1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
4 Copyright (C) 2008-2014 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
76 #include "coretypes.h"
77 #include "hash-table.h"
78 #include "alloc-pool.h"
81 #include "pointer-set.h"
82 #include "basic-block.h"
83 #include "tree-ssa-alias.h"
84 #include "internal-fn.h"
86 #include "gimple-expr.h"
89 #include "stor-layout.h"
91 #include "gimple-iterator.h"
92 #include "gimplify-me.h"
93 #include "gimple-walk.h"
95 #include "gimple-ssa.h"
97 #include "tree-phinodes.h"
98 #include "ssa-iterators.h"
99 #include "stringpool.h"
100 #include "tree-ssanames.h"
102 #include "tree-dfa.h"
103 #include "tree-ssa.h"
104 #include "tree-pass.h"
105 #include "ipa-prop.h"
106 #include "statistics.h"
111 #include "tree-inline.h"
112 #include "gimple-pretty-print.h"
113 #include "ipa-inline.h"
114 #include "ipa-utils.h"
116 /* Enumeration of all aggregate reductions we can do. */
117 enum sra_mode
{ SRA_MODE_EARLY_IPA
, /* early call regularization */
118 SRA_MODE_EARLY_INTRA
, /* early intraprocedural SRA */
119 SRA_MODE_INTRA
}; /* late intraprocedural SRA */
121 /* Global variable describing which aggregate reduction we are performing at
123 static enum sra_mode sra_mode
;
127 /* ACCESS represents each access to an aggregate variable (as a whole or a
128 part). It can also represent a group of accesses that refer to exactly the
129 same fragment of an aggregate (i.e. those that have exactly the same offset
130 and size). Such representatives for a single aggregate, once determined,
131 are linked in a linked list and have the group fields set.
133 Moreover, when doing intraprocedural SRA, a tree is built from those
134 representatives (by the means of first_child and next_sibling pointers), in
135 which all items in a subtree are "within" the root, i.e. their offset is
136 greater or equal to offset of the root and offset+size is smaller or equal
137 to offset+size of the root. Children of an access are sorted by offset.
139 Note that accesses to parts of vector and complex number types always
140 represented by an access to the whole complex number or a vector. It is a
141 duty of the modifying functions to replace them appropriately. */
145 /* Values returned by `get_ref_base_and_extent' for each component reference
146 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
147 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
148 HOST_WIDE_INT offset
;
152 /* Expression. It is context dependent so do not use it to create new
153 expressions to access the original aggregate. See PR 42154 for a
159 /* The statement this access belongs to. */
162 /* Next group representative for this aggregate. */
163 struct access
*next_grp
;
165 /* Pointer to the group representative. Pointer to itself if the struct is
166 the representative. */
167 struct access
*group_representative
;
169 /* If this access has any children (in terms of the definition above), this
170 points to the first one. */
171 struct access
*first_child
;
173 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
174 described above. In IPA-SRA this is a pointer to the next access
175 belonging to the same group (having the same representative). */
176 struct access
*next_sibling
;
178 /* Pointers to the first and last element in the linked list of assign
180 struct assign_link
*first_link
, *last_link
;
182 /* Pointer to the next access in the work queue. */
183 struct access
*next_queued
;
185 /* Replacement variable for this access "region." Never to be accessed
186 directly, always only by the means of get_access_replacement() and only
187 when grp_to_be_replaced flag is set. */
188 tree replacement_decl
;
190 /* Is this particular access write access? */
193 /* Is this access an access to a non-addressable field? */
194 unsigned non_addressable
: 1;
196 /* Is this access currently in the work queue? */
197 unsigned grp_queued
: 1;
199 /* Does this group contain a write access? This flag is propagated down the
201 unsigned grp_write
: 1;
203 /* Does this group contain a read access? This flag is propagated down the
205 unsigned grp_read
: 1;
207 /* Does this group contain a read access that comes from an assignment
208 statement? This flag is propagated down the access tree. */
209 unsigned grp_assignment_read
: 1;
211 /* Does this group contain a write access that comes from an assignment
212 statement? This flag is propagated down the access tree. */
213 unsigned grp_assignment_write
: 1;
215 /* Does this group contain a read access through a scalar type? This flag is
216 not propagated in the access tree in any direction. */
217 unsigned grp_scalar_read
: 1;
219 /* Does this group contain a write access through a scalar type? This flag
220 is not propagated in the access tree in any direction. */
221 unsigned grp_scalar_write
: 1;
223 /* Is this access an artificial one created to scalarize some record
225 unsigned grp_total_scalarization
: 1;
227 /* Other passes of the analysis use this bit to make function
228 analyze_access_subtree create scalar replacements for this group if
230 unsigned grp_hint
: 1;
232 /* Is the subtree rooted in this access fully covered by scalar
234 unsigned grp_covered
: 1;
236 /* If set to true, this access and all below it in an access tree must not be
238 unsigned grp_unscalarizable_region
: 1;
240 /* Whether data have been written to parts of the aggregate covered by this
241 access which is not to be scalarized. This flag is propagated up in the
243 unsigned grp_unscalarized_data
: 1;
245 /* Does this access and/or group contain a write access through a
247 unsigned grp_partial_lhs
: 1;
249 /* Set when a scalar replacement should be created for this variable. */
250 unsigned grp_to_be_replaced
: 1;
252 /* Set when we want a replacement for the sole purpose of having it in
253 generated debug statements. */
254 unsigned grp_to_be_debug_replaced
: 1;
256 /* Should TREE_NO_WARNING of a replacement be set? */
257 unsigned grp_no_warning
: 1;
259 /* Is it possible that the group refers to data which might be (directly or
260 otherwise) modified? */
261 unsigned grp_maybe_modified
: 1;
263 /* Set when this is a representative of a pointer to scalar (i.e. by
264 reference) parameter which we consider for turning into a plain scalar
265 (i.e. a by value parameter). */
266 unsigned grp_scalar_ptr
: 1;
268 /* Set when we discover that this pointer is not safe to dereference in the
270 unsigned grp_not_necessarilly_dereferenced
: 1;
273 typedef struct access
*access_p
;
276 /* Alloc pool for allocating access structures. */
277 static alloc_pool access_pool
;
279 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
280 are used to propagate subaccesses from rhs to lhs as long as they don't
281 conflict with what is already there. */
284 struct access
*lacc
, *racc
;
285 struct assign_link
*next
;
288 /* Alloc pool for allocating assign link structures. */
289 static alloc_pool link_pool
;
291 /* Base (tree) -> Vector (vec<access_p> *) map. */
292 static struct pointer_map_t
*base_access_vec
;
294 /* Candidate hash table helpers. */
296 struct uid_decl_hasher
: typed_noop_remove
<tree_node
>
298 typedef tree_node value_type
;
299 typedef tree_node compare_type
;
300 static inline hashval_t
hash (const value_type
*);
301 static inline bool equal (const value_type
*, const compare_type
*);
304 /* Hash a tree in a uid_decl_map. */
307 uid_decl_hasher::hash (const value_type
*item
)
309 return item
->decl_minimal
.uid
;
312 /* Return true if the DECL_UID in both trees are equal. */
315 uid_decl_hasher::equal (const value_type
*a
, const compare_type
*b
)
317 return (a
->decl_minimal
.uid
== b
->decl_minimal
.uid
);
320 /* Set of candidates. */
321 static bitmap candidate_bitmap
;
322 static hash_table
<uid_decl_hasher
> candidates
;
324 /* For a candidate UID return the candidates decl. */
327 candidate (unsigned uid
)
330 t
.decl_minimal
.uid
= uid
;
331 return candidates
.find_with_hash (&t
, static_cast <hashval_t
> (uid
));
334 /* Bitmap of candidates which we should try to entirely scalarize away and
335 those which cannot be (because they are and need be used as a whole). */
336 static bitmap should_scalarize_away_bitmap
, cannot_scalarize_away_bitmap
;
338 /* Obstack for creation of fancy names. */
339 static struct obstack name_obstack
;
341 /* Head of a linked list of accesses that need to have its subaccesses
342 propagated to their assignment counterparts. */
343 static struct access
*work_queue_head
;
345 /* Number of parameters of the analyzed function when doing early ipa SRA. */
346 static int func_param_count
;
348 /* scan_function sets the following to true if it encounters a call to
349 __builtin_apply_args. */
350 static bool encountered_apply_args
;
352 /* Set by scan_function when it finds a recursive call. */
353 static bool encountered_recursive_call
;
355 /* Set by scan_function when it finds a recursive call with less actual
356 arguments than formal parameters.. */
357 static bool encountered_unchangable_recursive_call
;
359 /* This is a table in which for each basic block and parameter there is a
360 distance (offset + size) in that parameter which is dereferenced and
361 accessed in that BB. */
362 static HOST_WIDE_INT
*bb_dereferences
;
363 /* Bitmap of BBs that can cause the function to "stop" progressing by
364 returning, throwing externally, looping infinitely or calling a function
365 which might abort etc.. */
366 static bitmap final_bbs
;
368 /* Representative of no accesses at all. */
369 static struct access no_accesses_representant
;
371 /* Predicate to test the special value. */
374 no_accesses_p (struct access
*access
)
376 return access
== &no_accesses_representant
;
379 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
380 representative fields are dumped, otherwise those which only describe the
381 individual access are. */
385 /* Number of processed aggregates is readily available in
386 analyze_all_variable_accesses and so is not stored here. */
388 /* Number of created scalar replacements. */
391 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
395 /* Number of statements created by generate_subtree_copies. */
398 /* Number of statements created by load_assign_lhs_subreplacements. */
401 /* Number of times sra_modify_assign has deleted a statement. */
404 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
405 RHS reparately due to type conversions or nonexistent matching
407 int separate_lhs_rhs_handling
;
409 /* Number of parameters that were removed because they were unused. */
410 int deleted_unused_parameters
;
412 /* Number of scalars passed as parameters by reference that have been
413 converted to be passed by value. */
414 int scalar_by_ref_to_by_val
;
416 /* Number of aggregate parameters that were replaced by one or more of their
418 int aggregate_params_reduced
;
420 /* Numbber of components created when splitting aggregate parameters. */
421 int param_reductions_created
;
425 dump_access (FILE *f
, struct access
*access
, bool grp
)
427 fprintf (f
, "access { ");
428 fprintf (f
, "base = (%d)'", DECL_UID (access
->base
));
429 print_generic_expr (f
, access
->base
, 0);
430 fprintf (f
, "', offset = " HOST_WIDE_INT_PRINT_DEC
, access
->offset
);
431 fprintf (f
, ", size = " HOST_WIDE_INT_PRINT_DEC
, access
->size
);
432 fprintf (f
, ", expr = ");
433 print_generic_expr (f
, access
->expr
, 0);
434 fprintf (f
, ", type = ");
435 print_generic_expr (f
, access
->type
, 0);
437 fprintf (f
, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
438 "grp_assignment_write = %d, grp_scalar_read = %d, "
439 "grp_scalar_write = %d, grp_total_scalarization = %d, "
440 "grp_hint = %d, grp_covered = %d, "
441 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
442 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
443 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
444 "grp_not_necessarilly_dereferenced = %d\n",
445 access
->grp_read
, access
->grp_write
, access
->grp_assignment_read
,
446 access
->grp_assignment_write
, access
->grp_scalar_read
,
447 access
->grp_scalar_write
, access
->grp_total_scalarization
,
448 access
->grp_hint
, access
->grp_covered
,
449 access
->grp_unscalarizable_region
, access
->grp_unscalarized_data
,
450 access
->grp_partial_lhs
, access
->grp_to_be_replaced
,
451 access
->grp_to_be_debug_replaced
, access
->grp_maybe_modified
,
452 access
->grp_not_necessarilly_dereferenced
);
454 fprintf (f
, ", write = %d, grp_total_scalarization = %d, "
455 "grp_partial_lhs = %d\n",
456 access
->write
, access
->grp_total_scalarization
,
457 access
->grp_partial_lhs
);
460 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
463 dump_access_tree_1 (FILE *f
, struct access
*access
, int level
)
469 for (i
= 0; i
< level
; i
++)
470 fputs ("* ", dump_file
);
472 dump_access (f
, access
, true);
474 if (access
->first_child
)
475 dump_access_tree_1 (f
, access
->first_child
, level
+ 1);
477 access
= access
->next_sibling
;
482 /* Dump all access trees for a variable, given the pointer to the first root in
486 dump_access_tree (FILE *f
, struct access
*access
)
488 for (; access
; access
= access
->next_grp
)
489 dump_access_tree_1 (f
, access
, 0);
492 /* Return true iff ACC is non-NULL and has subaccesses. */
495 access_has_children_p (struct access
*acc
)
497 return acc
&& acc
->first_child
;
500 /* Return true iff ACC is (partly) covered by at least one replacement. */
503 access_has_replacements_p (struct access
*acc
)
505 struct access
*child
;
506 if (acc
->grp_to_be_replaced
)
508 for (child
= acc
->first_child
; child
; child
= child
->next_sibling
)
509 if (access_has_replacements_p (child
))
514 /* Return a vector of pointers to accesses for the variable given in BASE or
515 NULL if there is none. */
517 static vec
<access_p
> *
518 get_base_access_vector (tree base
)
522 slot
= pointer_map_contains (base_access_vec
, base
);
526 return *(vec
<access_p
> **) slot
;
529 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
530 in ACCESS. Return NULL if it cannot be found. */
532 static struct access
*
533 find_access_in_subtree (struct access
*access
, HOST_WIDE_INT offset
,
536 while (access
&& (access
->offset
!= offset
|| access
->size
!= size
))
538 struct access
*child
= access
->first_child
;
540 while (child
&& (child
->offset
+ child
->size
<= offset
))
541 child
= child
->next_sibling
;
548 /* Return the first group representative for DECL or NULL if none exists. */
550 static struct access
*
551 get_first_repr_for_decl (tree base
)
553 vec
<access_p
> *access_vec
;
555 access_vec
= get_base_access_vector (base
);
559 return (*access_vec
)[0];
562 /* Find an access representative for the variable BASE and given OFFSET and
563 SIZE. Requires that access trees have already been built. Return NULL if
564 it cannot be found. */
566 static struct access
*
567 get_var_base_offset_size_access (tree base
, HOST_WIDE_INT offset
,
570 struct access
*access
;
572 access
= get_first_repr_for_decl (base
);
573 while (access
&& (access
->offset
+ access
->size
<= offset
))
574 access
= access
->next_grp
;
578 return find_access_in_subtree (access
, offset
, size
);
581 /* Add LINK to the linked list of assign links of RACC. */
583 add_link_to_rhs (struct access
*racc
, struct assign_link
*link
)
585 gcc_assert (link
->racc
== racc
);
587 if (!racc
->first_link
)
589 gcc_assert (!racc
->last_link
);
590 racc
->first_link
= link
;
593 racc
->last_link
->next
= link
;
595 racc
->last_link
= link
;
599 /* Move all link structures in their linked list in OLD_RACC to the linked list
602 relink_to_new_repr (struct access
*new_racc
, struct access
*old_racc
)
604 if (!old_racc
->first_link
)
606 gcc_assert (!old_racc
->last_link
);
610 if (new_racc
->first_link
)
612 gcc_assert (!new_racc
->last_link
->next
);
613 gcc_assert (!old_racc
->last_link
|| !old_racc
->last_link
->next
);
615 new_racc
->last_link
->next
= old_racc
->first_link
;
616 new_racc
->last_link
= old_racc
->last_link
;
620 gcc_assert (!new_racc
->last_link
);
622 new_racc
->first_link
= old_racc
->first_link
;
623 new_racc
->last_link
= old_racc
->last_link
;
625 old_racc
->first_link
= old_racc
->last_link
= NULL
;
628 /* Add ACCESS to the work queue (which is actually a stack). */
631 add_access_to_work_queue (struct access
*access
)
633 if (!access
->grp_queued
)
635 gcc_assert (!access
->next_queued
);
636 access
->next_queued
= work_queue_head
;
637 access
->grp_queued
= 1;
638 work_queue_head
= access
;
642 /* Pop an access from the work queue, and return it, assuming there is one. */
644 static struct access
*
645 pop_access_from_work_queue (void)
647 struct access
*access
= work_queue_head
;
649 work_queue_head
= access
->next_queued
;
650 access
->next_queued
= NULL
;
651 access
->grp_queued
= 0;
656 /* Allocate necessary structures. */
659 sra_initialize (void)
661 candidate_bitmap
= BITMAP_ALLOC (NULL
);
662 candidates
.create (vec_safe_length (cfun
->local_decls
) / 2);
663 should_scalarize_away_bitmap
= BITMAP_ALLOC (NULL
);
664 cannot_scalarize_away_bitmap
= BITMAP_ALLOC (NULL
);
665 gcc_obstack_init (&name_obstack
);
666 access_pool
= create_alloc_pool ("SRA accesses", sizeof (struct access
), 16);
667 link_pool
= create_alloc_pool ("SRA links", sizeof (struct assign_link
), 16);
668 base_access_vec
= pointer_map_create ();
669 memset (&sra_stats
, 0, sizeof (sra_stats
));
670 encountered_apply_args
= false;
671 encountered_recursive_call
= false;
672 encountered_unchangable_recursive_call
= false;
675 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
678 delete_base_accesses (const void *key ATTRIBUTE_UNUSED
, void **value
,
679 void *data ATTRIBUTE_UNUSED
)
681 vec
<access_p
> *access_vec
= (vec
<access_p
> *) *value
;
682 vec_free (access_vec
);
686 /* Deallocate all general structures. */
689 sra_deinitialize (void)
691 BITMAP_FREE (candidate_bitmap
);
692 candidates
.dispose ();
693 BITMAP_FREE (should_scalarize_away_bitmap
);
694 BITMAP_FREE (cannot_scalarize_away_bitmap
);
695 free_alloc_pool (access_pool
);
696 free_alloc_pool (link_pool
);
697 obstack_free (&name_obstack
, NULL
);
699 pointer_map_traverse (base_access_vec
, delete_base_accesses
, NULL
);
700 pointer_map_destroy (base_access_vec
);
703 /* Remove DECL from candidates for SRA and write REASON to the dump file if
706 disqualify_candidate (tree decl
, const char *reason
)
708 if (bitmap_clear_bit (candidate_bitmap
, DECL_UID (decl
)))
709 candidates
.clear_slot (candidates
.find_slot_with_hash (decl
,
713 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
715 fprintf (dump_file
, "! Disqualifying ");
716 print_generic_expr (dump_file
, decl
, 0);
717 fprintf (dump_file
, " - %s\n", reason
);
721 /* Return true iff the type contains a field or an element which does not allow
725 type_internals_preclude_sra_p (tree type
, const char **msg
)
730 switch (TREE_CODE (type
))
734 case QUAL_UNION_TYPE
:
735 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
736 if (TREE_CODE (fld
) == FIELD_DECL
)
738 tree ft
= TREE_TYPE (fld
);
740 if (TREE_THIS_VOLATILE (fld
))
742 *msg
= "volatile structure field";
745 if (!DECL_FIELD_OFFSET (fld
))
747 *msg
= "no structure field offset";
750 if (!DECL_SIZE (fld
))
752 *msg
= "zero structure field size";
755 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld
)))
757 *msg
= "structure field offset not fixed";
760 if (!tree_fits_uhwi_p (DECL_SIZE (fld
)))
762 *msg
= "structure field size not fixed";
765 if (!tree_fits_shwi_p (bit_position (fld
)))
767 *msg
= "structure field size too big";
770 if (AGGREGATE_TYPE_P (ft
)
771 && int_bit_position (fld
) % BITS_PER_UNIT
!= 0)
773 *msg
= "structure field is bit field";
777 if (AGGREGATE_TYPE_P (ft
) && type_internals_preclude_sra_p (ft
, msg
))
784 et
= TREE_TYPE (type
);
786 if (TYPE_VOLATILE (et
))
788 *msg
= "element type is volatile";
792 if (AGGREGATE_TYPE_P (et
) && type_internals_preclude_sra_p (et
, msg
))
802 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
803 base variable if it is. Return T if it is not an SSA_NAME. */
806 get_ssa_base_param (tree t
)
808 if (TREE_CODE (t
) == SSA_NAME
)
810 if (SSA_NAME_IS_DEFAULT_DEF (t
))
811 return SSA_NAME_VAR (t
);
818 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
819 belongs to, unless the BB has already been marked as a potentially
823 mark_parm_dereference (tree base
, HOST_WIDE_INT dist
, gimple stmt
)
825 basic_block bb
= gimple_bb (stmt
);
826 int idx
, parm_index
= 0;
829 if (bitmap_bit_p (final_bbs
, bb
->index
))
832 for (parm
= DECL_ARGUMENTS (current_function_decl
);
833 parm
&& parm
!= base
;
834 parm
= DECL_CHAIN (parm
))
837 gcc_assert (parm_index
< func_param_count
);
839 idx
= bb
->index
* func_param_count
+ parm_index
;
840 if (bb_dereferences
[idx
] < dist
)
841 bb_dereferences
[idx
] = dist
;
844 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
845 the three fields. Also add it to the vector of accesses corresponding to
846 the base. Finally, return the new access. */
848 static struct access
*
849 create_access_1 (tree base
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
)
852 struct access
*access
;
855 access
= (struct access
*) pool_alloc (access_pool
);
856 memset (access
, 0, sizeof (struct access
));
858 access
->offset
= offset
;
861 slot
= pointer_map_contains (base_access_vec
, base
);
863 v
= (vec
<access_p
> *) *slot
;
867 v
->safe_push (access
);
870 pointer_map_insert (base_access_vec
, base
)) = v
;
875 /* Create and insert access for EXPR. Return created access, or NULL if it is
878 static struct access
*
879 create_access (tree expr
, gimple stmt
, bool write
)
881 struct access
*access
;
882 HOST_WIDE_INT offset
, size
, max_size
;
884 bool ptr
, unscalarizable_region
= false;
886 base
= get_ref_base_and_extent (expr
, &offset
, &size
, &max_size
);
888 if (sra_mode
== SRA_MODE_EARLY_IPA
889 && TREE_CODE (base
) == MEM_REF
)
891 base
= get_ssa_base_param (TREE_OPERAND (base
, 0));
899 if (!DECL_P (base
) || !bitmap_bit_p (candidate_bitmap
, DECL_UID (base
)))
902 if (sra_mode
== SRA_MODE_EARLY_IPA
)
904 if (size
< 0 || size
!= max_size
)
906 disqualify_candidate (base
, "Encountered a variable sized access.");
909 if (TREE_CODE (expr
) == COMPONENT_REF
910 && DECL_BIT_FIELD (TREE_OPERAND (expr
, 1)))
912 disqualify_candidate (base
, "Encountered a bit-field access.");
915 gcc_checking_assert ((offset
% BITS_PER_UNIT
) == 0);
918 mark_parm_dereference (base
, offset
+ size
, stmt
);
922 if (size
!= max_size
)
925 unscalarizable_region
= true;
929 disqualify_candidate (base
, "Encountered an unconstrained access.");
934 access
= create_access_1 (base
, offset
, size
);
936 access
->type
= TREE_TYPE (expr
);
937 access
->write
= write
;
938 access
->grp_unscalarizable_region
= unscalarizable_region
;
941 if (TREE_CODE (expr
) == COMPONENT_REF
942 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1)))
943 access
->non_addressable
= 1;
949 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
950 register types or (recursively) records with only these two kinds of fields.
