Set symbol versions and fix symbol visibility. Add some extra space
[official-gcc.git] / gcc / ifcvt.c
blob9aff583ae45835e6afddbe9a8dff51df8462545c
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "output.h"
37 #include "optabs.h"
38 #include "diagnostic-core.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static basic_block block_fallthru (basic_block);
92 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
93 static rtx cond_exec_get_condition (rtx);
94 static rtx noce_get_condition (rtx, rtx *, bool);
95 static int noce_operand_ok (const_rtx);
96 static void merge_if_block (ce_if_block_t *);
97 static int find_cond_trap (basic_block, edge, edge);
98 static basic_block find_if_header (basic_block, int);
99 static int block_jumps_and_fallthru_p (basic_block, basic_block);
100 static int noce_find_if_block (basic_block, edge, edge, int);
101 static int cond_exec_find_if_block (ce_if_block_t *);
102 static int find_if_case_1 (basic_block, edge, edge);
103 static int find_if_case_2 (basic_block, edge, edge);
104 static int find_memory (rtx *, void *);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 basic_block, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
118 while (1)
120 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated. */
135 static bool
136 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
138 int count = 0;
139 rtx insn = BB_HEAD (bb);
140 bool speed = optimize_bb_for_speed_p (bb);
142 while (1)
144 if (NONJUMP_INSN_P (insn))
146 int cost = insn_rtx_cost (PATTERN (insn), speed);
147 if (cost == 0)
148 return false;
150 /* If this instruction is the load or set of a "stack" register,
151 such as a floating point register on x87, then the cost of
152 speculatively executing this insn may need to include
153 the additional cost of popping its result off of the
154 register stack. Unfortunately, correctly recognizing and
155 accounting for this additional overhead is tricky, so for
156 now we simply prohibit such speculative execution. */
157 #ifdef STACK_REGS
159 rtx set = single_set (insn);
160 if (set && STACK_REG_P (SET_DEST (set)))
161 return false;
163 #endif
165 count += cost;
166 if (count >= max_cost)
167 return false;
169 else if (CALL_P (insn))
170 return false;
172 if (insn == BB_END (bb))
173 break;
174 insn = NEXT_INSN (insn);
177 return true;
180 /* Return the first non-jump active insn in the basic block. */
182 static rtx
183 first_active_insn (basic_block bb)
185 rtx insn = BB_HEAD (bb);
187 if (LABEL_P (insn))
189 if (insn == BB_END (bb))
190 return NULL_RTX;
191 insn = NEXT_INSN (insn);
194 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
196 if (insn == BB_END (bb))
197 return NULL_RTX;
198 insn = NEXT_INSN (insn);
201 if (JUMP_P (insn))
202 return NULL_RTX;
204 return insn;
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
209 static rtx
210 last_active_insn (basic_block bb, int skip_use_p)
212 rtx insn = BB_END (bb);
213 rtx head = BB_HEAD (bb);
215 while (NOTE_P (insn)
216 || JUMP_P (insn)
217 || DEBUG_INSN_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
227 if (LABEL_P (insn))
228 return NULL_RTX;
230 return insn;
233 /* Return the basic block reached by falling though the basic block BB. */
235 static basic_block
236 block_fallthru (basic_block bb)
238 edge e;
239 edge_iterator ei;
241 FOR_EACH_EDGE (e, ei, bb->succs)
242 if (e->flags & EDGE_FALLTHRU)
243 break;
245 return (e) ? e->dest : NULL_BLOCK;
248 /* Go through a bunch of insns, converting them to conditional
249 execution format if possible. Return TRUE if all of the non-note
250 insns were processed. */
252 static int
253 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
254 /* if block information */rtx start,
255 /* first insn to look at */rtx end,
256 /* last insn to look at */rtx test,
257 /* conditional execution test */rtx prob_val,
258 /* probability of branch taken. */int mod_ok)
260 int must_be_last = FALSE;
261 rtx insn;
262 rtx xtest;
263 rtx pattern;
265 if (!start || !end)
266 return FALSE;
268 for (insn = start; ; insn = NEXT_INSN (insn))
270 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
271 goto insn_done;
273 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275 /* Remove USE insns that get in the way. */
276 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 /* ??? Ug. Actually unlinking the thing is problematic,
279 given what we'd have to coordinate with our callers. */
280 SET_INSN_DELETED (insn);
281 goto insn_done;
284 /* Last insn wasn't last? */
285 if (must_be_last)
286 return FALSE;
288 if (modified_in_p (test, insn))
290 if (!mod_ok)
291 return FALSE;
292 must_be_last = TRUE;
295 /* Now build the conditional form of the instruction. */
296 pattern = PATTERN (insn);
297 xtest = copy_rtx (test);
299 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
300 two conditions. */
301 if (GET_CODE (pattern) == COND_EXEC)
303 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
304 return FALSE;
306 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
307 COND_EXEC_TEST (pattern));
308 pattern = COND_EXEC_CODE (pattern);
311 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313 /* If the machine needs to modify the insn being conditionally executed,
314 say for example to force a constant integer operand into a temp
315 register, do so here. */
316 #ifdef IFCVT_MODIFY_INSN
317 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
318 if (! pattern)
319 return FALSE;
320 #endif
322 validate_change (insn, &PATTERN (insn), pattern, 1);
324 if (CALL_P (insn) && prob_val)
325 validate_change (insn, &REG_NOTES (insn),
326 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
327 REG_NOTES (insn)), 1);
329 insn_done:
330 if (insn == end)
331 break;
334 return TRUE;
337 /* Return the condition for a jump. Do not do any special processing. */
339 static rtx
340 cond_exec_get_condition (rtx jump)
342 rtx test_if, cond;
344 if (any_condjump_p (jump))
345 test_if = SET_SRC (pc_set (jump));
346 else
347 return NULL_RTX;
348 cond = XEXP (test_if, 0);
350 /* If this branches to JUMP_LABEL when the condition is false,
351 reverse the condition. */
352 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
353 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 enum rtx_code rev = reversed_comparison_code (cond, jump);
356 if (rev == UNKNOWN)
357 return NULL_RTX;
359 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
360 XEXP (cond, 1));
363 return cond;
366 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
367 to conditional execution. Return TRUE if we were successful at
368 converting the block. */
370 static int
371 cond_exec_process_if_block (ce_if_block_t * ce_info,
372 /* if block information */int do_multiple_p)
374 basic_block test_bb = ce_info->test_bb; /* last test block */
375 basic_block then_bb = ce_info->then_bb; /* THEN */
376 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
377 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
378 rtx then_start; /* first insn in THEN block */
379 rtx then_end; /* last insn + 1 in THEN block */
380 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
381 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
382 int max; /* max # of insns to convert. */
383 int then_mod_ok; /* whether conditional mods are ok in THEN */
384 rtx true_expr; /* test for else block insns */
385 rtx false_expr; /* test for then block insns */
386 rtx true_prob_val; /* probability of else block */
387 rtx false_prob_val; /* probability of then block */
388 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
389 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
390 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
391 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
392 int then_n_insns, else_n_insns, n_insns;
393 enum rtx_code false_code;
395 /* If test is comprised of && or || elements, and we've failed at handling
396 all of them together, just use the last test if it is the special case of
397 && elements without an ELSE block. */
398 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
400 if (else_bb || ! ce_info->and_and_p)
401 return FALSE;
403 ce_info->test_bb = test_bb = ce_info->last_test_bb;
404 ce_info->num_multiple_test_blocks = 0;
405 ce_info->num_and_and_blocks = 0;
406 ce_info->num_or_or_blocks = 0;
409 /* Find the conditional jump to the ELSE or JOIN part, and isolate
410 the test. */
411 test_expr = cond_exec_get_condition (BB_END (test_bb));
412 if (! test_expr)
413 return FALSE;
415 /* If the conditional jump is more than just a conditional jump,
416 then we can not do conditional execution conversion on this block. */
417 if (! onlyjump_p (BB_END (test_bb)))
418 return FALSE;
420 /* Collect the bounds of where we're to search, skipping any labels, jumps
421 and notes at the beginning and end of the block. Then count the total
422 number of insns and see if it is small enough to convert. */
423 then_start = first_active_insn (then_bb);
424 then_end = last_active_insn (then_bb, TRUE);
425 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
426 n_insns = then_n_insns;
427 max = MAX_CONDITIONAL_EXECUTE;
429 if (else_bb)
431 int n_matching;
433 max *= 2;
434 else_start = first_active_insn (else_bb);
435 else_end = last_active_insn (else_bb, TRUE);
436 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
437 n_insns += else_n_insns;
439 /* Look for matching sequences at the head and tail of the two blocks,
440 and limit the range of insns to be converted if possible. */
441 n_matching = flow_find_cross_jump (then_bb, else_bb,
442 &then_first_tail, &else_first_tail);
443 if (then_first_tail == BB_HEAD (then_bb))
444 then_start = then_end = NULL_RTX;
445 if (else_first_tail == BB_HEAD (else_bb))
446 else_start = else_end = NULL_RTX;
448 if (n_matching > 0)
450 if (then_end)
451 then_end = prev_active_insn (then_first_tail);
452 if (else_end)
453 else_end = prev_active_insn (else_first_tail);
454 n_insns -= 2 * n_matching;
457 if (then_start && else_start)
459 int longest_match = MIN (then_n_insns - n_matching,
460 else_n_insns - n_matching);
461 n_matching
462 = flow_find_head_matching_sequence (then_bb, else_bb,
463 &then_last_head,
464 &else_last_head,
465 longest_match);
467 if (n_matching > 0)
469 rtx insn;
471 /* We won't pass the insns in the head sequence to
472 cond_exec_process_insns, so we need to test them here
473 to make sure that they don't clobber the condition. */
474 for (insn = BB_HEAD (then_bb);
475 insn != NEXT_INSN (then_last_head);
476 insn = NEXT_INSN (insn))
477 if (!LABEL_P (insn) && !NOTE_P (insn)
478 && !DEBUG_INSN_P (insn)
479 && modified_in_p (test_expr, insn))
480 return FALSE;
483 if (then_last_head == then_end)
484 then_start = then_end = NULL_RTX;
485 if (else_last_head == else_end)
486 else_start = else_end = NULL_RTX;
488 if (n_matching > 0)
490 if (then_start)
491 then_start = next_active_insn (then_last_head);
492 if (else_start)
493 else_start = next_active_insn (else_last_head);
494 n_insns -= 2 * n_matching;
499 if (n_insns > max)
500 return FALSE;
502 /* Map test_expr/test_jump into the appropriate MD tests to use on
503 the conditionally executed code. */
505 true_expr = test_expr;
507 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
508 if (false_code != UNKNOWN)
509 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
510 XEXP (true_expr, 0), XEXP (true_expr, 1));
511 else
512 false_expr = NULL_RTX;
514 #ifdef IFCVT_MODIFY_TESTS
515 /* If the machine description needs to modify the tests, such as setting a
516 conditional execution register from a comparison, it can do so here. */
517 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
519 /* See if the conversion failed. */
520 if (!true_expr || !false_expr)
521 goto fail;
522 #endif
524 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
525 if (true_prob_val)
527 true_prob_val = XEXP (true_prob_val, 0);
528 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
530 else
531 false_prob_val = NULL_RTX;
533 /* If we have && or || tests, do them here. These tests are in the adjacent
534 blocks after the first block containing the test. */
535 if (ce_info->num_multiple_test_blocks > 0)
537 basic_block bb = test_bb;
538 basic_block last_test_bb = ce_info->last_test_bb;
540 if (! false_expr)
541 goto fail;
545 rtx start, end;
546 rtx t, f;
547 enum rtx_code f_code;
549 bb = block_fallthru (bb);
550 start = first_active_insn (bb);
551 end = last_active_insn (bb, TRUE);
552 if (start
553 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
554 false_prob_val, FALSE))
555 goto fail;
557 /* If the conditional jump is more than just a conditional jump, then
558 we can not do conditional execution conversion on this block. */
559 if (! onlyjump_p (BB_END (bb)))
560 goto fail;
562 /* Find the conditional jump and isolate the test. */
563 t = cond_exec_get_condition (BB_END (bb));
564 if (! t)
565 goto fail;
567 f_code = reversed_comparison_code (t, BB_END (bb));
568 if (f_code == UNKNOWN)
569 goto fail;
571 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
572 if (ce_info->and_and_p)
574 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
575 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
577 else
579 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
580 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
583 /* If the machine description needs to modify the tests, such as
584 setting a conditional execution register from a comparison, it can
585 do so here. */
586 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
587 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
589 /* See if the conversion failed. */
590 if (!t || !f)
591 goto fail;
592 #endif
594 true_expr = t;
595 false_expr = f;
597 while (bb != last_test_bb);
600 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
601 on then THEN block. */
602 then_mod_ok = (else_bb == NULL_BLOCK);
604 /* Go through the THEN and ELSE blocks converting the insns if possible
605 to conditional execution. */
607 if (then_end
608 && (! false_expr
609 || ! cond_exec_process_insns (ce_info, then_start, then_end,
610 false_expr, false_prob_val,
611 then_mod_ok)))
612 goto fail;
614 if (else_bb && else_end
615 && ! cond_exec_process_insns (ce_info, else_start, else_end,
616 true_expr, true_prob_val, TRUE))
617 goto fail;
619 /* If we cannot apply the changes, fail. Do not go through the normal fail
620 processing, since apply_change_group will call cancel_changes. */
621 if (! apply_change_group ())
623 #ifdef IFCVT_MODIFY_CANCEL
624 /* Cancel any machine dependent changes. */
625 IFCVT_MODIFY_CANCEL (ce_info);
626 #endif
627 return FALSE;
630 #ifdef IFCVT_MODIFY_FINAL
631 /* Do any machine dependent final modifications. */
632 IFCVT_MODIFY_FINAL (ce_info);
633 #endif
635 /* Conversion succeeded. */
636 if (dump_file)
637 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
638 n_insns, (n_insns == 1) ? " was" : "s were");
640 /* Merge the blocks! If we had matching sequences, make sure to delete one
641 copy at the appropriate location first: delete the copy in the THEN branch
642 for a tail sequence so that the remaining one is executed last for both
643 branches, and delete the copy in the ELSE branch for a head sequence so
644 that the remaining one is executed first for both branches. */
645 if (then_first_tail)
647 rtx from = then_first_tail;
648 if (!INSN_P (from))
649 from = next_active_insn (from);
650 delete_insn_chain (from, BB_END (then_bb), false);
652 if (else_last_head)
653 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
655 merge_if_block (ce_info);
656 cond_exec_changed_p = TRUE;
657 return TRUE;
659 fail:
660 #ifdef IFCVT_MODIFY_CANCEL
661 /* Cancel any machine dependent changes. */
662 IFCVT_MODIFY_CANCEL (ce_info);
663 #endif
665 cancel_changes (0);
666 return FALSE;
669 /* Used by noce_process_if_block to communicate with its subroutines.
