Analyze niter for until-wrap condition [PR101145]
[official-gcc.git] / gcc / gdbhooks.py
blobbf9f46a8fae1f4e297205a33f4f00474074cfbcd
1 # Python hooks for gdb for debugging GCC
2 # Copyright (C) 2013-2021 Free Software Foundation, Inc.
4 # Contributed by David Malcolm <dmalcolm@redhat.com>
6 # This file is part of GCC.
8 # GCC is free software; you can redistribute it and/or modify it under
9 # the terms of the GNU General Public License as published by the Free
10 # Software Foundation; either version 3, or (at your option) any later
11 # version.
13 # GCC is distributed in the hope that it will be useful, but WITHOUT
14 # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 # for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with GCC; see the file COPYING3. If not see
20 # <http://www.gnu.org/licenses/>.
22 """
23 Enabling the debugging hooks
24 ----------------------------
25 gcc/configure (from configure.ac) generates a .gdbinit within the "gcc"
26 subdirectory of the build directory, and when run by gdb, this imports
27 gcc/gdbhooks.py from the source directory, injecting useful Python code
28 into gdb.
30 You may see a message from gdb of the form:
31 "path-to-build/gcc/.gdbinit" auto-loading has been declined by your `auto-load safe-path'
32 as a protection against untrustworthy python scripts. See
33 http://sourceware.org/gdb/onlinedocs/gdb/Auto_002dloading-safe-path.html
35 The fix is to mark the paths of the build/gcc directory as trustworthy.
36 An easy way to do so is by adding the following to your ~/.gdbinit script:
37 add-auto-load-safe-path /absolute/path/to/build/gcc
38 for the build directories for your various checkouts of gcc.
40 If it's working, you should see the message:
41 Successfully loaded GDB hooks for GCC
42 as gdb starts up.
44 During development, I've been manually invoking the code in this way, as a
45 precanned way of printing a variety of different kinds of value:
47 gdb \
48 -ex "break expand_gimple_stmt" \
49 -ex "run" \
50 -ex "bt" \
51 --args \
52 ./cc1 foo.c -O3
54 Examples of output using the pretty-printers
55 --------------------------------------------
56 Pointer values are generally shown in the form:
57 <type address extra_info>
59 For example, an opt_pass* might appear as:
60 (gdb) p pass
61 $2 = <opt_pass* 0x188b600 "expand"(170)>
63 The name of the pass is given ("expand"), together with the
64 static_pass_number.
66 Note that you can dereference the pointer in the normal way:
67 (gdb) p *pass
68 $4 = {type = RTL_PASS, name = 0x120a312 "expand",
69 [etc, ...snipped...]
71 and you can suppress pretty-printers using /r (for "raw"):
72 (gdb) p /r pass
73 $3 = (opt_pass *) 0x188b600
75 Basic blocks are shown with their index in parentheses, apart from the
76 CFG's entry and exit blocks, which are given as "ENTRY" and "EXIT":
77 (gdb) p bb
78 $9 = <basic_block 0x7ffff041f1a0 (2)>
79 (gdb) p cfun->cfg->x_entry_block_ptr
80 $10 = <basic_block 0x7ffff041f0d0 (ENTRY)>
81 (gdb) p cfun->cfg->x_exit_block_ptr
82 $11 = <basic_block 0x7ffff041f138 (EXIT)>
84 CFG edges are shown with the src and dest blocks given in parentheses:
85 (gdb) p e
86 $1 = <edge 0x7ffff043f118 (ENTRY -> 6)>
88 Tree nodes are printed using Python code that emulates print_node_brief,
89 running in gdb, rather than in the inferior:
90 (gdb) p cfun->decl
91 $1 = <function_decl 0x7ffff0420b00 foo>
92 For usability, the type is printed first (e.g. "function_decl"), rather
93 than just "tree".
