1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple
, gimple
);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge
);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple
first_non_label_stmt (basic_block
);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block
, basic_block
);
123 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
124 static void remove_bb (basic_block
);
125 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
126 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
127 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
128 static tree
find_case_label_for_value (gimple
, tree
);
129 static void group_case_labels_stmt (gimple
);
132 init_empty_tree_cfg_for_function (struct function
*fn
)
134 /* Initialize the basic block array. */
136 profile_status_for_function (fn
) = PROFILE_ABSENT
;
137 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
138 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 basic_block_info_for_function (fn
)
140 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
141 VEC_safe_grow_cleared (basic_block
, gc
,
142 basic_block_info_for_function (fn
),
143 initial_cfg_capacity
);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn
)
147 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
148 VEC_safe_grow_cleared (basic_block
, gc
,
149 label_to_block_map_for_function (fn
),
150 initial_cfg_capacity
);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun
);
169 /*---------------------------------------------------------------------------
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
177 build_gimple_cfg (gimple_seq seq
)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
184 init_empty_tree_cfg ();
186 found_computed_goto
= 0;
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto
)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
199 create_empty_bb (ENTRY_BLOCK_PTR
);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
203 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus
);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags
;
225 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
228 gimple_cfg2vcg (vcg_file
);
229 dump_end (TDI_vcg
, vcg_file
);
235 execute_build_cfg (void)
237 gimple_seq body
= gimple_body (current_function_decl
);
239 build_gimple_cfg (body
);
240 gimple_set_body (current_function_decl
, NULL
);
241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 fprintf (dump_file
, "Scope blocks:\n");
244 dump_scope_blocks (dump_file
, dump_flags
);
249 struct gimple_opt_pass pass_build_cfg
=
255 execute_build_cfg
, /* execute */
258 0, /* static_pass_number */
259 TV_TREE_CFG
, /* tv_id */
260 PROP_gimple_leh
, /* properties_required */
261 PROP_cfg
, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts
| TODO_cleanup_cfg
265 | TODO_dump_func
/* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t
)
275 return (gimple_code (t
) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl
= NULL
;
291 gimple factored_computed_goto_label
= NULL
;
292 gimple factored_computed_goto
= NULL
;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
306 last
= gsi_stmt (gsi
);
308 /* Ignore the computed goto we create when we factor the original
310 if (last
== factored_computed_goto
)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last
))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto
)
323 basic_block new_bb
= create_empty_bb (bb
);
324 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var
= create_tmp_var (ptr_type_node
, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl
);
337 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
340 /* Build our new computed goto. */
341 factored_computed_goto
= gimple_build_goto (var
);
342 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
347 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last
, factored_label_decl
);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq
)
361 gimple_stmt_iterator i
= gsi_start (seq
);
363 bool start_new_block
= true;
364 bool first_stmt_of_seq
= true;
365 basic_block bb
= ENTRY_BLOCK_PTR
;
367 while (!gsi_end_p (i
))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
379 if (!first_stmt_of_seq
)
380 seq
= gsi_split_seq_before (&i
);
381 bb
= create_basic_block (seq
, NULL
, bb
);
382 start_new_block
= false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt
, bb
);
389 if (computed_goto_p (stmt
))
390 found_computed_goto
= true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt
))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt
)
402 && stmt_can_make_abnormal_goto (stmt
)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
405 tree lhs
= gimple_get_lhs (stmt
);
406 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
407 gimple s
= gimple_build_assign (lhs
, tmp
);
408 gimple_set_location (s
, gimple_location (stmt
));
409 gimple_set_block (s
, gimple_block (stmt
));
410 gimple_set_lhs (stmt
, tmp
);
411 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
413 DECL_GIMPLE_REG_P (tmp
) = 1;
414 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
416 start_new_block
= true;
420 first_stmt_of_seq
= false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h
, void *e
, basic_block after
)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb
->index
= last_basic_block
;
441 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb
, after
);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
450 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
451 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block
, bb
);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt
= last_stmt (bb
);
479 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
481 location_t loc
= gimple_location (stmt
);
485 fold_defer_overflow_warnings ();
486 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
487 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
490 zerop
= integer_zerop (cond
);
491 onep
= integer_onep (cond
);
494 zerop
= onep
= false;
496 fold_undefer_overflow_warnings (zerop
|| onep
,
498 WARN_STRICT_OVERFLOW_CONDITIONAL
);
500 gimple_cond_make_false (stmt
);
502 gimple_cond_make_true (stmt
);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region
*cur_region
= NULL
;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
519 /* Traverse the basic block array placing edges. */
522 gimple last
= last_stmt (bb
);
527 enum gimple_code code
= gimple_code (last
);
531 make_goto_expr_edges (bb
);
535 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
539 make_cond_expr_edges (bb
);
543 make_gimple_switch_edges (bb
);
547 make_eh_edges (last
);
550 case GIMPLE_EH_DISPATCH
:
551 fallthru
= make_eh_dispatch_edges (last
);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last
))
559 make_abnormal_goto_edges (bb
, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last
);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
567 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
568 /* Some calls are known not to return. */
570 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last
))
577 make_eh_edges (last
);
582 make_gimple_asm_edges (bb
);
586 case GIMPLE_OMP_PARALLEL
:
587 case GIMPLE_OMP_TASK
:
589 case GIMPLE_OMP_SINGLE
:
590 case GIMPLE_OMP_MASTER
:
591 case GIMPLE_OMP_ORDERED
:
592 case GIMPLE_OMP_CRITICAL
:
593 case GIMPLE_OMP_SECTION
:
594 cur_region
= new_omp_region (bb
, code
, cur_region
);
598 case GIMPLE_OMP_SECTIONS
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS_SWITCH
:
607 case GIMPLE_OMP_ATOMIC_LOAD
:
608 case GIMPLE_OMP_ATOMIC_STORE
:
612 case GIMPLE_OMP_RETURN
:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region
->exit
= bb
;
617 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
618 cur_region
= cur_region
->outer
;
621 case GIMPLE_OMP_CONTINUE
:
622 cur_region
->cont
= bb
;
623 switch (cur_region
->type
)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
630 /* Make the loopback edge. */
631 make_edge (bb
, single_succ (cur_region
->entry
),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
638 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
642 case GIMPLE_OMP_SECTIONS
:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb
= single_succ (cur_region
->entry
);
647 struct omp_region
*i
;
648 for (i
= cur_region
->inner
; i
; i
= i
->next
)
650 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
651 make_edge (switch_bb
, i
->entry
, 0);
652 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb
, switch_bb
, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb
, bb
->next_bb
, 0);
671 gcc_assert (!stmt_ends_bb_p (last
));
680 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
682 assign_discriminator (gimple_location (last
), bb
->next_bb
);
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
697 locus_map_hash (const void *item
)
699 return ((const struct locus_discrim_map
*) item
)->locus
;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
706 locus_map_eq (const void *va
, const void *vb
)
708 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
709 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
710 return a
->locus
== b
->locus
;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
719 next_discriminator_for_locus (location_t locus
)
721 struct locus_discrim_map item
;
722 struct locus_discrim_map
**slot
;
725 item
.discriminator
= 0;
726 slot
= (struct locus_discrim_map
**)
727 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
728 (hashval_t
) locus
, INSERT
);
730 if (*slot
== HTAB_EMPTY_ENTRY
)
732 *slot
= XNEW (struct locus_discrim_map
);
734 (*slot
)->locus
= locus
;
735 (*slot
)->discriminator
= 0;
737 (*slot
)->discriminator
++;
738 return (*slot
)->discriminator
;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 same_line_p (location_t locus1
, location_t locus2
)
746 expanded_location from
, to
;
748 if (locus1
== locus2
)
751 from
= expand_location (locus1
);
752 to
= expand_location (locus2
);
754 if (from
.line
!= to
.line
)
756 if (from
.file
== to
.file
)
758 return (from
.file
!= NULL
760 && strcmp (from
.file
, to
.file
) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
767 assign_discriminator (location_t locus
, basic_block bb
)
769 gimple first_in_to_bb
, last_in_to_bb
;
771 if (locus
== 0 || bb
->discriminator
!= 0)
774 first_in_to_bb
= first_non_label_stmt (bb
);
775 last_in_to_bb
= last_stmt (bb
);
776 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
777 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 make_cond_expr_edges (basic_block bb
)
786 gimple entry
= last_stmt (bb
);
787 gimple then_stmt
, else_stmt
;
788 basic_block then_bb
, else_bb
;
789 tree then_label
, else_label
;
791 location_t entry_locus
;
794 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
796 entry_locus
= gimple_location (entry
);
798 /* Entry basic blocks for each component. */
799 then_label
= gimple_cond_true_label (entry
);
800 else_label
= gimple_cond_false_label (entry
);
801 then_bb
= label_to_block (then_label
);
802 else_bb
= label_to_block (else_label
);
803 then_stmt
= first_stmt (then_bb
);
804 else_stmt
= first_stmt (else_bb
);
806 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
807 assign_discriminator (entry_locus
, then_bb
);
808 e
->goto_locus
= gimple_location (then_stmt
);
810 e
->goto_block
= gimple_block (then_stmt
);
811 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
814 assign_discriminator (entry_locus
, else_bb
);
815 e
->goto_locus
= gimple_location (else_stmt
);
817 e
->goto_block
= gimple_block (else_stmt
);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry
, NULL_TREE
);
822 gimple_cond_set_false_label (entry
, NULL_TREE
);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
835 void *data ATTRIBUTE_UNUSED
)
839 for (t
= (tree
) *value
; t
; t
= next
)
841 next
= TREE_CHAIN (t
);
842 TREE_CHAIN (t
) = NULL
;
849 /* Start recording information mapping edges to case labels. */
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases
== NULL
);
855 edge_to_cases
= pointer_map_create ();
856 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
859 /* Return nonzero if we are recording information for case labels. */
862 recording_case_labels_p (void)
864 return (edge_to_cases
!= NULL
);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
870 end_recording_case_labels (void)
874 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
875 pointer_map_destroy (edge_to_cases
);
876 edge_to_cases
= NULL
;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
879 basic_block bb
= BASIC_BLOCK (i
);
882 gimple stmt
= last_stmt (bb
);
883 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
884 group_case_labels_stmt (stmt
);
887 BITMAP_FREE (touched_switch_bbs
);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
896 get_cases_for_edge (edge e
, gimple t
)
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
906 slot
= pointer_map_contains (edge_to_cases
, e
);
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n
= gimple_switch_num_labels (t
);
915 for (i
= 0; i
< n
; i
++)
917 tree elt
= gimple_switch_label (t
, i
);
918 tree lab
= CASE_LABEL (elt
);
919 basic_block label_bb
= label_to_block (lab
);
920 edge this_edge
= find_edge (e
->src
, label_bb
);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
925 TREE_CHAIN (elt
) = (tree
) *slot
;
929 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 make_gimple_switch_edges (basic_block bb
)
937 gimple entry
= last_stmt (bb
);
938 location_t entry_locus
;
941 entry_locus
= gimple_location (entry
);
943 n
= gimple_switch_num_labels (entry
);
945 for (i
= 0; i
< n
; ++i
)
947 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
948 basic_block label_bb
= label_to_block (lab
);
949 make_edge (bb
, label_bb
, 0);
950 assign_discriminator (entry_locus
, label_bb
);
955 /* Return the basic block holding label DEST. */
958 label_to_block_fn (struct function
*ifun
, tree dest
)
960 int uid
= LABEL_DECL_UID (dest
);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid
< 0)
967 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
970 stmt
= gimple_build_label (dest
);
971 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
972 uid
= LABEL_DECL_UID (dest
);
974 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
975 <= (unsigned int) uid
)
977 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
986 basic_block target_bb
;
987 gimple_stmt_iterator gsi
;
989 FOR_EACH_BB (target_bb
)
990 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
992 gimple label_stmt
= gsi_stmt (gsi
);
995 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
998 target
= gimple_label_label (label_stmt
);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target
) && !for_call
)
1003 || (DECL_NONLOCAL (target
) && for_call
))
1005 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1011 /* Create edges for a goto statement at block BB. */
1014 make_goto_expr_edges (basic_block bb
)
1016 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1017 gimple goto_t
= gsi_stmt (last
);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t
))
1022 tree dest
= gimple_goto_dest (goto_t
);
1023 basic_block label_bb
= label_to_block (dest
);
1024 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1025 e
->goto_locus
= gimple_location (goto_t
);
1026 assign_discriminator (e
->goto_locus
, label_bb
);
1028 e
->goto_block
= gimple_block (goto_t
);
1029 gsi_remove (&last
, true);
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb
, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1040 make_gimple_asm_edges (basic_block bb
)
1042 gimple stmt
= last_stmt (bb
);
1043 location_t stmt_loc
= gimple_location (stmt
);
1044 int i
, n
= gimple_asm_nlabels (stmt
);
1046 for (i
= 0; i
< n
; ++i
)
1048 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1049 basic_block label_bb
= label_to_block (label
);
1050 make_edge (bb
, label_bb
, 0);
1051 assign_discriminator (stmt_loc
, label_bb
);
1055 /*---------------------------------------------------------------------------
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1073 /* True if the label is referenced from somewhere. */
1077 /* Given LABEL return the first label in the same basic block. */
1080 main_block_label (tree label
)
1082 basic_block bb
= label_to_block (label
);
1083 tree main_label
= label_for_bb
[bb
->index
].label
;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1088 label_for_bb
[bb
->index
].label
= label
;
1092 label_for_bb
[bb
->index
].used
= true;
1096 /* Clean up redundant labels within the exception tree. */
1099 cleanup_dead_labels_eh (void)
1106 if (cfun
->eh
== NULL
)
1109 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1110 if (lp
&& lp
->post_landing_pad
)
1112 lab
= main_block_label (lp
->post_landing_pad
);
1113 if (lab
!= lp
->post_landing_pad
)
1115 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1116 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1120 FOR_ALL_EH_REGION (r
)
1124 case ERT_MUST_NOT_THROW
:
1130 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1134 c
->label
= main_block_label (lab
);
1139 case ERT_ALLOWED_EXCEPTIONS
:
1140 lab
= r
->u
.allowed
.label
;
1142 r
->u
.allowed
.label
= main_block_label (lab
);
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1154 cleanup_dead_labels (void)
1157 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1163 gimple_stmt_iterator i
;
1165 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1168 gimple stmt
= gsi_stmt (i
);
1170 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1173 label
= gimple_label_label (stmt
);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb
[bb
->index
].label
)
1179 label_for_bb
[bb
->index
].label
= label
;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label
)
1187 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1189 label_for_bb
[bb
->index
].label
= label
;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1199 gimple stmt
= last_stmt (bb
);
1203 switch (gimple_code (stmt
))
1207 tree true_label
= gimple_cond_true_label (stmt
);
1208 tree false_label
= gimple_cond_false_label (stmt
);
1211 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1213 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1219 size_t i
, n
= gimple_switch_num_labels (stmt
);
1221 /* Replace all destination labels. */
1222 for (i
= 0; i
< n
; ++i
)
1224 tree case_label
= gimple_switch_label (stmt
, i
);
1225 tree label
= main_block_label (CASE_LABEL (case_label
));
1226 CASE_LABEL (case_label
) = label
;
1233 int i
, n
= gimple_asm_nlabels (stmt
);
1235 for (i
= 0; i
< n
; ++i
)
1237 tree cons
= gimple_asm_label_op (stmt
, i
);
1238 tree label
= main_block_label (TREE_VALUE (cons
));
1239 TREE_VALUE (cons
) = label
;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1247 if (!computed_goto_p (stmt
))
1249 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1250 gimple_goto_set_dest (stmt
, new_dest
);
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1267 gimple_stmt_iterator i
;
1268 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1270 if (!label_for_this_bb
)
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb
[bb
->index
].used
)
1275 label_for_this_bb
= NULL
;
1277 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1280 gimple stmt
= gsi_stmt (i
);
1282 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1285 label
= gimple_label_label (stmt
);
1287 if (label
== label_for_this_bb
1288 || !DECL_ARTIFICIAL (label
)
1289 || DECL_NONLOCAL (label
)
1290 || FORCED_LABEL (label
))
1293 gsi_remove (&i
, true);
1297 free (label_for_bb
);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 group_case_labels_stmt (gimple stmt
)
1307 int old_size
= gimple_switch_num_labels (stmt
);
1308 int i
, j
, new_size
= old_size
;
1309 tree default_case
= NULL_TREE
;
1310 tree default_label
= NULL_TREE
;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1316 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1319 default_case
= gimple_switch_default_label (stmt
);
1320 default_label
= CASE_LABEL (default_case
);
1324 has_default
= false;
1326 /* Look for possible opportunities to merge cases. */
1331 while (i
< old_size
)
1333 tree base_case
, base_label
, base_high
;
1334 base_case
= gimple_switch_label (stmt
, i
);
1336 gcc_assert (base_case
);
1337 base_label
= CASE_LABEL (base_case
);
1339 /* Discard cases that have the same destination as the
1341 if (base_label
== default_label
)
1343 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1349 base_high
= CASE_HIGH (base_case
)
1350 ? CASE_HIGH (base_case
)
1351 : CASE_LOW (base_case
);
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i
< old_size
)
1359 tree merge_case
= gimple_switch_label (stmt
, i
);
1360 tree merge_label
= CASE_LABEL (merge_case
);
1361 tree t
= int_const_binop (PLUS_EXPR
, base_high
,
1362 integer_one_node
, 1);
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label
== base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case
), t
))
1369 base_high
= CASE_HIGH (merge_case
) ?
