1 // defineclass.cc - defining a class from .class format.
3 /* Copyright (C) 2001, 2002 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
11 // Written by Tom Tromey <tromey@redhat.com>
13 // Define VERIFY_DEBUG to enable debugging output.
19 #include <java-insns.h>
20 #include <java-interp.h>
24 #include <java/lang/Class.h>
25 #include <java/lang/VerifyError.h>
26 #include <java/lang/Throwable.h>
27 #include <java/lang/reflect/Modifier.h>
28 #include <java/lang/StringBuffer.h>
32 #endif /* VERIFY_DEBUG */
35 static void debug_print (const char *fmt
, ...)
36 __attribute__ ((format (printf
, 1, 2)));
39 debug_print (const char *fmt
, ...)
44 vfprintf (stderr
, fmt
, ap
);
46 #endif /* VERIFY_DEBUG */
49 class _Jv_BytecodeVerifier
53 static const int FLAG_INSN_START
= 1;
54 static const int FLAG_BRANCH_TARGET
= 2;
59 struct subr_entry_info
;
64 // The PC corresponding to the start of the current instruction.
67 // The current state of the stack, locals, etc.
70 // We store the state at branch targets, for merging. This holds
74 // We keep a linked list of all the PCs which we must reverify.
75 // The link is done using the PC values. This is the head of the
79 // We keep some flags for each instruction. The values are the
80 // FLAG_* constants defined above.
83 // We need to keep track of which instructions can call a given
84 // subroutine. FIXME: this is inefficient. We keep a linked list
85 // of all calling `jsr's at at each jsr target.
88 // We keep a linked list of entries which map each `ret' instruction
89 // to its unique subroutine entry point. We expect that there won't
90 // be many `ret' instructions, so a linked list is ok.
91 subr_entry_info
*entry_points
;
93 // The bytecode itself.
94 unsigned char *bytecode
;
96 _Jv_InterpException
*exception
;
101 _Jv_InterpMethod
*current_method
;
103 // A linked list of utf8 objects we allocate. This is really ugly,
104 // but without this our utf8 objects would be collected.
105 linked_utf8
*utf8_list
;
113 _Jv_Utf8Const
*make_utf8_const (char *s
, int len
)
115 _Jv_Utf8Const
*val
= _Jv_makeUtf8Const (s
, len
);
116 _Jv_Utf8Const
*r
= (_Jv_Utf8Const
*) _Jv_Malloc (sizeof (_Jv_Utf8Const
)
119 r
->length
= val
->length
;
121 memcpy (r
->data
, val
->data
, val
->length
+ 1);
123 linked_utf8
*lu
= (linked_utf8
*) _Jv_Malloc (sizeof (linked_utf8
));
125 lu
->next
= utf8_list
;
131 // This enum holds a list of tags for all the different types we
132 // need to handle. Reference types are treated specially by the
138 // The values for primitive types are chosen to correspond to values
139 // specified to newarray.
149 // Used when overwriting second word of a double or long in the
150 // local variables. Also used after merging local variable states
151 // to indicate an unusable value.
156 // There is an obscure special case which requires us to note when
157 // a local variable has not been used by a subroutine. See
158 // push_jump_merge for more information.
159 unused_by_subroutine_type
,
161 // Everything after `reference_type' must be a reference type.
164 unresolved_reference_type
,
165 uninitialized_reference_type
,
166 uninitialized_unresolved_reference_type
169 // Return the type_val corresponding to a primitive signature
170 // character. For instance `I' returns `int.class'.
171 type_val
get_type_val_for_signature (jchar sig
)
204 verify_fail ("invalid signature");
209 // Return the type_val corresponding to a primitive class.
210 type_val
get_type_val_for_signature (jclass k
)
212 return get_type_val_for_signature ((jchar
) k
->method_count
);
215 // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
216 // TARGET haven't been prepared.
217 static bool is_assignable_from_slow (jclass target
, jclass source
)
219 // This will terminate when SOURCE==Object.
222 if (source
== target
)
225 if (target
->isPrimitive () || source
->isPrimitive ())
228 if (target
->isArray ())
230 if (! source
->isArray ())
232 target
= target
->getComponentType ();
233 source
= source
->getComponentType ();
235 else if (target
->isInterface ())
237 for (int i
= 0; i
< source
->interface_count
; ++i
)
239 // We use a recursive call because we also need to
240 // check superinterfaces.
241 if (is_assignable_from_slow (target
, source
->interfaces
[i
]))
244 source
= source
->getSuperclass ();
248 // We must do this check before we check to see if SOURCE is
249 // an interface. This way we know that any interface is
250 // assignable to an Object.
251 else if (target
== &java::lang::Object::class$
)
253 else if (source
->isInterface ())
255 for (int i
= 0; i
< target
->interface_count
; ++i
)
257 // We use a recursive call because we also need to
258 // check superinterfaces.
259 if (is_assignable_from_slow (target
->interfaces
[i
], source
))
262 target
= target
->getSuperclass ();
266 else if (source
== &java::lang::Object::class$
)
269 source
= source
->getSuperclass ();
273 // This is used to keep track of which `jsr's correspond to a given
277 // PC of the instruction just after the jsr.
283 // This is used to keep track of which subroutine entry point
284 // corresponds to which `ret' instruction.
285 struct subr_entry_info
287 // PC of the subroutine entry point.
289 // PC of the `ret' instruction.
292 subr_entry_info
*next
;
295 // The `type' class is used to represent a single type in the
301 // Some associated data.
304 // For a resolved reference type, this is a pointer to the class.
306 // For other reference types, this it the name of the class.
309 // This is used when constructing a new object. It is the PC of the
310 // `new' instruction which created the object. We use the special
311 // value -2 to mean that this is uninitialized, and the special
312 // value -1 for the case where the current method is itself the
316 static const int UNINIT
= -2;
317 static const int SELF
= -1;
319 // Basic constructor.
322 key
= unsuitable_type
;
327 // Make a new instance given the type tag. We assume a generic
328 // `reference_type' means Object.
333 if (key
== reference_type
)
334 data
.klass
= &java::lang::Object::class$
;
338 // Make a new instance given a class.
341 key
= reference_type
;
346 // Make a new instance given the name of a class.
347 type (_Jv_Utf8Const
*n
)
349 key
= unresolved_reference_type
;
362 // These operators are required because libgcj can't link in
364 void *operator new[] (size_t bytes
)
366 return _Jv_Malloc (bytes
);
369 void operator delete[] (void *mem
)
374 type
& operator= (type_val k
)
382 type
& operator= (const type
& t
)
390 // Promote a numeric type.
393 if (key
== boolean_type
|| key
== char_type
394 || key
== byte_type
|| key
== short_type
)
399 // If *THIS is an unresolved reference type, resolve it.
400 void resolve (_Jv_BytecodeVerifier
*verifier
)
402 if (key
!= unresolved_reference_type
403 && key
!= uninitialized_unresolved_reference_type
)
406 using namespace java::lang
;
407 java::lang::ClassLoader
*loader
408 = verifier
->current_class
->getClassLoader();
409 // We might see either kind of name. Sigh.
410 if (data
.name
->data
[0] == 'L'
411 && data
.name
->data
[data
.name
->length
- 1] == ';')
412 data
.klass
= _Jv_FindClassFromSignature (data
.name
->data
, loader
);
414 data
.klass
= Class::forName (_Jv_NewStringUtf8Const (data
.name
),
416 key
= (key
== unresolved_reference_type
418 : uninitialized_reference_type
);
421 // Mark this type as the uninitialized result of `new'.
422 void set_uninitialized (int npc
, _Jv_BytecodeVerifier
*verifier
)
424 if (key
== reference_type
)
425 key
= uninitialized_reference_type
;
426 else if (key
== unresolved_reference_type
)
427 key
= uninitialized_unresolved_reference_type
;
429 verifier
->verify_fail ("internal error in type::uninitialized");
433 // Mark this type as now initialized.
434 void set_initialized (int npc
)
436 if (npc
!= UNINIT
&& pc
== npc
437 && (key
== uninitialized_reference_type
438 || key
== uninitialized_unresolved_reference_type
))
440 key
= (key
== uninitialized_reference_type
442 : unresolved_reference_type
);
448 // Return true if an object of type K can be assigned to a variable
449 // of type *THIS. Handle various special cases too. Might modify
450 // *THIS or K. Note however that this does not perform numeric
452 bool compatible (type
&k
, _Jv_BytecodeVerifier
*verifier
)
454 // Any type is compatible with the unsuitable type.
