Introduce filtering for edge_predictions.
[official-gcc.git] / gcc / predict.c
blobf00428fb8ae8fd33a808556129eb78dad2f67486
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "emit-rtl.h"
41 #include "cgraph.h"
42 #include "coverage.h"
43 #include "diagnostic-core.h"
44 #include "gimple-predict.h"
45 #include "fold-const.h"
46 #include "calls.h"
47 #include "cfganal.h"
48 #include "profile.h"
49 #include "sreal.h"
50 #include "params.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
58 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
59 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
60 static sreal real_almost_one, real_br_prob_base,
61 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
63 static void combine_predictions_for_insn (rtx_insn *, basic_block);
64 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
65 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
66 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
67 static bool can_predict_insn_p (const rtx_insn *);
69 /* Information we hold about each branch predictor.
70 Filled using information from predict.def. */
72 struct predictor_info
74 const char *const name; /* Name used in the debugging dumps. */
75 const int hitrate; /* Expected hitrate used by
76 predict_insn_def call. */
77 const int flags;
80 /* Use given predictor without Dempster-Shaffer theory if it matches
81 using first_match heuristics. */
82 #define PRED_FLAG_FIRST_MATCH 1
84 /* Recompute hitrate in percent to our representation. */
86 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
88 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
89 static const struct predictor_info predictor_info[]= {
90 #include "predict.def"
92 /* Upper bound on predictors. */
93 {NULL, 0, 0}
95 #undef DEF_PREDICTOR
97 /* Return TRUE if frequency FREQ is considered to be hot. */
99 static inline bool
100 maybe_hot_frequency_p (struct function *fun, int freq)
102 struct cgraph_node *node = cgraph_node::get (fun->decl);
103 if (!profile_info
104 || !opt_for_fn (fun->decl, flag_branch_probabilities))
106 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
107 return false;
108 if (node->frequency == NODE_FREQUENCY_HOT)
109 return true;
111 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
112 return true;
113 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
114 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
115 return false;
116 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
117 return false;
118 if (freq * PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)
119 < ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
120 return false;
121 return true;
124 static gcov_type min_count = -1;
126 /* Determine the threshold for hot BB counts. */
128 gcov_type
129 get_hot_bb_threshold ()
131 gcov_working_set_t *ws;
132 if (min_count == -1)
134 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
135 gcc_assert (ws);
136 min_count = ws->min_counter;
138 return min_count;
141 /* Set the threshold for hot BB counts. */
143 void
144 set_hot_bb_threshold (gcov_type min)
146 min_count = min;
149 /* Return TRUE if frequency FREQ is considered to be hot. */
151 bool
152 maybe_hot_count_p (struct function *fun, gcov_type count)
154 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
155 return true;
156 /* Code executed at most once is not hot. */
157 if (profile_info->runs >= count)
158 return false;
159 return (count >= get_hot_bb_threshold ());
162 /* Return true in case BB can be CPU intensive and should be optimized
163 for maximal performance. */
165 bool
166 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
168 gcc_checking_assert (fun);
169 if (profile_status_for_fn (fun) == PROFILE_READ)
170 return maybe_hot_count_p (fun, bb->count);
171 return maybe_hot_frequency_p (fun, bb->frequency);
174 /* Return true in case BB can be CPU intensive and should be optimized
175 for maximal performance. */
177 bool
178 maybe_hot_edge_p (edge e)
180 if (profile_status_for_fn (cfun) == PROFILE_READ)
181 return maybe_hot_count_p (cfun, e->count);
182 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
185 /* Return true if profile COUNT and FREQUENCY, or function FUN static
186 node frequency reflects never being executed. */
188 static bool
189 probably_never_executed (struct function *fun,
190 gcov_type count, int frequency)
192 gcc_checking_assert (fun);
193 if (profile_status_for_fn (fun) == PROFILE_READ)
195 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
196 if (count * unlikely_count_fraction >= profile_info->runs)
197 return false;
198 if (!frequency)
199 return true;
200 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
201 return false;
202 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
204 gcov_type computed_count;
205 /* Check for possibility of overflow, in which case entry bb count
206 is large enough to do the division first without losing much
207 precision. */
208 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
209 REG_BR_PROB_BASE)
211 gcov_type scaled_count
212 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
213 unlikely_count_fraction;
214 computed_count = RDIV (scaled_count,
215 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
217 else
219 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
220 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
221 computed_count *= frequency * unlikely_count_fraction;
223 if (computed_count >= profile_info->runs)
224 return false;
226 return true;
228 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
229 && (cgraph_node::get (fun->decl)->frequency
230 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
231 return true;
232 return false;
236 /* Return true in case BB is probably never executed. */
238 bool
239 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
241 return probably_never_executed (fun, bb->count, bb->frequency);
245 /* Return true in case edge E is probably never executed. */
247 bool
248 probably_never_executed_edge_p (struct function *fun, edge e)
250 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
253 /* Return true when current function should always be optimized for size. */
255 bool
256 optimize_function_for_size_p (struct function *fun)
258 if (!fun || !fun->decl)
259 return optimize_size;
260 cgraph_node *n = cgraph_node::get (fun->decl);
261 return n && n->optimize_for_size_p ();
264 /* Return true when current function should always be optimized for speed. */
266 bool
267 optimize_function_for_speed_p (struct function *fun)
269 return !optimize_function_for_size_p (fun);
272 /* Return the optimization type that should be used for the function FUN. */
274 optimization_type
275 function_optimization_type (struct function *fun)
277 return (optimize_function_for_speed_p (fun)
278 ? OPTIMIZE_FOR_SPEED
279 : OPTIMIZE_FOR_SIZE);
282 /* Return TRUE when BB should be optimized for size. */
284 bool
285 optimize_bb_for_size_p (const_basic_block bb)
287 return (optimize_function_for_size_p (cfun)
288 || (bb && !maybe_hot_bb_p (cfun, bb)));
291 /* Return TRUE when BB should be optimized for speed. */
293 bool
294 optimize_bb_for_speed_p (const_basic_block bb)
296 return !optimize_bb_for_size_p (bb);
299 /* Return the optimization type that should be used for block BB. */
301 optimization_type
302 bb_optimization_type (const_basic_block bb)
304 return (optimize_bb_for_speed_p (bb)
305 ? OPTIMIZE_FOR_SPEED
306 : OPTIMIZE_FOR_SIZE);
309 /* Return TRUE when BB should be optimized for size. */
311 bool
312 optimize_edge_for_size_p (edge e)
314 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
317 /* Return TRUE when BB should be optimized for speed. */
319 bool
320 optimize_edge_for_speed_p (edge e)
322 return !optimize_edge_for_size_p (e);
325 /* Return TRUE when BB should be optimized for size. */
327 bool
328 optimize_insn_for_size_p (void)
330 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
333 /* Return TRUE when BB should be optimized for speed. */
335 bool
336 optimize_insn_for_speed_p (void)
338 return !optimize_insn_for_size_p ();
341 /* Return TRUE when LOOP should be optimized for size. */
343 bool
344 optimize_loop_for_size_p (struct loop *loop)
346 return optimize_bb_for_size_p (loop->header);
349 /* Return TRUE when LOOP should be optimized for speed. */
351 bool
352 optimize_loop_for_speed_p (struct loop *loop)
354 return optimize_bb_for_speed_p (loop->header);
357 /* Return TRUE when LOOP nest should be optimized for speed. */
359 bool
360 optimize_loop_nest_for_speed_p (struct loop *loop)
362 struct loop *l = loop;
363 if (optimize_loop_for_speed_p (loop))
364 return true;
365 l = loop->inner;
366 while (l && l != loop)
368 if (optimize_loop_for_speed_p (l))
369 return true;
370 if (l->inner)
371 l = l->inner;
372 else if (l->next)
373 l = l->next;
374 else
376 while (l != loop && !l->next)
377 l = loop_outer (l);
378 if (l != loop)
379 l = l->next;
382 return false;
385 /* Return TRUE when LOOP nest should be optimized for size. */
387 bool
388 optimize_loop_nest_for_size_p (struct loop *loop)
390 return !optimize_loop_nest_for_speed_p (loop);
393 /* Return true when edge E is likely to be well predictable by branch
394 predictor. */
396 bool
397 predictable_edge_p (edge e)
399 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
400 return false;
401 if ((e->probability
402 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
403 || (REG_BR_PROB_BASE - e->probability
404 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
405 return true;
406 return false;
410 /* Set RTL expansion for BB profile. */
412 void
413 rtl_profile_for_bb (basic_block bb)
415 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
418 /* Set RTL expansion for edge profile. */
420 void
421 rtl_profile_for_edge (edge e)
423 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
426 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
427 void
428 default_rtl_profile (void)
430 crtl->maybe_hot_insn_p = true;
433 /* Return true if the one of outgoing edges is already predicted by
434 PREDICTOR. */
436 bool
437 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
439 rtx note;
440 if (!INSN_P (BB_END (bb)))
441 return false;
442 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
443 if (REG_NOTE_KIND (note) == REG_BR_PRED
444 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
445 return true;
446 return false;
449 /* Structure representing predictions in tree level. */
451 struct edge_prediction {
452 struct edge_prediction *ep_next;
453 edge ep_edge;
454 enum br_predictor ep_predictor;
455 int ep_probability;
458 /* This map contains for a basic block the list of predictions for the
459 outgoing edges. */
461 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
463 /* Return true if the one of outgoing edges is already predicted by
464 PREDICTOR. */
466 bool
467 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
469 struct edge_prediction *i;
470 edge_prediction **preds = bb_predictions->get (bb);
472 if (!preds)
473 return false;
475 for (i = *preds; i; i = i->ep_next)
476 if (i->ep_predictor == predictor)
477 return true;
478 return false;
481 /* Return true if the one of outgoing edges is already predicted by
482 PREDICTOR for edge E predicted as TAKEN. */
484 bool
485 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
487 struct edge_prediction *i;
488 basic_block bb = e->src;
489 edge_prediction **preds = bb_predictions->get (bb);
490 if (!preds)
491 return false;
493 int probability = predictor_info[(int) predictor].hitrate;
495 if (taken != TAKEN)
496 probability = REG_BR_PROB_BASE - probability;
498 for (i = *preds; i; i = i->ep_next)
499 if (i->ep_predictor == predictor
500 && i->ep_edge == e
501 && i->ep_probability == probability)
502 return true;
503 return false;
506 /* Return true when the probability of edge is reliable.
508 The profile guessing code is good at predicting branch outcome (ie.
509 taken/not taken), that is predicted right slightly over 75% of time.
510 It is however notoriously poor on predicting the probability itself.
511 In general the profile appear a lot flatter (with probabilities closer
512 to 50%) than the reality so it is bad idea to use it to drive optimization
513 such as those disabling dynamic branch prediction for well predictable
514 branches.