671 The subroutines know that A and B may be evaluated freely. They
672 know that X is a register. They should insert new instructions
673 before cond_earliest. */
675 struct noce_if_info
677 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
678 basic_block test_bb, then_bb, else_bb, join_bb;
680 /* The jump that ends TEST_BB. */
681 rtx jump;
683 /* The jump condition. */
684 rtx cond;
686 /* New insns should be inserted before this one. */
687 rtx cond_earliest;
689 /* Insns in the THEN and ELSE block. There is always just this
690 one insns in those blocks. The insns are single_set insns.
691 If there was no ELSE block, INSN_B is the last insn before
692 COND_EARLIEST, or NULL_RTX. In the former case, the insn
693 operands are still valid, as if INSN_B was moved down below
694 the jump. */
695 rtx insn_a, insn_b;
697 /* The SET_SRC of INSN_A and INSN_B. */
698 rtx a, b;
700 /* The SET_DEST of INSN_A. */
701 rtx x;
703 /* True if this if block is not canonical. In the canonical form of
704 if blocks, the THEN_BB is the block reached via the fallthru edge
705 from TEST_BB. For the noce transformations, we allow the symmetric
706 form as well. */
707 bool then_else_reversed;
709 /* Estimated cost of the particular branch instruction. */
710 int branch_cost;
713 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
714 static int noce_try_move (struct noce_if_info *);
715 static int noce_try_store_flag (struct noce_if_info *);
716 static int noce_try_addcc (struct noce_if_info *);
717 static int noce_try_store_flag_constants (struct noce_if_info *);
718 static int noce_try_store_flag_mask (struct noce_if_info *);
719 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
720 rtx, rtx, rtx);
721 static int noce_try_cmove (struct noce_if_info *);
722 static int noce_try_cmove_arith (struct noce_if_info *);
723 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
724 static int noce_try_minmax (struct noce_if_info *);
725 static int noce_try_abs (struct noce_if_info *);
726 static int noce_try_sign_mask (struct noce_if_info *);
728 /* Helper function for noce_try_store_flag*. */
730 static rtx
731 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
732 int normalize)
734 rtx cond = if_info->cond;
735 int cond_complex;
736 enum rtx_code code;
738 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
739 || ! general_operand (XEXP (cond, 1), VOIDmode));
741 /* If earliest == jump, or when the condition is complex, try to
742 build the store_flag insn directly. */
744 if (cond_complex)
746 rtx set = pc_set (if_info->jump);
747 cond = XEXP (SET_SRC (set), 0);
748 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
749 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
750 reversep = !reversep;
751 if (if_info->then_else_reversed)
752 reversep = !reversep;
755 if (reversep)
756 code = reversed_comparison_code (cond, if_info->jump);
757 else
758 code = GET_CODE (cond);
760 if ((if_info->cond_earliest == if_info->jump || cond_complex)
761 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
763 rtx tmp;
765 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
766 XEXP (cond, 1));
767 tmp = gen_rtx_SET (VOIDmode, x, tmp);
769 start_sequence ();
770 tmp = emit_insn (tmp);
772 if (recog_memoized (tmp) >= 0)
774 tmp = get_insns ();
775 end_sequence ();
776 emit_insn (tmp);
778 if_info->cond_earliest = if_info->jump;
780 return x;
783 end_sequence ();
786 /* Don't even try if the comparison operands or the mode of X are weird. */
787 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
788 return NULL_RTX;
790 return emit_store_flag (x, code, XEXP (cond, 0),
791 XEXP (cond, 1), VOIDmode,
792 (code == LTU || code == LEU
793 || code == GEU || code == GTU), normalize);
796 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
797 X is the destination/target and Y is the value to copy. */
799 static void
800 noce_emit_move_insn (rtx x, rtx y)
802 enum machine_mode outmode;
803 rtx outer, inner;
804 int bitpos;
806 if (GET_CODE (x) != STRICT_LOW_PART)
808 rtx seq, insn, target;
809 optab ot;
811 start_sequence ();
812 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
813 otherwise construct a suitable SET pattern ourselves. */
814 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
815 ? emit_move_insn (x, y)
816 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
817 seq = get_insns ();
818 end_sequence ();
820 if (recog_memoized (insn) <= 0)
822 if (GET_CODE (x) == ZERO_EXTRACT)
824 rtx op = XEXP (x, 0);
825 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
826 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
828 /* store_bit_field expects START to be relative to
829 BYTES_BIG_ENDIAN and adjusts this value for machines with
830 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
831 invoke store_bit_field again it is necessary to have the START
832 value from the first call. */
833 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
835 if (MEM_P (op))
836 start = BITS_PER_UNIT - start - size;
837 else
839 gcc_assert (REG_P (op));
840 start = BITS_PER_WORD - start - size;
844 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
845 store_bit_field (op, size, start, GET_MODE (x), y);
846 return;
849 switch (GET_RTX_CLASS (GET_CODE (y)))
851 case RTX_UNARY:
852 ot = code_to_optab[GET_CODE (y)];
853 if (ot)
855 start_sequence ();
856 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
857 if (target != NULL_RTX)
859 if (target != x)
860 emit_move_insn (x, target);
861 seq = get_insns ();
863 end_sequence ();
865 break;
867 case RTX_BIN_ARITH:
868 case RTX_COMM_ARITH:
869 ot = code_to_optab[GET_CODE (y)];
870 if (ot)
872 start_sequence ();
873 target = expand_binop (GET_MODE (y), ot,
874 XEXP (y, 0), XEXP (y, 1),
875 x, 0, OPTAB_DIRECT);
876 if (target != NULL_RTX)
878 if (target != x)
879 emit_move_insn (x, target);
880 seq = get_insns ();
882 end_sequence ();
884 break;
886 default:
887 break;
891 emit_insn (seq);
892 return;
895 outer = XEXP (x, 0);
896 inner = XEXP (outer, 0);
897 outmode = GET_MODE (outer);
898 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
899 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
902 /* Return sequence of instructions generated by if conversion. This
903 function calls end_sequence() to end the current stream, ensures
904 that are instructions are unshared, recognizable non-jump insns.
905 On failure, this function returns a NULL_RTX. */
907 static rtx
908 end_ifcvt_sequence (struct noce_if_info *if_info)
910 rtx insn;
911 rtx seq = get_insns ();
913 set_used_flags (if_info->x);
914 set_used_flags (if_info->cond);
915 unshare_all_rtl_in_chain (seq);
916 end_sequence ();
918 /* Make sure that all of the instructions emitted are recognizable,
919 and that we haven't introduced a new jump instruction.
920 As an exercise for the reader, build a general mechanism that
921 allows proper placement of required clobbers. */
922 for (insn = seq; insn; insn = NEXT_INSN (insn))
923 if (JUMP_P (insn)
924 || recog_memoized (insn) == -1)
925 return NULL_RTX;
927 return seq;
930 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
931 "if (a == b) x = a; else x = b" into "x = b". */
933 static int
934 noce_try_move (struct noce_if_info *if_info)
936 rtx cond = if_info->cond;
937 enum rtx_code code = GET_CODE (cond);
938 rtx y, seq;
940 if (code != NE && code != EQ)
941 return FALSE;
943 /* This optimization isn't valid if either A or B could be a NaN
944 or a signed zero. */
945 if (HONOR_NANS (GET_MODE (if_info->x))
946 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
947 return FALSE;
949 /* Check whether the operands of the comparison are A and in
950 either order. */
951 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
952 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
953 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
954 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
956 y = (code == EQ) ? if_info->a : if_info->b;
958 /* Avoid generating the move if the source is the destination. */
959 if (! rtx_equal_p (if_info->x, y))
961 start_sequence ();
962 noce_emit_move_insn (if_info->x, y);
963 seq = end_ifcvt_sequence (if_info);
964 if (!seq)
965 return FALSE;
967 emit_insn_before_setloc (seq, if_info->jump,
968 INSN_LOCATOR (if_info->insn_a));
970 return TRUE;
972 return FALSE;
975 /* Convert "if (test) x = 1; else x = 0".
977 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
978 tried in noce_try_store_flag_constants after noce_try_cmove has had
979 a go at the conversion. */
981 static int
982 noce_try_store_flag (struct noce_if_info *if_info)
984 int reversep;
985 rtx target, seq;
987 if (CONST_INT_P (if_info->b)
988 && INTVAL (if_info->b) == STORE_FLAG_VALUE
989 && if_info->a == const0_rtx)
990 reversep = 0;
991 else if (if_info->b == const0_rtx
992 && CONST_INT_P (if_info->a)
993 && INTVAL (if_info->a) == STORE_FLAG_VALUE
994 && (reversed_comparison_code (if_info->cond, if_info->jump)
995 != UNKNOWN))
996 reversep = 1;
997 else
998 return FALSE;
1000 start_sequence ();
1002 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1003 if (target)
1005 if (target != if_info->x)
1006 noce_emit_move_insn (if_info->x, target);
1008 seq = end_ifcvt_sequence (if_info);
1009 if (! seq)
1010 return FALSE;
1012 emit_insn_before_setloc (seq, if_info->jump,
1013 INSN_LOCATOR (if_info->insn_a));
1014 return TRUE;
1016 else
1018 end_sequence ();
1019 return FALSE;
1023 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1025 static int
1026 noce_try_store_flag_constants (struct noce_if_info *if_info)
1028 rtx target, seq;
1029 int reversep;
1030 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1031 int normalize, can_reverse;
1032 enum machine_mode mode;
1034 if (CONST_INT_P (if_info->a)
1035 && CONST_INT_P (if_info->b))
1037 mode = GET_MODE (if_info->x);
1038 ifalse = INTVAL (if_info->a);
1039 itrue = INTVAL (if_info->b);
1041 /* Make sure we can represent the difference between the two values. */
1042 if ((itrue - ifalse > 0)
1043 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1044 return FALSE;
1046 diff = trunc_int_for_mode (itrue - ifalse, mode);
1048 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1049 != UNKNOWN);
1051 reversep = 0;
1052 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1053 normalize = 0;
1054 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1055 && (STORE_FLAG_VALUE == 1
1056 || if_info->branch_cost >= 2))
1057 normalize = 1;
1058 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1059 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1060 normalize = 1, reversep = 1;
1061 else if (itrue == -1
1062 && (STORE_FLAG_VALUE == -1
1063 || if_info->branch_cost >= 2))
1064 normalize = -1;
1065 else if (ifalse == -1 && can_reverse
1066 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1067 normalize = -1, reversep = 1;
1068 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1069 || if_info->branch_cost >= 3)
1070 normalize = -1;
1071 else
1072 return FALSE;
1074 if (reversep)
1076 tmp = itrue; itrue = ifalse; ifalse = tmp;
1077 diff = trunc_int_for_mode (-diff, mode);
1080 start_sequence ();
1081 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1082 if (! target)
1084 end_sequence ();
1085 return FALSE;
1088 /* if (test) x = 3; else x = 4;
1089 => x = 3 + (test == 0); */
1090 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1092 target = expand_simple_binop (mode,
1093 (diff == STORE_FLAG_VALUE
1094 ? PLUS : MINUS),
1095 GEN_INT (ifalse), target, if_info->x, 0,
1096 OPTAB_WIDEN);
1099 /* if (test) x = 8; else x = 0;
1100 => x = (test != 0) << 3; */
1101 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1103 target = expand_simple_binop (mode, ASHIFT,
1104 target, GEN_INT (tmp), if_info->x, 0,
1105 OPTAB_WIDEN);
1108 /* if (test) x = -1; else x = b;
1109 => x = -(test != 0) | b; */
1110 else if (itrue == -1)
1112 target = expand_simple_binop (mode, IOR,
1113 target, GEN_INT (ifalse), if_info->x, 0,
1114 OPTAB_WIDEN);
1117 /* if (test) x = a; else x = b;
1118 => x = (-(test != 0) & (b - a)) + a; */
1119 else
1121 target = expand_simple_binop (mode, AND,
1122 target, GEN_INT (diff), if_info->x, 0,
1123 OPTAB_WIDEN);
1124 if (target)
1125 target = expand_simple_binop (mode, PLUS,
1126 target, GEN_INT (ifalse),
1127 if_info->x, 0, OPTAB_WIDEN);
1130 if (! target)
1132 end_sequence ();
1133 return FALSE;
1136 if (target != if_info->x)
1137 noce_emit_move_insn (if_info->x, target);
1139 seq = end_ifcvt_sequence (if_info);
1140 if (!seq)
1141 return FALSE;
1143 emit_insn_before_setloc (seq, if_info->jump,
1144 INSN_LOCATOR (if_info->insn_a));
1145 return TRUE;
1148 return FALSE;
1151 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1152 similarly for "foo--". */
1154 static int
1155 noce_try_addcc (struct noce_if_info *if_info)
1157 rtx target, seq;
1158 int subtract, normalize;
1160 if (GET_CODE (if_info->a) == PLUS
1161 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1162 && (reversed_comparison_code (if_info->cond, if_info->jump)
1163 != UNKNOWN))
1165 rtx cond = if_info->cond;
1166 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1168 /* First try to use addcc pattern. */
1169 if (general_operand (XEXP (cond, 0), VOIDmode)
1170 && general_operand (XEXP (cond, 1), VOIDmode))
1172 start_sequence ();
1173 target = emit_conditional_add (if_info->x, code,
1174 XEXP (cond, 0),
1175 XEXP (cond, 1),
1176 VOIDmode,
1177 if_info->b,
1178 XEXP (if_info->a, 1),
1179 GET_MODE (if_info->x),
1180 (code == LTU || code == GEU
1181 || code == LEU || code == GTU));
1182 if (target)
1184 if (target != if_info->x)
1185 noce_emit_move_insn (if_info->x, target);
1187 seq = end_ifcvt_sequence (if_info);
1188 if (!seq)
1189 return FALSE;
1191 emit_insn_before_setloc (seq, if_info->jump,
1192 INSN_LOCATOR (if_info->insn_a));
1193 return TRUE;
1195 end_sequence ();
1198 /* If that fails, construct conditional increment or decrement using
1199 setcc. */
1200 if (if_info->branch_cost >= 2
1201 && (XEXP (if_info->a, 1) == const1_rtx
1202 || XEXP (if_info->a, 1) == constm1_rtx))
1204 start_sequence ();
1205 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1206 subtract = 0, normalize = 0;
1207 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1208 subtract = 1, normalize = 0;
1209 else
1210 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1213 target = noce_emit_store_flag (if_info,
1214 gen_reg_rtx (GET_MODE (if_info->x)),
1215 1, normalize);
1217 if (target)
1218 target = expand_simple_binop (GET_MODE (if_info->x),
1219 subtract ? MINUS : PLUS,
1220 if_info->b, target, if_info->x,
1221 0, OPTAB_WIDEN);
1222 if (target)
1224 if (target != if_info->x)
1225 noce_emit_move_insn (if_info->x, target);
1227 seq = end_ifcvt_sequence (if_info);
1228 if (!seq)
1229 return FALSE;
1231 emit_insn_before_setloc (seq, if_info->jump,
1232 INSN_LOCATOR (if_info->insn_a));
1233 return TRUE;
1235 end_sequence ();
1239 return FALSE;
1242 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1244 static int
1245 noce_try_store_flag_mask (struct noce_if_info *if_info)
1247 rtx target, seq;
1248 int reversep;
1250 reversep = 0;
1251 if ((if_info->branch_cost >= 2
1252 || STORE_FLAG_VALUE == -1)
1253 && ((if_info->a == const0_rtx
1254 && rtx_equal_p (if_info->b, if_info->x))
1255 || ((reversep = (reversed_comparison_code (if_info->cond,
1256 if_info->jump)
1257 != UNKNOWN))
1258 && if_info->b == const0_rtx
1259 && rtx_equal_p (if_info->a, if_info->x))))
1261 start_sequence ();
1262 target = noce_emit_store_flag (if_info,
1263 gen_reg_rtx (GET_MODE (if_info->x)),
1264 reversep, -1);
1265 if (target)
1266 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1267 if_info->x,
1268 target, if_info->x, 0,
1269 OPTAB_WIDEN);
1271 if (target)
1273 if (target != if_info->x)
1274 noce_emit_move_insn (if_info->x, target);
1276 seq = end_ifcvt_sequence (if_info);
1277 if (!seq)
1278 return FALSE;
1280 emit_insn_before_setloc (seq, if_info->jump,
1281 INSN_LOCATOR (if_info->insn_a));
1282 return TRUE;
1285 end_sequence ();
1288 return FALSE;
1291 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1293 static rtx
1294 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1295 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1297 /* If earliest == jump, try to build the cmove insn directly.