455 if (key
== unsuitable_type
)
458 if (key
< reference_type
|| k
.key
< reference_type
)
461 // The `null' type is convertible to any reference type.
462 // FIXME: is this correct for THIS?
463 if (key
== null_type
|| k
.key
== null_type
)
466 // Any reference type is convertible to Object. This is a special
467 // case so we don't need to unnecessarily resolve a class.
468 if (key
== reference_type
469 && data
.klass
== &java::lang::Object::class$
)
472 // An initialized type and an uninitialized type are not
474 if (isinitialized () != k
.isinitialized ())
477 // Two uninitialized objects are compatible if either:
478 // * The PCs are identical, or
479 // * One PC is UNINIT.
480 if (! isinitialized ())
482 if (pc
!= k
.pc
&& pc
!= UNINIT
&& k
.pc
!= UNINIT
)
486 // Two unresolved types are equal if their names are the same.
489 && _Jv_equalUtf8Consts (data
.name
, k
.data
.name
))
492 // We must resolve both types and check assignability.
494 k
.resolve (verifier
);
495 return is_assignable_from_slow (data
.klass
, k
.data
.klass
);
500 return key
== void_type
;
505 return key
== long_type
|| key
== double_type
;
508 // Return number of stack or local variable slots taken by this
512 return iswide () ? 2 : 1;
515 bool isarray () const
517 // We treat null_type as not an array. This is ok based on the
518 // current uses of this method.
519 if (key
== reference_type
)
520 return data
.klass
->isArray ();
521 else if (key
== unresolved_reference_type
)
522 return data
.name
->data
[0] == '[';
528 return key
== null_type
;
531 bool isinterface (_Jv_BytecodeVerifier
*verifier
)
534 if (key
!= reference_type
)
536 return data
.klass
->isInterface ();
539 bool isabstract (_Jv_BytecodeVerifier
*verifier
)
542 if (key
!= reference_type
)
544 using namespace java::lang::reflect
;
545 return Modifier::isAbstract (data
.klass
->getModifiers ());
548 // Return the element type of an array.
549 type
element_type (_Jv_BytecodeVerifier
*verifier
)
551 // FIXME: maybe should do string manipulation here.
553 if (key
!= reference_type
)
554 verifier
->verify_fail ("programmer error in type::element_type()", -1);
556 jclass k
= data
.klass
->getComponentType ();
557 if (k
->isPrimitive ())
558 return type (verifier
->get_type_val_for_signature (k
));
562 // Return the array type corresponding to an initialized
563 // reference. We could expand this to work for other kinds of
564 // types, but currently we don't need to.
565 type
to_array (_Jv_BytecodeVerifier
*verifier
)
567 // Resolving isn't ideal, because it might force us to load
568 // another class, but it's easy. FIXME?
569 if (key
== unresolved_reference_type
)
572 if (key
== reference_type
)
573 return type (_Jv_GetArrayClass (data
.klass
,
574 data
.klass
->getClassLoader ()));
576 verifier
->verify_fail ("internal error in type::to_array()");
579 bool isreference () const
581 return key
>= reference_type
;
589 bool isinitialized () const
591 return (key
== reference_type
593 || key
== unresolved_reference_type
);
596 bool isresolved () const
598 return (key
== reference_type
600 || key
== uninitialized_reference_type
);
603 void verify_dimensions (int ndims
, _Jv_BytecodeVerifier
*verifier
)
605 // The way this is written, we don't need to check isarray().
606 if (key
== reference_type
)
608 jclass k
= data
.klass
;
609 while (k
->isArray () && ndims
> 0)
611 k
= k
->getComponentType ();
617 // We know KEY == unresolved_reference_type.
618 char *p
= data
.name
->data
;
619 while (*p
++ == '[' && ndims
-- > 0)
624 verifier
->verify_fail ("array type has fewer dimensions than required");
627 // Merge OLD_TYPE into this. On error throw exception.
628 bool merge (type
& old_type
, bool local_semantics
,
629 _Jv_BytecodeVerifier
*verifier
)
631 bool changed
= false;
632 bool refo
= old_type
.isreference ();
633 bool refn
= isreference ();
636 if (old_type
.key
== null_type
)
638 else if (key
== null_type
)
643 else if (isinitialized () != old_type
.isinitialized ())
644 verifier
->verify_fail ("merging initialized and uninitialized types");
647 if (! isinitialized ())
651 else if (old_type
.pc
== UNINIT
)
653 else if (pc
!= old_type
.pc
)
654 verifier
->verify_fail ("merging different uninitialized types");
658 && ! old_type
.isresolved ()
659 && _Jv_equalUtf8Consts (data
.name
, old_type
.data
.name
))
661 // Types are identical.
666 old_type
.resolve (verifier
);
668 jclass k
= data
.klass
;
669 jclass oldk
= old_type
.data
.klass
;
672 while (k
->isArray () && oldk
->isArray ())
675 k
= k
->getComponentType ();
676 oldk
= oldk
->getComponentType ();
679 // Ordinarily this terminates when we hit Object...
682 if (is_assignable_from_slow (k
, oldk
))
684 k
= k
->getSuperclass ();
687 // ... but K could have been an interface, in which
688 // case we'll end up here. We just convert this
691 k
= &java::lang::Object::class$
;
695 while (arraycount
> 0)
697 java::lang::ClassLoader
*loader
698 = verifier
->current_class
->getClassLoader();
699 k
= _Jv_GetArrayClass (k
, loader
);
707 else if (refo
|| refn
|| key
!= old_type
.key
)
711 // If we're merging into an "unused" slot, then we
712 // simply accept whatever we're merging from.
713 if (key
== unused_by_subroutine_type
)
718 else if (old_type
.key
== unused_by_subroutine_type
)
722 // If we already have an `unsuitable' type, then we
723 // don't need to change again.
724 else if (key
!= unsuitable_type
)
726 key
= unsuitable_type
;
731 verifier
->verify_fail ("unmergeable type");
737 void print (void) const
742 case boolean_type
: c
= 'Z'; break;
743 case byte_type
: c
= 'B'; break;
744 case char_type
: c
= 'C'; break;
745 case short_type
: c
= 'S'; break;
746 case int_type
: c
= 'I'; break;
747 case long_type
: c
= 'J'; break;
748 case float_type
: c
= 'F'; break;
749 case double_type
: c
= 'D'; break;
750 case void_type
: c
= 'V'; break;
751 case unsuitable_type
: c
= '-'; break;
752 case return_address_type
: c
= 'r'; break;
753 case continuation_type
: c
= '+'; break;
754 case unused_by_subroutine_type
: c
= '_'; break;
755 case reference_type
: c
= 'L'; break;
756 case null_type
: c
= '@'; break;
757 case unresolved_reference_type
: c
= 'l'; break;
758 case uninitialized_reference_type
: c
= 'U'; break;
759 case uninitialized_unresolved_reference_type
: c
= 'u'; break;
761 debug_print ("%c", c
);
763 #endif /* VERIFY_DEBUG */
766 // This class holds all the state information we need for a given
770 // The current top of the stack, in terms of slots.
772 // The current depth of the stack. This will be larger than
773 // STACKTOP when wide types are on the stack.
777 // The local variables.
779 // This is used in subroutines to keep track of which local
780 // variables have been accessed.
782 // If not 0, then we are in a subroutine. The value is the PC of
783 // the subroutine's entry point. We can use 0 as an exceptional
784 // value because PC=0 can never be a subroutine.
786 // This is used to keep a linked list of all the states which
787 // require re-verification. We use the PC to keep track.
789 // We keep track of the type of `this' specially. This is used to
790 // ensure that an instance initializer invokes another initializer
791 // on `this' before returning. We must keep track of this
792 // specially because otherwise we might be confused by code which
793 // assigns to locals[0] (overwriting `this') and then returns
794 // without really initializing.
797 // INVALID marks a state which is not on the linked list of states
798 // requiring reverification.
799 static const int INVALID
= -1;
800 // NO_NEXT marks the state at the end of the reverification list.
801 static const int NO_NEXT
= -2;
803 // This is used to mark the stack depth at the instruction just
804 // after a `jsr' when we haven't yet processed the corresponding
805 // `ret'. See handle_jsr_insn for more information.
