* events.c (hash_param_callback): Read and pass parameter type.
[official-gcc.git] / gcc / tree-into-ssa.c
blob8672a5e6317e7d0c9a54b8c26b41a03810262768
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
53 /* This file builds the SSA form for a function as described in:
54 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55 Computing Static Single Assignment Form and the Control Dependence
56 Graph. ACM Transactions on Programming Languages and Systems,
57 13(4):451-490, October 1991. */
59 /* Structure to map a variable VAR to the set of blocks that contain
60 definitions for VAR. */
61 struct def_blocks_d
63 /* The variable. */
64 tree var;
66 /* Blocks that contain definitions of VAR. Bit I will be set if the
67 Ith block contains a definition of VAR. */
68 bitmap def_blocks;
70 /* Blocks that contain a PHI node for VAR. */
71 bitmap phi_blocks;
73 /* Blocks where VAR is live-on-entry. Similar semantics as
74 DEF_BLOCKS. */
75 bitmap livein_blocks;
79 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
80 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81 basic blocks where VAR is defined (assigned a new value). It also
82 contains a bitmap of all the blocks where VAR is live-on-entry
83 (i.e., there is a use of VAR in block B without a preceding
84 definition in B). The live-on-entry information is used when
85 computing PHI pruning heuristics. */
86 static htab_t def_blocks;
88 /* Stack of trees used to restore the global currdefs to its original
89 state after completing rewriting of a block and its dominator
90 children. Its elements have the following properties:
92 - An SSA_NAME (N) indicates that the current definition of the
93 underlying variable should be set to the given SSA_NAME. If the
94 symbol associated with the SSA_NAME is not a GIMPLE register, the
95 next slot in the stack must be a _DECL node (SYM). In this case,
96 the name N in the previous slot is the current reaching
97 definition for SYM.
99 - A _DECL node indicates that the underlying variable has no
100 current definition.
102 - A NULL node at the top entry is used to mark the last slot
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
115 sbitmap interesting_blocks;
117 /* Set of SSA names that have been marked to be released after they
118 were registered in the replacement table. They will be finally
119 released after we finish updating the SSA web. */
120 static bitmap names_to_release;
122 static VEC(gimple_vec, heap) *phis_to_rewrite;
124 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
125 static bitmap blocks_with_phis_to_rewrite;
127 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
128 to grow as the callers to register_new_name_mapping will typically
129 create new names on the fly. FIXME. Currently set to 1/3 to avoid
130 frequent reallocations but still need to find a reasonable growth
131 strategy. */
132 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
134 /* Tuple used to represent replacement mappings. */
135 struct repl_map_d
137 tree name;
138 bitmap set;
142 /* NEW -> OLD_SET replacement table. If we are replacing several
143 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
144 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
145 static htab_t repl_tbl;
147 /* The function the SSA updating data structures have been initialized for.
148 NULL if they need to be initialized by register_new_name_mapping. */
149 static struct function *update_ssa_initialized_fn = NULL;
151 /* Statistics kept by update_ssa to use in the virtual mapping
152 heuristic. If the number of virtual mappings is beyond certain
153 threshold, the updater will switch from using the mappings into
154 renaming the virtual symbols from scratch. In some cases, the
155 large number of name mappings for virtual names causes significant
156 slowdowns in the PHI insertion code. */
157 struct update_ssa_stats_d
159 unsigned num_virtual_mappings;
160 unsigned num_total_mappings;
161 bitmap virtual_symbols;
162 unsigned num_virtual_symbols;
164 static struct update_ssa_stats_d update_ssa_stats;
166 /* Global data to attach to the main dominator walk structure. */
167 struct mark_def_sites_global_data
169 /* This bitmap contains the variables which are set before they
170 are used in a basic block. */
171 bitmap kills;
175 /* Information stored for SSA names. */
176 struct ssa_name_info
178 /* The current reaching definition replacing this SSA name. */
179 tree current_def;
181 /* This field indicates whether or not the variable may need PHI nodes.
182 See the enum's definition for more detailed information about the
183 states. */
184 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
186 /* Age of this record (so that info_for_ssa_name table can be cleared
187 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
188 are assumed to be null. */
189 unsigned age;
192 /* The information associated with names. */
193 typedef struct ssa_name_info *ssa_name_info_p;
194 DEF_VEC_P (ssa_name_info_p);
195 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
197 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
198 static unsigned current_info_for_ssa_name_age;
200 /* The set of blocks affected by update_ssa. */
201 static bitmap blocks_to_update;
203 /* The main entry point to the SSA renamer (rewrite_blocks) may be
204 called several times to do different, but related, tasks.
205 Initially, we need it to rename the whole program into SSA form.
206 At other times, we may need it to only rename into SSA newly
207 exposed symbols. Finally, we can also call it to incrementally fix
208 an already built SSA web. */
209 enum rewrite_mode {
210 /* Convert the whole function into SSA form. */
211 REWRITE_ALL,
213 /* Incrementally update the SSA web by replacing existing SSA
214 names with new ones. See update_ssa for details. */
215 REWRITE_UPDATE
221 /* Prototypes for debugging functions. */
222 extern void dump_tree_ssa (FILE *);
223 extern void debug_tree_ssa (void);
224 extern void debug_def_blocks (void);
225 extern void dump_tree_ssa_stats (FILE *);
226 extern void debug_tree_ssa_stats (void);
227 extern void dump_update_ssa (FILE *);
228 extern void debug_update_ssa (void);
229 extern void dump_names_replaced_by (FILE *, tree);
230 extern void debug_names_replaced_by (tree);
231 extern void dump_def_blocks (FILE *);
232 extern void debug_def_blocks (void);
233 extern void dump_defs_stack (FILE *, int);
234 extern void debug_defs_stack (int);
235 extern void dump_currdefs (FILE *);
236 extern void debug_currdefs (void);
238 /* Return true if STMT needs to be rewritten. When renaming a subset
239 of the variables, not all statements will be processed. This is
240 decided in mark_def_sites. */
242 static inline bool
243 rewrite_uses_p (gimple stmt)
245 return gimple_visited_p (stmt);
249 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
251 static inline void
252 set_rewrite_uses (gimple stmt, bool rewrite_p)
254 gimple_set_visited (stmt, rewrite_p);
258 /* Return true if the DEFs created by statement STMT should be
259 registered when marking new definition sites. This is slightly
260 different than rewrite_uses_p: it's used by update_ssa to
261 distinguish statements that need to have both uses and defs
262 processed from those that only need to have their defs processed.