1298 This is helpful when combine has created some complex condition
1299 (like for alpha's cmovlbs) that we can't hope to regenerate
1300 through the normal interface. */
1302 if (if_info->cond_earliest == if_info->jump)
1304 rtx tmp;
1306 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1307 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1308 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1310 start_sequence ();
1311 tmp = emit_insn (tmp);
1313 if (recog_memoized (tmp) >= 0)
1315 tmp = get_insns ();
1316 end_sequence ();
1317 emit_insn (tmp);
1319 return x;
1322 end_sequence ();
1325 /* Don't even try if the comparison operands are weird. */
1326 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1327 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1328 return NULL_RTX;
1330 #if HAVE_conditional_move
1331 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1332 vtrue, vfalse, GET_MODE (x),
1333 (code == LTU || code == GEU
1334 || code == LEU || code == GTU));
1335 #else
1336 /* We'll never get here, as noce_process_if_block doesn't call the
1337 functions involved. Ifdef code, however, should be discouraged
1338 because it leads to typos in the code not selected. However,
1339 emit_conditional_move won't exist either. */
1340 return NULL_RTX;
1341 #endif
1344 /* Try only simple constants and registers here. More complex cases
1345 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1346 has had a go at it. */
1348 static int
1349 noce_try_cmove (struct noce_if_info *if_info)
1351 enum rtx_code code;
1352 rtx target, seq;
1354 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1355 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1357 start_sequence ();
1359 code = GET_CODE (if_info->cond);
1360 target = noce_emit_cmove (if_info, if_info->x, code,
1361 XEXP (if_info->cond, 0),
1362 XEXP (if_info->cond, 1),
1363 if_info->a, if_info->b);
1365 if (target)
1367 if (target != if_info->x)
1368 noce_emit_move_insn (if_info->x, target);
1370 seq = end_ifcvt_sequence (if_info);
1371 if (!seq)
1372 return FALSE;
1374 emit_insn_before_setloc (seq, if_info->jump,
1375 INSN_LOCATOR (if_info->insn_a));
1376 return TRUE;
1378 else
1380 end_sequence ();
1381 return FALSE;
1385 return FALSE;
1388 /* Try more complex cases involving conditional_move. */
1390 static int
1391 noce_try_cmove_arith (struct noce_if_info *if_info)
1393 rtx a = if_info->a;
1394 rtx b = if_info->b;
1395 rtx x = if_info->x;
1396 rtx orig_a, orig_b;
1397 rtx insn_a, insn_b;
1398 rtx tmp, target;
1399 int is_mem = 0;
1400 int insn_cost;
1401 enum rtx_code code;
1403 /* A conditional move from two memory sources is equivalent to a
1404 conditional on their addresses followed by a load. Don't do this
1405 early because it'll screw alias analysis. Note that we've
1406 already checked for no side effects. */
1407 /* ??? FIXME: Magic number 5. */
1408 if (cse_not_expected
1409 && MEM_P (a) && MEM_P (b)
1410 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1411 && if_info->branch_cost >= 5)
1413 enum machine_mode address_mode
1414 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1416 a = XEXP (a, 0);
1417 b = XEXP (b, 0);
1418 x = gen_reg_rtx (address_mode);
1419 is_mem = 1;
1422 /* ??? We could handle this if we knew that a load from A or B could
1423 not fault. This is also true if we've already loaded
1424 from the address along the path from ENTRY. */
1425 else if (may_trap_p (a) || may_trap_p (b))
1426 return FALSE;
1428 /* if (test) x = a + b; else x = c - d;
1429 => y = a + b;
1430 x = c - d;
1431 if (test)
1432 x = y;
1435 code = GET_CODE (if_info->cond);
1436 insn_a = if_info->insn_a;
1437 insn_b = if_info->insn_b;
1439 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1440 if insn_rtx_cost can't be estimated. */
1441 if (insn_a)
1443 insn_cost
1444 = insn_rtx_cost (PATTERN (insn_a),
1445 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1446 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1447 return FALSE;
1449 else
1450 insn_cost = 0;
1452 if (insn_b)
1454 insn_cost
1455 += insn_rtx_cost (PATTERN (insn_b),
1456 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1457 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1458 return FALSE;
1461 /* Possibly rearrange operands to make things come out more natural. */
1462 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1464 int reversep = 0;
1465 if (rtx_equal_p (b, x))
1466 reversep = 1;
1467 else if (general_operand (b, GET_MODE (b)))
1468 reversep = 1;
1470 if (reversep)
1472 code = reversed_comparison_code (if_info->cond, if_info->jump);
1473 tmp = a, a = b, b = tmp;
1474 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1478 start_sequence ();
1480 orig_a = a;
1481 orig_b = b;
1483 /* If either operand is complex, load it into a register first.
1484 The best way to do this is to copy the original insn. In this
1485 way we preserve any clobbers etc that the insn may have had.
1486 This is of course not possible in the IS_MEM case. */
1487 if (! general_operand (a, GET_MODE (a)))
1489 rtx set;
1491 if (is_mem)
1493 tmp = gen_reg_rtx (GET_MODE (a));
1494 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1496 else if (! insn_a)
1497 goto end_seq_and_fail;
1498 else
1500 a = gen_reg_rtx (GET_MODE (a));
1501 tmp = copy_rtx (insn_a);
1502 set = single_set (tmp);
1503 SET_DEST (set) = a;
1504 tmp = emit_insn (PATTERN (tmp));
1506 if (recog_memoized (tmp) < 0)
1507 goto end_seq_and_fail;
1509 if (! general_operand (b, GET_MODE (b)))
1511 rtx set, last;
1513 if (is_mem)
1515 tmp = gen_reg_rtx (GET_MODE (b));
1516 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1518 else if (! insn_b)
1519 goto end_seq_and_fail;
1520 else
1522 b = gen_reg_rtx (GET_MODE (b));
1523 tmp = copy_rtx (insn_b);
1524 set = single_set (tmp);
1525 SET_DEST (set) = b;
1526 tmp = PATTERN (tmp);
1529 /* If insn to set up A clobbers any registers B depends on, try to
1530 swap insn that sets up A with the one that sets up B. If even
1531 that doesn't help, punt. */
1532 last = get_last_insn ();
1533 if (last && modified_in_p (orig_b, last))
1535 tmp = emit_insn_before (tmp, get_insns ());
1536 if (modified_in_p (orig_a, tmp))
1537 goto end_seq_and_fail;
1539 else
1540 tmp = emit_insn (tmp);
1542 if (recog_memoized (tmp) < 0)
1543 goto end_seq_and_fail;
1546 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1547 XEXP (if_info->cond, 1), a, b);
1549 if (! target)
1550 goto end_seq_and_fail;
1552 /* If we're handling a memory for above, emit the load now. */
1553 if (is_mem)
1555 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1557 /* Copy over flags as appropriate. */
1558 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1559 MEM_VOLATILE_P (tmp) = 1;
1560 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1561 MEM_IN_STRUCT_P (tmp) = 1;
1562 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1563 MEM_SCALAR_P (tmp) = 1;
1564 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1565 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1566 set_mem_align (tmp,
1567 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1569 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1570 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1572 noce_emit_move_insn (if_info->x, tmp);
1574 else if (target != x)
1575 noce_emit_move_insn (x, target);
1577 tmp = end_ifcvt_sequence (if_info);
1578 if (!tmp)
1579 return FALSE;
1581 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1582 return TRUE;
1584 end_seq_and_fail:
1585 end_sequence ();
1586 return FALSE;
1589 /* For most cases, the simplified condition we found is the best
1590 choice, but this is not the case for the min/max/abs transforms.
1591 For these we wish to know that it is A or B in the condition. */
1593 static rtx
1594 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1595 rtx *earliest)
1597 rtx cond, set, insn;
1598 int reverse;
1600 /* If target is already mentioned in the known condition, return it. */
1601 if (reg_mentioned_p (target, if_info->cond))
1603 *earliest = if_info->cond_earliest;
1604 return if_info->cond;
1607 set = pc_set (if_info->jump);
1608 cond = XEXP (SET_SRC (set), 0);
1609 reverse
1610 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1611 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1612 if (if_info->then_else_reversed)
1613 reverse = !reverse;
1615 /* If we're looking for a constant, try to make the conditional
1616 have that constant in it. There are two reasons why it may
1617 not have the constant we want:
1619 1. GCC may have needed to put the constant in a register, because
1620 the target can't compare directly against that constant. For
1621 this case, we look for a SET immediately before the comparison
1622 that puts a constant in that register.
1624 2. GCC may have canonicalized the conditional, for example
1625 replacing "if x < 4" with "if x <= 3". We can undo that (or
1626 make equivalent types of changes) to get the constants we need
1627 if they're off by one in the right direction. */
1629 if (CONST_INT_P (target))
1631 enum rtx_code code = GET_CODE (if_info->cond);
1632 rtx op_a = XEXP (if_info->cond, 0);
1633 rtx op_b = XEXP (if_info->cond, 1);
1634 rtx prev_insn;
1636 /* First, look to see if we put a constant in a register. */
1637 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1638 if (prev_insn
1639 && BLOCK_FOR_INSN (prev_insn)
1640 == BLOCK_FOR_INSN (if_info->cond_earliest)
1641 && INSN_P (prev_insn)
1642 && GET_CODE (PATTERN (prev_insn)) == SET)
1644 rtx src = find_reg_equal_equiv_note (prev_insn);
1645 if (!src)
1646 src = SET_SRC (PATTERN (prev_insn));
1647 if (CONST_INT_P (src))
1649 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1650 op_a = src;
1651 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1652 op_b = src;
1654 if (CONST_INT_P (op_a))
1656 rtx tmp = op_a;
1657 op_a = op_b;
1658 op_b = tmp;
1659 code = swap_condition (code);
1664 /* Now, look to see if we can get the right constant by
1665 adjusting the conditional. */
1666 if (CONST_INT_P (op_b))
1668 HOST_WIDE_INT desired_val = INTVAL (target);
1669 HOST_WIDE_INT actual_val = INTVAL (op_b);
1671 switch (code)
1673 case LT:
1674 if (actual_val == desired_val + 1)
1676 code = LE;
1677 op_b = GEN_INT (desired_val);
1679 break;
1680 case LE:
1681 if (actual_val == desired_val - 1)
1683 code = LT;
1684 op_b = GEN_INT (desired_val);
1686 break;
1687 case GT:
1688 if (actual_val == desired_val - 1)
1690 code = GE;
1691 op_b = GEN_INT (desired_val);
1693 break;
1694 case GE:
1695 if (actual_val == desired_val + 1)
1697 code = GT;
1698 op_b = GEN_INT (desired_val);
1700 break;
1701 default:
1702 break;
1706 /* If we made any changes, generate a new conditional that is
1707 equivalent to what we started with, but has the right
1708 constants in it. */
1709 if (code != GET_CODE (if_info->cond)
1710 || op_a != XEXP (if_info->cond, 0)
1711 || op_b != XEXP (if_info->cond, 1))
1713 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1714 *earliest = if_info->cond_earliest;
1715 return cond;
1719 cond = canonicalize_condition (if_info->jump, cond, reverse,
1720 earliest, target, false, true);
1721 if (! cond || ! reg_mentioned_p (target, cond))
1722 return NULL;
1724 /* We almost certainly searched back to a different place.