1370 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1371 CASE_HIGH (base_case
) = base_high
;
1372 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i
= 0, j
= 0; i
< new_size
; i
++)
1385 while (! gimple_switch_label (stmt
, j
))
1387 gimple_switch_set_label (stmt
, i
,
1388 gimple_switch_label (stmt
, j
++));
1391 gcc_assert (new_size
<= old_size
);
1392 gimple_switch_set_num_labels (stmt
, new_size
);
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1400 group_case_labels (void)
1406 gimple stmt
= last_stmt (bb
);
1407 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1408 group_case_labels_stmt (stmt
);
1412 /* Checks whether we can merge block B into block A. */
1415 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1418 gimple_stmt_iterator gsi
;
1421 if (!single_succ_p (a
))
1424 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
1427 if (single_succ (a
) != b
)
1430 if (!single_pred_p (b
))
1433 if (b
== EXIT_BLOCK_PTR
)
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt
= last_stmt (a
);
1439 if (stmt
&& stmt_ends_bb_p (stmt
))
1442 /* Do not allow a block with only a non-local label to be merged. */
1444 && gimple_code (stmt
) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1452 stmt
= gsi_stmt (gsi
);
1453 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1455 lab
= gimple_label_label (stmt
);
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab
))
1462 /* Protect the loop latches. */
1463 if (current_loops
&& b
->loop_father
->latch
== b
)
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis
= phi_nodes (b
);
1470 if (!gimple_seq_empty_p (phis
)
1471 && name_mappings_registered_p ())
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1478 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1479 gimple_stmt_iterator prev
, next
;
1480 prev
= gsi_last_nondebug_bb (a
);
1481 next
= gsi_after_labels (b
);
1482 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1483 gsi_next_nondebug (&next
);
1484 if ((gsi_end_p (prev
)
1485 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1486 && (gsi_end_p (next
)
1487 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1494 /* Return true if the var whose chain of uses starts at PTR has no
1497 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1499 const ssa_use_operand_t
*ptr
;
1501 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1502 if (!is_gimple_debug (USE_STMT (ptr
)))
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1512 single_imm_use_1 (const ssa_use_operand_t
*head
,
1513 use_operand_p
*use_p
, gimple
*stmt
)
1515 ssa_use_operand_t
*ptr
, *single_use
= 0;
1517 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1518 if (!is_gimple_debug (USE_STMT (ptr
)))
1529 *use_p
= single_use
;
1532 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1534 return !!single_use
;
1537 /* Replaces all uses of NAME by VAL. */
1540 replace_uses_by (tree name
, tree val
)
1542 imm_use_iterator imm_iter
;
1547 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1549 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1551 replace_exp (use
, val
);
1553 if (gimple_code (stmt
) == GIMPLE_PHI
)
1555 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1556 if (e
->flags
& EDGE_ABNORMAL
)
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name
));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1567 if (gimple_code (stmt
) != GIMPLE_PHI
)
1571 fold_stmt_inplace (stmt
);
1572 if (cfgcleanup_altered_bbs
&& !is_gimple_debug (stmt
))
1573 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1575 /* FIXME. This should go in update_stmt. */
1576 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1578 tree op
= gimple_op (stmt
, i
);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1583 recompute_tree_invariant_for_addr_expr (op
);
1586 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1591 gcc_assert (has_zero_uses (name
));
1593 /* Also update the trees stored in loop structures. */
1599 FOR_EACH_LOOP (li
, loop
, 0)
1601 substitute_in_loop_info (loop
, name
, val
);
1606 /* Merge block B into block A. */
1609 gimple_merge_blocks (basic_block a
, basic_block b
)
1611 gimple_stmt_iterator last
, gsi
, psi
;
1612 gimple_seq phis
= phi_nodes (b
);
1615 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi
= gsi_last_bb (a
);
1620 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1622 gimple phi
= gsi_stmt (psi
);
1623 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1625 bool may_replace_uses
= !is_gimple_reg (def
)
1626 || may_propagate_copy (def
, use
);
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1632 && is_gimple_reg (def
)
1633 && TREE_CODE (use
) == SSA_NAME
1634 && a
->loop_father
!= b
->loop_father
)
1635 may_replace_uses
= false;
1637 if (!may_replace_uses
)
1639 gcc_assert (is_gimple_reg (def
));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy
= gimple_build_assign (def
, use
);
1646 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1647 remove_phi_node (&psi
, false);
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1654 if (!is_gimple_reg (def
))
1656 imm_use_iterator iter
;
1657 use_operand_p use_p
;
1660 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1662 SET_USE (use_p
, use
);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1668 replace_uses_by (def
, use
);
1670 remove_phi_node (&psi
, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b
, a
);
1677 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1678 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1683 gimple stmt
= gsi_stmt (gsi
);
1684 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1686 tree label
= gimple_label_label (stmt
);
1689 gsi_remove (&gsi
, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label
))
1699 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1700 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1703 lp_nr
= EH_LANDING_PAD_NR (label
);
1706 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1707 lp
->post_landing_pad
= NULL
;
1712 gimple_set_bb (stmt
, a
);
1717 /* Merge the sequences. */
1718 last
= gsi_last_bb (a
);
1719 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1720 set_bb_seq (b
, NULL
);
1722 if (cfgcleanup_altered_bbs
)
1723 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1733 single_noncomplex_succ (basic_block bb
)
1736 if (EDGE_COUNT (bb
->succs
) != 2)
1739 e0
= EDGE_SUCC (bb
, 0);
1740 e1
= EDGE_SUCC (bb
, 1);
1741 if (e0
->flags
& EDGE_COMPLEX
)
1743 if (e1
->flags
& EDGE_COMPLEX
)
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1752 notice_special_calls (gimple call
)
1754 int flags
= gimple_call_flags (call
);
1756 if (flags
& ECF_MAY_BE_ALLOCA
)
1757 cfun
->calls_alloca
= true;
1758 if (flags
& ECF_RETURNS_TWICE
)
1759 cfun
->calls_setjmp
= true;
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1767 clear_special_calls (void)
1769 cfun
->calls_alloca
= false;
1770 cfun
->calls_setjmp
= false;
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb
);
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb
->succs
) > 0)
1784 remove_edge (EDGE_SUCC (bb
, 0));
1788 /* Remove statements of basic block BB. */
1791 remove_bb (basic_block bb
)
1793 gimple_stmt_iterator i
;
1797 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1798 if (dump_flags
& TDF_DETAILS
)
1800 dump_bb (bb
, dump_file
, 0);
1801 fprintf (dump_file
, "\n");
1807 struct loop
*loop
= bb
->loop_father
;
1809 /* If a loop gets removed, clean up the information associated
1811 if (loop
->latch
== bb
1812 || loop
->header
== bb
)
1813 free_numbers_of_iterations_estimates_loop (loop
);
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb
) != NULL
)
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1825 gimple stmt
= gsi_stmt (i
);
1826 if (gimple_code (stmt
) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt
))
1828 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1831 gimple_stmt_iterator new_gsi
;
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1836 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1838 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1842 new_bb
= bb
->prev_bb
;
1843 new_gsi
= gsi_start_bb (new_bb
);
1844 gsi_remove (&i
, false);
1845 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun
))
1854 release_defs (stmt
);
1856 gsi_remove (&i
, true);
1860 i
= gsi_last_bb (bb
);
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1867 bb
->il
.gimple
= NULL
;
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1876 find_taken_edge (basic_block bb
, tree val
)
1880 stmt
= last_stmt (bb
);
1883 gcc_assert (is_ctrl_stmt (stmt
));
1888 if (!is_gimple_min_invariant (val
))
1891 if (gimple_code (stmt
) == GIMPLE_COND
)
1892 return find_taken_edge_cond_expr (bb
, val
);
1894 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1895 return find_taken_edge_switch_expr (bb
, val
);
1897 if (computed_goto_p (stmt
))
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1906 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1907 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1919 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1924 dest
= label_to_block (val
);
1927 e
= find_edge (bb
, dest
);
1928 gcc_assert (e
!= NULL
);
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1939 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1941 edge true_edge
, false_edge
;
1943 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1945 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1946 return (integer_zerop (val
) ? false_edge
: true_edge
);
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1954 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1956 basic_block dest_bb
;
1961 switch_stmt
= last_stmt (bb
);
1962 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1963 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1965 e
= find_edge (bb
, dest_bb
);
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1976 find_case_label_for_value (gimple switch_stmt
, tree val
)
1978 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
1979 tree default_case
= gimple_switch_default_label (switch_stmt
);
1981 for (low
= 0, high
= n
; high
- low
> 1; )
1983 size_t i
= (high
+ low
) / 2;
1984 tree t
= gimple_switch_label (switch_stmt
, i
);
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
1995 if (CASE_HIGH (t
) == NULL
)
1997 /* A singe-valued case label. */
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2009 return default_case
;
2013 /* Dump a basic block on stderr. */
2016 gimple_debug_bb (basic_block bb
)
2018 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2022 /* Dump basic block with index N on stderr. */
2025 gimple_debug_bb_n (int n
)
2027 gimple_debug_bb (BASIC_BLOCK (n
));
2028 return BASIC_BLOCK (n
);
2032 /* Dump the CFG on stderr.
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2038 gimple_debug_cfg (int flags
)
2040 gimple_dump_cfg (stderr
, flags
);
2044 /* Dump the program showing basic block boundaries on the given FILE.
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2050 gimple_dump_cfg (FILE *file
, int flags
)
2052 if (flags
& TDF_DETAILS
)
2054 const char *funcname
2055 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2058 fprintf (file
, ";; Function %s\n\n", funcname
);
2059 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks
, n_edges
, last_basic_block
);
2062 brief_dump_cfg (file
);
2063 fprintf (file
, "\n");
2066 if (flags
& TDF_STATS
)
2067 dump_cfg_stats (file
);
2069 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2073 /* Dump CFG statistics on FILE. */
2076 dump_cfg_stats (FILE *file
)
2078 static long max_num_merged_labels
= 0;
2079 unsigned long size
, total
= 0;
2082 const char * const fmt_str
= "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2090 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2092 fprintf (file
, "---------------------------------------------------------\n");
2093 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2094 fprintf (file
, fmt_str
, "", " instances ", "used ");
2095 fprintf (file
, "---------------------------------------------------------\n");
2097 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2099 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2100 SCALE (size
), LABEL (size
));
2104 num_edges
+= EDGE_COUNT (bb
->succs
);
2105 size
= num_edges
* sizeof (struct edge_def
);
2107 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2109 fprintf (file
, "---------------------------------------------------------\n");
2110 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2112 fprintf (file
, "---------------------------------------------------------\n");
2113 fprintf (file
, "\n");
2115 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2116 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2118 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2121 fprintf (file
, "\n");
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2129 debug_cfg_stats (void)
2131 dump_cfg_stats (stderr
);
2135 /* Dump the flowgraph to a .vcg FILE. */
2138 gimple_cfg2vcg (FILE *file
)
2143 const char *funcname
2144 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2146 /* Write the file header. */
2147 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2148 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2154 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2157 if (e
->flags
& EDGE_FAKE
)
2158 fprintf (file
, " linestyle: dotted priority: 10");
2160 fprintf (file
, " linestyle: solid priority: 100");
2162 fprintf (file
, " }\n");
2168 enum gimple_code head_code
, end_code
;
2169 const char *head_name
, *end_name
;
2172 gimple first
= first_stmt (bb
);
2173 gimple last
= last_stmt (bb
);
2177 head_code
= gimple_code (first
);
2178 head_name
= gimple_code_name
[head_code
];
2179 head_line
= get_lineno (first
);
2182 head_name
= "no-statement";
2186 end_code
= gimple_code (last
);
2187 end_name
= gimple_code_name
[end_code
];
2188 end_line
= get_lineno (last
);
2191 end_name
= "no-statement";
2193 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2197 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2199 if (e
->dest
== EXIT_BLOCK_PTR
)
2200 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2202 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2204 if (e
->flags
& EDGE_FAKE
)
2205 fprintf (file
, " priority: 10 linestyle: dotted");
2207 fprintf (file
, " priority: 100 linestyle: solid");
2209 fprintf (file
, " }\n");
2212 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2216 fputs ("}\n\n", file
);
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2225 /* Return true if T represents a stmt that always transfers control. */
2228 is_ctrl_stmt (gimple t
)
2230 switch (gimple_code (t
))
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2248 is_ctrl_altering_stmt (gimple t
)
2252 switch (gimple_code (t
))
2256 int flags
= gimple_call_flags (t
);
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags
& (ECF_CONST
| ECF_PURE
| ECF_LEAF
))
2261 && cfun
->has_nonlocal_label
)
2264 /* A call also alters control flow if it does not return. */
2265 if (flags
& ECF_NORETURN
)
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2274 case GIMPLE_EH_DISPATCH
:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2281 if (gimple_asm_nlabels (t
) > 0)
2286 /* OpenMP directives alter control flow. */
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t
);
2298 /* Return true if T is a simple local goto. */
2301 simple_goto_p (gimple t
)
2303 return (gimple_code (t
) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2312 stmt_can_make_abnormal_goto (gimple t
)
2314 if (computed_goto_p (t
))
2316 if (is_gimple_call (t
))
2317 return (gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
2318 && !(gimple_call_flags (t
) & ECF_LEAF
));
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2331 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2343 || FORCED_LABEL (gimple_label_label (stmt
)))
2346 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2351 cfg_stats
.num_merged_labels
++;
2362 /* Return true if T should end a basic block. */
2365 stmt_ends_bb_p (gimple t
)
2367 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2370 /* Remove block annotations and other data structures. */
2373 delete_tree_cfg_annotations (void)
2375 label_to_block_map
= NULL
;
2379 /* Return the first statement in basic block BB. */
2382 first_stmt (basic_block bb
)
2384 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2387 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2395 /* Return the first non-label statement in basic block BB. */
2398 first_non_label_stmt (basic_block bb
)
2400 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2401 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2403 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2406 /* Return the last statement in basic block BB. */
2409 last_stmt (basic_block bb
)
2411 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2414 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2427 last_and_only_stmt (basic_block bb
)
2429 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2435 last
= gsi_stmt (i
);
2436 gsi_prev_nondebug (&i
);
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev
= gsi_stmt (i
);
2448 if (gimple_code (prev
) == GIMPLE_LABEL
)
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2457 reinstall_phi_args (edge new_edge
, edge old_edge
)
2459 edge_var_map_vector v
;
2462 gimple_stmt_iterator phis
;
2464 v
= redirect_edge_var_map_vector (old_edge
);
2468 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2469 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2470 i
++, gsi_next (&phis
))
2472 gimple phi
= gsi_stmt (phis
);
2473 tree result
= redirect_edge_var_map_result (vm
);
2474 tree arg
= redirect_edge_var_map_def (vm
);
2476 gcc_assert (result
== gimple_phi_result (phi
));
2478 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2481 redirect_edge_var_map_clear (old_edge
);
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2490 split_edge_bb_loc (edge edge_in
)
2492 basic_block dest
= edge_in
->dest
;
2493 basic_block dest_prev
= dest
->prev_bb
;
2497 edge e
= find_edge (dest_prev
, dest
);
2498 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2499 return edge_in
->src
;
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2508 gimple_split_edge (edge edge_in
)
2510 basic_block new_bb
, after_bb
, dest
;
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2516 dest
= edge_in
->dest
;
2518 after_bb
= split_edge_bb_loc (edge_in
);
2520 new_bb
= create_empty_bb (after_bb
);
2521 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2522 new_bb
->count
= edge_in
->count
;
2523 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2524 new_edge
->probability
= REG_BR_PROB_BASE
;
2525 new_edge
->count
= edge_in
->count
;
2527 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2528 gcc_assert (e
== edge_in
);
2529 reinstall_phi_args (new_edge
, e
);
2535 /* Verify properties of the address expression T with base object BASE. */
2538 verify_address (tree t
, tree base
)
2541 bool old_side_effects
;
2543 bool new_side_effects
;
2545 old_constant
= TREE_CONSTANT (t
);
2546 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2548 recompute_tree_invariant_for_addr_expr (t
);
2549 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2550 new_constant
= TREE_CONSTANT (t
);
2552 if (old_constant
!= new_constant
)
2554 error ("constant not recomputed when ADDR_EXPR changed");
2557 if (old_side_effects
!= new_side_effects
)
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2563 if (!(TREE_CODE (base
) == VAR_DECL
2564 || TREE_CODE (base
) == PARM_DECL
2565 || TREE_CODE (base
) == RESULT_DECL
))
2568 if (DECL_GIMPLE_REG_P (base
))
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2582 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594 switch (TREE_CODE (t
))
2597 if (SSA_NAME_IN_FREE_LIST (t
))
2599 error ("SSA name in freelist but still referenced");
2605 error ("INDIRECT_REF in gimple IL");
2609 x
= TREE_OPERAND (t
, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2611 || !is_gimple_mem_ref_addr (x
))
2613 error ("invalid first operand of MEM_REF");