95 RTL expressions use a kludge: they are pretty-printed by injecting
96 calls into print-rtl.c into the inferior:
97 Value returned is $1 = (note 9 8 10 [bb 3] NOTE_INSN_BASIC_BLOCK)
98 (gdb) p $1
99 $2 = (note 9 8 10 [bb 3] NOTE_INSN_BASIC_BLOCK)
100 (gdb) p /r $1
101 $3 = (rtx_def *) 0x7ffff043e140
102 This won't work for coredumps, and probably in other circumstances, but
103 it's a quick way of getting lots of debuggability quickly.
105 Callgraph nodes are printed with the name of the function decl, if
106 available:
107 (gdb) frame 5
108 #5 0x00000000006c288a in expand_function (node=<cgraph_node* 0x7ffff0312720 "foo"/12345>) at ../../src/gcc/cgraphunit.c:1594
109 1594 execute_pass_list (g->get_passes ()->all_passes);
110 (gdb) p node
111 $1 = <cgraph_node* 0x7ffff0312720 "foo"/12345>
113 Similarly for symtab_node and varpool_node classes.
115 Cgraph edges are printed with the name of caller and callee:
116 (gdb) p this->callees
117 $4 = <cgraph_edge* 0x7fffe25aa000 (<cgraph_node * 0x7fffe62b22e0 "_GLOBAL__sub_I__ZN5Pooma5pinfoE"/19660> -> <cgraph_node * 0x7fffe620f730 "__static_initialization_and_destruction_1"/19575>)>
119 IPA reference follow very similar format:
120 (gdb) Value returned is $5 = <ipa_ref* 0x7fffefcb80c8 (<symtab_node * 0x7ffff562f000 "__dt_base "/875> -> <symtab_node * 0x7fffe795f000 "_ZTVN6Smarts8RunnableE"/16056>:IPA_REF_ADDR)>
122 vec<> pointers are printed as the address followed by the elements in
123 braces. Here's a length 2 vec:
124 (gdb) p bb->preds
125 $18 = 0x7ffff0428b68 = {<edge 0x7ffff044d380 (3 -> 5)>, <edge 0x7ffff044d3b8 (4 -> 5)>}
127 and here's a length 1 vec:
128 (gdb) p bb->succs
129 $19 = 0x7ffff0428bb8 = {<edge 0x7ffff044d3f0 (5 -> EXIT)>}
131 You cannot yet use array notation [] to access the elements within the
132 vector: attempting to do so instead gives you the vec itself (for vec[0]),
133 or a (probably) invalid cast to vec<> for the memory after the vec (for
134 vec[1] onwards).
136 Instead (for now) you must access m_vecdata:
137 (gdb) p bb->preds->m_vecdata[0]
138 $20 = <edge 0x7ffff044d380 (3 -> 5)>
139 (gdb) p bb->preds->m_vecdata[1]
140 $21 = <edge 0x7ffff044d3b8 (4 -> 5)>
142 import os.path
143 import re
144 import sys
145 import tempfile
147 import gdb
148 import gdb.printing
149 import gdb.types
151 # Convert "enum tree_code" (tree.def and tree.h) to a dict:
152 tree_code_dict = gdb.types.make_enum_dict(gdb.lookup_type('enum tree_code'))
154 # ...and look up specific values for use later:
155 IDENTIFIER_NODE = tree_code_dict['IDENTIFIER_NODE']
156 TYPE_DECL = tree_code_dict['TYPE_DECL']
157 SSA_NAME = tree_code_dict['SSA_NAME']
159 # Similarly for "enum tree_code_class" (tree.h):
160 tree_code_class_dict = gdb.types.make_enum_dict(gdb.lookup_type('enum tree_code_class'))
161 tcc_type = tree_code_class_dict['tcc_type']
162 tcc_declaration = tree_code_class_dict['tcc_declaration']
164 # Python3 has int() with arbitrary precision (bignum). Python2 int() is 32-bit
165 # on 32-bit hosts but remote targets may have 64-bit pointers there; Python2
166 # long() is always 64-bit but Python3 no longer has anything named long.