263 Statements that define new SSA names only need to have their defs
264 registered, but they don't need to have their uses renamed. */
266 static inline bool
267 register_defs_p (gimple stmt)
269 return gimple_plf (stmt, GF_PLF_1) != 0;
273 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
275 static inline void
276 set_register_defs (gimple stmt, bool register_defs_p)
278 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
282 /* Get the information associated with NAME. */
284 static inline ssa_name_info_p
285 get_ssa_name_ann (tree name)
287 unsigned ver = SSA_NAME_VERSION (name);
288 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
289 struct ssa_name_info *info;
291 if (ver >= len)
293 unsigned new_len = num_ssa_names;
295 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
296 while (len++ < new_len)
298 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
299 info->age = current_info_for_ssa_name_age;
300 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
304 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
305 if (info->age < current_info_for_ssa_name_age)
307 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
308 info->current_def = NULL_TREE;
309 info->age = current_info_for_ssa_name_age;
312 return info;
316 /* Clears info for SSA names. */
318 static void
319 clear_ssa_name_info (void)
321 current_info_for_ssa_name_age++;
325 /* Get phi_state field for VAR. */
327 static inline enum need_phi_state
328 get_phi_state (tree var)
330 if (TREE_CODE (var) == SSA_NAME)
331 return get_ssa_name_ann (var)->need_phi_state;
332 else
333 return var_ann (var)->need_phi_state;
337 /* Sets phi_state field for VAR to STATE. */
339 static inline void
340 set_phi_state (tree var, enum need_phi_state state)
342 if (TREE_CODE (var) == SSA_NAME)
343 get_ssa_name_ann (var)->need_phi_state = state;
344 else
345 var_ann (var)->need_phi_state = state;
349 /* Return the current definition for VAR. */
351 tree
352 get_current_def (tree var)
354 if (TREE_CODE (var) == SSA_NAME)
355 return get_ssa_name_ann (var)->current_def;
356 else
357 return var_ann (var)->current_def;
361 /* Sets current definition of VAR to DEF. */
363 void
364 set_current_def (tree var, tree def)
366 if (TREE_CODE (var) == SSA_NAME)
367 get_ssa_name_ann (var)->current_def = def;
368 else
369 var_ann (var)->current_def = def;
373 /* Compute global livein information given the set of blocks where
374 an object is locally live at the start of the block (LIVEIN)
375 and the set of blocks where the object is defined (DEF_BLOCKS).
377 Note: This routine augments the existing local livein information
378 to include global livein (i.e., it modifies the underlying bitmap
379 for LIVEIN). */
381 void
382 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
384 basic_block bb, *worklist, *tos;
385 unsigned i;
386 bitmap_iterator bi;
388 tos = worklist
389 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
391 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
392 *tos++ = BASIC_BLOCK (i);
394 /* Iterate until the worklist is empty. */
395 while (tos != worklist)
397 edge e;
398 edge_iterator ei;
400 /* Pull a block off the worklist. */
401 bb = *--tos;
403 /* For each predecessor block. */
404 FOR_EACH_EDGE (e, ei, bb->preds)
406 basic_block pred = e->src;
407 int pred_index = pred->index;
409 /* None of this is necessary for the entry block. */
410 if (pred != ENTRY_BLOCK_PTR
411 && ! bitmap_bit_p (livein, pred_index)
412 && ! bitmap_bit_p (def_blocks, pred_index))
414 *tos++ = pred;
415 bitmap_set_bit (livein, pred_index);
420 free (worklist);
424 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
425 all statements in basic block BB. */
427 static void
428 initialize_flags_in_bb (basic_block bb)
430 gimple stmt;
431 gimple_stmt_iterator gsi;
433 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
435 gimple phi = gsi_stmt (gsi);
436 set_rewrite_uses (phi, false);
437 set_register_defs (phi, false);
440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 stmt = gsi_stmt (gsi);
444 /* We are going to use the operand cache API, such as
445 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
446 cache for each statement should be up-to-date. */
447 gcc_assert (!gimple_modified_p (stmt));
448 set_rewrite_uses (stmt, false);
449 set_register_defs (stmt, false);
453 /* Mark block BB as interesting for update_ssa. */
455 static void
456 mark_block_for_update (basic_block bb)
458 gcc_assert (blocks_to_update != NULL);
459 if (bitmap_bit_p (blocks_to_update, bb->index))
460 return;
461 bitmap_set_bit (blocks_to_update, bb->index);
462 initialize_flags_in_bb (bb);
465 /* Return the set of blocks where variable VAR is defined and the blocks
466 where VAR is live on entry (livein). If no entry is found in
467 DEF_BLOCKS, a new one is created and returned. */
469 static inline struct def_blocks_d *
470 get_def_blocks_for (tree var)
472 struct def_blocks_d db, *db_p;
473 void **slot;
475 db.var = var;
476 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
477 if (*slot == NULL)
479 db_p = XNEW (struct def_blocks_d);
480 db_p->var = var;
481 db_p->def_blocks = BITMAP_ALLOC (NULL);
482 db_p->phi_blocks = BITMAP_ALLOC (NULL);
483 db_p->livein_blocks = BITMAP_ALLOC (NULL);
484 *slot = (void *) db_p;
486 else
487 db_p = (struct def_blocks_d *) *slot;
489 return db_p;
493 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
494 VAR is defined by a PHI node. */
496 static void
497 set_def_block (tree var, basic_block bb, bool phi_p)
499 struct def_blocks_d *db_p;
500 enum need_phi_state state;
502 state = get_phi_state (var);
503 db_p = get_def_blocks_for (var);
505 /* Set the bit corresponding to the block where VAR is defined. */
506 bitmap_set_bit (db_p->def_blocks, bb->index);
507 if (phi_p)
508 bitmap_set_bit (db_p->phi_blocks, bb->index);
510 /* Keep track of whether or not we may need to insert PHI nodes.
512 If we are in the UNKNOWN state, then this is the first definition
513 of VAR. Additionally, we have not seen any uses of VAR yet, so
514 we do not need a PHI node for this variable at this time (i.e.,
515 transition to NEED_PHI_STATE_NO).
