlining,
401 -- Inline_Package means that the call is considered for inlining and
402 -- its package compiled and scanned for more inlining opportunities.
404 function Is_Non_Loading_Expression_Function
405 (Id : Entity_Id) return Boolean;
406 -- Determine whether arbitrary entity Id denotes a subprogram which is
407 -- either
409 -- * An expression function
411 -- * A function completed by an expression function where both the
412 -- spec and body are in the same context.
414 function Must_Inline return Inline_Level_Type;
415 -- Inlining is only done if the call statement N is in the main unit,
416 -- or within the body of another inlined subprogram.
418 ----------------------------------------
419 -- Is_Non_Loading_Expression_Function --
420 ----------------------------------------
422 function Is_Non_Loading_Expression_Function
423 (Id : Entity_Id) return Boolean
425 Body_Decl : Node_Id;
426 Body_Id : Entity_Id;
427 Spec_Decl : Node_Id;
429 begin
430 -- A stand-alone expression function is transformed into a spec-body
431 -- pair in-place. Since both the spec and body are in the same list,
432 -- the inlining of such an expression function does not need to load
433 -- anything extra.
435 if Is_Expression_Function (Id) then
436 return True;
438 -- A function may be completed by an expression function
440 elsif Ekind (Id) = E_Function then
441 Spec_Decl := Unit_Declaration_Node (Id);
443 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
444 Body_Id := Corresponding_Body (Spec_Decl);
446 if Present (Body_Id) then
447 Body_Decl := Unit_Declaration_Node (Body_Id);
449 -- The inlining of a completing expression function does
450 -- not need to load anything extra when both the spec and
451 -- body are in the same context.
453 return
454 Was_Expression_Function (Body_Decl)
455 and then Parent (Spec_Decl) = Parent (Body_Decl);
456 end if;
457 end if;
458 end if;
460 return False;
461 end Is_Non_Loading_Expression_Function;
463 -----------------
464 -- Must_Inline --
465 -----------------
467 function Must_Inline return Inline_Level_Type is
468 Scop : Entity_Id;
469 Comp : Node_Id;
471 begin
472 -- Check if call is in main unit
474 Scop := Current_Scope;
476 -- Do not try to inline if scope is standard. This could happen, for
477 -- example, for a call to Add_Global_Declaration, and it causes
478 -- trouble to try to inline at this level.
480 if Scop = Standard_Standard then
481 return Dont_Inline;
482 end if;
484 -- Otherwise lookup scope stack to outer scope
486 while Scope (Scop) /= Standard_Standard
487 and then not Is_Child_Unit (Scop)
488 loop
489 Scop := Scope (Scop);
490 end loop;
492 Comp := Parent (Scop);
493 while Nkind (Comp) /= N_Compilation_Unit loop
494 Comp := Parent (Comp);
495 end loop;
497 -- If the call is in the main unit, inline the call and compile the
498 -- package of the subprogram to find more calls to be inlined.
500 if Comp = Cunit (Main_Unit)
501 or else Comp = Library_Unit (Cunit (Main_Unit))
502 then
503 Add_Call (E);
504 return Inline_Package;
505 end if;
507 -- The call is not in the main unit. See if it is in some subprogram
508 -- that can be inlined outside its unit. If so, inline the call and,
509 -- if the inlining level is set to 1, stop there; otherwise also
510 -- compile the package as above.
512 Scop := Current_Scope;
513 while Scope (Scop) /= Standard_Standard
514 and then not Is_Child_Unit (Scop)
515 loop
516 if Is_Overloadable (Scop)
517 and then Is_Inlined (Scop)
518 and then not Is_Nested (Scop)
519 then
520 Add_Call (E, Scop);
522 if Inline_Level = 1 then
523 return Inline_Call;
524 else
525 return Inline_Package;
526 end if;
527 end if;
529 Scop := Scope (Scop);
530 end loop;
532 return Dont_Inline;
533 end Must_Inline;
535 Inst : Entity_Id;
536 Inst_Decl : Node_Id;
537 Level : Inline_Level_Type;
539 -- Start of processing for Add_Inlined_Body
541 begin
542 Append_New_Elmt (N, To => Backend_Calls);
544 -- Skip subprograms that cannot or need not be inlined outside their
545 -- unit or parent subprogram.
547 if Is_Abstract_Subprogram (E)
548 or else Convention (E) = Convention_Protected
549 or else In_Main_Unit_Or_Subunit (E)
550 or else Is_Nested (E)
551 then
552 return;
553 end if;
555 -- Find out whether the call must be inlined. Unless the result is
556 -- Dont_Inline, Must_Inline also creates an edge for the call in the
557 -- callgraph; however, it will not be activated until after Is_Called
558 -- is set on the subprogram.
560 Level := Must_Inline;
562 if Level = Dont_Inline then
563 return;
564 end if;
566 -- If a previous call to the subprogram has been inlined, nothing to do
568 if Is_Called (E) then
569 return;
570 end if;
572 -- If the subprogram is an instance, then inline the instance
574 if Is_Generic_Instance (E) then
575 Add_Inlined_Instance (E);
576 end if;
578 -- Mark the subprogram as called
580 Set_Is_Called (E);
582 -- If the call was generated by the compiler and is to a subprogram in
583 -- a run-time unit, we need to suppress debugging information for it,
584 -- so that the code that is eventually inlined will not affect the
585 -- debugging of the program. We do not do it if the call comes from
586 -- source because, even if the call is inlined, the user may expect it
587 -- to be present in the debugging information.
589 if not Comes_From_Source (N)
590 and then In_Extended_Main_Source_Unit (N)
591 and then Is_Predefined_Unit (Get_Source_Unit (E))
592 then
593 Set_Needs_Debug_Info (E, False);
594 end if;
596 -- If the subprogram is an expression function, or is completed by one
597 -- where both the spec and body are in the same context, then there is
598 -- no need to load any package body since the body of the function is
599 -- in the spec.
601 if Is_Non_Loading_Expression_Function (E) then
602 return;
603 end if;
605 -- Find unit containing E, and add to list of inlined bodies if needed.
606 -- Library-level functions must be handled specially, because there is
607 -- no enclosing package to retrieve. In this case, it is the body of
608 -- the function that will have to be loaded.
610 declare
611 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
613 begin
614 if Pack = E then
615 Inlined_Bodies.Increment_Last;
616 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
618 else
619 pragma Assert (Ekind (Pack) = E_Package);
621 -- If the subprogram is within an instance, inline the instance
623 if Comes_From_Source (E) then
624 Inst := Scope (E);
626 while Present (Inst) and then Inst /= Standard_Standard loop
627 exit when Is_Generic_Instance (Inst);
628 Inst := Scope (Inst);
629 end loop;
631 if Present (Inst)
632 and then Is_Generic_Instance (Inst)
633 and then not Is_Called (Inst)
634 then
635 Inst_Decl := Unit_Declaration_Node (Inst);
637 -- Do not inline the instance if the body already exists,
638 -- or the instance node is simply missing.
640 if Present (Corresponding_Body (Inst_Decl))
641 or else (Nkind (Parent (Inst_Decl)) /= N_Compilation_Unit
642 and then No (Next (Inst_Decl)))
643 then
644 Set_Is_Called (Inst);
645 else
646 Add_Inlined_Instance (Inst);
647 end if;
648 end if;
649 end if;
651 -- If the unit containing E is an instance, nothing more to do
653 if Is_Generic_Instance (Pack) then
654 null;
656 -- Do not inline the package if the subprogram is an init proc
657 -- or other internally generated subprogram, because in that
658 -- case the subprogram body appears in the same unit that
659 -- declares the type, and that body is visible to the back end.
660 -- Do not inline it either if it is in the main unit.
661 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
662 -- calls if the back end takes care of inlining the call.
663 -- Note that Level is in Inline_Call | Inline_Package here.
665 elsif ((Level = Inline_Call
666 and then Has_Pragma_Inline_Always (E)
667 and then Back_End_Inlining)
668 or else Level = Inline_Package)
669 and then not Is_Inlined (Pack)
670 and then not Is_Internal (E)
671 and then not In_Main_Unit_Or_Subunit (Pack)
672 then
673 Set_Is_Inlined (Pack);
674 Inlined_Bodies.Increment_Last;
675 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
676 end if;
677 end if;
679 -- Ensure that Analyze_Inlined_Bodies will be invoked after
680 -- completing the analysis of the current unit.
682 Inline_Processing_Required := True;
683 end;
684 end Add_Inlined_Body;
686 --------------------------
687 -- Add_Inlined_Instance --
688 --------------------------
690 procedure Add_Inlined_Instance (E : Entity_Id) is
691 Decl_Node : constant Node_Id := Unit_Declaration_Node (E);
692 Index : Int;
694 begin
695 -- This machinery is only used with back-end inlining
697 if not Back_End_Inlining then
698 return;
699 end if;
701 -- Register the instance in the list
703 Append_New_Elmt (Decl_Node, To => Backend_Instances);
705 -- Retrieve the index of its corresponding pending instantiation
706 -- and mark this corresponding pending instantiation as needed.
708 Index := To_Pending_Instantiations.Get (Decl_Node);
709 if Index >= 0 then
710 Called_Pending_Instantiations.Append (Index);
711 else
712 pragma Assert (False);
713 null;
714 end if;
716 Set_Is_Called (E);
717 end Add_Inlined_Instance;
719 ----------------------------
720 -- Add_Inlined_Subprogram --
721 ----------------------------
723 procedure Add_Inlined_Subprogram (E : Entity_Id) is
724 Decl : constant Node_Id := Parent (Declaration_Node (E));
725 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
727 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
728 -- Append Subp to the list of subprograms inlined by the backend
730 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
731 -- Append Subp to the list of subprograms that cannot be inlined by
732 -- the backend.
734 -----------------------------------------
735 -- Register_Backend_Inlined_Subprogram --
736 -----------------------------------------
738 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
739 begin
740 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
741 end Register_Backend_Inlined_Subprogram;
743 ---------------------------------------------
744 -- Register_Backend_Not_Inlined_Subprogram --
745 ---------------------------------------------
747 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
748 begin
749 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
750 end Register_Backend_Not_Inlined_Subprogram;
752 -- Start of processing for Add_Inlined_Subprogram
754 begin
755 -- We can inline the subprogram if its unit is known to be inlined or is
756 -- an instance whose body will be analyzed anyway or the subprogram was
757 -- generated as a body by the compiler (for example an initialization
758 -- procedure) or its declaration was provided along with the body (for
759 -- example an expression function) and it does not declare types with
760 -- nontrivial initialization procedures.
762 if (Is_Inlined (Pack)
763 or else Is_Generic_Instance (Pack)
764 or else Nkind (Decl) = N_Subprogram_Body
765 or else Present (Corresponding_Body (Decl)))
766 and then not Has_Initialized_Type (E)
767 then
768 Register_Backend_Inlined_Subprogram (E);
770 if No (Last_Inlined) then
771 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
772 else
773 Set_Next_Inlined_Subprogram (Last_Inlined, E);
774 end if;
776 Last_Inlined := E;
778 else
779 Register_Backend_Not_Inlined_Subprogram (E);
780 end if;
781 end Add_Inlined_Subprogram;
783 --------------------------------
784 -- Add_Pending_Instantiation --
785 --------------------------------
787 procedure Add_Pending_Instantiation
788 (Inst : Node_Id;
789 Act_Decl : Node_Id;
790 Fin_Scop : Node_Id := Empty)
792 Act_Decl_Id : Entity_Id;
793 Index : Int;
795 begin
796 -- Here is a defense against a ludicrous number of instantiations
797 -- caused by a circular set of instantiation attempts.
799 if Pending_Instantiations.Last + 1 >= Maximum_Instantiations then
800 Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
801 Error_Msg_N ("too many instantiations, exceeds max of^", Inst);
802 Error_Msg_N ("\limit can be changed using -gnateinn switch", Inst);
803 raise Unrecoverable_Error;
804 end if;
806 -- Capture the body of the generic instantiation along with its context
807 -- for later processing by Instantiate_Bodies.
809 Pending_Instantiations.Append
810 ((Inst_Node => Inst,
811 Act_Decl => Act_Decl,
812 Fin_Scop => Fin_Scop,
813 Config_Switches => Save_Config_Switches,
814 Current_Sem_Unit => Current_Sem_Unit,
815 Expander_Status => Expander_Active,
816 Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
817 Scope_Suppress => Scope_Suppress,
818 Warnings => Save_Warnings));
820 -- With back-end inlining, also associate the index to the instantiation
822 if Back_End_Inlining then
823 Act_Decl_Id := Defining_Entity (Act_Decl);
824 Index := Pending_Instantiations.Last;
826 To_Pending_Instantiations.Set (Act_Decl, Index);
828 -- If an instantiation is in the main unit or subunit, or is a nested
829 -- subprogram, then its body is needed as per the analysis done in
830 -- Analyze_Package_Instantiation & Analyze_Subprogram_Instantiation.
832 if In_Main_Unit_Or_Subunit (Act_Decl_Id)
833 or else (Is_Subprogram (Act_Decl_Id)
834 and then Is_Nested (Act_Decl_Id))
835 then
836 Called_Pending_Instantiations.Append (Index);
838 Set_Is_Called (Act_Decl_Id);
839 end if;
840 end if;
841 end Add_Pending_Instantiation;
843 ------------------------
844 -- Add_Scope_To_Clean --
845 ------------------------
847 procedure Add_Scope_To_Clean (Scop : Entity_Id) is
848 Elmt : Elmt_Id;
850 begin
851 Elmt := First_Elmt (To_Clean);
852 while Present (Elmt) loop
853 if Node (Elmt) = Scop then
854 return;
855 end if;
857 Next_Elmt (Elmt);
858 end loop;
860 Append_Elmt (Scop, To_Clean);
861 end Add_Scope_To_Clean;
863 --------------
864 -- Add_Subp --
865 --------------
867 function Add_Subp (E : Entity_Id) return Subp_Index is
868 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
869 J : Subp_Index;
871 procedure New_Entry;
872 -- Initialize entry in Inlined table
874 procedure New_Entry is
875 begin
876 Inlined.Increment_Last;
877 Inlined.Table (Inlined.Last).Name := E;
878 Inlined.Table (Inlined.Last).Next := No_Subp;
879 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
880 Inlined.Table (Inlined.Last).Main_Call := False;
881 Inlined.Table (Inlined.Last).Processed := False;
882 end New_Entry;
884 -- Start of processing for Add_Subp
886 begin
887 if Hash_Headers (Index) = No_Subp then
888 New_Entry;
889 Hash_Headers (Index) := Inlined.Last;
890 return Inlined.Last;
892 else
893 J := Hash_Headers (Index);
894 while J /= No_Subp loop
895 if Inlined.Table (J).Name = E then
896 return J;
897 else
898 Index := J;
899 J := Inlined.Table (J).Next;
900 end if;
901 end loop;
903 -- On exit, subprogram was not found. Enter in table. Index is
904 -- the current last entry on the hash chain.
906 New_Entry;
907 Inlined.Table (Index).Next := Inlined.Last;
908 return Inlined.Last;
909 end if;
910 end Add_Subp;
912 ----------------------------
913 -- Analyze_Inlined_Bodies --
914 ----------------------------
916 procedure Analyze_Inlined_Bodies is
917 Comp_Unit : Node_Id;
918 J : Int;
919 Pack : Entity_Id;
920 Subp : Subp_Index;
921 S : Succ_Index;
923 type Pending_Index is new Nat;
925 package Pending_Inlined is new Table.Table (
926 Table_Component_Type => Subp_Index,
927 Table_Index_Type => Pending_Index,
928 Table_Low_Bound => 1,
929 Table_Initial => Alloc.Inlined_Initial,
930 Table_Increment => Alloc.Inlined_Increment,
931 Table_Name => "Pending_Inlined");
932 -- The workpile used to compute the transitive closure
934 -- Start of processing for Analyze_Inlined_Bodies
936 begin
937 if Serious_Errors_Detected = 0 then
938 Push_Scope (Standard_Standard);
940 J := 0;
941 while J <= Inlined_Bodies.Last
942 and then Serious_Errors_Detected = 0
943 loop
944 Pack := Inlined_Bodies.Table (J);
945 while Present (Pack)
946 and then Scope (Pack) /= Standard_Standard
947 and then not Is_Child_Unit (Pack)
948 loop
949 Pack := Scope (Pack);
950 end loop;
952 Comp_Unit := Parent (Pack);
953 while Present (Comp_Unit)
954 and then Nkind (Comp_Unit) /= N_Compilation_Unit
955 loop
956 Comp_Unit := Parent (Comp_Unit);
957 end loop;
959 -- Load the body if it exists and contains inlineable entities,
960 -- unless it is the main unit, or is an instance whose body has
961 -- already been analyzed.
963 if Present (Comp_Unit)
964 and then Comp_Unit /= Cunit (Main_Unit)
965 and then Body_Required (Comp_Unit)
966 and then
967 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
968 or else
969 (No (Corresponding_Body (Unit (Comp_Unit)))
970 and then Body_Needed_For_Inlining
971 (Defining_Entity (Unit (Comp_Unit)))))
972 then
973 declare
974 Bname : constant Unit_Name_Type :=
975 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
977 OK : Boolean;
979 begin
980 if not Is_Loaded (Bname) then
981 Style_Check := False;
982 Load_Needed_Body (Comp_Unit, OK);
984 if not OK then
986 -- Warn that a body was not available for inlining
987 -- by the back-end.
989 Error_Msg_Unit_1 := Bname;
990 Error_Msg_N
991 ("one or more inlined subprograms accessed in $!??",
992 Comp_Unit);
993 Error_Msg_File_1 :=
994 Get_File_Name (Bname, Subunit => False);
995 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
996 end if;
997 end if;
998 end;
999 end if;
1001 J := J + 1;
1003 if J > Inlined_Bodies.Last then
1005 -- The analysis of required bodies may have produced additional
1006 -- generic instantiations. To obtain further inlining, we need
1007 -- to perform another round of generic body instantiations.
1009 Instantiate_Bodies;
1011 -- Symmetrically, the instantiation of required generic bodies
1012 -- may have caused additional bodies to be inlined. To obtain
1013 -- further inlining, we keep looping over the inlined bodies.
1014 end if;
1015 end loop;
1017 -- The list of inlined subprograms is an overestimate, because it
1018 -- includes inlined functions called from functions that are compiled
1019 -- as part of an inlined package, but are not themselves called. An
1020 -- accurate computation of just those subprograms that are needed
1021 -- requires that we perform a transitive closure over the call graph,
1022 -- starting from calls in the main compilation unit.