1725 Need to re-verify correct lifetimes. */
1727 /* X may not be mentioned in the range (cond_earliest, jump]. */
1728 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1729 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1730 return NULL;
1732 /* A and B may not be modified in the range [cond_earliest, jump). */
1733 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1734 if (INSN_P (insn)
1735 && (modified_in_p (if_info->a, insn)
1736 || modified_in_p (if_info->b, insn)))
1737 return NULL;
1739 return cond;
1742 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1744 static int
1745 noce_try_minmax (struct noce_if_info *if_info)
1747 rtx cond, earliest, target, seq;
1748 enum rtx_code code, op;
1749 int unsignedp;
1751 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1752 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1753 to get the target to tell us... */
1754 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1755 || HONOR_NANS (GET_MODE (if_info->x)))
1756 return FALSE;
1758 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1759 if (!cond)
1760 return FALSE;
1762 /* Verify the condition is of the form we expect, and canonicalize
1763 the comparison code. */
1764 code = GET_CODE (cond);
1765 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1767 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1768 return FALSE;
1770 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1772 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1773 return FALSE;
1774 code = swap_condition (code);
1776 else
1777 return FALSE;
1779 /* Determine what sort of operation this is. Note that the code is for
1780 a taken branch, so the code->operation mapping appears backwards. */
1781 switch (code)
1783 case LT:
1784 case LE:
1785 case UNLT:
1786 case UNLE:
1787 op = SMAX;
1788 unsignedp = 0;
1789 break;
1790 case GT:
1791 case GE:
1792 case UNGT:
1793 case UNGE:
1794 op = SMIN;
1795 unsignedp = 0;
1796 break;
1797 case LTU:
1798 case LEU:
1799 op = UMAX;
1800 unsignedp = 1;
1801 break;
1802 case GTU:
1803 case GEU:
1804 op = UMIN;
1805 unsignedp = 1;
1806 break;
1807 default:
1808 return FALSE;
1811 start_sequence ();
1813 target = expand_simple_binop (GET_MODE (if_info->x), op,
1814 if_info->a, if_info->b,
1815 if_info->x, unsignedp, OPTAB_WIDEN);
1816 if (! target)
1818 end_sequence ();
1819 return FALSE;
1821 if (target != if_info->x)
1822 noce_emit_move_insn (if_info->x, target);
1824 seq = end_ifcvt_sequence (if_info);
1825 if (!seq)
1826 return FALSE;
1828 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1829 if_info->cond = cond;
1830 if_info->cond_earliest = earliest;
1832 return TRUE;
1835 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1836 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1837 etc. */
1839 static int
1840 noce_try_abs (struct noce_if_info *if_info)
1842 rtx cond, earliest, target, seq, a, b, c;
1843 int negate;
1844 bool one_cmpl = false;
1846 /* Reject modes with signed zeros. */
1847 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1848 return FALSE;
1850 /* Recognize A and B as constituting an ABS or NABS. The canonical
1851 form is a branch around the negation, taken when the object is the
1852 first operand of a comparison against 0 that evaluates to true. */
1853 a = if_info->a;
1854 b = if_info->b;
1855 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1856 negate = 0;
1857 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1859 c = a; a = b; b = c;
1860 negate = 1;
1862 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1864 negate = 0;
1865 one_cmpl = true;
1867 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1869 c = a; a = b; b = c;
1870 negate = 1;
1871 one_cmpl = true;
1873 else
1874 return FALSE;
1876 cond = noce_get_alt_condition (if_info, b, &earliest);
1877 if (!cond)
1878 return FALSE;
1880 /* Verify the condition is of the form we expect. */
1881 if (rtx_equal_p (XEXP (cond, 0), b))
1882 c = XEXP (cond, 1);
1883 else if (rtx_equal_p (XEXP (cond, 1), b))
1885 c = XEXP (cond, 0);
1886 negate = !negate;
1888 else
1889 return FALSE;
1891 /* Verify that C is zero. Search one step backward for a
1892 REG_EQUAL note or a simple source if necessary. */
1893 if (REG_P (c))
1895 rtx set, insn = prev_nonnote_insn (earliest);
1896 if (insn
1897 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1898 && (set = single_set (insn))
1899 && rtx_equal_p (SET_DEST (set), c))
1901 rtx note = find_reg_equal_equiv_note (insn);
1902 if (note)
1903 c = XEXP (note, 0);
1904 else
1905 c = SET_SRC (set);
1907 else
1908 return FALSE;
1910 if (MEM_P (c)
1911 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1912 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1913 c = get_pool_constant (XEXP (c, 0));
1915 /* Work around funny ideas get_condition has wrt canonicalization.
1916 Note that these rtx constants are known to be CONST_INT, and
1917 therefore imply integer comparisons. */
1918 if (c == constm1_rtx && GET_CODE (cond) == GT)
1920 else if (c == const1_rtx && GET_CODE (cond) == LT)
1922 else if (c != CONST0_RTX (GET_MODE (b)))
1923 return FALSE;
1925 /* Determine what sort of operation this is. */
1926 switch (GET_CODE (cond))
1928 case LT:
1929 case LE:
1930 case UNLT:
1931 case UNLE:
1932 negate = !negate;
1933 break;
1934 case GT:
1935 case GE:
1936 case UNGT:
1937 case UNGE:
1938 break;
1939 default:
1940 return FALSE;
1943 start_sequence ();
1944 if (one_cmpl)
1945 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
1946 if_info->x);
1947 else
1948 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1950 /* ??? It's a quandary whether cmove would be better here, especially
1951 for integers. Perhaps combine will clean things up. */
1952 if (target && negate)
1954 if (one_cmpl)
1955 target = expand_simple_unop (GET_MODE (target), NOT, target,
1956 if_info->x, 0);
1957 else
1958 target = expand_simple_unop (GET_MODE (target), NEG, target,
1959 if_info->x, 0);
1962 if (! target)
1964 end_sequence ();
1965 return FALSE;
1968 if (target != if_info->x)
1969 noce_emit_move_insn (if_info->x, target);
1971 seq = end_ifcvt_sequence (if_info);
1972 if (!seq)
1973 return FALSE;
1975 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1976 if_info->cond = cond;
1977 if_info->cond_earliest = earliest;
1979 return TRUE;
1982 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1984 static int
1985 noce_try_sign_mask (struct noce_if_info *if_info)
1987 rtx cond, t, m, c, seq;
1988 enum machine_mode mode;
1989 enum rtx_code code;
1990 bool t_unconditional;
1992 cond = if_info->cond;
1993 code = GET_CODE (cond);
1994 m = XEXP (cond, 0);
1995 c = XEXP (cond, 1);
1997 t = NULL_RTX;
1998 if (if_info->a == const0_rtx)
2000 if ((code == LT && c == const0_rtx)
2001 || (code == LE && c == constm1_rtx))
2002 t = if_info->b;
2004 else if (if_info->b == const0_rtx)
2006 if ((code == GE && c == const0_rtx)
2007 || (code == GT && c == constm1_rtx))
2008 t = if_info->a;
2011 if (! t || side_effects_p (t))
2012 return FALSE;
2014 /* We currently don't handle different modes. */
2015 mode = GET_MODE (t);
2016 if (GET_MODE (m) != mode)
2017 return FALSE;
2019 /* This is only profitable if T is unconditionally executed/evaluated in the
2020 original insn sequence or T is cheap. The former happens if B is the
2021 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2022 INSN_B which can happen for e.g. conditional stores to memory. For the
2023 cost computation use the block TEST_BB where the evaluation will end up
2024 after the transformation. */
2025 t_unconditional =
2026 (t == if_info->b
2027 && (if_info->insn_b == NULL_RTX
2028 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2029 if (!(t_unconditional
2030 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2031 < COSTS_N_INSNS (2))))
2032 return FALSE;
2034 start_sequence ();
2035 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2036 "(signed) m >> 31" directly. This benefits targets with specialized
2037 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2038 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2039 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2040 : NULL_RTX;
2042 if (!t)
2044 end_sequence ();
2045 return FALSE;
2048 noce_emit_move_insn (if_info->x, t);
2050 seq = end_ifcvt_sequence (if_info);
2051 if (!seq)
2052 return FALSE;
2054 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2055 return TRUE;
2059 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2060 transformations. */
2062 static int
2063 noce_try_bitop (struct noce_if_info *if_info)
2065 rtx cond, x, a, result, seq;
2066 enum machine_mode mode;
2067 enum rtx_code code;
2068 int bitnum;
2070 x = if_info->x;
2071 cond = if_info->cond;
2072 code = GET_CODE (cond);
2074 /* Check for no else condition. */
2075 if (! rtx_equal_p (x, if_info->b))
2076 return FALSE;
2078 /* Check for a suitable condition. */
2079 if (code != NE && code != EQ)
2080 return FALSE;
2081 if (XEXP (cond, 1) != const0_rtx)
2082 return FALSE;
2083 cond = XEXP (cond, 0);
2085 /* ??? We could also handle AND here. */
2086 if (GET_CODE (cond) == ZERO_EXTRACT)
2088 if (XEXP (cond, 1) != const1_rtx
2089 || !CONST_INT_P (XEXP (cond, 2))
2090 || ! rtx_equal_p (x, XEXP (cond, 0)))
2091 return FALSE;
2092 bitnum = INTVAL (XEXP (cond, 2));
2093 mode = GET_MODE (x);
2094 if (BITS_BIG_ENDIAN)
2095 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2096 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2097 return FALSE;
2099 else
2100 return FALSE;
2102 a = if_info->a;
2103 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2105 /* Check for "if (X & C) x = x op C". */
2106 if (! rtx_equal_p (x, XEXP (a, 0))
2107 || !CONST_INT_P (XEXP (a, 1))
2108 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2109 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2110 return FALSE;
2112 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2113 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2114 if (GET_CODE (a) == IOR)
2115 result = (code == NE) ? a : NULL_RTX;
2116 else if (code == NE)
2118 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2119 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2120 result = simplify_gen_binary (IOR, mode, x, result);
2122 else
2124 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2125 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2126 result = simplify_gen_binary (AND, mode, x, result);
2129 else if (GET_CODE (a) == AND)
2131 /* Check for "if (X & C) x &= ~C". */
2132 if (! rtx_equal_p (x, XEXP (a, 0))
2133 || !CONST_INT_P (XEXP (a, 1))
2134 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2135 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2136 return FALSE;
2138 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2139 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2140 result = (code == EQ) ? a : NULL_RTX;
2142 else
2143 return FALSE;
2145 if (result)
2147 start_sequence ();
2148 noce_emit_move_insn (x, result);
2149 seq = end_ifcvt_sequence (if_info);
2150 if (!seq)
2151 return FALSE;
2153 emit_insn_before_setloc (seq, if_info->jump,
2154 INSN_LOCATOR (if_info->insn_a));
2156 return TRUE;
2160 /* Similar to get_condition, only the resulting condition must be
2161 valid at JUMP, instead of at EARLIEST.
2163 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2164 THEN block of the caller, and we have to reverse the condition. */
2166 static rtx
2167 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2169 rtx cond, set, tmp;
2170 bool reverse;
2172 if (! any_condjump_p (jump))
2173 return NULL_RTX;
2175 set = pc_set (jump);
2177 /* If this branches to JUMP_LABEL when the condition is false,
2178 reverse the condition. */
2179 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2180 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2182 /* We may have to reverse because the caller's if block is not canonical,
2183 i.e. the THEN block isn't the fallthrough block for the TEST block
2184 (see find_if_header). */
2185 if (then_else_reversed)
2186 reverse = !reverse;
2188 /* If the condition variable is a register and is MODE_INT, accept it. */
2190 cond = XEXP (SET_SRC (set), 0);
2191 tmp = XEXP (cond, 0);
2192 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2194 *earliest = jump;
2196 if (reverse)
2197 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2198 GET_MODE (cond), tmp, XEXP (cond, 1));
2199 return cond;
2202 /* Otherwise, fall back on canonicalize_condition to do the dirty
2203 work of manipulating MODE_CC values and COMPARE rtx codes. */
2204 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2205 NULL_RTX, false, true);
2207 /* We don't handle side-effects in the condition, like handling
2208 REG_INC notes and making sure no duplicate conditions are emitted. */
2209 if (tmp != NULL_RTX && side_effects_p (tmp))
2210 return NULL_RTX;
2212 return tmp;
2215 /* Return true if OP is ok for if-then-else processing. */
2217 static int
2218 noce_operand_ok (const_rtx op)
2220 /* We special-case memories, so handle any of them with
2221 no address side effects. */
2222 if (MEM_P (op))
2223 return ! side_effects_p (XEXP (op, 0));
2225 if (side_effects_p (op))
2226 return FALSE;
2228 return ! may_trap_p (op);
2231 /* Return true if a write into MEM may trap or fault. */
2233 static bool
2234 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2236 rtx addr;
2238 if (MEM_READONLY_P (mem))
2239 return true;
2241 if (may_trap_or_fault_p (mem))
2242 return true;
2244 addr = XEXP (mem, 0);
2246 /* Call target hook to avoid the effects of -fpic etc.... */
2247 addr = targetm.delegitimize_address (addr);
2249 while (addr)
2250 switch (GET_CODE (addr))
2252 case CONST:
2253 case PRE_DEC:
2254 case PRE_INC:
2255 case POST_DEC:
2256 case POST_INC:
2257 case POST_MODIFY:
2258 addr = XEXP (addr, 0);
2259 break;
2260 case LO_SUM:
2261 case PRE_MODIFY:
2262 addr = XEXP (addr, 1);
2263 break;
2264 case PLUS:
2265 if (CONST_INT_P (XEXP (addr, 1)))
2266 addr = XEXP (addr, 0);
2267 else
2268 return false;
2269 break;
2270 case LABEL_REF:
2271 return true;
2272 case SYMBOL_REF:
2273 if (SYMBOL_REF_DECL (addr)
2274 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2275 return true;
2276 return false;
2277 default:
2278 return false;
2281 return false;
2284 /* Return whether we can use store speculation for MEM. TOP_BB is the
2285 basic block above the conditional block where we are considering
2286 doing the speculative store. We look for whether MEM is set
2287 unconditionally later in the function. */
2289 static bool
2290 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2292 basic_block dominator;
2294 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2295 dominator != NULL;
2296 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2298 rtx insn;
2300 FOR_BB_INSNS (dominator, insn)
2302 /* If we see something that might be a memory barrier, we
2303 have to stop looking. Even if the MEM is set later in
2304 the function, we still don't want to set it
2305 unconditionally before the barrier. */
2306 if (INSN_P (insn)
2307 && (volatile_insn_p (PATTERN (insn))
2308 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2309 return false;
2311 if (memory_modified_in_insn_p (mem, insn))
2312 return true;
2313 if (modified_in_p (XEXP (mem, 0), insn))
2314 return false;
2319 return false;
2322 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2323 it without using conditional execution. Return TRUE if we were successful
2324 at converting the block. */
2326 static int
2327 noce_process_if_block (struct noce_if_info *if_info)
2329 basic_block test_bb = if_info->test_bb; /* test block */
2330 basic_block then_bb = if_info->then_bb; /* THEN */
2331 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2332 basic_block join_bb = if_info->join_bb; /* JOIN */
2333 rtx jump = if_info->jump;
2334 rtx cond = if_info->cond;
2335 rtx insn_a, insn_b;
2336 rtx set_a, set_b;
2337 rtx orig_x, x, a, b;
2339 /* We're looking for patterns of the form
2341 (1) if (...) x = a; else x = b;
2342 (2) x = b; if (...) x = a;
2343 (3) if (...) x = a; // as if with an initial x = x.