517 If we are in any other state, then we either have multiple definitions
518 of this variable occurring in different blocks or we saw a use of the
519 variable which was not dominated by the block containing the
520 definition(s). In this case we may need a PHI node, so enter
521 state NEED_PHI_STATE_MAYBE. */
522 if (state == NEED_PHI_STATE_UNKNOWN)
523 set_phi_state (var, NEED_PHI_STATE_NO);
524 else
525 set_phi_state (var, NEED_PHI_STATE_MAYBE);
529 /* Mark block BB as having VAR live at the entry to BB. */
531 static void
532 set_livein_block (tree var, basic_block bb)
534 struct def_blocks_d *db_p;
535 enum need_phi_state state = get_phi_state (var);
537 db_p = get_def_blocks_for (var);
539 /* Set the bit corresponding to the block where VAR is live in. */
540 bitmap_set_bit (db_p->livein_blocks, bb->index);
542 /* Keep track of whether or not we may need to insert PHI nodes.
544 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
545 by the single block containing the definition(s) of this variable. If
546 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
547 NEED_PHI_STATE_MAYBE. */
548 if (state == NEED_PHI_STATE_NO)
550 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
552 if (def_block_index == -1
553 || ! dominated_by_p (CDI_DOMINATORS, bb,
554 BASIC_BLOCK (def_block_index)))
555 set_phi_state (var, NEED_PHI_STATE_MAYBE);
557 else
558 set_phi_state (var, NEED_PHI_STATE_MAYBE);
562 /* Return true if symbol SYM is marked for renaming. */
564 static inline bool
565 symbol_marked_for_renaming (tree sym)
567 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
571 /* Return true if NAME is in OLD_SSA_NAMES. */
573 static inline bool
574 is_old_name (tree name)
576 unsigned ver = SSA_NAME_VERSION (name);
577 if (!new_ssa_names)
578 return false;
579 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
583 /* Return true if NAME is in NEW_SSA_NAMES. */
585 static inline bool
586 is_new_name (tree name)
588 unsigned ver = SSA_NAME_VERSION (name);
589 if (!new_ssa_names)
590 return false;
591 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
595 /* Hashing and equality functions for REPL_TBL. */
597 static hashval_t
598 repl_map_hash (const void *p)
600 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
603 static int
604 repl_map_eq (const void *p1, const void *p2)
606 return ((const struct repl_map_d *)p1)->name
607 == ((const struct repl_map_d *)p2)->name;
610 static void
611 repl_map_free (void *p)
613 BITMAP_FREE (((struct repl_map_d *)p)->set);
614 free (p);
618 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
620 static inline bitmap
621 names_replaced_by (tree new_tree)
623 struct repl_map_d m;
624 void **slot;
626 m.name = new_tree;
627 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
629 /* If N was not registered in the replacement table, return NULL. */
630 if (slot == NULL || *slot == NULL)
631 return NULL;
633 return ((struct repl_map_d *) *slot)->set;
637 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
639 static inline void
640 add_to_repl_tbl (tree new_tree, tree old)
642 struct repl_map_d m, *mp;
643 void **slot;
645 m.name = new_tree;
646 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
647 if (*slot == NULL)
649 mp = XNEW (struct repl_map_d);
650 mp->name = new_tree;
651 mp->set = BITMAP_ALLOC (NULL);
652 *slot = (void *) mp;
654 else
655 mp = (struct repl_map_d *) *slot;
657 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
661 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
662 represents the set of names O_1 ... O_j replaced by N_i. This is
663 used by update_ssa and its helpers to introduce new SSA names in an
664 already formed SSA web. */
666 static void
667 add_new_name_mapping (tree new_tree, tree old)
669 timevar_push (TV_TREE_SSA_INCREMENTAL);
671 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
672 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
674 /* If this mapping is for virtual names, we will need to update
675 virtual operands. If this is a mapping for .MEM, then we gather
676 the symbols associated with each name. */
677 if (!is_gimple_reg (new_tree))
679 tree sym;
681 update_ssa_stats.num_virtual_mappings++;
682 update_ssa_stats.num_virtual_symbols++;
684 /* Keep counts of virtual mappings and symbols to use in the
685 virtual mapping heuristic. If we have large numbers of
686 virtual mappings for a relatively low number of symbols, it
687 will make more sense to rename the symbols from scratch.
688 Otherwise, the insertion of PHI nodes for each of the old
689 names in these mappings will be very slow. */
690 sym = SSA_NAME_VAR (new_tree);
691 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
694 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
695 caller may have created new names since the set was created. */
696 if (new_ssa_names->n_bits <= num_ssa_names - 1)
698 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
699 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
700 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
703 /* Update the REPL_TBL table. */
704 add_to_repl_tbl (new_tree, old);
706 /* If OLD had already been registered as a new name, then all the
707 names that OLD replaces should also be replaced by NEW_TREE. */
708 if (is_new_name (old))
709 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
711 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
712 respectively. */
713 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
714 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
716 /* Update mapping counter to use in the virtual mapping heuristic. */
717 update_ssa_stats.num_total_mappings++;
719 timevar_pop (TV_TREE_SSA_INCREMENTAL);