167 def intptr(gdbval):
168 return long(gdbval) if sys.version_info.major == 2 else int(gdbval)
170 class Tree:
172 Wrapper around a gdb.Value for a tree, with various methods
173 corresponding to macros in gcc/tree.h
175 def __init__(self, gdbval):
176 self.gdbval = gdbval
178 def is_nonnull(self):
179 return intptr(self.gdbval)
181 def TREE_CODE(self):
183 Get gdb.Value corresponding to TREE_CODE (self)
184 as per:
185 #define TREE_CODE(NODE) ((enum tree_code) (NODE)->base.code)
187 return self.gdbval['base']['code']
189 def DECL_NAME(self):
191 Get Tree instance corresponding to DECL_NAME (self)
193 return Tree(self.gdbval['decl_minimal']['name'])
195 def TYPE_NAME(self):
197 Get Tree instance corresponding to result of TYPE_NAME (self)
199 return Tree(self.gdbval['type_common']['name'])
201 def IDENTIFIER_POINTER(self):
203 Get str correspoinding to result of IDENTIFIER_NODE (self)
205 return self.gdbval['identifier']['id']['str'].string()
207 class TreePrinter:
208 "Prints a tree"
210 def __init__ (self, gdbval):
211 self.gdbval = gdbval
212 self.node = Tree(gdbval)
214 def to_string (self):
215 # like gcc/print-tree.c:print_node_brief
216 # #define TREE_CODE(NODE) ((enum tree_code) (NODE)->base.code)
217 # tree_code_name[(int) TREE_CODE (node)])
218 if intptr(self.gdbval) == 0:
219 return '<tree 0x0>'
221 val_TREE_CODE = self.node.TREE_CODE()
223 # extern const enum tree_code_class tree_code_type[];
224 # #define TREE_CODE_CLASS(CODE) tree_code_type[(int) (CODE)]
226 if val_TREE_CODE == 0xa5a5:
227 return '<ggc_freed 0x%x>' % intptr(self.gdbval)
229 val_tree_code_type = gdb.parse_and_eval('tree_code_type')
230 val_tclass = val_tree_code_type[val_TREE_CODE]
232 val_tree_code_name = gdb.parse_and_eval('tree_code_name')
233 val_code_name = val_tree_code_name[intptr(val_TREE_CODE)]
234 #print(val_code_name.string())
236 try:
237 result = '<%s 0x%x' % (val_code_name.string(), intptr(self.gdbval))
238 except:
239 return '<tree 0x%x>' % intptr(self.gdbval)
240 if intptr(val_tclass) == tcc_declaration:
241 tree_DECL_NAME = self.node.DECL_NAME()
242 if tree_DECL_NAME.is_nonnull():
243 result += ' %s' % tree_DECL_NAME.IDENTIFIER_POINTER()
244 else:
245 pass # TODO: labels etc
246 elif intptr(val_tclass) == tcc_type:
247 tree_TYPE_NAME = Tree(self.gdbval['type_common']['name'])
248 if tree_TYPE_NAME.is_nonnull():
249 if tree_TYPE_NAME.TREE_CODE() == IDENTIFIER_NODE:
250 result += ' %s' % tree_TYPE_NAME.IDENTIFIER_POINTER()
251 elif tree_TYPE_NAME.TREE_CODE() == TYPE_DECL:
252 if tree_TYPE_NAME.DECL_NAME().is_nonnull():
253 result += ' %s' % tree_TYPE_NAME.DECL_NAME().IDENTIFIER_POINTER()
254 if self.node.TREE_CODE() == IDENTIFIER_NODE:
255 result += ' %s' % self.node.IDENTIFIER_POINTER()
256 elif self.node.TREE_CODE() == SSA_NAME:
257 result += ' %u' % self.gdbval['base']['u']['version']
258 # etc
259 result += '>'
260 return result
262 ######################################################################
263 # Callgraph pretty-printers
264 ######################################################################
266 class SymtabNodePrinter:
267 def __init__(self, gdbval):
268 self.gdbval = gdbval
270 def to_string (self):
271 t = str(self.gdbval.type)
272 result = '<%s 0x%x' % (t, intptr(self.gdbval))
273 if intptr(self.gdbval):
274 # symtab_node::name calls lang_hooks.decl_printable_name
275 # default implementation (lhd_decl_printable_name) is:
276 # return IDENTIFIER_POINTER (DECL_NAME (decl));
277 tree_decl = Tree(self.gdbval['decl'])
278 result += ' "%s"/%d' % (tree_decl.DECL_NAME().IDENTIFIER_POINTER(), self.gdbval['order'])