516 There are two exceptions - edges leading to noreturn edges and edges
517 predicted by number of iterations heuristics are predicted well. This macro
518 should be able to distinguish those, but at the moment it simply check for
519 noreturn heuristic that is only one giving probability over 99% or bellow
520 1%. In future we might want to propagate reliability information across the
521 CFG if we find this information useful on multiple places. */
522 static bool
523 probability_reliable_p (int prob)
525 return (profile_status_for_fn (cfun) == PROFILE_READ
526 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
527 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
530 /* Same predicate as above, working on edges. */
531 bool
532 edge_probability_reliable_p (const_edge e)
534 return probability_reliable_p (e->probability);
537 /* Same predicate as edge_probability_reliable_p, working on notes. */
538 bool
539 br_prob_note_reliable_p (const_rtx note)
541 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
542 return probability_reliable_p (XINT (note, 0));
545 static void
546 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
548 gcc_assert (any_condjump_p (insn));
549 if (!flag_guess_branch_prob)
550 return;
552 add_reg_note (insn, REG_BR_PRED,
553 gen_rtx_CONCAT (VOIDmode,
554 GEN_INT ((int) predictor),
555 GEN_INT ((int) probability)));
558 /* Predict insn by given predictor. */
560 void
561 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
562 enum prediction taken)
564 int probability = predictor_info[(int) predictor].hitrate;
566 if (taken != TAKEN)
567 probability = REG_BR_PROB_BASE - probability;
569 predict_insn (insn, predictor, probability);
572 /* Predict edge E with given probability if possible. */
574 void
575 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
577 rtx_insn *last_insn;
578 last_insn = BB_END (e->src);
580 /* We can store the branch prediction information only about
581 conditional jumps. */
582 if (!any_condjump_p (last_insn))
583 return;
585 /* We always store probability of branching. */
586 if (e->flags & EDGE_FALLTHRU)
587 probability = REG_BR_PROB_BASE - probability;
589 predict_insn (last_insn, predictor, probability);
592 /* Predict edge E with the given PROBABILITY. */
593 void
594 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
596 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
597 && EDGE_COUNT (e->src->succs) > 1
598 && flag_guess_branch_prob
599 && optimize)
601 struct edge_prediction *i = XNEW (struct edge_prediction);
602 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
604 i->ep_next = preds;
605 preds = i;
606 i->ep_probability = probability;
607 i->ep_predictor = predictor;
608 i->ep_edge = e;
612 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
613 to the filter function. */
615 void
616 filter_predictions (edge_prediction **preds,
617 bool (*filter) (edge_prediction *, void *), void *data)
619 if (!bb_predictions)
620 return;
622 if (preds)
624 struct edge_prediction **prediction = preds;
625 struct edge_prediction *next;
627 while (*prediction)
629 if ((*filter) (*prediction, data))
630 prediction = &((*prediction)->ep_next);
631 else
633 next = (*prediction)->ep_next;
634 free (*prediction);
635 *prediction = next;
641 /* Filter function predicate that returns true for a edge predicate P
642 if its edge is equal to DATA. */
644 bool
645 equal_edge_p (edge_prediction *p, void *data)
647 return p->ep_edge == (edge)data;
650 /* Remove all predictions on given basic block that are attached
651 to edge E. */
652 void
653 remove_predictions_associated_with_edge (edge e)
655 if (!bb_predictions)
656 return;
658 edge_prediction **preds = bb_predictions->get (e->src);
659 filter_predictions (preds, equal_edge_p, e);
662 /* Clears the list of predictions stored for BB. */
664 static void
665 clear_bb_predictions (basic_block bb)
667 edge_prediction **preds = bb_predictions->get (bb);
668 struct edge_prediction *pred, *next;
670 if (!preds)
671 return;
673 for (pred = *preds; pred; pred = next)
675 next = pred->ep_next;
676 free (pred);
678 *preds = NULL;
681 /* Return true when we can store prediction on insn INSN.
682 At the moment we represent predictions only on conditional
683 jumps, not at computed jump or other complicated cases. */
684 static bool
685 can_predict_insn_p (const rtx_insn *insn)
687 return (JUMP_P (insn)
688 && any_condjump_p (insn)
689 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
692 /* Predict edge E by given predictor if possible. */
694 void
695 predict_edge_def (edge e, enum br_predictor predictor,
696 enum prediction taken)
698 int probability = predictor_info[(int) predictor].hitrate;
700 if (taken != TAKEN)
701 probability = REG_BR_PROB_BASE - probability;
703 predict_edge (e, predictor, probability);
706 /* Invert all branch predictions or probability notes in the INSN. This needs
707 to be done each time we invert the condition used by the jump. */
709 void
710 invert_br_probabilities (rtx insn)
712 rtx note;
714 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
715 if (REG_NOTE_KIND (note) == REG_BR_PROB)
716 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
717 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
718 XEXP (XEXP (note, 0), 1)
719 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
722 /* Dump information about the branch prediction to the output file. */
724 static void
725 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
726 basic_block bb, int used)
728 edge e;
729 edge_iterator ei;
731 if (!file)
732 return;
734 FOR_EACH_EDGE (e, ei, bb->succs)
735 if (! (e->flags & EDGE_FALLTHRU))
736 break;
738 fprintf (file, " %s heuristics%s: %.1f%%",
739 predictor_info[predictor].name,
740 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
742 if (bb->count)
744 fprintf (file, " exec %" PRId64, bb->count);
745 if (e)
747 fprintf (file, " hit %" PRId64, e->count);
748 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
752 fprintf (file, "\n");
755 /* We can not predict the probabilities of outgoing edges of bb. Set them
756 evenly and hope for the best. */
757 static void
758 set_even_probabilities (basic_block bb)
760 int nedges = 0;
761 edge e;
762 edge_iterator ei;
764 FOR_EACH_EDGE (e, ei, bb->succs)
765 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
766 nedges ++;
767 FOR_EACH_EDGE (e, ei, bb->succs)
768 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
769 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
770 else
771 e->probability = 0;
774 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
775 note if not already present. Remove now useless REG_BR_PRED notes. */
777 static void
778 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
780 rtx prob_note;
781 rtx *pnote;
782 rtx note;
783 int best_probability = PROB_EVEN;
784 enum br_predictor best_predictor = END_PREDICTORS;
785 int combined_probability = REG_BR_PROB_BASE / 2;
786 int d;
787 bool first_match = false;
788 bool found = false;
790 if (!can_predict_insn_p (insn))
792 set_even_probabilities (bb);
793 return;
796 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
797 pnote = &REG_NOTES (insn);
798 if (dump_file)
799 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
800 bb->index);
802 /* We implement "first match" heuristics and use probability guessed
803 by predictor with smallest index. */
804 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
805 if (REG_NOTE_KIND (note) == REG_BR_PRED)
807 enum br_predictor predictor = ((enum br_predictor)
808 INTVAL (XEXP (XEXP (note, 0), 0)));
809 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
811 found = true;
812 if (best_predictor > predictor)
813 best_probability = probability, best_predictor = predictor;
815 d = (combined_probability * probability
816 + (REG_BR_PROB_BASE - combined_probability)
817 * (REG_BR_PROB_BASE - probability));
819 /* Use FP math to avoid overflows of 32bit integers. */
820 if (d == 0)
821 /* If one probability is 0% and one 100%, avoid division by zero. */
822 combined_probability = REG_BR_PROB_BASE / 2;
823 else
824 combined_probability = (((double) combined_probability) * probability
825 * REG_BR_PROB_BASE / d + 0.5);
828 /* Decide which heuristic to use. In case we didn't match anything,
829 use no_prediction heuristic, in case we did match, use either
830 first match or Dempster-Shaffer theory depending on the flags. */
832 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
833 first_match = true;
835 if (!found)
836 dump_prediction (dump_file, PRED_NO_PREDICTION,
837 combined_probability, bb, true);
838 else
840 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
841 bb, !first_match);
842 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
843 bb, first_match);
846 if (first_match)
847 combined_probability = best_probability;
848 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
850 while (*pnote)
852 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
854 enum br_predictor predictor = ((enum br_predictor)
855 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
856 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
858 dump_prediction (dump_file, predictor, probability, bb,
859 !first_match || best_predictor == predictor);
860 *pnote = XEXP (*pnote, 1);
862 else
863 pnote = &XEXP (*pnote, 1);
866 if (!prob_note)
868 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
870 /* Save the prediction into CFG in case we are seeing non-degenerated
871 conditional jump. */
872 if (!single_succ_p (bb))
874 BRANCH_EDGE (bb)->probability = combined_probability;
875 FALLTHRU_EDGE (bb)->probability
876 = REG_BR_PROB_BASE - combined_probability;
879 else if (!single_succ_p (bb))
881 int prob = XINT (prob_note, 0);
883 BRANCH_EDGE (bb)->probability = prob;
884 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
886 else
887 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
890 /* Combine predictions into single probability and store them into CFG.
891 Remove now useless prediction entries.
892 If DRY_RUN is set, only produce dumps and do not modify profile. */
894 static void
895 combine_predictions_for_bb (basic_block bb, bool dry_run)
897 int best_probability = PROB_EVEN;
898 enum br_predictor best_predictor = END_PREDICTORS;
899 int combined_probability = REG_BR_PROB_BASE / 2;
900 int d;
901 bool first_match = false;
902 bool found = false;
903 struct edge_prediction *pred;
904 int nedges = 0;
905 edge e, first = NULL, second = NULL;
906 edge_iterator ei;
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
911 nedges ++;
912 if (first && !second)
913 second = e;
914 if (!first)
915 first = e;
918 /* When there is no successor or only one choice, prediction is easy.