1024 for Index in Inlined.First .. Inlined.Last loop
1025 if not Is_Called (Inlined.Table (Index).Name) then
1027 -- This means that Add_Inlined_Body added the subprogram to the
1028 -- table but wasn't able to handle its code unit. Do nothing.
1030 Inlined.Table (Index).Processed := True;
1032 elsif Inlined.Table (Index).Main_Call then
1033 Pending_Inlined.Increment_Last;
1034 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
1035 Inlined.Table (Index).Processed := True;
1037 else
1038 Set_Is_Called (Inlined.Table (Index).Name, False);
1039 end if;
1040 end loop;
1042 -- Iterate over the workpile until it is emptied, propagating the
1043 -- Is_Called flag to the successors of the processed subprogram.
1045 while Pending_Inlined.Last >= Pending_Inlined.First loop
1046 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
1047 Pending_Inlined.Decrement_Last;
1049 S := Inlined.Table (Subp).First_Succ;
1051 while S /= No_Succ loop
1052 Subp := Successors.Table (S).Subp;
1054 if not Inlined.Table (Subp).Processed then
1055 Set_Is_Called (Inlined.Table (Subp).Name);
1056 Pending_Inlined.Increment_Last;
1057 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
1058 Inlined.Table (Subp).Processed := True;
1059 end if;
1061 S := Successors.Table (S).Next;
1062 end loop;
1063 end loop;
1065 -- Finally add the called subprograms to the list of inlined
1066 -- subprograms for the unit.
1068 for Index in Inlined.First .. Inlined.Last loop
1069 declare
1070 E : constant Subprogram_Kind_Id := Inlined.Table (Index).Name;
1072 begin
1073 if Is_Called (E) and then not Is_Ignored_Ghost_Entity (E) then
1074 Add_Inlined_Subprogram (E);
1075 end if;
1076 end;
1077 end loop;
1079 Pop_Scope;
1080 end if;
1081 end Analyze_Inlined_Bodies;
1083 --------------------------
1084 -- Build_Body_To_Inline --
1085 --------------------------
1087 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1088 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1089 Original_Body : Node_Id;
1090 Body_To_Analyze : Node_Id;
1091 Max_Size : constant := 10;
1093 function Has_Extended_Return return Boolean;
1094 -- This function returns True if the subprogram has an extended return
1095 -- statement.
1097 function Has_Pending_Instantiation return Boolean;
1098 -- If some enclosing body contains instantiations that appear before
1099 -- the corresponding generic body, the enclosing body has a freeze node
1100 -- so that it can be elaborated after the generic itself. This might
1101 -- conflict with subsequent inlinings, so that it is unsafe to try to
1102 -- inline in such a case.
1104 function Has_Single_Return_In_GNATprove_Mode return Boolean;
1105 -- This function is called only in GNATprove mode, and it returns
1106 -- True if the subprogram has no return statement or a single return
1107 -- statement as last statement. It returns False for subprogram with
1108 -- a single return as last statement inside one or more blocks, as
1109 -- inlining would generate gotos in that case as well (although the
1110 -- goto is useless in that case).
1112 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
1113 -- If the body of the subprogram includes a call that returns an
1114 -- unconstrained type, the secondary stack is involved, and it is
1115 -- not worth inlining.
1117 -------------------------
1118 -- Has_Extended_Return --
1119 -------------------------
1121 function Has_Extended_Return return Boolean is
1122 Body_To_Inline : constant Node_Id := N;
1124 function Check_Return (N : Node_Id) return Traverse_Result;
1125 -- Returns OK on node N if this is not an extended return statement
1127 ------------------
1128 -- Check_Return --
1129 ------------------
1131 function Check_Return (N : Node_Id) return Traverse_Result is
1132 begin
1133 case Nkind (N) is
1134 when N_Extended_Return_Statement =>
1135 return Abandon;
1137 -- Skip locally declared subprogram bodies inside the body to
1138 -- inline, as the return statements inside those do not count.
1140 when N_Subprogram_Body =>
1141 if N = Body_To_Inline then
1142 return OK;
1143 else
1144 return Skip;
1145 end if;
1147 when others =>
1148 return OK;
1149 end case;
1150 end Check_Return;
1152 function Check_All_Returns is new Traverse_Func (Check_Return);
1154 -- Start of processing for Has_Extended_Return
1156 begin
1157 return Check_All_Returns (N) /= OK;
1158 end Has_Extended_Return;
1160 -------------------------------
1161 -- Has_Pending_Instantiation --
1162 -------------------------------
1164 function Has_Pending_Instantiation return Boolean is
1165 S : Entity_Id;
1167 begin
1168 S := Current_Scope;
1169 while Present (S) loop
1170 if Is_Compilation_Unit (S)
1171 or else Is_Child_Unit (S)
1172 then
1173 return False;
1175 elsif Ekind (S) = E_Package
1176 and then Has_Forward_Instantiation (S)
1177 then
1178 return True;
1179 end if;
1181 S := Scope (S);
1182 end loop;
1184 return False;
1185 end Has_Pending_Instantiation;
1187 -----------------------------------------
1188 -- Has_Single_Return_In_GNATprove_Mode --
1189 -----------------------------------------
1191 function Has_Single_Return_In_GNATprove_Mode return Boolean is
1192 Body_To_Inline : constant Node_Id := N;
1193 Last_Statement : Node_Id := Empty;
1195 function Check_Return (N : Node_Id) return Traverse_Result;
1196 -- Returns OK on node N if this is not a return statement different
1197 -- from the last statement in the subprogram.
1199 ------------------
1200 -- Check_Return --
1201 ------------------
1203 function Check_Return (N : Node_Id) return Traverse_Result is
1204 begin
1205 case Nkind (N) is
1206 when N_Extended_Return_Statement
1207 | N_Simple_Return_Statement
1209 if N = Last_Statement then
1210 return OK;
1211 else
1212 return Abandon;
1213 end if;
1215 -- Skip locally declared subprogram bodies inside the body to
1216 -- inline, as the return statements inside those do not count.
1218 when N_Subprogram_Body =>
1219 if N = Body_To_Inline then
1220 return OK;
1221 else
1222 return Skip;
1223 end if;
1225 when others =>
1226 return OK;
1227 end case;
1228 end Check_Return;
1230 function Check_All_Returns is new Traverse_Func (Check_Return);
1232 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
1234 begin
1235 -- Retrieve the last statement
1237 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
1239 -- Check that the last statement is the only possible return
1240 -- statement in the subprogram.
1242 return Check_All_Returns (N) = OK;
1243 end Has_Single_Return_In_GNATprove_Mode;
1245 --------------------------
1246 -- Uses_Secondary_Stack --
1247 --------------------------
1249 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1250 function Check_Call (N : Node_Id) return Traverse_Result;
1251 -- Look for function calls that return an unconstrained type
1253 ----------------
1254 -- Check_Call --
1255 ----------------
1257 function Check_Call (N : Node_Id) return Traverse_Result is
1258 begin
1259 if Nkind (N) = N_Function_Call
1260 and then Is_Entity_Name (Name (N))
1261 and then Is_Composite_Type (Etype (Entity (Name (N))))
1262 and then not Is_Constrained (Etype (Entity (Name (N))))
1263 then
1264 Cannot_Inline
1265 ("cannot inline & (call returns unconstrained type)?",
1266 N, Spec_Id);
1267 return Abandon;
1268 else
1269 return OK;
1270 end if;
1271 end Check_Call;
1273 function Check_Calls is new Traverse_Func (Check_Call);
1275 begin
1276 return Check_Calls (Bod) = Abandon;
1277 end Uses_Secondary_Stack;
1279 -- Start of processing for Build_Body_To_Inline
1281 begin
1282 -- Return immediately if done already
1284 if Nkind (Decl) = N_Subprogram_Declaration
1285 and then Present (Body_To_Inline (Decl))
1286 then
1287 return;
1289 -- Subprograms that have return statements in the middle of the body are
1290 -- inlined with gotos. GNATprove does not currently support gotos, so
1291 -- we prevent such inlining.
1293 elsif GNATprove_Mode
1294 and then not Has_Single_Return_In_GNATprove_Mode
1295 then
1296 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1297 return;
1299 -- Functions that return controlled types cannot currently be inlined
1300 -- because they require secondary stack handling; controlled actions
1301 -- may also interfere in complex ways with inlining.
1303 elsif Ekind (Spec_Id) = E_Function
1304 and then Needs_Finalization (Etype (Spec_Id))
1305 then
1306 Cannot_Inline
1307 ("cannot inline & (controlled return type)?", N, Spec_Id);
1308 return;
1309 end if;
1311 if Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
1312 return;
1313 end if;
1315 if Present (Handled_Statement_Sequence (N)) then
1316 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1317 Cannot_Inline
1318 ("cannot inline& (exception handler)?",
1319 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1320 Spec_Id);
1321 return;
1323 elsif Has_Excluded_Statement
1324 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1325 then
1326 return;
1327 end if;
1328 end if;
1330 -- We do not inline a subprogram that is too large, unless it is marked
1331 -- Inline_Always or we are in GNATprove mode. This pragma does not
1332 -- suppress the other checks on inlining (forbidden declarations,
1333 -- handlers, etc).
1335 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1336 and then List_Length
1337 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1338 then
1339 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1340 return;
1341 end if;
1343 if Has_Pending_Instantiation then
1344 Cannot_Inline
1345 ("cannot inline& (forward instance within enclosing body)?",
1346 N, Spec_Id);
1347 return;
1348 end if;
1350 -- Within an instance, the body to inline must be treated as a nested
1351 -- generic, so that the proper global references are preserved.
1353 -- Note that we do not do this at the library level, because it is not
1354 -- needed, and furthermore this causes trouble if front-end inlining
1355 -- is activated (-gnatN).
1357 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1358 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1359 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1360 else
1361 Original_Body := Copy_Separate_Tree (N);
1362 end if;
1364 -- We need to capture references to the formals in order to substitute
1365 -- the actuals at the point of inlining, i.e. instantiation. To treat
1366 -- the formals as globals to the body to inline, we nest it within a
1367 -- dummy parameterless subprogram, declared within the real one. To
1368 -- avoid generating an internal name (which is never public, and which
1369 -- affects serial numbers of other generated names), we use an internal
1370 -- symbol that cannot conflict with user declarations.
1372 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1373 Set_Defining_Unit_Name
1374 (Specification (Original_Body),
1375 Make_Defining_Identifier (Sloc (N), Name_uParent));
1376 Set_Corresponding_Spec (Original_Body, Empty);
1378 -- Remove all aspects/pragmas that have no meaning in an inlined body
1380 Remove_Aspects_And_Pragmas (Original_Body);
1382 Body_To_Analyze :=
1383 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1385 -- Set return type of function, which is also global and does not need
1386 -- to be resolved.
1388 if Ekind (Spec_Id) = E_Function then
1389 Set_Result_Definition
1390 (Specification (Body_To_Analyze),
1391 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1392 end if;
1394 if No (Declarations (N)) then
1395 Set_Declarations (N, New_List (Body_To_Analyze));
1396 else
1397 Append (Body_To_Analyze, Declarations (N));
1398 end if;
1400 Start_Generic;
1402 Analyze (Body_To_Analyze);
1403 Push_Scope (Defining_Entity (Body_To_Analyze));
1404 Save_Global_References (Original_Body);
1405 End_Scope;
1406 Remove (Body_To_Analyze);
1408 End_Generic;
1410 -- Restore environment if previously saved
1412 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1413 Restore_Env;
1414 end if;
1416 -- Functions that return unconstrained composite types require
1417 -- secondary stack handling, and cannot currently be inlined, unless
1418 -- all return statements return a local variable that is the first
1419 -- local declaration in the body. We had to delay this check until
1420 -- the body of the function is analyzed since Has_Single_Return()
1421 -- requires a minimum decoration.
1423 if Ekind (Spec_Id) = E_Function
1424 and then not Is_Scalar_Type (Etype (Spec_Id))
1425 and then not Is_Access_Type (Etype (Spec_Id))
1426 and then not Is_Constrained (Etype (Spec_Id))
1427 then
1428 if not Has_Single_Return (Body_To_Analyze)
1430 -- Skip inlining if the function returns an unconstrained type
1431 -- using an extended return statement, since this part of the
1432 -- new inlining model is not yet supported by the current
1433 -- implementation.
1435 or else (Returns_Unconstrained_Type (Spec_Id)
1436 and then Has_Extended_Return)
1437 then
1438 Cannot_Inline
1439 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1440 return;
1441 end if;
1443 -- If secondary stack is used, there is no point in inlining. We have
1444 -- already issued the warning in this case, so nothing to do.
1446 elsif Uses_Secondary_Stack (Body_To_Analyze) then
1447 return;
1448 end if;
1450 Set_Body_To_Inline (Decl, Original_Body);
1451 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1452 Set_Is_Inlined (Spec_Id);
1453 end Build_Body_To_Inline;
1455 -------------------------------------------
1456 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1457 -------------------------------------------
1459 function Call_Can_Be_Inlined_In_GNATprove_Mode
1460 (N : Node_Id;
1461 Subp : Entity_Id) return Boolean
1463 F : Entity_Id;
1464 A : Node_Id;
1466 begin
1467 F := First_Formal (Subp);
1468 A := First_Actual (N);
1469 while Present (F) loop
1470 if Ekind (F) /= E_Out_Parameter
1471 and then not Same_Type (Etype (F), Etype (A))
1472 and then
1473 (Is_By_Reference_Type (Etype (A))
1474 or else Is_Limited_Type (Etype (A)))
1475 then
1476 return False;
1477 end if;
1479 Next_Formal (F);
1480 Next_Actual (A);
1481 end loop;
1483 return True;
1484 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1486 --------------------------------------
1487 -- Can_Be_Inlined_In_GNATprove_Mode --
1488 --------------------------------------
1490 function Can_Be_Inlined_In_GNATprove_Mode
1491 (Spec_Id : Entity_Id;
1492 Body_Id : Entity_Id) return Boolean
1494 function Has_Formal_Or_Result_Of_Deep_Type
1495 (Id : Entity_Id) return Boolean;
1496 -- Returns true if the subprogram has at least one formal parameter or
1497 -- a return type of a deep type: either an access type or a composite
1498 -- type containing an access type.
1500 function Has_Formal_With_Discriminant_Dependent_Fields
1501 (Id : Entity_Id) return Boolean;
1502 -- Returns true if the subprogram has at least one formal parameter of
1503 -- an unconstrained record type with per-object constraints on component
1504 -- types.
1506 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1507 -- Return True if subprogram Id has any contract. The presence of
1508 -- Extensions_Visible or Volatile_Function is also considered as a
1509 -- contract here.
1511 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1512 -- Return True if subprogram Id defines a compilation unit
1514 function In_Package_Spec (Id : Entity_Id) return Boolean;
1515 -- Return True if subprogram Id is defined in the package specification,
1516 -- either its visible or private part.
1518 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean;
1519 -- Return True if subprogram Id could be a traversal function, as
1520 -- defined in SPARK RM 3.10. This is only a safe approximation, as the
1521 -- knowledge of the SPARK boundary is needed to determine exactly
1522 -- traversal functions.
1524 ---------------------------------------
1525 -- Has_Formal_Or_Result_Of_Deep_Type --
1526 ---------------------------------------
1528 function Has_Formal_Or_Result_Of_Deep_Type
1529 (Id : Entity_Id) return Boolean
1531 function Is_Deep (Typ : Entity_Id) return Boolean;
1532 -- Return True if Typ is deep: either an access type or a composite
1533 -- type containing an access type.
1535 -------------
1536 -- Is_Deep --
1537 -------------
1539 function Is_Deep (Typ : Entity_Id) return Boolean is
1540 begin
1541 case Type_Kind'(Ekind (Typ)) is
1542 when Access_Kind =>
1543 return True;
1545 when E_Array_Type
1546 | E_Array_Subtype
1548 return Is_Deep (Component_Type (Typ));
1550 when Record_Kind =>
1551 declare
1552 Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
1553 begin
1554 while Present (Comp) loop
1555 if Is_Deep (Etype (Comp)) then
1556 return True;
1557 end if;
1558 Next_Component_Or_Discriminant (Comp);
1559 end loop;
1560 end;
1561 return False;
1563 when Scalar_Kind
1564 | E_String_Literal_Subtype
1565 | Concurrent_Kind
1566 | Incomplete_Kind
1567 | E_Exception_Type
1568 | E_Subprogram_Type
1570 return False;
1572 when E_Private_Type
1573 | E_Private_Subtype
1574 | E_Limited_Private_Type
1575 | E_Limited_Private_Subtype
1577 -- Conservatively consider that the type might be deep if
1578 -- its completion has not been seen yet.
1580 if No (Underlying_Type (Typ)) then
1581 return True;
1583 -- Do not peek under a private type if its completion has
1584 -- SPARK_Mode Off. In such a case, a deep type is considered
1585 -- by GNATprove to be not deep.
1587 elsif Present (Full_View (Typ))
1588 and then Present (SPARK_Pragma (Full_View (Typ)))
1589 and then Get_SPARK_Mode_From_Annotation
1590 (SPARK_Pragma (Full_View (Typ))) = Off
1591 then
1592 return False;
1594 -- Otherwise peek under the private type.
1596 else
1597 return Is_Deep (Underlying_Type (Typ));
1598 end if;
1599 end case;
1600 end Is_Deep;
1602 -- Local variables
1604 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1605 Formal : Entity_Id;
1606 Formal_Typ : Entity_Id;
1608 -- Start of processing for Has_Formal_Or_Result_Of_Deep_Type
1610 begin
1611 -- Inspect all parameters of the subprogram looking for a formal
1612 -- of a deep type.
1614 Formal := First_Formal (Subp_Id);
1615 while Present (Formal) loop
1616 Formal_Typ := Etype (Formal);
1618 if Is_Deep (Formal_Typ) then
1619 return True;
1620 end if;
1622 Next_Formal (Formal);
1623 end loop;
1625 -- Check whether this is a function whose return type is deep
1627 if Ekind (Subp_Id) = E_Function
1628 and then Is_Deep (Etype (Subp_Id))
1629 then
1630 return True;
1631 end if;
1633 return False;
1634 end Has_Formal_Or_Result_Of_Deep_Type;
1636 ---------------------------------------------------
1637 -- Has_Formal_With_Discriminant_Dependent_Fields --
1638 ---------------------------------------------------
1640 function Has_Formal_With_Discriminant_Dependent_Fields
1641 (Id : Entity_Id) return Boolean
1643 function Has_Discriminant_Dependent_Component
1644 (Typ : Entity_Id) return Boolean;
1645 -- Determine whether unconstrained record type Typ has at least one
1646 -- component that depends on a discriminant.