951 It also returns false if any of these records contains a bit-field. */
954 type_consists_of_records_p (tree type
)
958 if (TREE_CODE (type
) != RECORD_TYPE
)
961 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
962 if (TREE_CODE (fld
) == FIELD_DECL
)
964 tree ft
= TREE_TYPE (fld
);
966 if (DECL_BIT_FIELD (fld
))
969 if (!is_gimple_reg_type (ft
)
970 && !type_consists_of_records_p (ft
))
977 /* Create total_scalarization accesses for all scalar type fields in DECL that
978 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
979 must be the top-most VAR_DECL representing the variable, OFFSET must be the
980 offset of DECL within BASE. REF must be the memory reference expression for
984 completely_scalarize_record (tree base
, tree decl
, HOST_WIDE_INT offset
,
987 tree fld
, decl_type
= TREE_TYPE (decl
);
989 for (fld
= TYPE_FIELDS (decl_type
); fld
; fld
= DECL_CHAIN (fld
))
990 if (TREE_CODE (fld
) == FIELD_DECL
)
992 HOST_WIDE_INT pos
= offset
+ int_bit_position (fld
);
993 tree ft
= TREE_TYPE (fld
);
994 tree nref
= build3 (COMPONENT_REF
, TREE_TYPE (fld
), ref
, fld
,
997 if (is_gimple_reg_type (ft
))
999 struct access
*access
;
1002 size
= tree_to_uhwi (DECL_SIZE (fld
));
1003 access
= create_access_1 (base
, pos
, size
);
1004 access
->expr
= nref
;
1006 access
->grp_total_scalarization
= 1;
1007 /* Accesses for intraprocedural SRA can have their stmt NULL. */
1010 completely_scalarize_record (base
, fld
, pos
, nref
);
1014 /* Create total_scalarization accesses for all scalar type fields in VAR and
1015 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
1016 type_consists_of_records_p. */
1019 completely_scalarize_var (tree var
)
1021 HOST_WIDE_INT size
= tree_to_uhwi (DECL_SIZE (var
));
1022 struct access
*access
;
1024 access
= create_access_1 (var
, 0, size
);
1026 access
->type
= TREE_TYPE (var
);
1027 access
->grp_total_scalarization
= 1;
1029 completely_scalarize_record (var
, var
, 0, var
);
1032 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1035 contains_view_convert_expr_p (const_tree ref
)
1037 while (handled_component_p (ref
))
1039 if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
)
1041 ref
= TREE_OPERAND (ref
, 0);
1047 /* Search the given tree for a declaration by skipping handled components and
1048 exclude it from the candidates. */
1051 disqualify_base_of_expr (tree t
, const char *reason
)
1053 t
= get_base_address (t
);
1054 if (sra_mode
== SRA_MODE_EARLY_IPA
1055 && TREE_CODE (t
) == MEM_REF
)
1056 t
= get_ssa_base_param (TREE_OPERAND (t
, 0));
1058 if (t
&& DECL_P (t
))
1059 disqualify_candidate (t
, reason
);
1062 /* Scan expression EXPR and create access structures for all accesses to
1063 candidates for scalarization. Return the created access or NULL if none is
1066 static struct access
*
1067 build_access_from_expr_1 (tree expr
, gimple stmt
, bool write
)
1069 struct access
*ret
= NULL
;
1072 if (TREE_CODE (expr
) == BIT_FIELD_REF
1073 || TREE_CODE (expr
) == IMAGPART_EXPR
1074 || TREE_CODE (expr
) == REALPART_EXPR
)
1076 expr
= TREE_OPERAND (expr
, 0);
1080 partial_ref
= false;
1082 /* We need to dive through V_C_Es in order to get the size of its parameter
1083 and not the result type. Ada produces such statements. We are also
1084 capable of handling the topmost V_C_E but not any of those buried in other
1085 handled components. */
1086 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
1087 expr
= TREE_OPERAND (expr
, 0);
1089 if (contains_view_convert_expr_p (expr
))
1091 disqualify_base_of_expr (expr
, "V_C_E under a different handled "
1096 switch (TREE_CODE (expr
))
1099 if (TREE_CODE (TREE_OPERAND (expr
, 0)) != ADDR_EXPR
1100 && sra_mode
!= SRA_MODE_EARLY_IPA
)
1108 case ARRAY_RANGE_REF
:
1109 ret
= create_access (expr
, stmt
, write
);
1116 if (write
&& partial_ref
&& ret
)
1117 ret
->grp_partial_lhs
= 1;
1122 /* Scan expression EXPR and create access structures for all accesses to
1123 candidates for scalarization. Return true if any access has been inserted.
1124 STMT must be the statement from which the expression is taken, WRITE must be
1125 true if the expression is a store and false otherwise. */
1128 build_access_from_expr (tree expr
, gimple stmt
, bool write
)
1130 struct access
*access
;
1132 access
= build_access_from_expr_1 (expr
, stmt
, write
);
1135 /* This means the aggregate is accesses as a whole in a way other than an
1136 assign statement and thus cannot be removed even if we had a scalar
1137 replacement for everything. */
1138 if (cannot_scalarize_away_bitmap
)
1139 bitmap_set_bit (cannot_scalarize_away_bitmap
, DECL_UID (access
->base
));
1145 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1146 modes in which it matters, return true iff they have been disqualified. RHS
1147 may be NULL, in that case ignore it. If we scalarize an aggregate in
1148 intra-SRA we may need to add statements after each statement. This is not
1149 possible if a statement unconditionally has to end the basic block. */
1151 disqualify_ops_if_throwing_stmt (gimple stmt
, tree lhs
, tree rhs
)
1153 if ((sra_mode
== SRA_MODE_EARLY_INTRA
|| sra_mode
== SRA_MODE_INTRA
)
1154 && (stmt_can_throw_internal (stmt
) || stmt_ends_bb_p (stmt
)))
1156 disqualify_base_of_expr (lhs
, "LHS of a throwing stmt.");
1158 disqualify_base_of_expr (rhs
, "RHS of a throwing stmt.");
1164 /* Scan expressions occurring in STMT, create access structures for all accesses
1165 to candidates for scalarization and remove those candidates which occur in
1166 statements or expressions that prevent them from being split apart. Return
1167 true if any access has been inserted. */
1170 build_accesses_from_assign (gimple stmt
)
1173 struct access
*lacc
, *racc
;
1175 if (!gimple_assign_single_p (stmt
)
1176 /* Scope clobbers don't influence scalarization. */
1177 || gimple_clobber_p (stmt
))
1180 lhs
= gimple_assign_lhs (stmt
);
1181 rhs
= gimple_assign_rhs1 (stmt
);
1183 if (disqualify_ops_if_throwing_stmt (stmt
, lhs
, rhs
))
1186 racc
= build_access_from_expr_1 (rhs
, stmt
, false);
1187 lacc
= build_access_from_expr_1 (lhs
, stmt
, true);
1190 lacc
->grp_assignment_write
= 1;
1194 racc
->grp_assignment_read
= 1;
1195 if (should_scalarize_away_bitmap
&& !gimple_has_volatile_ops (stmt
)
1196 && !is_gimple_reg_type (racc
->type
))
1197 bitmap_set_bit (should_scalarize_away_bitmap
, DECL_UID (racc
->base
));
1201 && (sra_mode
== SRA_MODE_EARLY_INTRA
|| sra_mode
== SRA_MODE_INTRA
)
1202 && !lacc
->grp_unscalarizable_region
1203 && !racc
->grp_unscalarizable_region
1204 && AGGREGATE_TYPE_P (TREE_TYPE (lhs
))
1205 && lacc
->size
== racc
->size
1206 && useless_type_conversion_p (lacc
->type
, racc
->type
))
1208 struct assign_link
*link
;
1210 link
= (struct assign_link
*) pool_alloc (link_pool
);
1211 memset (link
, 0, sizeof (struct assign_link
));
1216 add_link_to_rhs (racc
, link
);
1219 return lacc
|| racc
;
1222 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1223 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1226 asm_visit_addr (gimple
, tree op
, tree
, void *)
1228 op
= get_base_address (op
);
1231 disqualify_candidate (op
, "Non-scalarizable GIMPLE_ASM operand.");
1236 /* Return true iff callsite CALL has at least as many actual arguments as there
1237 are formal parameters of the function currently processed by IPA-SRA. */
1240 callsite_has_enough_arguments_p (gimple call
)
1242 return gimple_call_num_args (call
) >= (unsigned) func_param_count
;
1245 /* Scan function and look for interesting expressions and create access
1246 structures for them. Return true iff any access is created. */
1249 scan_function (void)
1254 FOR_EACH_BB_FN (bb
, cfun
)
1256 gimple_stmt_iterator gsi
;
1257 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1259 gimple stmt
= gsi_stmt (gsi
);
1263 if (final_bbs
&& stmt_can_throw_external (stmt
))
1264 bitmap_set_bit (final_bbs
, bb
->index
);
1265 switch (gimple_code (stmt
))
1268 t
= gimple_return_retval (stmt
);
1270 ret
|= build_access_from_expr (t
, stmt
, false);
1272 bitmap_set_bit (final_bbs
, bb
->index
);
1276 ret
|= build_accesses_from_assign (stmt
);
1280 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
1281 ret
|= build_access_from_expr (gimple_call_arg (stmt
, i
),
1284 if (sra_mode
== SRA_MODE_EARLY_IPA
)
1286 tree dest
= gimple_call_fndecl (stmt
);
1287 int flags
= gimple_call_flags (stmt
);
1291 if (DECL_BUILT_IN_CLASS (dest
) == BUILT_IN_NORMAL
1292 && DECL_FUNCTION_CODE (dest
) == BUILT_IN_APPLY_ARGS
)
1293 encountered_apply_args
= true;
1294 if (recursive_call_p (current_function_decl
, dest
))
1296 encountered_recursive_call
= true;
1297 if (!callsite_has_enough_arguments_p (stmt
))
1298 encountered_unchangable_recursive_call
= true;
1303 && (flags
& (ECF_CONST
| ECF_PURE
)) == 0)
1304 bitmap_set_bit (final_bbs
, bb
->index
);
1307 t
= gimple_call_lhs (stmt
);
1308 if (t
&& !disqualify_ops_if_throwing_stmt (stmt
, t
, NULL
))
1309 ret
|= build_access_from_expr (t
, stmt
, true);
1313 walk_stmt_load_store_addr_ops (stmt
, NULL
, NULL
, NULL
,
1316 bitmap_set_bit (final_bbs
, bb
->index
);
1318 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
1320 t
= TREE_VALUE (gimple_asm_input_op (stmt
, i
));
1321 ret
|= build_access_from_expr (t
, stmt
, false);
1323 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
1325 t
= TREE_VALUE (gimple_asm_output_op (stmt
, i
));
1326 ret
|= build_access_from_expr (t
, stmt
, true);
1339 /* Helper of QSORT function. There are pointers to accesses in the array. An
1340 access is considered smaller than another if it has smaller offset or if the
1341 offsets are the same but is size is bigger. */
1344 compare_access_positions (const void *a
, const void *b
)
1346 const access_p
*fp1
= (const access_p
*) a
;
1347 const access_p
*fp2
= (const access_p
*) b
;
1348 const access_p f1
= *fp1
;
1349 const access_p f2
= *fp2
;
1351 if (f1
->offset
!= f2
->offset
)
1352 return f1
->offset
< f2
->offset
? -1 : 1;
1354 if (f1
->size
== f2
->size
)
1356 if (f1
->type
== f2
->type
)
1358 /* Put any non-aggregate type before any aggregate type. */
1359 else if (!is_gimple_reg_type (f1
->type
)
1360 && is_gimple_reg_type (f2
->type
))
1362 else if (is_gimple_reg_type (f1
->type
)
1363 && !is_gimple_reg_type (f2
->type
))
1365 /* Put any complex or vector type before any other scalar type. */
1366 else if (TREE_CODE (f1
->type
) != COMPLEX_TYPE
1367 && TREE_CODE (f1
->type
) != VECTOR_TYPE
1368 && (TREE_CODE (f2
->type
) == COMPLEX_TYPE
1369 || TREE_CODE (f2
->type
) == VECTOR_TYPE
))
1371 else if ((TREE_CODE (f1
->type
) == COMPLEX_TYPE
1372 || TREE_CODE (f1
->type
) == VECTOR_TYPE
)
1373 && TREE_CODE (f2
->type
) != COMPLEX_TYPE
1374 && TREE_CODE (f2
->type
) != VECTOR_TYPE
)
1376 /* Put the integral type with the bigger precision first. */
1377 else if (INTEGRAL_TYPE_P (f1
->type
)
1378 && INTEGRAL_TYPE_P (f2
->type
))
1379 return TYPE_PRECISION (f2
->type
) - TYPE_PRECISION (f1
->type
);
1380 /* Put any integral type with non-full precision last. */
1381 else if (INTEGRAL_TYPE_P (f1
->type
)
1382 && (TREE_INT_CST_LOW (TYPE_SIZE (f1
->type
))
1383 != TYPE_PRECISION (f1
->type
)))
1385 else if (INTEGRAL_TYPE_P (f2
->type
)
1386 && (TREE_INT_CST_LOW (TYPE_SIZE (f2
->type
))
1387 != TYPE_PRECISION (f2
->type
)))
1389 /* Stabilize the sort. */
1390 return TYPE_UID (f1
->type
) - TYPE_UID (f2
->type
);
1393 /* We want the bigger accesses first, thus the opposite operator in the next
1395 return f1
->size
> f2
->size
? -1 : 1;
1399 /* Append a name of the declaration to the name obstack. A helper function for
1403 make_fancy_decl_name (tree decl
)
1407 tree name
= DECL_NAME (decl
);
1409 obstack_grow (&name_obstack
, IDENTIFIER_POINTER (name
),
1410 IDENTIFIER_LENGTH (name
));
1413 sprintf (buffer
, "D%u", DECL_UID (decl
));
1414 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1418 /* Helper for make_fancy_name. */
1421 make_fancy_name_1 (tree expr
)
1428 make_fancy_decl_name (expr
);
1432 switch (TREE_CODE (expr
))
1435 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1436 obstack_1grow (&name_obstack
, '$');
1437 make_fancy_decl_name (TREE_OPERAND (expr
, 1));
1441 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1442 obstack_1grow (&name_obstack
, '$');
1443 /* Arrays with only one element may not have a constant as their
1445 index
= TREE_OPERAND (expr
, 1);
1446 if (TREE_CODE (index
) != INTEGER_CST
)
1448 sprintf (buffer
, HOST_WIDE_INT_PRINT_DEC
, TREE_INT_CST_LOW (index
));
1449 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1453 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1457 make_fancy_name_1 (TREE_OPERAND (expr
, 0));
1458 if (!integer_zerop (TREE_OPERAND (expr
, 1)))
1460 obstack_1grow (&name_obstack
, '$');
1461 sprintf (buffer
, HOST_WIDE_INT_PRINT_DEC
,
1462 TREE_INT_CST_LOW (TREE_OPERAND (expr
, 1)));
1463 obstack_grow (&name_obstack
, buffer
, strlen (buffer
));
1470 gcc_unreachable (); /* we treat these as scalars. */
1477 /* Create a human readable name for replacement variable of ACCESS. */
1480 make_fancy_name (tree expr
)
1482 make_fancy_name_1 (expr
);
1483 obstack_1grow (&name_obstack
, '\0');
1484 return XOBFINISH (&name_obstack
, char *);
1487 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1488 EXP_TYPE at the given OFFSET. If BASE is something for which
1489 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1490 to insert new statements either before or below the current one as specified
1491 by INSERT_AFTER. This function is not capable of handling bitfields.