920 We are lazy for now and predict only basic blocks with two outgoing
921 edges. It is possible to predict generic case too, but we have to
922 ignore first match heuristics and do more involved combining. Implement
923 this later. */
924 if (nedges != 2)
926 if (!bb->count && !dry_run)
927 set_even_probabilities (bb);
928 clear_bb_predictions (bb);
929 if (dump_file)
930 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
931 nedges, bb->index);
932 return;
935 if (dump_file)
936 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
938 edge_prediction **preds = bb_predictions->get (bb);
939 if (preds)
941 /* We implement "first match" heuristics and use probability guessed
942 by predictor with smallest index. */
943 for (pred = *preds; pred; pred = pred->ep_next)
945 enum br_predictor predictor = pred->ep_predictor;
946 int probability = pred->ep_probability;
948 if (pred->ep_edge != first)
949 probability = REG_BR_PROB_BASE - probability;
951 found = true;
952 /* First match heuristics would be widly confused if we predicted
953 both directions. */
954 if (best_predictor > predictor)
956 struct edge_prediction *pred2;
957 int prob = probability;
959 for (pred2 = (struct edge_prediction *) *preds;
960 pred2; pred2 = pred2->ep_next)
961 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
963 int probability2 = pred2->ep_probability;
965 if (pred2->ep_edge != first)
966 probability2 = REG_BR_PROB_BASE - probability2;
968 if ((probability < REG_BR_PROB_BASE / 2) !=
969 (probability2 < REG_BR_PROB_BASE / 2))
970 break;
972 /* If the same predictor later gave better result, go for it! */
973 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
974 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
975 prob = probability2;
977 if (!pred2)
978 best_probability = prob, best_predictor = predictor;
981 d = (combined_probability * probability
982 + (REG_BR_PROB_BASE - combined_probability)
983 * (REG_BR_PROB_BASE - probability));
985 /* Use FP math to avoid overflows of 32bit integers. */
986 if (d == 0)
987 /* If one probability is 0% and one 100%, avoid division by zero. */
988 combined_probability = REG_BR_PROB_BASE / 2;
989 else
990 combined_probability = (((double) combined_probability)
991 * probability
992 * REG_BR_PROB_BASE / d + 0.5);
996 /* Decide which heuristic to use. In case we didn't match anything,
997 use no_prediction heuristic, in case we did match, use either
998 first match or Dempster-Shaffer theory depending on the flags. */
1000 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1001 first_match = true;
1003 if (!found)
1004 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1005 else
1007 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1008 !first_match);
1009 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1010 first_match);
1013 if (first_match)
1014 combined_probability = best_probability;
1015 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1017 if (preds)
1019 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1021 enum br_predictor predictor = pred->ep_predictor;
1022 int probability = pred->ep_probability;
1024 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1025 probability = REG_BR_PROB_BASE - probability;
1026 dump_prediction (dump_file, predictor, probability, bb,
1027 !first_match || best_predictor == predictor);
1030 clear_bb_predictions (bb);
1032 if (!bb->count && !dry_run)
1034 first->probability = combined_probability;
1035 second->probability = REG_BR_PROB_BASE - combined_probability;
1039 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1040 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1042 T1 and T2 should be one of the following cases:
1043 1. T1 is SSA_NAME, T2 is NULL
1044 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1045 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1047 static tree
1048 strips_small_constant (tree t1, tree t2)
1050 tree ret = NULL;
1051 int value = 0;
1053 if (!t1)
1054 return NULL;
1055 else if (TREE_CODE (t1) == SSA_NAME)
1056 ret = t1;
1057 else if (tree_fits_shwi_p (t1))
1058 value = tree_to_shwi (t1);
1059 else
1060 return NULL;
1062 if (!t2)
1063 return ret;
1064 else if (tree_fits_shwi_p (t2))
1065 value = tree_to_shwi (t2);
1066 else if (TREE_CODE (t2) == SSA_NAME)
1068 if (ret)
1069 return NULL;
1070 else
1071 ret = t2;
1074 if (value <= 4 && value >= -4)
1075 return ret;
1076 else
1077 return NULL;
1080 /* Return the SSA_NAME in T or T's operands.
1081 Return NULL if SSA_NAME cannot be found. */
1083 static tree
1084 get_base_value (tree t)
1086 if (TREE_CODE (t) == SSA_NAME)
1087 return t;
1089 if (!BINARY_CLASS_P (t))
1090 return NULL;
1092 switch (TREE_OPERAND_LENGTH (t))
1094 case 1:
1095 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1096 case 2:
1097 return strips_small_constant (TREE_OPERAND (t, 0),
1098 TREE_OPERAND (t, 1));
1099 default:
1100 return NULL;
1104 /* Check the compare STMT in LOOP. If it compares an induction
1105 variable to a loop invariant, return true, and save
1106 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1107 Otherwise return false and set LOOP_INVAIANT to NULL. */
1109 static bool
1110 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1111 tree *loop_invariant,
1112 enum tree_code *compare_code,
1113 tree *loop_step,
1114 tree *loop_iv_base)
1116 tree op0, op1, bound, base;
1117 affine_iv iv0, iv1;
1118 enum tree_code code;
1119 tree step;
1121 code = gimple_cond_code (stmt);
1122 *loop_invariant = NULL;
1124 switch (code)
1126 case GT_EXPR:
1127 case GE_EXPR:
1128 case NE_EXPR:
1129 case LT_EXPR:
1130 case LE_EXPR:
1131 case EQ_EXPR:
1132 break;
1134 default:
1135 return false;
1138 op0 = gimple_cond_lhs (stmt);
1139 op1 = gimple_cond_rhs (stmt);
1141 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1142 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1143 return false;
1144 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1145 return false;
1146 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1147 return false;
1148 if (TREE_CODE (iv0.step) != INTEGER_CST
1149 || TREE_CODE (iv1.step) != INTEGER_CST)
1150 return false;
1151 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1152 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1153 return false;
1155 if (integer_zerop (iv0.step))
1157 if (code != NE_EXPR && code != EQ_EXPR)
1158 code = invert_tree_comparison (code, false);
1159 bound = iv0.base;
1160 base = iv1.base;
1161 if (tree_fits_shwi_p (iv1.step))
1162 step = iv1.step;
1163 else
1164 return false;
1166 else
1168 bound = iv1.base;
1169 base = iv0.base;
1170 if (tree_fits_shwi_p (iv0.step))
1171 step = iv0.step;
1172 else
1173 return false;
1176 if (TREE_CODE (bound) != INTEGER_CST)
1177 bound = get_base_value (bound);
1178 if (!bound)
1179 return false;
1180 if (TREE_CODE (base) != INTEGER_CST)
1181 base = get_base_value (base);
1182 if (!base)
1183 return false;
1185 *loop_invariant = bound;
1186 *compare_code = code;
1187 *loop_step = step;
1188 *loop_iv_base = base;
1189 return true;
1192 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1194 static bool
1195 expr_coherent_p (tree t1, tree t2)
1197 gimple *stmt;
1198 tree ssa_name_1 = NULL;
1199 tree ssa_name_2 = NULL;
1201 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1202 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1204 if (t1 == t2)
1205 return true;
1207 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1208 return true;
1209 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1210 return false;
1212 /* Check to see if t1 is expressed/defined with t2. */
1213 stmt = SSA_NAME_DEF_STMT (t1);
1214 gcc_assert (stmt != NULL);
1215 if (is_gimple_assign (stmt))
1217 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1218 if (ssa_name_1 && ssa_name_1 == t2)
1219 return true;
1222 /* Check to see if t2 is expressed/defined with t1. */
1223 stmt = SSA_NAME_DEF_STMT (t2);
1224 gcc_assert (stmt != NULL);
1225 if (is_gimple_assign (stmt))
1227 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1228 if (ssa_name_2 && ssa_name_2 == t1)
1229 return true;
1232 /* Compare if t1 and t2's def_stmts are identical. */
1233 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1234 return true;
1235 else
1236 return false;
1239 /* Return true if E is predicted by one of loop heuristics. */
1241 static bool
1242 predicted_by_loop_heuristics_p (basic_block bb)
1244 struct edge_prediction *i;
1245 edge_prediction **preds = bb_predictions->get (bb);
1247 if (!preds)
1248 return false;
1250 for (i = *preds; i; i = i->ep_next)
1251 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1252 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1253 || i->ep_predictor == PRED_LOOP_ITERATIONS
1254 || i->ep_predictor == PRED_LOOP_EXIT
1255 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1256 return true;
1257 return false;
1260 /* Predict branch probability of BB when BB contains a branch that compares
1261 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1262 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1264 E.g.
1265 for (int i = 0; i < bound; i++) {
1266 if (i < bound - 2)
1267 computation_1();
1268 else
1269 computation_2();
1272 In this loop, we will predict the branch inside the loop to be taken. */
1274 static void
1275 predict_iv_comparison (struct loop *loop, basic_block bb,
1276 tree loop_bound_var,
1277 tree loop_iv_base_var,
1278 enum tree_code loop_bound_code,
1279 int loop_bound_step)
1281 gimple *stmt;
1282 tree compare_var, compare_base;
1283 enum tree_code compare_code;
1284 tree compare_step_var;
1285 edge then_edge;
1286 edge_iterator ei;
1288 if (predicted_by_loop_heuristics_p (bb))
1289 return;
1291 stmt = last_stmt (bb);
1292 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1293 return;
1294 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1295 loop, &compare_var,
1296 &compare_code,
1297 &compare_step_var,
1298 &compare_base))
1299 return;
1301 /* Find the taken edge. */
1302 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1303 if (then_edge->flags & EDGE_TRUE_VALUE)
1304 break;
1306 /* When comparing an IV to a loop invariant, NE is more likely to be
1307 taken while EQ is more likely to be not-taken. */
1308 if (compare_code == NE_EXPR)
1310 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1311 return;
1313 else if (compare_code == EQ_EXPR)
1315 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1316 return;
1319 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1320 return;
1322 /* If loop bound, base and compare bound are all constants, we can
1323 calculate the probability directly. */
1324 if (tree_fits_shwi_p (loop_bound_var)
1325 && tree_fits_shwi_p (compare_var)
1326 && tree_fits_shwi_p (compare_base))
1328 int probability;
1329 bool overflow, overall_overflow = false;
1330 widest_int compare_count, tem;
1332 /* (loop_bound - base) / compare_step */
1333 tem = wi::sub (wi::to_widest (loop_bound_var),
1334 wi::to_widest (compare_base), SIGNED, &overflow);
1335 overall_overflow |= overflow;
1336 widest_int loop_count = wi::div_trunc (tem,
1337 wi::to_widest (compare_step_var),
1338 SIGNED, &overflow);
1339 overall_overflow |= overflow;
1341 if (!wi::neg_p (wi::to_widest (compare_step_var))
1342 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1344 /* (loop_bound - compare_bound) / compare_step */
1345 tem = wi::sub (wi::to_widest (loop_bound_var),
1346 wi::to_widest (compare_var), SIGNED, &overflow);
1347 overall_overflow |= overflow;
1348 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1349 SIGNED, &overflow);
1350 overall_overflow |= overflow;
1352 else
1354 /* (compare_bound - base) / compare_step */
1355 tem = wi::sub (wi::to_widest (compare_var),
1356 wi::to_widest (compare_base), SIGNED, &overflow);
1357 overall_overflow |= overflow;
1358 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1359 SIGNED, &overflow);
1360 overall_overflow |= overflow;
1362 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1363 ++compare_count;
1364 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1365 ++loop_count;
1366 if (wi::neg_p (compare_count))
1367 compare_count = 0;
1368 if (wi::neg_p (loop_count))
1369 loop_count = 0;
1370 if (loop_count == 0)
1371 probability = 0;
1372 else if (wi::cmps (compare_count, loop_count) == 1)
1373 probability = REG_BR_PROB_BASE;
1374 else
1376 tem = compare_count * REG_BR_PROB_BASE;
1377 tem = wi::udiv_trunc (tem, loop_count);
1378 probability = tem.to_uhwi ();
1381 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1382 if (!overall_overflow)
1383 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1385 return;
1388 if (expr_coherent_p (loop_bound_var, compare_var))
1390 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1391 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1392 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1393 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1394 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1395 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1396 else if (loop_bound_code == NE_EXPR)
1398 /* If the loop backedge condition is "(i != bound)", we do
1399 the comparison based on the step of IV:
1400 * step < 0 : backedge condition is like (i > bound)
1401 * step > 0 : backedge condition is like (i < bound) */
1402 gcc_assert (loop_bound_step != 0);
1403 if (loop_bound_step > 0
1404 && (compare_code == LT_EXPR
1405 || compare_code == LE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else if (loop_bound_step < 0
1408 && (compare_code == GT_EXPR
1409 || compare_code == GE_EXPR))
1410 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1411 else
1412 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1414 else
1415 /* The branch is predicted not-taken if loop_bound_code is
1416 opposite with compare_code. */
1417 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1419 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1421 /* For cases like:
1422 for (i = s; i < h; i++)
1423 if (i > s + 2) ....