279 result += '>'
280 return result
282 class CgraphEdgePrinter:
283 def __init__(self, gdbval):
284 self.gdbval = gdbval
286 def to_string (self):
287 result = '<cgraph_edge* 0x%x' % intptr(self.gdbval)
288 if intptr(self.gdbval):
289 src = SymtabNodePrinter(self.gdbval['caller']).to_string()
290 dest = SymtabNodePrinter(self.gdbval['callee']).to_string()
291 result += ' (%s -> %s)' % (src, dest)
292 result += '>'
293 return result
295 class IpaReferencePrinter:
296 def __init__(self, gdbval):
297 self.gdbval = gdbval
299 def to_string (self):
300 result = '<ipa_ref* 0x%x' % intptr(self.gdbval)
301 if intptr(self.gdbval):
302 src = SymtabNodePrinter(self.gdbval['referring']).to_string()
303 dest = SymtabNodePrinter(self.gdbval['referred']).to_string()
304 result += ' (%s -> %s:%s)' % (src, dest, str(self.gdbval['use']))
305 result += '>'
306 return result
308 ######################################################################
309 # Dwarf DIE pretty-printers
310 ######################################################################
312 class DWDieRefPrinter:
313 def __init__(self, gdbval):
314 self.gdbval = gdbval
316 def to_string (self):
317 if intptr(self.gdbval) == 0:
318 return '<dw_die_ref 0x0>'
319 result = '<dw_die_ref 0x%x' % intptr(self.gdbval)
320 result += ' %s' % self.gdbval['die_tag']
321 if intptr(self.gdbval['die_parent']) != 0:
322 result += ' <parent=0x%x %s>' % (intptr(self.gdbval['die_parent']),
323 self.gdbval['die_parent']['die_tag'])
325 result += '>'
326 return result
328 ######################################################################
330 class GimplePrinter:
331 def __init__(self, gdbval):
332 self.gdbval = gdbval
334 def to_string (self):
335 if intptr(self.gdbval) == 0:
336 return '<gimple 0x0>'
337 val_gimple_code = self.gdbval['code']
338 val_gimple_code_name = gdb.parse_and_eval('gimple_code_name')
339 val_code_name = val_gimple_code_name[intptr(val_gimple_code)]
340 result = '<%s 0x%x' % (val_code_name.string(),
341 intptr(self.gdbval))
342 result += '>'
343 return result
345 ######################################################################
346 # CFG pretty-printers
347 ######################################################################
349 def bb_index_to_str(index):
350 if index == 0:
351 return 'ENTRY'
352 elif index == 1:
353 return 'EXIT'
354 else:
355 return '%i' % index
357 class BasicBlockPrinter:
358 def __init__(self, gdbval):
359 self.gdbval = gdbval
361 def to_string (self):
362 result = '<basic_block 0x%x' % intptr(self.gdbval)
363 if intptr(self.gdbval):
364 result += ' (%s)' % bb_index_to_str(intptr(self.gdbval['index']))
365 result += '>'
366 return result
368 class CfgEdgePrinter:
369 def __init__(self, gdbval):
370 self.gdbval = gdbval
372 def to_string (self):
373 result = '<edge 0x%x' % intptr(self.gdbval)
374 if intptr(self.gdbval):
375 src = bb_index_to_str(intptr(self.gdbval['src']['index']))
376 dest = bb_index_to_str(intptr(self.gdbval['dest']['index']))
377 result += ' (%s -> %s)' % (src, dest)
378 result += '>'
379 return result
381 ######################################################################
383 class Rtx:
384 def __init__(self, gdbval):
385 self.gdbval = gdbval
387 def GET_CODE(self):
388 return self.gdbval['code']
390 def GET_RTX_LENGTH(code):
391 val_rtx_length = gdb.parse_and_eval('rtx_length')
392 return intptr(val_rtx_length[code])
394 def GET_RTX_NAME(code):
395 val_rtx_name = gdb.parse_and_eval('rtx_name')
396 return val_rtx_name[code].string()
398 def GET_RTX_FORMAT(code):
399 val_rtx_format = gdb.parse_and_eval('rtx_format')