806 static const int NO_STACK
= -1;
813 local_changed
= NULL
;
816 state (int max_stack
, int max_locals
)
821 stack
= new type
[max_stack
];
822 for (int i
= 0; i
< max_stack
; ++i
)
823 stack
[i
] = unsuitable_type
;
824 locals
= new type
[max_locals
];
825 local_changed
= (bool *) _Jv_Malloc (sizeof (bool) * max_locals
);
826 for (int i
= 0; i
< max_locals
; ++i
)
828 locals
[i
] = unsuitable_type
;
829 local_changed
[i
] = false;
835 state (const state
*orig
, int max_stack
, int max_locals
,
836 bool ret_semantics
= false)
838 stack
= new type
[max_stack
];
839 locals
= new type
[max_locals
];
840 local_changed
= (bool *) _Jv_Malloc (sizeof (bool) * max_locals
);
841 copy (orig
, max_stack
, max_locals
, ret_semantics
);
852 _Jv_Free (local_changed
);
855 void *operator new[] (size_t bytes
)
857 return _Jv_Malloc (bytes
);
860 void operator delete[] (void *mem
)
865 void *operator new (size_t bytes
)
867 return _Jv_Malloc (bytes
);
870 void operator delete (void *mem
)
875 void copy (const state
*copy
, int max_stack
, int max_locals
,
876 bool ret_semantics
= false)
878 stacktop
= copy
->stacktop
;
879 stackdepth
= copy
->stackdepth
;
880 subroutine
= copy
->subroutine
;
881 for (int i
= 0; i
< max_stack
; ++i
)
882 stack
[i
] = copy
->stack
[i
];
883 for (int i
= 0; i
< max_locals
; ++i
)
885 // See push_jump_merge to understand this case.
887 locals
[i
] = type (copy
->local_changed
[i
]
889 : unused_by_subroutine_type
);
891 locals
[i
] = copy
->locals
[i
];
892 local_changed
[i
] = copy
->local_changed
[i
];
894 this_type
= copy
->this_type
;
895 // Don't modify `next'.
898 // Modify this state to reflect entry to an exception handler.
899 void set_exception (type t
, int max_stack
)
904 for (int i
= stacktop
; i
< max_stack
; ++i
)
905 stack
[i
] = unsuitable_type
;
908 // Modify this state to reflect entry into a subroutine.
909 void enter_subroutine (int npc
, int max_locals
)
912 // Mark all items as unchanged. Each subroutine needs to keep
913 // track of its `changed' state independently. In the case of
914 // nested subroutines, this information will be merged back into
915 // parent by the `ret'.
916 for (int i
= 0; i
< max_locals
; ++i
)
917 local_changed
[i
] = false;
920 // Merge STATE_OLD into this state. Destructively modifies this
921 // state. Returns true if the new state was in fact changed.
922 // Will throw an exception if the states are not mergeable.
923 bool merge (state
*state_old
, bool ret_semantics
,
924 int max_locals
, _Jv_BytecodeVerifier
*verifier
)
926 bool changed
= false;
928 // Special handling for `this'. If one or the other is
929 // uninitialized, then the merge is uninitialized.
930 if (this_type
.isinitialized ())
931 this_type
= state_old
->this_type
;
933 // Merge subroutine states. Here we just keep track of what
934 // subroutine we think we're in. We only check for a merge
935 // (which is invalid) when we see a `ret'.
936 if (subroutine
== state_old
->subroutine
)
940 else if (subroutine
== 0)
942 subroutine
= state_old
->subroutine
;
947 // If the subroutines differ, indicate that the state
948 // changed. This is needed to detect when subroutines have
953 // Merge stacks. Special handling for NO_STACK case.
954 if (state_old
->stacktop
== NO_STACK
)
956 // Nothing to do in this case; we don't care about modifying
959 else if (stacktop
== NO_STACK
)
961 stacktop
= state_old
->stacktop
;
962 stackdepth
= state_old
->stackdepth
;
963 for (int i
= 0; i
< stacktop
; ++i
)
964 stack
[i
] = state_old
->stack
[i
];
967 else if (state_old
->stacktop
!= stacktop
)
968 verifier
->verify_fail ("stack sizes differ");
971 for (int i
= 0; i
< state_old
->stacktop
; ++i
)
973 if (stack
[i
].merge (state_old
->stack
[i
], false, verifier
))
978 // Merge local variables.
979 for (int i
= 0; i
< max_locals
; ++i
)
981 // If we're not processing a `ret', then we merge every
982 // local variable. If we are processing a `ret', then we
983 // only merge locals which changed in the subroutine. When
984 // processing a `ret', STATE_OLD is the state at the point
985 // of the `ret', and THIS is the state just after the `jsr'.
986 if (! ret_semantics
|| state_old
->local_changed
[i
])
988 if (locals
[i
].merge (state_old
->locals
[i
], true, verifier
))
990 // Note that we don't call `note_variable' here.
991 // This change doesn't represent a real change to a
992 // local, but rather a merge artifact. If we're in
993 // a subroutine which is called with two
994 // incompatible types in a slot that is unused by
995 // the subroutine, then we don't want to mark that
996 // variable as having been modified.
1001 // If we're in a subroutine, we must compute the union of
1002 // all the changed local variables.
1003 if (state_old
->local_changed
[i
])
1010 // Throw an exception if there is an uninitialized object on the
1011 // stack or in a local variable. EXCEPTION_SEMANTICS controls
1012 // whether we're using backwards-branch or exception-handing
1014 void check_no_uninitialized_objects (int max_locals
,
1015 _Jv_BytecodeVerifier
*verifier
,
1016 bool exception_semantics
= false)
1018 if (! exception_semantics
)
1020 for (int i
= 0; i
< stacktop
; ++i
)
1021 if (stack
[i
].isreference () && ! stack
[i
].isinitialized ())
1022 verifier
->verify_fail ("uninitialized object on stack");
1025 for (int i
= 0; i
< max_locals
; ++i
)
1026 if (locals
[i
].isreference () && ! locals
[i
].isinitialized ())
1027 verifier
->verify_fail ("uninitialized object in local variable");
1029 check_this_initialized (verifier
);
1032 // Ensure that `this' has been initialized.
1033 void check_this_initialized (_Jv_BytecodeVerifier
*verifier
)
1035 if (this_type
.isreference () && ! this_type
.isinitialized ())
1036 verifier
->verify_fail ("`this' is uninitialized");
1039 // Set type of `this'.
1040 void set_this_type (const type
&k
)
1045 // Note that a local variable was modified.
1046 void note_variable (int index
)
1049 local_changed
[index
] = true;
1052 // Mark each `new'd object we know of that was allocated at PC as
1054 void set_initialized (int pc
, int max_locals
)
1056 for (int i
= 0; i
< stacktop
; ++i
)
1057 stack
[i
].set_initialized (pc
);
1058 for (int i
= 0; i
< max_locals
; ++i
)
1059 locals
[i
].set_initialized (pc
);
1060 this_type
.set_initialized (pc
);
1063 // Return true if this state is the unmerged result of a `ret'.
1064 bool is_unmerged_ret_state (int max_locals
) const
1066 if (stacktop
== NO_STACK
)
1068 for (int i
= 0; i
< max_locals
; ++i
)
1070 if (locals
[i
].key
== unused_by_subroutine_type
)
1077 void print (const char *leader
, int pc
,
1078 int max_stack
, int max_locals
) const
1080 debug_print ("%s [%4d]: [stack] ", leader
, pc
);
1082 for (i
= 0; i
< stacktop
; ++i
)
1084 for (; i
< max_stack
; ++i
)
1086 debug_print (" [local] ");
1087 for (i
= 0; i
< max_locals
; ++i
)
1090 debug_print (local_changed
[i
] ? "+" : " ");
1092 if (subroutine
== 0)
1093 debug_print (" | None");
1095 debug_print (" | %4d", subroutine
);
1096 debug_print (" | %p\n", this);
1099 inline void print (const char *, int, int, int) const
1102 #endif /* VERIFY_DEBUG */
1107 if (current_state
->stacktop
<= 0)
1108 verify_fail ("stack empty");
1109 type r
= current_state
->stack
[--current_state
->stacktop
];
1110 current_state
->stackdepth
-= r
.depth ();
1111 if (current_state
->stackdepth
< 0)
1112 verify_fail ("stack empty", start_PC
);
1118 type r
= pop_raw ();
1120 verify_fail ("narrow pop of wide type");
1126 type r
= pop_raw ();
1128 verify_fail ("wide pop of narrow type");
1132 type
pop_type (type match
)
1135 type t
= pop_raw ();
1136 if (! match
.compatible (t
, this))
1137 verify_fail ("incompatible type on stack");
1141 // Pop a reference type or a return address.