1424 The branch should be predicted taken. */
1425 if (loop_bound_step > 0
1426 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1427 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1428 else if (loop_bound_step < 0
1429 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1430 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1431 else
1432 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1436 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1437 exits are resulted from short-circuit conditions that will generate an
1438 if_tmp. E.g.:
1440 if (foo() || global > 10)
1441 break;
1443 This will be translated into:
1445 BB3:
1446 loop header...
1447 BB4:
1448 if foo() goto BB6 else goto BB5
1449 BB5:
1450 if global > 10 goto BB6 else goto BB7
1451 BB6:
1452 goto BB7
1453 BB7:
1454 iftmp = (PHI 0(BB5), 1(BB6))
1455 if iftmp == 1 goto BB8 else goto BB3
1456 BB8:
1457 outside of the loop...
1459 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1460 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1461 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1462 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1464 static void
1465 predict_extra_loop_exits (edge exit_edge)
1467 unsigned i;
1468 bool check_value_one;
1469 gimple *lhs_def_stmt;
1470 gphi *phi_stmt;
1471 tree cmp_rhs, cmp_lhs;
1472 gimple *last;
1473 gcond *cmp_stmt;
1475 last = last_stmt (exit_edge->src);
1476 if (!last)
1477 return;
1478 cmp_stmt = dyn_cast <gcond *> (last);
1479 if (!cmp_stmt)
1480 return;
1482 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1483 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1484 if (!TREE_CONSTANT (cmp_rhs)
1485 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1486 return;
1487 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1488 return;
1490 /* If check_value_one is true, only the phi_args with value '1' will lead
1491 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1492 loop exit. */
1493 check_value_one = (((integer_onep (cmp_rhs))
1494 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1495 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1497 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1498 if (!lhs_def_stmt)
1499 return;
1501 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1502 if (!phi_stmt)
1503 return;
1505 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1507 edge e1;
1508 edge_iterator ei;
1509 tree val = gimple_phi_arg_def (phi_stmt, i);
1510 edge e = gimple_phi_arg_edge (phi_stmt, i);
1512 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1513 continue;
1514 if ((check_value_one ^ integer_onep (val)) == 1)
1515 continue;
1516 if (EDGE_COUNT (e->src->succs) != 1)
1518 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1519 continue;
1522 FOR_EACH_EDGE (e1, ei, e->src->preds)
1523 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1528 /* Predict edge probabilities by exploiting loop structure. */
1530 static void
1531 predict_loops (void)
1533 struct loop *loop;
1535 /* Try to predict out blocks in a loop that are not part of a
1536 natural loop. */
1537 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1539 basic_block bb, *bbs;
1540 unsigned j, n_exits = 0;
1541 vec<edge> exits;
1542 struct tree_niter_desc niter_desc;
1543 edge ex;
1544 struct nb_iter_bound *nb_iter;
1545 enum tree_code loop_bound_code = ERROR_MARK;
1546 tree loop_bound_step = NULL;
1547 tree loop_bound_var = NULL;
1548 tree loop_iv_base = NULL;
1549 gcond *stmt = NULL;
1551 exits = get_loop_exit_edges (loop);
1552 FOR_EACH_VEC_ELT (exits, j, ex)
1553 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL | EDGE_FAKE)))
1554 n_exits ++;
1555 if (!n_exits)
1557 exits.release ();
1558 continue;
1561 FOR_EACH_VEC_ELT (exits, j, ex)
1563 tree niter = NULL;
1564 HOST_WIDE_INT nitercst;
1565 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1566 int probability;
1567 enum br_predictor predictor;
1568 widest_int nit;
1570 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1571 continue;
1572 /* Loop heuristics do not expect exit conditional to be inside
1573 inner loop. We predict from innermost to outermost loop. */
1574 if (predicted_by_loop_heuristics_p (ex->src))
1575 continue;
1576 predict_extra_loop_exits (ex);
1578 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1579 niter = niter_desc.niter;
1580 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1581 niter = loop_niter_by_eval (loop, ex);
1583 if (TREE_CODE (niter) == INTEGER_CST)
1585 if (tree_fits_uhwi_p (niter)
1586 && max
1587 && compare_tree_int (niter, max - 1) == -1)
1588 nitercst = tree_to_uhwi (niter) + 1;
1589 else
1590 nitercst = max;
1591 predictor = PRED_LOOP_ITERATIONS;
1593 /* If we have just one exit and we can derive some information about
1594 the number of iterations of the loop from the statements inside
1595 the loop, use it to predict this exit. */
1596 else if (n_exits == 1
1597 && estimated_stmt_executions (loop, &nit))
1599 if (wi::gtu_p (nit, max))
1600 nitercst = max;
1601 else
1602 nitercst = nit.to_shwi ();
1603 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1605 /* If we have likely upper bound, trust it for very small iteration
1606 counts. Such loops would otherwise get mispredicted by standard
1607 LOOP_EXIT heuristics. */
1608 else if (n_exits == 1
1609 && likely_max_stmt_executions (loop, &nit)
1610 && wi::ltu_p (nit,
1611 RDIV (REG_BR_PROB_BASE,
1612 REG_BR_PROB_BASE
1613 - predictor_info
1614 [PRED_LOOP_EXIT].hitrate)))
1616 nitercst = nit.to_shwi ();
1617 predictor = PRED_LOOP_ITERATIONS_MAX;
1619 else
1620 continue;
1622 gcc_checking_assert (nitercst);
1623 probability = RDIV (REG_BR_PROB_BASE, nitercst);
1624 predict_edge (ex, predictor, probability);
1626 exits.release ();
1628 /* Find information about loop bound variables. */
1629 for (nb_iter = loop->bounds; nb_iter;
1630 nb_iter = nb_iter->next)
1631 if (nb_iter->stmt
1632 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1634 stmt = as_a <gcond *> (nb_iter->stmt);
1635 break;
1637 if (!stmt && last_stmt (loop->header)
1638 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1639 stmt = as_a <gcond *> (last_stmt (loop->header));
1640 if (stmt)
1641 is_comparison_with_loop_invariant_p (stmt, loop,
1642 &loop_bound_var,
1643 &loop_bound_code,
1644 &loop_bound_step,
1645 &loop_iv_base);
1647 bbs = get_loop_body (loop);
1649 for (j = 0; j < loop->num_nodes; j++)
1651 int header_found = 0;
1652 edge e;
1653 edge_iterator ei;
1655 bb = bbs[j];
1657 /* Bypass loop heuristics on continue statement. These
1658 statements construct loops via "non-loop" constructs
1659 in the source language and are better to be handled
1660 separately. */
1661 if (predicted_by_p (bb, PRED_CONTINUE))
1662 continue;
1664 /* Loop branch heuristics - predict an edge back to a
1665 loop's head as taken. */
1666 if (bb == loop->latch)
1668 e = find_edge (loop->latch, loop->header);
1669 if (e)
1671 header_found = 1;
1672 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1676 /* Loop exit heuristics - predict an edge exiting the loop if the
1677 conditional has no loop header successors as not taken. */
1678 if (!header_found
1679 /* If we already used more reliable loop exit predictors, do not
1680 bother with PRED_LOOP_EXIT. */
1681 && !predicted_by_loop_heuristics_p (bb))
1683 /* For loop with many exits we don't want to predict all exits
1684 with the pretty large probability, because if all exits are
1685 considered in row, the loop would be predicted to iterate
1686 almost never. The code to divide probability by number of
1687 exits is very rough. It should compute the number of exits
1688 taken in each patch through function (not the overall number
1689 of exits that might be a lot higher for loops with wide switch
1690 statements in them) and compute n-th square root.
1692 We limit the minimal probability by 2% to avoid
1693 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1694 as this was causing regression in perl benchmark containing such
1695 a wide loop. */
1697 int probability = ((REG_BR_PROB_BASE
1698 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1699 / n_exits);
1700 if (probability < HITRATE (2))
1701 probability = HITRATE (2);
1702 FOR_EACH_EDGE (e, ei, bb->succs)
1703 if (e->dest->index < NUM_FIXED_BLOCKS
1704 || !flow_bb_inside_loop_p (loop, e->dest))
1705 predict_edge (e, PRED_LOOP_EXIT, probability);
1707 if (loop_bound_var)
1708 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1709 loop_bound_code,
1710 tree_to_shwi (loop_bound_step));
1713 /* Free basic blocks from get_loop_body. */
1714 free (bbs);
1718 /* Attempt to predict probabilities of BB outgoing edges using local
1719 properties. */
1720 static void
1721 bb_estimate_probability_locally (basic_block bb)
1723 rtx_insn *last_insn = BB_END (bb);
1724 rtx cond;
1726 if (! can_predict_insn_p (last_insn))
1727 return;
1728 cond = get_condition (last_insn, NULL, false, false);
1729 if (! cond)
1730 return;
1732 /* Try "pointer heuristic."
1733 A comparison ptr == 0 is predicted as false.
1734 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1735 if (COMPARISON_P (cond)
1736 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1737 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1739 if (GET_CODE (cond) == EQ)
1740 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1741 else if (GET_CODE (cond) == NE)
1742 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1744 else
1746 /* Try "opcode heuristic."