2616 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t
, 1);
2622 if (TREE_CODE (x
) == ADDR_EXPR
2623 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2629 x
= fold (ASSERT_EXPR_COND (t
));
2630 if (x
== boolean_false_node
)
2632 error ("ASSERT_EXPR with an always-false condition");
2638 error ("MODIFY_EXPR not expected while having tuples");
2645 gcc_assert (is_gimple_address (t
));
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2650 for (x
= TREE_OPERAND (t
, 0);
2651 handled_component_p (x
);
2652 x
= TREE_OPERAND (x
, 0))
2655 if ((tem
= verify_address (t
, x
)))
2658 if (!(TREE_CODE (x
) == VAR_DECL
2659 || TREE_CODE (x
) == PARM_DECL
2660 || TREE_CODE (x
) == RESULT_DECL
))
2663 if (!TREE_ADDRESSABLE (x
))
2665 error ("address taken, but ADDRESSABLE bit not set");
2673 x
= COND_EXPR_COND (t
);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2676 error ("non-integral used in condition");
2679 if (!is_gimple_condexpr (x
))
2681 error ("invalid conditional operand");
2686 case NON_LVALUE_EXPR
:
2690 case FIX_TRUNC_EXPR
:
2695 case TRUTH_NOT_EXPR
:
2696 CHECK_OP (0, "invalid operand to unary operator");
2703 case ARRAY_RANGE_REF
:
2705 case VIEW_CONVERT_EXPR
:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2710 while (handled_component_p (t
))
2712 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t
) == ARRAY_REF
2715 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t
, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t
, 3))
2721 CHECK_OP (3, "invalid array stride");
2723 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2725 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2732 && (TYPE_PRECISION (TREE_TYPE (t
))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2749 t
= TREE_OPERAND (t
, 0);
2752 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2754 error ("invalid reference prefix");
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2765 error ("invalid operand to plus/minus, type is a pointer");
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2772 case POINTER_PLUS_EXPR
:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2779 /* Check to make sure the second operand is an integer with type of
2781 if (!useless_type_conversion_p (sizetype
,
2782 TREE_TYPE (TREE_OPERAND (t
, 1))))
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2795 case UNORDERED_EXPR
:
2804 case TRUNC_DIV_EXPR
:
2806 case FLOOR_DIV_EXPR
:
2807 case ROUND_DIV_EXPR
:
2808 case TRUNC_MOD_EXPR
:
2810 case FLOOR_MOD_EXPR
:
2811 case ROUND_MOD_EXPR
:
2813 case EXACT_DIV_EXPR
:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2828 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2845 verify_types_in_gimple_min_lval (tree expr
)
2849 if (is_gimple_id (expr
))
2852 if (TREE_CODE (expr
) != TARGET_MEM_REF
2853 && TREE_CODE (expr
) != MEM_REF
)
2855 error ("invalid expression for min lvalue");
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2863 op
= TREE_OPERAND (expr
, 0);
2864 if (!is_gimple_val (op
))
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op
);
2870 /* Memory references now generally can involve a value conversion. */
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2880 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2882 while (handled_component_p (expr
))
2884 tree op
= TREE_OPERAND (expr
, 0);
2886 if (TREE_CODE (expr
) == ARRAY_REF
2887 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2889 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2890 || (TREE_OPERAND (expr
, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2892 || (TREE_OPERAND (expr
, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr
);
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr
) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr
),
2904 TREE_TYPE (TREE_TYPE (op
))))
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr
));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2911 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2913 TREE_TYPE (TREE_TYPE (op
))))
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2921 if ((TREE_CODE (expr
) == REALPART_EXPR
2922 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2923 && !useless_type_conversion_p (TREE_TYPE (expr
),
2924 TREE_TYPE (TREE_TYPE (op
))))
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr
));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2932 if (TREE_CODE (expr
) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr
),
2934 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr
));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2942 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2950 && (TREE_CODE (op
) == SSA_NAME
2951 || is_gimple_min_invariant (op
)))
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr
);
2957 else if (TREE_CODE (op
) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr
);
2964 else if (!handled_component_p (op
))
2971 if (TREE_CODE (expr
) == MEM_REF
)
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr
);
2979 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr
);
2987 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2989 if (!TMR_BASE (expr
)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2992 error ("invalid address operand in in TARGET_MEM_REF");
2995 if (!TMR_OFFSET (expr
)
2996 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr
);
3005 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3006 && verify_types_in_gimple_min_lval (expr
));
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3013 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3017 if (!TYPE_POINTER_TO (src_obj
))
3020 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3021 if (useless_type_conversion_p (dest
, src
))
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031 valid_fixed_convert_types_p (tree type1
, tree type2
)
3033 return (FIXED_POINT_TYPE_P (type1
)
3034 && (INTEGRAL_TYPE_P (type2
)
3035 || SCALAR_FLOAT_TYPE_P (type2
)
3036 || FIXED_POINT_TYPE_P (type2
)));
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3043 verify_gimple_call (gimple stmt
)
3045 tree fn
= gimple_call_fn (stmt
);
3049 if (TREE_CODE (fn
) != OBJ_TYPE_REF
3050 && !is_gimple_val (fn
))
3052 error ("invalid function in gimple call");
3053 debug_generic_stmt (fn
);
3057 if (!POINTER_TYPE_P (TREE_TYPE (fn
))
3058 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3059 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
))
3061 error ("non-function in gimple call");
3065 if (gimple_call_lhs (stmt
)
3066 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3067 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3069 error ("invalid LHS in gimple call");
3073 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3075 error ("LHS in noreturn call");
3079 fntype
= TREE_TYPE (TREE_TYPE (fn
));
3080 if (gimple_call_lhs (stmt
)
3081 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3083 /* ??? At least C++ misses conversions at assignments from
3084 void * call results.
3085 ??? Java is completely off. Especially with functions
3086 returning java.lang.Object.
3087 For now simply allow arbitrary pointer type conversions. */
3088 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3089 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3091 error ("invalid conversion in gimple call");
3092 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3093 debug_generic_stmt (TREE_TYPE (fntype
));
3097 if (gimple_call_chain (stmt
)
3098 && !is_gimple_val (gimple_call_chain (stmt
)))
3100 error ("invalid static chain in gimple call");
3101 debug_generic_stmt (gimple_call_chain (stmt
));
3105 /* If there is a static chain argument, this should not be an indirect
3106 call, and the decl should have DECL_STATIC_CHAIN set. */
3107 if (gimple_call_chain (stmt
))
3109 if (!gimple_call_fndecl (stmt
))
3111 error ("static chain in indirect gimple call");
3114 fn
= TREE_OPERAND (fn
, 0);
3116 if (!DECL_STATIC_CHAIN (fn
))
3118 error ("static chain with function that doesn%'t use one");
3123 /* ??? The C frontend passes unpromoted arguments in case it
3124 didn't see a function declaration before the call. So for now
3125 leave the call arguments mostly unverified. Once we gimplify
3126 unit-at-a-time we have a chance to fix this. */
3128 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3130 tree arg
= gimple_call_arg (stmt
, i
);
3131 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3132 && !is_gimple_val (arg
))
3133 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3134 && !is_gimple_lvalue (arg
)))
3136 error ("invalid argument to gimple call");
3137 debug_generic_expr (arg
);
3145 /* Verifies the gimple comparison with the result type TYPE and
3146 the operands OP0 and OP1. */
3149 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3151 tree op0_type
= TREE_TYPE (op0
);
3152 tree op1_type
= TREE_TYPE (op1
);
3154 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3156 error ("invalid operands in gimple comparison");
3160 /* For comparisons we do not have the operations type as the
3161 effective type the comparison is carried out in. Instead
3162 we require that either the first operand is trivially
3163 convertible into the second, or the other way around.
3164 The resulting type of a comparison may be any integral type.
3165 Because we special-case pointers to void we allow
3166 comparisons of pointers with the same mode as well. */
3167 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3168 && !useless_type_conversion_p (op1_type
, op0_type
)
3169 && (!POINTER_TYPE_P (op0_type
)
3170 || !POINTER_TYPE_P (op1_type
)
3171 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3172 || !INTEGRAL_TYPE_P (type
))
3174 error ("type mismatch in comparison expression");
3175 debug_generic_expr (type
);
3176 debug_generic_expr (op0_type
);
3177 debug_generic_expr (op1_type
);
3184 /* Verify a gimple assignment statement STMT with an unary rhs.
3185 Returns true if anything is wrong. */
3188 verify_gimple_assign_unary (gimple stmt
)
3190 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3191 tree lhs
= gimple_assign_lhs (stmt
);
3192 tree lhs_type
= TREE_TYPE (lhs
);
3193 tree rhs1
= gimple_assign_rhs1 (stmt
);
3194 tree rhs1_type
= TREE_TYPE (rhs1
);
3196 if (!is_gimple_reg (lhs
)
3198 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3200 error ("non-register as LHS of unary operation");
3204 if (!is_gimple_val (rhs1
))
3206 error ("invalid operand in unary operation");
3210 /* First handle conversions. */
3215 /* Allow conversions between integral types and pointers only if
3216 there is no sign or zero extension involved.
3217 For targets were the precision of sizetype doesn't match that
3218 of pointers we need to allow arbitrary conversions from and
3220 if ((POINTER_TYPE_P (lhs_type
)
3221 && INTEGRAL_TYPE_P (rhs1_type
)
3222 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3223 || rhs1_type
== sizetype
))
3224 || (POINTER_TYPE_P (rhs1_type
)
3225 && INTEGRAL_TYPE_P (lhs_type
)
3226 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3227 || lhs_type
== sizetype
)))
3230 /* Allow conversion from integer to offset type and vice versa. */
3231 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3232 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3233 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3234 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3237 /* Otherwise assert we are converting between types of the
3239 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3241 error ("invalid types in nop conversion");
3242 debug_generic_expr (lhs_type
);
3243 debug_generic_expr (rhs1_type
);
3250 case ADDR_SPACE_CONVERT_EXPR
:
3252 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3253 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3254 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3256 error ("invalid types in address space conversion");
3257 debug_generic_expr (lhs_type
);
3258 debug_generic_expr (rhs1_type
);
3265 case FIXED_CONVERT_EXPR
:
3267 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3268 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3270 error ("invalid types in fixed-point conversion");
3271 debug_generic_expr (lhs_type
);
3272 debug_generic_expr (rhs1_type
);
3281 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3283 error ("invalid types in conversion to floating point");
3284 debug_generic_expr (lhs_type
);
3285 debug_generic_expr (rhs1_type
);
3292 case FIX_TRUNC_EXPR
:
3294 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3296 error ("invalid types in conversion to integer");
3297 debug_generic_expr (lhs_type
);
3298 debug_generic_expr (rhs1_type
);
3305 case VEC_UNPACK_HI_EXPR
:
3306 case VEC_UNPACK_LO_EXPR
:
3307 case REDUC_MAX_EXPR
:
3308 case REDUC_MIN_EXPR
:
3309 case REDUC_PLUS_EXPR
:
3310 case VEC_UNPACK_FLOAT_HI_EXPR
:
3311 case VEC_UNPACK_FLOAT_LO_EXPR
:
3315 case TRUTH_NOT_EXPR
:
3320 case NON_LVALUE_EXPR
:
3328 /* For the remaining codes assert there is no conversion involved. */
3329 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3331 error ("non-trivial conversion in unary operation");
3332 debug_generic_expr (lhs_type
);
3333 debug_generic_expr (rhs1_type
);
3340 /* Verify a gimple assignment statement STMT with a binary rhs.
3341 Returns true if anything is wrong. */
3344 verify_gimple_assign_binary (gimple stmt
)
3346 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3347 tree lhs
= gimple_assign_lhs (stmt
);
3348 tree lhs_type
= TREE_TYPE (lhs
);
3349 tree rhs1
= gimple_assign_rhs1 (stmt
);
3350 tree rhs1_type
= TREE_TYPE (rhs1
);
3351 tree rhs2
= gimple_assign_rhs2 (stmt
);
3352 tree rhs2_type
= TREE_TYPE (rhs2
);
3354 if (!is_gimple_reg (lhs
)
3356 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3358 error ("non-register as LHS of binary operation");
3362 if (!is_gimple_val (rhs1
)
3363 || !is_gimple_val (rhs2
))
3365 error ("invalid operands in binary operation");
3369 /* First handle operations that involve different types. */
3374 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3375 || !(INTEGRAL_TYPE_P (rhs1_type
)
3376 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3377 || !(INTEGRAL_TYPE_P (rhs2_type
)
3378 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3380 error ("type mismatch in complex expression");
3381 debug_generic_expr (lhs_type
);
3382 debug_generic_expr (rhs1_type
);
3383 debug_generic_expr (rhs2_type
);
3395 /* Shifts and rotates are ok on integral types, fixed point
3396 types and integer vector types. */
3397 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3398 && !FIXED_POINT_TYPE_P (rhs1_type
)
3399 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3401 || (!INTEGRAL_TYPE_P (rhs2_type
)
3402 /* Vector shifts of vectors are also ok. */
3403 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3405 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3406 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3407 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3409 error ("type mismatch in shift expression");
3410 debug_generic_expr (lhs_type
);
3411 debug_generic_expr (rhs1_type
);
3412 debug_generic_expr (rhs2_type
);
3419 case VEC_LSHIFT_EXPR
:
3420 case VEC_RSHIFT_EXPR
:
3422 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3423 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3424 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type
)
3428 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3430 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type
);
3434 debug_generic_expr (rhs1_type
);
3435 debug_generic_expr (rhs2_type
);
3438 /* For shifting a vector of non-integral components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3441 && (TREE_CODE (rhs2
) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3445 error ("non-element sized vector shift of floating point vector");
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3458 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3461 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3464 error ("invalid non-vector operands to vector valued plus");
3467 lhs_type
= TREE_TYPE (lhs_type
);
3468 rhs1_type
= TREE_TYPE (rhs1_type
);
3469 rhs2_type
= TREE_TYPE (rhs2_type
);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type
))
3474 tree tem
= rhs1_type
;
3475 rhs1_type
= rhs2_type
;
3478 goto do_pointer_plus_expr_check
;
3480 if (POINTER_TYPE_P (lhs_type
)
3481 || POINTER_TYPE_P (rhs1_type
)
3482 || POINTER_TYPE_P (rhs2_type
))
3484 error ("invalid (pointer) operands to plus/minus");
3488 /* Continue with generic binary expression handling. */
3492 case POINTER_PLUS_EXPR
:
3494 do_pointer_plus_expr_check
:
3495 if (!POINTER_TYPE_P (rhs1_type
)
3496 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3497 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type
);
3501 debug_generic_stmt (rhs1_type
);
3502 debug_generic_stmt (rhs2_type
);
3509 case TRUTH_ANDIF_EXPR
:
3510 case TRUTH_ORIF_EXPR
:
3513 case TRUTH_AND_EXPR
:
3515 case TRUTH_XOR_EXPR
:
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type
)
3519 || !INTEGRAL_TYPE_P (rhs2_type
)
3520 || !INTEGRAL_TYPE_P (lhs_type
))
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type
);
3524 debug_generic_expr (rhs1_type
);
3525 debug_generic_expr (rhs2_type
);
3538 case UNORDERED_EXPR
:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3550 case WIDEN_MULT_EXPR
:
3551 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3553 return ((2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
))
3554 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3556 case WIDEN_SUM_EXPR
:
3557 case VEC_WIDEN_MULT_HI_EXPR
:
3558 case VEC_WIDEN_MULT_LO_EXPR
:
3559 case VEC_PACK_TRUNC_EXPR
:
3560 case VEC_PACK_SAT_EXPR
:
3561 case VEC_PACK_FIX_TRUNC_EXPR
:
3562 case VEC_EXTRACT_EVEN_EXPR
:
3563 case VEC_EXTRACT_ODD_EXPR
:
3564 case VEC_INTERLEAVE_HIGH_EXPR
:
3565 case VEC_INTERLEAVE_LOW_EXPR
:
3570 case TRUNC_DIV_EXPR
:
3572 case FLOOR_DIV_EXPR
:
3573 case ROUND_DIV_EXPR
:
3574 case TRUNC_MOD_EXPR
:
3576 case FLOOR_MOD_EXPR
:
3577 case ROUND_MOD_EXPR
:
3579 case EXACT_DIV_EXPR
:
3585 /* Continue with generic binary expression handling. */
3592 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3593 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type
);
3597 debug_generic_stmt (rhs1_type
);
3598 debug_generic_stmt (rhs2_type
);
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3609 verify_gimple_assign_ternary (gimple stmt
)
3611 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3612 tree lhs
= gimple_assign_lhs (stmt
);
3613 tree lhs_type
= TREE_TYPE (lhs
);
3614 tree rhs1
= gimple_assign_rhs1 (stmt
);
3615 tree rhs1_type
= TREE_TYPE (rhs1
);
3616 tree rhs2
= gimple_assign_rhs2 (stmt
);
3617 tree rhs2_type
= TREE_TYPE (rhs2
);
3618 tree rhs3
= gimple_assign_rhs3 (stmt
);
3619 tree rhs3_type
= TREE_TYPE (rhs3
);
3621 if (!is_gimple_reg (lhs
)
3623 && TREE_CODE (lhs_type
) == COMPLEX_TYPE
))
3625 error ("non-register as LHS of ternary operation");
3629 if (!is_gimple_val (rhs1
)
3630 || !is_gimple_val (rhs2
)
3631 || !is_gimple_val (rhs3
))
3633 error ("invalid operands in ternary operation");
3637 /* First handle operations that involve different types. */
3640 case WIDEN_MULT_PLUS_EXPR
:
3641 case WIDEN_MULT_MINUS_EXPR
:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3643 && !FIXED_POINT_TYPE_P (rhs1_type
))
3644 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3645 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3646 || 2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
)
3647 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type
);
3651 debug_generic_expr (rhs1_type
);
3652 debug_generic_expr (rhs2_type
);
3653 debug_generic_expr (rhs3_type
);
3659 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3660 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3661 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3663 error ("type mismatch in fused multiply-add expression");
3664 debug_generic_expr (lhs_type
);
3665 debug_generic_expr (rhs1_type
);
3666 debug_generic_expr (rhs2_type
);
3667 debug_generic_expr (rhs3_type
);
3678 /* Verify a gimple assignment statement STMT with a single rhs.