400 return val_rtx_format[code].string()
402 class RtxPrinter:
403 def __init__(self, gdbval):
404 self.gdbval = gdbval
405 self.rtx = Rtx(gdbval)
407 def to_string (self):
409 For now, a cheap kludge: invoke the inferior's print
410 function to get a string to use the user, and return an empty
411 string for gdb
413 # We use print_inline_rtx to avoid a trailing newline
414 gdb.execute('call print_inline_rtx (stderr, (const_rtx) %s, 0)'
415 % intptr(self.gdbval))
416 return ''
418 # or by hand; based on gcc/print-rtl.c:print_rtx
419 result = ('<rtx_def 0x%x'
420 % (intptr(self.gdbval)))
421 code = self.rtx.GET_CODE()
422 result += ' (%s' % GET_RTX_NAME(code)
423 format_ = GET_RTX_FORMAT(code)
424 for i in range(GET_RTX_LENGTH(code)):
425 print(format_[i])
426 result += ')>'
427 return result
429 ######################################################################
431 class PassPrinter:
432 def __init__(self, gdbval):
433 self.gdbval = gdbval
435 def to_string (self):
436 result = '<opt_pass* 0x%x' % intptr(self.gdbval)
437 if intptr(self.gdbval):
438 result += (' "%s"(%i)'
439 % (self.gdbval['name'].string(),
440 intptr(self.gdbval['static_pass_number'])))
441 result += '>'
442 return result
444 ######################################################################
446 class VecPrinter:
447 # -ex "up" -ex "p bb->preds"
448 def __init__(self, gdbval):
449 self.gdbval = gdbval
451 def display_hint (self):
452 return 'array'
454 def to_string (self):
455 # A trivial implementation; prettyprinting the contents is done
456 # by gdb calling the "children" method below.
457 return '0x%x' % intptr(self.gdbval)
459 def children (self):
460 if intptr(self.gdbval) == 0:
461 return
462 m_vecpfx = self.gdbval['m_vecpfx']
463 m_num = m_vecpfx['m_num']
464 m_vecdata = self.gdbval['m_vecdata']
465 for i in range(m_num):
466 yield ('[%d]' % i, m_vecdata[i])
468 ######################################################################
470 class MachineModePrinter:
471 def __init__(self, gdbval):
472 self.gdbval = gdbval
474 def to_string (self):
475 name = str(self.gdbval['m_mode'])
476 return name[2:] if name.startswith('E_') else name
478 ######################################################################
480 class OptMachineModePrinter:
481 def __init__(self, gdbval):
482 self.gdbval = gdbval
484 def to_string (self):
485 name = str(self.gdbval['m_mode'])
486 if name == 'E_VOIDmode':
487 return '<None>'
488 return name[2:] if name.startswith('E_') else name
490 ######################################################################
492 # TODO:
493 # * hashtab
494 # * location_t
496 class GdbSubprinter(gdb.printing.SubPrettyPrinter):
497 def __init__(self, name, class_):
498 super(GdbSubprinter, self).__init__(name)
499 self.class_ = class_
501 def handles_type(self, str_type):
502 raise NotImplementedError
504 class GdbSubprinterTypeList(GdbSubprinter):
506 A GdbSubprinter that handles a specific set of types
508 def __init__(self, str_types, name, class_):
509 super(GdbSubprinterTypeList, self).__init__(name, class_)
510 self.str_types = frozenset(str_types)
512 def handles_type(self, str_type):
513 return str_type in self.str_types
515 class GdbSubprinterRegex(GdbSubprinter):
517 A GdbSubprinter that handles types that match a regex
519 def __init__(self, regex, name, class_):
520 super(GdbSubprinterRegex, self).__init__(name, class_)
521 self.regex = re.compile(regex)
523 def handles_type(self, str_type):
524 return self.regex.match(str_type)
526 class GdbPrettyPrinters(gdb.printing.PrettyPrinter):