1747 EQ tests are usually false and NE tests are usually true. Also,
1748 most quantities are positive, so we can make the appropriate guesses
1749 about signed comparisons against zero. */
1750 switch (GET_CODE (cond))
1752 case CONST_INT:
1753 /* Unconditional branch. */
1754 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1755 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1756 break;
1758 case EQ:
1759 case UNEQ:
1760 /* Floating point comparisons appears to behave in a very
1761 unpredictable way because of special role of = tests in
1762 FP code. */
1763 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1765 /* Comparisons with 0 are often used for booleans and there is
1766 nothing useful to predict about them. */
1767 else if (XEXP (cond, 1) == const0_rtx
1768 || XEXP (cond, 0) == const0_rtx)
1770 else
1771 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1772 break;
1774 case NE:
1775 case LTGT:
1776 /* Floating point comparisons appears to behave in a very
1777 unpredictable way because of special role of = tests in
1778 FP code. */
1779 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1781 /* Comparisons with 0 are often used for booleans and there is
1782 nothing useful to predict about them. */
1783 else if (XEXP (cond, 1) == const0_rtx
1784 || XEXP (cond, 0) == const0_rtx)
1786 else
1787 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1788 break;
1790 case ORDERED:
1791 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1792 break;
1794 case UNORDERED:
1795 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1796 break;
1798 case LE:
1799 case LT:
1800 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1801 || XEXP (cond, 1) == constm1_rtx)
1802 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1803 break;
1805 case GE:
1806 case GT:
1807 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1808 || XEXP (cond, 1) == constm1_rtx)
1809 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1810 break;
1812 default:
1813 break;
1817 /* Set edge->probability for each successor edge of BB. */
1818 void
1819 guess_outgoing_edge_probabilities (basic_block bb)
1821 bb_estimate_probability_locally (bb);
1822 combine_predictions_for_insn (BB_END (bb), bb);
1825 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1827 /* Helper function for expr_expected_value. */
1829 static tree
1830 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1831 tree op1, bitmap visited, enum br_predictor *predictor)
1833 gimple *def;
1835 if (predictor)
1836 *predictor = PRED_UNCONDITIONAL;
1838 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1840 if (TREE_CONSTANT (op0))
1841 return op0;
1843 if (code != SSA_NAME)
1844 return NULL_TREE;
1846 def = SSA_NAME_DEF_STMT (op0);
1848 /* If we were already here, break the infinite cycle. */
1849 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1850 return NULL;
1852 if (gimple_code (def) == GIMPLE_PHI)
1854 /* All the arguments of the PHI node must have the same constant
1855 length. */
1856 int i, n = gimple_phi_num_args (def);
1857 tree val = NULL, new_val;
1859 for (i = 0; i < n; i++)
1861 tree arg = PHI_ARG_DEF (def, i);
1862 enum br_predictor predictor2;
1864 /* If this PHI has itself as an argument, we cannot
1865 determine the string length of this argument. However,
1866 if we can find an expected constant value for the other
1867 PHI args then we can still be sure that this is
1868 likely a constant. So be optimistic and just
1869 continue with the next argument. */
1870 if (arg == PHI_RESULT (def))
1871 continue;
1873 new_val = expr_expected_value (arg, visited, &predictor2);
1875 /* It is difficult to combine value predictors. Simply assume
1876 that later predictor is weaker and take its prediction. */
1877 if (predictor && *predictor < predictor2)
1878 *predictor = predictor2;
1879 if (!new_val)
1880 return NULL;
1881 if (!val)
1882 val = new_val;
1883 else if (!operand_equal_p (val, new_val, false))
1884 return NULL;
1886 return val;
1888 if (is_gimple_assign (def))
1890 if (gimple_assign_lhs (def) != op0)
1891 return NULL;
1893 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1894 gimple_assign_rhs1 (def),
1895 gimple_assign_rhs_code (def),
1896 gimple_assign_rhs2 (def),
1897 visited, predictor);
1900 if (is_gimple_call (def))
1902 tree decl = gimple_call_fndecl (def);
1903 if (!decl)
1905 if (gimple_call_internal_p (def)
1906 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1908 gcc_assert (gimple_call_num_args (def) == 3);
1909 tree val = gimple_call_arg (def, 0);
1910 if (TREE_CONSTANT (val))
1911 return val;
1912 if (predictor)
1914 tree val2 = gimple_call_arg (def, 2);
1915 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1916 && tree_fits_uhwi_p (val2)
1917 && tree_to_uhwi (val2) < END_PREDICTORS);
1918 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1920 return gimple_call_arg (def, 1);
1922 return NULL;
1924 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1925 switch (DECL_FUNCTION_CODE (decl))
1927 case BUILT_IN_EXPECT:
1929 tree val;
1930 if (gimple_call_num_args (def) != 2)
1931 return NULL;
1932 val = gimple_call_arg (def, 0);
1933 if (TREE_CONSTANT (val))
1934 return val;
1935 if (predictor)
1936 *predictor = PRED_BUILTIN_EXPECT;
1937 return gimple_call_arg (def, 1);
1940 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1941 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1942 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1943 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1944 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1945 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1946 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1947 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1948 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1949 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1950 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1951 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1952 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1953 /* Assume that any given atomic operation has low contention,
1954 and thus the compare-and-swap operation succeeds. */
1955 if (predictor)
1956 *predictor = PRED_COMPARE_AND_SWAP;
1957 return boolean_true_node;
1958 default:
1959 break;
1963 return NULL;
1966 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1968 tree res;
1969 enum br_predictor predictor2;
1970 op0 = expr_expected_value (op0, visited, predictor);
1971 if (!op0)
1972 return NULL;
1973 op1 = expr_expected_value (op1, visited, &predictor2);
1974 if (predictor && *predictor < predictor2)
1975 *predictor = predictor2;
1976 if (!op1)
1977 return NULL;
1978 res = fold_build2 (code, type, op0, op1);
1979 if (TREE_CONSTANT (res))
1980 return res;
1981 return NULL;
1983 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1985 tree res;
1986 op0 = expr_expected_value (op0, visited, predictor);
1987 if (!op0)
1988 return NULL;
1989 res = fold_build1 (code, type, op0);
1990 if (TREE_CONSTANT (res))
1991 return res;
1992 return NULL;
1994 return NULL;
1997 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1998 The function is used by builtin_expect branch predictor so the evidence
1999 must come from this construct and additional possible constant folding.
2001 We may want to implement more involved value guess (such as value range
2002 propagation based prediction), but such tricks shall go to new
2003 implementation. */
2005 static tree
2006 expr_expected_value (tree expr, bitmap visited,
2007 enum br_predictor *predictor)
2009 enum tree_code code;
2010 tree op0, op1;
2012 if (TREE_CONSTANT (expr))
2014 if (predictor)
2015 *predictor = PRED_UNCONDITIONAL;
2016 return expr;
2019 extract_ops_from_tree (expr, &code, &op0, &op1);
2020 return expr_expected_value_1 (TREE_TYPE (expr),
2021 op0, code, op1, visited, predictor);
2024 /* Predict using opcode of the last statement in basic block. */
2025 static void
2026 tree_predict_by_opcode (basic_block bb)
2028 gimple *stmt = last_stmt (bb);
2029 edge then_edge;
2030 tree op0, op1;
2031 tree type;
2032 tree val;
2033 enum tree_code cmp;
2034 bitmap visited;
2035 edge_iterator ei;
2036 enum br_predictor predictor;
2038 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2039 return;
2040 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2041 if (then_edge->flags & EDGE_TRUE_VALUE)
2042 break;
2043 op0 = gimple_cond_lhs (stmt);
2044 op1 = gimple_cond_rhs (stmt);
2045 cmp = gimple_cond_code (stmt);
2046 type = TREE_TYPE (op0);
2047 visited = BITMAP_ALLOC (NULL);
2048 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
2049 &predictor);
2050 BITMAP_FREE (visited);
2051 if (val && TREE_CODE (val) == INTEGER_CST)
2053 if (predictor == PRED_BUILTIN_EXPECT)
2055 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2057 gcc_assert (percent >= 0 && percent <= 100);
2058 if (integer_zerop (val))
2059 percent = 100 - percent;
2060 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2062 else
2063 predict_edge (then_edge, predictor,
2064 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2066 /* Try "pointer heuristic."
2067 A comparison ptr == 0 is predicted as false.
2068 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2069 if (POINTER_TYPE_P (type))
2071 if (cmp == EQ_EXPR)
2072 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2073 else if (cmp == NE_EXPR)
2074 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2076 else
2078 /* Try "opcode heuristic."
2079 EQ tests are usually false and NE tests are usually true. Also,
2080 most quantities are positive, so we can make the appropriate guesses
2081 about signed comparisons against zero. */
2082 switch (cmp)
2084 case EQ_EXPR:
2085 case UNEQ_EXPR:
2086 /* Floating point comparisons appears to behave in a very
2087 unpredictable way because of special role of = tests in
2088 FP code. */
2089 if (FLOAT_TYPE_P (type))
2091 /* Comparisons with 0 are often used for booleans and there is
2092 nothing useful to predict about them. */
2093 else if (integer_zerop (op0) || integer_zerop (op1))
2095 else
2096 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2097 break;
2099 case NE_EXPR:
2100 case LTGT_EXPR:
2101 /* Floating point comparisons appears to behave in a very
2102 unpredictable way because of special role of = tests in
2103 FP code. */
2104 if (FLOAT_TYPE_P (type))
2106 /* Comparisons with 0 are often used for booleans and there is
2107 nothing useful to predict about them. */
2108 else if (integer_zerop (op0)
2109 || integer_zerop (op1))
2111 else
2112 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2113 break;
2115 case ORDERED_EXPR:
2116 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2117 break;
2119 case UNORDERED_EXPR:
2120 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2121 break;
2123 case LE_EXPR:
2124 case LT_EXPR:
2125 if (integer_zerop (op1)
2126 || integer_onep (op1)
2127 || integer_all_onesp (op1)
2128 || real_zerop (op1)
2129 || real_onep (op1)
2130 || real_minus_onep (op1))
2131 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2132 break;
2134 case GE_EXPR:
2135 case GT_EXPR:
2136 if (integer_zerop (op1)
2137 || integer_onep (op1)
2138 || integer_all_onesp (op1)
2139 || real_zerop (op1)
2140 || real_onep (op1)
2141 || real_minus_onep (op1))
2142 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2143 break;
2145 default:
2146 break;
2150 /* Try to guess whether the value of return means error code. */
2152 static enum br_predictor
2153 return_prediction (tree val, enum prediction *prediction)
2155 /* VOID. */
2156 if (!val)
2157 return PRED_NO_PREDICTION;
2158 /* Different heuristics for pointers and scalars. */
2159 if (POINTER_TYPE_P (TREE_TYPE (val)))
2161 /* NULL is usually not returned. */
2162 if (integer_zerop (val))
2164 *prediction = NOT_TAKEN;
2165 return PRED_NULL_RETURN;
2168 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2170 /* Negative return values are often used to indicate
2171 errors. */
2172 if (TREE_CODE (val) == INTEGER_CST
2173 && tree_int_cst_sgn (val) < 0)
2175 *prediction = NOT_TAKEN;
2176 return PRED_NEGATIVE_RETURN;
2178 /* Constant return values seems to be commonly taken.