1493 BASE must be either a declaration or a memory reference that has correct
1494 alignment ifformation embeded in it (e.g. a pre-existing one in SRA). */
1497 build_ref_for_offset (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1498 tree exp_type
, gimple_stmt_iterator
*gsi
,
1501 tree prev_base
= base
;
1504 HOST_WIDE_INT base_offset
;
1505 unsigned HOST_WIDE_INT misalign
;
1508 gcc_checking_assert (offset
% BITS_PER_UNIT
== 0);
1509 get_object_alignment_1 (base
, &align
, &misalign
);
1510 base
= get_addr_base_and_unit_offset (base
, &base_offset
);
1512 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1513 offset such as array[var_index]. */
1519 gcc_checking_assert (gsi
);
1520 tmp
= make_ssa_name (build_pointer_type (TREE_TYPE (prev_base
)), NULL
);
1521 addr
= build_fold_addr_expr (unshare_expr (prev_base
));
1522 STRIP_USELESS_TYPE_CONVERSION (addr
);
1523 stmt
= gimple_build_assign (tmp
, addr
);
1524 gimple_set_location (stmt
, loc
);
1526 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
1528 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1530 off
= build_int_cst (reference_alias_ptr_type (prev_base
),
1531 offset
/ BITS_PER_UNIT
);
1534 else if (TREE_CODE (base
) == MEM_REF
)
1536 off
= build_int_cst (TREE_TYPE (TREE_OPERAND (base
, 1)),
1537 base_offset
+ offset
/ BITS_PER_UNIT
);
1538 off
= int_const_binop (PLUS_EXPR
, TREE_OPERAND (base
, 1), off
);
1539 base
= unshare_expr (TREE_OPERAND (base
, 0));
1543 off
= build_int_cst (reference_alias_ptr_type (base
),
1544 base_offset
+ offset
/ BITS_PER_UNIT
);
1545 base
= build_fold_addr_expr (unshare_expr (base
));
1548 misalign
= (misalign
+ offset
) & (align
- 1);
1550 align
= (misalign
& -misalign
);
1551 if (align
< TYPE_ALIGN (exp_type
))
1552 exp_type
= build_aligned_type (exp_type
, align
);
1554 mem_ref
= fold_build2_loc (loc
, MEM_REF
, exp_type
, base
, off
);
1555 if (TREE_THIS_VOLATILE (prev_base
))
1556 TREE_THIS_VOLATILE (mem_ref
) = 1;
1557 if (TREE_SIDE_EFFECTS (prev_base
))
1558 TREE_SIDE_EFFECTS (mem_ref
) = 1;
1562 /* Construct a memory reference to a part of an aggregate BASE at the given
1563 OFFSET and of the same type as MODEL. In case this is a reference to a
1564 bit-field, the function will replicate the last component_ref of model's
1565 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1566 build_ref_for_offset. */
1569 build_ref_for_model (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1570 struct access
*model
, gimple_stmt_iterator
*gsi
,
1573 if (TREE_CODE (model
->expr
) == COMPONENT_REF
1574 && DECL_BIT_FIELD (TREE_OPERAND (model
->expr
, 1)))
1576 /* This access represents a bit-field. */
1577 tree t
, exp_type
, fld
= TREE_OPERAND (model
->expr
, 1);
1579 offset
-= int_bit_position (fld
);
1580 exp_type
= TREE_TYPE (TREE_OPERAND (model
->expr
, 0));
1581 t
= build_ref_for_offset (loc
, base
, offset
, exp_type
, gsi
, insert_after
);
1582 return fold_build3_loc (loc
, COMPONENT_REF
, TREE_TYPE (fld
), t
, fld
,
1586 return build_ref_for_offset (loc
, base
, offset
, model
->type
,
1590 /* Attempt to build a memory reference that we could but into a gimple
1591 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1592 create statements and return s NULL instead. This function also ignores
1593 alignment issues and so its results should never end up in non-debug
1597 build_debug_ref_for_model (location_t loc
, tree base
, HOST_WIDE_INT offset
,
1598 struct access
*model
)
1600 HOST_WIDE_INT base_offset
;
1603 if (TREE_CODE (model
->expr
) == COMPONENT_REF
1604 && DECL_BIT_FIELD (TREE_OPERAND (model
->expr
, 1)))
1607 base
= get_addr_base_and_unit_offset (base
, &base_offset
);
1610 if (TREE_CODE (base
) == MEM_REF
)
1612 off
= build_int_cst (TREE_TYPE (TREE_OPERAND (base
, 1)),
1613 base_offset
+ offset
/ BITS_PER_UNIT
);
1614 off
= int_const_binop (PLUS_EXPR
, TREE_OPERAND (base
, 1), off
);
1615 base
= unshare_expr (TREE_OPERAND (base
, 0));
1619 off
= build_int_cst (reference_alias_ptr_type (base
),
1620 base_offset
+ offset
/ BITS_PER_UNIT
);
1621 base
= build_fold_addr_expr (unshare_expr (base
));
1624 return fold_build2_loc (loc
, MEM_REF
, model
->type
, base
, off
);
1627 /* Construct a memory reference consisting of component_refs and array_refs to
1628 a part of an aggregate *RES (which is of type TYPE). The requested part
1629 should have type EXP_TYPE at be the given OFFSET. This function might not
1630 succeed, it returns true when it does and only then *RES points to something
1631 meaningful. This function should be used only to build expressions that we
1632 might need to present to user (e.g. in warnings). In all other situations,
1633 build_ref_for_model or build_ref_for_offset should be used instead. */
1636 build_user_friendly_ref_for_offset (tree
*res
, tree type
, HOST_WIDE_INT offset
,
1642 tree tr_size
, index
, minidx
;
1643 HOST_WIDE_INT el_size
;
1645 if (offset
== 0 && exp_type
1646 && types_compatible_p (exp_type
, type
))
1649 switch (TREE_CODE (type
))
1652 case QUAL_UNION_TYPE
:
1654 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
1656 HOST_WIDE_INT pos
, size
;
1657 tree tr_pos
, expr
, *expr_ptr
;
1659 if (TREE_CODE (fld
) != FIELD_DECL
)
1662 tr_pos
= bit_position (fld
);
1663 if (!tr_pos
|| !tree_fits_uhwi_p (tr_pos
))
1665 pos
= tree_to_uhwi (tr_pos
);
1666 gcc_assert (TREE_CODE (type
) == RECORD_TYPE
|| pos
== 0);
1667 tr_size
= DECL_SIZE (fld
);
1668 if (!tr_size
|| !tree_fits_uhwi_p (tr_size
))
1670 size
= tree_to_uhwi (tr_size
);
1676 else if (pos
> offset
|| (pos
+ size
) <= offset
)
1679 expr
= build3 (COMPONENT_REF
, TREE_TYPE (fld
), *res
, fld
,
1682 if (build_user_friendly_ref_for_offset (expr_ptr
, TREE_TYPE (fld
),
1683 offset
- pos
, exp_type
))
1692 tr_size
= TYPE_SIZE (TREE_TYPE (type
));
1693 if (!tr_size
|| !tree_fits_uhwi_p (tr_size
))
1695 el_size
= tree_to_uhwi (tr_size
);
1697 minidx
= TYPE_MIN_VALUE (TYPE_DOMAIN (type
));
1698 if (TREE_CODE (minidx
) != INTEGER_CST
|| el_size
== 0)
1700 index
= build_int_cst (TYPE_DOMAIN (type
), offset
/ el_size
);
1701 if (!integer_zerop (minidx
))
1702 index
= int_const_binop (PLUS_EXPR
, index
, minidx
);
1703 *res
= build4 (ARRAY_REF
, TREE_TYPE (type
), *res
, index
,
1704 NULL_TREE
, NULL_TREE
);
1705 offset
= offset
% el_size
;
1706 type
= TREE_TYPE (type
);
1721 /* Return true iff TYPE is stdarg va_list type. */
1724 is_va_list_type (tree type
)
1726 return TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (va_list_type_node
);
1729 /* Print message to dump file why a variable was rejected. */
1732 reject (tree var
, const char *msg
)
1734 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1736 fprintf (dump_file
, "Rejected (%d): %s: ", DECL_UID (var
), msg
);
1737 print_generic_expr (dump_file
, var
, 0);
1738 fprintf (dump_file
, "\n");
1742 /* Return true if VAR is a candidate for SRA. */
1745 maybe_add_sra_candidate (tree var
)
1747 tree type
= TREE_TYPE (var
);
1751 if (!AGGREGATE_TYPE_P (type
))
1753 reject (var
, "not aggregate");
1756 if (needs_to_live_in_memory (var
))
1758 reject (var
, "needs to live in memory");
1761 if (TREE_THIS_VOLATILE (var
))
1763 reject (var
, "is volatile");
1766 if (!COMPLETE_TYPE_P (type
))
1768 reject (var
, "has incomplete type");
1771 if (!tree_fits_uhwi_p (TYPE_SIZE (type
)))
1773 reject (var
, "type size not fixed");
1776 if (tree_to_uhwi (TYPE_SIZE (type
)) == 0)
1778 reject (var
, "type size is zero");
1781 if (type_internals_preclude_sra_p (type
, &msg
))
1786 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1787 we also want to schedule it rather late. Thus we ignore it in
1789 (sra_mode
== SRA_MODE_EARLY_INTRA
1790 && is_va_list_type (type
)))
1792 reject (var
, "is va_list");
1796 bitmap_set_bit (candidate_bitmap
, DECL_UID (var
));
1797 slot
= candidates
.find_slot_with_hash (var
, DECL_UID (var
), INSERT
);
1800 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1802 fprintf (dump_file
, "Candidate (%d): ", DECL_UID (var
));
1803 print_generic_expr (dump_file
, var
, 0);
1804 fprintf (dump_file
, "\n");
1810 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1811 those with type which is suitable for scalarization. */
1814 find_var_candidates (void)
1820 for (parm
= DECL_ARGUMENTS (current_function_decl
);
1822 parm
= DECL_CHAIN (parm
))
1823 ret
|= maybe_add_sra_candidate (parm
);
1825 FOR_EACH_LOCAL_DECL (cfun
, i
, var
)
1827 if (TREE_CODE (var
) != VAR_DECL
)
1830 ret
|= maybe_add_sra_candidate (var
);
1836 /* Sort all accesses for the given variable, check for partial overlaps and
1837 return NULL if there are any. If there are none, pick a representative for
1838 each combination of offset and size and create a linked list out of them.
1839 Return the pointer to the first representative and make sure it is the first
1840 one in the vector of accesses. */
1842 static struct access
*
1843 sort_and_splice_var_accesses (tree var
)
1845 int i
, j
, access_count
;
1846 struct access
*res
, **prev_acc_ptr
= &res
;
1847 vec
<access_p
> *access_vec
;
1849 HOST_WIDE_INT low
= -1, high
= 0;
1851 access_vec
= get_base_access_vector (var
);
1854 access_count
= access_vec
->length ();
1856 /* Sort by <OFFSET, SIZE>. */
1857 access_vec
->qsort (compare_access_positions
);
1860 while (i
< access_count
)
1862 struct access
*access
= (*access_vec
)[i
];
1863 bool grp_write
= access
->write
;
1864 bool grp_read
= !access
->write
;
1865 bool grp_scalar_write
= access
->write
1866 && is_gimple_reg_type (access
->type
);
1867 bool grp_scalar_read
= !access
->write
1868 && is_gimple_reg_type (access
->type
);
1869 bool grp_assignment_read
= access
->grp_assignment_read
;
1870 bool grp_assignment_write
= access
->grp_assignment_write
;
1871 bool multiple_scalar_reads
= false;
1872 bool total_scalarization
= access
->grp_total_scalarization
;
1873 bool grp_partial_lhs
= access
->grp_partial_lhs
;
1874 bool first_scalar
= is_gimple_reg_type (access
->type
);
1875 bool unscalarizable_region
= access
->grp_unscalarizable_region
;
1877 if (first
|| access
->offset
>= high
)
1880 low
= access
->offset
;
1881 high
= access
->offset
+ access
->size
;
1883 else if (access
->offset
> low
&& access
->offset
+ access
->size
> high
)
1886 gcc_assert (access
->offset
>= low
1887 && access
->offset
+ access
->size
<= high
);
1890 while (j
< access_count
)
1892 struct access
*ac2
= (*access_vec
)[j
];
1893 if (ac2
->offset
!= access
->offset
|| ac2
->size
!= access
->size
)
1898 grp_scalar_write
= (grp_scalar_write
1899 || is_gimple_reg_type (ac2
->type
));
1904 if (is_gimple_reg_type (ac2
->type
))
1906 if (grp_scalar_read
)
1907 multiple_scalar_reads
= true;
1909 grp_scalar_read
= true;
1912 grp_assignment_read
|= ac2
->grp_assignment_read
;
1913 grp_assignment_write
|= ac2
->grp_assignment_write
;
1914 grp_partial_lhs
|= ac2
->grp_partial_lhs
;
1915 unscalarizable_region
|= ac2
->grp_unscalarizable_region
;
1916 total_scalarization
|= ac2
->grp_total_scalarization
;
1917 relink_to_new_repr (access
, ac2
);
1919 /* If there are both aggregate-type and scalar-type accesses with
1920 this combination of size and offset, the comparison function
1921 should have put the scalars first. */
1922 gcc_assert (first_scalar
|| !is_gimple_reg_type (ac2
->type
));
1923 ac2
->group_representative
= access
;
1929 access
->group_representative
= access
;
1930 access
->grp_write
= grp_write
;
1931 access
->grp_read
= grp_read
;
1932 access
->grp_scalar_read
= grp_scalar_read
;
1933 access
->grp_scalar_write
= grp_scalar_write
;
1934 access
->grp_assignment_read
= grp_assignment_read
;
1935 access
->grp_assignment_write
= grp_assignment_write
;
1936 access
->grp_hint
= multiple_scalar_reads
|| total_scalarization
;
1937 access
->grp_total_scalarization
= total_scalarization
;
1938 access
->grp_partial_lhs
= grp_partial_lhs
;
1939 access
->grp_unscalarizable_region
= unscalarizable_region
;
1940 if (access
->first_link
)
1941 add_access_to_work_queue (access
);
1943 *prev_acc_ptr
= access
;
1944 prev_acc_ptr
= &access
->next_grp
;
1947 gcc_assert (res
== (*access_vec
)[0]);
1951 /* Create a variable for the given ACCESS which determines the type, name and a
1952 few other properties. Return the variable declaration and store it also to
1953 ACCESS->replacement. */
1956 create_access_replacement (struct access
*access
)
1960 if (access
->grp_to_be_debug_replaced
)
1962 repl
= create_tmp_var_raw (access
->type
, NULL
);
1963 DECL_CONTEXT (repl
) = current_function_decl
;
1966 repl
= create_tmp_var (access
->type
, "SR");
1967 if (TREE_CODE (access
->type
) == COMPLEX_TYPE
1968 || TREE_CODE (access
->type
) == VECTOR_TYPE
)
1970 if (!access
->grp_partial_lhs
)
1971 DECL_GIMPLE_REG_P (repl
) = 1;
1973 else if (access
->grp_partial_lhs
1974 && is_gimple_reg_type (access
->type
))
1975 TREE_ADDRESSABLE (repl
) = 1;
1977 DECL_SOURCE_LOCATION (repl
) = DECL_SOURCE_LOCATION (access
->base
);
1978 DECL_ARTIFICIAL (repl
) = 1;
1979 DECL_IGNORED_P (repl
) = DECL_IGNORED_P (access
->base
);
1981 if (DECL_NAME (access
->base
)
1982 && !DECL_IGNORED_P (access
->base
)
1983 && !DECL_ARTIFICIAL (access
->base
))
1985 char *pretty_name
= make_fancy_name (access
->expr
);
1986 tree debug_expr
= unshare_expr_without_location (access
->expr
), d
;
1989 DECL_NAME (repl
) = get_identifier (pretty_name
);
1990 obstack_free (&name_obstack
, pretty_name
);
1992 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1993 as DECL_DEBUG_EXPR isn't considered when looking for still
1994 used SSA_NAMEs and thus they could be freed. All debug info
1995 generation cares is whether something is constant or variable
1996 and that get_ref_base_and_extent works properly on the
1997 expression. It cannot handle accesses at a non-constant offset
1998 though, so just give up in those cases. */
1999 for (d
= debug_expr
;
2000 !fail
&& (handled_component_p (d
) || TREE_CODE (d
) == MEM_REF
);
2001 d
= TREE_OPERAND (d
, 0))
2002 switch (TREE_CODE (d
))
2005 case ARRAY_RANGE_REF
:
2006 if (TREE_OPERAND (d
, 1)
2007 && TREE_CODE (TREE_OPERAND (d
, 1)) != INTEGER_CST
)
2009 if (TREE_OPERAND (d
, 3)
2010 && TREE_CODE (TREE_OPERAND (d
, 3)) != INTEGER_CST
)
2014 if (TREE_OPERAND (d
, 2)
2015 && TREE_CODE (TREE_OPERAND (d
, 2)) != INTEGER_CST
)
2019 if (TREE_CODE (TREE_OPERAND (d
, 0)) != ADDR_EXPR
)
2022 d
= TREE_OPERAND (d
, 0);
2029 SET_DECL_DEBUG_EXPR (repl
, debug_expr
);
2030 DECL_HAS_DEBUG_EXPR_P (repl
) = 1;
2032 if (access
->grp_no_warning
)
2033 TREE_NO_WARNING (repl
) = 1;
2035 TREE_NO_WARNING (repl
) = TREE_NO_WARNING (access
->base
);
2038 TREE_NO_WARNING (repl
) = 1;
2042 if (access
->grp_to_be_debug_replaced
)
2044 fprintf (dump_file
, "Created a debug-only replacement for ");
2045 print_generic_expr (dump_file
, access
->base
, 0);
2046 fprintf (dump_file
, " offset: %u, size: %u\n",
2047 (unsigned) access
->offset
, (unsigned) access
->size
);
2051 fprintf (dump_file
, "Created a replacement for ");
2052 print_generic_expr (dump_file
, access
->base
, 0);
2053 fprintf (dump_file
, " offset: %u, size: %u: ",
2054 (unsigned) access
->offset
, (unsigned) access
->size
);
2055 print_generic_expr (dump_file
, repl
, 0);
2056 fprintf (dump_file
, "\n");
2059 sra_stats
.replacements
++;
2064 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2067 get_access_replacement (struct access
*access
)
2069 gcc_checking_assert (access
->replacement_decl
);
2070 return access
->replacement_decl
;
2074 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2075 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2076 to it is not "within" the root. Return false iff some accesses partially
2080 build_access_subtree (struct access
**access
)
2082 struct access
*root
= *access
, *last_child
= NULL
;
2083 HOST_WIDE_INT limit
= root
->offset
+ root
->size
;
2085 *access
= (*access
)->next_grp
;
2086 while (*access
&& (*access
)->offset
+ (*access
)->size
<= limit
)
2089 root
->first_child
= *access
;
2091 last_child
->next_sibling
= *access
;
2092 last_child
= *access
;
2094 if (!build_access_subtree (access
))
2098 if (*access
&& (*access
)->offset
< limit
)
2104 /* Build a tree of access representatives, ACCESS is the pointer to the first
2105 one, others are linked in a list by the next_grp field. Return false iff
2106 some accesses partially overlap. */
2109 build_access_trees (struct access
*access
)
2113 struct access
*root
= access
;
2115 if (!build_access_subtree (&access
))
2117 root
->next_grp
= access
;
2122 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2126 expr_with_var_bounded_array_refs_p (tree expr
)
2128 while (handled_component_p (expr
))
2130 if (TREE_CODE (expr
) == ARRAY_REF
2131 && !tree_fits_shwi_p (array_ref_low_bound (expr
)))
2133 expr
= TREE_OPERAND (expr
, 0);
2138 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2139 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2140 sorts of access flags appropriately along the way, notably always set
2141 grp_read and grp_assign_read according to MARK_READ and grp_write when
2144 Creating a replacement for a scalar access is considered beneficial if its
2145 grp_hint is set (this means we are either attempting total scalarization or
2146 there is more than one direct read access) or according to the following
2149 Access written to through a scalar type (once or more times)
2151 | Written to in an assignment statement
2153 | | Access read as scalar _once_
2155 | | | Read in an assignment statement
2157 | | | | Scalarize Comment
2158 -----------------------------------------------------------------------------
2159 0 0 0 0 No access for the scalar
2160 0 0 0 1 No access for the scalar
2161 0 0 1 0 No Single read - won't help
2162 0 0 1 1 No The same case
2163 0 1 0 0 No access for the scalar
2164 0 1 0 1 No access for the scalar
2165 0 1 1 0 Yes s = *g; return s.i;
2166 0 1 1 1 Yes The same case as above
2167 1 0 0 0 No Won't help
2168 1 0 0 1 Yes s.i = 1; *g = s;
2169 1 0 1 0 Yes s.i = 5; g = s.i;
2170 1 0 1 1 Yes The same case as above
2171 1 1 0 0 No Won't help.