1648 ------------------------------------------
1649 -- Has_Discriminant_Dependent_Component --
1650 ------------------------------------------
1652 function Has_Discriminant_Dependent_Component
1653 (Typ : Entity_Id) return Boolean
1655 Comp : Entity_Id;
1657 begin
1658 -- Inspect all components of the record type looking for one that
1659 -- depends on a discriminant.
1661 Comp := First_Component (Typ);
1662 while Present (Comp) loop
1663 if Has_Discriminant_Dependent_Constraint (Comp) then
1664 return True;
1665 end if;
1667 Next_Component (Comp);
1668 end loop;
1670 return False;
1671 end Has_Discriminant_Dependent_Component;
1673 -- Local variables
1675 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1676 Formal : Entity_Id;
1677 Formal_Typ : Entity_Id;
1679 -- Start of processing for
1680 -- Has_Formal_With_Discriminant_Dependent_Fields
1682 begin
1683 -- Inspect all parameters of the subprogram looking for a formal
1684 -- of an unconstrained record type with at least one discriminant
1685 -- dependent component.
1687 Formal := First_Formal (Subp_Id);
1688 while Present (Formal) loop
1689 Formal_Typ := Etype (Formal);
1691 if Is_Record_Type (Formal_Typ)
1692 and then not Is_Constrained (Formal_Typ)
1693 and then Has_Discriminant_Dependent_Component (Formal_Typ)
1694 then
1695 return True;
1696 end if;
1698 Next_Formal (Formal);
1699 end loop;
1701 return False;
1702 end Has_Formal_With_Discriminant_Dependent_Fields;
1704 -----------------------
1705 -- Has_Some_Contract --
1706 -----------------------
1708 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1709 Items : Node_Id;
1711 begin
1712 -- A call to an expression function may precede the actual body which
1713 -- is inserted at the end of the enclosing declarations. Ensure that
1714 -- the related entity is decorated before inspecting the contract.
1716 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1717 Items := Contract (Id);
1719 -- Note that Classifications is not Empty when Extensions_Visible
1720 -- or Volatile_Function is present, which causes such subprograms
1721 -- to be considered to have a contract here. This is fine as we
1722 -- want to avoid inlining these too.
1724 return Present (Items)
1725 and then (Present (Pre_Post_Conditions (Items)) or else
1726 Present (Contract_Test_Cases (Items)) or else
1727 Present (Classifications (Items)));
1728 end if;
1730 return False;
1731 end Has_Some_Contract;
1733 ---------------------
1734 -- In_Package_Spec --
1735 ---------------------
1737 function In_Package_Spec (Id : Entity_Id) return Boolean is
1738 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1739 -- Parent of the subprogram's declaration
1741 begin
1742 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1743 end In_Package_Spec;
1745 ------------------------
1746 -- Is_Unit_Subprogram --
1747 ------------------------
1749 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1750 Decl : Node_Id := Parent (Parent (Id));
1751 begin
1752 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1753 Decl := Parent (Decl);
1754 end if;
1756 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1757 end Is_Unit_Subprogram;
1759 ------------------------------
1760 -- Maybe_Traversal_Function --
1761 ------------------------------
1763 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean is
1764 begin
1765 return Ekind (Id) = E_Function
1767 -- Only traversal functions return an anonymous access-to-object
1768 -- type in SPARK.
1770 and then Is_Anonymous_Access_Type (Etype (Id));
1771 end Maybe_Traversal_Function;
1773 -- Local declarations
1775 Id : Entity_Id;
1776 -- Procedure or function entity for the subprogram
1778 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1780 begin
1781 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1783 if Present (Spec_Id) then
1784 Id := Spec_Id;
1785 else
1786 Id := Body_Id;
1787 end if;
1789 -- Only local subprograms without contracts are inlined in GNATprove
1790 -- mode, as these are the subprograms which a user is not interested in
1791 -- analyzing in isolation, but rather in the context of their call. This
1792 -- is a convenient convention, that could be changed for an explicit
1793 -- pragma/aspect one day.
1795 -- In a number of special cases, inlining is not desirable or not
1796 -- possible, see below.
1798 -- Do not inline unit-level subprograms
1800 if Is_Unit_Subprogram (Id) then
1801 return False;
1803 -- Do not inline subprograms declared in package specs, because they are
1804 -- not local, i.e. can be called either from anywhere (if declared in
1805 -- visible part) or from the child units (if declared in private part).
1807 elsif In_Package_Spec (Id) then
1808 return False;
1810 -- Do not inline subprograms declared in other units. This is important
1811 -- in particular for subprograms defined in the private part of a
1812 -- package spec, when analyzing one of its child packages, as otherwise
1813 -- we issue spurious messages about the impossibility to inline such
1814 -- calls.
1816 elsif not In_Extended_Main_Code_Unit (Id) then
1817 return False;
1819 -- Do not inline dispatching operations, as only their static calls
1820 -- can be analyzed in context, and not their dispatching calls.
1822 elsif Is_Dispatching_Operation (Id) then
1823 return False;
1825 -- Do not inline subprograms marked No_Return, possibly used for
1826 -- signaling errors, which GNATprove handles specially.
1828 elsif No_Return (Id) then
1829 return False;
1831 -- Do not inline subprograms that have a contract on the spec or the
1832 -- body. Use the contract(s) instead in GNATprove. This also prevents
1833 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1835 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1836 or else
1837 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1838 then
1839 return False;
1841 -- Do not inline expression functions, which are directly inlined at the
1842 -- prover level.
1844 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1845 or else
1846 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1847 then
1848 return False;
1850 -- Do not inline generic subprogram instances. The visibility rules of
1851 -- generic instances plays badly with inlining.
1853 elsif Is_Generic_Instance (Spec_Id) then
1854 return False;
1856 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1857 -- the subprogram body, a similar check is performed after the body
1858 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1860 elsif Present (Spec_Id)
1861 and then
1862 (No (SPARK_Pragma (Spec_Id))
1863 or else
1864 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
1865 then
1866 return False;
1868 -- Do not inline subprograms and entries defined inside protected types,
1869 -- which typically are not helper subprograms, which also avoids getting
1870 -- spurious messages on calls that cannot be inlined.
1872 elsif Within_Protected_Type (Id) then
1873 return False;
1875 -- Do not inline predicate functions (treated specially by GNATprove)
1877 elsif Is_Predicate_Function (Id) then
1878 return False;
1880 -- Do not inline subprograms with a parameter of an unconstrained
1881 -- record type if it has discrimiant dependent fields. Indeed, with
1882 -- such parameters, the frontend cannot always ensure type compliance
1883 -- in record component accesses (in particular with records containing
1884 -- packed arrays).
1886 elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1887 return False;
1889 -- Do not inline subprograms with a formal parameter or return type of
1890 -- a deep type, as in that case inlining might generate code that
1891 -- violates borrow-checking rules of SPARK 3.10 even if the original
1892 -- code did not.
1894 elsif Has_Formal_Or_Result_Of_Deep_Type (Id) then
1895 return False;
1897 -- Do not inline subprograms which may be traversal functions. Such
1898 -- inlining introduces temporary variables of named access type for
1899 -- which assignments are move instead of borrow/observe, possibly
1900 -- leading to spurious errors when checking SPARK rules related to
1901 -- pointer usage.
1903 elsif Maybe_Traversal_Function (Id) then
1904 return False;
1906 -- Otherwise, this is a subprogram declared inside the private part of a
1907 -- package, or inside a package body, or locally in a subprogram, and it
1908 -- does not have any contract. Inline it.
1910 else
1911 return True;
1912 end if;
1913 end Can_Be_Inlined_In_GNATprove_Mode;
1915 -------------------
1916 -- Cannot_Inline --
1917 -------------------
1919 procedure Cannot_Inline
1920 (Msg : String;
1921 N : Node_Id;
1922 Subp : Entity_Id;
1923 Is_Serious : Boolean := False;
1924 Suppress_Info : Boolean := False)
1926 begin
1927 -- In GNATprove mode, inlining is the technical means by which the
1928 -- higher-level goal of contextual analysis is reached, so issue
1929 -- messages about failure to apply contextual analysis to a
1930 -- subprogram, rather than failure to inline it.
1932 if GNATprove_Mode
1933 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1934 then
1935 declare
1936 Len1 : constant Positive :=
1937 String (String'("cannot inline"))'Length;
1938 Len2 : constant Positive :=
1939 String (String'("info: no contextual analysis of"))'Length;
1941 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1943 begin
1944 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1945 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1946 Msg (Msg'First + Len1 .. Msg'Last);
1947 Cannot_Inline (New_Msg, N, Subp, Is_Serious, Suppress_Info);
1948 return;
1949 end;
1950 end if;
1952 pragma Assert (Msg (Msg'Last) = '?');
1954 -- Legacy front-end inlining model
1956 if not Back_End_Inlining then
1958 -- Do not emit warning if this is a predefined unit which is not
1959 -- the main unit. With validity checks enabled, some predefined
1960 -- subprograms may contain nested subprograms and become ineligible
1961 -- for inlining.
1963 if Is_Predefined_Unit (Get_Source_Unit (Subp))
1964 and then not In_Extended_Main_Source_Unit (Subp)
1965 then
1966 null;
1968 -- In GNATprove mode, issue an info message when -gnatd_f is set and
1969 -- Suppress_Info is False, and indicate that the subprogram is not
1970 -- always inlined by setting flag Is_Inlined_Always to False.
1972 elsif GNATprove_Mode then
1973 Set_Is_Inlined_Always (Subp, False);
1975 if Debug_Flag_Underscore_F and not Suppress_Info then
1976 Error_Msg_NE (Msg, N, Subp);
1977 end if;
1979 elsif Has_Pragma_Inline_Always (Subp) then
1981 -- Remove last character (question mark) to make this into an
1982 -- error, because the Inline_Always pragma cannot be obeyed.
1984 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1986 elsif Ineffective_Inline_Warnings then
1987 Error_Msg_NE (Msg & "p?", N, Subp);
1988 end if;
1990 -- New semantics relying on back-end inlining
1992 elsif Is_Serious then
1994 -- Remove last character (question mark) to make this into an error.
1996 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1998 -- In GNATprove mode, issue an info message when -gnatd_f is set and
1999 -- Suppress_Info is False, and indicate that the subprogram is not
2000 -- always inlined by setting flag Is_Inlined_Always to False.
2002 elsif GNATprove_Mode then
2003 Set_Is_Inlined_Always (Subp, False);
2005 if Debug_Flag_Underscore_F and not Suppress_Info then
2006 Error_Msg_NE (Msg, N, Subp);
2007 end if;
2009 else
2011 -- Do not emit warning if this is a predefined unit which is not
2012 -- the main unit. This behavior is currently provided for backward
2013 -- compatibility but it will be removed when we enforce the
2014 -- strictness of the new rules.
2016 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2017 and then not In_Extended_Main_Source_Unit (Subp)
2018 then
2019 null;
2021 elsif Has_Pragma_Inline_Always (Subp) then
2023 -- Emit a warning if this is a call to a runtime subprogram
2024 -- which is located inside a generic. Previously this call
2025 -- was silently skipped.
2027 if Is_Generic_Instance (Subp) then
2028 declare
2029 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
2030 begin
2031 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
2032 Set_Is_Inlined (Subp, False);
2033 Error_Msg_NE (Msg & "p?", N, Subp);
2034 return;
2035 end if;
2036 end;
2037 end if;
2039 -- Remove last character (question mark) to make this into an
2040 -- error, because the Inline_Always pragma cannot be obeyed.
2042 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2044 else
2045 Set_Is_Inlined (Subp, False);
2047 if Ineffective_Inline_Warnings then
2048 Error_Msg_NE (Msg & "p?", N, Subp);
2049 end if;
2050 end if;
2051 end if;
2052 end Cannot_Inline;
2054 --------------------------------------------
2055 -- Check_And_Split_Unconstrained_Function --
2056 --------------------------------------------
2058 procedure Check_And_Split_Unconstrained_Function
2059 (N : Node_Id;
2060 Spec_Id : Entity_Id;
2061 Body_Id : Entity_Id)
2063 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
2064 -- Use generic machinery to build an unexpanded body for the subprogram.
2065 -- This body is subsequently used for inline expansions at call sites.
2067 procedure Build_Return_Object_Formal
2068 (Loc : Source_Ptr;
2069 Obj_Decl : Node_Id;
2070 Formals : List_Id);
2071 -- Create a formal parameter for return object declaration Obj_Decl of
2072 -- an extended return statement and add it to list Formals.
2074 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
2075 -- Return true if we generate code for the function body N, the function
2076 -- body N has no local declarations and its unique statement is a single
2077 -- extended return statement with a handled statements sequence.
2079 procedure Copy_Formals
2080 (Loc : Source_Ptr;
2081 Subp_Id : Entity_Id;
2082 Formals : List_Id);
2083 -- Create new formal parameters from the formal parameters of subprogram
2084 -- Subp_Id and add them to list Formals.
2086 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id;
2087 -- Create a copy of return object declaration Obj_Decl of an extended
2088 -- return statement.
2090 procedure Split_Unconstrained_Function
2091 (N : Node_Id;
2092 Spec_Id : Entity_Id);
2093 -- N is an inlined function body that returns an unconstrained type and
2094 -- has a single extended return statement. Split N in two subprograms:
2095 -- a procedure P' and a function F'. The formals of P' duplicate the
2096 -- formals of N plus an extra formal which is used to return a value;
2097 -- its body is composed by the declarations and list of statements
2098 -- of the extended return statement of N.
2100 --------------------------
2101 -- Build_Body_To_Inline --
2102 --------------------------
2104 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
2105 procedure Generate_Subprogram_Body
2106 (N : Node_Id;
2107 Body_To_Inline : out Node_Id);
2108 -- Generate a parameterless duplicate of subprogram body N. Note that
2109 -- occurrences of pragmas referencing the formals are removed since
2110 -- they have no meaning when the body is inlined and the formals are
2111 -- rewritten (the analysis of the non-inlined body will handle these
2112 -- pragmas). A new internal name is associated with Body_To_Inline.
2114 ------------------------------
2115 -- Generate_Subprogram_Body --
2116 ------------------------------
2118 procedure Generate_Subprogram_Body
2119 (N : Node_Id;
2120 Body_To_Inline : out Node_Id)
2122 begin
2123 -- Within an instance, the body to inline must be treated as a
2124 -- nested generic so that proper global references are preserved.
2126 -- Note that we do not do this at the library level, because it
2127 -- is not needed, and furthermore this causes trouble if front
2128 -- end inlining is activated (-gnatN).
2130 if In_Instance
2131 and then Scope (Current_Scope) /= Standard_Standard
2132 then
2133 Body_To_Inline :=
2134 Copy_Generic_Node (N, Empty, Instantiating => True);
2135 else
2136 Body_To_Inline := New_Copy_Tree (N);
2137 end if;
2139 -- Remove aspects/pragmas that have no meaning in an inlined body
2141 Remove_Aspects_And_Pragmas (Body_To_Inline);
2143 -- We need to capture references to the formals in order
2144 -- to substitute the actuals at the point of inlining, i.e.
2145 -- instantiation. To treat the formals as globals to the body to
2146 -- inline, we nest it within a dummy parameterless subprogram,
2147 -- declared within the real one.
2149 Set_Parameter_Specifications
2150 (Specification (Body_To_Inline), No_List);
2152 -- A new internal name is associated with Body_To_Inline to avoid
2153 -- conflicts when the non-inlined body N is analyzed.
2155 Set_Defining_Unit_Name (Specification (Body_To_Inline),
2156 Make_Temporary (Sloc (N), 'P'));
2157 Set_Corresponding_Spec (Body_To_Inline, Empty);
2158 end Generate_Subprogram_Body;
2160 -- Local variables
2162 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2163 Original_Body : Node_Id;
2164 Body_To_Analyze : Node_Id;
2166 -- Start of processing for Build_Body_To_Inline
2168 begin
2169 pragma Assert (Current_Scope = Spec_Id);
2171 -- Within an instance, the body to inline must be treated as a nested
2172 -- generic, so that the proper global references are preserved. We
2173 -- do not do this at the library level, because it is not needed, and
2174 -- furthermore this causes trouble if front-end inlining is activated
2175 -- (-gnatN).
2177 if In_Instance
2178 and then Scope (Current_Scope) /= Standard_Standard
2179 then
2180 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2181 end if;
2183 -- Capture references to formals in order to substitute the actuals
2184 -- at the point of inlining or instantiation. To treat the formals
2185 -- as globals to the body to inline, nest the body within a dummy
2186 -- parameterless subprogram, declared within the real one.
2188 Generate_Subprogram_Body (N, Original_Body);
2189 Body_To_Analyze :=
2190 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
2192 -- Set return type of function, which is also global and does not
2193 -- need to be resolved.
2195 if Ekind (Spec_Id) = E_Function then
2196 Set_Result_Definition (Specification (Body_To_Analyze),
2197 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
2198 end if;
2200 if No (Declarations (N)) then
2201 Set_Declarations (N, New_List (Body_To_Analyze));
2202 else
2203 Append_To (Declarations (N), Body_To_Analyze);
2204 end if;
2206 Preanalyze (Body_To_Analyze);
2208 Push_Scope (Defining_Entity (Body_To_Analyze));
2209 Save_Global_References (Original_Body);
2210 End_Scope;
2211 Remove (Body_To_Analyze);
2213 -- Restore environment if previously saved
2215 if In_Instance
2216 and then Scope (Current_Scope) /= Standard_Standard
2217 then
2218 Restore_Env;
2219 end if;
2221 pragma Assert (No (Body_To_Inline (Decl)));
2222 Set_Body_To_Inline (Decl, Original_Body);
2223 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
2224 end Build_Body_To_Inline;
2226 --------------------------------
2227 -- Build_Return_Object_Formal --
2228 --------------------------------
2230 procedure Build_Return_Object_Formal
2231 (Loc : Source_Ptr;
2232 Obj_Decl : Node_Id;
2233 Formals : List_Id)
2235 Obj_Def : constant Node_Id := Object_Definition (Obj_Decl);
2236 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2237 Typ_Def : Node_Id;
2239 begin
2240 -- Build the type definition of the formal parameter. The use of
2241 -- New_Copy_Tree ensures that global references preserved in the
2242 -- case of generics.
2244 if Is_Entity_Name (Obj_Def) then
2245 Typ_Def := New_Copy_Tree (Obj_Def);
2246 else
2247 Typ_Def := New_Copy_Tree (Subtype_Mark (Obj_Def));
2248 end if;
2250 -- Generate:
2252 -- Obj_Id : [out] Typ_Def
2254 -- Mode OUT should not be used when the return object is declared as
2255 -- a constant. Check the definition of the object declaration because
2256 -- the object has not been analyzed yet.