2345 The later patterns require jumps to be more expensive.
2347 ??? For future expansion, look for multiple X in such patterns. */
2349 /* Look for one of the potential sets. */
2350 insn_a = first_active_insn (then_bb);
2351 if (! insn_a
2352 || insn_a != last_active_insn (then_bb, FALSE)
2353 || (set_a = single_set (insn_a)) == NULL_RTX)
2354 return FALSE;
2356 x = SET_DEST (set_a);
2357 a = SET_SRC (set_a);
2359 /* Look for the other potential set. Make sure we've got equivalent
2360 destinations. */
2361 /* ??? This is overconservative. Storing to two different mems is
2362 as easy as conditionally computing the address. Storing to a
2363 single mem merely requires a scratch memory to use as one of the
2364 destination addresses; often the memory immediately below the
2365 stack pointer is available for this. */
2366 set_b = NULL_RTX;
2367 if (else_bb)
2369 insn_b = first_active_insn (else_bb);
2370 if (! insn_b
2371 || insn_b != last_active_insn (else_bb, FALSE)
2372 || (set_b = single_set (insn_b)) == NULL_RTX
2373 || ! rtx_equal_p (x, SET_DEST (set_b)))
2374 return FALSE;
2376 else
2378 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2379 /* We're going to be moving the evaluation of B down from above
2380 COND_EARLIEST to JUMP. Make sure the relevant data is still
2381 intact. */
2382 if (! insn_b
2383 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2384 || !NONJUMP_INSN_P (insn_b)
2385 || (set_b = single_set (insn_b)) == NULL_RTX
2386 || ! rtx_equal_p (x, SET_DEST (set_b))
2387 || ! noce_operand_ok (SET_SRC (set_b))
2388 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2389 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2390 /* Likewise with X. In particular this can happen when
2391 noce_get_condition looks farther back in the instruction
2392 stream than one might expect. */
2393 || reg_overlap_mentioned_p (x, cond)
2394 || reg_overlap_mentioned_p (x, a)
2395 || modified_between_p (x, insn_b, jump))
2396 insn_b = set_b = NULL_RTX;
2399 /* If x has side effects then only the if-then-else form is safe to
2400 convert. But even in that case we would need to restore any notes
2401 (such as REG_INC) at then end. That can be tricky if
2402 noce_emit_move_insn expands to more than one insn, so disable the
2403 optimization entirely for now if there are side effects. */
2404 if (side_effects_p (x))
2405 return FALSE;
2407 b = (set_b ? SET_SRC (set_b) : x);
2409 /* Only operate on register destinations, and even then avoid extending
2410 the lifetime of hard registers on small register class machines. */
2411 orig_x = x;
2412 if (!REG_P (x)
2413 || (HARD_REGISTER_P (x)
2414 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2416 if (GET_MODE (x) == BLKmode)
2417 return FALSE;
2419 if (GET_CODE (x) == ZERO_EXTRACT
2420 && (!CONST_INT_P (XEXP (x, 1))
2421 || !CONST_INT_P (XEXP (x, 2))))
2422 return FALSE;
2424 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2425 ? XEXP (x, 0) : x));
2428 /* Don't operate on sources that may trap or are volatile. */
2429 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2430 return FALSE;
2432 retry:
2433 /* Set up the info block for our subroutines. */
2434 if_info->insn_a = insn_a;
2435 if_info->insn_b = insn_b;
2436 if_info->x = x;
2437 if_info->a = a;
2438 if_info->b = b;
2440 /* Try optimizations in some approximation of a useful order. */
2441 /* ??? Should first look to see if X is live incoming at all. If it
2442 isn't, we don't need anything but an unconditional set. */
2444 /* Look and see if A and B are really the same. Avoid creating silly
2445 cmove constructs that no one will fix up later. */
2446 if (rtx_equal_p (a, b))
2448 /* If we have an INSN_B, we don't have to create any new rtl. Just
2449 move the instruction that we already have. If we don't have an
2450 INSN_B, that means that A == X, and we've got a noop move. In
2451 that case don't do anything and let the code below delete INSN_A. */
2452 if (insn_b && else_bb)
2454 rtx note;
2456 if (else_bb && insn_b == BB_END (else_bb))
2457 BB_END (else_bb) = PREV_INSN (insn_b);
2458 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2460 /* If there was a REG_EQUAL note, delete it since it may have been
2461 true due to this insn being after a jump. */
2462 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2463 remove_note (insn_b, note);
2465 insn_b = NULL_RTX;
2467 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2468 x must be executed twice. */
2469 else if (insn_b && side_effects_p (orig_x))
2470 return FALSE;
2472 x = orig_x;
2473 goto success;
2476 if (!set_b && MEM_P (orig_x))
2478 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2479 for optimizations if writing to x may trap or fault,
2480 i.e. it's a memory other than a static var or a stack slot,
2481 is misaligned on strict aligned machines or is read-only. If
2482 x is a read-only memory, then the program is valid only if we
2483 avoid the store into it. If there are stores on both the
2484 THEN and ELSE arms, then we can go ahead with the conversion;
2485 either the program is broken, or the condition is always
2486 false such that the other memory is selected. */
2487 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2488 return FALSE;
2490 /* Avoid store speculation: given "if (...) x = a" where x is a
2491 MEM, we only want to do the store if x is always set
2492 somewhere in the function. This avoids cases like
2493 if (pthread_mutex_trylock(mutex))
2494 ++global_variable;
2495 where we only want global_variable to be changed if the mutex
2496 is held. FIXME: This should ideally be expressed directly in
2497 RTL somehow. */
2498 if (!noce_can_store_speculate_p (test_bb, orig_x))
2499 return FALSE;
2502 if (noce_try_move (if_info))
2503 goto success;
2504 if (noce_try_store_flag (if_info))
2505 goto success;
2506 if (noce_try_bitop (if_info))
2507 goto success;
2508 if (noce_try_minmax (if_info))
2509 goto success;
2510 if (noce_try_abs (if_info))
2511 goto success;
2512 if (HAVE_conditional_move
2513 && noce_try_cmove (if_info))
2514 goto success;
2515 if (! targetm.have_conditional_execution ())
2517 if (noce_try_store_flag_constants (if_info))
2518 goto success;
2519 if (noce_try_addcc (if_info))
2520 goto success;
2521 if (noce_try_store_flag_mask (if_info))
2522 goto success;
2523 if (HAVE_conditional_move
2524 && noce_try_cmove_arith (if_info))
2525 goto success;
2526 if (noce_try_sign_mask (if_info))
2527 goto success;
2530 if (!else_bb && set_b)
2532 insn_b = set_b = NULL_RTX;
2533 b = orig_x;
2534 goto retry;
2537 return FALSE;
2539 success:
2541 /* If we used a temporary, fix it up now. */
2542 if (orig_x != x)
2544 rtx seq;
2546 start_sequence ();
2547 noce_emit_move_insn (orig_x, x);
2548 seq = get_insns ();
2549 set_used_flags (orig_x);
2550 unshare_all_rtl_in_chain (seq);
2551 end_sequence ();
2553 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2556 /* The original THEN and ELSE blocks may now be removed. The test block
2557 must now jump to the join block. If the test block and the join block
2558 can be merged, do so. */
2559 if (else_bb)
2561 delete_basic_block (else_bb);
2562 num_true_changes++;
2564 else
2565 remove_edge (find_edge (test_bb, join_bb));
2567 remove_edge (find_edge (then_bb, join_bb));
2568 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2569 delete_basic_block (then_bb);
2570 num_true_changes++;
2572 if (can_merge_blocks_p (test_bb, join_bb))
2574 merge_blocks (test_bb, join_bb);
2575 num_true_changes++;
2578 num_updated_if_blocks++;
2579 return TRUE;
2582 /* Check whether a block is suitable for conditional move conversion.
2583 Every insn must be a simple set of a register to a constant or a
2584 register. For each assignment, store the value in the array VALS,
2585 indexed by register number, then store the register number in
2586 REGS. COND is the condition we will test. */
2588 static int
2589 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2590 rtx cond)
2592 rtx insn;
2594 /* We can only handle simple jumps at the end of the basic block.
2595 It is almost impossible to update the CFG otherwise. */
2596 insn = BB_END (bb);
2597 if (JUMP_P (insn) && !onlyjump_p (insn))
2598 return FALSE;
2600 FOR_BB_INSNS (bb, insn)
2602 rtx set, dest, src;
2604 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2605 continue;
2606 set = single_set (insn);
2607 if (!set)
2608 return FALSE;
2610 dest = SET_DEST (set);
2611 src = SET_SRC (set);
2612 if (!REG_P (dest)
2613 || (HARD_REGISTER_P (dest)
2614 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2615 return FALSE;
2617 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2618 return FALSE;
2620 if (side_effects_p (src) || side_effects_p (dest))
2621 return FALSE;
2623 if (may_trap_p (src) || may_trap_p (dest))
2624 return FALSE;
2626 /* Don't try to handle this if the source register was
2627 modified earlier in the block. */
2628 if ((REG_P (src)
2629 && vals[REGNO (src)] != NULL)
2630 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2631 && vals[REGNO (SUBREG_REG (src))] != NULL))
2632 return FALSE;
2634 /* Don't try to handle this if the destination register was
2635 modified earlier in the block. */
2636 if (vals[REGNO (dest)] != NULL)
2637 return FALSE;
2639 /* Don't try to handle this if the condition uses the
2640 destination register. */
2641 if (reg_overlap_mentioned_p (dest, cond))
2642 return FALSE;
2644 /* Don't try to handle this if the source register is modified
2645 later in the block. */
2646 if (!CONSTANT_P (src)
2647 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2648 return FALSE;
2650 vals[REGNO (dest)] = src;
2652 VEC_safe_push (int, heap, *regs, REGNO (dest));
2655 return TRUE;
2658 /* Given a basic block BB suitable for conditional move conversion,
2659 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2660 register values depending on COND, emit the insns in the block as
2661 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2662 processed. The caller has started a sequence for the conversion.
2663 Return true if successful, false if something goes wrong. */
2665 static bool
2666 cond_move_convert_if_block (struct noce_if_info *if_infop,
2667 basic_block bb, rtx cond,
2668 rtx *then_vals, rtx *else_vals,
2669 bool else_block_p)
2671 enum rtx_code code;
2672 rtx insn, cond_arg0, cond_arg1;
2674 code = GET_CODE (cond);
2675 cond_arg0 = XEXP (cond, 0);
2676 cond_arg1 = XEXP (cond, 1);
2678 FOR_BB_INSNS (bb, insn)
2680 rtx set, target, dest, t, e;
2681 unsigned int regno;
2683 /* ??? Maybe emit conditional debug insn? */
2684 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2685 continue;
2686 set = single_set (insn);
2687 gcc_assert (set && REG_P (SET_DEST (set)));
2689 dest = SET_DEST (set);
2690 regno = REGNO (dest);
2692 t = then_vals[regno];
2693 e = else_vals[regno];
2695 if (else_block_p)
2697 /* If this register was set in the then block, we already
2698 handled this case there. */
2699 if (t)
2700 continue;
2701 t = dest;
2702 gcc_assert (e);
2704 else
2706 gcc_assert (t);
2707 if (!e)
2708 e = dest;
2711 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2712 t, e);
2713 if (!target)
2714 return false;
2716 if (target != dest)
2717 noce_emit_move_insn (dest, target);
2720 return true;
2723 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2724 it using only conditional moves. Return TRUE if we were successful at
2725 converting the block. */
2727 static int
2728 cond_move_process_if_block (struct noce_if_info *if_info)
2730 basic_block test_bb = if_info->test_bb;
2731 basic_block then_bb = if_info->then_bb;
2732 basic_block else_bb = if_info->else_bb;
2733 basic_block join_bb = if_info->join_bb;
2734 rtx jump = if_info->jump;
2735 rtx cond = if_info->cond;
2736 rtx seq, loc_insn;
2737 int max_reg, size, c, reg;
2738 rtx *then_vals;
2739 rtx *else_vals;
2740 VEC (int, heap) *then_regs = NULL;
2741 VEC (int, heap) *else_regs = NULL;
2742 unsigned int i;
2744 /* Build a mapping for each block to the value used for each
2745 register. */
2746 max_reg = max_reg_num ();
2747 size = (max_reg + 1) * sizeof (rtx);
2748 then_vals = (rtx *) alloca (size);
2749 else_vals = (rtx *) alloca (size);
2750 memset (then_vals, 0, size);
2751 memset (else_vals, 0, size);
2753 /* Make sure the blocks are suitable. */
2754 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2755 || (else_bb
2756 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2758 VEC_free (int, heap, then_regs);
2759 VEC_free (int, heap, else_regs);
2760 return FALSE;
2763 /* Make sure the blocks can be used together. If the same register
2764 is set in both blocks, and is not set to a constant in both
2765 cases, then both blocks must set it to the same register. We
2766 have already verified that if it is set to a register, that the
2767 source register does not change after the assignment. Also count
2768 the number of registers set in only one of the blocks. */
2769 c = 0;
2770 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2772 if (!then_vals[reg] && !else_vals[reg])
2773 continue;
2775 if (!else_vals[reg])
2776 ++c;
2777 else
2779 if (!CONSTANT_P (then_vals[reg])
2780 && !CONSTANT_P (else_vals[reg])
2781 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2783 VEC_free (int, heap, then_regs);
2784 VEC_free (int, heap, else_regs);
2785 return FALSE;
2790 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2791 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2792 if (!then_vals[reg])
2793 ++c;
2795 /* Make sure it is reasonable to convert this block. What matters
2796 is the number of assignments currently made in only one of the
2797 branches, since if we convert we are going to always execute
2798 them. */
2799 if (c > MAX_CONDITIONAL_EXECUTE)
2801 VEC_free (int, heap, then_regs);
2802 VEC_free (int, heap, else_regs);
2803 return FALSE;
2806 /* Try to emit the conditional moves. First do the then block,
2807 then do anything left in the else blocks. */
2808 start_sequence ();
2809 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2810 then_vals, else_vals, false)
2811 || (else_bb
2812 && !cond_move_convert_if_block (if_info, else_bb, cond,
2813 then_vals, else_vals, true)))
2815 end_sequence ();
2816 VEC_free (int, heap, then_regs);
2817 VEC_free (int, heap, else_regs);
2818 return FALSE;
2820 seq = end_ifcvt_sequence (if_info);
2821 if (!seq)
2823 VEC_free (int, heap, then_regs);
2824 VEC_free (int, heap, else_regs);
2825 return FALSE;
2828 loc_insn = first_active_insn (then_bb);
2829 if (!loc_insn)
2831 loc_insn = first_active_insn (else_bb);
2832 gcc_assert (loc_insn);
2834 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2836 if (else_bb)
2838 delete_basic_block (else_bb);
2839 num_true_changes++;
2841 else
2842 remove_edge (find_edge (test_bb, join_bb));
2844 remove_edge (find_edge (then_bb, join_bb));
2845 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2846 delete_basic_block (then_bb);
2847 num_true_changes++;
2849 if (can_merge_blocks_p (test_bb, join_bb))
2851 merge_blocks (test_bb, join_bb);
2852 num_true_changes++;
2855 num_updated_if_blocks++;
2857 VEC_free (int, heap, then_regs);
2858 VEC_free (int, heap, else_regs);
2859 return TRUE;
2863 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2864 IF-THEN-ELSE-JOIN block.
2866 If so, we'll try to convert the insns to not require the branch,
2867 using only transformations that do not require conditional execution.