1142 type
pop_ref_or_return ()
1144 type t
= pop_raw ();
1145 if (! t
.isreference () && t
.key
!= return_address_type
)
1146 verify_fail ("expected reference or return address on stack");
1150 void push_type (type t
)
1152 // If T is a numeric type like short, promote it to int.
1155 int depth
= t
.depth ();
1156 if (current_state
->stackdepth
+ depth
> current_method
->max_stack
)
1157 verify_fail ("stack overflow");
1158 current_state
->stack
[current_state
->stacktop
++] = t
;
1159 current_state
->stackdepth
+= depth
;
1162 void set_variable (int index
, type t
)
1164 // If T is a numeric type like short, promote it to int.
1167 int depth
= t
.depth ();
1168 if (index
> current_method
->max_locals
- depth
)
1169 verify_fail ("invalid local variable");
1170 current_state
->locals
[index
] = t
;
1171 current_state
->note_variable (index
);
1175 current_state
->locals
[index
+ 1] = continuation_type
;
1176 current_state
->note_variable (index
+ 1);
1178 if (index
> 0 && current_state
->locals
[index
- 1].iswide ())
1180 current_state
->locals
[index
- 1] = unsuitable_type
;
1181 // There's no need to call note_variable here.
1185 type
get_variable (int index
, type t
)
1187 int depth
= t
.depth ();
1188 if (index
> current_method
->max_locals
- depth
)
1189 verify_fail ("invalid local variable");
1190 if (! t
.compatible (current_state
->locals
[index
], this))
1191 verify_fail ("incompatible type in local variable");
1194 type
t (continuation_type
);
1195 if (! current_state
->locals
[index
+ 1].compatible (t
, this))
1196 verify_fail ("invalid local variable");
1198 return current_state
->locals
[index
];
1201 // Make sure ARRAY is an array type and that its elements are
1202 // compatible with type ELEMENT. Returns the actual element type.
1203 type
require_array_type (type array
, type element
)
1205 // An odd case. Here we just pretend that everything went ok. If
1206 // the requested element type is some kind of reference, return
1207 // the null type instead.
1208 if (array
.isnull ())
1209 return element
.isreference () ? type (null_type
) : element
;
1211 if (! array
.isarray ())
1212 verify_fail ("array required");
1214 type t
= array
.element_type (this);
1215 if (! element
.compatible (t
, this))
1217 // Special case for byte arrays, which must also be boolean
1220 if (element
.key
== byte_type
)
1222 type
e2 (boolean_type
);
1223 ok
= e2
.compatible (t
, this);
1226 verify_fail ("incompatible array element type");
1229 // Return T and not ELEMENT, because T might be specialized.
1235 if (PC
>= current_method
->code_length
)
1236 verify_fail ("premature end of bytecode");
1237 return (jint
) bytecode
[PC
++] & 0xff;
1242 jint b1
= get_byte ();
1243 jint b2
= get_byte ();
1244 return (jint
) ((b1
<< 8) | b2
) & 0xffff;
1249 jint b1
= get_byte ();
1250 jint b2
= get_byte ();
1251 jshort s
= (b1
<< 8) | b2
;
1257 jint b1
= get_byte ();
1258 jint b2
= get_byte ();
1259 jint b3
= get_byte ();
1260 jint b4
= get_byte ();
1261 return (b1
<< 24) | (b2
<< 16) | (b3
<< 8) | b4
;
1264 int compute_jump (int offset
)
1266 int npc
= start_PC
+ offset
;
1267 if (npc
< 0 || npc
>= current_method
->code_length
)
1268 verify_fail ("branch out of range", start_PC
);
1272 // Merge the indicated state into the state at the branch target and
1273 // schedule a new PC if there is a change. If RET_SEMANTICS is
1274 // true, then we are merging from a `ret' instruction into the
1275 // instruction after a `jsr'. This is a special case with its own
1276 // modified semantics.
1277 void push_jump_merge (int npc
, state
*nstate
, bool ret_semantics
= false)
1279 bool changed
= true;
1280 if (states
[npc
] == NULL
)
1282 // There's a weird situation here. If are examining the
1283 // branch that results from a `ret', and there is not yet a
1284 // state available at the branch target (the instruction just
1285 // after the `jsr'), then we have to construct a special kind
1286 // of state at that point for future merging. This special
1287 // state has the type `unused_by_subroutine_type' in each slot
1288 // which was not modified by the subroutine.
1289 states
[npc
] = new state (nstate
, current_method
->max_stack
,
1290 current_method
->max_locals
, ret_semantics
);
1291 debug_print ("== New state in push_jump_merge\n");
1292 states
[npc
]->print ("New", npc
, current_method
->max_stack
,
1293 current_method
->max_locals
);
1297 debug_print ("== Merge states in push_jump_merge\n");
1298 nstate
->print ("Frm", start_PC
, current_method
->max_stack
,
1299 current_method
->max_locals
);
1300 states
[npc
]->print (" To", npc
, current_method
->max_stack
,
1301 current_method
->max_locals
);
1302 changed
= states
[npc
]->merge (nstate
, ret_semantics
,
1303 current_method
->max_locals
, this);
1304 states
[npc
]->print ("New", npc
, current_method
->max_stack
,
1305 current_method
->max_locals
);
1308 if (changed
&& states
[npc
]->next
== state::INVALID
)
1310 // The merge changed the state, and the new PC isn't yet on our
1311 // list of PCs to re-verify.
1312 states
[npc
]->next
= next_verify_pc
;
1313 next_verify_pc
= npc
;
1317 void push_jump (int offset
)
1319 int npc
= compute_jump (offset
);
1321 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1322 push_jump_merge (npc
, current_state
);
1325 void push_exception_jump (type t
, int pc
)
1327 current_state
->check_no_uninitialized_objects (current_method
->max_locals
,
1329 state
s (current_state
, current_method
->max_stack
,
1330 current_method
->max_locals
);
1331 if (current_method
->max_stack
< 1)
1332 verify_fail ("stack overflow at exception handler");
1333 s
.set_exception (t
, current_method
->max_stack
);
1334 push_jump_merge (pc
, &s
);
1339 int *prev_loc
= &next_verify_pc
;
1340 int npc
= next_verify_pc
;
1341 bool skipped
= false;
1343 while (npc
!= state::NO_NEXT
)
1345 // If the next available PC is an unmerged `ret' state, then
1346 // we aren't yet ready to handle it. That's because we would
1347 // need all kind of special cases to do so. So instead we
1348 // defer this jump until after we've processed it via a
1349 // fall-through. This has to happen because the instruction
1350 // before this one must be a `jsr'.
1351 if (! states
[npc
]->is_unmerged_ret_state (current_method
->max_locals
))
1353 *prev_loc
= states
[npc
]->next
;
1354 states
[npc
]->next
= state::INVALID
;
1359 prev_loc
= &states
[npc
]->next
;
1360 npc
= states
[npc
]->next
;
1363 // Note that we might have gotten here even when there are
1364 // remaining states to process. That can happen if we find a
1365 // `jsr' without a `ret'.
1366 return state::NO_NEXT
;
1369 void invalidate_pc ()
1371 PC
= state::NO_NEXT
;
1374 void note_branch_target (int pc
, bool is_jsr_target
= false)
1376 // Don't check `pc <= PC', because we've advanced PC after
1377 // fetching the target and we haven't yet checked the next
1379 if (pc
< PC
&& ! (flags
[pc
] & FLAG_INSN_START
))
1380 verify_fail ("branch not to instruction start", start_PC
);
1381 flags
[pc
] |= FLAG_BRANCH_TARGET
;
1384 // Record the jsr which called this instruction.
1385 subr_info
*info
= (subr_info
*) _Jv_Malloc (sizeof (subr_info
));
1387 info
->next
= jsr_ptrs
[pc
];
1388 jsr_ptrs
[pc
] = info
;
1392 void skip_padding ()
1394 while ((PC
% 4) > 0)
1395 if (get_byte () != 0)
1396 verify_fail ("found nonzero padding byte");
1399 // Return the subroutine to which the instruction at PC belongs.
1400 int get_subroutine (int pc
)
1402 if (states
[pc
] == NULL
)
1404 return states
[pc
]->subroutine
;
1407 // Do the work for a `ret' instruction. INDEX is the index into the
1409 void handle_ret_insn (int index
)
1411 get_variable (index
, return_address_type
);
1413 int csub
= current_state
->subroutine
;
1415 verify_fail ("no subroutine");
1417 // Check to see if we've merged subroutines.