2172 1 1 0 1 Yes s.i = 1; *g = s;
2173 1 1 1 0 Yes s = *g; return s.i;
2174 1 1 1 1 Yes Any of the above yeses */
2177 analyze_access_subtree (struct access
*root
, struct access
*parent
,
2178 bool allow_replacements
)
2180 struct access
*child
;
2181 HOST_WIDE_INT limit
= root
->offset
+ root
->size
;
2182 HOST_WIDE_INT covered_to
= root
->offset
;
2183 bool scalar
= is_gimple_reg_type (root
->type
);
2184 bool hole
= false, sth_created
= false;
2188 if (parent
->grp_read
)
2190 if (parent
->grp_assignment_read
)
2191 root
->grp_assignment_read
= 1;
2192 if (parent
->grp_write
)
2193 root
->grp_write
= 1;
2194 if (parent
->grp_assignment_write
)
2195 root
->grp_assignment_write
= 1;
2196 if (parent
->grp_total_scalarization
)
2197 root
->grp_total_scalarization
= 1;
2200 if (root
->grp_unscalarizable_region
)
2201 allow_replacements
= false;
2203 if (allow_replacements
&& expr_with_var_bounded_array_refs_p (root
->expr
))
2204 allow_replacements
= false;
2206 for (child
= root
->first_child
; child
; child
= child
->next_sibling
)
2208 hole
|= covered_to
< child
->offset
;
2209 sth_created
|= analyze_access_subtree (child
, root
,
2210 allow_replacements
&& !scalar
);
2212 root
->grp_unscalarized_data
|= child
->grp_unscalarized_data
;
2213 root
->grp_total_scalarization
&= child
->grp_total_scalarization
;
2214 if (child
->grp_covered
)
2215 covered_to
+= child
->size
;
2220 if (allow_replacements
&& scalar
&& !root
->first_child
2222 || ((root
->grp_scalar_read
|| root
->grp_assignment_read
)
2223 && (root
->grp_scalar_write
|| root
->grp_assignment_write
))))
2225 /* Always create access replacements that cover the whole access.
2226 For integral types this means the precision has to match.
2227 Avoid assumptions based on the integral type kind, too. */
2228 if (INTEGRAL_TYPE_P (root
->type
)
2229 && (TREE_CODE (root
->type
) != INTEGER_TYPE
2230 || TYPE_PRECISION (root
->type
) != root
->size
)
2231 /* But leave bitfield accesses alone. */
2232 && (TREE_CODE (root
->expr
) != COMPONENT_REF
2233 || !DECL_BIT_FIELD (TREE_OPERAND (root
->expr
, 1))))
2235 tree rt
= root
->type
;
2236 gcc_assert ((root
->offset
% BITS_PER_UNIT
) == 0
2237 && (root
->size
% BITS_PER_UNIT
) == 0);
2238 root
->type
= build_nonstandard_integer_type (root
->size
,
2239 TYPE_UNSIGNED (rt
));
2240 root
->expr
= build_ref_for_offset (UNKNOWN_LOCATION
,
2241 root
->base
, root
->offset
,
2242 root
->type
, NULL
, false);
2244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2246 fprintf (dump_file
, "Changing the type of a replacement for ");
2247 print_generic_expr (dump_file
, root
->base
, 0);
2248 fprintf (dump_file
, " offset: %u, size: %u ",
2249 (unsigned) root
->offset
, (unsigned) root
->size
);
2250 fprintf (dump_file
, " to an integer.\n");
2254 root
->grp_to_be_replaced
= 1;
2255 root
->replacement_decl
= create_access_replacement (root
);
2261 if (allow_replacements
2262 && scalar
&& !root
->first_child
2263 && (root
->grp_scalar_write
|| root
->grp_assignment_write
)
2264 && !bitmap_bit_p (cannot_scalarize_away_bitmap
,
2265 DECL_UID (root
->base
)))
2267 gcc_checking_assert (!root
->grp_scalar_read
2268 && !root
->grp_assignment_read
);
2270 if (MAY_HAVE_DEBUG_STMTS
)
2272 root
->grp_to_be_debug_replaced
= 1;
2273 root
->replacement_decl
= create_access_replacement (root
);
2277 if (covered_to
< limit
)
2280 root
->grp_total_scalarization
= 0;
2283 if (!hole
|| root
->grp_total_scalarization
)
2284 root
->grp_covered
= 1;
2285 else if (root
->grp_write
|| TREE_CODE (root
->base
) == PARM_DECL
)
2286 root
->grp_unscalarized_data
= 1; /* not covered and written to */
2290 /* Analyze all access trees linked by next_grp by the means of
2291 analyze_access_subtree. */
2293 analyze_access_trees (struct access
*access
)
2299 if (analyze_access_subtree (access
, NULL
, true))
2301 access
= access
->next_grp
;
2307 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2308 SIZE would conflict with an already existing one. If exactly such a child
2309 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2312 child_would_conflict_in_lacc (struct access
*lacc
, HOST_WIDE_INT norm_offset
,
2313 HOST_WIDE_INT size
, struct access
**exact_match
)
2315 struct access
*child
;
2317 for (child
= lacc
->first_child
; child
; child
= child
->next_sibling
)
2319 if (child
->offset
== norm_offset
&& child
->size
== size
)
2321 *exact_match
= child
;
2325 if (child
->offset
< norm_offset
+ size
2326 && child
->offset
+ child
->size
> norm_offset
)
2333 /* Create a new child access of PARENT, with all properties just like MODEL
2334 except for its offset and with its grp_write false and grp_read true.
2335 Return the new access or NULL if it cannot be created. Note that this access
2336 is created long after all splicing and sorting, it's not located in any
2337 access vector and is automatically a representative of its group. */
2339 static struct access
*
2340 create_artificial_child_access (struct access
*parent
, struct access
*model
,
2341 HOST_WIDE_INT new_offset
)
2343 struct access
*access
;
2344 struct access
**child
;
2345 tree expr
= parent
->base
;
2347 gcc_assert (!model
->grp_unscalarizable_region
);
2349 access
= (struct access
*) pool_alloc (access_pool
);
2350 memset (access
, 0, sizeof (struct access
));
2351 if (!build_user_friendly_ref_for_offset (&expr
, TREE_TYPE (expr
), new_offset
,
2354 access
->grp_no_warning
= true;
2355 expr
= build_ref_for_model (EXPR_LOCATION (parent
->base
), parent
->base
,
2356 new_offset
, model
, NULL
, false);
2359 access
->base
= parent
->base
;
2360 access
->expr
= expr
;
2361 access
->offset
= new_offset
;
2362 access
->size
= model
->size
;
2363 access
->type
= model
->type
;
2364 access
->grp_write
= true;
2365 access
->grp_read
= false;
2367 child
= &parent
->first_child
;
2368 while (*child
&& (*child
)->offset
< new_offset
)
2369 child
= &(*child
)->next_sibling
;
2371 access
->next_sibling
= *child
;
2378 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2379 true if any new subaccess was created. Additionally, if RACC is a scalar
2380 access but LACC is not, change the type of the latter, if possible. */
2383 propagate_subaccesses_across_link (struct access
*lacc
, struct access
*racc
)
2385 struct access
*rchild
;
2386 HOST_WIDE_INT norm_delta
= lacc
->offset
- racc
->offset
;
2389 if (is_gimple_reg_type (lacc
->type
)
2390 || lacc
->grp_unscalarizable_region
2391 || racc
->grp_unscalarizable_region
)
2394 if (is_gimple_reg_type (racc
->type
))
2396 if (!lacc
->first_child
&& !racc
->first_child
)
2398 tree t
= lacc
->base
;
2400 lacc
->type
= racc
->type
;
2401 if (build_user_friendly_ref_for_offset (&t
, TREE_TYPE (t
),
2402 lacc
->offset
, racc
->type
))
2406 lacc
->expr
= build_ref_for_model (EXPR_LOCATION (lacc
->base
),
2407 lacc
->base
, lacc
->offset
,
2409 lacc
->grp_no_warning
= true;
2415 for (rchild
= racc
->first_child
; rchild
; rchild
= rchild
->next_sibling
)
2417 struct access
*new_acc
= NULL
;
2418 HOST_WIDE_INT norm_offset
= rchild
->offset
+ norm_delta
;
2420 if (rchild
->grp_unscalarizable_region
)
2423 if (child_would_conflict_in_lacc (lacc
, norm_offset
, rchild
->size
,
2428 rchild
->grp_hint
= 1;
2429 new_acc
->grp_hint
|= new_acc
->grp_read
;
2430 if (rchild
->first_child
)
2431 ret
|= propagate_subaccesses_across_link (new_acc
, rchild
);
2436 rchild
->grp_hint
= 1;
2437 new_acc
= create_artificial_child_access (lacc
, rchild
, norm_offset
);
2441 if (racc
->first_child
)
2442 propagate_subaccesses_across_link (new_acc
, rchild
);
2449 /* Propagate all subaccesses across assignment links. */
2452 propagate_all_subaccesses (void)
2454 while (work_queue_head
)
2456 struct access
*racc
= pop_access_from_work_queue ();
2457 struct assign_link
*link
;
2459 gcc_assert (racc
->first_link
);
2461 for (link
= racc
->first_link
; link
; link
= link
->next
)
2463 struct access
*lacc
= link
->lacc
;
2465 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (lacc
->base
)))
2467 lacc
= lacc
->group_representative
;
2468 if (propagate_subaccesses_across_link (lacc
, racc
)
2469 && lacc
->first_link
)
2470 add_access_to_work_queue (lacc
);
2475 /* Go through all accesses collected throughout the (intraprocedural) analysis
2476 stage, exclude overlapping ones, identify representatives and build trees
2477 out of them, making decisions about scalarization on the way. Return true
2478 iff there are any to-be-scalarized variables after this stage. */
2481 analyze_all_variable_accesses (void)
2484 bitmap tmp
= BITMAP_ALLOC (NULL
);
2486 unsigned i
, max_total_scalarization_size
;
2488 max_total_scalarization_size
= UNITS_PER_WORD
* BITS_PER_UNIT
2489 * MOVE_RATIO (optimize_function_for_speed_p (cfun
));
2491 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap
, 0, i
, bi
)
2492 if (bitmap_bit_p (should_scalarize_away_bitmap
, i
)
2493 && !bitmap_bit_p (cannot_scalarize_away_bitmap
, i
))
2495 tree var
= candidate (i
);
2497 if (TREE_CODE (var
) == VAR_DECL
2498 && type_consists_of_records_p (TREE_TYPE (var
)))
2500 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var
)))
2501 <= max_total_scalarization_size
)
2503 completely_scalarize_var (var
);
2504 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2506 fprintf (dump_file
, "Will attempt to totally scalarize ");
2507 print_generic_expr (dump_file
, var
, 0);
2508 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (var
));
2511 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2513 fprintf (dump_file
, "Too big to totally scalarize: ");
2514 print_generic_expr (dump_file
, var
, 0);
2515 fprintf (dump_file
, " (UID: %u)\n", DECL_UID (var
));
2520 bitmap_copy (tmp
, candidate_bitmap
);
2521 EXECUTE_IF_SET_IN_BITMAP (tmp
, 0, i
, bi
)
2523 tree var
= candidate (i
);
2524 struct access
*access
;
2526 access
= sort_and_splice_var_accesses (var
);
2527 if (!access
|| !build_access_trees (access
))
2528 disqualify_candidate (var
,
2529 "No or inhibitingly overlapping accesses.");
2532 propagate_all_subaccesses ();
2534 bitmap_copy (tmp
, candidate_bitmap
);
2535 EXECUTE_IF_SET_IN_BITMAP (tmp
, 0, i
, bi
)
2537 tree var
= candidate (i
);
2538 struct access
*access
= get_first_repr_for_decl (var
);
2540 if (analyze_access_trees (access
))
2543 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2545 fprintf (dump_file
, "\nAccess trees for ");
2546 print_generic_expr (dump_file
, var
, 0);
2547 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (var
));
2548 dump_access_tree (dump_file
, access
);
2549 fprintf (dump_file
, "\n");
2553 disqualify_candidate (var
, "No scalar replacements to be created.");
2560 statistics_counter_event (cfun
, "Scalarized aggregates", res
);
2567 /* Generate statements copying scalar replacements of accesses within a subtree
2568 into or out of AGG. ACCESS, all its children, siblings and their children
2569 are to be processed. AGG is an aggregate type expression (can be a
2570 declaration but does not have to be, it can for example also be a mem_ref or
2571 a series of handled components). TOP_OFFSET is the offset of the processed
2572 subtree which has to be subtracted from offsets of individual accesses to
2573 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2574 replacements in the interval <start_offset, start_offset + chunk_size>,
2575 otherwise copy all. GSI is a statement iterator used to place the new
2576 statements. WRITE should be true when the statements should write from AGG
2577 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2578 statements will be added after the current statement in GSI, they will be
2579 added before the statement otherwise. */
2582 generate_subtree_copies (struct access
*access
, tree agg
,
2583 HOST_WIDE_INT top_offset
,
2584 HOST_WIDE_INT start_offset
, HOST_WIDE_INT chunk_size
,
2585 gimple_stmt_iterator
*gsi
, bool write
,
2586 bool insert_after
, location_t loc
)
2590 if (chunk_size
&& access
->offset
>= start_offset
+ chunk_size
)
2593 if (access
->grp_to_be_replaced
2595 || access
->offset
+ access
->size
> start_offset
))
2597 tree expr
, repl
= get_access_replacement (access
);
2600 expr
= build_ref_for_model (loc
, agg
, access
->offset
- top_offset
,
2601 access
, gsi
, insert_after
);
2605 if (access
->grp_partial_lhs
)
2606 expr
= force_gimple_operand_gsi (gsi
, expr
, true, NULL_TREE
,
2608 insert_after
? GSI_NEW_STMT
2610 stmt
= gimple_build_assign (repl
, expr
);
2614 TREE_NO_WARNING (repl
) = 1;
2615 if (access
->grp_partial_lhs
)
2616 repl
= force_gimple_operand_gsi (gsi
, repl
, true, NULL_TREE
,
2618 insert_after
? GSI_NEW_STMT
2620 stmt
= gimple_build_assign (expr
, repl
);
2622 gimple_set_location (stmt
, loc
);
2625 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2627 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2629 sra_stats
.subtree_copies
++;
2632 && access
->grp_to_be_debug_replaced
2634 || access
->offset
+ access
->size
> start_offset
))
2637 tree drhs
= build_debug_ref_for_model (loc
, agg
,
2638 access
->offset
- top_offset
,
2640 ds
= gimple_build_debug_bind (get_access_replacement (access
),
2641 drhs
, gsi_stmt (*gsi
));
2643 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2645 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
2648 if (access
->first_child
)
2649 generate_subtree_copies (access
->first_child
, agg
, top_offset
,
2650 start_offset
, chunk_size
, gsi
,
2651 write
, insert_after
, loc
);
2653 access
= access
->next_sibling
;
2658 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2659 the root of the subtree to be processed. GSI is the statement iterator used
2660 for inserting statements which are added after the current statement if
2661 INSERT_AFTER is true or before it otherwise. */
2664 init_subtree_with_zero (struct access
*access
, gimple_stmt_iterator
*gsi
,
2665 bool insert_after
, location_t loc
)
2668 struct access
*child
;
2670 if (access
->grp_to_be_replaced
)
2674 stmt
= gimple_build_assign (get_access_replacement (access
),
2675 build_zero_cst (access
->type
));
2677 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2679 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2681 gimple_set_location (stmt
, loc
);
2683 else if (access
->grp_to_be_debug_replaced
)
2685 gimple ds
= gimple_build_debug_bind (get_access_replacement (access
),
2686 build_zero_cst (access
->type
),
2689 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2691 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
2694 for (child
= access
->first_child
; child
; child
= child
->next_sibling
)
2695 init_subtree_with_zero (child
, gsi
, insert_after
, loc
);
2698 /* Search for an access representative for the given expression EXPR and
2699 return it or NULL if it cannot be found. */
2701 static struct access
*
2702 get_access_for_expr (tree expr
)
2704 HOST_WIDE_INT offset
, size
, max_size
;
2707 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2708 a different size than the size of its argument and we need the latter
2710 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2711 expr
= TREE_OPERAND (expr
, 0);
2713 base
= get_ref_base_and_extent (expr
, &offset
, &size
, &max_size
);
2714 if (max_size
== -1 || !DECL_P (base
))
2717 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (base
)))
2720 return get_var_base_offset_size_access (base
, offset
, max_size
);
2723 /* Replace the expression EXPR with a scalar replacement if there is one and
2724 generate other statements to do type conversion or subtree copying if
2725 necessary. GSI is used to place newly created statements, WRITE is true if
2726 the expression is being written to (it is on a LHS of a statement or output
2727 in an assembly statement). */
2730 sra_modify_expr (tree
*expr
, gimple_stmt_iterator
*gsi
, bool write
)
2733 struct access
*access
;
2736 if (TREE_CODE (*expr
) == BIT_FIELD_REF
)
2739 expr
= &TREE_OPERAND (*expr
, 0);
2744 if (TREE_CODE (*expr
) == REALPART_EXPR
|| TREE_CODE (*expr
) == IMAGPART_EXPR
)
2745 expr
= &TREE_OPERAND (*expr
, 0);
2746 access
= get_access_for_expr (*expr
);
2749 type
= TREE_TYPE (*expr
);
2751 loc
= gimple_location (gsi_stmt (*gsi
));
2752 if (access
->grp_to_be_replaced
)
2754 tree repl
= get_access_replacement (access
);
2755 /* If we replace a non-register typed access simply use the original
2756 access expression to extract the scalar component afterwards.