2869 Return TRUE if we were successful at converting the block. */
2871 static int
2872 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2873 int pass)
2875 basic_block then_bb, else_bb, join_bb;
2876 bool then_else_reversed = false;
2877 rtx jump, cond;
2878 rtx cond_earliest;
2879 struct noce_if_info if_info;
2881 /* We only ever should get here before reload. */
2882 gcc_assert (!reload_completed);
2884 /* Recognize an IF-THEN-ELSE-JOIN block. */
2885 if (single_pred_p (then_edge->dest)
2886 && single_succ_p (then_edge->dest)
2887 && single_pred_p (else_edge->dest)
2888 && single_succ_p (else_edge->dest)
2889 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2891 then_bb = then_edge->dest;
2892 else_bb = else_edge->dest;
2893 join_bb = single_succ (then_bb);
2895 /* Recognize an IF-THEN-JOIN block. */
2896 else if (single_pred_p (then_edge->dest)
2897 && single_succ_p (then_edge->dest)
2898 && single_succ (then_edge->dest) == else_edge->dest)
2900 then_bb = then_edge->dest;
2901 else_bb = NULL_BLOCK;
2902 join_bb = else_edge->dest;
2904 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2905 of basic blocks in cfglayout mode does not matter, so the fallthrough
2906 edge can go to any basic block (and not just to bb->next_bb, like in
2907 cfgrtl mode). */
2908 else if (single_pred_p (else_edge->dest)
2909 && single_succ_p (else_edge->dest)
2910 && single_succ (else_edge->dest) == then_edge->dest)
2912 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2913 To make this work, we have to invert the THEN and ELSE blocks
2914 and reverse the jump condition. */
2915 then_bb = else_edge->dest;
2916 else_bb = NULL_BLOCK;
2917 join_bb = single_succ (then_bb);
2918 then_else_reversed = true;
2920 else
2921 /* Not a form we can handle. */
2922 return FALSE;
2924 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2925 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2926 return FALSE;
2927 if (else_bb
2928 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2929 return FALSE;
2931 num_possible_if_blocks++;
2933 if (dump_file)
2935 fprintf (dump_file,
2936 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2937 (else_bb) ? "-ELSE" : "",
2938 pass, test_bb->index, then_bb->index);
2940 if (else_bb)
2941 fprintf (dump_file, ", else %d", else_bb->index);
2943 fprintf (dump_file, ", join %d\n", join_bb->index);
2946 /* If the conditional jump is more than just a conditional
2947 jump, then we can not do if-conversion on this block. */
2948 jump = BB_END (test_bb);
2949 if (! onlyjump_p (jump))
2950 return FALSE;
2952 /* If this is not a standard conditional jump, we can't parse it. */
2953 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
2954 if (!cond)
2955 return FALSE;
2957 /* We must be comparing objects whose modes imply the size. */
2958 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2959 return FALSE;
2961 /* Initialize an IF_INFO struct to pass around. */
2962 memset (&if_info, 0, sizeof if_info);
2963 if_info.test_bb = test_bb;
2964 if_info.then_bb = then_bb;
2965 if_info.else_bb = else_bb;
2966 if_info.join_bb = join_bb;
2967 if_info.cond = cond;
2968 if_info.cond_earliest = cond_earliest;
2969 if_info.jump = jump;
2970 if_info.then_else_reversed = then_else_reversed;
2971 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2972 predictable_edge_p (then_edge));
2974 /* Do the real work. */
2976 if (noce_process_if_block (&if_info))
2977 return TRUE;
2979 if (HAVE_conditional_move
2980 && cond_move_process_if_block (&if_info))
2981 return TRUE;
2983 return FALSE;
2987 /* Merge the blocks and mark for local life update. */
2989 static void
2990 merge_if_block (struct ce_if_block * ce_info)
2992 basic_block test_bb = ce_info->test_bb; /* last test block */
2993 basic_block then_bb = ce_info->then_bb; /* THEN */
2994 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2995 basic_block join_bb = ce_info->join_bb; /* join block */
2996 basic_block combo_bb;
2998 /* All block merging is done into the lower block numbers. */
3000 combo_bb = test_bb;
3001 df_set_bb_dirty (test_bb);
3003 /* Merge any basic blocks to handle && and || subtests. Each of
3004 the blocks are on the fallthru path from the predecessor block. */
3005 if (ce_info->num_multiple_test_blocks > 0)
3007 basic_block bb = test_bb;
3008 basic_block last_test_bb = ce_info->last_test_bb;
3009 basic_block fallthru = block_fallthru (bb);
3013 bb = fallthru;
3014 fallthru = block_fallthru (bb);
3015 merge_blocks (combo_bb, bb);
3016 num_true_changes++;
3018 while (bb != last_test_bb);
3021 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3022 label, but it might if there were || tests. That label's count should be
3023 zero, and it normally should be removed. */
3025 if (then_bb)
3027 merge_blocks (combo_bb, then_bb);
3028 num_true_changes++;
3031 /* The ELSE block, if it existed, had a label. That label count
3032 will almost always be zero, but odd things can happen when labels
3033 get their addresses taken. */
3034 if (else_bb)
3036 merge_blocks (combo_bb, else_bb);
3037 num_true_changes++;
3040 /* If there was no join block reported, that means it was not adjacent
3041 to the others, and so we cannot merge them. */
3043 if (! join_bb)
3045 rtx last = BB_END (combo_bb);
3047 /* The outgoing edge for the current COMBO block should already
3048 be correct. Verify this. */
3049 if (EDGE_COUNT (combo_bb->succs) == 0)
3050 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3051 || (NONJUMP_INSN_P (last)
3052 && GET_CODE (PATTERN (last)) == TRAP_IF
3053 && (TRAP_CONDITION (PATTERN (last))
3054 == const_true_rtx)));
3056 else
3057 /* There should still be something at the end of the THEN or ELSE
3058 blocks taking us to our final destination. */
3059 gcc_assert (JUMP_P (last)
3060 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3061 && CALL_P (last)
3062 && SIBLING_CALL_P (last))
3063 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3064 && can_throw_internal (last)));
3067 /* The JOIN block may have had quite a number of other predecessors too.
3068 Since we've already merged the TEST, THEN and ELSE blocks, we should
3069 have only one remaining edge from our if-then-else diamond. If there
3070 is more than one remaining edge, it must come from elsewhere. There
3071 may be zero incoming edges if the THEN block didn't actually join
3072 back up (as with a call to a non-return function). */
3073 else if (EDGE_COUNT (join_bb->preds) < 2
3074 && join_bb != EXIT_BLOCK_PTR)
3076 /* We can merge the JOIN cleanly and update the dataflow try
3077 again on this pass.*/
3078 merge_blocks (combo_bb, join_bb);
3079 num_true_changes++;
3081 else
3083 /* We cannot merge the JOIN. */
3085 /* The outgoing edge for the current COMBO block should already
3086 be correct. Verify this. */
3087 gcc_assert (single_succ_p (combo_bb)
3088 && single_succ (combo_bb) == join_bb);
3090 /* Remove the jump and cruft from the end of the COMBO block. */
3091 if (join_bb != EXIT_BLOCK_PTR)
3092 tidy_fallthru_edge (single_succ_edge (combo_bb));
3095 num_updated_if_blocks++;
3098 /* Find a block ending in a simple IF condition and try to transform it
3099 in some way. When converting a multi-block condition, put the new code
3100 in the first such block and delete the rest. Return a pointer to this
3101 first block if some transformation was done. Return NULL otherwise. */
3103 static basic_block
3104 find_if_header (basic_block test_bb, int pass)
3106 ce_if_block_t ce_info;
3107 edge then_edge;
3108 edge else_edge;
3110 /* The kind of block we're looking for has exactly two successors. */
3111 if (EDGE_COUNT (test_bb->succs) != 2)
3112 return NULL;
3114 then_edge = EDGE_SUCC (test_bb, 0);
3115 else_edge = EDGE_SUCC (test_bb, 1);
3117 if (df_get_bb_dirty (then_edge->dest))
3118 return NULL;
3119 if (df_get_bb_dirty (else_edge->dest))
3120 return NULL;
3122 /* Neither edge should be abnormal. */
3123 if ((then_edge->flags & EDGE_COMPLEX)
3124 || (else_edge->flags & EDGE_COMPLEX))
3125 return NULL;
3127 /* Nor exit the loop. */
3128 if ((then_edge->flags & EDGE_LOOP_EXIT)
3129 || (else_edge->flags & EDGE_LOOP_EXIT))
3130 return NULL;
3132 /* The THEN edge is canonically the one that falls through. */
3133 if (then_edge->flags & EDGE_FALLTHRU)
3135 else if (else_edge->flags & EDGE_FALLTHRU)
3137 edge e = else_edge;
3138 else_edge = then_edge;
3139 then_edge = e;
3141 else
3142 /* Otherwise this must be a multiway branch of some sort. */
3143 return NULL;
3145 memset (&ce_info, 0, sizeof (ce_info));
3146 ce_info.test_bb = test_bb;
3147 ce_info.then_bb = then_edge->dest;
3148 ce_info.else_bb = else_edge->dest;
3149 ce_info.pass = pass;
3151 #ifdef IFCVT_INIT_EXTRA_FIELDS
3152 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3153 #endif
3155 if (!reload_completed
3156 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3157 goto success;
3159 if (reload_completed
3160 && targetm.have_conditional_execution ()
3161 && cond_exec_find_if_block (&ce_info))
3162 goto success;
3164 if (HAVE_trap
3165 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3166 && find_cond_trap (test_bb, then_edge, else_edge))
3167 goto success;
3169 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3170 && (reload_completed || !targetm.have_conditional_execution ()))
3172 if (find_if_case_1 (test_bb, then_edge, else_edge))
3173 goto success;
3174 if (find_if_case_2 (test_bb, then_edge, else_edge))
3175 goto success;
3178 return NULL;
3180 success:
3181 if (dump_file)
3182 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3183 /* Set this so we continue looking. */
3184 cond_exec_changed_p = TRUE;
3185 return ce_info.test_bb;
3188 /* Return true if a block has two edges, one of which falls through to the next
3189 block, and the other jumps to a specific block, so that we can tell if the
3190 block is part of an && test or an || test. Returns either -1 or the number
3191 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3193 static int
3194 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3196 edge cur_edge;
3197 int fallthru_p = FALSE;
3198 int jump_p = FALSE;
3199 rtx insn;
3200 rtx end;
3201 int n_insns = 0;
3202 edge_iterator ei;
3204 if (!cur_bb || !target_bb)
3205 return -1;
3207 /* If no edges, obviously it doesn't jump or fallthru. */
3208 if (EDGE_COUNT (cur_bb->succs) == 0)
3209 return FALSE;
3211 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3213 if (cur_edge->flags & EDGE_COMPLEX)
3214 /* Anything complex isn't what we want. */
3215 return -1;
3217 else if (cur_edge->flags & EDGE_FALLTHRU)
3218 fallthru_p = TRUE;
3220 else if (cur_edge->dest == target_bb)
3221 jump_p = TRUE;
3223 else
3224 return -1;
3227 if ((jump_p & fallthru_p) == 0)
3228 return -1;
3230 /* Don't allow calls in the block, since this is used to group && and ||
3231 together for conditional execution support. ??? we should support
3232 conditional execution support across calls for IA-64 some day, but
3233 for now it makes the code simpler. */
3234 end = BB_END (cur_bb);
3235 insn = BB_HEAD (cur_bb);
3237 while (insn != NULL_RTX)
3239 if (CALL_P (insn))
3240 return -1;
3242 if (INSN_P (insn)
3243 && !JUMP_P (insn)
3244 && !DEBUG_INSN_P (insn)
3245 && GET_CODE (PATTERN (insn)) != USE
3246 && GET_CODE (PATTERN (insn)) != CLOBBER)
3247 n_insns++;
3249 if (insn == end)
3250 break;
3252 insn = NEXT_INSN (insn);
3255 return n_insns;
3258 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3259 block. If so, we'll try to convert the insns to not require the branch.