2258 Append_To (Formals,
2259 Make_Parameter_Specification (Loc,
2260 Defining_Identifier =>
2261 Make_Defining_Identifier (Loc, Chars (Obj_Id)),
2262 In_Present => False,
2263 Out_Present => not Constant_Present (Obj_Decl),
2264 Null_Exclusion_Present => False,
2265 Parameter_Type => Typ_Def));
2266 end Build_Return_Object_Formal;
2268 --------------------------------------
2269 -- Can_Split_Unconstrained_Function --
2270 --------------------------------------
2272 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
2273 Stmt : constant Node_Id :=
2274 First (Statements (Handled_Statement_Sequence (N)));
2275 Decl : Node_Id;
2277 begin
2278 -- No user defined declarations allowed in the function except inside
2279 -- the unique return statement; implicit labels are the only allowed
2280 -- declarations.
2282 Decl := First (Declarations (N));
2283 while Present (Decl) loop
2284 if Nkind (Decl) /= N_Implicit_Label_Declaration then
2285 return False;
2286 end if;
2288 Next (Decl);
2289 end loop;
2291 -- We only split the inlined function when we are generating the code
2292 -- of its body; otherwise we leave duplicated split subprograms in
2293 -- the tree which (if referenced) generate wrong references at link
2294 -- time.
2296 return In_Extended_Main_Code_Unit (N)
2297 and then Present (Stmt)
2298 and then Nkind (Stmt) = N_Extended_Return_Statement
2299 and then No (Next (Stmt))
2300 and then Present (Handled_Statement_Sequence (Stmt));
2301 end Can_Split_Unconstrained_Function;
2303 ------------------
2304 -- Copy_Formals --
2305 ------------------
2307 procedure Copy_Formals
2308 (Loc : Source_Ptr;
2309 Subp_Id : Entity_Id;
2310 Formals : List_Id)
2312 Formal : Entity_Id;
2313 Spec : Node_Id;
2315 begin
2316 Formal := First_Formal (Subp_Id);
2317 while Present (Formal) loop
2318 Spec := Parent (Formal);
2320 -- Create an exact copy of the formal parameter. The use of
2321 -- New_Copy_Tree ensures that global references are preserved
2322 -- in case of generics.
2324 Append_To (Formals,
2325 Make_Parameter_Specification (Loc,
2326 Defining_Identifier =>
2327 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
2328 In_Present => In_Present (Spec),
2329 Out_Present => Out_Present (Spec),
2330 Null_Exclusion_Present => Null_Exclusion_Present (Spec),
2331 Parameter_Type =>
2332 New_Copy_Tree (Parameter_Type (Spec)),
2333 Expression => New_Copy_Tree (Expression (Spec))));
2335 Next_Formal (Formal);
2336 end loop;
2337 end Copy_Formals;
2339 ------------------------
2340 -- Copy_Return_Object --
2341 ------------------------
2343 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id is
2344 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2346 begin
2347 -- The use of New_Copy_Tree ensures that global references are
2348 -- preserved in case of generics.
2350 return
2351 Make_Object_Declaration (Sloc (Obj_Decl),
2352 Defining_Identifier =>
2353 Make_Defining_Identifier (Sloc (Obj_Id), Chars (Obj_Id)),
2354 Aliased_Present => Aliased_Present (Obj_Decl),
2355 Constant_Present => Constant_Present (Obj_Decl),
2356 Null_Exclusion_Present => Null_Exclusion_Present (Obj_Decl),
2357 Object_Definition =>
2358 New_Copy_Tree (Object_Definition (Obj_Decl)),
2359 Expression => New_Copy_Tree (Expression (Obj_Decl)));
2360 end Copy_Return_Object;
2362 ----------------------------------
2363 -- Split_Unconstrained_Function --
2364 ----------------------------------
2366 procedure Split_Unconstrained_Function
2367 (N : Node_Id;
2368 Spec_Id : Entity_Id)
2370 Loc : constant Source_Ptr := Sloc (N);
2371 Ret_Stmt : constant Node_Id :=
2372 First (Statements (Handled_Statement_Sequence (N)));
2373 Ret_Obj : constant Node_Id :=
2374 First (Return_Object_Declarations (Ret_Stmt));
2376 procedure Build_Procedure
2377 (Proc_Id : out Entity_Id;
2378 Decl_List : out List_Id);
2379 -- Build a procedure containing the statements found in the extended
2380 -- return statement of the unconstrained function body N.
2382 ---------------------
2383 -- Build_Procedure --
2384 ---------------------
2386 procedure Build_Procedure
2387 (Proc_Id : out Entity_Id;
2388 Decl_List : out List_Id)
2390 Formals : constant List_Id := New_List;
2391 Subp_Name : constant Name_Id := New_Internal_Name ('F');
2393 Body_Decls : List_Id := No_List;
2394 Decl : Node_Id;
2395 Proc_Body : Node_Id;
2396 Proc_Spec : Node_Id;
2398 begin
2399 -- Create formal parameters for the return object and all formals
2400 -- of the unconstrained function in order to pass their values to
2401 -- the procedure.
2403 Build_Return_Object_Formal
2404 (Loc => Loc,
2405 Obj_Decl => Ret_Obj,
2406 Formals => Formals);
2408 Copy_Formals
2409 (Loc => Loc,
2410 Subp_Id => Spec_Id,
2411 Formals => Formals);
2413 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
2415 Proc_Spec :=
2416 Make_Procedure_Specification (Loc,
2417 Defining_Unit_Name => Proc_Id,
2418 Parameter_Specifications => Formals);
2420 Decl_List := New_List;
2422 Append_To (Decl_List,
2423 Make_Subprogram_Declaration (Loc, Proc_Spec));
2425 -- Can_Convert_Unconstrained_Function checked that the function
2426 -- has no local declarations except implicit label declarations.
2427 -- Copy these declarations to the built procedure.
2429 if Present (Declarations (N)) then
2430 Body_Decls := New_List;
2432 Decl := First (Declarations (N));
2433 while Present (Decl) loop
2434 pragma Assert (Nkind (Decl) = N_Implicit_Label_Declaration);
2436 Append_To (Body_Decls,
2437 Make_Implicit_Label_Declaration (Loc,
2438 Make_Defining_Identifier (Loc,
2439 Chars => Chars (Defining_Identifier (Decl))),
2440 Label_Construct => Empty));
2442 Next (Decl);
2443 end loop;
2444 end if;
2446 pragma Assert (Present (Handled_Statement_Sequence (Ret_Stmt)));
2448 Proc_Body :=
2449 Make_Subprogram_Body (Loc,
2450 Specification => Copy_Subprogram_Spec (Proc_Spec),
2451 Declarations => Body_Decls,
2452 Handled_Statement_Sequence =>
2453 New_Copy_Tree (Handled_Statement_Sequence (Ret_Stmt)));
2455 Set_Defining_Unit_Name (Specification (Proc_Body),
2456 Make_Defining_Identifier (Loc, Subp_Name));
2458 Append_To (Decl_List, Proc_Body);
2459 end Build_Procedure;
2461 -- Local variables
2463 New_Obj : constant Node_Id := Copy_Return_Object (Ret_Obj);
2464 Blk_Stmt : Node_Id;
2465 Proc_Call : Node_Id;
2466 Proc_Id : Entity_Id;
2468 -- Start of processing for Split_Unconstrained_Function
2470 begin
2471 -- Build the associated procedure, analyze it and insert it before
2472 -- the function body N.
2474 declare
2475 Scope : constant Entity_Id := Current_Scope;
2476 Decl_List : List_Id;
2477 begin
2478 Pop_Scope;
2479 Build_Procedure (Proc_Id, Decl_List);
2480 Insert_Actions (N, Decl_List);
2481 Set_Is_Inlined (Proc_Id);
2482 Push_Scope (Scope);
2483 end;
2485 -- Build the call to the generated procedure
2487 declare
2488 Actual_List : constant List_Id := New_List;
2489 Formal : Entity_Id;
2491 begin
2492 Append_To (Actual_List,
2493 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
2495 Formal := First_Formal (Spec_Id);
2496 while Present (Formal) loop
2497 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
2499 -- Avoid spurious warning on unreferenced formals
2501 Set_Referenced (Formal);
2502 Next_Formal (Formal);
2503 end loop;
2505 Proc_Call :=
2506 Make_Procedure_Call_Statement (Loc,
2507 Name => New_Occurrence_Of (Proc_Id, Loc),
2508 Parameter_Associations => Actual_List);
2509 end;
2511 -- Generate:
2513 -- declare
2514 -- New_Obj : ...
2515 -- begin
2516 -- Proc (New_Obj, ...);
2517 -- return New_Obj;
2518 -- end;
2520 Blk_Stmt :=
2521 Make_Block_Statement (Loc,
2522 Declarations => New_List (New_Obj),
2523 Handled_Statement_Sequence =>
2524 Make_Handled_Sequence_Of_Statements (Loc,
2525 Statements => New_List (
2527 Proc_Call,
2529 Make_Simple_Return_Statement (Loc,
2530 Expression =>
2531 New_Occurrence_Of
2532 (Defining_Identifier (New_Obj), Loc)))));
2534 Rewrite (Ret_Stmt, Blk_Stmt);
2535 end Split_Unconstrained_Function;
2537 -- Local variables
2539 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2541 -- Start of processing for Check_And_Split_Unconstrained_Function
2543 begin
2544 pragma Assert (Back_End_Inlining
2545 and then Ekind (Spec_Id) = E_Function
2546 and then Returns_Unconstrained_Type (Spec_Id)
2547 and then Comes_From_Source (Body_Id)
2548 and then (Has_Pragma_Inline_Always (Spec_Id)
2549 or else Optimization_Level > 0));
2551 -- This routine must not be used in GNATprove mode since GNATprove
2552 -- relies on frontend inlining
2554 pragma Assert (not GNATprove_Mode);
2556 -- No need to split the function if we cannot generate the code
2558 if Serious_Errors_Detected /= 0 then
2559 return;
2560 end if;
2562 -- No action needed in stubs since the attribute Body_To_Inline
2563 -- is not available
2565 if Nkind (Decl) = N_Subprogram_Body_Stub then
2566 return;
2568 -- Cannot build the body to inline if the attribute is already set.
2569 -- This attribute may have been set if this is a subprogram renaming
2570 -- declarations (see Freeze.Build_Renamed_Body).
2572 elsif Present (Body_To_Inline (Decl)) then
2573 return;
2575 -- Do not generate a body to inline for protected functions, because the
2576 -- transformation generates a call to a protected procedure, causing
2577 -- spurious errors. We don't inline protected operations anyway, so
2578 -- this is no loss. We might as well ignore intrinsics and foreign
2579 -- conventions as well -- just allow Ada conventions.
2581 elsif not (Convention (Spec_Id) = Convention_Ada
2582 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Copy
2583 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Reference)
2584 then
2585 return;
2587 -- Check excluded declarations
2589 elsif Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
2590 return;
2592 -- Check excluded statements. There is no need to protect us against
2593 -- exception handlers since they are supported by the GCC backend.
2595 elsif Present (Handled_Statement_Sequence (N))
2596 and then Has_Excluded_Statement
2597 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2598 then
2599 return;
2600 end if;
2602 -- Build the body to inline only if really needed
2604 if Can_Split_Unconstrained_Function (N) then
2605 Split_Unconstrained_Function (N, Spec_Id);
2606 Build_Body_To_Inline (N, Spec_Id);
2607 Set_Is_Inlined (Spec_Id);
2608 end if;
2609 end Check_And_Split_Unconstrained_Function;
2611 ---------------------------------------------
2612 -- Check_Object_Renaming_In_GNATprove_Mode --
2613 ---------------------------------------------
2615 procedure Check_Object_Renaming_In_GNATprove_Mode (Spec_Id : Entity_Id) is
2616 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2617 Body_Decl : constant Node_Id :=
2618 Unit_Declaration_Node (Corresponding_Body (Decl));
2620 function Check_Object_Renaming (N : Node_Id) return Traverse_Result;
2621 -- Returns Abandon on node N if this is a reference to an object
2622 -- renaming, which will be expanded into the renamed object in
2623 -- GNATprove mode.
2625 ---------------------------
2626 -- Check_Object_Renaming --
2627 ---------------------------
2629 function Check_Object_Renaming (N : Node_Id) return Traverse_Result is
2630 begin
2631 case Nkind (Original_Node (N)) is
2632 when N_Expanded_Name
2633 | N_Identifier
2635 declare
2636 Obj_Id : constant Entity_Id := Entity (Original_Node (N));
2637 begin
2638 -- Recognize the case when SPARK expansion rewrites a
2639 -- reference to an object renaming.
2641 if Present (Obj_Id)
2642 and then Is_Object (Obj_Id)
2643 and then Present (Renamed_Object (Obj_Id))
2644 and then Nkind (Renamed_Object (Obj_Id)) not in N_Entity
2646 -- Copy_Generic_Node called for inlining expects the
2647 -- references to global entities to have the same kind
2648 -- in the "generic" code and its "instantiation".
2650 and then Nkind (Original_Node (N)) /=
2651 Nkind (Renamed_Object (Obj_Id))
2652 then
2653 return Abandon;
2654 else
2655 return OK;
2656 end if;
2657 end;
2659 when others =>
2660 return OK;
2661 end case;
2662 end Check_Object_Renaming;
2664 function Check_All_Object_Renamings is new
2665 Traverse_Func (Check_Object_Renaming);
2667 -- Start of processing for Check_Object_Renaming_In_GNATprove_Mode
2669 begin
2670 -- Subprograms with object renamings replaced by the special SPARK
2671 -- expansion cannot be inlined.
2673 if Check_All_Object_Renamings (Body_Decl) /= OK then
2674 Cannot_Inline ("cannot inline & (object renaming)?",
2675 Body_Decl, Spec_Id);
2676 Set_Body_To_Inline (Decl, Empty);
2677 end if;
2678 end Check_Object_Renaming_In_GNATprove_Mode;
2680 -------------------------------------
2681 -- Check_Package_Body_For_Inlining --
2682 -------------------------------------
2684 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2685 Bname : Unit_Name_Type;
2686 E : Entity_Id;
2687 OK : Boolean;
2689 begin
2690 -- Legacy implementation (relying on frontend inlining)
2692 if not Back_End_Inlining
2693 and then Is_Compilation_Unit (P)
2694 and then not Is_Generic_Instance (P)
2695 then
2696 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2698 E := First_Entity (P);
2699 while Present (E) loop
2700 if Has_Pragma_Inline_Always (E)
2701 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2702 then
2703 if not Is_Loaded (Bname) then
2704 Load_Needed_Body (N, OK);
2706 if OK then
2708 -- Check we are not trying to inline a parent whose body
2709 -- depends on a child, when we are compiling the body of
2710 -- the child. Otherwise we have a potential elaboration
2711 -- circularity with inlined subprograms and with
2712 -- Taft-Amendment types.
2714 declare
2715 Comp : Node_Id; -- Body just compiled
2716 Child_Spec : Entity_Id; -- Spec of main unit
2717 Ent : Entity_Id; -- For iteration
2718 With_Clause : Node_Id; -- Context of body.
2720 begin
2721 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2722 and then Present (Body_Entity (P))
2723 then
2724 Child_Spec :=
2725 Defining_Entity
2726 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2728 Comp :=
2729 Parent (Unit_Declaration_Node (Body_Entity (P)));
2731 -- Check whether the context of the body just
2732 -- compiled includes a child of itself, and that
2733 -- child is the spec of the main compilation.
2735 With_Clause := First (Context_Items (Comp));
2736 while Present (With_Clause) loop
2737 if Nkind (With_Clause) = N_With_Clause
2738 and then
2739 Scope (Entity (Name (With_Clause))) = P
2740 and then
2741 Entity (Name (With_Clause)) = Child_Spec
2742 then
2743 Error_Msg_Node_2 := Child_Spec;
2744 Error_Msg_NE
2745 ("body of & depends on child unit&??",
2746 With_Clause, P);
2747 Error_Msg_N
2748 ("\subprograms in body cannot be inlined??",
2749 With_Clause);
2751 -- Disable further inlining from this unit,
2752 -- and keep Taft-amendment types incomplete.
2754 Ent := First_Entity (P);
2755 while Present (Ent) loop
2756 if Is_Type (Ent)
2757 and then Has_Completion_In_Body (Ent)
2758 then
2759 Set_Full_View (Ent, Empty);
2761 elsif Is_Subprogram (Ent) then
2762 Set_Is_Inlined (Ent, False);
2763 end if;
2765 Next_Entity (Ent);
2766 end loop;
2768 return;
2769 end if;
2771 Next (With_Clause);
2772 end loop;
2773 end if;
2774 end;
2776 elsif Ineffective_Inline_Warnings then
2777 Error_Msg_Unit_1 := Bname;
2778 Error_Msg_N
2779 ("unable to inline subprograms defined in $?p?", P);
2780 Error_Msg_N ("\body not found?p?", P);
2781 return;
2782 end if;
2783 end if;
2785 return;
2786 end if;
2788 Next_Entity (E);
2789 end loop;
2790 end if;
2791 end Check_Package_Body_For_Inlining;
2793 --------------------
2794 -- Cleanup_Scopes --
2795 --------------------
2797 procedure Cleanup_Scopes is
2798 Decl : Node_Id;
2799 Elmt : Elmt_Id;
2800 Fin : Entity_Id;
2801 Kind : Entity_Kind;
2802 Scop : Entity_Id;
2804 begin
2805 Elmt := First_Elmt (To_Clean);
2806 while Present (Elmt) loop
2807 Scop := Node (Elmt);
2808 Kind := Ekind (Scop);
2810 if Kind = E_Block then
2811 Decl := Parent (Block_Node (Scop));
2813 else
2814 Decl := Unit_Declaration_Node (Scop);
2816 if Nkind (Decl) in N_Subprogram_Declaration
2817 | N_Task_Type_Declaration
2818 | N_Subprogram_Body_Stub
2819 then
2820 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2821 end if;
2822 end if;
2824 -- Finalizers are built only for package specs and bodies that are
2825 -- compilation units, so check that we do not have anything else.
2826 -- Moreover, they must be built at most once for each entity during
2827 -- the compilation of the main unit. However, if other units are
2828 -- later compiled for inlining purposes, they may also contain body
2829 -- instances and, therefore, appear again here, so we need to make
2830 -- sure that we do not build two finalizers for them (note that the
2831 -- contents of the finalizer for these units is irrelevant since it
2832 -- is not output in the generated code).