2179 Zero/one often represent booleans so exclude them from the
2180 heuristics. */
2181 if (TREE_CONSTANT (val)
2182 && (!integer_zerop (val) && !integer_onep (val)))
2184 *prediction = NOT_TAKEN;
2185 return PRED_CONST_RETURN;
2188 return PRED_NO_PREDICTION;
2191 /* Find the basic block with return expression and look up for possible
2192 return value trying to apply RETURN_PREDICTION heuristics. */
2193 static void
2194 apply_return_prediction (void)
2196 greturn *return_stmt = NULL;
2197 tree return_val;
2198 edge e;
2199 gphi *phi;
2200 int phi_num_args, i;
2201 enum br_predictor pred;
2202 enum prediction direction;
2203 edge_iterator ei;
2205 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2207 gimple *last = last_stmt (e->src);
2208 if (last
2209 && gimple_code (last) == GIMPLE_RETURN)
2211 return_stmt = as_a <greturn *> (last);
2212 break;
2215 if (!e)
2216 return;
2217 return_val = gimple_return_retval (return_stmt);
2218 if (!return_val)
2219 return;
2220 if (TREE_CODE (return_val) != SSA_NAME
2221 || !SSA_NAME_DEF_STMT (return_val)
2222 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2223 return;
2224 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2225 phi_num_args = gimple_phi_num_args (phi);
2226 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2228 /* Avoid the degenerate case where all return values form the function
2229 belongs to same category (ie they are all positive constants)
2230 so we can hardly say something about them. */
2231 for (i = 1; i < phi_num_args; i++)
2232 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2233 break;
2234 if (i != phi_num_args)
2235 for (i = 0; i < phi_num_args; i++)
2237 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2238 if (pred != PRED_NO_PREDICTION)
2239 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2240 direction);
2244 /* Look for basic block that contains unlikely to happen events
2245 (such as noreturn calls) and mark all paths leading to execution
2246 of this basic blocks as unlikely. */
2248 static void
2249 tree_bb_level_predictions (void)
2251 basic_block bb;
2252 bool has_return_edges = false;
2253 edge e;
2254 edge_iterator ei;
2256 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2257 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2259 has_return_edges = true;
2260 break;
2263 apply_return_prediction ();
2265 FOR_EACH_BB_FN (bb, cfun)
2267 gimple_stmt_iterator gsi;
2269 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2271 gimple *stmt = gsi_stmt (gsi);
2272 tree decl;
2274 if (is_gimple_call (stmt))
2276 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2277 && has_return_edges)
2278 predict_paths_leading_to (bb, PRED_NORETURN,
2279 NOT_TAKEN);
2280 decl = gimple_call_fndecl (stmt);
2281 if (decl
2282 && lookup_attribute ("cold",
2283 DECL_ATTRIBUTES (decl)))
2284 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2285 NOT_TAKEN);
2287 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2289 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2290 gimple_predict_outcome (stmt));
2291 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2292 hints to callers. */
2298 /* Callback for hash_map::traverse, asserts that the pointer map is
2299 empty. */
2301 bool
2302 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2303 void *)
2305 gcc_assert (!value);
2306 return false;
2309 /* Predict branch probabilities and estimate profile for basic block BB. */
2311 static void
2312 tree_estimate_probability_bb (basic_block bb)
2314 edge e;
2315 edge_iterator ei;
2316 gimple *last;
2318 FOR_EACH_EDGE (e, ei, bb->succs)
2320 /* Predict edges to user labels with attributes. */
2321 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2323 gimple_stmt_iterator gi;
2324 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2326 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2327 tree decl;
2329 if (!label_stmt)
2330 break;
2331 decl = gimple_label_label (label_stmt);
2332 if (DECL_ARTIFICIAL (decl))
2333 continue;
2335 /* Finally, we have a user-defined label. */
2336 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2337 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2338 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2339 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2343 /* Predict early returns to be probable, as we've already taken
2344 care for error returns and other cases are often used for
2345 fast paths through function.
2347 Since we've already removed the return statements, we are
2348 looking for CFG like:
2350 if (conditional)
2353 goto return_block
2355 some other blocks
2356 return_block:
2357 return_stmt. */
2358 if (e->dest != bb->next_bb
2359 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2360 && single_succ_p (e->dest)
2361 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2362 && (last = last_stmt (e->dest)) != NULL
2363 && gimple_code (last) == GIMPLE_RETURN)
2365 edge e1;
2366 edge_iterator ei1;
2368 if (single_succ_p (bb))
2370 FOR_EACH_EDGE (e1, ei1, bb->preds)
2371 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2372 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2373 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2374 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2376 else
2377 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2378 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2379 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2380 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2383 /* Look for block we are guarding (ie we dominate it,
2384 but it doesn't postdominate us). */
2385 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2386 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2387 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2389 gimple_stmt_iterator bi;
2391 /* The call heuristic claims that a guarded function call
2392 is improbable. This is because such calls are often used
2393 to signal exceptional situations such as printing error
2394 messages. */
2395 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2396 gsi_next (&bi))
2398 gimple *stmt = gsi_stmt (bi);
2399 if (is_gimple_call (stmt)
2400 /* Constant and pure calls are hardly used to signalize
2401 something exceptional. */
2402 && gimple_has_side_effects (stmt))
2404 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2405 break;
2410 tree_predict_by_opcode (bb);
2413 /* Predict branch probabilities and estimate profile of the tree CFG.
2414 This function can be called from the loop optimizers to recompute
2415 the profile information.
2416 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2418 void
2419 tree_estimate_probability (bool dry_run)
2421 basic_block bb;
2423 add_noreturn_fake_exit_edges ();
2424 connect_infinite_loops_to_exit ();
2425 /* We use loop_niter_by_eval, which requires that the loops have
2426 preheaders. */
2427 create_preheaders (CP_SIMPLE_PREHEADERS);
2428 calculate_dominance_info (CDI_POST_DOMINATORS);
2430 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2431 tree_bb_level_predictions ();
2432 record_loop_exits ();
2434 if (number_of_loops (cfun) > 1)
2435 predict_loops ();
2437 FOR_EACH_BB_FN (bb, cfun)
2438 tree_estimate_probability_bb (bb);
2440 FOR_EACH_BB_FN (bb, cfun)
2441 combine_predictions_for_bb (bb, dry_run);
2443 if (flag_checking)
2444 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2446 delete bb_predictions;
2447 bb_predictions = NULL;
2449 if (!dry_run)
2450 estimate_bb_frequencies (false);
2451 free_dominance_info (CDI_POST_DOMINATORS);
2452 remove_fake_exit_edges ();
2455 /* Predict edges to successors of CUR whose sources are not postdominated by
2456 BB by PRED and recurse to all postdominators. */
2458 static void
2459 predict_paths_for_bb (basic_block cur, basic_block bb,
2460 enum br_predictor pred,
2461 enum prediction taken,
2462 bitmap visited)
2464 edge e;
2465 edge_iterator ei;
2466 basic_block son;
2468 /* We are looking for all edges forming edge cut induced by
2469 set of all blocks postdominated by BB. */
2470 FOR_EACH_EDGE (e, ei, cur->preds)
2471 if (e->src->index >= NUM_FIXED_BLOCKS
2472 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2474 edge e2;
2475 edge_iterator ei2;
2476 bool found = false;
2478 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2479 if (e->flags & (EDGE_EH | EDGE_FAKE))
2480 continue;
2481 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2483 /* See if there is an edge from e->src that is not abnormal
2484 and does not lead to BB. */
2485 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2486 if (e2 != e
2487 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2488 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2490 found = true;
2491 break;
2494 /* If there is non-abnormal path leaving e->src, predict edge
2495 using predictor. Otherwise we need to look for paths
2496 leading to e->src.
2498 The second may lead to infinite loop in the case we are predicitng
2499 regions that are only reachable by abnormal edges. We simply
2500 prevent visiting given BB twice. */
2501 if (found)
2503 if (!edge_predicted_by_p (e, pred, taken))
2504 predict_edge_def (e, pred, taken);
2506 else if (bitmap_set_bit (visited, e->src->index))
2507 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2509 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2510 son;
2511 son = next_dom_son (CDI_POST_DOMINATORS, son))
2512 predict_paths_for_bb (son, bb, pred, taken, visited);
2515 /* Sets branch probabilities according to PREDiction and
2516 FLAGS. */
2518 static void
2519 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2520 enum prediction taken)
2522 bitmap visited = BITMAP_ALLOC (NULL);
2523 predict_paths_for_bb (bb, bb, pred, taken, visited);
2524 BITMAP_FREE (visited);
2527 /* Like predict_paths_leading_to but take edge instead of basic block. */
2529 static void
2530 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2531 enum prediction taken)
2533 bool has_nonloop_edge = false;
2534 edge_iterator ei;
2535 edge e2;
2537 basic_block bb = e->src;
2538 FOR_EACH_EDGE (e2, ei, bb->succs)
2539 if (e2->dest != e->src && e2->dest != e->dest
2540 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2541 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2543 has_nonloop_edge = true;
2544 break;
2546 if (!has_nonloop_edge)
2548 bitmap visited = BITMAP_ALLOC (NULL);
2549 predict_paths_for_bb (bb, bb, pred, taken, visited);
2550 BITMAP_FREE (visited);
2552 else
2553 predict_edge_def (e, pred, taken);
2556 /* This is used to carry information about basic blocks. It is
2557 attached to the AUX field of the standard CFG block. */
2559 struct block_info
2561 /* Estimated frequency of execution of basic_block. */
2562 sreal frequency;
2564 /* To keep queue of basic blocks to process. */
2565 basic_block next;
2567 /* Number of predecessors we need to visit first. */
2568 int npredecessors;
2571 /* Similar information for edges. */
2572 struct edge_prob_info
2574 /* In case edge is a loopback edge, the probability edge will be reached
2575 in case header is. Estimated number of iterations of the loop can be
2576 then computed as 1 / (1 - back_edge_prob). */
2577 sreal back_edge_prob;
2578 /* True if the edge is a loopback edge in the natural loop. */
2579 unsigned int back_edge:1;
2582 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2583 #undef EDGE_INFO
2584 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2586 /* Helper function for estimate_bb_frequencies.