2757 This happens if scalarizing a function return value or parameter
2758 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2759 gcc.c-torture/compile/20011217-1.c.
2761 We also want to use this when accessing a complex or vector which can
2762 be accessed as a different type too, potentially creating a need for
2763 type conversion (see PR42196) and when scalarized unions are involved
2764 in assembler statements (see PR42398). */
2765 if (!useless_type_conversion_p (type
, access
->type
))
2769 ref
= build_ref_for_model (loc
, access
->base
, access
->offset
, access
,
2776 if (access
->grp_partial_lhs
)
2777 ref
= force_gimple_operand_gsi (gsi
, ref
, true, NULL_TREE
,
2778 false, GSI_NEW_STMT
);
2779 stmt
= gimple_build_assign (repl
, ref
);
2780 gimple_set_location (stmt
, loc
);
2781 gsi_insert_after (gsi
, stmt
, GSI_NEW_STMT
);
2787 if (access
->grp_partial_lhs
)
2788 repl
= force_gimple_operand_gsi (gsi
, repl
, true, NULL_TREE
,
2789 true, GSI_SAME_STMT
);
2790 stmt
= gimple_build_assign (ref
, repl
);
2791 gimple_set_location (stmt
, loc
);
2792 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
2799 else if (write
&& access
->grp_to_be_debug_replaced
)
2801 gimple ds
= gimple_build_debug_bind (get_access_replacement (access
),
2804 gsi_insert_after (gsi
, ds
, GSI_NEW_STMT
);
2807 if (access
->first_child
)
2809 HOST_WIDE_INT start_offset
, chunk_size
;
2811 && tree_fits_uhwi_p (TREE_OPERAND (bfr
, 1))
2812 && tree_fits_uhwi_p (TREE_OPERAND (bfr
, 2)))
2814 chunk_size
= tree_to_uhwi (TREE_OPERAND (bfr
, 1));
2815 start_offset
= access
->offset
2816 + tree_to_uhwi (TREE_OPERAND (bfr
, 2));
2819 start_offset
= chunk_size
= 0;
2821 generate_subtree_copies (access
->first_child
, access
->base
, 0,
2822 start_offset
, chunk_size
, gsi
, write
, write
,
2828 /* Where scalar replacements of the RHS have been written to when a replacement
2829 of a LHS of an assigments cannot be direclty loaded from a replacement of
2831 enum unscalarized_data_handling
{ SRA_UDH_NONE
, /* Nothing done so far. */
2832 SRA_UDH_RIGHT
, /* Data flushed to the RHS. */
2833 SRA_UDH_LEFT
}; /* Data flushed to the LHS. */
2835 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2836 base aggregate if there are unscalarized data or directly to LHS of the
2837 statement that is pointed to by GSI otherwise. */
2839 static enum unscalarized_data_handling
2840 handle_unscalarized_data_in_subtree (struct access
*top_racc
,
2841 gimple_stmt_iterator
*gsi
)
2843 if (top_racc
->grp_unscalarized_data
)
2845 generate_subtree_copies (top_racc
->first_child
, top_racc
->base
, 0, 0, 0,
2847 gimple_location (gsi_stmt (*gsi
)));
2848 return SRA_UDH_RIGHT
;
2852 tree lhs
= gimple_assign_lhs (gsi_stmt (*gsi
));
2853 generate_subtree_copies (top_racc
->first_child
, lhs
, top_racc
->offset
,
2854 0, 0, gsi
, false, false,
2855 gimple_location (gsi_stmt (*gsi
)));
2856 return SRA_UDH_LEFT
;
2861 /* Try to generate statements to load all sub-replacements in an access subtree
2862 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2863 If that is not possible, refresh the TOP_RACC base aggregate and load the
2864 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2865 copied. NEW_GSI is stmt iterator used for statement insertions after the
2866 original assignment, OLD_GSI is used to insert statements before the
2867 assignment. *REFRESHED keeps the information whether we have needed to
2868 refresh replacements of the LHS and from which side of the assignments this
2872 load_assign_lhs_subreplacements (struct access
*lacc
, struct access
*top_racc
,
2873 HOST_WIDE_INT left_offset
,
2874 gimple_stmt_iterator
*old_gsi
,
2875 gimple_stmt_iterator
*new_gsi
,
2876 enum unscalarized_data_handling
*refreshed
)
2878 location_t loc
= gimple_location (gsi_stmt (*old_gsi
));
2879 for (lacc
= lacc
->first_child
; lacc
; lacc
= lacc
->next_sibling
)
2881 HOST_WIDE_INT offset
= lacc
->offset
- left_offset
+ top_racc
->offset
;
2883 if (lacc
->grp_to_be_replaced
)
2885 struct access
*racc
;
2889 racc
= find_access_in_subtree (top_racc
, offset
, lacc
->size
);
2890 if (racc
&& racc
->grp_to_be_replaced
)
2892 rhs
= get_access_replacement (racc
);
2893 if (!useless_type_conversion_p (lacc
->type
, racc
->type
))
2894 rhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, lacc
->type
, rhs
);
2896 if (racc
->grp_partial_lhs
&& lacc
->grp_partial_lhs
)
2897 rhs
= force_gimple_operand_gsi (old_gsi
, rhs
, true, NULL_TREE
,
2898 true, GSI_SAME_STMT
);
2902 /* No suitable access on the right hand side, need to load from
2903 the aggregate. See if we have to update it first... */
2904 if (*refreshed
== SRA_UDH_NONE
)
2905 *refreshed
= handle_unscalarized_data_in_subtree (top_racc
,
2908 if (*refreshed
== SRA_UDH_LEFT
)
2909 rhs
= build_ref_for_model (loc
, lacc
->base
, lacc
->offset
, lacc
,
2912 rhs
= build_ref_for_model (loc
, top_racc
->base
, offset
, lacc
,
2914 if (lacc
->grp_partial_lhs
)
2915 rhs
= force_gimple_operand_gsi (new_gsi
, rhs
, true, NULL_TREE
,
2916 false, GSI_NEW_STMT
);
2919 stmt
= gimple_build_assign (get_access_replacement (lacc
), rhs
);
2920 gsi_insert_after (new_gsi
, stmt
, GSI_NEW_STMT
);
2921 gimple_set_location (stmt
, loc
);
2923 sra_stats
.subreplacements
++;
2927 if (*refreshed
== SRA_UDH_NONE
2928 && lacc
->grp_read
&& !lacc
->grp_covered
)
2929 *refreshed
= handle_unscalarized_data_in_subtree (top_racc
,
2931 if (lacc
&& lacc
->grp_to_be_debug_replaced
)
2935 struct access
*racc
= find_access_in_subtree (top_racc
, offset
,
2938 if (racc
&& racc
->grp_to_be_replaced
)
2940 if (racc
->grp_write
)
2941 drhs
= get_access_replacement (racc
);
2945 else if (*refreshed
== SRA_UDH_LEFT
)
2946 drhs
= build_debug_ref_for_model (loc
, lacc
->base
, lacc
->offset
,
2948 else if (*refreshed
== SRA_UDH_RIGHT
)
2949 drhs
= build_debug_ref_for_model (loc
, top_racc
->base
, offset
,
2954 && !useless_type_conversion_p (lacc
->type
, TREE_TYPE (drhs
)))
2955 drhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
,
2957 ds
= gimple_build_debug_bind (get_access_replacement (lacc
),
2958 drhs
, gsi_stmt (*old_gsi
));
2959 gsi_insert_after (new_gsi
, ds
, GSI_NEW_STMT
);
2963 if (lacc
->first_child
)
2964 load_assign_lhs_subreplacements (lacc
, top_racc
, left_offset
,
2965 old_gsi
, new_gsi
, refreshed
);
2969 /* Result code for SRA assignment modification. */
2970 enum assignment_mod_result
{ SRA_AM_NONE
, /* nothing done for the stmt */
2971 SRA_AM_MODIFIED
, /* stmt changed but not
2973 SRA_AM_REMOVED
}; /* stmt eliminated */
2975 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2976 to the assignment and GSI is the statement iterator pointing at it. Returns
2977 the same values as sra_modify_assign. */
2979 static enum assignment_mod_result
2980 sra_modify_constructor_assign (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
2982 tree lhs
= gimple_assign_lhs (*stmt
);
2986 acc
= get_access_for_expr (lhs
);
2990 if (gimple_clobber_p (*stmt
))
2992 /* Remove clobbers of fully scalarized variables, otherwise
2994 if (acc
->grp_covered
)
2996 unlink_stmt_vdef (*stmt
);
2997 gsi_remove (gsi
, true);
2998 release_defs (*stmt
);
2999 return SRA_AM_REMOVED
;
3005 loc
= gimple_location (*stmt
);
3006 if (vec_safe_length (CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt
))) > 0)
3008 /* I have never seen this code path trigger but if it can happen the
3009 following should handle it gracefully. */
3010 if (access_has_children_p (acc
))
3011 generate_subtree_copies (acc
->first_child
, acc
->base
, 0, 0, 0, gsi
,
3013 return SRA_AM_MODIFIED
;
3016 if (acc
->grp_covered
)
3018 init_subtree_with_zero (acc
, gsi
, false, loc
);
3019 unlink_stmt_vdef (*stmt
);
3020 gsi_remove (gsi
, true);
3021 release_defs (*stmt
);
3022 return SRA_AM_REMOVED
;
3026 init_subtree_with_zero (acc
, gsi
, true, loc
);
3027 return SRA_AM_MODIFIED
;
3031 /* Create and return a new suitable default definition SSA_NAME for RACC which
3032 is an access describing an uninitialized part of an aggregate that is being
3036 get_repl_default_def_ssa_name (struct access
*racc
)
3038 gcc_checking_assert (!racc
->grp_to_be_replaced
3039 && !racc
->grp_to_be_debug_replaced
);
3040 if (!racc
->replacement_decl
)
3041 racc
->replacement_decl
= create_access_replacement (racc
);
3042 return get_or_create_ssa_default_def (cfun
, racc
->replacement_decl
);
3045 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3046 bit-field field declaration somewhere in it. */
3049 contains_vce_or_bfcref_p (const_tree ref
)
3051 while (handled_component_p (ref
))
3053 if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
3054 || (TREE_CODE (ref
) == COMPONENT_REF
3055 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1))))
3057 ref
= TREE_OPERAND (ref
, 0);
3063 /* Examine both sides of the assignment statement pointed to by STMT, replace
3064 them with a scalare replacement if there is one and generate copying of
3065 replacements if scalarized aggregates have been used in the assignment. GSI
3066 is used to hold generated statements for type conversions and subtree
3069 static enum assignment_mod_result
3070 sra_modify_assign (gimple
*stmt
, gimple_stmt_iterator
*gsi
)
3072 struct access
*lacc
, *racc
;
3074 bool modify_this_stmt
= false;
3075 bool force_gimple_rhs
= false;
3077 gimple_stmt_iterator orig_gsi
= *gsi
;
3079 if (!gimple_assign_single_p (*stmt
))
3081 lhs
= gimple_assign_lhs (*stmt
);
3082 rhs
= gimple_assign_rhs1 (*stmt
);
3084 if (TREE_CODE (rhs
) == CONSTRUCTOR
)
3085 return sra_modify_constructor_assign (stmt
, gsi
);
3087 if (TREE_CODE (rhs
) == REALPART_EXPR
|| TREE_CODE (lhs
) == REALPART_EXPR
3088 || TREE_CODE (rhs
) == IMAGPART_EXPR
|| TREE_CODE (lhs
) == IMAGPART_EXPR
3089 || TREE_CODE (rhs
) == BIT_FIELD_REF
|| TREE_CODE (lhs
) == BIT_FIELD_REF
)
3091 modify_this_stmt
= sra_modify_expr (gimple_assign_rhs1_ptr (*stmt
),
3093 modify_this_stmt
|= sra_modify_expr (gimple_assign_lhs_ptr (*stmt
),
3095 return modify_this_stmt
? SRA_AM_MODIFIED
: SRA_AM_NONE
;
3098 lacc
= get_access_for_expr (lhs
);
3099 racc
= get_access_for_expr (rhs
);
3103 loc
= gimple_location (*stmt
);
3104 if (lacc
&& lacc
->grp_to_be_replaced
)
3106 lhs
= get_access_replacement (lacc
);
3107 gimple_assign_set_lhs (*stmt
, lhs
);
3108 modify_this_stmt
= true;
3109 if (lacc
->grp_partial_lhs
)
3110 force_gimple_rhs
= true;
3114 if (racc
&& racc
->grp_to_be_replaced
)
3116 rhs
= get_access_replacement (racc
);
3117 modify_this_stmt
= true;
3118 if (racc
->grp_partial_lhs
)
3119 force_gimple_rhs
= true;
3123 && !racc
->grp_unscalarized_data
3124 && TREE_CODE (lhs
) == SSA_NAME
3125 && !access_has_replacements_p (racc
))
3127 rhs
= get_repl_default_def_ssa_name (racc
);
3128 modify_this_stmt
= true;
3132 if (modify_this_stmt
)
3134 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3136 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3137 ??? This should move to fold_stmt which we simply should
3138 call after building a VIEW_CONVERT_EXPR here. */
3139 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs
))
3140 && !contains_bitfld_component_ref_p (lhs
))
3142 lhs
= build_ref_for_model (loc
, lhs
, 0, racc
, gsi
, false);
3143 gimple_assign_set_lhs (*stmt
, lhs
);
3145 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs
))
3146 && !contains_vce_or_bfcref_p (rhs
))
3147 rhs
= build_ref_for_model (loc
, rhs
, 0, lacc
, gsi
, false);
3149 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
3151 rhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
),
3153 if (is_gimple_reg_type (TREE_TYPE (lhs
))
3154 && TREE_CODE (lhs
) != SSA_NAME
)
3155 force_gimple_rhs
= true;
3160 if (lacc
&& lacc
->grp_to_be_debug_replaced
)
3162 tree dlhs
= get_access_replacement (lacc
);
3163 tree drhs
= unshare_expr (rhs
);
3164 if (!useless_type_conversion_p (TREE_TYPE (dlhs
), TREE_TYPE (drhs
)))
3166 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs
))
3167 && !contains_vce_or_bfcref_p (drhs
))
3168 drhs
= build_debug_ref_for_model (loc
, drhs
, 0, lacc
);
3170 && !useless_type_conversion_p (TREE_TYPE (dlhs
),
3172 drhs
= fold_build1_loc (loc
, VIEW_CONVERT_EXPR
,
3173 TREE_TYPE (dlhs
), drhs
);
3175 gimple ds
= gimple_build_debug_bind (dlhs
, drhs
, *stmt
);
3176 gsi_insert_before (gsi
, ds
, GSI_SAME_STMT
);
3179 /* From this point on, the function deals with assignments in between
3180 aggregates when at least one has scalar reductions of some of its
3181 components. There are three possible scenarios: Both the LHS and RHS have
3182 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3184 In the first case, we would like to load the LHS components from RHS
3185 components whenever possible. If that is not possible, we would like to
3186 read it directly from the RHS (after updating it by storing in it its own
3187 components). If there are some necessary unscalarized data in the LHS,
3188 those will be loaded by the original assignment too. If neither of these
3189 cases happen, the original statement can be removed. Most of this is done
3190 by load_assign_lhs_subreplacements.