2834 if Kind in E_Package | E_Package_Body then
2835 declare
2836 Unit_Entity : constant Entity_Id :=
2837 (if Kind = E_Package then Scop else Spec_Entity (Scop));
2839 begin
2840 pragma Assert (Is_Compilation_Unit (Unit_Entity)
2841 and then (No (Finalizer (Scop))
2842 or else Unit_Entity /= Main_Unit_Entity));
2844 if No (Finalizer (Scop)) then
2845 Build_Finalizer
2846 (N => Decl,
2847 Clean_Stmts => No_List,
2848 Mark_Id => Empty,
2849 Top_Decls => No_List,
2850 Defer_Abort => False,
2851 Fin_Id => Fin);
2853 if Present (Fin) then
2854 Set_Finalizer (Scop, Fin);
2855 end if;
2856 end if;
2857 end;
2859 else
2860 Push_Scope (Scop);
2861 Expand_Cleanup_Actions (Decl);
2862 End_Scope;
2863 end if;
2865 Next_Elmt (Elmt);
2866 end loop;
2867 end Cleanup_Scopes;
2869 -----------------------------------------------
2870 -- Establish_Actual_Mapping_For_Inlined_Call --
2871 -----------------------------------------------
2873 procedure Establish_Actual_Mapping_For_Inlined_Call
2874 (N : Node_Id;
2875 Subp : Entity_Id;
2876 Decls : List_Id;
2877 Body_Or_Expr_To_Check : Node_Id)
2880 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2881 -- Determine whether a formal parameter is used only once in
2882 -- Body_Or_Expr_To_Check.
2884 -------------------------
2885 -- Formal_Is_Used_Once --
2886 -------------------------
2888 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2889 Use_Counter : Nat := 0;
2891 function Count_Uses (N : Node_Id) return Traverse_Result;
2892 -- Traverse the tree and count the uses of the formal parameter.
2893 -- In this case, for optimization purposes, we do not need to
2894 -- continue the traversal once more than one use is encountered.
2896 ----------------
2897 -- Count_Uses --
2898 ----------------
2900 function Count_Uses (N : Node_Id) return Traverse_Result is
2901 begin
2902 -- The original node is an identifier
2904 if Nkind (N) = N_Identifier
2905 and then Present (Entity (N))
2907 -- Original node's entity points to the one in the copied body
2909 and then Nkind (Entity (N)) = N_Identifier
2910 and then Present (Entity (Entity (N)))
2912 -- The entity of the copied node is the formal parameter
2914 and then Entity (Entity (N)) = Formal
2915 then
2916 Use_Counter := Use_Counter + 1;
2918 -- If this is a second use then abandon the traversal
2920 if Use_Counter > 1 then
2921 return Abandon;
2922 end if;
2923 end if;
2925 return OK;
2926 end Count_Uses;
2928 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2930 -- Start of processing for Formal_Is_Used_Once
2932 begin
2933 Count_Formal_Uses (Body_Or_Expr_To_Check);
2934 return Use_Counter = 1;
2935 end Formal_Is_Used_Once;
2937 -- Local Data --
2939 F : Entity_Id;
2940 A : Node_Id;
2941 Decl : Node_Id;
2942 Loc : constant Source_Ptr := Sloc (N);
2943 New_A : Node_Id;
2944 Temp : Entity_Id;
2945 Temp_Typ : Entity_Id;
2947 -- Start of processing for Establish_Actual_Mapping_For_Inlined_Call
2949 begin
2950 F := First_Formal (Subp);
2951 A := First_Actual (N);
2952 while Present (F) loop
2953 if Present (Renamed_Object (F)) then
2955 -- If expander is active, it is an error to try to inline a
2956 -- recursive subprogram. In GNATprove mode, just indicate that the
2957 -- inlining will not happen, and mark the subprogram as not always
2958 -- inlined.
2960 if GNATprove_Mode then
2961 Cannot_Inline
2962 ("cannot inline call to recursive subprogram?", N, Subp);
2963 Set_Is_Inlined_Always (Subp, False);
2964 else
2965 Error_Msg_N
2966 ("cannot inline call to recursive subprogram", N);
2967 end if;
2969 return;
2970 end if;
2972 -- Reset Last_Assignment for any parameters of mode out or in out, to
2973 -- prevent spurious warnings about overwriting for assignments to the
2974 -- formal in the inlined code.
2976 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2978 -- In GNATprove mode a protected component acting as an actual
2979 -- subprogram parameter will appear as inlined-for-proof. However,
2980 -- its E_Component entity is not an assignable object, so the
2981 -- assertion in Set_Last_Assignment will fail. We just omit the
2982 -- call to Set_Last_Assignment, because GNATprove flags useless
2983 -- assignments with its own flow analysis.
2985 -- In GNAT mode such a problem does not occur, because protected
2986 -- components are inlined via object renamings whose entity kind
2987 -- E_Variable is assignable.
2989 if Is_Assignable (Entity (A)) then
2990 Set_Last_Assignment (Entity (A), Empty);
2991 else
2992 pragma Assert
2993 (GNATprove_Mode and then Is_Protected_Component (Entity (A)));
2994 end if;
2995 end if;
2997 -- If the argument may be a controlling argument in a call within
2998 -- the inlined body, we must preserve its class-wide nature to ensure
2999 -- that dynamic dispatching will take place subsequently. If the
3000 -- formal has a constraint, then it must be preserved to retain the
3001 -- semantics of the body.
3003 if Is_Class_Wide_Type (Etype (F))
3004 or else (Is_Access_Type (Etype (F))
3005 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3006 then
3007 Temp_Typ := Etype (F);
3009 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3010 and then Etype (F) /= Base_Type (Etype (F))
3011 and then Is_Constrained (Etype (F))
3012 then
3013 Temp_Typ := Etype (F);
3015 else
3016 Temp_Typ := Etype (A);
3017 end if;
3019 -- If the actual is a simple name or a literal, no need to create a
3020 -- temporary, object can be used directly. Skip this optimization in
3021 -- GNATprove mode, to make sure any check on a type conversion will
3022 -- be issued.
3024 if (Is_Entity_Name (A)
3025 and then
3026 (not Is_Scalar_Type (Etype (A))
3027 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3028 and then not GNATprove_Mode)
3030 -- When the actual is an identifier and the corresponding formal is
3031 -- used only once in the original body, the formal can be substituted
3032 -- directly with the actual parameter. Skip this optimization in
3033 -- GNATprove mode, to make sure any check on a type conversion
3034 -- will be issued.
3036 or else
3037 (Nkind (A) = N_Identifier
3038 and then Formal_Is_Used_Once (F)
3039 and then not GNATprove_Mode)
3041 -- If the actual is a literal and the formal has its address taken,
3042 -- we cannot pass the literal itself as an argument, so its value
3043 -- must be captured in a temporary.
3045 or else
3046 (Nkind (A) in
3047 N_Real_Literal | N_Integer_Literal | N_Character_Literal
3048 and then not Address_Taken (F))
3049 then
3050 if Etype (F) /= Etype (A) then
3051 Set_Renamed_Object
3052 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3053 else
3054 Set_Renamed_Object (F, A);
3055 end if;
3057 else
3058 Temp := Make_Temporary (Loc, 'C');
3060 -- If the actual for an in/in-out parameter is a view conversion,
3061 -- make it into an unchecked conversion, given that an untagged
3062 -- type conversion is not a proper object for a renaming.
3064 -- In-out conversions that involve real conversions have already
3065 -- been transformed in Expand_Actuals.
3067 if Nkind (A) = N_Type_Conversion
3068 and then Ekind (F) /= E_In_Parameter
3069 then
3070 New_A := Unchecked_Convert_To (Etype (F), Expression (A));
3072 -- In GNATprove mode, keep the most precise type of the actual for
3073 -- the temporary variable, when the formal type is unconstrained.
3074 -- Otherwise, the AST may contain unexpected assignment statements
3075 -- to a temporary variable of unconstrained type renaming a local
3076 -- variable of constrained type, which is not expected by
3077 -- GNATprove.
3079 elsif Etype (F) /= Etype (A)
3080 and then (not GNATprove_Mode or else Is_Constrained (Etype (F)))
3081 then
3082 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3083 Temp_Typ := Etype (F);
3085 else
3086 New_A := Relocate_Node (A);
3087 end if;
3089 Set_Sloc (New_A, Sloc (N));
3091 -- If the actual has a by-reference type, it cannot be copied,
3092 -- so its value is captured in a renaming declaration. Otherwise
3093 -- declare a local constant initialized with the actual.
3095 -- We also use a renaming declaration for expressions of an array
3096 -- type that is not bit-packed, both for efficiency reasons and to
3097 -- respect the semantics of the call: in most cases the original
3098 -- call will pass the parameter by reference, and thus the inlined
3099 -- code will have the same semantics.
3101 -- Finally, we need a renaming declaration in the case of limited
3102 -- types for which initialization cannot be by copy either.
3104 if Ekind (F) = E_In_Parameter
3105 and then not Is_By_Reference_Type (Etype (A))
3106 and then not Is_Limited_Type (Etype (A))
3107 and then
3108 (not Is_Array_Type (Etype (A))
3109 or else not Is_Object_Reference (A)
3110 or else Is_Bit_Packed_Array (Etype (A)))
3111 then
3112 Decl :=
3113 Make_Object_Declaration (Loc,
3114 Defining_Identifier => Temp,
3115 Constant_Present => True,
3116 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3117 Expression => New_A);
3119 else
3120 -- In GNATprove mode, make an explicit copy of input
3121 -- parameters when formal and actual types differ, to make
3122 -- sure any check on the type conversion will be issued.
3123 -- The legality of the copy is ensured by calling first
3124 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3126 if GNATprove_Mode
3127 and then Ekind (F) /= E_Out_Parameter
3128 and then not Same_Type (Etype (F), Etype (A))
3129 then
3130 pragma Assert (not Is_By_Reference_Type (Etype (A)));
3131 pragma Assert (not Is_Limited_Type (Etype (A)));
3133 Append_To (Decls,
3134 Make_Object_Declaration (Loc,
3135 Defining_Identifier => Make_Temporary (Loc, 'C'),
3136 Constant_Present => True,
3137 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3138 Expression => New_Copy_Tree (New_A)));
3139 end if;
3141 Decl :=
3142 Make_Object_Renaming_Declaration (Loc,
3143 Defining_Identifier => Temp,
3144 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3145 Name => New_A);
3146 end if;
3148 Append (Decl, Decls);
3149 Set_Renamed_Object (F, Temp);
3150 end if;
3152 Next_Formal (F);
3153 Next_Actual (A);
3154 end loop;
3155 end Establish_Actual_Mapping_For_Inlined_Call;
3157 -------------------------
3158 -- Expand_Inlined_Call --
3159 -------------------------
3161 procedure Expand_Inlined_Call
3162 (N : Node_Id;
3163 Subp : Entity_Id;
3164 Orig_Subp : Entity_Id)
3166 Decls : constant List_Id := New_List;
3167 Is_Predef : constant Boolean :=
3168 Is_Predefined_Unit (Get_Source_Unit (Subp));
3169 Loc : constant Source_Ptr := Sloc (N);
3170 Orig_Bod : constant Node_Id :=
3171 Body_To_Inline (Unit_Declaration_Node (Subp));
3173 Uses_Back_End : constant Boolean :=
3174 Back_End_Inlining and then Optimization_Level > 0;
3175 -- The back-end expansion is used if the target supports back-end
3176 -- inlining and some level of optimixation is required; otherwise
3177 -- the inlining takes place fully as a tree expansion.
3179 Blk : Node_Id;
3180 Decl : Node_Id;
3181 Exit_Lab : Entity_Id := Empty;
3182 Lab_Decl : Node_Id := Empty;
3183 Lab_Id : Node_Id;
3184 Num_Ret : Nat := 0;
3185 Ret_Type : Entity_Id;
3186 Temp : Entity_Id;
3188 Is_Unc : Boolean;
3189 Is_Unc_Decl : Boolean;
3190 -- If the type returned by the function is unconstrained and the call
3191 -- can be inlined, special processing is required.
3193 Return_Object : Entity_Id := Empty;
3194 -- Entity in declaration in an extended_return_statement
3196 Targ : Node_Id := Empty;
3197 -- The target of the call. If context is an assignment statement then
3198 -- this is the left-hand side of the assignment, else it is a temporary
3199 -- to which the return value is assigned prior to rewriting the call.
3201 Targ1 : Node_Id := Empty;
3202 -- A separate target used when the return type is unconstrained
3204 procedure Declare_Postconditions_Result;
3205 -- When generating C code, declare _Result, which may be used in the
3206 -- inlined _Postconditions procedure to verify the return value.
3208 procedure Make_Exit_Label;
3209 -- Build declaration for exit label to be used in Return statements,
3210 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
3211 -- declaration). Does nothing if Exit_Lab already set.
3213 procedure Make_Loop_Labels_Unique (HSS : Node_Id);
3214 -- When compiling for CCG and performing front-end inlining, replace
3215 -- loop names and references to them so that they do not conflict with
3216 -- homographs in the current subprogram.
3218 function Process_Formals (N : Node_Id) return Traverse_Result;
3219 -- Replace occurrence of a formal with the corresponding actual, or the
3220 -- thunk generated for it. Replace a return statement with an assignment
3221 -- to the target of the call, with appropriate conversions if needed.
3223 function Process_Formals_In_Aspects (N : Node_Id) return Traverse_Result;
3224 -- Because aspects are linked indirectly to the rest of the tree,
3225 -- replacement of formals appearing in aspect specifications must
3226 -- be performed in a separate pass, using an instantiation of the
3227 -- previous subprogram over aspect specifications reachable from N.
3229 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3230 -- If the call being expanded is that of an internal subprogram, set the
3231 -- sloc of the generated block to that of the call itself, so that the
3232 -- expansion is skipped by the "next" command in gdb. Same processing
3233 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
3234 -- Debug_Generated_Code is true, suppress this change to simplify our
3235 -- own development. Same in GNATprove mode, to ensure that warnings and
3236 -- diagnostics point to the proper location.
3238 procedure Reset_Dispatching_Calls (N : Node_Id);
3239 -- In subtree N search for occurrences of dispatching calls that use the
3240 -- Ada 2005 Object.Operation notation and the object is a formal of the
3241 -- inlined subprogram. Reset the entity associated with Operation in all
3242 -- the found occurrences.
3244 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3245 -- If the function body is a single expression, replace call with
3246 -- expression, else insert block appropriately.
3248 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3249 -- If procedure body has no local variables, inline body without
3250 -- creating block, otherwise rewrite call with block.
3252 -----------------------------------
3253 -- Declare_Postconditions_Result --
3254 -----------------------------------
3256 procedure Declare_Postconditions_Result is
3257 Enclosing_Subp : constant Entity_Id := Scope (Subp);
3259 begin
3260 pragma Assert
3261 (Modify_Tree_For_C
3262 and then Is_Subprogram (Enclosing_Subp)
3263 and then Present (Wrapped_Statements (Enclosing_Subp)));
3265 if Ekind (Enclosing_Subp) = E_Function then
3266 if Nkind (First (Parameter_Associations (N))) in
3267 N_Numeric_Or_String_Literal
3268 then
3269 Append_To (Declarations (Blk),
3270 Make_Object_Declaration (Loc,
3271 Defining_Identifier =>
3272 Make_Defining_Identifier (Loc, Name_uResult),
3273 Constant_Present => True,
3274 Object_Definition =>
3275 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
3276 Expression =>
3277 New_Copy_Tree (First (Parameter_Associations (N)))));
3278 else
3279 Append_To (Declarations (Blk),
3280 Make_Object_Renaming_Declaration (Loc,
3281 Defining_Identifier =>
3282 Make_Defining_Identifier (Loc, Name_uResult),
3283 Subtype_Mark =>
3284 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
3285 Name =>
3286 New_Copy_Tree (First (Parameter_Associations (N)))));
3287 end if;
3288 end if;
3289 end Declare_Postconditions_Result;
3291 ---------------------
3292 -- Make_Exit_Label --
3293 ---------------------
3295 procedure Make_Exit_Label is
3296 Lab_Ent : Entity_Id;
3297 begin
3298 if No (Exit_Lab) then
3299 Lab_Ent := Make_Temporary (Loc, 'L');
3300 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
3301 Exit_Lab := Make_Label (Loc, Lab_Id);
3302 Lab_Decl :=
3303 Make_Implicit_Label_Declaration (Loc,
3304 Defining_Identifier => Lab_Ent,
3305 Label_Construct => Exit_Lab);
3306 end if;
3307 end Make_Exit_Label;
3309 -----------------------------
3310 -- Make_Loop_Labels_Unique --
3311 -----------------------------
3313 procedure Make_Loop_Labels_Unique (HSS : Node_Id) is
3314 function Process_Loop (N : Node_Id) return Traverse_Result;
3316 ------------------
3317 -- Process_Loop --
3318 ------------------
3320 function Process_Loop (N : Node_Id) return Traverse_Result is
3321 Id : Entity_Id;
3323 begin
3324 if Nkind (N) = N_Loop_Statement
3325 and then Present (Identifier (N))
3326 then
3327 -- Create new external name for loop and update the
3328 -- corresponding entity.
3330 Id := Entity (Identifier (N));
3331 Set_Chars (Id, New_External_Name (Chars (Id), 'L', -1));
3332 Set_Chars (Identifier (N), Chars (Id));
3334 elsif Nkind (N) = N_Exit_Statement
3335 and then Present (Name (N))
3336 then
3337 -- The exit statement must name an enclosing loop, whose name
3338 -- has already been updated.
3340 Set_Chars (Name (N), Chars (Entity (Name (N))));
3341 end if;
3343 return OK;
3344 end Process_Loop;
3346 procedure Update_Loop_Names is new Traverse_Proc (Process_Loop);
3348 -- Local variables
3350 Stmt : Node_Id;
3352 -- Start of processing for Make_Loop_Labels_Unique
3354 begin
3355 if Modify_Tree_For_C then
3356 Stmt := First (Statements (HSS));
3357 while Present (Stmt) loop
3358 Update_Loop_Names (Stmt);
3359 Next (Stmt);
3360 end loop;
3361 end if;
3362 end Make_Loop_Labels_Unique;
3364 ---------------------
3365 -- Process_Formals --
3366 ---------------------
3368 function Process_Formals (N : Node_Id) return Traverse_Result is
3369 A : Entity_Id;
3370 E : Entity_Id;
3371 Ret : Node_Id;
3373 Had_Private_View : Boolean;
3375 begin
3376 if Is_Entity_Name (N) and then Present (Entity (N)) then
3377 E := Entity (N);
3379 if Is_Formal (E) and then Scope (E) = Subp then
3380 A := Renamed_Object (E);
3382 -- Rewrite the occurrence of the formal into an occurrence of
3383 -- the actual. Also establish visibility on the proper view of
3384 -- the actual's subtype for the body's context (if the actual's
3385 -- subtype is private at the call point but its full view is
3386 -- visible to the body, then the inlined tree here must be
3387 -- analyzed with the full view).