3260 Return TRUE if we were successful at converting the block. */
3262 static int
3263 cond_exec_find_if_block (struct ce_if_block * ce_info)
3265 basic_block test_bb = ce_info->test_bb;
3266 basic_block then_bb = ce_info->then_bb;
3267 basic_block else_bb = ce_info->else_bb;
3268 basic_block join_bb = NULL_BLOCK;
3269 edge cur_edge;
3270 basic_block next;
3271 edge_iterator ei;
3273 ce_info->last_test_bb = test_bb;
3275 /* We only ever should get here after reload,
3276 and if we have conditional execution. */
3277 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3279 /* Discover if any fall through predecessors of the current test basic block
3280 were && tests (which jump to the else block) or || tests (which jump to
3281 the then block). */
3282 if (single_pred_p (test_bb)
3283 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3285 basic_block bb = single_pred (test_bb);
3286 basic_block target_bb;
3287 int max_insns = MAX_CONDITIONAL_EXECUTE;
3288 int n_insns;
3290 /* Determine if the preceding block is an && or || block. */
3291 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3293 ce_info->and_and_p = TRUE;
3294 target_bb = else_bb;
3296 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3298 ce_info->and_and_p = FALSE;
3299 target_bb = then_bb;
3301 else
3302 target_bb = NULL_BLOCK;
3304 if (target_bb && n_insns <= max_insns)
3306 int total_insns = 0;
3307 int blocks = 0;
3309 ce_info->last_test_bb = test_bb;
3311 /* Found at least one && or || block, look for more. */
3314 ce_info->test_bb = test_bb = bb;
3315 total_insns += n_insns;
3316 blocks++;
3318 if (!single_pred_p (bb))
3319 break;
3321 bb = single_pred (bb);
3322 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3324 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3326 ce_info->num_multiple_test_blocks = blocks;
3327 ce_info->num_multiple_test_insns = total_insns;
3329 if (ce_info->and_and_p)
3330 ce_info->num_and_and_blocks = blocks;
3331 else
3332 ce_info->num_or_or_blocks = blocks;
3336 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3337 other than any || blocks which jump to the THEN block. */
3338 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3339 return FALSE;
3341 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3342 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3344 if (cur_edge->flags & EDGE_COMPLEX)
3345 return FALSE;
3348 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3350 if (cur_edge->flags & EDGE_COMPLEX)
3351 return FALSE;
3354 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3355 if (EDGE_COUNT (then_bb->succs) > 0
3356 && (!single_succ_p (then_bb)
3357 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3358 || (epilogue_completed
3359 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3360 return FALSE;
3362 /* If the THEN block has no successors, conditional execution can still
3363 make a conditional call. Don't do this unless the ELSE block has
3364 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3365 Check for the last insn of the THEN block being an indirect jump, which
3366 is listed as not having any successors, but confuses the rest of the CE
3367 code processing. ??? we should fix this in the future. */
3368 if (EDGE_COUNT (then_bb->succs) == 0)
3370 if (single_pred_p (else_bb))
3372 rtx last_insn = BB_END (then_bb);
3374 while (last_insn
3375 && NOTE_P (last_insn)
3376 && last_insn != BB_HEAD (then_bb))
3377 last_insn = PREV_INSN (last_insn);
3379 if (last_insn
3380 && JUMP_P (last_insn)
3381 && ! simplejump_p (last_insn))
3382 return FALSE;
3384 join_bb = else_bb;
3385 else_bb = NULL_BLOCK;
3387 else
3388 return FALSE;
3391 /* If the THEN block's successor is the other edge out of the TEST block,
3392 then we have an IF-THEN combo without an ELSE. */
3393 else if (single_succ (then_bb) == else_bb)
3395 join_bb = else_bb;
3396 else_bb = NULL_BLOCK;
3399 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3400 has exactly one predecessor and one successor, and the outgoing edge
3401 is not complex, then we have an IF-THEN-ELSE combo. */
3402 else if (single_succ_p (else_bb)
3403 && single_succ (then_bb) == single_succ (else_bb)
3404 && single_pred_p (else_bb)
3405 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3406 && !(epilogue_completed
3407 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3408 join_bb = single_succ (else_bb);
3410 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3411 else
3412 return FALSE;
3414 num_possible_if_blocks++;
3416 if (dump_file)
3418 fprintf (dump_file,
3419 "\nIF-THEN%s block found, pass %d, start block %d "
3420 "[insn %d], then %d [%d]",
3421 (else_bb) ? "-ELSE" : "",
3422 ce_info->pass,
3423 test_bb->index,
3424 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3425 then_bb->index,
3426 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3428 if (else_bb)
3429 fprintf (dump_file, ", else %d [%d]",
3430 else_bb->index,
3431 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3433 fprintf (dump_file, ", join %d [%d]",
3434 join_bb->index,
3435 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3437 if (ce_info->num_multiple_test_blocks > 0)
3438 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3439 ce_info->num_multiple_test_blocks,
3440 (ce_info->and_and_p) ? "&&" : "||",
3441 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3442 ce_info->last_test_bb->index,
3443 ((BB_HEAD (ce_info->last_test_bb))
3444 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3445 : -1));
3447 fputc ('\n', dump_file);
3450 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3451 first condition for free, since we've already asserted that there's a
3452 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3453 we checked the FALLTHRU flag, those are already adjacent to the last IF
3454 block. */
3455 /* ??? As an enhancement, move the ELSE block. Have to deal with
3456 BLOCK notes, if by no other means than backing out the merge if they
3457 exist. Sticky enough I don't want to think about it now. */
3458 next = then_bb;
3459 if (else_bb && (next = next->next_bb) != else_bb)
3460 return FALSE;
3461 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3463 if (else_bb)
3464 join_bb = NULL;
3465 else
3466 return FALSE;
3469 /* Do the real work. */
3471 ce_info->else_bb = else_bb;
3472 ce_info->join_bb = join_bb;
3474 /* If we have && and || tests, try to first handle combining the && and ||
3475 tests into the conditional code, and if that fails, go back and handle
3476 it without the && and ||, which at present handles the && case if there
3477 was no ELSE block. */
3478 if (cond_exec_process_if_block (ce_info, TRUE))
3479 return TRUE;
3481 if (ce_info->num_multiple_test_blocks)
3483 cancel_changes (0);
3485 if (cond_exec_process_if_block (ce_info, FALSE))
3486 return TRUE;
3489 return FALSE;
3492 /* Convert a branch over a trap, or a branch
3493 to a trap, into a conditional trap. */
3495 static int
3496 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3498 basic_block then_bb = then_edge->dest;
3499 basic_block else_bb = else_edge->dest;
3500 basic_block other_bb, trap_bb;
3501 rtx trap, jump, cond, cond_earliest, seq;
3502 enum rtx_code code;
3504 /* Locate the block with the trap instruction. */
3505 /* ??? While we look for no successors, we really ought to allow
3506 EH successors. Need to fix merge_if_block for that to work. */
3507 if ((trap = block_has_only_trap (then_bb)) != NULL)
3508 trap_bb = then_bb, other_bb = else_bb;
3509 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3510 trap_bb = else_bb, other_bb = then_bb;
3511 else
3512 return FALSE;
3514 if (dump_file)
3516 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3517 test_bb->index, trap_bb->index);
3520 /* If this is not a standard conditional jump, we can't parse it. */
3521 jump = BB_END (test_bb);
3522 cond = noce_get_condition (jump, &cond_earliest, false);
3523 if (! cond)
3524 return FALSE;
3526 /* If the conditional jump is more than just a conditional jump, then
3527 we can not do if-conversion on this block. */
3528 if (! onlyjump_p (jump))
3529 return FALSE;
3531 /* We must be comparing objects whose modes imply the size. */
3532 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3533 return FALSE;
3535 /* Reverse the comparison code, if necessary. */
3536 code = GET_CODE (cond);
3537 if (then_bb == trap_bb)
3539 code = reversed_comparison_code (cond, jump);
3540 if (code == UNKNOWN)
3541 return FALSE;
3544 /* Attempt to generate the conditional trap. */
3545 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3546 copy_rtx (XEXP (cond, 1)),
3547 TRAP_CODE (PATTERN (trap)));
3548 if (seq == NULL)
3549 return FALSE;
3551 /* Emit the new insns before cond_earliest. */
3552 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3554 /* Delete the trap block if possible. */
3555 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3556 df_set_bb_dirty (test_bb);
3557 df_set_bb_dirty (then_bb);
3558 df_set_bb_dirty (else_bb);
3560 if (EDGE_COUNT (trap_bb->preds) == 0)
3562 delete_basic_block (trap_bb);
3563 num_true_changes++;
3566 /* Wire together the blocks again. */
3567 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3568 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3569 else
3571 rtx lab, newjump;
3573 lab = JUMP_LABEL (jump);
3574 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3575 LABEL_NUSES (lab) += 1;
3576 JUMP_LABEL (newjump) = lab;
3577 emit_barrier_after (newjump);
3579 delete_insn (jump);
3581 if (can_merge_blocks_p (test_bb, other_bb))
3583 merge_blocks (test_bb, other_bb);
3584 num_true_changes++;
3587 num_updated_if_blocks++;
3588 return TRUE;
3591 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3592 return it. */
3594 static rtx
3595 block_has_only_trap (basic_block bb)
3597 rtx trap;
3599 /* We're not the exit block. */
3600 if (bb == EXIT_BLOCK_PTR)
3601 return NULL_RTX;
3603 /* The block must have no successors. */
3604 if (EDGE_COUNT (bb->succs) > 0)
3605 return NULL_RTX;
3607 /* The only instruction in the THEN block must be the trap. */
3608 trap = first_active_insn (bb);
3609 if (! (trap == BB_END (bb)
3610 && GET_CODE (PATTERN (trap)) == TRAP_IF
3611 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3612 return NULL_RTX;
3614 return trap;
3617 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3618 transformable, but not necessarily the other. There need be no
3619 JOIN block.
3621 Return TRUE if we were successful at converting the block.
3623 Cases we'd like to look at:
3626 if (test) goto over; // x not live
3627 x = a;
3628 goto label;
3629 over:
3631 becomes
3633 x = a;
3634 if (! test) goto label;
3637 if (test) goto E; // x not live
3638 x = big();
3639 goto L;
3641 x = b;
3642 goto M;
3644 becomes
3646 x = b;
3647 if (test) goto M;
3648 x = big();
3649 goto L;
3651 (3) // This one's really only interesting for targets that can do
3652 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3653 // it results in multiple branches on a cache line, which often
3654 // does not sit well with predictors.
3656 if (test1) goto E; // predicted not taken
3657 x = a;
3658 if (test2) goto F;
3661 x = b;
3664 becomes
3666 x = a;
3667 if (test1) goto E;
3668 if (test2) goto F;
3670 Notes:
3672 (A) Don't do (2) if the branch is predicted against the block we're
3673 eliminating. Do it anyway if we can eliminate a branch; this requires
3674 that the sole successor of the eliminated block postdominate the other
3675 side of the if.
3677 (B) With CE, on (3) we can steal from both sides of the if, creating
3679 if (test1) x = a;
3680 if (!test1) x = b;
3681 if (test1) goto J;
3682 if (test2) goto F;
3686 Again, this is most useful if J postdominates.
3688 (C) CE substitutes for helpful life information.
3690 (D) These heuristics need a lot of work. */
3692 /* Tests for case 1 above. */
3694 static int
3695 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3697 basic_block then_bb = then_edge->dest;
3698 basic_block else_bb = else_edge->dest;
3699 basic_block new_bb;
3700 int then_bb_index;
3702 /* If we are partitioning hot/cold basic blocks, we don't want to
3703 mess up unconditional or indirect jumps that cross between hot
3704 and cold sections.
3706 Basic block partitioning may result in some jumps that appear to
3707 be optimizable (or blocks that appear to be mergeable), but which really
3708 must be left untouched (they are required to make it safely across
3709 partition boundaries). See the comments at the top of
3710 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3712 if ((BB_END (then_bb)
3713 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3714 || (BB_END (test_bb)
3715 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3716 || (BB_END (else_bb)
3717 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3718 NULL_RTX)))
3719 return FALSE;
3721 /* THEN has one successor. */
3722 if (!single_succ_p (then_bb))
3723 return FALSE;
3725 /* THEN does not fall through, but is not strange either. */
3726 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3727 return FALSE;
3729 /* THEN has one predecessor. */
3730 if (!single_pred_p (then_bb))
3731 return FALSE;
3733 /* THEN must do something. */
3734 if (forwarder_block_p (then_bb))
3735 return FALSE;
3737 num_possible_if_blocks++;
3738 if (dump_file)
3739 fprintf (dump_file,
3740 "\nIF-CASE-1 found, start %d, then %d\n",
3741 test_bb->index, then_bb->index);
3743 /* THEN is small. */
3744 if (! cheap_bb_rtx_cost_p (then_bb,
3745 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3746 predictable_edge_p (then_edge)))))
3747 return FALSE;
3749 /* Registers set are dead, or are predicable. */
3750 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3751 single_succ (then_bb), 1))
3752 return FALSE;
3754 /* Conversion went ok, including moving the insns and fixing up the
3755 jump. Adjust the CFG to match. */
3757 /* We can avoid creating a new basic block if then_bb is immediately
3758 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3759 thru to else_bb. */
3761 if (then_bb->next_bb == else_bb
3762 && then_bb->prev_bb == test_bb
3763 && else_bb != EXIT_BLOCK_PTR)
3765 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3766 new_bb = 0;
3768 else
3769 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3770 else_bb);
3772 df_set_bb_dirty (test_bb);
3773 df_set_bb_dirty (else_bb);
3775 then_bb_index = then_bb->index;
3776 delete_basic_block (then_bb);
3778 /* Make rest of code believe that the newly created block is the THEN_BB
3779 block we removed. */
3780 if (new_bb)
3782 df_bb_replace (then_bb_index, new_bb);
3783 /* Since the fallthru edge was redirected from test_bb to new_bb,
3784 we need to ensure that new_bb is in the same partition as
3785 test bb (you can not fall through across section boundaries). */
3786 BB_COPY_PARTITION (new_bb, test_bb);
3789 num_true_changes++;
3790 num_updated_if_blocks++;
3792 return TRUE;
3795 /* Test for case 2 above. */
3797 static int
3798 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3800 basic_block then_bb = then_edge->dest;
3801 basic_block else_bb = else_edge->dest;
3802 edge else_succ;
3803 rtx note;
3805 /* If we are partitioning hot/cold basic blocks, we don't want to
3806 mess up unconditional or indirect jumps that cross between hot
3807 and cold sections.
3809 Basic block partitioning may result in some jumps that appear to
3810 be optimizable (or blocks that appear to be mergeable), but which really
3811 must be left untouched (they are required to make it safely across
3812 partition boundaries). See the comments at the top of
3813 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3815 if ((BB_END (then_bb)
3816 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3817 || (BB_END (test_bb)
3818 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3819 || (BB_END (else_bb)
3820 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3821 NULL_RTX)))
3822 return FALSE;
3824 /* ELSE has one successor. */
3825 if (!single_succ_p (else_bb))
3826 return FALSE;
3827 else
3828 else_succ = single_succ_edge (else_bb);
3830 /* ELSE outgoing edge is not complex. */
3831 if (else_succ->flags & EDGE_COMPLEX)
3832 return FALSE;
3834 /* ELSE has one predecessor. */
3835 if (!single_pred_p (else_bb))
3836 return FALSE;
3838 /* THEN is not EXIT. */
3839 if (then_bb->index < NUM_FIXED_BLOCKS)
3840 return FALSE;
3842 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3843 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3844 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3846 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3847 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3848 else_succ->dest))
3850 else
3851 return FALSE;
3853 num_possible_if_blocks++;
3854 if (dump_file)
3855 fprintf (dump_file,
3856 "\nIF-CASE-2 found, start %d, else %d\n",
3857 test_bb->index, else_bb->index);
3859 /* ELSE is small. */
3860 if (! cheap_bb_rtx_cost_p (else_bb,
3861 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3862 predictable_edge_p (else_edge)))))
3863 return FALSE;
3865 /* Registers set are dead, or are predicable. */
3866 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3867 return FALSE;
3869 /* Conversion went ok, including moving the insns and fixing up the
3870 jump. Adjust the CFG to match. */
3872 df_set_bb_dirty (test_bb);
3873 df_set_bb_dirty (then_bb);
3874 delete_basic_block (else_bb);
3876 num_true_changes++;
3877 num_updated_if_blocks++;
3879 /* ??? We may now fallthru from one of THEN's successors into a join
3880 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3882 return TRUE;
3885 /* A subroutine of dead_or_predicable called through for_each_rtx.
3886 Return 1 if a memory is found. */
3888 static int
3889 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3891 return MEM_P (*px);
3894 /* Used by the code above to perform the actual rtl transformations.
3895 Return TRUE if successful.
3897 TEST_BB is the block containing the conditional branch. MERGE_BB
3898 is the block containing the code to manipulate. NEW_DEST is the
3899 label TEST_BB should be branching to after the conversion.