723 /* Call back for walk_dominator_tree used to collect definition sites
724 for every variable in the function. For every statement S in block
727 1- Variables defined by S in the DEFS of S are marked in the bitmap
728 KILLS.
730 2- If S uses a variable VAR and there is no preceding kill of VAR,
731 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
733 This information is used to determine which variables are live
734 across block boundaries to reduce the number of PHI nodes
735 we create. */
737 static void
738 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
740 tree def;
741 use_operand_p use_p;
742 ssa_op_iter iter;
744 /* Since this is the first time that we rewrite the program into SSA
745 form, force an operand scan on every statement. */
746 update_stmt (stmt);
748 gcc_assert (blocks_to_update == NULL);
749 set_register_defs (stmt, false);
750 set_rewrite_uses (stmt, false);
752 if (is_gimple_debug (stmt))
753 return;
755 /* If a variable is used before being set, then the variable is live
756 across a block boundary, so mark it live-on-entry to BB. */
757 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
759 tree sym = USE_FROM_PTR (use_p);
760 gcc_assert (DECL_P (sym));
761 if (!bitmap_bit_p (kills, DECL_UID (sym)))
762 set_livein_block (sym, bb);
763 set_rewrite_uses (stmt, true);
766 /* Now process the defs. Mark BB as the definition block and add
767 each def to the set of killed symbols. */
768 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
770 gcc_assert (DECL_P (def));
771 set_def_block (def, bb, false);
772 bitmap_set_bit (kills, DECL_UID (def));
773 set_register_defs (stmt, true);
776 /* If we found the statement interesting then also mark the block BB
777 as interesting. */
778 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
779 SET_BIT (interesting_blocks, bb->index);
782 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
783 in the dfs numbering of the dominance tree. */
785 struct dom_dfsnum
787 /* Basic block whose index this entry corresponds to. */
788 unsigned bb_index;
790 /* The dfs number of this node. */
791 unsigned dfs_num;
794 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
795 for qsort. */
797 static int
798 cmp_dfsnum (const void *a, const void *b)
800 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
801 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
803 return (int) da->dfs_num - (int) db->dfs_num;
806 /* Among the intervals starting at the N points specified in DEFS, find
807 the one that contains S, and return its bb_index. */
809 static unsigned
810 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
812 unsigned f = 0, t = n, m;
814 while (t > f + 1)
816 m = (f + t) / 2;
817 if (defs[m].dfs_num <= s)
818 f = m;
819 else
820 t = m;
823 return defs[f].bb_index;
826 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
827 KILLS is a bitmap of blocks where the value is defined before any use. */
829 static void
830 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
832 VEC(int, heap) *worklist;
833 bitmap_iterator bi;
834 unsigned i, b, p, u, top;
835 bitmap live_phis;
836 basic_block def_bb, use_bb;
837 edge e;
838 edge_iterator ei;
839 bitmap to_remove;
840 struct dom_dfsnum *defs;
841 unsigned n_defs, adef;
843 if (bitmap_empty_p (uses))
845 bitmap_clear (phis);
846 return;
849 /* The phi must dominate a use, or an argument of a live phi. Also, we
850 do not create any phi nodes in def blocks, unless they are also livein. */
851 to_remove = BITMAP_ALLOC (NULL);
852 bitmap_and_compl (to_remove, kills, uses);
853 bitmap_and_compl_into (phis, to_remove);
854 if (bitmap_empty_p (phis))
856 BITMAP_FREE (to_remove);
857 return;
860 /* We want to remove the unnecessary phi nodes, but we do not want to compute
861 liveness information, as that may be linear in the size of CFG, and if
862 there are lot of different variables to rewrite, this may lead to quadratic
863 behavior.
865 Instead, we basically emulate standard dce. We put all uses to worklist,
866 then for each of them find the nearest def that dominates them. If this
867 def is a phi node, we mark it live, and if it was not live before, we
868 add the predecessors of its basic block to the worklist.
870 To quickly locate the nearest def that dominates use, we use dfs numbering
871 of the dominance tree (that is already available in order to speed up
872 queries). For each def, we have the interval given by the dfs number on
873 entry to and on exit from the corresponding subtree in the dominance tree.
874 The nearest dominator for a given use is the smallest of these intervals
875 that contains entry and exit dfs numbers for the basic block with the use.
876 If we store the bounds for all the uses to an array and sort it, we can
877 locate the nearest dominating def in logarithmic time by binary search.*/
878 bitmap_ior (to_remove, kills, phis);
879 n_defs = bitmap_count_bits (to_remove);
880 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
881 defs[0].bb_index = 1;
882 defs[0].dfs_num = 0;
883 adef = 1;
884 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
886 def_bb = BASIC_BLOCK (i);
887 defs[adef].bb_index = i;
888 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
889 defs[adef + 1].bb_index = i;
890 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
891 adef += 2;
893 BITMAP_FREE (to_remove);
894 gcc_assert (adef == 2 * n_defs + 1);
895 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
896 gcc_assert (defs[0].bb_index == 1);
898 /* Now each DEFS entry contains the number of the basic block to that the
899 dfs number corresponds. Change them to the number of basic block that
900 corresponds to the interval following the dfs number. Also, for the
901 dfs_out numbers, increase the dfs number by one (so that it corresponds
902 to the start of the following interval, not to the end of the current
903 one). We use WORKLIST as a stack. */
904 worklist = VEC_alloc (int, heap, n_defs + 1);
905 VEC_quick_push (int, worklist, 1);
906 top = 1;
907 n_defs = 1;
908 for (i = 1; i < adef; i++)
910 b = defs[i].bb_index;
911 if (b == top)
913 /* This is a closing element. Interval corresponding to the top
914 of the stack after removing it follows. */
915 VEC_pop (int, worklist);
916 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
917 defs[n_defs].bb_index = top;
918 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
920 else
922 /* Opening element. Nothing to do, just push it to the stack and move
923 it to the correct position. */
924 defs[n_defs].bb_index = defs[i].bb_index;
925 defs[n_defs].dfs_num = defs[i].dfs_num;
926 VEC_quick_push (int, worklist, b);
927 top = b;
930 /* If this interval starts at the same point as the previous one, cancel
931 the previous one. */
932 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
933 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
934 else
935 n_defs++;