527 def __init__(self, name):
528 super(GdbPrettyPrinters, self).__init__(name, [])
530 def add_printer_for_types(self, types, name, class_):
531 self.subprinters.append(GdbSubprinterTypeList(types, name, class_))
533 def add_printer_for_regex(self, regex, name, class_):
534 self.subprinters.append(GdbSubprinterRegex(regex, name, class_))
536 def __call__(self, gdbval):
537 type_ = gdbval.type.unqualified()
538 str_type = str(type_)
539 for printer in self.subprinters:
540 if printer.enabled and printer.handles_type(str_type):
541 return printer.class_(gdbval)
543 # Couldn't find a pretty printer (or it was disabled):
544 return None
547 def build_pretty_printer():
548 pp = GdbPrettyPrinters('gcc')
549 pp.add_printer_for_types(['tree', 'const_tree'],
550 'tree', TreePrinter)
551 pp.add_printer_for_types(['cgraph_node *', 'varpool_node *', 'symtab_node *'],
552 'symtab_node', SymtabNodePrinter)
553 pp.add_printer_for_types(['cgraph_edge *'],
554 'cgraph_edge', CgraphEdgePrinter)
555 pp.add_printer_for_types(['ipa_ref *'],
556 'ipa_ref', IpaReferencePrinter)
557 pp.add_printer_for_types(['dw_die_ref'],
558 'dw_die_ref', DWDieRefPrinter)
559 pp.add_printer_for_types(['gimple', 'gimple *',
561 # Keep this in the same order as gimple.def:
562 'gimple_cond', 'const_gimple_cond',
563 'gimple_statement_cond *',
564 'gimple_debug', 'const_gimple_debug',
565 'gimple_statement_debug *',
566 'gimple_label', 'const_gimple_label',
567 'gimple_statement_label *',
568 'gimple_switch', 'const_gimple_switch',
569 'gimple_statement_switch *',
570 'gimple_assign', 'const_gimple_assign',
571 'gimple_statement_assign *',
572 'gimple_bind', 'const_gimple_bind',
573 'gimple_statement_bind *',
574 'gimple_phi', 'const_gimple_phi',
575 'gimple_statement_phi *'],
577 'gimple',
578 GimplePrinter)
579 pp.add_printer_for_types(['basic_block', 'basic_block_def *'],
580 'basic_block',
581 BasicBlockPrinter)
582 pp.add_printer_for_types(['edge', 'edge_def *'],
583 'edge',
584 CfgEdgePrinter)
585 pp.add_printer_for_types(['rtx_def *'], 'rtx_def', RtxPrinter)
586 pp.add_printer_for_types(['opt_pass *'], 'opt_pass', PassPrinter)
588 pp.add_printer_for_regex(r'vec<(\S+), (\S+), (\S+)> \*',
589 'vec',
590 VecPrinter)
592 pp.add_printer_for_regex(r'opt_mode<(\S+)>',
593 'opt_mode', OptMachineModePrinter)
594 pp.add_printer_for_types(['opt_scalar_int_mode',
595 'opt_scalar_float_mode',
596 'opt_scalar_mode'],
597 'opt_mode', OptMachineModePrinter)
598 pp.add_printer_for_regex(r'pod_mode<(\S+)>',
599 'pod_mode', MachineModePrinter)
600 pp.add_printer_for_types(['scalar_int_mode_pod',
601 'scalar_mode_pod'],
602 'pod_mode', MachineModePrinter)
603 for mode in ('scalar_mode', 'scalar_int_mode', 'scalar_float_mode',
604 'complex_mode'):
605 pp.add_printer_for_types([mode], mode, MachineModePrinter)
607 return pp
609 gdb.printing.register_pretty_printer(
610 gdb.current_objfile(),
611 build_pretty_printer(),
612 replace=True)
614 def find_gcc_source_dir():
615 # Use location of global "g" to locate the source tree
616 sym_g = gdb.lookup_global_symbol('g')
617 path = sym_g.symtab.filename # e.g. '../../src/gcc/context.h'
618 srcdir = os.path.split(path)[0] # e.g. '../../src/gcc'
619 return srcdir
621 class PassNames:
622 """Parse passes.def, gathering a list of pass class names"""
623 def __init__(self):
624 srcdir = find_gcc_source_dir()
625 self.names = []
626 with open(os.path.join(srcdir, 'passes.def')) as f:
627 for line in f:
628 m = re.match('\s*NEXT_PASS \(([^,]+).*\);', line)
629 if m:
630 self.names.append(m.group(1))
632 class BreakOnPass(gdb.Command):