2587 Propagate the frequencies in blocks marked in
2588 TOVISIT, starting in HEAD. */
2590 static void
2591 propagate_freq (basic_block head, bitmap tovisit)
2593 basic_block bb;
2594 basic_block last;
2595 unsigned i;
2596 edge e;
2597 basic_block nextbb;
2598 bitmap_iterator bi;
2600 /* For each basic block we need to visit count number of his predecessors
2601 we need to visit first. */
2602 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2604 edge_iterator ei;
2605 int count = 0;
2607 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2609 FOR_EACH_EDGE (e, ei, bb->preds)
2611 bool visit = bitmap_bit_p (tovisit, e->src->index);
2613 if (visit && !(e->flags & EDGE_DFS_BACK))
2614 count++;
2615 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2616 fprintf (dump_file,
2617 "Irreducible region hit, ignoring edge to %i->%i\n",
2618 e->src->index, bb->index);
2620 BLOCK_INFO (bb)->npredecessors = count;
2621 /* When function never returns, we will never process exit block. */
2622 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2623 bb->count = bb->frequency = 0;
2626 BLOCK_INFO (head)->frequency = 1;
2627 last = head;
2628 for (bb = head; bb; bb = nextbb)
2630 edge_iterator ei;
2631 sreal cyclic_probability = 0;
2632 sreal frequency = 0;
2634 nextbb = BLOCK_INFO (bb)->next;
2635 BLOCK_INFO (bb)->next = NULL;
2637 /* Compute frequency of basic block. */
2638 if (bb != head)
2640 if (flag_checking)
2641 FOR_EACH_EDGE (e, ei, bb->preds)
2642 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2643 || (e->flags & EDGE_DFS_BACK));
2645 FOR_EACH_EDGE (e, ei, bb->preds)
2646 if (EDGE_INFO (e)->back_edge)
2648 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
2650 else if (!(e->flags & EDGE_DFS_BACK))
2652 /* frequency += (e->probability
2653 * BLOCK_INFO (e->src)->frequency /
2654 REG_BR_PROB_BASE); */
2656 sreal tmp = e->probability;
2657 tmp *= BLOCK_INFO (e->src)->frequency;
2658 tmp *= real_inv_br_prob_base;
2659 frequency += tmp;
2662 if (cyclic_probability == 0)
2664 BLOCK_INFO (bb)->frequency = frequency;
2666 else
2668 if (cyclic_probability > real_almost_one)
2669 cyclic_probability = real_almost_one;
2671 /* BLOCK_INFO (bb)->frequency = frequency
2672 / (1 - cyclic_probability) */
2674 cyclic_probability = sreal (1) - cyclic_probability;
2675 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
2679 bitmap_clear_bit (tovisit, bb->index);
2681 e = find_edge (bb, head);
2682 if (e)
2684 /* EDGE_INFO (e)->back_edge_prob
2685 = ((e->probability * BLOCK_INFO (bb)->frequency)
2686 / REG_BR_PROB_BASE); */
2688 sreal tmp = e->probability;
2689 tmp *= BLOCK_INFO (bb)->frequency;
2690 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
2693 /* Propagate to successor blocks. */
2694 FOR_EACH_EDGE (e, ei, bb->succs)
2695 if (!(e->flags & EDGE_DFS_BACK)
2696 && BLOCK_INFO (e->dest)->npredecessors)
2698 BLOCK_INFO (e->dest)->npredecessors--;
2699 if (!BLOCK_INFO (e->dest)->npredecessors)
2701 if (!nextbb)
2702 nextbb = e->dest;
2703 else
2704 BLOCK_INFO (last)->next = e->dest;
2706 last = e->dest;
2712 /* Estimate frequencies in loops at same nest level. */
2714 static void
2715 estimate_loops_at_level (struct loop *first_loop)
2717 struct loop *loop;
2719 for (loop = first_loop; loop; loop = loop->next)
2721 edge e;
2722 basic_block *bbs;
2723 unsigned i;
2724 bitmap tovisit = BITMAP_ALLOC (NULL);
2726 estimate_loops_at_level (loop->inner);
2728 /* Find current loop back edge and mark it. */
2729 e = loop_latch_edge (loop);
2730 EDGE_INFO (e)->back_edge = 1;
2732 bbs = get_loop_body (loop);
2733 for (i = 0; i < loop->num_nodes; i++)
2734 bitmap_set_bit (tovisit, bbs[i]->index);
2735 free (bbs);
2736 propagate_freq (loop->header, tovisit);
2737 BITMAP_FREE (tovisit);
2741 /* Propagates frequencies through structure of loops. */
2743 static void
2744 estimate_loops (void)
2746 bitmap tovisit = BITMAP_ALLOC (NULL);
2747 basic_block bb;
2749 /* Start by estimating the frequencies in the loops. */
2750 if (number_of_loops (cfun) > 1)
2751 estimate_loops_at_level (current_loops->tree_root->inner);
2753 /* Now propagate the frequencies through all the blocks. */
2754 FOR_ALL_BB_FN (bb, cfun)
2756 bitmap_set_bit (tovisit, bb->index);
2758 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2759 BITMAP_FREE (tovisit);
2762 /* Drop the profile for NODE to guessed, and update its frequency based on
2763 whether it is expected to be hot given the CALL_COUNT. */
2765 static void
2766 drop_profile (struct cgraph_node *node, gcov_type call_count)
2768 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2769 /* In the case where this was called by another function with a
2770 dropped profile, call_count will be 0. Since there are no
2771 non-zero call counts to this function, we don't know for sure
2772 whether it is hot, and therefore it will be marked normal below. */
2773 bool hot = maybe_hot_count_p (NULL, call_count);
2775 if (dump_file)
2776 fprintf (dump_file,
2777 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2778 node->name (), node->order,
2779 hot ? "Function is hot" : "Function is normal");
2780 /* We only expect to miss profiles for functions that are reached
2781 via non-zero call edges in cases where the function may have
2782 been linked from another module or library (COMDATs and extern
2783 templates). See the comments below for handle_missing_profiles.
2784 Also, only warn in cases where the missing counts exceed the
2785 number of training runs. In certain cases with an execv followed
2786 by a no-return call the profile for the no-return call is not
2787 dumped and there can be a mismatch. */
2788 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2789 && call_count > profile_info->runs)
2791 if (flag_profile_correction)
2793 if (dump_file)
2794 fprintf (dump_file,
2795 "Missing counts for called function %s/%i\n",
2796 node->name (), node->order);
2798 else
2799 warning (0, "Missing counts for called function %s/%i",
2800 node->name (), node->order);
2803 profile_status_for_fn (fn)
2804 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2805 node->frequency
2806 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2809 /* In the case of COMDAT routines, multiple object files will contain the same
2810 function and the linker will select one for the binary. In that case
2811 all the other copies from the profile instrument binary will be missing
2812 profile counts. Look for cases where this happened, due to non-zero
2813 call counts going to 0-count functions, and drop the profile to guessed
2814 so that we can use the estimated probabilities and avoid optimizing only
2815 for size.
2817 The other case where the profile may be missing is when the routine
2818 is not going to be emitted to the object file, e.g. for "extern template"
2819 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2820 all other cases of non-zero calls to 0-count functions. */
2822 void
2823 handle_missing_profiles (void)
2825 struct cgraph_node *node;
2826 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2827 vec<struct cgraph_node *> worklist;
2828 worklist.create (64);
2830 /* See if 0 count function has non-0 count callers. In this case we
2831 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2832 FOR_EACH_DEFINED_FUNCTION (node)
2834 struct cgraph_edge *e;
2835 gcov_type call_count = 0;
2836 gcov_type max_tp_first_run = 0;
2837 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2839 if (node->count)
2840 continue;
2841 for (e = node->callers; e; e = e->next_caller)
2843 call_count += e->count;
2845 if (e->caller->tp_first_run > max_tp_first_run)
2846 max_tp_first_run = e->caller->tp_first_run;
2849 /* If time profile is missing, let assign the maximum that comes from
2850 caller functions. */
2851 if (!node->tp_first_run && max_tp_first_run)
2852 node->tp_first_run = max_tp_first_run + 1;
2854 if (call_count
2855 && fn && fn->cfg
2856 && (call_count * unlikely_count_fraction >= profile_info->runs))
2858 drop_profile (node, call_count);
2859 worklist.safe_push (node);
2863 /* Propagate the profile dropping to other 0-count COMDATs that are
2864 potentially called by COMDATs we already dropped the profile on. */
2865 while (worklist.length () > 0)
2867 struct cgraph_edge *e;
2869 node = worklist.pop ();
2870 for (e = node->callees; e; e = e->next_caller)
2872 struct cgraph_node *callee = e->callee;
2873 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2875 if (callee->count > 0)
2876 continue;
2877 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2878 && profile_status_for_fn (fn) == PROFILE_READ)
2880 drop_profile (node, 0);
2881 worklist.safe_push (callee);
2885 worklist.release ();
2888 /* Convert counts measured by profile driven feedback to frequencies.
2889 Return nonzero iff there was any nonzero execution count. */
2892 counts_to_freqs (void)
2894 gcov_type count_max, true_count_max = 0;
2895 basic_block bb;
2897 /* Don't overwrite the estimated frequencies when the profile for
2898 the function is missing. We may drop this function PROFILE_GUESSED
2899 later in drop_profile (). */
2900 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2901 return 0;
2903 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2904 true_count_max = MAX (bb->count, true_count_max);
2906 count_max = MAX (true_count_max, 1);
2907 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2908 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2910 return true_count_max;
2913 /* Return true if function is likely to be expensive, so there is no point to
2914 optimize performance of prologue, epilogue or do inlining at the expense
2915 of code size growth. THRESHOLD is the limit of number of instructions
2916 function can execute at average to be still considered not expensive. */
2918 bool
2919 expensive_function_p (int threshold)
2921 unsigned int sum = 0;
2922 basic_block bb;
2923 unsigned int limit;
2925 /* We can not compute accurately for large thresholds due to scaled
2926 frequencies. */
2927 gcc_assert (threshold <= BB_FREQ_MAX);
2929 /* Frequencies are out of range. This either means that function contains
2930 internal loop executing more than BB_FREQ_MAX times or profile feedback
2931 is available and function has not been executed at all. */
2932 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2933 return true;
2935 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2936 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2937 FOR_EACH_BB_FN (bb, cfun)
2939 rtx_insn *insn;
2941 FOR_BB_INSNS (bb, insn)
2942 if (active_insn_p (insn))
2944 sum += bb->frequency;
2945 if (sum > limit)
2946 return true;
2950 return false;
2953 /* Estimate and propagate basic block frequencies using the given branch
2954 probabilities. If FORCE is true, the frequencies are used to estimate
2955 the counts even when there are already non-zero profile counts. */
2957 void
2958 estimate_bb_frequencies (bool force)
2960 basic_block bb;
2961 sreal freq_max;
2963 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2965 static int real_values_initialized = 0;
2967 if (!real_values_initialized)
2969 real_values_initialized = 1;
2970 real_br_prob_base = REG_BR_PROB_BASE;
2971 real_bb_freq_max = BB_FREQ_MAX;
2972 real_one_half = sreal (1, -1);
2973 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
2974 real_almost_one = sreal (1) - real_inv_br_prob_base;
2977 mark_dfs_back_edges ();
2979 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2980 REG_BR_PROB_BASE;
2982 /* Set up block info for each basic block. */
2983 alloc_aux_for_blocks (sizeof (block_info));
2984 alloc_aux_for_edges (sizeof (edge_prob_info));
2985 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2987 edge e;
2988 edge_iterator ei;
2990 FOR_EACH_EDGE (e, ei, bb->succs)
2992 EDGE_INFO (e)->back_edge_prob = e->probability;
2993 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
2997 /* First compute frequencies locally for each loop from innermost
2998 to outermost to examine frequencies for back edges. */
2999 estimate_loops ();
3001 freq_max = 0;
3002 FOR_EACH_BB_FN (bb, cfun)
3003 if (freq_max < BLOCK_INFO (bb)->frequency)
3004 freq_max = BLOCK_INFO (bb)->frequency;
3006 freq_max = real_bb_freq_max / freq_max;
3007 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3009 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3010 bb->frequency = tmp.to_int ();
3013 free_aux_for_blocks ();
3014 free_aux_for_edges ();
3016 compute_function_frequency ();
3019 /* Decide whether function is hot, cold or unlikely executed. */
3020 void
3021 compute_function_frequency (void)
3023 basic_block bb;
3024 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3026 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3027 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3028 node->only_called_at_startup = true;
3029 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3030 node->only_called_at_exit = true;
3032 if (profile_status_for_fn (cfun) != PROFILE_READ)
3034 int flags = flags_from_decl_or_type (current_function_decl);
3035 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3036 != NULL)
3037 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3038 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3039 != NULL)
3040 node->frequency = NODE_FREQUENCY_HOT;
3041 else if (flags & ECF_NORETURN)
3042 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3043 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3044 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3045 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3046 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3047 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3048 return;
3051 /* Only first time try to drop function into unlikely executed.