3679 Returns true if anything is wrong. */
3682 verify_gimple_assign_single (gimple stmt
)
3684 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3685 tree lhs
= gimple_assign_lhs (stmt
);
3686 tree lhs_type
= TREE_TYPE (lhs
);
3687 tree rhs1
= gimple_assign_rhs1 (stmt
);
3688 tree rhs1_type
= TREE_TYPE (rhs1
);
3691 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3693 error ("non-trivial conversion at assignment");
3694 debug_generic_expr (lhs_type
);
3695 debug_generic_expr (rhs1_type
);
3699 if (handled_component_p (lhs
))
3700 res
|= verify_types_in_gimple_reference (lhs
, true);
3702 /* Special codes we cannot handle via their class. */
3707 tree op
= TREE_OPERAND (rhs1
, 0);
3708 if (!is_gimple_addressable (op
))
3710 error ("invalid operand in unary expression");
3714 /* Technically there is no longer a need for matching types, but
3715 gimple hygiene asks for this check. In LTO we can end up
3716 combining incompatible units and thus end up with addresses
3717 of globals that change their type to a common one. */
3719 && !types_compatible_p (TREE_TYPE (op
),
3720 TREE_TYPE (TREE_TYPE (rhs1
)))
3721 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3724 error ("type mismatch in address expression");
3725 debug_generic_stmt (TREE_TYPE (rhs1
));
3726 debug_generic_stmt (TREE_TYPE (op
));
3730 return verify_types_in_gimple_reference (op
, true);
3735 error ("INDIRECT_REF in gimple IL");
3741 case ARRAY_RANGE_REF
:
3742 case VIEW_CONVERT_EXPR
:
3745 case TARGET_MEM_REF
:
3747 if (!is_gimple_reg (lhs
)
3748 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3750 error ("invalid rhs for gimple memory store");
3751 debug_generic_stmt (lhs
);
3752 debug_generic_stmt (rhs1
);
3755 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3767 /* tcc_declaration */
3772 if (!is_gimple_reg (lhs
)
3773 && !is_gimple_reg (rhs1
)
3774 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3776 error ("invalid rhs for gimple memory store");
3777 debug_generic_stmt (lhs
);
3778 debug_generic_stmt (rhs1
);
3784 if (!is_gimple_reg (lhs
)
3785 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 0))
3786 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1
, 0)))
3787 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 1))
3788 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 1)))
3789 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 2))
3790 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 2))))
3792 error ("invalid COND_EXPR in gimple assignment");
3793 debug_generic_stmt (rhs1
);
3801 case WITH_SIZE_EXPR
:
3802 case POLYNOMIAL_CHREC
:
3805 case REALIGN_LOAD_EXPR
:
3815 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3816 is a problem, otherwise false. */
3819 verify_gimple_assign (gimple stmt
)
3821 switch (gimple_assign_rhs_class (stmt
))
3823 case GIMPLE_SINGLE_RHS
:
3824 return verify_gimple_assign_single (stmt
);
3826 case GIMPLE_UNARY_RHS
:
3827 return verify_gimple_assign_unary (stmt
);
3829 case GIMPLE_BINARY_RHS
:
3830 return verify_gimple_assign_binary (stmt
);
3832 case GIMPLE_TERNARY_RHS
:
3833 return verify_gimple_assign_ternary (stmt
);
3840 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3841 is a problem, otherwise false. */
3844 verify_gimple_return (gimple stmt
)
3846 tree op
= gimple_return_retval (stmt
);
3847 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
3849 /* We cannot test for present return values as we do not fix up missing
3850 return values from the original source. */
3854 if (!is_gimple_val (op
)
3855 && TREE_CODE (op
) != RESULT_DECL
)
3857 error ("invalid operand in return statement");
3858 debug_generic_stmt (op
);
3862 if ((TREE_CODE (op
) == RESULT_DECL
3863 && DECL_BY_REFERENCE (op
))
3864 || (TREE_CODE (op
) == SSA_NAME
3865 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
3866 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
3867 op
= TREE_TYPE (op
);
3869 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
3871 error ("invalid conversion in return statement");
3872 debug_generic_stmt (restype
);
3873 debug_generic_stmt (TREE_TYPE (op
));
3881 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3882 is a problem, otherwise false. */
3885 verify_gimple_goto (gimple stmt
)
3887 tree dest
= gimple_goto_dest (stmt
);
3889 /* ??? We have two canonical forms of direct goto destinations, a
3890 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3891 if (TREE_CODE (dest
) != LABEL_DECL
3892 && (!is_gimple_val (dest
)
3893 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
3895 error ("goto destination is neither a label nor a pointer");
3902 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3903 is a problem, otherwise false. */
3906 verify_gimple_switch (gimple stmt
)
3908 if (!is_gimple_val (gimple_switch_index (stmt
)))
3910 error ("invalid operand to switch statement");
3911 debug_generic_stmt (gimple_switch_index (stmt
));
3919 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3920 and false otherwise. */
3923 verify_gimple_phi (gimple stmt
)
3925 tree type
= TREE_TYPE (gimple_phi_result (stmt
));
3928 if (TREE_CODE (gimple_phi_result (stmt
)) != SSA_NAME
)
3930 error ("invalid PHI result");
3934 for (i
= 0; i
< gimple_phi_num_args (stmt
); i
++)
3936 tree arg
= gimple_phi_arg_def (stmt
, i
);
3937 if ((is_gimple_reg (gimple_phi_result (stmt
))
3938 && !is_gimple_val (arg
))
3939 || (!is_gimple_reg (gimple_phi_result (stmt
))
3940 && !is_gimple_addressable (arg
)))
3942 error ("invalid PHI argument");
3943 debug_generic_stmt (arg
);
3946 if (!useless_type_conversion_p (type
, TREE_TYPE (arg
)))
3948 error ("incompatible types in PHI argument %u", i
);
3949 debug_generic_stmt (type
);
3950 debug_generic_stmt (TREE_TYPE (arg
));
3959 /* Verify a gimple debug statement STMT.
3960 Returns true if anything is wrong. */
3963 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
3965 /* There isn't much that could be wrong in a gimple debug stmt. A
3966 gimple debug bind stmt, for example, maps a tree, that's usually
3967 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3968 component or member of an aggregate type, to another tree, that
3969 can be an arbitrary expression. These stmts expand into debug
3970 insns, and are converted to debug notes by var-tracking.c. */
3975 /* Verify the GIMPLE statement STMT. Returns true if there is an
3976 error, otherwise false. */
3979 verify_types_in_gimple_stmt (gimple stmt
)
3981 switch (gimple_code (stmt
))
3984 return verify_gimple_assign (stmt
);
3987 return TREE_CODE (gimple_label_label (stmt
)) != LABEL_DECL
;
3990 return verify_gimple_call (stmt
);
3993 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
3995 error ("invalid comparison code in gimple cond");
3998 if (!(!gimple_cond_true_label (stmt
)
3999 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4000 || !(!gimple_cond_false_label (stmt
)
4001 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4003 error ("invalid labels in gimple cond");
4007 return verify_gimple_comparison (boolean_type_node
,
4008 gimple_cond_lhs (stmt
),
4009 gimple_cond_rhs (stmt
));
4012 return verify_gimple_goto (stmt
);
4015 return verify_gimple_switch (stmt
);
4018 return verify_gimple_return (stmt
);
4024 return verify_gimple_phi (stmt
);
4026 /* Tuples that do not have tree operands. */
4028 case GIMPLE_PREDICT
:
4030 case GIMPLE_EH_DISPATCH
:
4031 case GIMPLE_EH_MUST_NOT_THROW
:
4035 /* OpenMP directives are validated by the FE and never operated
4036 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4037 non-gimple expressions when the main index variable has had
4038 its address taken. This does not affect the loop itself
4039 because the header of an GIMPLE_OMP_FOR is merely used to determine
4040 how to setup the parallel iteration. */
4044 return verify_gimple_debug (stmt
);
4051 /* Verify the GIMPLE statements inside the sequence STMTS. */
4054 verify_types_in_gimple_seq_2 (gimple_seq stmts
)
4056 gimple_stmt_iterator ittr
;
4059 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4061 gimple stmt
= gsi_stmt (ittr
);
4063 switch (gimple_code (stmt
))
4066 err
|= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt
));
4070 err
|= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt
));
4071 err
|= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt
));
4074 case GIMPLE_EH_FILTER
:
4075 err
|= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt
));
4079 err
|= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt
));
4084 bool err2
= verify_types_in_gimple_stmt (stmt
);
4086 debug_gimple_stmt (stmt
);
4096 /* Verify the GIMPLE statements inside the statement list STMTS. */
4099 verify_types_in_gimple_seq (gimple_seq stmts
)
4101 if (verify_types_in_gimple_seq_2 (stmts
))
4102 internal_error ("verify_gimple failed");
4106 /* Verify STMT, return true if STMT is not in GIMPLE form.