3192 In the second case, we would like to store all RHS scalarized components
3193 directly into LHS and if they cover the aggregate completely, remove the
3194 statement too. In the third case, we want the LHS components to be loaded
3195 directly from the RHS (DSE will remove the original statement if it
3198 This is a bit complex but manageable when types match and when unions do
3199 not cause confusion in a way that we cannot really load a component of LHS
3200 from the RHS or vice versa (the access representing this level can have
3201 subaccesses that are accessible only through a different union field at a
3202 higher level - different from the one used in the examined expression).
3205 Therefore, I specially handle a fourth case, happening when there is a
3206 specific type cast or it is impossible to locate a scalarized subaccess on
3207 the other side of the expression. If that happens, I simply "refresh" the
3208 RHS by storing in it is scalarized components leave the original statement
3209 there to do the copying and then load the scalar replacements of the LHS.
3210 This is what the first branch does. */
3212 if (modify_this_stmt
3213 || gimple_has_volatile_ops (*stmt
)
3214 || contains_vce_or_bfcref_p (rhs
)
3215 || contains_vce_or_bfcref_p (lhs
))
3217 if (access_has_children_p (racc
))
3218 generate_subtree_copies (racc
->first_child
, racc
->base
, 0, 0, 0,
3219 gsi
, false, false, loc
);
3220 if (access_has_children_p (lacc
))
3221 generate_subtree_copies (lacc
->first_child
, lacc
->base
, 0, 0, 0,
3222 gsi
, true, true, loc
);
3223 sra_stats
.separate_lhs_rhs_handling
++;
3225 /* This gimplification must be done after generate_subtree_copies,
3226 lest we insert the subtree copies in the middle of the gimplified
3228 if (force_gimple_rhs
)
3229 rhs
= force_gimple_operand_gsi (&orig_gsi
, rhs
, true, NULL_TREE
,
3230 true, GSI_SAME_STMT
);
3231 if (gimple_assign_rhs1 (*stmt
) != rhs
)
3233 modify_this_stmt
= true;
3234 gimple_assign_set_rhs_from_tree (&orig_gsi
, rhs
);
3235 gcc_assert (*stmt
== gsi_stmt (orig_gsi
));
3238 return modify_this_stmt
? SRA_AM_MODIFIED
: SRA_AM_NONE
;
3242 if (access_has_children_p (lacc
)
3243 && access_has_children_p (racc
)
3244 /* When an access represents an unscalarizable region, it usually
3245 represents accesses with variable offset and thus must not be used
3246 to generate new memory accesses. */
3247 && !lacc
->grp_unscalarizable_region
3248 && !racc
->grp_unscalarizable_region
)
3250 gimple_stmt_iterator orig_gsi
= *gsi
;
3251 enum unscalarized_data_handling refreshed
;
3253 if (lacc
->grp_read
&& !lacc
->grp_covered
)
3254 refreshed
= handle_unscalarized_data_in_subtree (racc
, gsi
);
3256 refreshed
= SRA_UDH_NONE
;
3258 load_assign_lhs_subreplacements (lacc
, racc
, lacc
->offset
,
3259 &orig_gsi
, gsi
, &refreshed
);
3260 if (refreshed
!= SRA_UDH_RIGHT
)
3263 unlink_stmt_vdef (*stmt
);
3264 gsi_remove (&orig_gsi
, true);
3265 release_defs (*stmt
);
3266 sra_stats
.deleted
++;
3267 return SRA_AM_REMOVED
;
3272 if (access_has_children_p (racc
)
3273 && !racc
->grp_unscalarized_data
)
3277 fprintf (dump_file
, "Removing load: ");
3278 print_gimple_stmt (dump_file
, *stmt
, 0, 0);
3280 generate_subtree_copies (racc
->first_child
, lhs
,
3281 racc
->offset
, 0, 0, gsi
,
3283 gcc_assert (*stmt
== gsi_stmt (*gsi
));
3284 unlink_stmt_vdef (*stmt
);
3285 gsi_remove (gsi
, true);
3286 release_defs (*stmt
);
3287 sra_stats
.deleted
++;
3288 return SRA_AM_REMOVED
;
3290 /* Restore the aggregate RHS from its components so the
3291 prevailing aggregate copy does the right thing. */
3292 if (access_has_children_p (racc
))
3293 generate_subtree_copies (racc
->first_child
, racc
->base
, 0, 0, 0,
3294 gsi
, false, false, loc
);
3295 /* Re-load the components of the aggregate copy destination.
3296 But use the RHS aggregate to load from to expose more
3297 optimization opportunities. */
3298 if (access_has_children_p (lacc
))
3299 generate_subtree_copies (lacc
->first_child
, rhs
, lacc
->offset
,
3300 0, 0, gsi
, true, true, loc
);
3307 /* Traverse the function body and all modifications as decided in
3308 analyze_all_variable_accesses. Return true iff the CFG has been
3312 sra_modify_function_body (void)
3314 bool cfg_changed
= false;
3317 FOR_EACH_BB_FN (bb
, cfun
)
3319 gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
3320 while (!gsi_end_p (gsi
))
3322 gimple stmt
= gsi_stmt (gsi
);
3323 enum assignment_mod_result assign_result
;
3324 bool modified
= false, deleted
= false;
3328 switch (gimple_code (stmt
))
3331 t
= gimple_return_retval_ptr (stmt
);
3332 if (*t
!= NULL_TREE
)
3333 modified
|= sra_modify_expr (t
, &gsi
, false);
3337 assign_result
= sra_modify_assign (&stmt
, &gsi
);
3338 modified
|= assign_result
== SRA_AM_MODIFIED
;
3339 deleted
= assign_result
== SRA_AM_REMOVED
;
3343 /* Operands must be processed before the lhs. */
3344 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
3346 t
= gimple_call_arg_ptr (stmt
, i
);
3347 modified
|= sra_modify_expr (t
, &gsi
, false);
3350 if (gimple_call_lhs (stmt
))
3352 t
= gimple_call_lhs_ptr (stmt
);
3353 modified
|= sra_modify_expr (t
, &gsi
, true);
3358 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
3360 t
= &TREE_VALUE (gimple_asm_input_op (stmt
, i
));
3361 modified
|= sra_modify_expr (t
, &gsi
, false);
3363 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
3365 t
= &TREE_VALUE (gimple_asm_output_op (stmt
, i
));
3366 modified
|= sra_modify_expr (t
, &gsi
, true);
3377 if (maybe_clean_eh_stmt (stmt
)
3378 && gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
3389 /* Generate statements initializing scalar replacements of parts of function
3393 initialize_parameter_reductions (void)
3395 gimple_stmt_iterator gsi
;
3396 gimple_seq seq
= NULL
;
3399 gsi
= gsi_start (seq
);
3400 for (parm
= DECL_ARGUMENTS (current_function_decl
);
3402 parm
= DECL_CHAIN (parm
))
3404 vec
<access_p
> *access_vec
;
3405 struct access
*access
;
3407 if (!bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
3409 access_vec
= get_base_access_vector (parm
);
3413 for (access
= (*access_vec
)[0];
3415 access
= access
->next_grp
)
3416 generate_subtree_copies (access
, parm
, 0, 0, 0, &gsi
, true, true,
3417 EXPR_LOCATION (parm
));
3420 seq
= gsi_seq (gsi
);
3422 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
)), seq
);
3425 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3426 it reveals there are components of some aggregates to be scalarized, it runs
3427 the required transformations. */
3429 perform_intra_sra (void)
3434 if (!find_var_candidates ())
3437 if (!scan_function ())
3440 if (!analyze_all_variable_accesses ())
3443 if (sra_modify_function_body ())
3444 ret
= TODO_update_ssa
| TODO_cleanup_cfg
;
3446 ret
= TODO_update_ssa
;
3447 initialize_parameter_reductions ();
3449 statistics_counter_event (cfun
, "Scalar replacements created",
3450 sra_stats
.replacements
);
3451 statistics_counter_event (cfun
, "Modified expressions", sra_stats
.exprs
);
3452 statistics_counter_event (cfun
, "Subtree copy stmts",
3453 sra_stats
.subtree_copies
);
3454 statistics_counter_event (cfun
, "Subreplacement stmts",
3455 sra_stats
.subreplacements
);
3456 statistics_counter_event (cfun
, "Deleted stmts", sra_stats
.deleted
);
3457 statistics_counter_event (cfun
, "Separate LHS and RHS handling",
3458 sra_stats
.separate_lhs_rhs_handling
);
3461 sra_deinitialize ();
3465 /* Perform early intraprocedural SRA. */
3467 early_intra_sra (void)
3469 sra_mode
= SRA_MODE_EARLY_INTRA
;
3470 return perform_intra_sra ();
3473 /* Perform "late" intraprocedural SRA. */
3475 late_intra_sra (void)
3477 sra_mode
= SRA_MODE_INTRA
;
3478 return perform_intra_sra ();
3483 gate_intra_sra (void)
3485 return flag_tree_sra
!= 0 && dbg_cnt (tree_sra
);
3491 const pass_data pass_data_sra_early
=
3493 GIMPLE_PASS
, /* type */
3495 OPTGROUP_NONE
, /* optinfo_flags */
3496 true, /* has_gate */
3497 true, /* has_execute */
3498 TV_TREE_SRA
, /* tv_id */
3499 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3500 0, /* properties_provided */
3501 0, /* properties_destroyed */
3502 0, /* todo_flags_start */
3503 ( TODO_update_ssa
| TODO_verify_ssa
), /* todo_flags_finish */
3506 class pass_sra_early
: public gimple_opt_pass
3509 pass_sra_early (gcc::context
*ctxt
)
3510 : gimple_opt_pass (pass_data_sra_early
, ctxt
)
3513 /* opt_pass methods: */
3514 bool gate () { return gate_intra_sra (); }
3515 unsigned int execute () { return early_intra_sra (); }
3517 }; // class pass_sra_early
3522 make_pass_sra_early (gcc::context
*ctxt
)
3524 return new pass_sra_early (ctxt
);
3529 const pass_data pass_data_sra
=
3531 GIMPLE_PASS
, /* type */
3533 OPTGROUP_NONE
, /* optinfo_flags */
3534 true, /* has_gate */
3535 true, /* has_execute */
3536 TV_TREE_SRA
, /* tv_id */
3537 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3538 0, /* properties_provided */
3539 0, /* properties_destroyed */
3540 TODO_update_address_taken
, /* todo_flags_start */
3541 ( TODO_update_ssa
| TODO_verify_ssa
), /* todo_flags_finish */
3544 class pass_sra
: public gimple_opt_pass
3547 pass_sra (gcc::context
*ctxt
)
3548 : gimple_opt_pass (pass_data_sra
, ctxt
)
3551 /* opt_pass methods: */
3552 bool gate () { return gate_intra_sra (); }
3553 unsigned int execute () { return late_intra_sra (); }
3555 }; // class pass_sra
3560 make_pass_sra (gcc::context
*ctxt
)
3562 return new pass_sra (ctxt
);
3566 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3570 is_unused_scalar_param (tree parm
)
3573 return (is_gimple_reg (parm
)
3574 && (!(name
= ssa_default_def (cfun
, parm
))
3575 || has_zero_uses (name
)));
3578 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3579 examine whether there are any direct or otherwise infeasible ones. If so,
3580 return true, otherwise return false. PARM must be a gimple register with a
3581 non-NULL default definition. */
3584 ptr_parm_has_direct_uses (tree parm
)
3586 imm_use_iterator ui
;
3588 tree name
= ssa_default_def (cfun
, parm
);
3591 FOR_EACH_IMM_USE_STMT (stmt
, ui
, name
)
3594 use_operand_p use_p
;
3596 if (is_gimple_debug (stmt
))
3599 /* Valid uses include dereferences on the lhs and the rhs. */
3600 if (gimple_has_lhs (stmt
))
3602 tree lhs
= gimple_get_lhs (stmt
);
3603 while (handled_component_p (lhs
))
3604 lhs
= TREE_OPERAND (lhs
, 0);
3605 if (TREE_CODE (lhs
) == MEM_REF
3606 && TREE_OPERAND (lhs
, 0) == name
3607 && integer_zerop (TREE_OPERAND (lhs
, 1))
3608 && types_compatible_p (TREE_TYPE (lhs
),
3609 TREE_TYPE (TREE_TYPE (name
)))
3610 && !TREE_THIS_VOLATILE (lhs
))
3613 if (gimple_assign_single_p (stmt
))
3615 tree rhs
= gimple_assign_rhs1 (stmt
);
3616 while (handled_component_p (rhs
))
3617 rhs
= TREE_OPERAND (rhs
, 0);
3618 if (TREE_CODE (rhs
) == MEM_REF
3619 && TREE_OPERAND (rhs
, 0) == name
3620 && integer_zerop (TREE_OPERAND (rhs
, 1))
3621 && types_compatible_p (TREE_TYPE (rhs
),
3622 TREE_TYPE (TREE_TYPE (name
)))
3623 && !TREE_THIS_VOLATILE (rhs
))
3626 else if (is_gimple_call (stmt
))
3629 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3631 tree arg
= gimple_call_arg (stmt
, i
);
3632 while (handled_component_p (arg
))
3633 arg
= TREE_OPERAND (arg
, 0);
3634 if (TREE_CODE (arg
) == MEM_REF
3635 && TREE_OPERAND (arg
, 0) == name
3636 && integer_zerop (TREE_OPERAND (arg
, 1))
3637 && types_compatible_p (TREE_TYPE (arg
),
3638 TREE_TYPE (TREE_TYPE (name
)))
3639 && !TREE_THIS_VOLATILE (arg
))
3644 /* If the number of valid uses does not match the number of
3645 uses in this stmt there is an unhandled use. */
3646 FOR_EACH_IMM_USE_ON_STMT (use_p
, ui
)
3653 BREAK_FROM_IMM_USE_STMT (ui
);
3659 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3660 them in candidate_bitmap. Note that these do not necessarily include
3661 parameter which are unused and thus can be removed. Return true iff any
3662 such candidate has been found. */
3665 find_param_candidates (void)
3672 for (parm
= DECL_ARGUMENTS (current_function_decl
);
3674 parm
= DECL_CHAIN (parm
))
3676 tree type
= TREE_TYPE (parm
);
3681 if (TREE_THIS_VOLATILE (parm
)
3682 || TREE_ADDRESSABLE (parm
)
3683 || (!is_gimple_reg_type (type
) && is_va_list_type (type
)))
3686 if (is_unused_scalar_param (parm
))
3692 if (POINTER_TYPE_P (type
))
3694 type
= TREE_TYPE (type
);
3696 if (TREE_CODE (type
) == FUNCTION_TYPE
3697 || TYPE_VOLATILE (type
)
3698 || (TREE_CODE (type
) == ARRAY_TYPE
3699 && TYPE_NONALIASED_COMPONENT (type
))
3700 || !is_gimple_reg (parm
)
3701 || is_va_list_type (type
)
3702 || ptr_parm_has_direct_uses (parm
))
3705 else if (!AGGREGATE_TYPE_P (type
))
3708 if (!COMPLETE_TYPE_P (type
)
3709 || !tree_fits_uhwi_p (TYPE_SIZE (type
))
3710 || tree_to_uhwi (TYPE_SIZE (type
)) == 0
3711 || (AGGREGATE_TYPE_P (type
)
3712 && type_internals_preclude_sra_p (type
, &msg
)))
3715 bitmap_set_bit (candidate_bitmap
, DECL_UID (parm
));
3716 slot
= candidates
.find_slot_with_hash (parm
, DECL_UID (parm
), INSERT
);
3720 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3722 fprintf (dump_file
, "Candidate (%d): ", DECL_UID (parm
));
3723 print_generic_expr (dump_file
, parm
, 0);
3724 fprintf (dump_file
, "\n");
3728 func_param_count
= count
;
3732 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3736 mark_maybe_modified (ao_ref
*ao ATTRIBUTE_UNUSED
, tree vdef ATTRIBUTE_UNUSED
,
3739 struct access
*repr
= (struct access
*) data
;
3741 repr
->grp_maybe_modified
= 1;
3745 /* Analyze what representatives (in linked lists accessible from
3746 REPRESENTATIVES) can be modified by side effects of statements in the
3747 current function. */
3750 analyze_modified_params (vec
<access_p
> representatives
)
3754 for (i
= 0; i
< func_param_count
; i
++)
3756 struct access
*repr
;
3758 for (repr
= representatives
[i
];
3760 repr
= repr
->next_grp
)
3762 struct access
*access
;
3766 if (no_accesses_p (repr
))
3768 if (!POINTER_TYPE_P (TREE_TYPE (repr
->base
))
3769 || repr
->grp_maybe_modified
)
3772 ao_ref_init (&ar
, repr
->expr
);
3773 visited
= BITMAP_ALLOC (NULL
);
3774 for (access
= repr
; access
; access
= access
->next_sibling
)
3776 /* All accesses are read ones, otherwise grp_maybe_modified would
3777 be trivially set. */
3778 walk_aliased_vdefs (&ar
, gimple_vuse (access
->stmt
),
3779 mark_maybe_modified
, repr
, &visited
);
3780 if (repr
->grp_maybe_modified
)
3783 BITMAP_FREE (visited
);
3788 /* Propagate distances in bb_dereferences in the opposite direction than the
3789 control flow edges, in each step storing the maximum of the current value
3790 and the minimum of all successors. These steps are repeated until the table
3791 stabilizes. Note that BBs which might terminate the functions (according to
3792 final_bbs bitmap) never updated in this way. */
3795 propagate_dereference_distances (void)
3799 auto_vec
<basic_block
> queue (last_basic_block_for_fn (cfun
));
3800 queue
.quick_push (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
3801 FOR_EACH_BB_FN (bb
, cfun
)
3803 queue
.quick_push (bb
);
3807 while (!queue
.is_empty ())
3811 bool change
= false;
3817 if (bitmap_bit_p (final_bbs
, bb
->index
))
3820 for (i
= 0; i
< func_param_count
; i
++)
3822 int idx
= bb
->index
* func_param_count
+ i
;
3824 HOST_WIDE_INT inh
= 0;
3826 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3828 int succ_idx
= e
->dest
->index
* func_param_count
+ i
;
3830 if (e
->src
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
3836 inh
= bb_dereferences
[succ_idx
];
3838 else if (bb_dereferences
[succ_idx
] < inh
)
3839 inh
= bb_dereferences
[succ_idx
];
3842 if (!first
&& bb_dereferences
[idx
] < inh
)
3844 bb_dereferences
[idx
] = inh
;
3849 if (change
&& !bitmap_bit_p (final_bbs
, bb
->index
))
3850 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3855 e
->src
->aux
= e
->src
;
3856 queue
.quick_push (e
->src
);
3861 /* Dump a dereferences TABLE with heading STR to file F. */
3864 dump_dereferences_table (FILE *f
, const char *str
, HOST_WIDE_INT
*table
)
3868 fprintf (dump_file
, str
);
3869 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
3870 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
3872 fprintf (f
, "%4i %i ", bb
->index
, bitmap_bit_p (final_bbs
, bb
->index
));
3873 if (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
3876 for (i
= 0; i
< func_param_count
; i
++)
3878 int idx
= bb
->index
* func_param_count
+ i
;
3879 fprintf (f
, " %4" HOST_WIDE_INT_PRINT
"d", table
[idx
]);
3884 fprintf (dump_file
, "\n");
3887 /* Determine what (parts of) parameters passed by reference that are not
3888 assigned to are not certainly dereferenced in this function and thus the
3889 dereferencing cannot be safely moved to the caller without potentially
3890 introducing a segfault. Mark such REPRESENTATIVES as
3891 grp_not_necessarilly_dereferenced.