1418 subr_entry_info
*entry
;
1419 for (entry
= entry_points
; entry
!= NULL
; entry
= entry
->next
)
1421 if (entry
->ret_pc
== start_PC
)
1426 entry
= (subr_entry_info
*) _Jv_Malloc (sizeof (subr_entry_info
));
1428 entry
->ret_pc
= start_PC
;
1429 entry
->next
= entry_points
;
1430 entry_points
= entry
;
1432 else if (entry
->pc
!= csub
)
1433 verify_fail ("subroutines merged");
1435 for (subr_info
*subr
= jsr_ptrs
[csub
]; subr
!= NULL
; subr
= subr
->next
)
1437 // Temporarily modify the current state so it looks like we're
1438 // in the enclosing context.
1439 current_state
->subroutine
= get_subroutine (subr
->pc
);
1441 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1442 push_jump_merge (subr
->pc
, current_state
, true);
1445 current_state
->subroutine
= csub
;
1449 // We're in the subroutine SUB, calling a subroutine at DEST. Make
1450 // sure this subroutine isn't already on the stack.
1451 void check_nonrecursive_call (int sub
, int dest
)
1456 verify_fail ("recursive subroutine call");
1457 for (subr_info
*info
= jsr_ptrs
[sub
]; info
!= NULL
; info
= info
->next
)
1458 check_nonrecursive_call (get_subroutine (info
->pc
), dest
);
1461 void handle_jsr_insn (int offset
)
1463 int npc
= compute_jump (offset
);
1466 current_state
->check_no_uninitialized_objects (current_method
->max_locals
, this);
1467 check_nonrecursive_call (current_state
->subroutine
, npc
);
1469 // Modify our state as appropriate for entry into a subroutine.
1470 push_type (return_address_type
);
1471 push_jump_merge (npc
, current_state
);
1473 pop_type (return_address_type
);
1475 // On entry to the subroutine, the subroutine number must be set
1476 // and the locals must be marked as cleared. We do this after
1477 // merging state so that we don't erroneously "notice" a variable
1478 // change merely on entry.
1479 states
[npc
]->enter_subroutine (npc
, current_method
->max_locals
);
1481 // Indicate that we don't know the stack depth of the instruction
1482 // following the `jsr'. The idea here is that we need to merge
1483 // the local variable state across the jsr, but the subroutine
1484 // might change the stack depth, so we can't make any assumptions
1485 // about it. So we have yet another special case. We know that
1486 // at this point PC points to the instruction after the jsr.
1488 // FIXME: what if we have a jsr at the end of the code, but that
1489 // jsr has no corresponding ret? Is this verifiable, or is it
1490 // not? If it is then we need a special case here.
1491 if (PC
>= current_method
->code_length
)
1492 verify_fail ("fell off end");
1494 current_state
->stacktop
= state::NO_STACK
;
1495 push_jump_merge (PC
, current_state
);
1499 jclass
construct_primitive_array_type (type_val prim
)
1505 k
= JvPrimClass (boolean
);
1508 k
= JvPrimClass (char);
1511 k
= JvPrimClass (float);
1514 k
= JvPrimClass (double);
1517 k
= JvPrimClass (byte
);
1520 k
= JvPrimClass (short);
1523 k
= JvPrimClass (int);
1526 k
= JvPrimClass (long);
1529 // These aren't used here but we call them out to avoid
1532 case unsuitable_type
:
1533 case return_address_type
:
1534 case continuation_type
:
1535 case unused_by_subroutine_type
:
1536 case reference_type
:
1538 case unresolved_reference_type
:
1539 case uninitialized_reference_type
:
1540 case uninitialized_unresolved_reference_type
:
1542 verify_fail ("unknown type in construct_primitive_array_type");
1544 k
= _Jv_GetArrayClass (k
, NULL
);
1548 // This pass computes the location of branch targets and also
1549 // instruction starts.
1550 void branch_prepass ()
1552 flags
= (char *) _Jv_Malloc (current_method
->code_length
);
1553 jsr_ptrs
= (subr_info
**) _Jv_Malloc (sizeof (subr_info
*)
1554 * current_method
->code_length
);
1556 for (int i
= 0; i
< current_method
->code_length
; ++i
)
1562 bool last_was_jsr
= false;
1565 while (PC
< current_method
->code_length
)
1567 // Set `start_PC' early so that error checking can have the
1570 flags
[PC
] |= FLAG_INSN_START
;
1572 // If the previous instruction was a jsr, then the next
1573 // instruction is a branch target -- the branch being the
1574 // corresponding `ret'.
1576 note_branch_target (PC
);
1577 last_was_jsr
= false;
1579 java_opcode opcode
= (java_opcode
) bytecode
[PC
++];
1583 case op_aconst_null
:
1719 case op_monitorenter
:
1720 case op_monitorexit
:
1728 case op_arraylength
:
1760 case op_invokespecial
:
1761 case op_invokestatic
:
1762 case op_invokevirtual
:
1766 case op_multianewarray
:
1772 last_was_jsr
= true;
1791 note_branch_target (compute_jump (get_short ()), last_was_jsr
);
1794 case op_tableswitch
:
1797 note_branch_target (compute_jump (get_int ()));
1798 jint low
= get_int ();
1799 jint hi
= get_int ();
1801 verify_fail ("invalid tableswitch", start_PC
);
1802 for (int i
= low
; i
<= hi
; ++i
)
1803 note_branch_target (compute_jump (get_int ()));
1807 case op_lookupswitch
:
1810 note_branch_target (compute_jump (get_int ()));
1811 int npairs
= get_int ();
1813 verify_fail ("too few pairs in lookupswitch", start_PC
);
1814 while (npairs
-- > 0)
1817 note_branch_target (compute_jump (get_int ()));
1822 case op_invokeinterface
:
1830 opcode
= (java_opcode
) get_byte ();
1832 if (opcode
== op_iinc
)
1838 last_was_jsr
= true;
1841 note_branch_target (compute_jump (get_int ()), last_was_jsr
);
1844 // These are unused here, but we call them out explicitly
1845 // so that -Wswitch-enum doesn't complain.
1851 case op_putstatic_1
:
1852 case op_putstatic_2
:
1853 case op_putstatic_4
:
1854 case op_putstatic_8
:
1855 case op_putstatic_a
:
1857 case op_getfield_2s
:
1858 case op_getfield_2u
:
1862 case op_getstatic_1
:
1863 case op_getstatic_2s
:
1864 case op_getstatic_2u
:
1865 case op_getstatic_4
:
1866 case op_getstatic_8
:
1867 case op_getstatic_a
:
1869 verify_fail ("unrecognized instruction in branch_prepass",
1873 // See if any previous branch tried to branch to the middle of
1874 // this instruction.
1875 for (int pc
= start_PC
+ 1; pc
< PC
; ++pc
)
1877 if ((flags
[pc
] & FLAG_BRANCH_TARGET
))
1878 verify_fail ("branch to middle of instruction", pc
);
1882 // Verify exception handlers.