4107 TODO: Implement type checking. */
4110 verify_stmt (gimple_stmt_iterator
*gsi
)
4113 struct walk_stmt_info wi
;
4114 bool last_in_block
= gsi_one_before_end_p (*gsi
);
4115 gimple stmt
= gsi_stmt (*gsi
);
4118 if (is_gimple_omp (stmt
))
4120 /* OpenMP directives are validated by the FE and never operated
4121 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4122 non-gimple expressions when the main index variable has had
4123 its address taken. This does not affect the loop itself
4124 because the header of an GIMPLE_OMP_FOR is merely used to determine
4125 how to setup the parallel iteration. */
4129 /* FIXME. The C frontend passes unpromoted arguments in case it
4130 didn't see a function declaration before the call. */
4131 if (is_gimple_call (stmt
))
4135 if (!is_gimple_call_addr (gimple_call_fn (stmt
)))
4137 error ("invalid function in call statement");
4141 decl
= gimple_call_fndecl (stmt
);
4143 && TREE_CODE (decl
) == FUNCTION_DECL
4144 && DECL_LOOPING_CONST_OR_PURE_P (decl
)
4145 && (!DECL_PURE_P (decl
))
4146 && (!TREE_READONLY (decl
)))
4148 error ("invalid pure const state for function");
4153 if (is_gimple_debug (stmt
))
4156 memset (&wi
, 0, sizeof (wi
));
4157 addr
= walk_gimple_op (gsi_stmt (*gsi
), verify_expr
, &wi
);
4160 debug_generic_expr (addr
);
4161 inform (gimple_location (gsi_stmt (*gsi
)), "in statement");
4162 debug_gimple_stmt (stmt
);
4166 /* If the statement is marked as part of an EH region, then it is
4167 expected that the statement could throw. Verify that when we
4168 have optimizations that simplify statements such that we prove
4169 that they cannot throw, that we update other data structures
4171 lp_nr
= lookup_stmt_eh_lp (stmt
);
4174 if (!stmt_could_throw_p (stmt
))
4176 error ("statement marked for throw, but doesn%'t");
4179 else if (lp_nr
> 0 && !last_in_block
&& stmt_can_throw_internal (stmt
))
4181 error ("statement marked for throw in middle of block");
4189 debug_gimple_stmt (stmt
);
4194 /* Return true when the T can be shared. */
4197 tree_node_can_be_shared (tree t
)
4199 if (IS_TYPE_OR_DECL_P (t
)
4200 || is_gimple_min_invariant (t
)
4201 || TREE_CODE (t
) == SSA_NAME
4202 || t
== error_mark_node
4203 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4206 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4209 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4210 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4211 || TREE_CODE (t
) == COMPONENT_REF
4212 || TREE_CODE (t
) == REALPART_EXPR
4213 || TREE_CODE (t
) == IMAGPART_EXPR
)
4214 t
= TREE_OPERAND (t
, 0);
4223 /* Called via walk_gimple_stmt. Verify tree sharing. */
4226 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4228 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4229 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4231 if (tree_node_can_be_shared (*tp
))
4233 *walk_subtrees
= false;
4237 if (pointer_set_insert (visited
, *tp
))
4244 static bool eh_error_found
;
4246 verify_eh_throw_stmt_node (void **slot
, void *data
)
4248 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4249 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4251 if (!pointer_set_contains (visited
, node
->stmt
))
4253 error ("dead STMT in EH table");
4254 debug_gimple_stmt (node
->stmt
);
4255 eh_error_found
= true;
4261 /* Verify the GIMPLE statements in every basic block. */
4267 gimple_stmt_iterator gsi
;
4269 struct pointer_set_t
*visited
, *visited_stmts
;
4271 struct walk_stmt_info wi
;
4273 timevar_push (TV_TREE_STMT_VERIFY
);
4274 visited
= pointer_set_create ();
4275 visited_stmts
= pointer_set_create ();
4277 memset (&wi
, 0, sizeof (wi
));
4278 wi
.info
= (void *) visited
;
4285 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4287 phi
= gsi_stmt (gsi
);
4288 pointer_set_insert (visited_stmts
, phi
);
4289 if (gimple_bb (phi
) != bb
)
4291 error ("gimple_bb (phi) is set to a wrong basic block");
4295 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4297 tree t
= gimple_phi_arg_def (phi
, i
);
4302 error ("missing PHI def");
4303 debug_gimple_stmt (phi
);
4307 /* Addressable variables do have SSA_NAMEs but they
4308 are not considered gimple values. */
4309 else if (TREE_CODE (t
) != SSA_NAME
4310 && TREE_CODE (t
) != FUNCTION_DECL
4311 && !is_gimple_min_invariant (t
))
4313 error ("PHI argument is not a GIMPLE value");
4314 debug_gimple_stmt (phi
);
4315 debug_generic_expr (t
);
4319 addr
= walk_tree (&t
, verify_node_sharing
, visited
, NULL
);
4322 error ("incorrect sharing of tree nodes");
4323 debug_gimple_stmt (phi
);
4324 debug_generic_expr (addr
);
4329 #ifdef ENABLE_TYPES_CHECKING
4330 if (verify_gimple_phi (phi
))
4332 debug_gimple_stmt (phi
);
4338 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); )
4340 gimple stmt
= gsi_stmt (gsi
);
4342 if (gimple_code (stmt
) == GIMPLE_WITH_CLEANUP_EXPR
4343 || gimple_code (stmt
) == GIMPLE_BIND
)
4345 error ("invalid GIMPLE statement");
4346 debug_gimple_stmt (stmt
);
4350 pointer_set_insert (visited_stmts
, stmt
);
4352 if (gimple_bb (stmt
) != bb
)
4354 error ("gimple_bb (stmt) is set to a wrong basic block");
4355 debug_gimple_stmt (stmt
);
4359 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4361 tree decl
= gimple_label_label (stmt
);
4362 int uid
= LABEL_DECL_UID (decl
);
4365 || VEC_index (basic_block
, label_to_block_map
, uid
) != bb
)
4367 error ("incorrect entry in label_to_block_map");
4371 uid
= EH_LANDING_PAD_NR (decl
);
4374 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4375 if (decl
!= lp
->post_landing_pad
)
4377 error ("incorrect setting of landing pad number");
4383 err
|= verify_stmt (&gsi
);
4385 #ifdef ENABLE_TYPES_CHECKING
4386 if (verify_types_in_gimple_stmt (gsi_stmt (gsi
)))
4388 debug_gimple_stmt (stmt
);
4392 addr
= walk_gimple_op (gsi_stmt (gsi
), verify_node_sharing
, &wi
);
4395 error ("incorrect sharing of tree nodes");
4396 debug_gimple_stmt (stmt
);
4397 debug_generic_expr (addr
);
4404 eh_error_found
= false;
4405 if (get_eh_throw_stmt_table (cfun
))
4406 htab_traverse (get_eh_throw_stmt_table (cfun
),
4407 verify_eh_throw_stmt_node
,
4410 if (err
| eh_error_found
)
4411 internal_error ("verify_stmts failed");
4413 pointer_set_destroy (visited
);
4414 pointer_set_destroy (visited_stmts
);
4415 verify_histograms ();
4416 timevar_pop (TV_TREE_STMT_VERIFY
);
4420 /* Verifies that the flow information is OK. */
4423 gimple_verify_flow_info (void)
4427 gimple_stmt_iterator gsi
;
4432 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4434 error ("ENTRY_BLOCK has IL associated with it");
4438 if (EXIT_BLOCK_PTR
->il
.gimple
)
4440 error ("EXIT_BLOCK has IL associated with it");
4444 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4445 if (e
->flags
& EDGE_FALLTHRU
)
4447 error ("fallthru to exit from bb %d", e
->src
->index
);
4453 bool found_ctrl_stmt
= false;
4457 /* Skip labels on the start of basic block. */
4458 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4461 gimple prev_stmt
= stmt
;
4463 stmt
= gsi_stmt (gsi
);
4465 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4468 label
= gimple_label_label (stmt
);
4469 if (prev_stmt
&& DECL_NONLOCAL (label
))
4471 error ("nonlocal label ");
4472 print_generic_expr (stderr
, label
, 0);
4473 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4478 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4480 error ("EH landing pad label ");
4481 print_generic_expr (stderr
, label
, 0);
4482 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4487 if (label_to_block (label
) != bb
)
4490 print_generic_expr (stderr
, label
, 0);
4491 fprintf (stderr
, " to block does not match in bb %d",
4496 if (decl_function_context (label
) != current_function_decl
)
4499 print_generic_expr (stderr
, label
, 0);
4500 fprintf (stderr
, " has incorrect context in bb %d",
4506 /* Verify that body of basic block BB is free of control flow. */
4507 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4509 gimple stmt
= gsi_stmt (gsi
);
4511 if (found_ctrl_stmt
)
4513 error ("control flow in the middle of basic block %d",
4518 if (stmt_ends_bb_p (stmt
))
4519 found_ctrl_stmt
= true;
4521 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4524 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4525 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4530 gsi
= gsi_last_bb (bb
);
4531 if (gsi_end_p (gsi
))
4534 stmt
= gsi_stmt (gsi
);
4536 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4539 err
|= verify_eh_edges (stmt
);
4541 if (is_ctrl_stmt (stmt
))
4543 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4544 if (e
->flags
& EDGE_FALLTHRU
)
4546 error ("fallthru edge after a control statement in bb %d",
4552 if (gimple_code (stmt
) != GIMPLE_COND
)
4554 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4555 after anything else but if statement. */
4556 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4557 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4559 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4565 switch (gimple_code (stmt
))
4572 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4576 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4577 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4578 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4579 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4580 || EDGE_COUNT (bb
->succs
) >= 3)
4582 error ("wrong outgoing edge flags at end of bb %d",
4590 if (simple_goto_p (stmt
))
4592 error ("explicit goto at end of bb %d", bb
->index
);
4597 /* FIXME. We should double check that the labels in the
4598 destination blocks have their address taken. */
4599 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4600 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4601 | EDGE_FALSE_VALUE
))
4602 || !(e
->flags
& EDGE_ABNORMAL
))
4604 error ("wrong outgoing edge flags at end of bb %d",
4612 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4614 /* ... fallthru ... */
4616 if (!single_succ_p (bb
)
4617 || (single_succ_edge (bb
)->flags
4618 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4619 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4621 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4624 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4626 error ("return edge does not point to exit in bb %d",
4638 n
= gimple_switch_num_labels (stmt
);
4640 /* Mark all the destination basic blocks. */
4641 for (i
= 0; i
< n
; ++i
)
4643 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4644 basic_block label_bb
= label_to_block (lab
);
4645 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4646 label_bb
->aux
= (void *)1;
4649 /* Verify that the case labels are sorted. */
4650 prev
= gimple_switch_label (stmt
, 0);
4651 for (i
= 1; i
< n
; ++i
)
4653 tree c
= gimple_switch_label (stmt
, i
);
4656 error ("found default case not at the start of "
4662 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4664 error ("case labels not sorted: ");
4665 print_generic_expr (stderr
, prev
, 0);
4666 fprintf (stderr
," is greater than ");
4667 print_generic_expr (stderr
, c
, 0);
4668 fprintf (stderr
," but comes before it.\n");
4673 /* VRP will remove the default case if it can prove it will
4674 never be executed. So do not verify there always exists
4675 a default case here. */
4677 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4681 error ("extra outgoing edge %d->%d",
4682 bb
->index
, e
->dest
->index
);
4686 e
->dest
->aux
= (void *)2;
4687 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4688 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4690 error ("wrong outgoing edge flags at end of bb %d",
4696 /* Check that we have all of them. */
4697 for (i
= 0; i
< n
; ++i
)
4699 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4700 basic_block label_bb
= label_to_block (lab
);
4702 if (label_bb
->aux
!= (void *)2)
4704 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4709 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4710 e
->dest
->aux
= (void *)0;
4714 case GIMPLE_EH_DISPATCH
:
4715 err
|= verify_eh_dispatch_edge (stmt
);
4723 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4724 verify_dominators (CDI_DOMINATORS
);
4730 /* Updates phi nodes after creating a forwarder block joined
4731 by edge FALLTHRU. */
4734 gimple_make_forwarder_block (edge fallthru
)
4738 basic_block dummy
, bb
;
4740 gimple_stmt_iterator gsi
;
4742 dummy
= fallthru
->src
;
4743 bb
= fallthru
->dest
;
4745 if (single_pred_p (bb
))
4748 /* If we redirected a branch we must create new PHI nodes at the
4750 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4752 gimple phi
, new_phi
;
4754 phi
= gsi_stmt (gsi
);
4755 var
= gimple_phi_result (phi
);
4756 new_phi
= create_phi_node (var
, bb
);
4757 SSA_NAME_DEF_STMT (var
) = new_phi
;
4758 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4759 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4763 /* Add the arguments we have stored on edges. */
4764 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4769 flush_pending_stmts (e
);
4774 /* Return a non-special label in the head of basic block BLOCK.
4775 Create one if it doesn't exist. */
4778 gimple_block_label (basic_block bb
)
4780 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4785 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4787 stmt
= gsi_stmt (i
);
4788 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4790 label
= gimple_label_label (stmt
);
4791 if (!DECL_NONLOCAL (label
))
4794 gsi_move_before (&i
, &s
);
4799 label
= create_artificial_label (UNKNOWN_LOCATION
);
4800 stmt
= gimple_build_label (label
);
4801 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4806 /* Attempt to perform edge redirection by replacing a possibly complex
4807 jump instruction by a goto or by removing the jump completely.
4808 This can apply only if all edges now point to the same block. The
4809 parameters and return values are equivalent to
4810 redirect_edge_and_branch. */
4813 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4815 basic_block src
= e
->src
;
4816 gimple_stmt_iterator i
;
4819 /* We can replace or remove a complex jump only when we have exactly
4821 if (EDGE_COUNT (src
->succs
) != 2
4822 /* Verify that all targets will be TARGET. Specifically, the
4823 edge that is not E must also go to TARGET. */
4824 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4827 i
= gsi_last_bb (src
);
4831 stmt
= gsi_stmt (i
);
4833 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4835 gsi_remove (&i
, true);
4836 e
= ssa_redirect_edge (e
, target
);
4837 e
->flags
= EDGE_FALLTHRU
;
4845 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4846 edge representing the redirected branch. */
4849 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4851 basic_block bb
= e
->src
;
4852 gimple_stmt_iterator gsi
;
4856 if (e
->flags
& EDGE_ABNORMAL
)
4859 if (e
->dest
== dest
)
4862 if (e
->flags
& EDGE_EH
)
4863 return redirect_eh_edge (e
, dest
);
4865 if (e
->src
!= ENTRY_BLOCK_PTR
)
4867 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
4872 gsi
= gsi_last_bb (bb
);
4873 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4875 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
4878 /* For COND_EXPR, we only need to redirect the edge. */
4882 /* No non-abnormal edges should lead from a non-simple goto, and
4883 simple ones should be represented implicitly. */
4888 tree label
= gimple_block_label (dest
);
4889 tree cases
= get_cases_for_edge (e
, stmt
);
4891 /* If we have a list of cases associated with E, then use it
4892 as it's a lot faster than walking the entire case vector. */
4895 edge e2
= find_edge (e
->src
, dest
);
4902 CASE_LABEL (cases
) = label
;
4903 cases
= TREE_CHAIN (cases
);
4906 /* If there was already an edge in the CFG, then we need
4907 to move all the cases associated with E to E2. */
4910 tree cases2
= get_cases_for_edge (e2
, stmt
);
4912 TREE_CHAIN (last
) = TREE_CHAIN (cases2
);
4913 TREE_CHAIN (cases2
) = first
;
4915 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
4919 size_t i
, n
= gimple_switch_num_labels (stmt
);
4921 for (i
= 0; i
< n
; i
++)
4923 tree elt
= gimple_switch_label (stmt
, i
);
4924 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
4925 CASE_LABEL (elt
) = label
;
4933 int i
, n
= gimple_asm_nlabels (stmt
);
4936 for (i
= 0; i
< n
; ++i
)
4938 tree cons
= gimple_asm_label_op (stmt
, i
);
4939 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
4942 label
= gimple_block_label (dest
);
4943 TREE_VALUE (cons
) = label
;
4947 /* If we didn't find any label matching the former edge in the
4948 asm labels, we must be redirecting the fallthrough
4950 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
4955 gsi_remove (&gsi
, true);
4956 e
->flags
|= EDGE_FALLTHRU
;
4959 case GIMPLE_OMP_RETURN
:
4960 case GIMPLE_OMP_CONTINUE
:
4961 case GIMPLE_OMP_SECTIONS_SWITCH
:
4962 case GIMPLE_OMP_FOR
:
4963 /* The edges from OMP constructs can be simply redirected. */
4966 case GIMPLE_EH_DISPATCH
:
4967 if (!(e
->flags
& EDGE_FALLTHRU
))
4968 redirect_eh_dispatch_edge (stmt
, e
, dest
);
4972 /* Otherwise it must be a fallthru edge, and we don't need to
4973 do anything besides redirecting it. */
4974 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
4978 /* Update/insert PHI nodes as necessary. */
4980 /* Now update the edges in the CFG. */
4981 e
= ssa_redirect_edge (e
, dest
);
4986 /* Returns true if it is possible to remove edge E by redirecting
4987 it to the destination of the other edge from E->src. */
4990 gimple_can_remove_branch_p (const_edge e
)
4992 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
4998 /* Simple wrapper, as we can always redirect fallthru edges. */
5001 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5003 e
= gimple_redirect_edge_and_branch (e
, dest
);
5010 /* Splits basic block BB after statement STMT (but at least after the
5011 labels). If STMT is NULL, BB is split just after the labels. */
5014 gimple_split_block (basic_block bb
, void *stmt
)
5016 gimple_stmt_iterator gsi
;
5017 gimple_stmt_iterator gsi_tgt
;
5024 new_bb
= create_empty_bb (bb
);
5026 /* Redirect the outgoing edges. */
5027 new_bb
->succs
= bb
->succs
;
5029 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5032 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5035 /* Move everything from GSI to the new basic block. */
5036 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5038 act
= gsi_stmt (gsi
);
5039 if (gimple_code (act
) == GIMPLE_LABEL
)
5052 if (gsi_end_p (gsi
))
5055 /* Split the statement list - avoid re-creating new containers as this
5056 brings ugly quadratic memory consumption in the inliner.
5057 (We are still quadratic since we need to update stmt BB pointers,
5059 list
= gsi_split_seq_before (&gsi
);
5060 set_bb_seq (new_bb
, list
);
5061 for (gsi_tgt
= gsi_start (list
);
5062 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5063 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5069 /* Moves basic block BB after block AFTER. */
5072 gimple_move_block_after (basic_block bb
, basic_block after
)
5074 if (bb
->prev_bb
== after
)
5078 link_block (bb
, after
);
5084 /* Return true if basic_block can be duplicated. */
5087 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5092 /* Create a duplicate of the basic block BB. NOTE: This does not
5093 preserve SSA form. */
5096 gimple_duplicate_bb (basic_block bb
)
5099 gimple_stmt_iterator gsi
, gsi_tgt
;
5100 gimple_seq phis
= phi_nodes (bb
);
5101 gimple phi
, stmt
, copy
;
5103 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5105 /* Copy the PHI nodes. We ignore PHI node arguments here because
5106 the incoming edges have not been setup yet. */
5107 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5109 phi
= gsi_stmt (gsi
);
5110 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5111 create_new_def_for (gimple_phi_result (copy
), copy
,
5112 gimple_phi_result_ptr (copy
));
5115 gsi_tgt
= gsi_start_bb (new_bb
);
5116 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5118 def_operand_p def_p
;
5119 ssa_op_iter op_iter
;
5121 stmt
= gsi_stmt (gsi
);
5122 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5125 /* Create a new copy of STMT and duplicate STMT's virtual
5127 copy
= gimple_copy (stmt
);
5128 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5130 maybe_duplicate_eh_stmt (copy
, stmt
);
5131 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5133 /* Create new names for all the definitions created by COPY and
5134 add replacement mappings for each new name. */
5135 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5136 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5142 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5145 add_phi_args_after_copy_edge (edge e_copy
)
5147 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5150 gimple phi
, phi_copy
;
5152 gimple_stmt_iterator psi
, psi_copy
;
5154 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5157 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5159 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5160 dest
= get_bb_original (e_copy
->dest
);
5162 dest
= e_copy
->dest
;
5164 e
= find_edge (bb
, dest
);
5167 /* During loop unrolling the target of the latch edge is copied.