3389 -- The Has_Private_View flag is cleared by rewriting, so it
3390 -- must be explicitly saved and restored, just like when
3391 -- instantiating the body to inline.
3393 if Is_Entity_Name (A) then
3394 Had_Private_View := Has_Private_View (N);
3395 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
3396 Set_Has_Private_View (N, Had_Private_View);
3397 Check_Private_View (N);
3399 elsif Nkind (A) = N_Defining_Identifier then
3400 Had_Private_View := Has_Private_View (N);
3401 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
3402 Set_Has_Private_View (N, Had_Private_View);
3403 Check_Private_View (N);
3405 -- Numeric literal
3407 else
3408 Rewrite (N, New_Copy (A));
3409 end if;
3410 end if;
3412 return Skip;
3414 elsif Is_Entity_Name (N)
3415 and then Present (Return_Object)
3416 and then Chars (N) = Chars (Return_Object)
3417 then
3418 -- Occurrence within an extended return statement. The return
3419 -- object is local to the body been inlined, and thus the generic
3420 -- copy is not analyzed yet, so we match by name, and replace it
3421 -- with target of call.
3423 if Nkind (Targ) = N_Defining_Identifier then
3424 Rewrite (N, New_Occurrence_Of (Targ, Loc));
3425 else
3426 Rewrite (N, New_Copy_Tree (Targ));
3427 end if;
3429 return Skip;
3431 elsif Nkind (N) = N_Simple_Return_Statement then
3432 if No (Expression (N)) then
3433 Num_Ret := Num_Ret + 1;
3434 Make_Exit_Label;
3435 Rewrite (N,
3436 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3438 else
3439 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3440 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3441 then
3442 -- Function body is a single expression. No need for
3443 -- exit label.
3445 null;
3447 else
3448 Num_Ret := Num_Ret + 1;
3449 Make_Exit_Label;
3450 end if;
3452 -- Because of the presence of private types, the views of the
3453 -- expression and the context may be different, so place
3454 -- a type conversion to the context type to avoid spurious
3455 -- errors, e.g. when the expression is a numeric literal and
3456 -- the context is private. If the expression is an aggregate,
3457 -- use a qualified expression, because an aggregate is not a
3458 -- legal argument of a conversion. Ditto for numeric, character
3459 -- and string literals, and attributes that yield a universal
3460 -- type, because those must be resolved to a specific type.
3462 if Nkind (Expression (N)) in N_Aggregate
3463 | N_Character_Literal
3464 | N_Null
3465 | N_String_Literal
3466 or else Yields_Universal_Type (Expression (N))
3467 then
3468 Ret :=
3469 Make_Qualified_Expression (Sloc (N),
3470 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3471 Expression => Relocate_Node (Expression (N)));
3473 -- Use an unchecked type conversion between access types, for
3474 -- which a type conversion would not always be valid, as no
3475 -- check may result from the conversion.
3477 elsif Is_Access_Type (Ret_Type) then
3478 Ret :=
3479 Unchecked_Convert_To
3480 (Ret_Type, Relocate_Node (Expression (N)));
3482 -- Otherwise use a type conversion, which may trigger a check
3484 else
3485 Ret :=
3486 Make_Type_Conversion (Sloc (N),
3487 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3488 Expression => Relocate_Node (Expression (N)));
3489 end if;
3491 if Nkind (Targ) = N_Defining_Identifier then
3492 Rewrite (N,
3493 Make_Assignment_Statement (Loc,
3494 Name => New_Occurrence_Of (Targ, Loc),
3495 Expression => Ret));
3496 else
3497 Rewrite (N,
3498 Make_Assignment_Statement (Loc,
3499 Name => New_Copy (Targ),
3500 Expression => Ret));
3501 end if;
3503 Set_Assignment_OK (Name (N));
3505 if Present (Exit_Lab) then
3506 Insert_After (N,
3507 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3508 end if;
3509 end if;
3511 return OK;
3513 -- An extended return becomes a block whose first statement is the
3514 -- assignment of the initial expression of the return object to the
3515 -- target of the call itself.
3517 elsif Nkind (N) = N_Extended_Return_Statement then
3518 declare
3519 Return_Decl : constant Entity_Id :=
3520 First (Return_Object_Declarations (N));
3521 Assign : Node_Id;
3523 begin
3524 Return_Object := Defining_Identifier (Return_Decl);
3526 if Present (Expression (Return_Decl)) then
3527 if Nkind (Targ) = N_Defining_Identifier then
3528 Assign :=
3529 Make_Assignment_Statement (Loc,
3530 Name => New_Occurrence_Of (Targ, Loc),
3531 Expression => Expression (Return_Decl));
3532 else
3533 Assign :=
3534 Make_Assignment_Statement (Loc,
3535 Name => New_Copy (Targ),
3536 Expression => Expression (Return_Decl));
3537 end if;
3539 Set_Assignment_OK (Name (Assign));
3541 if No (Handled_Statement_Sequence (N)) then
3542 Set_Handled_Statement_Sequence (N,
3543 Make_Handled_Sequence_Of_Statements (Loc,
3544 Statements => New_List));
3545 end if;
3547 Prepend (Assign,
3548 Statements (Handled_Statement_Sequence (N)));
3549 end if;
3551 Rewrite (N,
3552 Make_Block_Statement (Loc,
3553 Handled_Statement_Sequence =>
3554 Handled_Statement_Sequence (N)));
3556 return OK;
3557 end;
3559 -- Remove pragma Unreferenced since it may refer to formals that
3560 -- are not visible in the inlined body, and in any case we will
3561 -- not be posting warnings on the inlined body so it is unneeded.
3563 elsif Nkind (N) = N_Pragma
3564 and then Pragma_Name (N) = Name_Unreferenced
3565 then
3566 Rewrite (N, Make_Null_Statement (Sloc (N)));
3567 return OK;
3569 else
3570 return OK;
3571 end if;
3572 end Process_Formals;
3574 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3576 --------------------------------
3577 -- Process_Formals_In_Aspects --
3578 --------------------------------
3580 function Process_Formals_In_Aspects
3581 (N : Node_Id) return Traverse_Result
3583 A : Node_Id;
3585 begin
3586 if Has_Aspects (N) then
3587 A := First (Aspect_Specifications (N));
3588 while Present (A) loop
3589 Replace_Formals (Expression (A));
3591 Next (A);
3592 end loop;
3593 end if;
3594 return OK;
3595 end Process_Formals_In_Aspects;
3597 procedure Replace_Formals_In_Aspects is
3598 new Traverse_Proc (Process_Formals_In_Aspects);
3600 ------------------
3601 -- Process_Sloc --
3602 ------------------
3604 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3605 begin
3606 if not Debug_Generated_Code then
3607 Set_Sloc (Nod, Sloc (N));
3608 Set_Comes_From_Source (Nod, False);
3609 end if;
3611 return OK;
3612 end Process_Sloc;
3614 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3616 ------------------------------
3617 -- Reset_Dispatching_Calls --
3618 ------------------------------
3620 procedure Reset_Dispatching_Calls (N : Node_Id) is
3622 function Do_Reset (N : Node_Id) return Traverse_Result;
3624 --------------
3625 -- Do_Reset --
3626 --------------
3628 function Do_Reset (N : Node_Id) return Traverse_Result is
3629 begin
3630 if Nkind (N) = N_Procedure_Call_Statement
3631 and then Nkind (Name (N)) = N_Selected_Component
3632 and then Nkind (Prefix (Name (N))) = N_Identifier
3633 and then Is_Formal (Entity (Prefix (Name (N))))
3634 and then Is_Dispatching_Operation
3635 (Entity (Selector_Name (Name (N))))
3636 then
3637 Set_Entity (Selector_Name (Name (N)), Empty);
3638 end if;
3640 return OK;
3641 end Do_Reset;
3643 procedure Do_Reset_Calls is new Traverse_Proc (Do_Reset);
3645 begin
3646 Do_Reset_Calls (N);
3647 end Reset_Dispatching_Calls;
3649 ---------------------------
3650 -- Rewrite_Function_Call --
3651 ---------------------------
3653 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3654 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3655 Fst : constant Node_Id := First (Statements (HSS));
3657 begin
3658 Make_Loop_Labels_Unique (HSS);
3660 -- Optimize simple case: function body is a single return statement,
3661 -- which has been expanded into an assignment.
3663 if Is_Empty_List (Declarations (Blk))
3664 and then Nkind (Fst) = N_Assignment_Statement
3665 and then No (Next (Fst))
3666 then
3667 -- The function call may have been rewritten as the temporary
3668 -- that holds the result of the call, in which case remove the
3669 -- now useless declaration.
3671 if Nkind (N) = N_Identifier
3672 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3673 then
3674 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3675 end if;
3677 Rewrite (N, Expression (Fst));
3679 elsif Nkind (N) = N_Identifier
3680 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3681 then
3682 -- The block assigns the result of the call to the temporary
3684 Insert_After (Parent (Entity (N)), Blk);
3686 -- If the context is an assignment, and the left-hand side is free of
3687 -- side-effects, the replacement is also safe.
3689 elsif Nkind (Parent (N)) = N_Assignment_Statement
3690 and then
3691 (Is_Entity_Name (Name (Parent (N)))
3692 or else
3693 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3694 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
3696 or else
3697 (Nkind (Name (Parent (N))) = N_Selected_Component
3698 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3699 then
3700 -- Replace assignment with the block
3702 declare
3703 Original_Assignment : constant Node_Id := Parent (N);
3705 begin
3706 -- Preserve the original assignment node to keep the complete
3707 -- assignment subtree consistent enough for Analyze_Assignment
3708 -- to proceed (specifically, the original Lhs node must still
3709 -- have an assignment statement as its parent).
3711 -- We cannot rely on Original_Node to go back from the block
3712 -- node to the assignment node, because the assignment might
3713 -- already be a rewrite substitution.
3715 Discard_Node (Relocate_Node (Original_Assignment));
3716 Rewrite (Original_Assignment, Blk);
3717 end;
3719 elsif Nkind (Parent (N)) = N_Object_Declaration then
3721 -- A call to a function which returns an unconstrained type
3722 -- found in the expression initializing an object-declaration is
3723 -- expanded into a procedure call which must be added after the
3724 -- object declaration.
3726 if Is_Unc_Decl and Back_End_Inlining then
3727 Insert_Action_After (Parent (N), Blk);
3728 else
3729 Set_Expression (Parent (N), Empty);
3730 Insert_After (Parent (N), Blk);
3731 end if;
3733 elsif Is_Unc and then not Back_End_Inlining then
3734 Insert_Before (Parent (N), Blk);
3735 end if;
3736 end Rewrite_Function_Call;
3738 ----------------------------
3739 -- Rewrite_Procedure_Call --
3740 ----------------------------
3742 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
3743 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3745 begin
3746 Make_Loop_Labels_Unique (HSS);
3748 -- If there is a transient scope for N, this will be the scope of the
3749 -- actions for N, and the statements in Blk need to be within this
3750 -- scope. For example, they need to have visibility on the constant
3751 -- declarations created for the formals.
3753 -- If N needs no transient scope, and if there are no declarations in
3754 -- the inlined body, we can do a little optimization and insert the
3755 -- statements for the body directly after N, and rewrite N to a
3756 -- null statement, instead of rewriting N into a full-blown block
3757 -- statement.
3759 if not Scope_Is_Transient
3760 and then Is_Empty_List (Declarations (Blk))
3761 then
3762 Insert_List_After (N, Statements (HSS));
3763 Rewrite (N, Make_Null_Statement (Loc));
3764 else
3765 Rewrite (N, Blk);
3766 end if;
3767 end Rewrite_Procedure_Call;
3769 -- Start of processing for Expand_Inlined_Call
3771 begin
3772 -- Initializations for old/new semantics
3774 if not Uses_Back_End then
3775 Is_Unc := Is_Array_Type (Etype (Subp))
3776 and then not Is_Constrained (Etype (Subp));
3777 Is_Unc_Decl := False;
3778 else
3779 Is_Unc := Returns_Unconstrained_Type (Subp)
3780 and then Optimization_Level > 0;
3781 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
3782 and then Is_Unc;
3783 end if;
3785 -- Check for an illegal attempt to inline a recursive procedure. If the
3786 -- subprogram has parameters this is detected when trying to supply a
3787 -- binding for parameters that already have one. For parameterless
3788 -- subprograms this must be done explicitly.
3790 if In_Open_Scopes (Subp) then
3791 Cannot_Inline
3792 ("cannot inline call to recursive subprogram?", N, Subp);
3793 Set_Is_Inlined (Subp, False);
3794 return;
3796 -- Skip inlining if this is not a true inlining since the attribute
3797 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
3798 -- true inlining, Orig_Bod has code rather than being an entity.
3800 elsif Nkind (Orig_Bod) in N_Entity then
3801 return;
3802 end if;
3804 if Nkind (Orig_Bod) in N_Defining_Identifier
3805 | N_Defining_Operator_Symbol
3806 then
3807 -- Subprogram is renaming_as_body. Calls occurring after the renaming
3808 -- can be replaced with calls to the renamed entity directly, because
3809 -- the subprograms are subtype conformant. If the renamed subprogram
3810 -- is an inherited operation, we must redo the expansion because
3811 -- implicit conversions may be needed. Similarly, if the renamed
3812 -- entity is inlined, expand the call for further optimizations.
3814 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3816 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
3817 Expand_Call (N);
3818 end if;
3820 return;
3821 end if;
3823 -- Register the call in the list of inlined calls
3825 Append_New_Elmt (N, To => Inlined_Calls);
3827 -- Use generic machinery to copy body of inlined subprogram, as if it
3828 -- were an instantiation, resetting source locations appropriately, so
3829 -- that nested inlined calls appear in the main unit.
3831 Save_Env (Subp, Empty);
3832 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3834 -- Old semantics
3836 if not Uses_Back_End then
3837 declare
3838 Bod : Node_Id;
3840 begin
3841 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3842 Blk :=
3843 Make_Block_Statement (Loc,
3844 Declarations => Declarations (Bod),
3845 Handled_Statement_Sequence =>
3846 Handled_Statement_Sequence (Bod));
3848 if No (Declarations (Bod)) then
3849 Set_Declarations (Blk, New_List);
3850 end if;
3852 -- When generating C code, declare _Result, which may be used to
3853 -- verify the return value.
3855 if Modify_Tree_For_C
3856 and then Nkind (N) = N_Procedure_Call_Statement
3857 and then Chars (Name (N)) = Name_uWrapped_Statements
3858 then
3859 Declare_Postconditions_Result;
3860 end if;
3862 -- For the unconstrained case, capture the name of the local
3863 -- variable that holds the result. This must be the first
3864 -- declaration in the block, because its bounds cannot depend
3865 -- on local variables. Otherwise there is no way to declare the
3866 -- result outside of the block. Needless to say, in general the
3867 -- bounds will depend on the actuals in the call.
3869 -- If the context is an assignment statement, as is the case
3870 -- for the expansion of an extended return, the left-hand side
3871 -- provides bounds even if the return type is unconstrained.
3873 if Is_Unc then
3874 declare
3875 First_Decl : Node_Id;
3877 begin
3878 First_Decl := First (Declarations (Blk));
3880 -- If the body is a single extended return statement,the
3881 -- resulting block is a nested block.
3883 if No (First_Decl) then
3884 First_Decl :=
3885 First (Statements (Handled_Statement_Sequence (Blk)));
3887 if Nkind (First_Decl) = N_Block_Statement then
3888 First_Decl := First (Declarations (First_Decl));
3889 end if;
3890 end if;
3892 -- No front-end inlining possible
3894 if Nkind (First_Decl) /= N_Object_Declaration then
3895 return;
3896 end if;
3898 if Nkind (Parent (N)) /= N_Assignment_Statement then
3899 Targ1 := Defining_Identifier (First_Decl);
3900 else
3901 Targ1 := Name (Parent (N));
3902 end if;
3903 end;
3904 end if;
3905 end;
3907 -- New semantics
3909 else
3910 declare
3911 Bod : Node_Id;
3913 begin
3914 -- General case
3916 if not Is_Unc then
3917 Bod :=
3918 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3919 Blk :=
3920 Make_Block_Statement (Loc,
3921 Declarations => Declarations (Bod),
3922 Handled_Statement_Sequence =>
3923 Handled_Statement_Sequence (Bod));
3925 -- Inline a call to a function that returns an unconstrained type.
3926 -- The semantic analyzer checked that frontend-inlined functions
3927 -- returning unconstrained types have no declarations and have
3928 -- a single extended return statement. As part of its processing
3929 -- the function was split into two subprograms: a procedure P' and
3930 -- a function F' that has a block with a call to procedure P' (see
3931 -- Split_Unconstrained_Function).
3933 else
3934 pragma Assert
3935 (Nkind
3936 (First
3937 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
3938 N_Block_Statement);
3940 declare
3941 Blk_Stmt : constant Node_Id :=
3942 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
3943 First_Stmt : constant Node_Id :=
3944 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
3945 Second_Stmt : constant Node_Id := Next (First_Stmt);
3947 begin
3948 pragma Assert
3949 (Nkind (First_Stmt) = N_Procedure_Call_Statement
3950 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
3951 and then No (Next (Second_Stmt)));
3953 Bod :=
3954 Copy_Generic_Node
3955 (First
3956 (Statements (Handled_Statement_Sequence (Orig_Bod))),
3957 Empty, Instantiating => True);
3958 Blk := Bod;
3960 -- Capture the name of the local variable that holds the
3961 -- result. This must be the first declaration in the block,
3962 -- because its bounds cannot depend on local variables.
3963 -- Otherwise there is no way to declare the result outside
3964 -- of the block. Needless to say, in general the bounds will
3965 -- depend on the actuals in the call.
3967 if Nkind (Parent (N)) /= N_Assignment_Statement then
3968 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3970 -- If the context is an assignment statement, as is the case
3971 -- for the expansion of an extended return, the left-hand
3972 -- side provides bounds even if the return type is
3973 -- unconstrained.
3975 else
3976 Targ1 := Name (Parent (N));
3977 end if;
3978 end;
3979 end if;
3981 if No (Declarations (Bod)) then
3982 Set_Declarations (Blk, New_List);
3983 end if;
3984 end;
3985 end if;
3987 -- If this is a derived function, establish the proper return type
3989 if Present (Orig_Subp) and then Orig_Subp /= Subp then
3990 Ret_Type := Etype (Orig_Subp);
3991 else
3992 Ret_Type := Etype (Subp);
3993 end if;
3995 -- Create temporaries for the actuals that are expressions, or that are
3996 -- scalars and require copying to preserve semantics.