3900 REVERSEP is true if the sense of the branch should be reversed. */
3902 static int
3903 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3904 basic_block other_bb, basic_block new_dest, int reversep)
3906 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3907 /* Number of pending changes. */
3908 int n_validated_changes = 0;
3910 jump = BB_END (test_bb);
3912 /* Find the extent of the real code in the merge block. */
3913 head = BB_HEAD (merge_bb);
3914 end = BB_END (merge_bb);
3916 while (DEBUG_INSN_P (end) && end != head)
3917 end = PREV_INSN (end);
3919 /* If merge_bb ends with a tablejump, predicating/moving insn's
3920 into test_bb and then deleting merge_bb will result in the jumptable
3921 that follows merge_bb being removed along with merge_bb and then we
3922 get an unresolved reference to the jumptable. */
3923 if (tablejump_p (end, NULL, NULL))
3924 return FALSE;
3926 if (LABEL_P (head))
3927 head = NEXT_INSN (head);
3928 while (DEBUG_INSN_P (head) && head != end)
3929 head = NEXT_INSN (head);
3930 if (NOTE_P (head))
3932 if (head == end)
3934 head = end = NULL_RTX;
3935 goto no_body;
3937 head = NEXT_INSN (head);
3938 while (DEBUG_INSN_P (head) && head != end)
3939 head = NEXT_INSN (head);
3942 if (JUMP_P (end))
3944 if (head == end)
3946 head = end = NULL_RTX;
3947 goto no_body;
3949 end = PREV_INSN (end);
3950 while (DEBUG_INSN_P (end) && end != head)
3951 end = PREV_INSN (end);
3954 /* Disable handling dead code by conditional execution if the machine needs
3955 to do anything funny with the tests, etc. */
3956 #ifndef IFCVT_MODIFY_TESTS
3957 if (targetm.have_conditional_execution ())
3959 /* In the conditional execution case, we have things easy. We know
3960 the condition is reversible. We don't have to check life info
3961 because we're going to conditionally execute the code anyway.
3962 All that's left is making sure the insns involved can actually
3963 be predicated. */
3965 rtx cond, prob_val;
3967 cond = cond_exec_get_condition (jump);
3968 if (! cond)
3969 return FALSE;
3971 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3972 if (prob_val)
3973 prob_val = XEXP (prob_val, 0);
3975 if (reversep)
3977 enum rtx_code rev = reversed_comparison_code (cond, jump);
3978 if (rev == UNKNOWN)
3979 return FALSE;
3980 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3981 XEXP (cond, 1));
3982 if (prob_val)
3983 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3986 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
3987 && verify_changes (0))
3988 n_validated_changes = num_validated_changes ();
3989 else
3990 cancel_changes (0);
3992 earliest = jump;
3994 #endif
3995 /* Try the NCE path if the CE path did not result in any changes. */
3996 if (n_validated_changes == 0)
3998 /* In the non-conditional execution case, we have to verify that there
3999 are no trapping operations, no calls, no references to memory, and
4000 that any registers modified are dead at the branch site. */
4002 rtx insn, cond, prev;
4003 bitmap merge_set, merge_set_noclobber, test_live, test_set;
4004 unsigned i, fail = 0;
4005 bitmap_iterator bi;
4007 /* Check for no calls or trapping operations. */
4008 for (insn = head; ; insn = NEXT_INSN (insn))
4010 if (CALL_P (insn))
4011 return FALSE;
4012 if (NONDEBUG_INSN_P (insn))
4014 if (may_trap_p (PATTERN (insn)))
4015 return FALSE;
4017 /* ??? Even non-trapping memories such as stack frame
4018 references must be avoided. For stores, we collect
4019 no lifetime info; for reads, we'd have to assert
4020 true_dependence false against every store in the
4021 TEST range. */
4022 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
4023 return FALSE;
4025 if (insn == end)
4026 break;
4029 if (! any_condjump_p (jump))
4030 return FALSE;
4032 /* Find the extent of the conditional. */
4033 cond = noce_get_condition (jump, &earliest, false);
4034 if (! cond)
4035 return FALSE;
4037 /* Collect:
4038 MERGE_SET = set of registers set in MERGE_BB
4039 MERGE_SET_NOCLOBBER = like MERGE_SET, but only includes registers
4040 that are really set, not just clobbered.
4041 TEST_LIVE = set of registers live at EARLIEST
4042 TEST_SET = set of registers set between EARLIEST and the
4043 end of the block. */
4045 merge_set = BITMAP_ALLOC (&reg_obstack);
4046 merge_set_noclobber = BITMAP_ALLOC (&reg_obstack);
4047 test_live = BITMAP_ALLOC (&reg_obstack);
4048 test_set = BITMAP_ALLOC (&reg_obstack);
4050 /* ??? bb->local_set is only valid during calculate_global_regs_live,
4051 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
4052 since we've already asserted that MERGE_BB is small. */
4053 /* If we allocated new pseudos (e.g. in the conditional move
4054 expander called from noce_emit_cmove), we must resize the
4055 array first. */
4056 if (max_regno < max_reg_num ())
4057 max_regno = max_reg_num ();
4059 FOR_BB_INSNS (merge_bb, insn)
4061 if (NONDEBUG_INSN_P (insn))
4063 df_simulate_find_defs (insn, merge_set);
4064 df_simulate_find_noclobber_defs (insn, merge_set_noclobber);
4068 /* For small register class machines, don't lengthen lifetimes of
4069 hard registers before reload. */
4070 if (! reload_completed
4071 && targetm.small_register_classes_for_mode_p (VOIDmode))
4073 EXECUTE_IF_SET_IN_BITMAP (merge_set_noclobber, 0, i, bi)
4075 if (i < FIRST_PSEUDO_REGISTER
4076 && ! fixed_regs[i]
4077 && ! global_regs[i])
4078 fail = 1;
4082 /* For TEST, we're interested in a range of insns, not a whole block.
4083 Moreover, we're interested in the insns live from OTHER_BB. */
4085 /* The loop below takes the set of live registers
4086 after JUMP, and calculates the live set before EARLIEST. */
4087 bitmap_copy (test_live, df_get_live_in (other_bb));
4088 df_simulate_initialize_backwards (test_bb, test_live);
4089 for (insn = jump; ; insn = prev)
4091 if (INSN_P (insn))
4093 df_simulate_find_defs (insn, test_set);
4094 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4096 prev = PREV_INSN (insn);
4097 if (insn == earliest)
4098 break;
4101 /* We can perform the transformation if
4102 MERGE_SET_NOCLOBBER & TEST_SET
4104 MERGE_SET & TEST_LIVE)
4106 TEST_SET & DF_LIVE_IN (merge_bb)
4107 are empty. */
4109 if (bitmap_intersect_p (test_set, merge_set_noclobber)
4110 || bitmap_intersect_p (test_live, merge_set)
4111 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4112 fail = 1;
4114 BITMAP_FREE (merge_set_noclobber);
4115 BITMAP_FREE (merge_set);
4116 BITMAP_FREE (test_live);
4117 BITMAP_FREE (test_set);
4119 if (fail)
4120 return FALSE;
4123 no_body:
4124 /* We don't want to use normal invert_jump or redirect_jump because
4125 we don't want to delete_insn called. Also, we want to do our own
4126 change group management. */
4128 old_dest = JUMP_LABEL (jump);
4129 if (other_bb != new_dest)
4131 new_label = block_label (new_dest);
4132 if (reversep
4133 ? ! invert_jump_1 (jump, new_label)
4134 : ! redirect_jump_1 (jump, new_label))
4135 goto cancel;
4138 if (verify_changes (n_validated_changes))
4139 confirm_change_group ();
4140 else
4141 goto cancel;
4143 if (other_bb != new_dest)
4145 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4147 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4148 if (reversep)
4150 gcov_type count, probability;
4151 count = BRANCH_EDGE (test_bb)->count;
4152 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4153 FALLTHRU_EDGE (test_bb)->count = count;
4154 probability = BRANCH_EDGE (test_bb)->probability;
4155 BRANCH_EDGE (test_bb)->probability
4156 = FALLTHRU_EDGE (test_bb)->probability;
4157 FALLTHRU_EDGE (test_bb)->probability = probability;
4158 update_br_prob_note (test_bb);
4162 /* Move the insns out of MERGE_BB to before the branch. */
4163 if (head != NULL)
4165 rtx insn;
4167 if (end == BB_END (merge_bb))
4168 BB_END (merge_bb) = PREV_INSN (head);
4170 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4171 notes might become invalid. */
4172 insn = head;
4175 rtx note, set;
4177 if (! INSN_P (insn))
4178 continue;
4179 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4180 if (! note)
4181 continue;
4182 set = single_set (insn);
4183 if (!set || !function_invariant_p (SET_SRC (set))
4184 || !function_invariant_p (XEXP (note, 0)))
4185 remove_note (insn, note);
4186 } while (insn != end && (insn = NEXT_INSN (insn)));
4188 reorder_insns (head, end, PREV_INSN (earliest));
4191 /* Remove the jump and edge if we can. */
4192 if (other_bb == new_dest)
4194 delete_insn (jump);
4195 remove_edge (BRANCH_EDGE (test_bb));
4196 /* ??? Can't merge blocks here, as then_bb is still in use.
4197 At minimum, the merge will get done just before bb-reorder. */
4200 return TRUE;
4202 cancel:
4203 cancel_changes (0);
4204 return FALSE;
4207 /* Main entry point for all if-conversion. */
4209 static void
4210 if_convert (void)
4212 basic_block bb;
4213 int pass;
4215 if (optimize == 1)
4217 df_live_add_problem ();
4218 df_live_set_all_dirty ();
4221 num_possible_if_blocks = 0;
4222 num_updated_if_blocks = 0;
4223 num_true_changes = 0;
4225 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4226 mark_loop_exit_edges ();
4227 loop_optimizer_finalize ();
4228 free_dominance_info (CDI_DOMINATORS);
4230 /* Compute postdominators. */
4231 calculate_dominance_info (CDI_POST_DOMINATORS);
4233 df_set_flags (DF_LR_RUN_DCE);
4235 /* Go through each of the basic blocks looking for things to convert. If we
4236 have conditional execution, we make multiple passes to allow us to handle
4237 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4238 pass = 0;
4241 df_analyze ();
4242 /* Only need to do dce on the first pass. */
4243 df_clear_flags (DF_LR_RUN_DCE);
4244 cond_exec_changed_p = FALSE;
4245 pass++;
4247 #ifdef IFCVT_MULTIPLE_DUMPS
4248 if (dump_file && pass > 1)
4249 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4250 #endif
4252 FOR_EACH_BB (bb)
4254 basic_block new_bb;
4255 while (!df_get_bb_dirty (bb)
4256 && (new_bb = find_if_header (bb, pass)) != NULL)
4257 bb = new_bb;
4260 #ifdef IFCVT_MULTIPLE_DUMPS
4261 if (dump_file && cond_exec_changed_p)
4263 if (dump_flags & TDF_SLIM)
4264 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4265 else
4266 print_rtl_with_bb (dump_file, get_insns ());
4268 #endif
4270 while (cond_exec_changed_p);
4272 #ifdef IFCVT_MULTIPLE_DUMPS
4273 if (dump_file)
4274 fprintf (dump_file, "\n\n========== no more changes\n");
4275 #endif
4277 free_dominance_info (CDI_POST_DOMINATORS);
4279 if (dump_file)
4280 fflush (dump_file);
4282 clear_aux_for_blocks ();
4284 /* If we allocated new pseudos, we must resize the array for sched1. */
4285 if (max_regno < max_reg_num ())
4286 max_regno = max_reg_num ();
4288 /* Write the final stats. */
4289 if (dump_file && num_possible_if_blocks > 0)
4291 fprintf (dump_file,
4292 "\n%d possible IF blocks searched.\n",
4293 num_possible_if_blocks);
4294 fprintf (dump_file,
4295 "%d IF blocks converted.\n",
4296 num_updated_if_blocks);
4297 fprintf (dump_file,
4298 "%d true changes made.\n\n\n",
4299 num_true_changes);
4302 if (optimize == 1)
4303 df_remove_problem (df_live);
4305 #ifdef ENABLE_CHECKING
4306 verify_flow_info ();
4307 #endif
4310 static bool
4311 gate_handle_if_conversion (void)
4313 return (optimize > 0)
4314 && dbg_cnt (if_conversion);
4317 /* If-conversion and CFG cleanup. */
4318 static unsigned int
4319 rest_of_handle_if_conversion (void)
4321 if (flag_if_conversion)
4323 if (dump_file)
4324 dump_flow_info (dump_file, dump_flags);
4325 cleanup_cfg (CLEANUP_EXPENSIVE);
4326 if_convert ();
4329 cleanup_cfg (0);
4330 return 0;
4333 struct rtl_opt_pass pass_rtl_ifcvt =
4336 RTL_PASS,
4337 "ce1", /* name */
4338 gate_handle_if_conversion, /* gate */
4339 rest_of_handle_if_conversion, /* execute */
4340 NULL, /* sub */
4341 NULL, /* next */
4342 0, /* static_pass_number */
4343 TV_IFCVT, /* tv_id */
4344 0, /* properties_required */
4345 0, /* properties_provided */
4346 0, /* properties_destroyed */
4347 0, /* todo_flags_start */
4348 TODO_df_finish | TODO_verify_rtl_sharing |
4349 TODO_dump_func /* todo_flags_finish */
4353 static bool
4354 gate_handle_if_after_combine (void)
4356 return optimize > 0 && flag_if_conversion
4357 && dbg_cnt (if_after_combine);
4361 /* Rerun if-conversion, as combine may have simplified things enough
4362 to now meet sequence length restrictions. */
4363 static unsigned int
4364 rest_of_handle_if_after_combine (void)
4366 if_convert ();
4367 return 0;
4370 struct rtl_opt_pass pass_if_after_combine =
4373 RTL_PASS,
4374 "ce2", /* name */
4375 gate_handle_if_after_combine, /* gate */
4376 rest_of_handle_if_after_combine, /* execute */
4377 NULL, /* sub */
4378 NULL, /* next */
4379 0, /* static_pass_number */
4380 TV_IFCVT, /* tv_id */
4381 0, /* properties_required */
4382 0, /* properties_provided */
4383 0, /* properties_destroyed */
4384 0, /* todo_flags_start */
4385 TODO_df_finish | TODO_verify_rtl_sharing |
4386 TODO_dump_func |
4387 TODO_ggc_collect /* todo_flags_finish */
4392 static bool
4393 gate_handle_if_after_reload (void)
4395 return optimize > 0 && flag_if_conversion2
4396 && dbg_cnt (if_after_reload);
4399 static unsigned int
4400 rest_of_handle_if_after_reload (void)
4402 if_convert ();
4403 return 0;
4407 struct rtl_opt_pass pass_if_after_reload =
4410 RTL_PASS,
4411 "ce3", /* name */
4412 gate_handle_if_after_reload, /* gate */
4413 rest_of_handle_if_after_reload, /* execute */
4414 NULL, /* sub */
4415 NULL, /* next */
4416 0, /* static_pass_number */
4417 TV_IFCVT2, /* tv_id */
4418 0, /* properties_required */
4419 0, /* properties_provided */
4420 0, /* properties_destroyed */
4421 0, /* todo_flags_start */
4422 TODO_df_finish | TODO_verify_rtl_sharing |
4423 TODO_dump_func |
4424 TODO_ggc_collect /* todo_flags_finish */