937 VEC_pop (int, worklist);
938 gcc_assert (VEC_empty (int, worklist));
940 /* Now process the uses. */
941 live_phis = BITMAP_ALLOC (NULL);
942 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
944 VEC_safe_push (int, heap, worklist, i);
947 while (!VEC_empty (int, worklist))
949 b = VEC_pop (int, worklist);
950 if (b == ENTRY_BLOCK)
951 continue;
953 /* If there is a phi node in USE_BB, it is made live. Otherwise,
954 find the def that dominates the immediate dominator of USE_BB
955 (the kill in USE_BB does not dominate the use). */
956 if (bitmap_bit_p (phis, b))
957 p = b;
958 else
960 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
961 p = find_dfsnum_interval (defs, n_defs,
962 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
963 if (!bitmap_bit_p (phis, p))
964 continue;
967 /* If the phi node is already live, there is nothing to do. */
968 if (bitmap_bit_p (live_phis, p))
969 continue;
971 /* Mark the phi as live, and add the new uses to the worklist. */
972 bitmap_set_bit (live_phis, p);
973 def_bb = BASIC_BLOCK (p);
974 FOR_EACH_EDGE (e, ei, def_bb->preds)
976 u = e->src->index;
977 if (bitmap_bit_p (uses, u))
978 continue;
980 /* In case there is a kill directly in the use block, do not record
981 the use (this is also necessary for correctness, as we assume that
982 uses dominated by a def directly in their block have been filtered
983 out before). */
984 if (bitmap_bit_p (kills, u))
985 continue;
987 bitmap_set_bit (uses, u);
988 VEC_safe_push (int, heap, worklist, u);
992 VEC_free (int, heap, worklist);
993 bitmap_copy (phis, live_phis);
994 BITMAP_FREE (live_phis);
995 free (defs);
998 /* Return the set of blocks where variable VAR is defined and the blocks
999 where VAR is live on entry (livein). Return NULL, if no entry is
1000 found in DEF_BLOCKS. */
1002 static inline struct def_blocks_d *
1003 find_def_blocks_for (tree var)
1005 struct def_blocks_d dm;
1006 dm.var = var;
1007 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1011 /* Retrieve or create a default definition for symbol SYM. */
1013 static inline tree
1014 get_default_def_for (tree sym)
1016 tree ddef = gimple_default_def (cfun, sym);
1018 if (ddef == NULL_TREE)
1020 ddef = make_ssa_name (sym, gimple_build_nop ());
1021 set_default_def (sym, ddef);
1024 return ddef;
1028 /* Marks phi node PHI in basic block BB for rewrite. */
1030 static void
1031 mark_phi_for_rewrite (basic_block bb, gimple phi)
1033 gimple_vec phis;
1034 unsigned i, idx = bb->index;
1036 if (rewrite_uses_p (phi))
1037 return;
1039 set_rewrite_uses (phi, true);
1041 if (!blocks_with_phis_to_rewrite)
1042 return;
1044 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1045 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1046 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1047 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1049 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1050 if (!phis)
1051 phis = VEC_alloc (gimple, heap, 10);
1053 VEC_safe_push (gimple, heap, phis, phi);
1054 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1057 /* Insert PHI nodes for variable VAR using the iterated dominance
1058 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1059 function assumes that the caller is incrementally updating the
1060 existing SSA form, in which case VAR may be an SSA name instead of
1061 a symbol.
1063 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1064 PHI node for VAR. On exit, only the nodes that received a PHI node
1065 for VAR will be present in PHI_INSERTION_POINTS. */
1067 static void
1068 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1070 unsigned bb_index;
1071 edge e;
1072 gimple phi;
1073 basic_block bb;
1074 bitmap_iterator bi;
1075 struct def_blocks_d *def_map;
1077 def_map = find_def_blocks_for (var);
1078 gcc_assert (def_map);
1080 /* Remove the blocks where we already have PHI nodes for VAR. */
1081 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1083 /* Remove obviously useless phi nodes. */
1084 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1085 def_map->livein_blocks);
1087 /* And insert the PHI nodes. */
1088 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1090 bb = BASIC_BLOCK (bb_index);
1091 if (update_p)
1092 mark_block_for_update (bb);
1094 phi = NULL;
1096 if (TREE_CODE (var) == SSA_NAME)
1098 /* If we are rewriting SSA names, create the LHS of the PHI
1099 node by duplicating VAR. This is useful in the case of
1100 pointers, to also duplicate pointer attributes (alias
1101 information, in particular). */
1102 edge_iterator ei;
1103 tree new_lhs;
1105 gcc_assert (update_p);
1106 phi = create_phi_node (var, bb);
1108 new_lhs = duplicate_ssa_name (var, phi);
1109 gimple_phi_set_result (phi, new_lhs);
1110 add_new_name_mapping (new_lhs, var);
1112 /* Add VAR to every argument slot of PHI. We need VAR in
1113 every argument so that rewrite_update_phi_arguments knows
1114 which name is this PHI node replacing. If VAR is a
1115 symbol marked for renaming, this is not necessary, the
1116 renamer will use the symbol on the LHS to get its
1117 reaching definition. */
1118 FOR_EACH_EDGE (e, ei, bb->preds)
1119 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1121 else
1123 tree tracked_var;
1125 gcc_assert (DECL_P (var));
1126 phi = create_phi_node (var, bb);
1128 tracked_var = target_for_debug_bind (var);
1129 if (tracked_var)
1131 gimple note = gimple_build_debug_bind (tracked_var,
1132 PHI_RESULT (phi),
1133 phi);
1134 gimple_stmt_iterator si = gsi_after_labels (bb);
1135 gsi_insert_before (&si, note, GSI_SAME_STMT);
1139 /* Mark this PHI node as interesting for update_ssa. */
1140 set_register_defs (phi, true);
1141 mark_phi_for_rewrite (bb, phi);
1146 /* Insert PHI nodes at the dominance frontier of blocks with variable
1147 definitions. DFS contains the dominance frontier information for
1148 the flowgraph. */
1150 static void
1151 insert_phi_nodes (bitmap *dfs)
1153 referenced_var_iterator rvi;
1154 tree var;
1156 timevar_push (TV_TREE_INSERT_PHI_NODES);
1158 FOR_EACH_REFERENCED_VAR (var, rvi)
1160 struct def_blocks_d *def_map;
1161 bitmap idf;
1163 def_map = find_def_blocks_for (var);
1164 if (def_map == NULL)
1165 continue;
1167 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1169 idf = compute_idf (def_map->def_blocks, dfs);
1170 insert_phi_nodes_for (var, idf, false);
1171 BITMAP_FREE (idf);
1175 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1179 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1180 register DEF (an SSA_NAME) to be a new definition for SYM. */
1182 static void
1183 register_new_def (tree def, tree sym)
1185 tree currdef;
1187 /* If this variable is set in a single basic block and all uses are
1188 dominated by the set(s) in that single basic block, then there is
1189 no reason to record anything for this variable in the block local
1190 definition stacks. Doing so just wastes time and memory.