3998 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Orig_Bod);
4000 -- Establish target of function call. If context is not assignment or
4001 -- declaration, create a temporary as a target. The declaration for the
4002 -- temporary may be subsequently optimized away if the body is a single
4003 -- expression, or if the left-hand side of the assignment is simple
4004 -- enough, i.e. an entity or an explicit dereference of one.
4006 if Ekind (Subp) = E_Function then
4007 if Nkind (Parent (N)) = N_Assignment_Statement
4008 and then Is_Entity_Name (Name (Parent (N)))
4009 then
4010 Targ := Name (Parent (N));
4012 elsif Nkind (Parent (N)) = N_Assignment_Statement
4013 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4014 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4015 then
4016 Targ := Name (Parent (N));
4018 elsif Nkind (Parent (N)) = N_Assignment_Statement
4019 and then Nkind (Name (Parent (N))) = N_Selected_Component
4020 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4021 then
4022 Targ := New_Copy_Tree (Name (Parent (N)));
4024 elsif Nkind (Parent (N)) = N_Object_Declaration
4025 and then Is_Limited_Type (Etype (Subp))
4026 then
4027 Targ := Defining_Identifier (Parent (N));
4029 -- New semantics: In an object declaration avoid an extra copy
4030 -- of the result of a call to an inlined function that returns
4031 -- an unconstrained type
4033 elsif Uses_Back_End
4034 and then Nkind (Parent (N)) = N_Object_Declaration
4035 and then Is_Unc
4036 then
4037 Targ := Defining_Identifier (Parent (N));
4039 else
4040 -- Replace call with temporary and create its declaration
4042 Temp := Make_Temporary (Loc, 'C');
4043 Set_Is_Internal (Temp);
4045 -- For the unconstrained case, the generated temporary has the
4046 -- same constrained declaration as the result variable. It may
4047 -- eventually be possible to remove that temporary and use the
4048 -- result variable directly.
4050 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
4051 then
4052 Decl :=
4053 Make_Object_Declaration (Loc,
4054 Defining_Identifier => Temp,
4055 Object_Definition =>
4056 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4058 Replace_Formals (Decl);
4060 else
4061 Decl :=
4062 Make_Object_Declaration (Loc,
4063 Defining_Identifier => Temp,
4064 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
4066 Set_Etype (Temp, Ret_Type);
4067 end if;
4069 Set_No_Initialization (Decl);
4070 Append (Decl, Decls);
4071 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4072 Targ := Temp;
4073 end if;
4074 end if;
4076 Insert_Actions (N, Decls);
4078 if Is_Unc_Decl then
4080 -- Special management for inlining a call to a function that returns
4081 -- an unconstrained type and initializes an object declaration: we
4082 -- avoid generating undesired extra calls and goto statements.
4084 -- Given:
4085 -- function Func (...) return String is
4086 -- begin
4087 -- declare
4088 -- Result : String (1 .. 4);
4089 -- begin
4090 -- Proc (Result, ...);
4091 -- return Result;
4092 -- end;
4093 -- end Func;
4095 -- Result : String := Func (...);
4097 -- Replace this object declaration by:
4099 -- Result : String (1 .. 4);
4100 -- Proc (Result, ...);
4102 Remove_Homonym (Targ);
4104 Decl :=
4105 Make_Object_Declaration
4106 (Loc,
4107 Defining_Identifier => Targ,
4108 Object_Definition =>
4109 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4110 Replace_Formals (Decl);
4111 Rewrite (Parent (N), Decl);
4112 Analyze (Parent (N));
4114 -- Avoid spurious warnings since we know that this declaration is
4115 -- referenced by the procedure call.
4117 Set_Never_Set_In_Source (Targ, False);
4119 -- Remove the local declaration of the extended return stmt from the
4120 -- inlined code
4122 Remove (Parent (Targ1));
4124 -- Update the reference to the result (since we have rewriten the
4125 -- object declaration)
4127 declare
4128 Blk_Call_Stmt : Node_Id;
4130 begin
4131 -- Capture the call to the procedure
4133 Blk_Call_Stmt :=
4134 First (Statements (Handled_Statement_Sequence (Blk)));
4135 pragma Assert
4136 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
4138 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
4139 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
4140 New_Occurrence_Of (Targ, Loc));
4141 end;
4143 -- Remove the return statement
4145 pragma Assert
4146 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4147 N_Simple_Return_Statement);
4149 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4150 end if;
4152 -- Traverse the tree and replace formals with actuals or their thunks.
4153 -- Attach block to tree before analysis and rewriting.
4155 Replace_Formals (Blk);
4156 Replace_Formals_In_Aspects (Blk);
4157 Set_Parent (Blk, N);
4159 if GNATprove_Mode then
4160 null;
4162 elsif not Comes_From_Source (Subp) or else Is_Predef then
4163 Reset_Slocs (Blk);
4164 end if;
4166 if Is_Unc_Decl then
4168 -- No action needed since return statement has been already removed
4170 null;
4172 elsif Present (Exit_Lab) then
4174 -- If there's a single return statement at the end of the subprogram,
4175 -- the corresponding goto statement and the corresponding label are
4176 -- useless.
4178 if Num_Ret = 1
4179 and then
4180 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4181 N_Goto_Statement
4182 then
4183 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4184 else
4185 Append (Lab_Decl, (Declarations (Blk)));
4186 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
4187 end if;
4188 end if;
4190 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
4191 -- on conflicting private views that Gigi would ignore. If this is a
4192 -- predefined unit, analyze with checks off, as is done in the non-
4193 -- inlined run-time units.
4195 declare
4196 I_Flag : constant Boolean := In_Inlined_Body;
4198 begin
4199 In_Inlined_Body := True;
4201 if Is_Predef then
4202 declare
4203 Style : constant Boolean := Style_Check;
4205 begin
4206 Style_Check := False;
4208 -- Search for dispatching calls that use the Object.Operation
4209 -- notation using an Object that is a parameter of the inlined
4210 -- function. We reset the decoration of Operation to force
4211 -- the reanalysis of the inlined dispatching call because
4212 -- the actual object has been inlined.
4214 Reset_Dispatching_Calls (Blk);
4216 -- In GNATprove mode, always consider checks on, even for
4217 -- predefined units.
4219 if GNATprove_Mode then
4220 Analyze (Blk);
4221 else
4222 Analyze (Blk, Suppress => All_Checks);
4223 end if;
4225 Style_Check := Style;
4226 end;
4228 else
4229 Analyze (Blk);
4230 end if;
4232 In_Inlined_Body := I_Flag;
4233 end;
4235 if Ekind (Subp) = E_Procedure then
4236 Rewrite_Procedure_Call (N, Blk);
4238 else
4239 Rewrite_Function_Call (N, Blk);
4241 if Is_Unc_Decl then
4242 null;
4244 -- For the unconstrained case, the replacement of the call has been
4245 -- made prior to the complete analysis of the generated declarations.
4246 -- Propagate the proper type now.
4248 elsif Is_Unc then
4249 if Nkind (N) = N_Identifier then
4250 Set_Etype (N, Etype (Entity (N)));
4251 else
4252 Set_Etype (N, Etype (Targ1));
4253 end if;
4254 end if;
4255 end if;
4257 Restore_Env;
4259 -- Cleanup mapping between formals and actuals for other expansions
4261 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4262 end Expand_Inlined_Call;
4264 --------------------------
4265 -- Get_Code_Unit_Entity --
4266 --------------------------
4268 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
4269 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
4271 begin
4272 if Ekind (Unit) = E_Package_Body then
4273 Unit := Spec_Entity (Unit);
4274 end if;
4276 return Unit;
4277 end Get_Code_Unit_Entity;
4279 ------------------------------
4280 -- Has_Excluded_Declaration --
4281 ------------------------------
4283 function Has_Excluded_Declaration
4284 (Subp : Entity_Id;
4285 Decls : List_Id) return Boolean
4287 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4288 -- Nested subprograms make a given body ineligible for inlining, but
4289 -- we make an exception for instantiations of unchecked conversion.
4290 -- The body has not been analyzed yet, so check the name, and verify
4291 -- that the visible entity with that name is the predefined unit.
4293 -----------------------------
4294 -- Is_Unchecked_Conversion --
4295 -----------------------------
4297 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4298 Id : constant Node_Id := Name (D);
4299 Conv : Entity_Id;
4301 begin
4302 if Nkind (Id) = N_Identifier
4303 and then Chars (Id) = Name_Unchecked_Conversion
4304 then
4305 Conv := Current_Entity (Id);
4307 elsif Nkind (Id) in N_Selected_Component | N_Expanded_Name
4308 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4309 then
4310 Conv := Current_Entity (Selector_Name (Id));
4311 else
4312 return False;
4313 end if;
4315 return Present (Conv)
4316 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
4317 and then Is_Intrinsic_Subprogram (Conv);
4318 end Is_Unchecked_Conversion;
4320 -- Local variables
4322 Decl : Node_Id;
4324 -- Start of processing for Has_Excluded_Declaration
4326 begin
4327 -- No action needed if the check is not needed
4329 if not Check_Inlining_Restrictions then
4330 return False;
4331 end if;
4333 Decl := First (Decls);
4334 while Present (Decl) loop
4336 -- First declarations universally excluded
4338 if Nkind (Decl) = N_Package_Declaration then
4339 Cannot_Inline
4340 ("cannot inline & (nested package declaration)?", Decl, Subp);
4341 return True;
4343 elsif Nkind (Decl) = N_Package_Instantiation then
4344 Cannot_Inline
4345 ("cannot inline & (nested package instantiation)?", Decl, Subp);
4346 return True;
4347 end if;
4349 -- Then declarations excluded only for front-end inlining
4351 if Back_End_Inlining then
4352 null;
4354 elsif Nkind (Decl) = N_Task_Type_Declaration
4355 or else Nkind (Decl) = N_Single_Task_Declaration
4356 then
4357 Cannot_Inline
4358 ("cannot inline & (nested task type declaration)?", Decl, Subp);
4359 return True;
4361 elsif Nkind (Decl) in N_Protected_Type_Declaration
4362 | N_Single_Protected_Declaration
4363 then
4364 Cannot_Inline
4365 ("cannot inline & (nested protected type declaration)?",
4366 Decl, Subp);
4367 return True;
4369 elsif Nkind (Decl) = N_Subprogram_Body then
4370 Cannot_Inline
4371 ("cannot inline & (nested subprogram)?", Decl, Subp);
4372 return True;
4374 elsif Nkind (Decl) = N_Function_Instantiation
4375 and then not Is_Unchecked_Conversion (Decl)
4376 then
4377 Cannot_Inline
4378 ("cannot inline & (nested function instantiation)?", Decl, Subp);
4379 return True;
4381 elsif Nkind (Decl) = N_Procedure_Instantiation then
4382 Cannot_Inline
4383 ("cannot inline & (nested procedure instantiation)?",
4384 Decl, Subp);
4385 return True;
4387 -- Subtype declarations with predicates will generate predicate
4388 -- functions, i.e. nested subprogram bodies, so inlining is not
4389 -- possible.
4391 elsif Nkind (Decl) = N_Subtype_Declaration then
4392 declare
4393 A : Node_Id;
4394 A_Id : Aspect_Id;
4396 begin
4397 A := First (Aspect_Specifications (Decl));
4398 while Present (A) loop
4399 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
4401 if A_Id = Aspect_Predicate
4402 or else A_Id = Aspect_Static_Predicate
4403 or else A_Id = Aspect_Dynamic_Predicate
4404 then
4405 Cannot_Inline
4406 ("cannot inline & (subtype declaration with "
4407 & "predicate)?", Decl, Subp);
4408 return True;
4409 end if;
4411 Next (A);
4412 end loop;
4413 end;
4414 end if;
4416 Next (Decl);
4417 end loop;
4419 return False;
4420 end Has_Excluded_Declaration;
4422 ----------------------------
4423 -- Has_Excluded_Statement --
4424 ----------------------------
4426 function Has_Excluded_Statement
4427 (Subp : Entity_Id;
4428 Stats : List_Id) return Boolean
4430 S : Node_Id;
4431 E : Node_Id;
4433 begin
4434 -- No action needed if the check is not needed
4436 if not Check_Inlining_Restrictions then
4437 return False;
4438 end if;
4440 S := First (Stats);
4441 while Present (S) loop
4442 if Nkind (S) in N_Abort_Statement
4443 | N_Asynchronous_Select
4444 | N_Conditional_Entry_Call
4445 | N_Delay_Relative_Statement
4446 | N_Delay_Until_Statement
4447 | N_Selective_Accept
4448 | N_Timed_Entry_Call
4449 then
4450 Cannot_Inline
4451 ("cannot inline & (non-allowed statement)?", S, Subp);
4452 return True;
4454 elsif Nkind (S) = N_Block_Statement then
4455 if Has_Excluded_Declaration (Subp, Declarations (S)) then
4456 return True;
4458 elsif Present (Handled_Statement_Sequence (S)) then
4459 if not Back_End_Inlining
4460 and then
4461 Present
4462 (Exception_Handlers (Handled_Statement_Sequence (S)))
4463 then
4464 Cannot_Inline
4465 ("cannot inline& (exception handler)?",
4466 First (Exception_Handlers
4467 (Handled_Statement_Sequence (S))),
4468 Subp);
4469 return True;
4471 elsif Has_Excluded_Statement
4472 (Subp, Statements (Handled_Statement_Sequence (S)))
4473 then
4474 return True;
4475 end if;
4476 end if;
4478 elsif Nkind (S) = N_Case_Statement then
4479 E := First (Alternatives (S));
4480 while Present (E) loop
4481 if Has_Excluded_Statement (Subp, Statements (E)) then
4482 return True;
4483 end if;
4485 Next (E);
4486 end loop;
4488 elsif Nkind (S) = N_If_Statement then
4489 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
4490 return True;
4491 end if;
4493 if Present (Elsif_Parts (S)) then
4494 E := First (Elsif_Parts (S));
4495 while Present (E) loop
4496 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
4497 return True;
4498 end if;
4500 Next (E);
4501 end loop;
4502 end if;
4504 if Present (Else_Statements (S))
4505 and then Has_Excluded_Statement (Subp, Else_Statements (S))
4506 then
4507 return True;
4508 end if;
4510 elsif Nkind (S) = N_Loop_Statement
4511 and then Has_Excluded_Statement (Subp, Statements (S))
4512 then
4513 return True;
4515 elsif Nkind (S) = N_Extended_Return_Statement then
4516 if Present (Handled_Statement_Sequence (S))
4517 and then
4518 Has_Excluded_Statement
4519 (Subp, Statements (Handled_Statement_Sequence (S)))
4520 then
4521 return True;
4523 elsif not Back_End_Inlining
4524 and then Present (Handled_Statement_Sequence (S))
4525 and then
4526 Present (Exception_Handlers
4527 (Handled_Statement_Sequence (S)))
4528 then
4529 Cannot_Inline
4530 ("cannot inline& (exception handler)?",
4531 First (Exception_Handlers (Handled_Statement_Sequence (S))),
4532 Subp);
4533 return True;
4534 end if;
4535 end if;
4537 Next (S);
4538 end loop;
4540 return False;
4541 end Has_Excluded_Statement;
4543 --------------------------
4544 -- Has_Initialized_Type --
4545 --------------------------
4547 function Has_Initialized_Type (E : Entity_Id) return Boolean is
4548 E_Body : constant Node_Id := Subprogram_Body (E);
4549 Decl : Node_Id;
4551 begin
4552 if No (E_Body) then -- imported subprogram
4553 return False;
4555 else
4556 Decl := First (Declarations (E_Body));
4557 while Present (Decl) loop
4558 if Nkind (Decl) = N_Full_Type_Declaration
4559 and then Comes_From_Source (Decl)
4560 and then Present (Init_Proc (Defining_Identifier (Decl)))
4561 then
4562 return True;
4563 end if;
4565 Next (Decl);
4566 end loop;
4567 end if;
4569 return False;
4570 end Has_Initialized_Type;
4572 -----------------------
4573 -- Has_Single_Return --
4574 -----------------------
4576 function Has_Single_Return (N : Node_Id) return Boolean is
4577 Return_Statement : Node_Id := Empty;
4579 function Check_Return (N : Node_Id) return Traverse_Result;
4581 ------------------
4582 -- Check_Return --
4583 ------------------
4585 function Check_Return (N : Node_Id) return Traverse_Result is
4586 begin
4587 if Nkind (N) = N_Simple_Return_Statement then
4588 if Present (Expression (N))
4589 and then Is_Entity_Name (Expression (N))
4590 then
4591 pragma Assert (Present (Entity (Expression (N))));
4593 if No (Return_Statement) then
4594 Return_Statement := N;
4595 return OK;
4597 else
4598 pragma Assert
4599 (Present (Entity (Expression (Return_Statement))));
4601 if Entity (Expression (N)) =
4602 Entity (Expression (Return_Statement))
4603 then
4604 return OK;
4605 else
4606 return Abandon;
4607 end if;
4608 end if;
4610 -- A return statement within an extended return is a noop after
4611 -- inlining.
4613 elsif No (Expression (N))
4614 and then Nkind (Parent (Parent (N))) =
4615 N_Extended_Return_Statement
4616 then
4617 return OK;
4619 else
4620 -- Expression has wrong form
4622 return Abandon;
4623 end if;
4625 -- We can only inline a build-in-place function if it has a single
4626 -- extended return.
4628 elsif Nkind (N) = N_Extended_Return_Statement then
4629 if No (Return_Statement) then
4630 Return_Statement := N;
4631 return OK;
4633 else
4634 return Abandon;
4635 end if;
4637 else
4638 return OK;
4639 end if;
4640 end Check_Return;
4642 function Check_All_Returns is new Traverse_Func (Check_Return);
4644 -- Start of processing for Has_Single_Return
4646 begin
4647 if Check_All_Returns (N) /= OK then
4648 return False;
4650 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4651 return True;
4653 else
4654 return
4655 Present (Declarations (N))
4656 and then Present (First (Declarations (N)))
4657 and then Nkind (First (Declarations (N))) = N_Object_Declaration
4658 and then Entity (Expression (Return_Statement)) =
4659 Defining_Identifier (First (Declarations (N)));
4660 end if;
4661 end Has_Single_Return;
4663 -----------------------------
4664 -- In_Main_Unit_Or_Subunit --
4665 -----------------------------
4667 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
4668 Comp : Node_Id := Cunit (Get_Code_Unit (E));
4670 begin
4671 -- Check whether the subprogram or package to inline is within the main
4672 -- unit or its spec or within a subunit. In either case there are no
4673 -- additional bodies to process. If the subprogram appears in a parent
4674 -- of the current unit, the check on whether inlining is possible is
4675 -- done in Analyze_Inlined_Bodies.