5168 In this case we are not looking for edge to dest, but to
5169 duplicated block whose original was dest. */
5170 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5172 if ((e
->dest
->flags
& BB_DUPLICATED
)
5173 && get_bb_original (e
->dest
) == dest
)
5177 gcc_assert (e
!= NULL
);
5180 for (psi
= gsi_start_phis (e
->dest
),
5181 psi_copy
= gsi_start_phis (e_copy
->dest
);
5183 gsi_next (&psi
), gsi_next (&psi_copy
))
5185 phi
= gsi_stmt (psi
);
5186 phi_copy
= gsi_stmt (psi_copy
);
5187 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5188 add_phi_arg (phi_copy
, def
, e_copy
,
5189 gimple_phi_arg_location_from_edge (phi
, e
));
5194 /* Basic block BB_COPY was created by code duplication. Add phi node
5195 arguments for edges going out of BB_COPY. The blocks that were
5196 duplicated have BB_DUPLICATED set. */
5199 add_phi_args_after_copy_bb (basic_block bb_copy
)
5204 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5206 add_phi_args_after_copy_edge (e_copy
);
5210 /* Blocks in REGION_COPY array of length N_REGION were created by
5211 duplication of basic blocks. Add phi node arguments for edges
5212 going from these blocks. If E_COPY is not NULL, also add
5213 phi node arguments for its destination.*/
5216 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5221 for (i
= 0; i
< n_region
; i
++)
5222 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5224 for (i
= 0; i
< n_region
; i
++)
5225 add_phi_args_after_copy_bb (region_copy
[i
]);
5227 add_phi_args_after_copy_edge (e_copy
);
5229 for (i
= 0; i
< n_region
; i
++)
5230 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5233 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5234 important exit edge EXIT. By important we mean that no SSA name defined
5235 inside region is live over the other exit edges of the region. All entry
5236 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5237 to the duplicate of the region. SSA form, dominance and loop information
5238 is updated. The new basic blocks are stored to REGION_COPY in the same
5239 order as they had in REGION, provided that REGION_COPY is not NULL.
5240 The function returns false if it is unable to copy the region,
5244 gimple_duplicate_sese_region (edge entry
, edge exit
,
5245 basic_block
*region
, unsigned n_region
,
5246 basic_block
*region_copy
)
5249 bool free_region_copy
= false, copying_header
= false;
5250 struct loop
*loop
= entry
->dest
->loop_father
;
5252 VEC (basic_block
, heap
) *doms
;
5254 int total_freq
= 0, entry_freq
= 0;
5255 gcov_type total_count
= 0, entry_count
= 0;
5257 if (!can_copy_bbs_p (region
, n_region
))
5260 /* Some sanity checking. Note that we do not check for all possible
5261 missuses of the functions. I.e. if you ask to copy something weird,
5262 it will work, but the state of structures probably will not be
5264 for (i
= 0; i
< n_region
; i
++)
5266 /* We do not handle subloops, i.e. all the blocks must belong to the
5268 if (region
[i
]->loop_father
!= loop
)
5271 if (region
[i
] != entry
->dest
5272 && region
[i
] == loop
->header
)
5276 set_loop_copy (loop
, loop
);
5278 /* In case the function is used for loop header copying (which is the primary
5279 use), ensure that EXIT and its copy will be new latch and entry edges. */
5280 if (loop
->header
== entry
->dest
)
5282 copying_header
= true;
5283 set_loop_copy (loop
, loop_outer (loop
));
5285 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5288 for (i
= 0; i
< n_region
; i
++)
5289 if (region
[i
] != exit
->src
5290 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5296 region_copy
= XNEWVEC (basic_block
, n_region
);
5297 free_region_copy
= true;
5300 gcc_assert (!need_ssa_update_p (cfun
));
5302 /* Record blocks outside the region that are dominated by something
5305 initialize_original_copy_tables ();
5307 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5309 if (entry
->dest
->count
)
5311 total_count
= entry
->dest
->count
;
5312 entry_count
= entry
->count
;
5313 /* Fix up corner cases, to avoid division by zero or creation of negative
5315 if (entry_count
> total_count
)
5316 entry_count
= total_count
;
5320 total_freq
= entry
->dest
->frequency
;
5321 entry_freq
= EDGE_FREQUENCY (entry
);
5322 /* Fix up corner cases, to avoid division by zero or creation of negative
5324 if (total_freq
== 0)
5326 else if (entry_freq
> total_freq
)
5327 entry_freq
= total_freq
;
5330 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5331 split_edge_bb_loc (entry
));
5334 scale_bbs_frequencies_gcov_type (region
, n_region
,
5335 total_count
- entry_count
,
5337 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5342 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5344 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5349 loop
->header
= exit
->dest
;
5350 loop
->latch
= exit
->src
;
5353 /* Redirect the entry and add the phi node arguments. */
5354 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5355 gcc_assert (redirected
!= NULL
);
5356 flush_pending_stmts (entry
);
5358 /* Concerning updating of dominators: We must recount dominators
5359 for entry block and its copy. Anything that is outside of the
5360 region, but was dominated by something inside needs recounting as
5362 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5363 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5364 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5365 VEC_free (basic_block
, heap
, doms
);
5367 /* Add the other PHI node arguments. */
5368 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5370 /* Update the SSA web. */
5371 update_ssa (TODO_update_ssa
);
5373 if (free_region_copy
)
5376 free_original_copy_tables ();
5380 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5381 are stored to REGION_COPY in the same order in that they appear
5382 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5383 the region, EXIT an exit from it. The condition guarding EXIT
5384 is moved to ENTRY. Returns true if duplication succeeds, false
5410 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5411 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5412 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5415 bool free_region_copy
= false;
5416 struct loop
*loop
= exit
->dest
->loop_father
;
5417 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5418 basic_block switch_bb
, entry_bb
, nentry_bb
;
5419 VEC (basic_block
, heap
) *doms
;
5420 int total_freq
= 0, exit_freq
= 0;
5421 gcov_type total_count
= 0, exit_count
= 0;
5422 edge exits
[2], nexits
[2], e
;
5423 gimple_stmt_iterator gsi
,gsi1
;
5426 basic_block exit_bb
;
5427 basic_block iters_bb
;
5429 gimple_stmt_iterator psi
;
5433 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5435 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5437 if (!can_copy_bbs_p (region
, n_region
))
5440 initialize_original_copy_tables ();
5441 set_loop_copy (orig_loop
, loop
);
5442 duplicate_subloops (orig_loop
, loop
);
5446 region_copy
= XNEWVEC (basic_block
, n_region
);
5447 free_region_copy
= true;
5450 gcc_assert (!need_ssa_update_p (cfun
));
5452 /* Record blocks outside the region that are dominated by something
5454 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5456 if (exit
->src
->count
)
5458 total_count
= exit
->src
->count
;
5459 exit_count
= exit
->count
;
5460 /* Fix up corner cases, to avoid division by zero or creation of negative
5462 if (exit_count
> total_count
)
5463 exit_count
= total_count
;
5467 total_freq
= exit
->src
->frequency
;
5468 exit_freq
= EDGE_FREQUENCY (exit
);
5469 /* Fix up corner cases, to avoid division by zero or creation of negative
5471 if (total_freq
== 0)
5473 if (exit_freq
> total_freq
)
5474 exit_freq
= total_freq
;
5477 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5478 split_edge_bb_loc (exit
));
5481 scale_bbs_frequencies_gcov_type (region
, n_region
,
5482 total_count
- exit_count
,
5484 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5489 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5491 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5494 /* Create the switch block, and put the exit condition to it. */
5495 entry_bb
= entry
->dest
;
5496 nentry_bb
= get_bb_copy (entry_bb
);
5497 if (!last_stmt (entry
->src
)
5498 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5499 switch_bb
= entry
->src
;
5501 switch_bb
= split_edge (entry
);
5502 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5504 gsi
= gsi_last_bb (switch_bb
);
5505 cond_stmt
= last_stmt (exit
->src
);
5506 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5507 cond_stmt
= gimple_copy (cond_stmt
);
5509 /* If the block consisting of the exit condition has the latch as
5510 successor, then the body of the loop is executed before
5511 the exit condition is tested. In such case, moving the
5512 condition to the entry, causes that the loop will iterate
5513 one less iteration (which is the wanted outcome, since we
5514 peel out the last iteration). If the body is executed after
5515 the condition, moving the condition to the entry requires
5516 decrementing one iteration. */
5517 if (exits
[1]->dest
== orig_loop
->latch
)
5518 new_rhs
= gimple_cond_rhs (cond_stmt
);
5521 new_rhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (gimple_cond_rhs (cond_stmt
)),
5522 gimple_cond_rhs (cond_stmt
),
5523 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt
)), 1));
5525 if (TREE_CODE (gimple_cond_rhs (cond_stmt
)) == SSA_NAME
)
5527 iters_bb
= gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)));
5528 for (gsi1
= gsi_start_bb (iters_bb
); !gsi_end_p (gsi1
); gsi_next (&gsi1
))
5529 if (gsi_stmt (gsi1
) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)))
5532 new_rhs
= force_gimple_operand_gsi (&gsi1
, new_rhs
, true,
5533 NULL_TREE
,false,GSI_CONTINUE_LINKING
);
5536 gimple_cond_set_rhs (cond_stmt
, unshare_expr (new_rhs
));
5537 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5538 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5540 sorig
= single_succ_edge (switch_bb
);
5541 sorig
->flags
= exits
[1]->flags
;
5542 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5544 /* Register the new edge from SWITCH_BB in loop exit lists. */
5545 rescan_loop_exit (snew
, true, false);
5547 /* Add the PHI node arguments. */
5548 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5550 /* Get rid of now superfluous conditions and associated edges (and phi node
5552 exit_bb
= exit
->dest
;
5554 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5555 PENDING_STMT (e
) = NULL
;
5557 /* The latch of ORIG_LOOP was copied, and so was the backedge
5558 to the original header. We redirect this backedge to EXIT_BB. */
5559 for (i
= 0; i
< n_region
; i
++)
5560 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5562 gcc_assert (single_succ_edge (region_copy
[i
]));
5563 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5564 PENDING_STMT (e
) = NULL
;
5565 for (psi
= gsi_start_phis (exit_bb
);
5569 phi
= gsi_stmt (psi
);
5570 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5571 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5574 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5575 PENDING_STMT (e
) = NULL
;
5577 /* Anything that is outside of the region, but was dominated by something
5578 inside needs to update dominance info. */
5579 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5580 VEC_free (basic_block
, heap
, doms
);
5581 /* Update the SSA web. */
5582 update_ssa (TODO_update_ssa
);
5584 if (free_region_copy
)
5587 free_original_copy_tables ();
5591 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5592 adding blocks when the dominator traversal reaches EXIT. This
5593 function silently assumes that ENTRY strictly dominates EXIT. */
5596 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5597 VEC(basic_block
,heap
) **bbs_p
)
5601 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5603 son
= next_dom_son (CDI_DOMINATORS
, son
))
5605 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5607 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5611 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5612 The duplicates are recorded in VARS_MAP. */
5615 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5618 tree t
= *tp
, new_t
;
5619 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5622 if (DECL_CONTEXT (t
) == to_context
)
5625 loc
= pointer_map_contains (vars_map
, t
);
5629 loc
= pointer_map_insert (vars_map
, t
);
5633 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5634 add_local_decl (f
, new_t
);
5638 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5639 new_t
= copy_node (t
);
5641 DECL_CONTEXT (new_t
) = to_context
;
5646 new_t
= (tree
) *loc
;
5652 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5653 VARS_MAP maps old ssa names and var_decls to the new ones. */
5656 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5660 tree new_name
, decl
= SSA_NAME_VAR (name
);
5662 gcc_assert (is_gimple_reg (name
));
5664 loc
= pointer_map_contains (vars_map
, name
);
5668 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5670 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5671 if (gimple_in_ssa_p (cfun
))
5672 add_referenced_var (decl
);
5674 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5675 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5676 set_default_def (decl
, new_name
);
5679 loc
= pointer_map_insert (vars_map
, name
);
5683 new_name
= (tree
) *loc
;
5694 struct pointer_map_t
*vars_map
;
5695 htab_t new_label_map
;
5696 struct pointer_map_t
*eh_map
;
5700 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5701 contained in *TP if it has been ORIG_BLOCK previously and change the
5702 DECL_CONTEXT of every local variable referenced in *TP. */
5705 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5707 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5708 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5712 /* We should never have TREE_BLOCK set on non-statements. */
5713 gcc_assert (!TREE_BLOCK (t
));
5715 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5717 if (TREE_CODE (t
) == SSA_NAME
)
5718 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5719 else if (TREE_CODE (t
) == LABEL_DECL
)
5721 if (p
->new_label_map
)
5723 struct tree_map in
, *out
;
5725 out
= (struct tree_map
*)
5726 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5731 DECL_CONTEXT (t
) = p
->to_context
;
5733 else if (p
->remap_decls_p
)
5735 /* Replace T with its duplicate. T should no longer appear in the
5736 parent function, so this looks wasteful; however, it may appear
5737 in referenced_vars, and more importantly, as virtual operands of
5738 statements, and in alias lists of other variables. It would be
5739 quite difficult to expunge it from all those places. ??? It might
5740 suffice to do this for addressable variables. */
5741 if ((TREE_CODE (t
) == VAR_DECL
5742 && !is_global_var (t
))
5743 || TREE_CODE (t
) == CONST_DECL
)
5744 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5747 && gimple_in_ssa_p (cfun
))
5749 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5750 add_referenced_var (*tp
);
5756 else if (TYPE_P (t
))
5762 /* Helper for move_stmt_r. Given an EH region number for the source
5763 function, map that to the duplicate EH regio number in the dest. */
5766 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5768 eh_region old_r
, new_r
;
5771 old_r
= get_eh_region_from_number (old_nr
);
5772 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5773 new_r
= (eh_region
) *slot
;
5775 return new_r
->index
;
5778 /* Similar, but operate on INTEGER_CSTs. */
5781 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5785 old_nr
= tree_low_cst (old_t_nr
, 0);
5786 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5788 return build_int_cst (NULL
, new_nr
);
5791 /* Like move_stmt_op, but for gimple statements.
5793 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5794 contained in the current statement in *GSI_P and change the
5795 DECL_CONTEXT of every local variable referenced in the current
5799 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5800 struct walk_stmt_info
*wi
)
5802 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5803 gimple stmt
= gsi_stmt (*gsi_p
);
5804 tree block
= gimple_block (stmt
);
5806 if (p
->orig_block
== NULL_TREE
5807 || block
== p
->orig_block
5808 || block
== NULL_TREE
)
5809 gimple_set_block (stmt
, p
->new_block
);
5810 #ifdef ENABLE_CHECKING
5811 else if (block
!= p
->new_block
)
5813 while (block
&& block
!= p
->orig_block
)
5814 block
= BLOCK_SUPERCONTEXT (block
);
5819 switch (gimple_code (stmt
))
5822 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5824 tree r
, fndecl
= gimple_call_fndecl (stmt
);
5825 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
5826 switch (DECL_FUNCTION_CODE (fndecl
))
5828 case BUILT_IN_EH_COPY_VALUES
:
5829 r
= gimple_call_arg (stmt
, 1);
5830 r
= move_stmt_eh_region_tree_nr (r
, p
);
5831 gimple_call_set_arg (stmt
, 1, r
);
5834 case BUILT_IN_EH_POINTER
:
5835 case BUILT_IN_EH_FILTER
:
5836 r
= gimple_call_arg (stmt
, 0);
5837 r
= move_stmt_eh_region_tree_nr (r
, p
);
5838 gimple_call_set_arg (stmt
, 0, r
);
5849 int r
= gimple_resx_region (stmt
);
5850 r
= move_stmt_eh_region_nr (r
, p
);
5851 gimple_resx_set_region (stmt
, r
);
5855 case GIMPLE_EH_DISPATCH
:
5857 int r
= gimple_eh_dispatch_region (stmt
);
5858 r
= move_stmt_eh_region_nr (r
, p
);
5859 gimple_eh_dispatch_set_region (stmt
, r
);
5863 case GIMPLE_OMP_RETURN
:
5864 case GIMPLE_OMP_CONTINUE
:
5867 if (is_gimple_omp (stmt
))
5869 /* Do not remap variables inside OMP directives. Variables
5870 referenced in clauses and directive header belong to the
5871 parent function and should not be moved into the child
5873 bool save_remap_decls_p
= p
->remap_decls_p
;
5874 p
->remap_decls_p
= false;
5875 *handled_ops_p
= true;
5877 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
5880 p
->remap_decls_p
= save_remap_decls_p
;
5888 /* Move basic block BB from function CFUN to function DEST_FN. The
5889 block is moved out of the original linked list and placed after
5890 block AFTER in the new list. Also, the block is removed from the
5891 original array of blocks and placed in DEST_FN's array of blocks.
5892 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5893 updated to reflect the moved edges.