634 A custom command for putting breakpoints on the execute hook of passes.
635 This is largely a workaround for issues with tab-completion in gdb when
636 setting breakpoints on methods on classes within anonymous namespaces.
638 Example of use: putting a breakpoint on "final"
639 (gdb) break-on-pass
640 Press <TAB>; it autocompletes to "pass_":
641 (gdb) break-on-pass pass_
642 Press <TAB>:
643 Display all 219 possibilities? (y or n)
644 Press "n"; then type "f":
645 (gdb) break-on-pass pass_f
646 Press <TAB> to autocomplete to pass classnames beginning with "pass_f":
647 pass_fast_rtl_dce pass_fold_builtins
648 pass_feedback_split_functions pass_forwprop
649 pass_final pass_fre
650 pass_fixup_cfg pass_free_cfg
651 Type "in<TAB>" to complete to "pass_final":
652 (gdb) break-on-pass pass_final
653 ...and hit <RETURN>:
654 Breakpoint 6 at 0x8396ba: file ../../src/gcc/final.c, line 4526.
655 ...and we have a breakpoint set; continue execution:
656 (gdb) cont
657 Continuing.
658 Breakpoint 6, (anonymous namespace)::pass_final::execute (this=0x17fb990) at ../../src/gcc/final.c:4526
659 4526 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
661 def __init__(self):
662 gdb.Command.__init__(self, 'break-on-pass', gdb.COMMAND_BREAKPOINTS)
663 self.pass_names = None
665 def complete(self, text, word):
666 # Lazily load pass names:
667 if not self.pass_names:
668 self.pass_names = PassNames()
670 return [name
671 for name in sorted(self.pass_names.names)
672 if name.startswith(text)]
674 def invoke(self, arg, from_tty):
675 sym = '(anonymous namespace)::%s::execute' % arg
676 breakpoint = gdb.Breakpoint(sym)
678 BreakOnPass()
680 class DumpFn(gdb.Command):
682 A custom command to dump a gimple/rtl function to file. By default, it
683 dumps the current function using 0 as dump_flags, but the function and flags
684 can also be specified. If /f <file> are passed as the first two arguments,
685 the dump is written to that file. Otherwise, a temporary file is created
686 and opened in the text editor specified in the EDITOR environment variable.