4677 while Nkind (Unit (Comp)) = N_Subunit loop
4678 Comp := Library_Unit (Comp);
4679 end loop;
4681 return Comp = Cunit (Main_Unit)
4682 or else Comp = Library_Unit (Cunit (Main_Unit));
4683 end In_Main_Unit_Or_Subunit;
4685 ----------------
4686 -- Initialize --
4687 ----------------
4689 procedure Initialize is
4690 begin
4691 Pending_Instantiations.Init;
4692 Called_Pending_Instantiations.Init;
4693 Inlined_Bodies.Init;
4694 Successors.Init;
4695 Inlined.Init;
4697 for J in Hash_Headers'Range loop
4698 Hash_Headers (J) := No_Subp;
4699 end loop;
4701 Inlined_Calls := No_Elist;
4702 Backend_Calls := No_Elist;
4703 Backend_Instances := No_Elist;
4704 Backend_Inlined_Subps := No_Elist;
4705 Backend_Not_Inlined_Subps := No_Elist;
4706 end Initialize;
4708 ---------------------------------
4709 -- Inline_Static_Function_Call --
4710 ---------------------------------
4712 procedure Inline_Static_Function_Call (N : Node_Id; Subp : Entity_Id) is
4714 function Replace_Formal (N : Node_Id) return Traverse_Result;
4715 -- Replace each occurrence of a formal with the
4716 -- corresponding actual, using the mapping created
4717 -- by Establish_Actual_Mapping_For_Inlined_Call.
4719 function Reset_Sloc (Nod : Node_Id) return Traverse_Result;
4720 -- Reset the Sloc of a node to that of the call itself, so that errors
4721 -- will be flagged on the call to the static expression function itself
4722 -- rather than on the expression of the function's declaration.
4724 --------------------
4725 -- Replace_Formal --
4726 --------------------
4728 function Replace_Formal (N : Node_Id) return Traverse_Result is
4729 A : Entity_Id;
4730 E : Entity_Id;
4732 begin
4733 if Is_Entity_Name (N) and then Present (Entity (N)) then
4734 E := Entity (N);
4736 if Is_Formal (E) and then Scope (E) = Subp then
4737 A := Renamed_Object (E);
4739 if Nkind (A) = N_Defining_Identifier then
4740 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
4742 -- Literal cases
4744 else
4745 Rewrite (N, New_Copy (A));
4746 end if;
4747 end if;
4749 return Skip;
4751 else
4752 return OK;
4753 end if;
4754 end Replace_Formal;
4756 procedure Replace_Formals is new Traverse_Proc (Replace_Formal);
4758 ------------------
4759 -- Process_Sloc --
4760 ------------------
4762 function Reset_Sloc (Nod : Node_Id) return Traverse_Result is
4763 begin
4764 Set_Sloc (Nod, Sloc (N));
4765 Set_Comes_From_Source (Nod, False);
4767 return OK;
4768 end Reset_Sloc;
4770 procedure Reset_Slocs is new Traverse_Proc (Reset_Sloc);
4772 -- Start of processing for Inline_Static_Function_Call
4774 begin
4775 pragma Assert (Is_Static_Function_Call (N));
4777 declare
4778 Decls : constant List_Id := New_List;
4779 Func_Expr : constant Node_Id :=
4780 Expression_Of_Expression_Function (Subp);
4781 Expr_Copy : constant Node_Id := New_Copy_Tree (Func_Expr);
4783 begin
4784 -- Create a mapping from formals to actuals, also creating temps in
4785 -- Decls, when needed, to hold the actuals.
4787 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Func_Expr);
4789 -- Ensure that the copy has the same parent as the call (this seems
4790 -- to matter when GNATprove_Mode is set and there are nested static
4791 -- calls; prevents blowups in Insert_Actions, though it's not clear
4792 -- exactly why this is needed???).
4794 Set_Parent (Expr_Copy, Parent (N));
4796 Insert_Actions (N, Decls);
4798 -- Now substitute actuals for their corresponding formal references
4799 -- within the expression.
4801 Replace_Formals (Expr_Copy);
4803 Reset_Slocs (Expr_Copy);
4805 -- Apply a qualified expression with the function's result subtype,
4806 -- to ensure that we check the expression against any constraint
4807 -- or predicate, which will cause the call to be illegal if the
4808 -- folded expression doesn't satisfy them. (The predicate case
4809 -- might not get checked if the subtype hasn't been frozen yet,
4810 -- which can happen if this static expression happens to be what
4811 -- causes the freezing, because Has_Static_Predicate doesn't get
4812 -- set on the subtype until it's frozen and Build_Predicates is
4813 -- called. It's not clear how to address this case. ???)
4815 Rewrite (Expr_Copy,
4816 Make_Qualified_Expression (Sloc (Expr_Copy),
4817 Subtype_Mark =>
4818 New_Occurrence_Of (Etype (N), Sloc (Expr_Copy)),
4819 Expression =>
4820 Relocate_Node (Expr_Copy)));
4822 Set_Etype (Expr_Copy, Etype (N));
4824 Analyze_And_Resolve (Expr_Copy, Etype (N));
4826 -- Finally rewrite the function call as the folded static result
4828 Rewrite (N, Expr_Copy);
4830 -- Cleanup mapping between formals and actuals for other expansions
4832 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4833 end;
4834 end Inline_Static_Function_Call;
4836 ------------------------
4837 -- Instantiate_Bodies --
4838 ------------------------
4840 -- Generic bodies contain all the non-local references, so an
4841 -- instantiation does not need any more context than Standard
4842 -- itself, even if the instantiation appears in an inner scope.
4843 -- Generic associations have verified that the contract model is
4844 -- satisfied, so that any error that may occur in the analysis of
4845 -- the body is an internal error.
4847 procedure Instantiate_Bodies is
4849 procedure Instantiate_Body (Info : Pending_Body_Info);
4850 -- Instantiate a pending body
4852 ------------------------
4853 -- Instantiate_Body --
4854 ------------------------
4856 procedure Instantiate_Body (Info : Pending_Body_Info) is
4857 Scop : Entity_Id;
4859 begin
4860 -- If the instantiation node is absent, it has been removed as part
4861 -- of unreachable code.
4863 if No (Info.Inst_Node) then
4864 null;
4866 -- If the instantiation node is a package body, this means that the
4867 -- instance is a compilation unit and the instantiation has already
4868 -- been performed by Build_Instance_Compilation_Unit_Nodes.
4870 elsif Nkind (Info.Inst_Node) = N_Package_Body then
4871 null;
4873 -- For other package instances, instantiate the body and register the
4874 -- finalization scope, if any, for subsequent generation of cleanups.
4876 elsif Nkind (Info.Inst_Node) = N_Package_Instantiation then
4878 -- If the enclosing finalization scope is a package body, set the
4879 -- In_Package_Body flag on its spec. This is required, in the case
4880 -- where the body contains other package instantiations that have
4881 -- a body, for Analyze_Package_Instantiation to compute a correct
4882 -- finalization scope.
4884 if Present (Info.Fin_Scop)
4885 and then Ekind (Info.Fin_Scop) = E_Package_Body
4886 then
4887 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), True);
4888 end if;
4890 Instantiate_Package_Body (Info);
4892 if Present (Info.Fin_Scop) then
4893 Scop := Info.Fin_Scop;
4895 -- If the enclosing finalization scope is dynamic, the instance
4896 -- may have been relocated, for example if it was declared in a
4897 -- protected entry, protected subprogram, or task body.
4899 if Is_Dynamic_Scope (Scop) then
4900 Scop :=
4901 Enclosing_Dynamic_Scope (Defining_Entity (Info.Act_Decl));
4902 end if;
4904 Add_Scope_To_Clean (Scop);
4906 -- Reset the In_Package_Body flag if it was set above
4908 if Ekind (Info.Fin_Scop) = E_Package_Body then
4909 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), False);
4910 end if;
4911 end if;
4913 -- For subprogram instances, always instantiate the body
4915 else
4916 Instantiate_Subprogram_Body (Info);
4917 end if;
4918 end Instantiate_Body;
4920 J, K : Nat;
4921 Info : Pending_Body_Info;
4923 -- Start of processing for Instantiate_Bodies
4925 begin
4926 if Serious_Errors_Detected = 0 then
4927 Expander_Active := (Operating_Mode = Opt.Generate_Code);
4928 Push_Scope (Standard_Standard);
4929 To_Clean := New_Elmt_List;
4931 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
4932 Start_Generic;
4933 end if;
4935 -- A body instantiation may generate additional instantiations, so
4936 -- the following loop must scan to the end of a possibly expanding
4937 -- set (that's why we cannot simply use a FOR loop here). We must
4938 -- also capture the element lest the set be entirely reallocated.
4940 J := 0;
4941 if Back_End_Inlining then
4942 while J <= Called_Pending_Instantiations.Last
4943 and then Serious_Errors_Detected = 0
4944 loop
4945 K := Called_Pending_Instantiations.Table (J);
4946 Info := Pending_Instantiations.Table (K);
4947 Instantiate_Body (Info);
4949 J := J + 1;
4950 end loop;
4952 else
4953 while J <= Pending_Instantiations.Last
4954 and then Serious_Errors_Detected = 0
4955 loop
4956 Info := Pending_Instantiations.Table (J);
4957 Instantiate_Body (Info);
4959 J := J + 1;
4960 end loop;
4961 end if;
4963 -- Reset the table of instantiations. Additional instantiations
4964 -- may be added through inlining, when additional bodies are
4965 -- analyzed.
4967 if Back_End_Inlining then
4968 Called_Pending_Instantiations.Init;
4969 else
4970 Pending_Instantiations.Init;
4971 end if;
4973 -- We can now complete the cleanup actions of scopes that contain
4974 -- pending instantiations (skipped for generic units, since we
4975 -- never need any cleanups in generic units).
4977 if Expander_Active
4978 and then not Is_Generic_Unit (Main_Unit_Entity)
4979 then
4980 Cleanup_Scopes;
4981 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
4982 End_Generic;
4983 end if;
4985 Pop_Scope;
4986 end if;
4987 end Instantiate_Bodies;
4989 ---------------
4990 -- Is_Nested --
4991 ---------------
4993 function Is_Nested (E : Entity_Id) return Boolean is
4994 Scop : Entity_Id;
4996 begin
4997 Scop := Scope (E);
4998 while Scop /= Standard_Standard loop
4999 if Is_Subprogram (Scop) then
5000 return True;
5002 elsif Ekind (Scop) = E_Task_Type
5003 or else Ekind (Scop) = E_Entry
5004 or else Ekind (Scop) = E_Entry_Family
5005 then
5006 return True;
5007 end if;
5009 Scop := Scope (Scop);
5010 end loop;
5012 return False;
5013 end Is_Nested;
5015 ------------------------
5016 -- List_Inlining_Info --
5017 ------------------------
5019 procedure List_Inlining_Info is
5020 Elmt : Elmt_Id;
5021 Nod : Node_Id;
5022 Count : Nat;
5024 begin
5025 if not Debug_Flag_Dot_J then
5026 return;
5027 end if;
5029 -- Generate listing of calls inlined by the frontend
5031 if Present (Inlined_Calls) then
5032 Count := 0;
5033 Elmt := First_Elmt (Inlined_Calls);
5034 while Present (Elmt) loop
5035 Nod := Node (Elmt);
5037 if not In_Internal_Unit (Nod) then
5038 Count := Count + 1;
5040 if Count = 1 then
5041 Write_Str ("List of calls inlined by the frontend");
5042 Write_Eol;
5043 end if;
5045 Write_Str (" ");
5046 Write_Int (Count);
5047 Write_Str (":");
5048 Write_Location (Sloc (Nod));
5049 Write_Str (":");
5050 Output.Write_Eol;
5051 end if;
5053 Next_Elmt (Elmt);
5054 end loop;
5055 end if;
5057 -- Generate listing of calls passed to the backend
5059 if Present (Backend_Calls) then
5060 Count := 0;
5062 Elmt := First_Elmt (Backend_Calls);
5063 while Present (Elmt) loop
5064 Nod := Node (Elmt);
5066 if not In_Internal_Unit (Nod) then
5067 Count := Count + 1;
5069 if Count = 1 then
5070 Write_Str ("List of inlined calls passed to the backend");
5071 Write_Eol;
5072 end if;
5074 Write_Str (" ");
5075 Write_Int (Count);
5076 Write_Str (":");
5077 Write_Location (Sloc (Nod));
5078 Output.Write_Eol;
5079 end if;
5081 Next_Elmt (Elmt);
5082 end loop;
5083 end if;
5085 -- Generate listing of instances inlined for the backend
5087 if Present (Backend_Instances) then
5088 Count := 0;
5090 Elmt := First_Elmt (Backend_Instances);
5091 while Present (Elmt) loop
5092 Nod := Node (Elmt);
5094 if not In_Internal_Unit (Nod) then
5095 Count := Count + 1;
5097 if Count = 1 then
5098 Write_Str ("List of instances inlined for the backend");
5099 Write_Eol;
5100 end if;
5102 Write_Str (" ");
5103 Write_Int (Count);
5104 Write_Str (":");
5105 Write_Location (Sloc (Nod));
5106 Output.Write_Eol;
5107 end if;
5109 Next_Elmt (Elmt);
5110 end loop;
5111 end if;
5113 -- Generate listing of subprograms passed to the backend
5115 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
5116 Count := 0;
5118 Elmt := First_Elmt (Backend_Inlined_Subps);
5119 while Present (Elmt) loop
5120 Nod := Node (Elmt);
5122 if not In_Internal_Unit (Nod) then
5123 Count := Count + 1;
5125 if Count = 1 then
5126 Write_Str
5127 ("List of inlined subprograms passed to the backend");
5128 Write_Eol;
5129 end if;
5131 Write_Str (" ");
5132 Write_Int (Count);
5133 Write_Str (":");
5134 Write_Name (Chars (Nod));
5135 Write_Str (" (");
5136 Write_Location (Sloc (Nod));
5137 Write_Str (")");
5138 Output.Write_Eol;
5139 end if;
5141 Next_Elmt (Elmt);
5142 end loop;
5143 end if;
5145 -- Generate listing of subprograms that cannot be inlined by the backend
5147 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
5148 Count := 0;
5150 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
5151 while Present (Elmt) loop
5152 Nod := Node (Elmt);
5154 if not In_Internal_Unit (Nod) then
5155 Count := Count + 1;
5157 if Count = 1 then
5158 Write_Str
5159 ("List of subprograms that cannot be inlined by backend");
5160 Write_Eol;
5161 end if;
5163 Write_Str (" ");
5164 Write_Int (Count);
5165 Write_Str (":");
5166 Write_Name (Chars (Nod));
5167 Write_Str (" (");
5168 Write_Location (Sloc (Nod));
5169 Write_Str (")");
5170 Output.Write_Eol;
5171 end if;
5173 Next_Elmt (Elmt);
5174 end loop;
5175 end if;
5176 end List_Inlining_Info;
5178 ----------
5179 -- Lock --
5180 ----------
5182 procedure Lock is
5183 begin
5184 Pending_Instantiations.Release;
5185 Pending_Instantiations.Locked := True;
5186 Called_Pending_Instantiations.Release;
5187 Called_Pending_Instantiations.Locked := True;
5188 Inlined_Bodies.Release;
5189 Inlined_Bodies.Locked := True;
5190 Successors.Release;
5191 Successors.Locked := True;
5192 Inlined.Release;
5193 Inlined.Locked := True;
5194 end Lock;
5196 --------------------------------
5197 -- Remove_Aspects_And_Pragmas --
5198 --------------------------------
5200 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
5201 procedure Remove_Items (List : List_Id);
5202 -- Remove all useless aspects/pragmas from a particular list
5204 ------------------
5205 -- Remove_Items --
5206 ------------------
5208 procedure Remove_Items (List : List_Id) is
5209 Item : Node_Id;
5210 Item_Id : Node_Id;
5211 Next_Item : Node_Id;
5213 begin
5214 -- Traverse the list looking for an aspect specification or a pragma
5216 Item := First (List);
5217 while Present (Item) loop
5218 Next_Item := Next (Item);
5220 if Nkind (Item) = N_Aspect_Specification then
5221 Item_Id := Identifier (Item);
5222 elsif Nkind (Item) = N_Pragma then
5223 Item_Id := Pragma_Identifier (Item);
5224 else
5225 Item_Id := Empty;
5226 end if;
5228 if Present (Item_Id)
5229 and then Chars (Item_Id) in Name_Always_Terminates
5230 | Name_Contract_Cases
5231 | Name_Global
5232 | Name_Depends
5233 | Name_Exceptional_Cases
5234 | Name_Postcondition
5235 | Name_Precondition
5236 | Name_Refined_Global
5237 | Name_Refined_Depends
5238 | Name_Refined_Post
5239 | Name_Subprogram_Variant
5240 | Name_Test_Case
5241 | Name_Unmodified
5242 | Name_Unreferenced
5243 | Name_Unused
5244 then
5245 Remove (Item);
5246 end if;
5248 Item := Next_Item;
5249 end loop;
5250 end Remove_Items;
5252 -- Start of processing for Remove_Aspects_And_Pragmas
5254 begin
5255 Remove_Items (Aspect_Specifications (Body_Decl));
5256 Remove_Items (Declarations (Body_Decl));
5258 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
5259 -- in the body of the subprogram.
5261 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
5262 end Remove_Aspects_And_Pragmas;
5264 --------------------------
5265 -- Remove_Dead_Instance --
5266 --------------------------
5268 procedure Remove_Dead_Instance (N : Node_Id) is
5269 begin
5270 for J in 0 .. Pending_Instantiations.Last loop
5271 if Pending_Instantiations.Table (J).Inst_Node = N then
5272 Pending_Instantiations.Table (J).Inst_Node := Empty;
5273 return;
5274 end if;
5275 end loop;
5276 end Remove_Dead_Instance;
5278 -------------------------------------------
5279 -- Reset_Actual_Mapping_For_Inlined_Call --
5280 -------------------------------------------
5282 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id) is
5283 F : Entity_Id := First_Formal (Subp);
5285 begin
5286 while Present (F) loop
5287 Set_Renamed_Object (F, Empty);
5288 Next_Formal (F);
5289 end loop;
5290 end Reset_Actual_Mapping_For_Inlined_Call;
5292 end Inline;