3893 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3894 part is calculated rather than simple booleans are calculated for each
3895 pointer parameter to handle cases when only a fraction of the whole
3896 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3899 The maximum dereference distances for each pointer parameter and BB are
3900 already stored in bb_dereference. This routine simply propagates these
3901 values upwards by propagate_dereference_distances and then compares the
3902 distances of individual parameters in the ENTRY BB to the equivalent
3903 distances of each representative of a (fraction of a) parameter. */
3906 analyze_caller_dereference_legality (vec
<access_p
> representatives
)
3910 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3911 dump_dereferences_table (dump_file
,
3912 "Dereference table before propagation:\n",
3915 propagate_dereference_distances ();
3917 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3918 dump_dereferences_table (dump_file
,
3919 "Dereference table after propagation:\n",
3922 for (i
= 0; i
< func_param_count
; i
++)
3924 struct access
*repr
= representatives
[i
];
3925 int idx
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->index
* func_param_count
+ i
;
3927 if (!repr
|| no_accesses_p (repr
))
3932 if ((repr
->offset
+ repr
->size
) > bb_dereferences
[idx
])
3933 repr
->grp_not_necessarilly_dereferenced
= 1;
3934 repr
= repr
->next_grp
;
3940 /* Return the representative access for the parameter declaration PARM if it is
3941 a scalar passed by reference which is not written to and the pointer value
3942 is not used directly. Thus, if it is legal to dereference it in the caller
3943 and we can rule out modifications through aliases, such parameter should be
3944 turned into one passed by value. Return NULL otherwise. */
3946 static struct access
*
3947 unmodified_by_ref_scalar_representative (tree parm
)
3949 int i
, access_count
;
3950 struct access
*repr
;
3951 vec
<access_p
> *access_vec
;
3953 access_vec
= get_base_access_vector (parm
);
3954 gcc_assert (access_vec
);
3955 repr
= (*access_vec
)[0];
3958 repr
->group_representative
= repr
;
3960 access_count
= access_vec
->length ();
3961 for (i
= 1; i
< access_count
; i
++)
3963 struct access
*access
= (*access_vec
)[i
];
3966 access
->group_representative
= repr
;
3967 access
->next_sibling
= repr
->next_sibling
;
3968 repr
->next_sibling
= access
;
3972 repr
->grp_scalar_ptr
= 1;
3976 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
3977 associated with. REQ_ALIGN is the minimum required alignment. */
3980 access_precludes_ipa_sra_p (struct access
*access
, unsigned int req_align
)
3982 unsigned int exp_align
;
3983 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3984 is incompatible assign in a call statement (and possibly even in asm
3985 statements). This can be relaxed by using a new temporary but only for
3986 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3987 intraprocedural SRA we deal with this by keeping the old aggregate around,
3988 something we cannot do in IPA-SRA.) */
3990 && (is_gimple_call (access
->stmt
)
3991 || gimple_code (access
->stmt
) == GIMPLE_ASM
))
3994 exp_align
= get_object_alignment (access
->expr
);
3995 if (exp_align
< req_align
)
4002 /* Sort collected accesses for parameter PARM, identify representatives for
4003 each accessed region and link them together. Return NULL if there are
4004 different but overlapping accesses, return the special ptr value meaning
4005 there are no accesses for this parameter if that is the case and return the
4006 first representative otherwise. Set *RO_GRP if there is a group of accesses
4007 with only read (i.e. no write) accesses. */
4009 static struct access
*
4010 splice_param_accesses (tree parm
, bool *ro_grp
)
4012 int i
, j
, access_count
, group_count
;
4013 int agg_size
, total_size
= 0;
4014 struct access
*access
, *res
, **prev_acc_ptr
= &res
;
4015 vec
<access_p
> *access_vec
;
4017 access_vec
= get_base_access_vector (parm
);
4019 return &no_accesses_representant
;
4020 access_count
= access_vec
->length ();
4022 access_vec
->qsort (compare_access_positions
);
4027 while (i
< access_count
)
4031 access
= (*access_vec
)[i
];
4032 modification
= access
->write
;
4033 if (access_precludes_ipa_sra_p (access
, TYPE_ALIGN (access
->type
)))
4035 a1_alias_type
= reference_alias_ptr_type (access
->expr
);
4037 /* Access is about to become group representative unless we find some
4038 nasty overlap which would preclude us from breaking this parameter
4042 while (j
< access_count
)
4044 struct access
*ac2
= (*access_vec
)[j
];
4045 if (ac2
->offset
!= access
->offset
)
4047 /* All or nothing law for parameters. */
4048 if (access
->offset
+ access
->size
> ac2
->offset
)
4053 else if (ac2
->size
!= access
->size
)
4056 if (access_precludes_ipa_sra_p (ac2
, TYPE_ALIGN (access
->type
))
4057 || (ac2
->type
!= access
->type
4058 && (TREE_ADDRESSABLE (ac2
->type
)
4059 || TREE_ADDRESSABLE (access
->type
)))
4060 || (reference_alias_ptr_type (ac2
->expr
) != a1_alias_type
))
4063 modification
|= ac2
->write
;
4064 ac2
->group_representative
= access
;
4065 ac2
->next_sibling
= access
->next_sibling
;
4066 access
->next_sibling
= ac2
;
4071 access
->grp_maybe_modified
= modification
;
4074 *prev_acc_ptr
= access
;
4075 prev_acc_ptr
= &access
->next_grp
;
4076 total_size
+= access
->size
;
4080 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4081 agg_size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm
))));
4083 agg_size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm
)));
4084 if (total_size
>= agg_size
)
4087 gcc_assert (group_count
> 0);
4091 /* Decide whether parameters with representative accesses given by REPR should
4092 be reduced into components. */
4095 decide_one_param_reduction (struct access
*repr
)
4097 int total_size
, cur_parm_size
, agg_size
, new_param_count
, parm_size_limit
;
4102 cur_parm_size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm
)));
4103 gcc_assert (cur_parm_size
> 0);
4105 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4108 agg_size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm
))));
4113 agg_size
= cur_parm_size
;
4119 fprintf (dump_file
, "Evaluating PARAM group sizes for ");
4120 print_generic_expr (dump_file
, parm
, 0);
4121 fprintf (dump_file
, " (UID: %u): \n", DECL_UID (parm
));
4122 for (acc
= repr
; acc
; acc
= acc
->next_grp
)
4123 dump_access (dump_file
, acc
, true);
4127 new_param_count
= 0;
4129 for (; repr
; repr
= repr
->next_grp
)
4131 gcc_assert (parm
== repr
->base
);
4133 /* Taking the address of a non-addressable field is verboten. */
4134 if (by_ref
&& repr
->non_addressable
)
4137 /* Do not decompose a non-BLKmode param in a way that would
4138 create BLKmode params. Especially for by-reference passing
4139 (thus, pointer-type param) this is hardly worthwhile. */
4140 if (DECL_MODE (parm
) != BLKmode
4141 && TYPE_MODE (repr
->type
) == BLKmode
)
4144 if (!by_ref
|| (!repr
->grp_maybe_modified
4145 && !repr
->grp_not_necessarilly_dereferenced
))
4146 total_size
+= repr
->size
;
4148 total_size
+= cur_parm_size
;
4153 gcc_assert (new_param_count
> 0);
4155 if (optimize_function_for_size_p (cfun
))
4156 parm_size_limit
= cur_parm_size
;
4158 parm_size_limit
= (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR
)
4161 if (total_size
< agg_size
4162 && total_size
<= parm_size_limit
)
4165 fprintf (dump_file
, " ....will be split into %i components\n",
4167 return new_param_count
;
4173 /* The order of the following enums is important, we need to do extra work for
4174 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4175 enum ipa_splicing_result
{ NO_GOOD_ACCESS
, UNUSED_PARAMS
, BY_VAL_ACCESSES
,
4176 MODIF_BY_REF_ACCESSES
, UNMODIF_BY_REF_ACCESSES
};
4178 /* Identify representatives of all accesses to all candidate parameters for
4179 IPA-SRA. Return result based on what representatives have been found. */
4181 static enum ipa_splicing_result
4182 splice_all_param_accesses (vec
<access_p
> &representatives
)
4184 enum ipa_splicing_result result
= NO_GOOD_ACCESS
;
4186 struct access
*repr
;
4188 representatives
.create (func_param_count
);
4190 for (parm
= DECL_ARGUMENTS (current_function_decl
);
4192 parm
= DECL_CHAIN (parm
))
4194 if (is_unused_scalar_param (parm
))
4196 representatives
.quick_push (&no_accesses_representant
);
4197 if (result
== NO_GOOD_ACCESS
)
4198 result
= UNUSED_PARAMS
;
4200 else if (POINTER_TYPE_P (TREE_TYPE (parm
))
4201 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm
)))
4202 && bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
4204 repr
= unmodified_by_ref_scalar_representative (parm
);
4205 representatives
.quick_push (repr
);
4207 result
= UNMODIF_BY_REF_ACCESSES
;
4209 else if (bitmap_bit_p (candidate_bitmap
, DECL_UID (parm
)))
4211 bool ro_grp
= false;
4212 repr
= splice_param_accesses (parm
, &ro_grp
);
4213 representatives
.quick_push (repr
);
4215 if (repr
&& !no_accesses_p (repr
))
4217 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
4220 result
= UNMODIF_BY_REF_ACCESSES
;
4221 else if (result
< MODIF_BY_REF_ACCESSES
)
4222 result
= MODIF_BY_REF_ACCESSES
;
4224 else if (result
< BY_VAL_ACCESSES
)
4225 result
= BY_VAL_ACCESSES
;
4227 else if (no_accesses_p (repr
) && (result
== NO_GOOD_ACCESS
))
4228 result
= UNUSED_PARAMS
;
4231 representatives
.quick_push (NULL
);
4234 if (result
== NO_GOOD_ACCESS
)
4236 representatives
.release ();
4237 return NO_GOOD_ACCESS
;
4243 /* Return the index of BASE in PARMS. Abort if it is not found. */
4246 get_param_index (tree base
, vec
<tree
> parms
)
4250 len
= parms
.length ();
4251 for (i
= 0; i
< len
; i
++)
4252 if (parms
[i
] == base
)
4257 /* Convert the decisions made at the representative level into compact
4258 parameter adjustments. REPRESENTATIVES are pointers to first
4259 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4260 final number of adjustments. */
4262 static ipa_parm_adjustment_vec
4263 turn_representatives_into_adjustments (vec
<access_p
> representatives
,
4264 int adjustments_count
)
4267 ipa_parm_adjustment_vec adjustments
;
4271 gcc_assert (adjustments_count
> 0);
4272 parms
= ipa_get_vector_of_formal_parms (current_function_decl
);
4273 adjustments
.create (adjustments_count
);
4274 parm
= DECL_ARGUMENTS (current_function_decl
);
4275 for (i
= 0; i
< func_param_count
; i
++, parm
= DECL_CHAIN (parm
))
4277 struct access
*repr
= representatives
[i
];
4279 if (!repr
|| no_accesses_p (repr
))
4281 struct ipa_parm_adjustment adj
;
4283 memset (&adj
, 0, sizeof (adj
));
4284 adj
.base_index
= get_param_index (parm
, parms
);
4287 adj
.op
= IPA_PARM_OP_COPY
;
4289 adj
.op
= IPA_PARM_OP_REMOVE
;
4290 adj
.arg_prefix
= "ISRA";
4291 adjustments
.quick_push (adj
);
4295 struct ipa_parm_adjustment adj
;
4296 int index
= get_param_index (parm
, parms
);
4298 for (; repr
; repr
= repr
->next_grp
)
4300 memset (&adj
, 0, sizeof (adj
));
4301 gcc_assert (repr
->base
== parm
);
4302 adj
.base_index
= index
;
4303 adj
.base
= repr
->base
;
4304 adj
.type
= repr
->type
;
4305 adj
.alias_ptr_type
= reference_alias_ptr_type (repr
->expr
);
4306 adj
.offset
= repr
->offset
;
4307 adj
.by_ref
= (POINTER_TYPE_P (TREE_TYPE (repr
->base
))
4308 && (repr
->grp_maybe_modified
4309 || repr
->grp_not_necessarilly_dereferenced
));
4310 adj
.arg_prefix
= "ISRA";
4311 adjustments
.quick_push (adj
);
4319 /* Analyze the collected accesses and produce a plan what to do with the
4320 parameters in the form of adjustments, NULL meaning nothing. */
4322 static ipa_parm_adjustment_vec
4323 analyze_all_param_acesses (void)
4325 enum ipa_splicing_result repr_state
;
4326 bool proceed
= false;
4327 int i
, adjustments_count
= 0;
4328 vec
<access_p
> representatives
;
4329 ipa_parm_adjustment_vec adjustments
;
4331 repr_state
= splice_all_param_accesses (representatives
);
4332 if (repr_state
== NO_GOOD_ACCESS
)
4333 return ipa_parm_adjustment_vec ();
4335 /* If there are any parameters passed by reference which are not modified
4336 directly, we need to check whether they can be modified indirectly. */
4337 if (repr_state
== UNMODIF_BY_REF_ACCESSES
)
4339 analyze_caller_dereference_legality (representatives
);
4340 analyze_modified_params (representatives
);
4343 for (i
= 0; i
< func_param_count
; i
++)
4345 struct access
*repr
= representatives
[i
];
4347 if (repr
&& !no_accesses_p (repr
))
4349 if (repr
->grp_scalar_ptr
)
4351 adjustments_count
++;
4352 if (repr
->grp_not_necessarilly_dereferenced
4353 || repr
->grp_maybe_modified
)
4354 representatives
[i
] = NULL
;
4358 sra_stats
.scalar_by_ref_to_by_val
++;
4363 int new_components
= decide_one_param_reduction (repr
);
4365 if (new_components
== 0)
4367 representatives
[i
] = NULL
;
4368 adjustments_count
++;
4372 adjustments_count
+= new_components
;
4373 sra_stats
.aggregate_params_reduced
++;
4374 sra_stats
.param_reductions_created
+= new_components
;
4381 if (no_accesses_p (repr
))
4384 sra_stats
.deleted_unused_parameters
++;
4386 adjustments_count
++;
4390 if (!proceed
&& dump_file
)
4391 fprintf (dump_file
, "NOT proceeding to change params.\n");
4394 adjustments
= turn_representatives_into_adjustments (representatives
,
4397 adjustments
= ipa_parm_adjustment_vec ();
4399 representatives
.release ();
4403 /* If a parameter replacement identified by ADJ does not yet exist in the form
4404 of declaration, create it and record it, otherwise return the previously
4408 get_replaced_param_substitute (struct ipa_parm_adjustment
*adj
)
4411 if (!adj
->new_ssa_base
)
4413 char *pretty_name
= make_fancy_name (adj
->base
);
4415 repl
= create_tmp_reg (TREE_TYPE (adj
->base
), "ISR");
4416 DECL_NAME (repl
) = get_identifier (pretty_name
);
4417 obstack_free (&name_obstack
, pretty_name
);
4419 adj
->new_ssa_base
= repl
;
4422 repl
= adj
->new_ssa_base
;
4426 /* Find the first adjustment for a particular parameter BASE in a vector of
4427 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4430 static struct ipa_parm_adjustment
*
4431 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments
, tree base
)
4435 len
= adjustments
.length ();
4436 for (i
= 0; i
< len
; i
++)
4438 struct ipa_parm_adjustment
*adj
;
4440 adj
= &adjustments
[i
];
4441 if (adj
->op
!= IPA_PARM_OP_COPY
&& adj
->base
== base
)
4448 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4449 removed because its value is not used, replace the SSA_NAME with a one
4450 relating to a created VAR_DECL together all of its uses and return true.