1192 This is the same test to prune the set of variables which may
1193 need PHI nodes. So we just use that information since it's already
1194 computed and available for us to use. */
1195 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1197 set_current_def (sym, def);
1198 return;
1201 currdef = get_current_def (sym);
1203 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1204 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1205 in the stack so that we know which symbol is being defined by
1206 this SSA name when we unwind the stack. */
1207 if (currdef && !is_gimple_reg (sym))
1208 VEC_safe_push (tree, heap, block_defs_stack, sym);
1210 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1211 stack is later used by the dominator tree callbacks to restore
1212 the reaching definitions for all the variables defined in the
1213 block after a recursive visit to all its immediately dominated
1214 blocks. If there is no current reaching definition, then just
1215 record the underlying _DECL node. */
1216 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1218 /* Set the current reaching definition for SYM to be DEF. */
1219 set_current_def (sym, def);
1223 /* Perform a depth-first traversal of the dominator tree looking for
1224 variables to rename. BB is the block where to start searching.
1225 Renaming is a five step process:
1227 1- Every definition made by PHI nodes at the start of the blocks is
1228 registered as the current definition for the corresponding variable.
1230 2- Every statement in BB is rewritten. USE and VUSE operands are
1231 rewritten with their corresponding reaching definition. DEF and
1232 VDEF targets are registered as new definitions.
1234 3- All the PHI nodes in successor blocks of BB are visited. The
1235 argument corresponding to BB is replaced with its current reaching
1236 definition.
1238 4- Recursively rewrite every dominator child block of BB.
1240 5- Restore (in reverse order) the current reaching definition for every
1241 new definition introduced in this block. This is done so that when
1242 we return from the recursive call, all the current reaching
1243 definitions are restored to the names that were valid in the
1244 dominator parent of BB. */
1246 /* Return the current definition for variable VAR. If none is found,
1247 create a new SSA name to act as the zeroth definition for VAR. */
1249 static tree
1250 get_reaching_def (tree var)
1252 tree currdef;
1254 /* Lookup the current reaching definition for VAR. */
1255 currdef = get_current_def (var);
1257 /* If there is no reaching definition for VAR, create and register a
1258 default definition for it (if needed). */
1259 if (currdef == NULL_TREE)
1261 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1262 currdef = get_default_def_for (sym);
1263 set_current_def (var, currdef);
1266 /* Return the current reaching definition for VAR, or the default
1267 definition, if we had to create one. */
1268 return currdef;
1272 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1273 the block with its immediate reaching definitions. Update the current
1274 definition of a variable when a new real or virtual definition is found. */
1276 static void
1277 rewrite_stmt (gimple_stmt_iterator si)
1279 use_operand_p use_p;
1280 def_operand_p def_p;
1281 ssa_op_iter iter;
1282 gimple stmt = gsi_stmt (si);
1284 /* If mark_def_sites decided that we don't need to rewrite this
1285 statement, ignore it. */
1286 gcc_assert (blocks_to_update == NULL);
1287 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1288 return;
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1292 fprintf (dump_file, "Renaming statement ");
1293 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1294 fprintf (dump_file, "\n");
1297 /* Step 1. Rewrite USES in the statement. */
1298 if (rewrite_uses_p (stmt))
1299 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1301 tree var = USE_FROM_PTR (use_p);
1302 gcc_assert (DECL_P (var));
1303 SET_USE (use_p, get_reaching_def (var));
1306 /* Step 2. Register the statement's DEF operands. */
1307 if (register_defs_p (stmt))
1308 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1310 tree var = DEF_FROM_PTR (def_p);
1311 tree name = make_ssa_name (var, stmt);
1312 tree tracked_var;
1313 gcc_assert (DECL_P (var));
1314 SET_DEF (def_p, name);
1315 register_new_def (DEF_FROM_PTR (def_p), var);
1317 tracked_var = target_for_debug_bind (var);
1318 if (tracked_var)
1320 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1321 gsi_insert_after (&si, note, GSI_SAME_STMT);
1327 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1328 PHI nodes. For every PHI node found, add a new argument containing the
1329 current reaching definition for the variable and the edge through which
1330 that definition is reaching the PHI node. */
1332 static void
1333 rewrite_add_phi_arguments (basic_block bb)
1335 edge e;
1336 edge_iterator ei;
1338 FOR_EACH_EDGE (e, ei, bb->succs)
1340 gimple phi;
1341 gimple_stmt_iterator gsi;
1343 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1344 gsi_next (&gsi))
1346 tree currdef;
1347 gimple stmt;
1349 phi = gsi_stmt (gsi);
1350 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1351 stmt = SSA_NAME_DEF_STMT (currdef);
1352 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1357 /* SSA Rewriting Step 1. Initialization, create a block local stack
1358 of reaching definitions for new SSA names produced in this block
1359 (BLOCK_DEFS). Register new definitions for every PHI node in the
1360 block. */
1362 static void
1363 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1364 basic_block bb)
1366 gimple phi;
1367 gimple_stmt_iterator gsi;
1369 if (dump_file && (dump_flags & TDF_DETAILS))
1370 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1372 /* Mark the unwind point for this block. */
1373 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1375 /* Step 1. Register new definitions for every PHI node in the block.
1376 Conceptually, all the PHI nodes are executed in parallel and each PHI
1377 node introduces a new version for the associated variable. */
1378 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1380 tree result;
1382 phi = gsi_stmt (gsi);
1383 result = gimple_phi_result (phi);
1384 gcc_assert (is_gimple_reg (result));
1385 register_new_def (result, SSA_NAME_VAR (result));
1388 /* Step 2. Rewrite every variable used in each statement in the block
1389 with its immediate reaching definitions. Update the current definition
1390 of a variable when a new real or virtual definition is found. */
1391 if (TEST_BIT (interesting_blocks, bb->index))
1392 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1393 rewrite_stmt (gsi);
1395 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1396 For every PHI node found, add a new argument containing the current
1397 reaching definition for the variable and the edge through which that
1398 definition is reaching the PHI node. */
1399 rewrite_add_phi_arguments (bb);
1404 /* Called after visiting all the statements in basic block BB and all
1405 of its dominator children. Restore CURRDEFS to its original value. */
1407 static void
1408 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1409 basic_block bb ATTRIBUTE_UNUSED)
1411 /* Restore CURRDEFS to its original state. */
1412 while (VEC_length (tree, block_defs_stack) > 0)
1414 tree tmp = VEC_pop (tree, block_defs_stack);
1415 tree saved_def, var;
1417 if (tmp == NULL_TREE)
1418 break;
1420 if (TREE_CODE (tmp) == SSA_NAME)
1422 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1423 current definition of its underlying variable. Note that
1424 if the SSA_NAME is not for a GIMPLE register, the symbol
1425 being defined is stored in the next slot in the stack.