5895 The local variables are remapped to new instances, VARS_MAP is used
5896 to record the mapping. */
5899 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5900 basic_block after
, bool update_edge_count_p
,
5901 struct move_stmt_d
*d
)
5903 struct control_flow_graph
*cfg
;
5906 gimple_stmt_iterator si
;
5907 unsigned old_len
, new_len
;
5909 /* Remove BB from dominance structures. */
5910 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5912 remove_bb_from_loops (bb
);
5914 /* Link BB to the new linked list. */
5915 move_block_after (bb
, after
);
5917 /* Update the edge count in the corresponding flowgraphs. */
5918 if (update_edge_count_p
)
5919 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5921 cfun
->cfg
->x_n_edges
--;
5922 dest_cfun
->cfg
->x_n_edges
++;
5925 /* Remove BB from the original basic block array. */
5926 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5927 cfun
->cfg
->x_n_basic_blocks
--;
5929 /* Grow DEST_CFUN's basic block array if needed. */
5930 cfg
= dest_cfun
->cfg
;
5931 cfg
->x_n_basic_blocks
++;
5932 if (bb
->index
>= cfg
->x_last_basic_block
)
5933 cfg
->x_last_basic_block
= bb
->index
+ 1;
5935 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5936 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5938 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5939 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5943 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5946 /* Remap the variables in phi nodes. */
5947 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5949 gimple phi
= gsi_stmt (si
);
5951 tree op
= PHI_RESULT (phi
);
5954 if (!is_gimple_reg (op
))
5956 /* Remove the phi nodes for virtual operands (alias analysis will be
5957 run for the new function, anyway). */
5958 remove_phi_node (&si
, true);
5962 SET_PHI_RESULT (phi
,
5963 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5964 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5966 op
= USE_FROM_PTR (use
);
5967 if (TREE_CODE (op
) == SSA_NAME
)
5968 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5974 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5976 gimple stmt
= gsi_stmt (si
);
5977 struct walk_stmt_info wi
;
5979 memset (&wi
, 0, sizeof (wi
));
5981 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5983 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5985 tree label
= gimple_label_label (stmt
);
5986 int uid
= LABEL_DECL_UID (label
);
5988 gcc_assert (uid
> -1);
5990 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5991 if (old_len
<= (unsigned) uid
)
5993 new_len
= 3 * uid
/ 2 + 1;
5994 VEC_safe_grow_cleared (basic_block
, gc
,
5995 cfg
->x_label_to_block_map
, new_len
);
5998 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5999 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
6001 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6003 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6004 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6007 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6008 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6010 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6011 gimple_remove_stmt_histograms (cfun
, stmt
);
6013 /* We cannot leave any operands allocated from the operand caches of
6014 the current function. */
6015 free_stmt_operands (stmt
);
6016 push_cfun (dest_cfun
);
6021 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6024 tree block
= e
->goto_block
;
6025 if (d
->orig_block
== NULL_TREE
6026 || block
== d
->orig_block
)
6027 e
->goto_block
= d
->new_block
;
6028 #ifdef ENABLE_CHECKING
6029 else if (block
!= d
->new_block
)
6031 while (block
&& block
!= d
->orig_block
)
6032 block
= BLOCK_SUPERCONTEXT (block
);
6039 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6040 the outermost EH region. Use REGION as the incoming base EH region. */
6043 find_outermost_region_in_block (struct function
*src_cfun
,
6044 basic_block bb
, eh_region region
)
6046 gimple_stmt_iterator si
;
6048 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6050 gimple stmt
= gsi_stmt (si
);
6051 eh_region stmt_region
;
6054 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6055 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6059 region
= stmt_region
;
6060 else if (stmt_region
!= region
)
6062 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6063 gcc_assert (region
!= NULL
);
6072 new_label_mapper (tree decl
, void *data
)
6074 htab_t hash
= (htab_t
) data
;
6078 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6080 m
= XNEW (struct tree_map
);
6081 m
->hash
= DECL_UID (decl
);
6082 m
->base
.from
= decl
;
6083 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6084 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6085 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6086 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6088 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6089 gcc_assert (*slot
== NULL
);
6096 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6100 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6105 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6108 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6110 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6113 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6115 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6116 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6118 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6123 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6124 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6127 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6128 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6129 single basic block in the original CFG and the new basic block is
6130 returned. DEST_CFUN must not have a CFG yet.
6132 Note that the region need not be a pure SESE region. Blocks inside
6133 the region may contain calls to abort/exit. The only restriction
6134 is that ENTRY_BB should be the only entry point and it must
6137 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6138 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6139 to the new function.
6141 All local variables referenced in the region are assumed to be in
6142 the corresponding BLOCK_VARS and unexpanded variable lists
6143 associated with DEST_CFUN. */
6146 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6147 basic_block exit_bb
, tree orig_block
)
6149 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6150 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6151 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6152 struct function
*saved_cfun
= cfun
;
6153 int *entry_flag
, *exit_flag
;
6154 unsigned *entry_prob
, *exit_prob
;
6155 unsigned i
, num_entry_edges
, num_exit_edges
;
6158 htab_t new_label_map
;
6159 struct pointer_map_t
*vars_map
, *eh_map
;
6160 struct loop
*loop
= entry_bb
->loop_father
;
6161 struct move_stmt_d d
;
6163 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6165 gcc_assert (entry_bb
!= exit_bb
6167 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6169 /* Collect all the blocks in the region. Manually add ENTRY_BB
6170 because it won't be added by dfs_enumerate_from. */
6172 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6173 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6175 /* The blocks that used to be dominated by something in BBS will now be
6176 dominated by the new block. */
6177 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6178 VEC_address (basic_block
, bbs
),
6179 VEC_length (basic_block
, bbs
));
6181 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6182 the predecessor edges to ENTRY_BB and the successor edges to
6183 EXIT_BB so that we can re-attach them to the new basic block that
6184 will replace the region. */
6185 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6186 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6187 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6188 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6190 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6192 entry_prob
[i
] = e
->probability
;
6193 entry_flag
[i
] = e
->flags
;
6194 entry_pred
[i
++] = e
->src
;
6200 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6201 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6202 sizeof (basic_block
));
6203 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6204 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6206 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6208 exit_prob
[i
] = e
->probability
;
6209 exit_flag
[i
] = e
->flags
;
6210 exit_succ
[i
++] = e
->dest
;
6222 /* Switch context to the child function to initialize DEST_FN's CFG. */
6223 gcc_assert (dest_cfun
->cfg
== NULL
);
6224 push_cfun (dest_cfun
);
6226 init_empty_tree_cfg ();
6228 /* Initialize EH information for the new function. */
6230 new_label_map
= NULL
;
6233 eh_region region
= NULL
;
6235 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6236 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6238 init_eh_for_function ();
6241 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6242 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6243 new_label_mapper
, new_label_map
);
6249 /* Move blocks from BBS into DEST_CFUN. */
6250 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6251 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6252 vars_map
= pointer_map_create ();
6254 memset (&d
, 0, sizeof (d
));
6255 d
.orig_block
= orig_block
;
6256 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6257 d
.from_context
= cfun
->decl
;
6258 d
.to_context
= dest_cfun
->decl
;
6259 d
.vars_map
= vars_map
;
6260 d
.new_label_map
= new_label_map
;
6262 d
.remap_decls_p
= true;
6264 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6266 /* No need to update edge counts on the last block. It has
6267 already been updated earlier when we detached the region from
6268 the original CFG. */
6269 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6273 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6277 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6279 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6280 = BLOCK_SUBBLOCKS (orig_block
);
6281 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6282 block
; block
= BLOCK_CHAIN (block
))
6283 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6284 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6287 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6288 vars_map
, dest_cfun
->decl
);
6291 htab_delete (new_label_map
);
6293 pointer_map_destroy (eh_map
);
6294 pointer_map_destroy (vars_map
);
6296 /* Rewire the entry and exit blocks. The successor to the entry
6297 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6298 the child function. Similarly, the predecessor of DEST_FN's
6299 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6300 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6301 various CFG manipulation function get to the right CFG.
6303 FIXME, this is silly. The CFG ought to become a parameter to
6305 push_cfun (dest_cfun
);
6306 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6308 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6311 /* Back in the original function, the SESE region has disappeared,
6312 create a new basic block in its place. */
6313 bb
= create_empty_bb (entry_pred
[0]);
6315 add_bb_to_loop (bb
, loop
);
6316 for (i
= 0; i
< num_entry_edges
; i
++)
6318 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6319 e
->probability
= entry_prob
[i
];
6322 for (i
= 0; i
< num_exit_edges
; i
++)
6324 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6325 e
->probability
= exit_prob
[i
];
6328 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6329 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6330 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6331 VEC_free (basic_block
, heap
, dom_bbs
);
6342 VEC_free (basic_block
, heap
, bbs
);
6348 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6352 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6355 struct function
*dsf
;
6356 bool ignore_topmost_bind
= false, any_var
= false;
6360 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6362 arg
= DECL_ARGUMENTS (fn
);
6365 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6366 fprintf (file
, " ");
6367 print_generic_expr (file
, arg
, dump_flags
);
6368 if (flags
& TDF_VERBOSE
)
6369 print_node (file
, "", arg
, 4);
6370 if (DECL_CHAIN (arg
))
6371 fprintf (file
, ", ");
6372 arg
= DECL_CHAIN (arg
);
6374 fprintf (file
, ")\n");
6376 if (flags
& TDF_VERBOSE
)
6377 print_node (file
, "", fn
, 2);
6379 dsf
= DECL_STRUCT_FUNCTION (fn
);
6380 if (dsf
&& (flags
& TDF_EH
))
6381 dump_eh_tree (file
, dsf
);
6383 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6385 dump_node (fn
, TDF_SLIM
| flags
, file
);
6389 /* Switch CFUN to point to FN. */
6390 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6392 /* When GIMPLE is lowered, the variables are no longer available in
6393 BIND_EXPRs, so display them separately. */
6394 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6397 ignore_topmost_bind
= true;
6399 fprintf (file
, "{\n");
6400 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6402 print_generic_decl (file
, var
, flags
);
6403 if (flags
& TDF_VERBOSE
)
6404 print_node (file
, "", var
, 4);
6405 fprintf (file
, "\n");
6411 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6413 /* If the CFG has been built, emit a CFG-based dump. */
6414 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6415 if (!ignore_topmost_bind
)
6416 fprintf (file
, "{\n");
6418 if (any_var
&& n_basic_blocks
)
6419 fprintf (file
, "\n");
6422 gimple_dump_bb (bb
, file
, 2, flags
);
6424 fprintf (file
, "}\n");
6425 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6427 else if (DECL_SAVED_TREE (fn
) == NULL
)
6429 /* The function is now in GIMPLE form but the CFG has not been
6430 built yet. Emit the single sequence of GIMPLE statements
6431 that make up its body. */
6432 gimple_seq body
= gimple_body (fn
);
6434 if (gimple_seq_first_stmt (body
)
6435 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6436 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6437 print_gimple_seq (file
, body
, 0, flags
);
6440 if (!ignore_topmost_bind
)
6441 fprintf (file
, "{\n");
6444 fprintf (file
, "\n");
6446 print_gimple_seq (file
, body
, 2, flags
);
6447 fprintf (file
, "}\n");
6454 /* Make a tree based dump. */
6455 chain
= DECL_SAVED_TREE (fn
);
6457 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6459 if (ignore_topmost_bind
)
6461 chain
= BIND_EXPR_BODY (chain
);
6469 if (!ignore_topmost_bind
)
6470 fprintf (file
, "{\n");
6475 fprintf (file
, "\n");
6477 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6478 if (ignore_topmost_bind
)
6479 fprintf (file
, "}\n");
6482 if (flags
& TDF_ENUMERATE_LOCALS
)
6483 dump_enumerated_decls (file
, flags
);
6484 fprintf (file
, "\n\n");
6491 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6494 debug_function (tree fn
, int flags
)
6496 dump_function_to_file (fn
, stderr
, flags
);
6500 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6503 print_pred_bbs (FILE *file
, basic_block bb
)
6508 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6509 fprintf (file
, "bb_%d ", e
->src
->index
);
6513 /* Print on FILE the indexes for the successors of basic_block BB. */
6516 print_succ_bbs (FILE *file
, basic_block bb
)
6521 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6522 fprintf (file
, "bb_%d ", e
->dest
->index
);
6525 /* Print to FILE the basic block BB following the VERBOSITY level. */
6528 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6530 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6531 memset ((void *) s_indent
, ' ', (size_t) indent
);
6532 s_indent
[indent
] = '\0';
6534 /* Print basic_block's header. */
6537 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6538 print_pred_bbs (file
, bb
);
6539 fprintf (file
, "}, succs = {");
6540 print_succ_bbs (file
, bb
);
6541 fprintf (file
, "})\n");
6544 /* Print basic_block's body. */
6547 fprintf (file
, "%s {\n", s_indent
);
6548 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6549 fprintf (file
, "%s }\n", s_indent
);
6553 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6555 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6556 VERBOSITY level this outputs the contents of the loop, or just its
6560 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6568 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6569 memset ((void *) s_indent
, ' ', (size_t) indent
);
6570 s_indent
[indent
] = '\0';
6572 /* Print loop's header. */
6573 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6574 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6575 fprintf (file
, ", niter = ");
6576 print_generic_expr (file
, loop
->nb_iterations
, 0);
6578 if (loop
->any_upper_bound
)
6580 fprintf (file
, ", upper_bound = ");
6581 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6584 if (loop
->any_estimate
)
6586 fprintf (file
, ", estimate = ");
6587 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6589 fprintf (file
, ")\n");
6591 /* Print loop's body. */
6594 fprintf (file
, "%s{\n", s_indent
);
6596 if (bb
->loop_father
== loop
)
6597 print_loops_bb (file
, bb
, indent
, verbosity
);
6599 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6600 fprintf (file
, "%s}\n", s_indent
);
6604 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6605 spaces. Following VERBOSITY level this outputs the contents of the
6606 loop, or just its structure. */
6609 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6614 print_loop (file
, loop
, indent
, verbosity
);
6615 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6618 /* Follow a CFG edge from the entry point of the program, and on entry
6619 of a loop, pretty print the loop structure on FILE. */
6622 print_loops (FILE *file
, int verbosity
)
6626 bb
= ENTRY_BLOCK_PTR
;
6627 if (bb
&& bb
->loop_father
)
6628 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6632 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6635 debug_loops (int verbosity
)
6637 print_loops (stderr
, verbosity
);
6640 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6643 debug_loop (struct loop
*loop
, int verbosity
)
6645 print_loop (stderr
, loop
, 0, verbosity
);
6648 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6652 debug_loop_num (unsigned num
, int verbosity
)
6654 debug_loop (get_loop (num
), verbosity
);
6657 /* Return true if BB ends with a call, possibly followed by some
6658 instructions that must stay with the call. Return false,
6662 gimple_block_ends_with_call_p (basic_block bb
)
6664 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6665 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6669 /* Return true if BB ends with a conditional branch. Return false,
6673 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6675 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6676 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6680 /* Return true if we need to add fake edge to exit at statement T.
6681 Helper function for gimple_flow_call_edges_add. */
6684 need_fake_edge_p (gimple t
)
6686 tree fndecl
= NULL_TREE
;
6689 /* NORETURN and LONGJMP calls already have an edge to exit.
6690 CONST and PURE calls do not need one.
6691 We don't currently check for CONST and PURE here, although
6692 it would be a good idea, because those attributes are
6693 figured out from the RTL in mark_constant_function, and
6694 the counter incrementation code from -fprofile-arcs
6695 leads to different results from -fbranch-probabilities. */
6696 if (is_gimple_call (t
))
6698 fndecl
= gimple_call_fndecl (t
);
6699 call_flags
= gimple_call_flags (t
);
6702 if (is_gimple_call (t
)
6704 && DECL_BUILT_IN (fndecl
)
6705 && (call_flags
& ECF_NOTHROW
)
6706 && !(call_flags
& ECF_RETURNS_TWICE
)
6707 /* fork() doesn't really return twice, but the effect of
6708 wrapping it in __gcov_fork() which calls __gcov_flush()
6709 and clears the counters before forking has the same
6710 effect as returning twice. Force a fake edge. */
6711 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6712 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6715 if (is_gimple_call (t
)
6716 && !(call_flags
& ECF_NORETURN
))
6719 if (gimple_code (t
) == GIMPLE_ASM
6720 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6727 /* Add fake edges to the function exit for any non constant and non
6728 noreturn calls, volatile inline assembly in the bitmap of blocks
6729 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6730 the number of blocks that were split.
6732 The goal is to expose cases in which entering a basic block does
6733 not imply that all subsequent instructions must be executed. */
6736 gimple_flow_call_edges_add (sbitmap blocks
)
6739 int blocks_split
= 0;
6740 int last_bb
= last_basic_block
;
6741 bool check_last_block
= false;
6743 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6747 check_last_block
= true;
6749 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6751 /* In the last basic block, before epilogue generation, there will be
6752 a fallthru edge to EXIT. Special care is required if the last insn
6753 of the last basic block is a call because make_edge folds duplicate
6754 edges, which would result in the fallthru edge also being marked
6755 fake, which would result in the fallthru edge being removed by
6756 remove_fake_edges, which would result in an invalid CFG.