4451 ADJUSTMENTS is a pointer to an adjustments vector. */
4454 replace_removed_params_ssa_names (gimple stmt
,
4455 ipa_parm_adjustment_vec adjustments
)
4457 struct ipa_parm_adjustment
*adj
;
4458 tree lhs
, decl
, repl
, name
;
4460 if (gimple_code (stmt
) == GIMPLE_PHI
)
4461 lhs
= gimple_phi_result (stmt
);
4462 else if (is_gimple_assign (stmt
))
4463 lhs
= gimple_assign_lhs (stmt
);
4464 else if (is_gimple_call (stmt
))
4465 lhs
= gimple_call_lhs (stmt
);
4469 if (TREE_CODE (lhs
) != SSA_NAME
)
4472 decl
= SSA_NAME_VAR (lhs
);
4473 if (decl
== NULL_TREE
4474 || TREE_CODE (decl
) != PARM_DECL
)
4477 adj
= get_adjustment_for_base (adjustments
, decl
);
4481 repl
= get_replaced_param_substitute (adj
);
4482 name
= make_ssa_name (repl
, stmt
);
4486 fprintf (dump_file
, "replacing an SSA name of a removed param ");
4487 print_generic_expr (dump_file
, lhs
, 0);
4488 fprintf (dump_file
, " with ");
4489 print_generic_expr (dump_file
, name
, 0);
4490 fprintf (dump_file
, "\n");
4493 if (is_gimple_assign (stmt
))
4494 gimple_assign_set_lhs (stmt
, name
);
4495 else if (is_gimple_call (stmt
))
4496 gimple_call_set_lhs (stmt
, name
);
4498 gimple_phi_set_result (stmt
, name
);
4500 replace_uses_by (lhs
, name
);
4501 release_ssa_name (lhs
);
4505 /* If the statement pointed to by STMT_PTR contains any expressions that need
4506 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4507 potential type incompatibilities (GSI is used to accommodate conversion
4508 statements and must point to the statement). Return true iff the statement
4512 sra_ipa_modify_assign (gimple
*stmt_ptr
, gimple_stmt_iterator
*gsi
,
4513 ipa_parm_adjustment_vec adjustments
)
4515 gimple stmt
= *stmt_ptr
;
4516 tree
*lhs_p
, *rhs_p
;
4519 if (!gimple_assign_single_p (stmt
))
4522 rhs_p
= gimple_assign_rhs1_ptr (stmt
);
4523 lhs_p
= gimple_assign_lhs_ptr (stmt
);
4525 any
= ipa_modify_expr (rhs_p
, false, adjustments
);
4526 any
|= ipa_modify_expr (lhs_p
, false, adjustments
);
4529 tree new_rhs
= NULL_TREE
;
4531 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p
), TREE_TYPE (*rhs_p
)))
4533 if (TREE_CODE (*rhs_p
) == CONSTRUCTOR
)
4535 /* V_C_Es of constructors can cause trouble (PR 42714). */
4536 if (is_gimple_reg_type (TREE_TYPE (*lhs_p
)))
4537 *rhs_p
= build_zero_cst (TREE_TYPE (*lhs_p
));
4539 *rhs_p
= build_constructor (TREE_TYPE (*lhs_p
),
4543 new_rhs
= fold_build1_loc (gimple_location (stmt
),
4544 VIEW_CONVERT_EXPR
, TREE_TYPE (*lhs_p
),
4547 else if (REFERENCE_CLASS_P (*rhs_p
)
4548 && is_gimple_reg_type (TREE_TYPE (*lhs_p
))
4549 && !is_gimple_reg (*lhs_p
))
4550 /* This can happen when an assignment in between two single field
4551 structures is turned into an assignment in between two pointers to
4552 scalars (PR 42237). */
4557 tree tmp
= force_gimple_operand_gsi (gsi
, new_rhs
, true, NULL_TREE
,
4558 true, GSI_SAME_STMT
);
4560 gimple_assign_set_rhs_from_tree (gsi
, tmp
);
4569 /* Traverse the function body and all modifications as described in
4570 ADJUSTMENTS. Return true iff the CFG has been changed. */
4573 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments
)
4575 bool cfg_changed
= false;
4578 FOR_EACH_BB_FN (bb
, cfun
)
4580 gimple_stmt_iterator gsi
;
4582 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4583 replace_removed_params_ssa_names (gsi_stmt (gsi
), adjustments
);
4585 gsi
= gsi_start_bb (bb
);
4586 while (!gsi_end_p (gsi
))
4588 gimple stmt
= gsi_stmt (gsi
);
4589 bool modified
= false;
4593 switch (gimple_code (stmt
))
4596 t
= gimple_return_retval_ptr (stmt
);
4597 if (*t
!= NULL_TREE
)
4598 modified
|= ipa_modify_expr (t
, true, adjustments
);
4602 modified
|= sra_ipa_modify_assign (&stmt
, &gsi
, adjustments
);
4603 modified
|= replace_removed_params_ssa_names (stmt
, adjustments
);
4607 /* Operands must be processed before the lhs. */
4608 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
4610 t
= gimple_call_arg_ptr (stmt
, i
);
4611 modified
|= ipa_modify_expr (t
, true, adjustments
);
4614 if (gimple_call_lhs (stmt
))
4616 t
= gimple_call_lhs_ptr (stmt
);
4617 modified
|= ipa_modify_expr (t
, false, adjustments
);
4618 modified
|= replace_removed_params_ssa_names (stmt
,
4624 for (i
= 0; i
< gimple_asm_ninputs (stmt
); i
++)
4626 t
= &TREE_VALUE (gimple_asm_input_op (stmt
, i
));
4627 modified
|= ipa_modify_expr (t
, true, adjustments
);
4629 for (i
= 0; i
< gimple_asm_noutputs (stmt
); i
++)
4631 t
= &TREE_VALUE (gimple_asm_output_op (stmt
, i
));
4632 modified
|= ipa_modify_expr (t
, false, adjustments
);
4643 if (maybe_clean_eh_stmt (stmt
)
4644 && gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
4654 /* Call gimple_debug_bind_reset_value on all debug statements describing
4655 gimple register parameters that are being removed or replaced. */
4658 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments
)
4661 gimple_stmt_iterator
*gsip
= NULL
, gsi
;
4663 if (MAY_HAVE_DEBUG_STMTS
&& single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)))
4665 gsi
= gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
4668 len
= adjustments
.length ();
4669 for (i
= 0; i
< len
; i
++)
4671 struct ipa_parm_adjustment
*adj
;
4672 imm_use_iterator ui
;
4673 gimple stmt
, def_temp
;
4674 tree name
, vexpr
, copy
= NULL_TREE
;
4675 use_operand_p use_p
;
4677 adj
= &adjustments
[i
];
4678 if (adj
->op
== IPA_PARM_OP_COPY
|| !is_gimple_reg (adj
->base
))
4680 name
= ssa_default_def (cfun
, adj
->base
);
4683 FOR_EACH_IMM_USE_STMT (stmt
, ui
, name
)
4685 if (gimple_clobber_p (stmt
))
4687 gimple_stmt_iterator cgsi
= gsi_for_stmt (stmt
);
4688 unlink_stmt_vdef (stmt
);
4689 gsi_remove (&cgsi
, true);
4690 release_defs (stmt
);
4693 /* All other users must have been removed by
4694 ipa_sra_modify_function_body. */
4695 gcc_assert (is_gimple_debug (stmt
));
4696 if (vexpr
== NULL
&& gsip
!= NULL
)
4698 gcc_assert (TREE_CODE (adj
->base
) == PARM_DECL
);
4699 vexpr
= make_node (DEBUG_EXPR_DECL
);
4700 def_temp
= gimple_build_debug_source_bind (vexpr
, adj
->base
,
4702 DECL_ARTIFICIAL (vexpr
) = 1;
4703 TREE_TYPE (vexpr
) = TREE_TYPE (name
);
4704 DECL_MODE (vexpr
) = DECL_MODE (adj
->base
);
4705 gsi_insert_before (gsip
, def_temp
, GSI_SAME_STMT
);
4709 FOR_EACH_IMM_USE_ON_STMT (use_p
, ui
)
4710 SET_USE (use_p
, vexpr
);
4713 gimple_debug_bind_reset_value (stmt
);
4716 /* Create a VAR_DECL for debug info purposes. */
4717 if (!DECL_IGNORED_P (adj
->base
))
4719 copy
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
4720 VAR_DECL
, DECL_NAME (adj
->base
),
4721 TREE_TYPE (adj
->base
));
4722 if (DECL_PT_UID_SET_P (adj
->base
))
4723 SET_DECL_PT_UID (copy
, DECL_PT_UID (adj
->base
));
4724 TREE_ADDRESSABLE (copy
) = TREE_ADDRESSABLE (adj
->base
);
4725 TREE_READONLY (copy
) = TREE_READONLY (adj
->base
);
4726 TREE_THIS_VOLATILE (copy
) = TREE_THIS_VOLATILE (adj
->base
);
4727 DECL_GIMPLE_REG_P (copy
) = DECL_GIMPLE_REG_P (adj
->base
);
4728 DECL_ARTIFICIAL (copy
) = DECL_ARTIFICIAL (adj
->base
);
4729 DECL_IGNORED_P (copy
) = DECL_IGNORED_P (adj
->base
);
4730 DECL_ABSTRACT_ORIGIN (copy
) = DECL_ORIGIN (adj
->base
);
4731 DECL_SEEN_IN_BIND_EXPR_P (copy
) = 1;
4732 SET_DECL_RTL (copy
, 0);
4733 TREE_USED (copy
) = 1;
4734 DECL_CONTEXT (copy
) = current_function_decl
;
4735 add_local_decl (cfun
, copy
);
4737 BLOCK_VARS (DECL_INITIAL (current_function_decl
));
4738 BLOCK_VARS (DECL_INITIAL (current_function_decl
)) = copy
;
4740 if (gsip
!= NULL
&& copy
&& target_for_debug_bind (adj
->base
))
4742 gcc_assert (TREE_CODE (adj
->base
) == PARM_DECL
);
4744 def_temp
= gimple_build_debug_bind (copy
, vexpr
, NULL
);
4746 def_temp
= gimple_build_debug_source_bind (copy
, adj
->base
,
4748 gsi_insert_before (gsip
, def_temp
, GSI_SAME_STMT
);
4753 /* Return false iff all callers have at least as many actual arguments as there
4754 are formal parameters in the current function. */
4757 not_all_callers_have_enough_arguments_p (struct cgraph_node
*node
,
4758 void *data ATTRIBUTE_UNUSED
)
4760 struct cgraph_edge
*cs
;
4761 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4762 if (!callsite_has_enough_arguments_p (cs
->call_stmt
))
4768 /* Convert all callers of NODE. */
4771 convert_callers_for_node (struct cgraph_node
*node
,
4774 ipa_parm_adjustment_vec
*adjustments
= (ipa_parm_adjustment_vec
*) data
;
4775 bitmap recomputed_callers
= BITMAP_ALLOC (NULL
);
4776 struct cgraph_edge
*cs
;
4778 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4780 push_cfun (DECL_STRUCT_FUNCTION (cs
->caller
->decl
));
4783 fprintf (dump_file
, "Adjusting call %s/%i -> %s/%i\n",
4784 xstrdup (cs
->caller
->name ()),
4786 xstrdup (cs
->callee
->name ()),
4789 ipa_modify_call_arguments (cs
, cs
->call_stmt
, *adjustments
);
4794 for (cs
= node
->callers
; cs
; cs
= cs
->next_caller
)
4795 if (bitmap_set_bit (recomputed_callers
, cs
->caller
->uid
)
4796 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs
->caller
->decl
)))
4797 compute_inline_parameters (cs
->caller
, true);
4798 BITMAP_FREE (recomputed_callers
);
4803 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4806 convert_callers (struct cgraph_node
*node
, tree old_decl
,
4807 ipa_parm_adjustment_vec adjustments
)
4809 basic_block this_block
;
4811 cgraph_for_node_and_aliases (node
, convert_callers_for_node
,
4812 &adjustments
, false);
4814 if (!encountered_recursive_call
)
4817 FOR_EACH_BB_FN (this_block
, cfun
)
4819 gimple_stmt_iterator gsi
;
4821 for (gsi
= gsi_start_bb (this_block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4823 gimple stmt
= gsi_stmt (gsi
);
4825 if (gimple_code (stmt
) != GIMPLE_CALL
)
4827 call_fndecl
= gimple_call_fndecl (stmt
);
4828 if (call_fndecl
== old_decl
)
4831 fprintf (dump_file
, "Adjusting recursive call");
4832 gimple_call_set_fndecl (stmt
, node
->decl
);
4833 ipa_modify_call_arguments (NULL
, stmt
, adjustments
);
4841 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4842 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4845 modify_function (struct cgraph_node
*node
, ipa_parm_adjustment_vec adjustments
)
4847 struct cgraph_node
*new_node
;
4849 vec
<cgraph_edge_p
> redirect_callers
= collect_callers_of_node (node
);
4851 rebuild_cgraph_edges ();
4852 free_dominance_info (CDI_DOMINATORS
);
4855 new_node
= cgraph_function_versioning (node
, redirect_callers
,
4857 NULL
, false, NULL
, NULL
, "isra");
4858 redirect_callers
.release ();
4860 push_cfun (DECL_STRUCT_FUNCTION (new_node
->decl
));
4861 ipa_modify_formal_parameters (current_function_decl
, adjustments
);
4862 cfg_changed
= ipa_sra_modify_function_body (adjustments
);
4863 sra_ipa_reset_debug_stmts (adjustments
);
4864 convert_callers (new_node
, node
->decl
, adjustments
);
4865 cgraph_make_node_local (new_node
);
4869 /* If NODE has a caller, return true. */
4872 has_caller_p (struct cgraph_node
*node
, void *data ATTRIBUTE_UNUSED
)
4879 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4880 attributes, return true otherwise. NODE is the cgraph node of the current
4884 ipa_sra_preliminary_function_checks (struct cgraph_node
*node
)
4886 if (!cgraph_node_can_be_local_p (node
))
4889 fprintf (dump_file
, "Function not local to this compilation unit.\n");
4893 if (!node
->local
.can_change_signature
)
4896 fprintf (dump_file
, "Function can not change signature.\n");
4900 if (!tree_versionable_function_p (node
->decl
))
4903 fprintf (dump_file
, "Function is not versionable.\n");
4907 if (!opt_for_fn (node
->decl
, optimize
)
4908 || !opt_for_fn (node
->decl
, flag_ipa_sra
))
4911 fprintf (dump_file
, "Function not optimized.\n");
4915 if (DECL_VIRTUAL_P (current_function_decl
))
4918 fprintf (dump_file
, "Function is a virtual method.\n");
4922 if ((DECL_COMDAT (node
->decl
) || DECL_EXTERNAL (node
->decl
))
4923 && inline_summary (node
)->size
>= MAX_INLINE_INSNS_AUTO
)
4926 fprintf (dump_file
, "Function too big to be made truly local.\n");
4930 if (!cgraph_for_node_and_aliases (node
, has_caller_p
, NULL
, true))
4934 "Function has no callers in this compilation unit.\n");
4941 fprintf (dump_file
, "Function uses stdarg. \n");
4945 if (TYPE_ATTRIBUTES (TREE_TYPE (node
->decl
)))
4951 /* Perform early interprocedural SRA. */
4954 ipa_early_sra (void)
4956 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
4957 ipa_parm_adjustment_vec adjustments
;
4960 if (!ipa_sra_preliminary_function_checks (node
))
4964 sra_mode
= SRA_MODE_EARLY_IPA
;
4966 if (!find_param_candidates ())
4969 fprintf (dump_file
, "Function has no IPA-SRA candidates.\n");
4973 if (cgraph_for_node_and_aliases (node
, not_all_callers_have_enough_arguments_p
,
4977 fprintf (dump_file
, "There are callers with insufficient number of "
4982 bb_dereferences
= XCNEWVEC (HOST_WIDE_INT
,
4984 * last_basic_block_for_fn (cfun
));
4985 final_bbs
= BITMAP_ALLOC (NULL
);
4988 if (encountered_apply_args
)
4991 fprintf (dump_file
, "Function calls __builtin_apply_args().\n");
4995 if (encountered_unchangable_recursive_call
)
4998 fprintf (dump_file
, "Function calls itself with insufficient "
4999 "number of arguments.\n");
5003 adjustments
= analyze_all_param_acesses ();
5004 if (!adjustments
.exists ())
5007 ipa_dump_param_adjustments (dump_file
, adjustments
, current_function_decl
);
5009 if (modify_function (node
, adjustments
))
5010 ret
= TODO_update_ssa
| TODO_cleanup_cfg
;
5012 ret
= TODO_update_ssa
;
5013 adjustments
.release ();
5015 statistics_counter_event (cfun
, "Unused parameters deleted",
5016 sra_stats
.deleted_unused_parameters
);
5017 statistics_counter_event (cfun
, "Scalar parameters converted to by-value",
5018 sra_stats
.scalar_by_ref_to_by_val
);
5019 statistics_counter_event (cfun
, "Aggregate parameters broken up",
5020 sra_stats
.aggregate_params_reduced
);
5021 statistics_counter_event (cfun
, "Aggregate parameter components created",
5022 sra_stats
.param_reductions_created
);
5025 BITMAP_FREE (final_bbs
);
5026 free (bb_dereferences
);
5028 sra_deinitialize ();
5032 /* Return if early ipa sra shall be performed. */
5034 ipa_early_sra_gate (void)
5036 return flag_ipa_sra
&& dbg_cnt (eipa_sra
);
5041 const pass_data pass_data_early_ipa_sra
=
5043 GIMPLE_PASS
, /* type */
5044 "eipa_sra", /* name */
5045 OPTGROUP_NONE
, /* optinfo_flags */
5046 true, /* has_gate */
5047 true, /* has_execute */
5048 TV_IPA_SRA
, /* tv_id */
5049 0, /* properties_required */
5050 0, /* properties_provided */
5051 0, /* properties_destroyed */
5052 0, /* todo_flags_start */
5053 TODO_dump_symtab
, /* todo_flags_finish */
5056 class pass_early_ipa_sra
: public gimple_opt_pass
5059 pass_early_ipa_sra (gcc::context
*ctxt
)
5060 : gimple_opt_pass (pass_data_early_ipa_sra
, ctxt
)
5063 /* opt_pass methods: */
5064 bool gate () { return ipa_early_sra_gate (); }
5065 unsigned int execute () { return ipa_early_sra (); }
5067 }; // class pass_early_ipa_sra
5072 make_pass_early_ipa_sra (gcc::context
*ctxt
)
5074 return new pass_early_ipa_sra (ctxt
);