1426 This mechanism is needed because an SSA name for a
1427 non-register symbol may be the definition for more than
1428 one symbol (e.g., SFTs, aliased variables, etc). */
1429 saved_def = tmp;
1430 var = SSA_NAME_VAR (saved_def);
1431 if (!is_gimple_reg (var))
1432 var = VEC_pop (tree, block_defs_stack);
1434 else
1436 /* If we recorded anything else, it must have been a _DECL
1437 node and its current reaching definition must have been
1438 NULL. */
1439 saved_def = NULL;
1440 var = tmp;
1443 set_current_def (var, saved_def);
1448 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1450 void
1451 dump_decl_set (FILE *file, bitmap set)
1453 if (set)
1455 bitmap_iterator bi;
1456 unsigned i;
1458 fprintf (file, "{ ");
1460 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1462 print_generic_expr (file, referenced_var (i), 0);
1463 fprintf (file, " ");
1466 fprintf (file, "}");
1468 else
1469 fprintf (file, "NIL");
1473 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1475 void
1476 debug_decl_set (bitmap set)
1478 dump_decl_set (stderr, set);
1479 fprintf (stderr, "\n");
1483 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1484 stack up to a maximum of N levels. If N is -1, the whole stack is
1485 dumped. New levels are created when the dominator tree traversal
1486 used for renaming enters a new sub-tree. */
1488 void
1489 dump_defs_stack (FILE *file, int n)
1491 int i, j;
1493 fprintf (file, "\n\nRenaming stack");
1494 if (n > 0)
1495 fprintf (file, " (up to %d levels)", n);
1496 fprintf (file, "\n\n");
1498 i = 1;
1499 fprintf (file, "Level %d (current level)\n", i);
1500 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1502 tree name, var;
1504 name = VEC_index (tree, block_defs_stack, j);
1505 if (name == NULL_TREE)
1507 i++;
1508 if (n > 0 && i > n)
1509 break;
1510 fprintf (file, "\nLevel %d\n", i);
1511 continue;
1514 if (DECL_P (name))
1516 var = name;
1517 name = NULL_TREE;
1519 else
1521 var = SSA_NAME_VAR (name);
1522 if (!is_gimple_reg (var))
1524 j--;
1525 var = VEC_index (tree, block_defs_stack, j);
1529 fprintf (file, " Previous CURRDEF (");
1530 print_generic_expr (file, var, 0);
1531 fprintf (file, ") = ");
1532 if (name)
1533 print_generic_expr (file, name, 0);
1534 else
1535 fprintf (file, "<NIL>");
1536 fprintf (file, "\n");
1541 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1542 stack up to a maximum of N levels. If N is -1, the whole stack is
1543 dumped. New levels are created when the dominator tree traversal
1544 used for renaming enters a new sub-tree. */
1546 void
1547 debug_defs_stack (int n)
1549 dump_defs_stack (stderr, n);
1553 /* Dump the current reaching definition of every symbol to FILE. */
1555 void
1556 dump_currdefs (FILE *file)
1558 referenced_var_iterator i;
1559 tree var;
1561 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1562 FOR_EACH_REFERENCED_VAR (var, i)
1563 if (SYMS_TO_RENAME (cfun) == NULL
1564 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1566 fprintf (file, "CURRDEF (");
1567 print_generic_expr (file, var, 0);
1568 fprintf (file, ") = ");
1569 if (get_current_def (var))
1570 print_generic_expr (file, get_current_def (var), 0);
1571 else
1572 fprintf (file, "<NIL>");
1573 fprintf (file, "\n");
1578 /* Dump the current reaching definition of every symbol to stderr. */
1580 void
1581 debug_currdefs (void)
1583 dump_currdefs (stderr);
1587 /* Dump SSA information to FILE. */
1589 void
1590 dump_tree_ssa (FILE *file)
1592 const char *funcname
1593 = lang_hooks.decl_printable_name (current_function_decl, 2);
1595 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1597 dump_def_blocks (file);
1598 dump_defs_stack (file, -1);
1599 dump_currdefs (file);
1600 dump_tree_ssa_stats (file);
1604 /* Dump SSA information to stderr. */
1606 void
1607 debug_tree_ssa (void)
1609 dump_tree_ssa (stderr);
1613 /* Dump statistics for the hash table HTAB. */
1615 static void
1616 htab_statistics (FILE *file, htab_t htab)
1618 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1619 (long) htab_size (htab),
1620 (long) htab_elements (htab),
1621 htab_collisions (htab));
1625 /* Dump SSA statistics on FILE. */
1627 void
1628 dump_tree_ssa_stats (FILE *file)
1630 if (def_blocks || repl_tbl)
1631 fprintf (file, "\nHash table statistics:\n");
1633 if (def_blocks)
1635 fprintf (file, " def_blocks: ");
1636 htab_statistics (file, def_blocks);
1639 if (repl_tbl)
1641 fprintf (file, " repl_tbl: ");
1642 htab_statistics (file, repl_tbl);
1645 if (def_blocks || repl_tbl)
1646 fprintf (file, "\n");
1650 /* Dump SSA statistics on stderr. */
1652 void
1653 debug_tree_ssa_stats (void)
1655 dump_tree_ssa_stats (stderr);
1659 /* Hashing and equality functions for DEF_BLOCKS. */
1661 static hashval_t
1662 def_blocks_hash (const void *p)
1664 return htab_hash_pointer
1665 ((const void *)((const struct def_blocks_d *)p)->var);
1668 static int
1669 def_blocks_eq (const void *p1, const void *p2)
1671 return ((const struct def_blocks_d *)p1)->var
1672 == ((const struct def_blocks_d *)p2)->var;
1676 /* Free memory allocated by one entry in DEF_BLOCKS. */
1678 static void
1679 def_blocks_free (void *p)
1681 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1682 BITMAP_FREE (entry->def_blocks);
1683 BITMAP_FREE (entry->phi_blocks);
1684 BITMAP_FREE (entry->livein_blocks);
1685 free (entry);
1689 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1691 static int
1692 debug_def_blocks_r (void **slot, void *data)
1694 FILE *file = (FILE *) data;
1695 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1697 fprintf (file, "VAR: ");
1698 print_generic_expr (file, db_p->var, dump_flags);
1699 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1700 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1701 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1703 return 1;
1707 /* Dump the DEF_BLOCKS hash table on FILE. */
1709 void
1710 dump_def_blocks (FILE *file)
1712 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1713 if (def_blocks)
1714 htab_traverse (def_blocks, debug_def_blocks_r, file);
1718 /* Dump the DEF_BLOCKS hash table on stderr. */
1720 void
1721 debug_def_blocks (void)
1723 dump_def_blocks (stderr);
1727 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1729 static inline void
1730 register_new_update_single (tree new_name, tree old_name)