6758 Moreover, we can't elide the outgoing fake edge, since the block
6759 profiler needs to take this into account in order to solve the minimal
6760 spanning tree in the case that the call doesn't return.
6762 Handle this by adding a dummy instruction in a new last basic block. */
6763 if (check_last_block
)
6765 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6766 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6769 if (!gsi_end_p (gsi
))
6772 if (t
&& need_fake_edge_p (t
))
6776 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6779 gsi_insert_on_edge (e
, gimple_build_nop ());
6780 gsi_commit_edge_inserts ();
6785 /* Now add fake edges to the function exit for any non constant
6786 calls since there is no way that we can determine if they will
6788 for (i
= 0; i
< last_bb
; i
++)
6790 basic_block bb
= BASIC_BLOCK (i
);
6791 gimple_stmt_iterator gsi
;
6792 gimple stmt
, last_stmt
;
6797 if (blocks
&& !TEST_BIT (blocks
, i
))
6800 gsi
= gsi_last_nondebug_bb (bb
);
6801 if (!gsi_end_p (gsi
))
6803 last_stmt
= gsi_stmt (gsi
);
6806 stmt
= gsi_stmt (gsi
);
6807 if (need_fake_edge_p (stmt
))
6811 /* The handling above of the final block before the
6812 epilogue should be enough to verify that there is
6813 no edge to the exit block in CFG already.
6814 Calling make_edge in such case would cause us to
6815 mark that edge as fake and remove it later. */
6816 #ifdef ENABLE_CHECKING
6817 if (stmt
== last_stmt
)
6819 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6820 gcc_assert (e
== NULL
);
6824 /* Note that the following may create a new basic block
6825 and renumber the existing basic blocks. */
6826 if (stmt
!= last_stmt
)
6828 e
= split_block (bb
, stmt
);
6832 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6836 while (!gsi_end_p (gsi
));
6841 verify_flow_info ();
6843 return blocks_split
;
6846 /* Removes edge E and all the blocks dominated by it, and updates dominance
6847 information. The IL in E->src needs to be updated separately.
6848 If dominance info is not available, only the edge E is removed.*/
6851 remove_edge_and_dominated_blocks (edge e
)
6853 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6854 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6858 bool none_removed
= false;
6860 basic_block bb
, dbb
;
6863 if (!dom_info_available_p (CDI_DOMINATORS
))
6869 /* No updating is needed for edges to exit. */
6870 if (e
->dest
== EXIT_BLOCK_PTR
)
6872 if (cfgcleanup_altered_bbs
)
6873 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6878 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6879 that is not dominated by E->dest, then this set is empty. Otherwise,
6880 all the basic blocks dominated by E->dest are removed.
6882 Also, to DF_IDOM we store the immediate dominators of the blocks in
6883 the dominance frontier of E (i.e., of the successors of the
6884 removed blocks, if there are any, and of E->dest otherwise). */
6885 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6890 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6892 none_removed
= true;
6897 df
= BITMAP_ALLOC (NULL
);
6898 df_idom
= BITMAP_ALLOC (NULL
);
6901 bitmap_set_bit (df_idom
,
6902 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6905 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
6906 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6908 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6910 if (f
->dest
!= EXIT_BLOCK_PTR
)
6911 bitmap_set_bit (df
, f
->dest
->index
);
6914 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6915 bitmap_clear_bit (df
, bb
->index
);
6917 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6919 bb
= BASIC_BLOCK (i
);
6920 bitmap_set_bit (df_idom
,
6921 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6925 if (cfgcleanup_altered_bbs
)
6927 /* Record the set of the altered basic blocks. */
6928 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6929 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6932 /* Remove E and the cancelled blocks. */
6937 /* Walk backwards so as to get a chance to substitute all
6938 released DEFs into debug stmts. See
6939 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6941 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
6942 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
6945 /* Update the dominance information. The immediate dominator may change only
6946 for blocks whose immediate dominator belongs to DF_IDOM:
6948 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6949 removal. Let Z the arbitrary block such that idom(Z) = Y and
6950 Z dominates X after the removal. Before removal, there exists a path P
6951 from Y to X that avoids Z. Let F be the last edge on P that is
6952 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6953 dominates W, and because of P, Z does not dominate W), and W belongs to
6954 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6955 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6957 bb
= BASIC_BLOCK (i
);
6958 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6960 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6961 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6964 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6967 BITMAP_FREE (df_idom
);
6968 VEC_free (basic_block
, heap
, bbs_to_remove
);
6969 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6972 /* Purge dead EH edges from basic block BB. */
6975 gimple_purge_dead_eh_edges (basic_block bb
)
6977 bool changed
= false;
6980 gimple stmt
= last_stmt (bb
);
6982 if (stmt
&& stmt_can_throw_internal (stmt
))
6985 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6987 if (e
->flags
& EDGE_EH
)
6989 remove_edge_and_dominated_blocks (e
);
6999 /* Purge dead EH edges from basic block listed in BLOCKS. */
7002 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7004 bool changed
= false;
7008 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7010 basic_block bb
= BASIC_BLOCK (i
);
7012 /* Earlier gimple_purge_dead_eh_edges could have removed
7013 this basic block already. */
7014 gcc_assert (bb
|| changed
);
7016 changed
|= gimple_purge_dead_eh_edges (bb
);
7022 /* Purge dead abnormal call edges from basic block BB. */
7025 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7027 bool changed
= false;
7030 gimple stmt
= last_stmt (bb
);
7032 if (!cfun
->has_nonlocal_label
)
7035 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7038 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7040 if (e
->flags
& EDGE_ABNORMAL
)
7042 remove_edge_and_dominated_blocks (e
);
7052 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7055 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7057 bool changed
= false;
7061 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7063 basic_block bb
= BASIC_BLOCK (i
);
7065 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7066 this basic block already. */
7067 gcc_assert (bb
|| changed
);
7069 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7075 /* This function is called whenever a new edge is created or
7079 gimple_execute_on_growing_pred (edge e
)
7081 basic_block bb
= e
->dest
;
7083 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7084 reserve_phi_args_for_new_edge (bb
);
7087 /* This function is called immediately before edge E is removed from
7088 the edge vector E->dest->preds. */
7091 gimple_execute_on_shrinking_pred (edge e
)
7093 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7094 remove_phi_args (e
);
7097 /*---------------------------------------------------------------------------
7098 Helper functions for Loop versioning
7099 ---------------------------------------------------------------------------*/
7101 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7102 of 'first'. Both of them are dominated by 'new_head' basic block. When
7103 'new_head' was created by 'second's incoming edge it received phi arguments
7104 on the edge by split_edge(). Later, additional edge 'e' was created to
7105 connect 'new_head' and 'first'. Now this routine adds phi args on this
7106 additional edge 'e' that new_head to second edge received as part of edge
7110 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7111 basic_block new_head
, edge e
)
7114 gimple_stmt_iterator psi1
, psi2
;
7116 edge e2
= find_edge (new_head
, second
);
7118 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7119 edge, we should always have an edge from NEW_HEAD to SECOND. */
7120 gcc_assert (e2
!= NULL
);
7122 /* Browse all 'second' basic block phi nodes and add phi args to
7123 edge 'e' for 'first' head. PHI args are always in correct order. */
7125 for (psi2
= gsi_start_phis (second
),
7126 psi1
= gsi_start_phis (first
);
7127 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7128 gsi_next (&psi2
), gsi_next (&psi1
))
7130 phi1
= gsi_stmt (psi1
);
7131 phi2
= gsi_stmt (psi2
);
7132 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7133 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7138 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7139 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7140 the destination of the ELSE part. */
7143 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7144 basic_block second_head ATTRIBUTE_UNUSED
,
7145 basic_block cond_bb
, void *cond_e
)
7147 gimple_stmt_iterator gsi
;
7148 gimple new_cond_expr
;
7149 tree cond_expr
= (tree
) cond_e
;
7152 /* Build new conditional expr */
7153 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7154 NULL_TREE
, NULL_TREE
);
7156 /* Add new cond in cond_bb. */
7157 gsi
= gsi_last_bb (cond_bb
);
7158 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7160 /* Adjust edges appropriately to connect new head with first head
7161 as well as second head. */
7162 e0
= single_succ_edge (cond_bb
);
7163 e0
->flags
&= ~EDGE_FALLTHRU
;
7164 e0
->flags
|= EDGE_FALSE_VALUE
;
7167 struct cfg_hooks gimple_cfg_hooks
= {
7169 gimple_verify_flow_info
,
7170 gimple_dump_bb
, /* dump_bb */
7171 create_bb
, /* create_basic_block */
7172 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7173 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7174 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7175 remove_bb
, /* delete_basic_block */
7176 gimple_split_block
, /* split_block */
7177 gimple_move_block_after
, /* move_block_after */
7178 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7179 gimple_merge_blocks
, /* merge_blocks */
7180 gimple_predict_edge
, /* predict_edge */
7181 gimple_predicted_by_p
, /* predicted_by_p */
7182 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7183 gimple_duplicate_bb
, /* duplicate_block */
7184 gimple_split_edge
, /* split_edge */
7185 gimple_make_forwarder_block
, /* make_forward_block */
7186 NULL
, /* tidy_fallthru_edge */
7187 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7188 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7189 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7190 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7191 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7192 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7193 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7194 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7195 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7196 flush_pending_stmts
/* flush_pending_stmts */
7200 /* Split all critical edges. */
7203 split_critical_edges (void)
7209 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7210 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7211 mappings around the calls to split_edge. */
7212 start_recording_case_labels ();
7215 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7217 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7219 /* PRE inserts statements to edges and expects that
7220 since split_critical_edges was done beforehand, committing edge
7221 insertions will not split more edges. In addition to critical
7222 edges we must split edges that have multiple successors and
7223 end by control flow statements, such as RESX.
7224 Go ahead and split them too. This matches the logic in
7225 gimple_find_edge_insert_loc. */
7226 else if ((!single_pred_p (e
->dest
)
7227 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7228 || e
->dest
== EXIT_BLOCK_PTR
)
7229 && e
->src
!= ENTRY_BLOCK_PTR
7230 && !(e
->flags
& EDGE_ABNORMAL
))
7232 gimple_stmt_iterator gsi
;
7234 gsi
= gsi_last_bb (e
->src
);
7235 if (!gsi_end_p (gsi
)
7236 && stmt_ends_bb_p (gsi_stmt (gsi
))
7237 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7238 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7244 end_recording_case_labels ();
7248 struct gimple_opt_pass pass_split_crit_edges
=
7252 "crited", /* name */
7254 split_critical_edges
, /* execute */
7257 0, /* static_pass_number */
7258 TV_TREE_SPLIT_EDGES
, /* tv_id */
7259 PROP_cfg
, /* properties required */
7260 PROP_no_crit_edges
, /* properties_provided */
7261 0, /* properties_destroyed */
7262 0, /* todo_flags_start */
7263 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
7268 /* Build a ternary operation and gimplify it. Emit code before GSI.
7269 Return the gimple_val holding the result. */
7272 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7273 tree type
, tree a
, tree b
, tree c
)
7276 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7278 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7281 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7285 /* Build a binary operation and gimplify it. Emit code before GSI.
7286 Return the gimple_val holding the result. */
7289 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7290 tree type
, tree a
, tree b
)
7294 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7297 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7301 /* Build a unary operation and gimplify it. Emit code before GSI.
7302 Return the gimple_val holding the result. */
7305 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7310 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7313 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7319 /* Emit return warnings. */
7322 execute_warn_function_return (void)
7324 source_location location
;
7329 /* If we have a path to EXIT, then we do return. */
7330 if (TREE_THIS_VOLATILE (cfun
->decl
)
7331 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7333 location
= UNKNOWN_LOCATION
;
7334 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7336 last
= last_stmt (e
->src
);
7337 if ((gimple_code (last
) == GIMPLE_RETURN
7338 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7339 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7342 if (location
== UNKNOWN_LOCATION
)
7343 location
= cfun
->function_end_locus
;
7344 warning_at (location
, 0, "%<noreturn%> function does return");
7347 /* If we see "return;" in some basic block, then we do reach the end
7348 without returning a value. */
7349 else if (warn_return_type
7350 && !TREE_NO_WARNING (cfun
->decl
)
7351 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7352 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7354 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7356 gimple last
= last_stmt (e
->src
);
7357 if (gimple_code (last
) == GIMPLE_RETURN
7358 && gimple_return_retval (last
) == NULL
7359 && !gimple_no_warning_p (last
))
7361 location
= gimple_location (last
);
7362 if (location
== UNKNOWN_LOCATION
)
7363 location
= cfun
->function_end_locus
;
7364 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7365 TREE_NO_WARNING (cfun
->decl
) = 1;
7374 /* Given a basic block B which ends with a conditional and has
7375 precisely two successors, determine which of the edges is taken if
7376 the conditional is true and which is taken if the conditional is
7377 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7380 extract_true_false_edges_from_block (basic_block b
,
7384 edge e
= EDGE_SUCC (b
, 0);
7386 if (e
->flags
& EDGE_TRUE_VALUE
)
7389 *false_edge
= EDGE_SUCC (b
, 1);
7394 *true_edge
= EDGE_SUCC (b
, 1);
7398 struct gimple_opt_pass pass_warn_function_return
=
7402 "*warn_function_return", /* name */
7404 execute_warn_function_return
, /* execute */
7407 0, /* static_pass_number */
7408 TV_NONE
, /* tv_id */
7409 PROP_cfg
, /* properties_required */
7410 0, /* properties_provided */
7411 0, /* properties_destroyed */
7412 0, /* todo_flags_start */
7413 0 /* todo_flags_finish */
7417 /* Emit noreturn warnings. */
7420 execute_warn_function_noreturn (void)
7422 if (!TREE_THIS_VOLATILE (current_function_decl
)
7423 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7424 warn_function_noreturn (current_function_decl
);
7429 gate_warn_function_noreturn (void)
7431 return warn_suggest_attribute_noreturn
;
7434 struct gimple_opt_pass pass_warn_function_noreturn
=
7438 "*warn_function_noreturn", /* name */
7439 gate_warn_function_noreturn
, /* gate */
7440 execute_warn_function_noreturn
, /* execute */
7443 0, /* static_pass_number */
7444 TV_NONE
, /* tv_id */
7445 PROP_cfg
, /* properties_required */
7446 0, /* properties_provided */
7447 0, /* properties_destroyed */
7448 0, /* todo_flags_start */
7449 0 /* todo_flags_finish */
7454 /* Walk a gimplified function and warn for functions whose return value is
7455 ignored and attribute((warn_unused_result)) is set. This is done before
7456 inlining, so we don't have to worry about that. */
7459 do_warn_unused_result (gimple_seq seq
)
7462 gimple_stmt_iterator i
;
7464 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7466 gimple g
= gsi_stmt (i
);
7468 switch (gimple_code (g
))
7471 do_warn_unused_result (gimple_bind_body (g
));
7474 do_warn_unused_result (gimple_try_eval (g
));
7475 do_warn_unused_result (gimple_try_cleanup (g
));
7478 do_warn_unused_result (gimple_catch_handler (g
));
7480 case GIMPLE_EH_FILTER
:
7481 do_warn_unused_result (gimple_eh_filter_failure (g
));
7485 if (gimple_call_lhs (g
))
7488 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7489 LHS. All calls whose value is ignored should be
7490 represented like this. Look for the attribute. */
7491 fdecl
= gimple_call_fndecl (g
);
7492 ftype
= TREE_TYPE (TREE_TYPE (gimple_call_fn (g
)));
7494 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7496 location_t loc
= gimple_location (g
);
7499 warning_at (loc
, OPT_Wunused_result
,
7500 "ignoring return value of %qD, "
7501 "declared with attribute warn_unused_result",
7504 warning_at (loc
, OPT_Wunused_result
,
7505 "ignoring return value of function "
7506 "declared with attribute warn_unused_result");
7511 /* Not a container, not a call, or a call whose value is used. */
7518 run_warn_unused_result (void)
7520 do_warn_unused_result (gimple_body (current_function_decl
));
7525 gate_warn_unused_result (void)
7527 return flag_warn_unused_result
;
7530 struct gimple_opt_pass pass_warn_unused_result
=
7534 "*warn_unused_result", /* name */
7535 gate_warn_unused_result
, /* gate */
7536 run_warn_unused_result
, /* execute */
7539 0, /* static_pass_number */
7540 TV_NONE
, /* tv_id */
7541 PROP_gimple_any
, /* properties_required */
7542 0, /* properties_provided */
7543 0, /* properties_destroyed */
7544 0, /* todo_flags_start */
7545 0, /* todo_flags_finish */