688 Examples of use:
689 (gdb) dump-fn
690 (gdb) dump-fn /f foo.1.txt
691 (gdb) dump-fn cfun->decl
692 (gdb) dump-fn /f foo.1.txt cfun->decl
693 (gdb) dump-fn cfun->decl 0
694 (gdb) dump-fn cfun->decl dump_flags
697 def __init__(self):
698 gdb.Command.__init__(self, 'dump-fn', gdb.COMMAND_USER)
700 def invoke(self, arg, from_tty):
701 # Parse args, check number of args
702 args = gdb.string_to_argv(arg)
703 if len(args) >= 1 and args[0] == "/f":
704 if len(args) == 1:
705 print ("Missing file argument")
706 return
707 filename = args[1]
708 editor_mode = False
709 base_arg = 2
710 else:
711 editor = os.getenv("EDITOR", "")
712 if editor == "":
713 print ("EDITOR environment variable not defined")
714 return
715 editor_mode = True
716 base_arg = 0
717 if len(args) - base_arg > 2:
718 print ("Too many arguments")
719 return
721 # Set func
722 if len(args) - base_arg >= 1:
723 funcname = args[base_arg]
724 printfuncname = "function %s" % funcname
725 else:
726 funcname = "cfun ? cfun->decl : current_function_decl"
727 printfuncname = "current function"
728 func = gdb.parse_and_eval(funcname)
729 if func == 0:
730 print ("Could not find %s" % printfuncname)
731 return
732 func = "(tree)%u" % func
734 # Set flags
735 if len(args) - base_arg >= 2:
736 flags = gdb.parse_and_eval(args[base_arg + 1])
737 else:
738 flags = 0
740 # Get tempory file, if necessary
741 if editor_mode:
742 f = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
743 filename = f.name
744 f.close()
746 # Open file
747 fp = gdb.parse_and_eval("(FILE *) fopen (\"%s\", \"w\")" % filename)
748 if fp == 0:
749 print ("Could not open file: %s" % filename)
750 return
752 # Dump function to file
753 _ = gdb.parse_and_eval("dump_function_to_file (%s, %s, %u)" %
754 (func, fp, flags))
756 # Close file
757 ret = gdb.parse_and_eval("(int) fclose (%s)" % fp)
758 if ret != 0:
759 print ("Could not close file: %s" % filename)
760 return
762 # Open file in editor, if necessary
763 if editor_mode:
764 os.system("( %s \"%s\"; rm \"%s\" ) &" %
765 (editor, filename, filename))
767 DumpFn()
769 class DotFn(gdb.Command):
771 A custom command to show a gimple/rtl function control flow graph.
772 By default, it show the current function, but the function can also be
773 specified.
775 Examples of use:
776 (gdb) dot-fn
777 (gdb) dot-fn cfun
778 (gdb) dot-fn cfun 0
779 (gdb) dot-fn cfun dump_flags
781 def __init__(self):
782 gdb.Command.__init__(self, 'dot-fn', gdb.COMMAND_USER)
784 def invoke(self, arg, from_tty):
785 # Parse args, check number of args
786 args = gdb.string_to_argv(arg)
787 if len(args) > 2:
788 print("Too many arguments")
789 return
791 # Set func
792 if len(args) >= 1:
793 funcname = args[0]
794 printfuncname = "function %s" % funcname
795 else:
796 funcname = "cfun"
797 printfuncname = "current function"
798 func = gdb.parse_and_eval(funcname)
799 if func == 0:
800 print("Could not find %s" % printfuncname)
801 return
802 func = "(struct function *)%s" % func
804 # Set flags
805 if len(args) >= 2:
806 flags = gdb.parse_and_eval(args[1])
807 else:
808 flags = 0
810 # Get temp file
811 f = tempfile.NamedTemporaryFile(delete=False)
812 filename = f.name
814 # Close and reopen temp file to get C FILE*
815 f.close()
816 fp = gdb.parse_and_eval("(FILE *) fopen (\"%s\", \"w\")" % filename)
817 if fp == 0:
818 print("Cannot open temp file")
819 return
821 # Write graph to temp file
822 _ = gdb.parse_and_eval("start_graph_dump (%s, \"<debug>\")" % fp)
823 _ = gdb.parse_and_eval("print_graph_cfg (%s, %s, %u)"
824 % (fp, func, flags))
825 _ = gdb.parse_and_eval("end_graph_dump (%s)" % fp)
827 # Close temp file
828 ret = gdb.parse_and_eval("(int) fclose (%s)" % fp)
829 if ret != 0:
830 print("Could not close temp file: %s" % filename)
831 return
833 # Show graph in temp file
834 os.system("( dot -Tx11 \"%s\"; rm \"%s\" ) &" % (filename, filename))
836 DotFn()
838 print('Successfully loaded GDB hooks for GCC')