1883 for (int i
= 0; i
< current_method
->exc_count
; ++i
)
1885 if (! (flags
[exception
[i
].handler_pc
.i
] & FLAG_INSN_START
))
1886 verify_fail ("exception handler not at instruction start",
1887 exception
[i
].handler_pc
.i
);
1888 if (! (flags
[exception
[i
].start_pc
.i
] & FLAG_INSN_START
))
1889 verify_fail ("exception start not at instruction start",
1890 exception
[i
].start_pc
.i
);
1891 if (exception
[i
].end_pc
.i
!= current_method
->code_length
1892 && ! (flags
[exception
[i
].end_pc
.i
] & FLAG_INSN_START
))
1893 verify_fail ("exception end not at instruction start",
1894 exception
[i
].end_pc
.i
);
1896 flags
[exception
[i
].handler_pc
.i
] |= FLAG_BRANCH_TARGET
;
1900 void check_pool_index (int index
)
1902 if (index
< 0 || index
>= current_class
->constants
.size
)
1903 verify_fail ("constant pool index out of range", start_PC
);
1906 type
check_class_constant (int index
)
1908 check_pool_index (index
);
1909 _Jv_Constants
*pool
= ¤t_class
->constants
;
1910 if (pool
->tags
[index
] == JV_CONSTANT_ResolvedClass
)
1911 return type (pool
->data
[index
].clazz
);
1912 else if (pool
->tags
[index
] == JV_CONSTANT_Class
)
1913 return type (pool
->data
[index
].utf8
);
1914 verify_fail ("expected class constant", start_PC
);
1917 type
check_constant (int index
)
1919 check_pool_index (index
);
1920 _Jv_Constants
*pool
= ¤t_class
->constants
;
1921 if (pool
->tags
[index
] == JV_CONSTANT_ResolvedString
1922 || pool
->tags
[index
] == JV_CONSTANT_String
)
1923 return type (&java::lang::String::class$
);
1924 else if (pool
->tags
[index
] == JV_CONSTANT_Integer
)
1925 return type (int_type
);
1926 else if (pool
->tags
[index
] == JV_CONSTANT_Float
)
1927 return type (float_type
);
1928 verify_fail ("String, int, or float constant expected", start_PC
);
1931 type
check_wide_constant (int index
)
1933 check_pool_index (index
);
1934 _Jv_Constants
*pool
= ¤t_class
->constants
;
1935 if (pool
->tags
[index
] == JV_CONSTANT_Long
)
1936 return type (long_type
);
1937 else if (pool
->tags
[index
] == JV_CONSTANT_Double
)
1938 return type (double_type
);
1939 verify_fail ("long or double constant expected", start_PC
);
1942 // Helper for both field and method. These are laid out the same in
1943 // the constant pool.
1944 type
handle_field_or_method (int index
, int expected
,
1945 _Jv_Utf8Const
**name
,
1946 _Jv_Utf8Const
**fmtype
)
1948 check_pool_index (index
);
1949 _Jv_Constants
*pool
= ¤t_class
->constants
;
1950 if (pool
->tags
[index
] != expected
)
1951 verify_fail ("didn't see expected constant", start_PC
);
1952 // Once we know we have a Fieldref or Methodref we assume that it
1953 // is correctly laid out in the constant pool. I think the code
1954 // in defineclass.cc guarantees this.
1955 _Jv_ushort class_index
, name_and_type_index
;
1956 _Jv_loadIndexes (&pool
->data
[index
],
1958 name_and_type_index
);
1959 _Jv_ushort name_index
, desc_index
;
1960 _Jv_loadIndexes (&pool
->data
[name_and_type_index
],
1961 name_index
, desc_index
);
1963 *name
= pool
->data
[name_index
].utf8
;
1964 *fmtype
= pool
->data
[desc_index
].utf8
;
1966 return check_class_constant (class_index
);
1969 // Return field's type, compute class' type if requested.
1970 type
check_field_constant (int index
, type
*class_type
= NULL
)
1972 _Jv_Utf8Const
*name
, *field_type
;
1973 type ct
= handle_field_or_method (index
,
1974 JV_CONSTANT_Fieldref
,
1975 &name
, &field_type
);
1978 if (field_type
->data
[0] == '[' || field_type
->data
[0] == 'L')
1979 return type (field_type
);
1980 return get_type_val_for_signature (field_type
->data
[0]);
1983 type
check_method_constant (int index
, bool is_interface
,
1984 _Jv_Utf8Const
**method_name
,
1985 _Jv_Utf8Const
**method_signature
)
1987 return handle_field_or_method (index
,
1989 ? JV_CONSTANT_InterfaceMethodref
1990 : JV_CONSTANT_Methodref
),
1991 method_name
, method_signature
);
1994 type
get_one_type (char *&p
)
2012 _Jv_Utf8Const
*name
= make_utf8_const (start
, p
- start
);
2016 // Casting to jchar here is ok since we are looking at an ASCII
2018 type_val rt
= get_type_val_for_signature (jchar (v
));
2020 if (arraycount
== 0)
2022 // Callers of this function eventually push their arguments on
2023 // the stack. So, promote them here.
2024 return type (rt
).promote ();
2027 jclass k
= construct_primitive_array_type (rt
);
2028 while (--arraycount
> 0)
2029 k
= _Jv_GetArrayClass (k
, NULL
);
2033 void compute_argument_types (_Jv_Utf8Const
*signature
,
2036 char *p
= signature
->data
;
2042 types
[i
++] = get_one_type (p
);
2045 type
compute_return_type (_Jv_Utf8Const
*signature
)
2047 char *p
= signature
->data
;
2051 return get_one_type (p
);
2054 void check_return_type (type onstack
)
2056 type rt
= compute_return_type (current_method
->self
->signature
);
2057 if (! rt
.compatible (onstack
, this))
2058 verify_fail ("incompatible return type");
2061 // Initialize the stack for the new method. Returns true if this
2062 // method is an instance initializer.
2063 bool initialize_stack ()
2066 bool is_init
= false;
2068 using namespace java::lang::reflect
;
2069 if (! Modifier::isStatic (current_method
->self
->accflags
))
2071 type
kurr (current_class
);
2072 if (_Jv_equalUtf8Consts (current_method
->self
->name
, gcj::init_name
))
2074 kurr
.set_uninitialized (type::SELF
, this);
2077 set_variable (0, kurr
);
2078 current_state
->set_this_type (kurr
);
2082 // We have to handle wide arguments specially here.
2083 int arg_count
= _Jv_count_arguments (current_method
->self
->signature
);
2084 type arg_types
[arg_count
];
2085 compute_argument_types (current_method
->self
->signature
, arg_types
);
2086 for (int i
= 0; i
< arg_count
; ++i
)
2088 set_variable (var
, arg_types
[i
]);
2090 if (arg_types
[i
].iswide ())
2097 void verify_instructions_0 ()
2099 current_state
= new state (current_method
->max_stack
,
2100 current_method
->max_locals
);
2105 // True if we are verifying an instance initializer.
2106 bool this_is_init
= initialize_stack ();
2108 states
= (state
**) _Jv_Malloc (sizeof (state
*)
2109 * current_method
->code_length
);
2110 for (int i
= 0; i
< current_method
->code_length
; ++i
)
2113 next_verify_pc
= state::NO_NEXT
;
2117 // If the PC was invalidated, get a new one from the work list.
2118 if (PC
== state::NO_NEXT
)
2121 if (PC
== state::INVALID
)
2122 verify_fail ("can't happen: saw state::INVALID");
2123 if (PC
== state::NO_NEXT
)
2125 debug_print ("== State pop from pending list\n");
2126 // Set up the current state.
2127 current_state
->copy (states
[PC
], current_method
->max_stack
,
2128 current_method
->max_locals
);
2132 // Control can't fall off the end of the bytecode. We
2133 // only need to check this in the fall-through case,
2134 // because branch bounds are checked when they are
2136 if (PC
>= current_method
->code_length
)
2137 verify_fail ("fell off end");
2139 // We only have to do this checking in the situation where
2140 // control flow falls through from the previous
2141 // instruction. Otherwise merging is done at the time we
2143 if (states
[PC
] != NULL
)
2145 // We've already visited this instruction. So merge
2146 // the states together. If this yields no change then
2147 // we don't have to re-verify. However, if the new
2148 // state is an the result of an unmerged `ret', we
2149 // must continue through it.
2150 debug_print ("== Fall through merge\n");
2151 states
[PC
]->print ("Old", PC
, current_method
->max_stack
,
2152 current_method
->max_locals
);
2153 current_state
->print ("Cur", PC
, current_method
->max_stack
,
2154 current_method
->max_locals
);
2155 if (! current_state
->merge (states
[PC
], false,
2156 current_method
->max_locals
, this)
2157 && ! states
[PC
]->is_unmerged_ret_state (current_method
->max_locals
))
2159 debug_print ("== Fall through optimization\n");
2163 // Save a copy of it for later.
2164 states
[PC
]->copy (current_state
, current_method
->max_stack
,
2165 current_method
->max_locals
);
2166 current_state
->print ("New", PC
, current_method
->max_stack
,
2167 current_method
->max_locals
);
2171 // We only have to keep saved state at branch targets. If
2172 // we're at a branch target and the state here hasn't been set
2173 // yet, we set it now.
2174 if (states
[PC
] == NULL
&& (flags
[PC
] & FLAG_BRANCH_TARGET
))
2176 states
[PC
] = new state (current_state
, current_method
->max_stack
,
2177 current_method
->max_locals
);
2180 // Set this before handling exceptions so that debug output is
2184 // Update states for all active exception handlers. Ordinarily
2185 // there are not many exception handlers. So we simply run
2186 // through them all.