3052 After inlining the roundoff errors may confuse us.
3053 Ipa-profile pass will drop functions only called from unlikely
3054 functions to unlikely and that is most of what we care about. */
3055 if (!cfun->after_inlining)
3056 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3057 FOR_EACH_BB_FN (bb, cfun)
3059 if (maybe_hot_bb_p (cfun, bb))
3061 node->frequency = NODE_FREQUENCY_HOT;
3062 return;
3064 if (!probably_never_executed_bb_p (cfun, bb))
3065 node->frequency = NODE_FREQUENCY_NORMAL;
3069 /* Build PREDICT_EXPR. */
3070 tree
3071 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3073 tree t = build1 (PREDICT_EXPR, void_type_node,
3074 build_int_cst (integer_type_node, predictor));
3075 SET_PREDICT_EXPR_OUTCOME (t, taken);
3076 return t;
3079 const char *
3080 predictor_name (enum br_predictor predictor)
3082 return predictor_info[predictor].name;
3085 /* Predict branch probabilities and estimate profile of the tree CFG. */
3087 namespace {
3089 const pass_data pass_data_profile =
3091 GIMPLE_PASS, /* type */
3092 "profile_estimate", /* name */
3093 OPTGROUP_NONE, /* optinfo_flags */
3094 TV_BRANCH_PROB, /* tv_id */
3095 PROP_cfg, /* properties_required */
3096 0, /* properties_provided */
3097 0, /* properties_destroyed */
3098 0, /* todo_flags_start */
3099 0, /* todo_flags_finish */
3102 class pass_profile : public gimple_opt_pass
3104 public:
3105 pass_profile (gcc::context *ctxt)
3106 : gimple_opt_pass (pass_data_profile, ctxt)
3109 /* opt_pass methods: */
3110 virtual bool gate (function *) { return flag_guess_branch_prob; }
3111 virtual unsigned int execute (function *);
3113 }; // class pass_profile
3115 unsigned int
3116 pass_profile::execute (function *fun)
3118 unsigned nb_loops;
3120 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3121 return 0;
3123 loop_optimizer_init (LOOPS_NORMAL);
3124 if (dump_file && (dump_flags & TDF_DETAILS))
3125 flow_loops_dump (dump_file, NULL, 0);
3127 mark_irreducible_loops ();
3129 nb_loops = number_of_loops (fun);
3130 if (nb_loops > 1)
3131 scev_initialize ();
3133 tree_estimate_probability (false);
3135 if (nb_loops > 1)
3136 scev_finalize ();
3138 loop_optimizer_finalize ();
3139 if (dump_file && (dump_flags & TDF_DETAILS))
3140 gimple_dump_cfg (dump_file, dump_flags);
3141 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3142 profile_status_for_fn (fun) = PROFILE_GUESSED;
3143 return 0;
3146 } // anon namespace
3148 gimple_opt_pass *
3149 make_pass_profile (gcc::context *ctxt)
3151 return new pass_profile (ctxt);
3154 namespace {
3156 const pass_data pass_data_strip_predict_hints =
3158 GIMPLE_PASS, /* type */
3159 "*strip_predict_hints", /* name */
3160 OPTGROUP_NONE, /* optinfo_flags */
3161 TV_BRANCH_PROB, /* tv_id */
3162 PROP_cfg, /* properties_required */
3163 0, /* properties_provided */
3164 0, /* properties_destroyed */
3165 0, /* todo_flags_start */
3166 0, /* todo_flags_finish */
3169 class pass_strip_predict_hints : public gimple_opt_pass
3171 public:
3172 pass_strip_predict_hints (gcc::context *ctxt)
3173 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3176 /* opt_pass methods: */
3177 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3178 virtual unsigned int execute (function *);
3180 }; // class pass_strip_predict_hints
3182 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3183 we no longer need. */
3184 unsigned int
3185 pass_strip_predict_hints::execute (function *fun)
3187 basic_block bb;
3188 gimple *ass_stmt;
3189 tree var;
3190 bool changed = false;
3192 FOR_EACH_BB_FN (bb, fun)
3194 gimple_stmt_iterator bi;
3195 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3197 gimple *stmt = gsi_stmt (bi);
3199 if (gimple_code (stmt) == GIMPLE_PREDICT)
3201 gsi_remove (&bi, true);
3202 changed = true;
3203 continue;
3205 else if (is_gimple_call (stmt))
3207 tree fndecl = gimple_call_fndecl (stmt);
3209 if ((fndecl
3210 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3211 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3212 && gimple_call_num_args (stmt) == 2)
3213 || (gimple_call_internal_p (stmt)
3214 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3216 var = gimple_call_lhs (stmt);
3217 changed = true;
3218 if (var)
3220 ass_stmt
3221 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3222 gsi_replace (&bi, ass_stmt, true);
3224 else
3226 gsi_remove (&bi, true);
3227 continue;
3231 gsi_next (&bi);
3234 return changed ? TODO_cleanup_cfg : 0;
3237 } // anon namespace
3239 gimple_opt_pass *
3240 make_pass_strip_predict_hints (gcc::context *ctxt)
3242 return new pass_strip_predict_hints (ctxt);
3245 /* Rebuild function frequencies. Passes are in general expected to
3246 maintain profile by hand, however in some cases this is not possible:
3247 for example when inlining several functions with loops freuqencies might run
3248 out of scale and thus needs to be recomputed. */
3250 void
3251 rebuild_frequencies (void)
3253 timevar_push (TV_REBUILD_FREQUENCIES);
3255 /* When the max bb count in the function is small, there is a higher
3256 chance that there were truncation errors in the integer scaling
3257 of counts by inlining and other optimizations. This could lead
3258 to incorrect classification of code as being cold when it isn't.
3259 In that case, force the estimation of bb counts/frequencies from the
3260 branch probabilities, rather than computing frequencies from counts,
3261 which may also lead to frequencies incorrectly reduced to 0. There
3262 is less precision in the probabilities, so we only do this for small
3263 max counts. */
3264 gcov_type count_max = 0;
3265 basic_block bb;
3266 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3267 count_max = MAX (bb->count, count_max);
3269 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3270 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3271 && count_max < REG_BR_PROB_BASE/10))
3273 loop_optimizer_init (0);
3274 add_noreturn_fake_exit_edges ();
3275 mark_irreducible_loops ();
3276 connect_infinite_loops_to_exit ();
3277 estimate_bb_frequencies (true);
3278 remove_fake_exit_edges ();
3279 loop_optimizer_finalize ();
3281 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3282 counts_to_freqs ();
3283 else
3284 gcc_unreachable ();
3285 timevar_pop (TV_REBUILD_FREQUENCIES);
3288 /* Perform a dry run of the branch prediction pass and report comparsion of
3289 the predicted and real profile into the dump file. */
3291 void
3292 report_predictor_hitrates (void)
3294 unsigned nb_loops;
3296 loop_optimizer_init (LOOPS_NORMAL);
3297 if (dump_file && (dump_flags & TDF_DETAILS))
3298 flow_loops_dump (dump_file, NULL, 0);
3300 mark_irreducible_loops ();
3302 nb_loops = number_of_loops (cfun);
3303 if (nb_loops > 1)
3304 scev_initialize ();
3306 tree_estimate_probability (true);
3308 if (nb_loops > 1)
3309 scev_finalize ();
3311 loop_optimizer_finalize ();
3314 /* Force edge E to be cold.
3315 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
3316 keep low probability to represent possible error in a guess. This is used
3317 i.e. in case we predict loop to likely iterate given number of times but
3318 we are not 100% sure.
3320 This function locally updates profile without attempt to keep global
3321 consistency which can not be reached in full generality without full profile
3322 rebuild from probabilities alone. Doing so is not necessarily a good idea
3323 because frequencies and counts may be more realistic then probabilities.
3325 In some cases (such as for elimination of early exits during full loop
3326 unrolling) the caller can ensure that profile will get consistent
3327 afterwards. */
3329 void
3330 force_edge_cold (edge e, bool impossible)
3332 gcov_type count_sum = 0;
3333 int prob_sum = 0;
3334 edge_iterator ei;
3335 edge e2;
3336 gcov_type old_count = e->count;
3337 int old_probability = e->probability;
3338 gcov_type gcov_scale = REG_BR_PROB_BASE;
3339 int prob_scale = REG_BR_PROB_BASE;
3341 /* If edge is already improbably or cold, just return. */
3342 if (e->probability <= impossible ? PROB_VERY_UNLIKELY : 0
3343 && (!impossible || !e->count))
3344 return;
3345 FOR_EACH_EDGE (e2, ei, e->src->succs)
3346 if (e2 != e)
3348 count_sum += e2->count;
3349 prob_sum += e2->probability;
3352 /* If there are other edges out of e->src, redistribute probabilitity
3353 there. */
3354 if (prob_sum)
3356 e->probability
3357 = MIN (e->probability, impossible ? 0 : PROB_VERY_UNLIKELY);
3358 if (old_probability)
3359 e->count = RDIV (e->count * e->probability, old_probability);
3360 else
3361 e->count = MIN (e->count, impossible ? 0 : 1);
3363 if (count_sum)
3364 gcov_scale = RDIV ((count_sum + old_count - e->count) * REG_BR_PROB_BASE,
3365 count_sum);
3366 prob_scale = RDIV ((REG_BR_PROB_BASE - e->probability) * REG_BR_PROB_BASE,
3367 prob_sum);
3368 if (dump_file && (dump_flags & TDF_DETAILS))
3369 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
3370 "probability to other edges.\n",
3371 e->src->index, e->dest->index,
3372 impossible ? "imposisble" : "cold");
3373 FOR_EACH_EDGE (e2, ei, e->src->succs)
3374 if (e2 != e)
3376 e2->count = RDIV (e2->count * gcov_scale, REG_BR_PROB_BASE);
3377 e2->probability = RDIV (e2->probability * prob_scale,
3378 REG_BR_PROB_BASE);
3381 /* If all edges out of e->src are unlikely, the basic block itself
3382 is unlikely. */
3383 else
3385 e->probability = REG_BR_PROB_BASE;
3387 /* If we did not adjusting, the source basic block has no likely edeges
3388 leaving other direction. In that case force that bb cold, too.
3389 This in general is difficult task to do, but handle special case when
3390 BB has only one predecestor. This is common case when we are updating
3391 after loop transforms. */
3392 if (!prob_sum && !count_sum && single_pred_p (e->src)
3393 && e->src->frequency > (impossible ? 0 : 1))
3395 int old_frequency = e->src->frequency;
3396 if (dump_file && (dump_flags & TDF_DETAILS))
3397 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
3398 impossible ? "imposisble" : "cold");
3399 e->src->frequency = MIN (e->src->frequency, impossible ? 0 : 1);
3400 e->src->count = e->count = RDIV (e->src->count * e->src->frequency,
3401 old_frequency);
3402 force_edge_cold (single_pred_edge (e->src), impossible);
3404 else if (dump_file && (dump_flags & TDF_DETAILS)
3405 && maybe_hot_bb_p (cfun, e->src))
3406 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
3407 impossible ? "imposisble" : "cold");