2187 for (int i
= 0; i
< current_method
->exc_count
; ++i
)
2189 if (PC
>= exception
[i
].start_pc
.i
&& PC
< exception
[i
].end_pc
.i
)
2191 type
handler (&java::lang::Throwable::class$
);
2192 if (exception
[i
].handler_type
.i
!= 0)
2193 handler
= check_class_constant (exception
[i
].handler_type
.i
);
2194 push_exception_jump (handler
, exception
[i
].handler_pc
.i
);
2198 current_state
->print (" ", PC
, current_method
->max_stack
,
2199 current_method
->max_locals
);
2200 java_opcode opcode
= (java_opcode
) bytecode
[PC
++];
2206 case op_aconst_null
:
2207 push_type (null_type
);
2217 push_type (int_type
);
2222 push_type (long_type
);
2228 push_type (float_type
);
2233 push_type (double_type
);
2238 push_type (int_type
);
2243 push_type (int_type
);
2247 push_type (check_constant (get_byte ()));
2250 push_type (check_constant (get_ushort ()));
2253 push_type (check_wide_constant (get_ushort ()));
2257 push_type (get_variable (get_byte (), int_type
));
2260 push_type (get_variable (get_byte (), long_type
));
2263 push_type (get_variable (get_byte (), float_type
));
2266 push_type (get_variable (get_byte (), double_type
));
2269 push_type (get_variable (get_byte (), reference_type
));
2276 push_type (get_variable (opcode
- op_iload_0
, int_type
));
2282 push_type (get_variable (opcode
- op_lload_0
, long_type
));
2288 push_type (get_variable (opcode
- op_fload_0
, float_type
));
2294 push_type (get_variable (opcode
- op_dload_0
, double_type
));
2300 push_type (get_variable (opcode
- op_aload_0
, reference_type
));
2303 pop_type (int_type
);
2304 push_type (require_array_type (pop_type (reference_type
),
2308 pop_type (int_type
);
2309 push_type (require_array_type (pop_type (reference_type
),
2313 pop_type (int_type
);
2314 push_type (require_array_type (pop_type (reference_type
),
2318 pop_type (int_type
);
2319 push_type (require_array_type (pop_type (reference_type
),
2323 pop_type (int_type
);
2324 push_type (require_array_type (pop_type (reference_type
),
2328 pop_type (int_type
);
2329 require_array_type (pop_type (reference_type
), byte_type
);
2330 push_type (int_type
);
2333 pop_type (int_type
);
2334 require_array_type (pop_type (reference_type
), char_type
);
2335 push_type (int_type
);
2338 pop_type (int_type
);
2339 require_array_type (pop_type (reference_type
), short_type
);
2340 push_type (int_type
);
2343 set_variable (get_byte (), pop_type (int_type
));
2346 set_variable (get_byte (), pop_type (long_type
));
2349 set_variable (get_byte (), pop_type (float_type
));
2352 set_variable (get_byte (), pop_type (double_type
));
2355 set_variable (get_byte (), pop_ref_or_return ());
2361 set_variable (opcode
- op_istore_0
, pop_type (int_type
));
2367 set_variable (opcode
- op_lstore_0
, pop_type (long_type
));
2373 set_variable (opcode
- op_fstore_0
, pop_type (float_type
));
2379 set_variable (opcode
- op_dstore_0
, pop_type (double_type
));
2385 set_variable (opcode
- op_astore_0
, pop_ref_or_return ());
2388 pop_type (int_type
);
2389 pop_type (int_type
);
2390 require_array_type (pop_type (reference_type
), int_type
);
2393 pop_type (long_type
);
2394 pop_type (int_type
);
2395 require_array_type (pop_type (reference_type
), long_type
);
2398 pop_type (float_type
);
2399 pop_type (int_type
);
2400 require_array_type (pop_type (reference_type
), float_type
);
2403 pop_type (double_type
);
2404 pop_type (int_type
);
2405 require_array_type (pop_type (reference_type
), double_type
);
2408 pop_type (reference_type
);
2409 pop_type (int_type
);
2410 require_array_type (pop_type (reference_type
), reference_type
);
2413 pop_type (int_type
);
2414 pop_type (int_type
);
2415 require_array_type (pop_type (reference_type
), byte_type
);
2418 pop_type (int_type
);
2419 pop_type (int_type
);
2420 require_array_type (pop_type (reference_type
), char_type
);
2423 pop_type (int_type
);
2424 pop_type (int_type
);
2425 require_array_type (pop_type (reference_type
), short_type
);
2452 type t2
= pop_raw ();
2467 type t
= pop_raw ();
2482 type t1
= pop_raw ();
2499 type t1
= pop_raw ();
2502 type t2
= pop_raw ();
2520 type t3
= pop_raw ();
2558 pop_type (int_type
);
2559 push_type (pop_type (int_type
));
2569 pop_type (long_type
);
2570 push_type (pop_type (long_type
));
2575 pop_type (int_type
);
2576 push_type (pop_type (long_type
));
2583 pop_type (float_type
);
2584 push_type (pop_type (float_type
));
2591 pop_type (double_type
);
2592 push_type (pop_type (double_type
));
2598 push_type (pop_type (int_type
));
2601 push_type (pop_type (long_type
));
2604 push_type (pop_type (float_type
));
2607 push_type (pop_type (double_type
));
2610 get_variable (get_byte (), int_type
);
2614 pop_type (int_type
);
2615 push_type (long_type
);
2618 pop_type (int_type
);
2619 push_type (float_type
);
2622 pop_type (int_type
);
2623 push_type (double_type
);
2626 pop_type (long_type
);
2627 push_type (int_type
);
2630 pop_type (long_type
);
2631 push_type (float_type
);
2634 pop_type (long_type
);
2635 push_type (double_type
);
2638 pop_type (float_type
);
2639 push_type (int_type
);
2642 pop_type (float_type
);
2643 push_type (long_type
);
2646 pop_type (float_type
);
2647 push_type (double_type
);
2650 pop_type (double_type
);
2651 push_type (int_type
);
2654 pop_type (double_type
);
2655 push_type (long_type
);
2658 pop_type (double_type
);
2659 push_type (float_type
);
2662 pop_type (long_type
);
2663 pop_type (long_type
);
2664 push_type (int_type
);
2668 pop_type (float_type
);
2669 pop_type (float_type
);
2670 push_type (int_type
);
2674 pop_type (double_type
);
2675 pop_type (double_type
);
2676 push_type (int_type
);
2684 pop_type (int_type
);
2685 push_jump (get_short ());
2693 pop_type (int_type
);
2694 pop_type (int_type
);
2695 push_jump (get_short ());
2699 pop_type (reference_type
);
2700 pop_type (reference_type
);
2701 push_jump (get_short ());
2704 push_jump (get_short ());
2708 handle_jsr_insn (get_short ());
2711 handle_ret_insn (get_byte ());
2713 case op_tableswitch
:
2715 pop_type (int_type
);
2717 push_jump (get_int ());
2718 jint low
= get_int ();
2719 jint high
= get_int ();
2720 // Already checked LOW -vs- HIGH.
2721 for (int i
= low
; i
<= high
; ++i
)
2722 push_jump (get_int ());
2727 case op_lookupswitch
:
2729 pop_type (int_type
);
2731 push_jump (get_int ());
2732 jint npairs
= get_int ();
2733 // Already checked NPAIRS >= 0.
2735 for (int i
= 0; i
< npairs
; ++i
)
2737 jint key
= get_int ();
2738 if (i
> 0 && key
<= lastkey
)
2739 verify_fail ("lookupswitch pairs unsorted", start_PC
);
2741 push_jump (get_int ());
2747 check_return_type (pop_type (int_type
));
2751 check_return_type (pop_type (long_type
));
2755 check_return_type (pop_type (float_type
));
2759 check_return_type (pop_type (double_type
));
2763 check_return_type (pop_type (reference_type
));
2767 // We only need to check this when the return type is
2768 // void, because all instance initializers return void.
2770 current_state
->check_this_initialized (this);
2771 check_return_type (void_type
);
2775 push_type (check_field_constant (get_ushort ()));
2778 pop_type (check_field_constant (get_ushort ()));
2783 type field
= check_field_constant (get_ushort (), &klass
);
2791 type field
= check_field_constant (get_ushort (), &klass
);
2794 // We have an obscure special case here: we can use
2795 // `putfield' on a field declared in this class, even if
2796 // `this' has not yet been initialized.
2797 if (! current_state
->this_type
.isinitialized ()
2798 && current_state
->this_type
.pc
== type::SELF
)
2799 klass
.set_uninitialized (type::SELF
, this);
2804 case op_invokevirtual
:
2805 case op_invokespecial
:
2806 case op_invokestatic
:
2807 case op_invokeinterface
:
2809 _Jv_Utf8Const
*method_name
, *method_signature
;
2811 = check_method_constant (get_ushort (),
2812 opcode
== op_invokeinterface
,
2815 // NARGS is only used when we're processing
2816 // invokeinterface. It is simplest for us to compute it
2817 // here and then verify it later.
2819 if (opcode
== op_invokeinterface
)
2821 nargs
= get_byte ();
2822 if (get_byte () != 0)
2823 verify_fail ("invokeinterface dummy byte is wrong");
2826 bool is_init
= false;
2827 if (_Jv_equalUtf8Consts (method_name
, gcj::init_name
))
2830 if (opcode
!= op_invokespecial
)
2831 verify_fail ("can't invoke <init>");
2833 else if (method_name
->data
[0] == '<')
2834 verify_fail ("can't invoke method starting with `<'");
2836 // Pop arguments and check types.
2837 int arg_count
= _Jv_count_arguments (method_signature
);
2838 type arg_types
[arg_count
];
2839 compute_argument_types (method_signature
, arg_types
);
2840 for (int i
= arg_count
- 1; i
>= 0; --i
)
2842 // This is only used for verifying the byte for
2844 nargs
-= arg_types
[i
].depth ();
2845 pop_type (arg_types
[i
]);
2848 if (opcode
== op_invokeinterface
2850 verify_fail ("wrong argument count for invokeinterface");
2852 if (opcode
!= op_invokestatic
)
2854 type t
= class_type
;
2857 // In this case the PC doesn't matter.
2858 t
.set_uninitialized (type::UNINIT
, this);
2860 type raw
= pop_raw ();
2862 if (t
.compatible (raw
, this))
2866 else if (opcode
== op_invokeinterface
)
2868 // This is a hack. We might have merged two
2869 // items and gotten `Object'. This can happen
2870 // because we don't keep track of where merges
2871 // come from. This is safe as long as the
2872 // interpreter checks interfaces at runtime.
2873 type
obj (&java::lang::Object::class$
);
2874 ok
= raw
.compatible (obj
, this);
2878 verify_fail ("incompatible type on stack");
2881 current_state
->set_initialized (raw
.get_pc (),
2882 current_method
->max_locals
);
2885 type rt
= compute_return_type (method_signature
);
2893 type t
= check_class_constant (get_ushort ());
2894 if (t
.isarray () || t
.isinterface (this) || t
.isabstract (this))
2895 verify_fail ("type is array, interface, or abstract");
2896 t
.set_uninitialized (start_PC
, this);
2903 int atype
= get_byte ();
2904 // We intentionally have chosen constants to make this
2906 if (atype
< boolean_type
|| atype
> long_type
)
2907 verify_fail ("type not primitive", start_PC
);
2908 pop_type (int_type
);
2909 push_type (construct_primitive_array_type (type_val (atype
)));
2913 pop_type (int_type
);
2914 push_type (check_class_constant (get_ushort ()).to_array (this));
2916 case op_arraylength
:
2918 type t
= pop_type (reference_type
);
2919 if (! t
.isarray () && ! t
.isnull ())
2920 verify_fail ("array type expected");
2921 push_type (int_type
);
2925 pop_type (type (&java::lang::Throwable::class$
));
2929 pop_type (reference_type
);
2930 push_type (check_class_constant (get_ushort ()));
2933 pop_type (reference_type
);
2934 check_class_constant (get_ushort ());
2935 push_type (int_type
);
2937 case op_monitorenter
:
2938 pop_type (reference_type
);
2940 case op_monitorexit
:
2941 pop_type (reference_type
);
2945 switch (get_byte ())
2948 push_type (get_variable (get_ushort (), int_type
));
2951 push_type (get_variable (get_ushort (), long_type
));
2954 push_type (get_variable (get_ushort (), float_type
));
2957 push_type (get_variable (get_ushort (), double_type
));
2960 push_type (get_variable (get_ushort (), reference_type
));
2963 set_variable (get_ushort (), pop_type (int_type
));
2966 set_variable (get_ushort (), pop_type (long_type
));
2969 set_variable (get_ushort (), pop_type (float_type
));
2972 set_variable (get_ushort (), pop_type (double_type
));
2975 set_variable (get_ushort (), pop_type (reference_type
));
2978 handle_ret_insn (get_short ());
2981 get_variable (get_ushort (), int_type
);
2985 verify_fail ("unrecognized wide instruction", start_PC
);
2989 case op_multianewarray
:
2991 type atype
= check_class_constant (get_ushort ());
2992 int dim
= get_byte ();
2994 verify_fail ("too few dimensions to multianewarray", start_PC
);
2995 atype
.verify_dimensions (dim
, this);
2996 for (int i
= 0; i
< dim
; ++i
)
2997 pop_type (int_type
);
3003 pop_type (reference_type
);
3004 push_jump (get_short ());
3007 push_jump (get_int ());
3011 handle_jsr_insn (get_int ());
3014 // These are unused here, but we call them out explicitly
3015 // so that -Wswitch-enum doesn't complain.
3021 case op_putstatic_1
:
3022 case op_putstatic_2
:
3023 case op_putstatic_4
:
3024 case op_putstatic_8
:
3025 case op_putstatic_a
:
3027 case op_getfield_2s
:
3028 case op_getfield_2u
:
3032 case op_getstatic_1
:
3033 case op_getstatic_2s
:
3034 case op_getstatic_2u
:
3035 case op_getstatic_4
:
3036 case op_getstatic_8
:
3037 case op_getstatic_a
:
3039 // Unrecognized opcode.
3040 verify_fail ("unrecognized instruction in verify_instructions_0",
3046 __attribute__ ((__noreturn__
)) void verify_fail (char *s
, jint pc
= -1)
3048 using namespace java::lang
;
3049 StringBuffer
*buf
= new StringBuffer ();
3051 buf
->append (JvNewStringLatin1 ("verification failed"));
3056 buf
->append (JvNewStringLatin1 (" at PC "));
3060 _Jv_InterpMethod
*method
= current_method
;
3061 buf
->append (JvNewStringLatin1 (" in "));
3062 buf
->append (current_class
->getName());
3063 buf
->append ((jchar
) ':');
3064 buf
->append (JvNewStringUTF (method
->get_method()->name
->data
));
3065 buf
->append ((jchar
) '(');
3066 buf
->append (JvNewStringUTF (method
->get_method()->signature
->data
));
3067 buf
->append ((jchar
) ')');
3069 buf
->append (JvNewStringLatin1 (": "));
3070 buf
->append (JvNewStringLatin1 (s
));
3071 throw new java::lang::VerifyError (buf
->toString ());
3076 void verify_instructions ()
3079 verify_instructions_0 ();
3082 _Jv_BytecodeVerifier (_Jv_InterpMethod
*m
)
3084 // We just print the text as utf-8. This is just for debugging
3086 debug_print ("--------------------------------\n");
3087 debug_print ("-- Verifying method `%s'\n", m
->self
->name
->data
);
3090 bytecode
= m
->bytecode ();
3091 exception
= m
->exceptions ();
3092 current_class
= m
->defining_class
;
3098 entry_points
= NULL
;
3101 ~_Jv_BytecodeVerifier ()
3110 for (int i
= 0; i
< current_method
->code_length
; ++i
)
3112 if (jsr_ptrs
[i
] != NULL
)
3114 subr_info
*info
= jsr_ptrs
[i
];
3115 while (info
!= NULL
)
3117 subr_info
*next
= info
->next
;
3123 _Jv_Free (jsr_ptrs
);
3126 while (utf8_list
!= NULL
)
3128 linked_utf8
*n
= utf8_list
->next
;
3129 _Jv_Free (utf8_list
->val
);
3130 _Jv_Free (utf8_list
);
3134 while (entry_points
!= NULL
)
3136 subr_entry_info
*next
= entry_points
->next
;
3137 _Jv_Free (entry_points
);
3138 entry_points
= next
;
3144 _Jv_VerifyMethod (_Jv_InterpMethod
*meth
)
3146 _Jv_BytecodeVerifier
v (meth
);
3147 v
.verify_instructions ();
3149 #endif /* INTERPRETER */