1732 tree currdef = get_current_def (old_name);
1734 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1735 This stack is later used by the dominator tree callbacks to
1736 restore the reaching definitions for all the variables
1737 defined in the block after a recursive visit to all its
1738 immediately dominated blocks. */
1739 VEC_reserve (tree, heap, block_defs_stack, 2);
1740 VEC_quick_push (tree, block_defs_stack, currdef);
1741 VEC_quick_push (tree, block_defs_stack, old_name);
1743 /* Set the current reaching definition for OLD_NAME to be
1744 NEW_NAME. */
1745 set_current_def (old_name, new_name);
1749 /* Register NEW_NAME to be the new reaching definition for all the
1750 names in OLD_NAMES. Used by the incremental SSA update routines to
1751 replace old SSA names with new ones. */
1753 static inline void
1754 register_new_update_set (tree new_name, bitmap old_names)
1756 bitmap_iterator bi;
1757 unsigned i;
1759 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1760 register_new_update_single (new_name, ssa_name (i));
1765 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1766 it is a symbol marked for renaming, replace it with USE_P's current
1767 reaching definition. */
1769 static inline void
1770 maybe_replace_use (use_operand_p use_p)
1772 tree rdef = NULL_TREE;
1773 tree use = USE_FROM_PTR (use_p);
1774 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1776 if (symbol_marked_for_renaming (sym))
1777 rdef = get_reaching_def (sym);
1778 else if (is_old_name (use))
1779 rdef = get_reaching_def (use);
1781 if (rdef && rdef != use)
1782 SET_USE (use_p, rdef);
1786 /* Same as maybe_replace_use, but without introducing default stmts,
1787 returning false to indicate a need to do so. */
1789 static inline bool
1790 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1792 tree rdef = NULL_TREE;
1793 tree use = USE_FROM_PTR (use_p);
1794 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1796 if (symbol_marked_for_renaming (sym))
1797 rdef = get_current_def (sym);
1798 else if (is_old_name (use))
1800 rdef = get_current_def (use);
1801 /* We can't assume that, if there's no current definition, the
1802 default one should be used. It could be the case that we've
1803 rearranged blocks so that the earlier definition no longer
1804 dominates the use. */
1805 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1806 rdef = use;
1808 else
1809 rdef = use;
1811 if (rdef && rdef != use)
1812 SET_USE (use_p, rdef);
1814 return rdef != NULL_TREE;
1818 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1819 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1820 register it as the current definition for the names replaced by
1821 DEF_P. */
1823 static inline void
1824 maybe_register_def (def_operand_p def_p, gimple stmt,
1825 gimple_stmt_iterator gsi)
1827 tree def = DEF_FROM_PTR (def_p);
1828 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1830 /* If DEF is a naked symbol that needs renaming, create a new
1831 name for it. */
1832 if (symbol_marked_for_renaming (sym))
1834 if (DECL_P (def))
1836 tree tracked_var;
1838 def = make_ssa_name (def, stmt);
1839 SET_DEF (def_p, def);
1841 tracked_var = target_for_debug_bind (sym);
1842 if (tracked_var)
1844 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1845 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1849 register_new_update_single (def, sym);
1851 else
1853 /* If DEF is a new name, register it as a new definition
1854 for all the names replaced by DEF. */
1855 if (is_new_name (def))
1856 register_new_update_set (def, names_replaced_by (def));
1858 /* If DEF is an old name, register DEF as a new
1859 definition for itself. */
1860 if (is_old_name (def))
1861 register_new_update_single (def, def);
1866 /* Update every variable used in the statement pointed-to by SI. The
1867 statement is assumed to be in SSA form already. Names in
1868 OLD_SSA_NAMES used by SI will be updated to their current reaching
1869 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1870 will be registered as a new definition for their corresponding name
1871 in OLD_SSA_NAMES. */
1873 static void
1874 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1876 use_operand_p use_p;
1877 def_operand_p def_p;
1878 ssa_op_iter iter;
1880 /* Only update marked statements. */
1881 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1882 return;
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1886 fprintf (dump_file, "Updating SSA information for statement ");
1887 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1888 fprintf (dump_file, "\n");
1891 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1892 symbol is marked for renaming. */
1893 if (rewrite_uses_p (stmt))
1895 if (is_gimple_debug (stmt))
1897 bool failed = false;
1899 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1900 if (!maybe_replace_use_in_debug_stmt (use_p))
1902 failed = true;
1903 break;
1906 if (failed)
1908 /* DOM sometimes threads jumps in such a way that a
1909 debug stmt ends up referencing a SSA variable that no
1910 longer dominates the debug stmt, but such that all
1911 incoming definitions refer to the same definition in
1912 an earlier dominator. We could try to recover that
1913 definition somehow, but this will have to do for now.
1915 Introducing a default definition, which is what
1916 maybe_replace_use() would do in such cases, may
1917 modify code generation, for the otherwise-unused
1918 default definition would never go away, modifying SSA
1919 version numbers all over. */
1920 gimple_debug_bind_reset_value (stmt);
1921 update_stmt (stmt);
1924 else
1926 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1927 maybe_replace_use (use_p);
1931 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1932 Also register definitions for names whose underlying symbol is
1933 marked for renaming. */
1934 if (register_defs_p (stmt))
1935 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1936 maybe_register_def (def_p, stmt, gsi);
1940 /* Visit all the successor blocks of BB looking for PHI nodes. For
1941 every PHI node found, check if any of its arguments is in
1942 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1943 definition, replace it. */
1945 static void
1946 rewrite_update_phi_arguments (basic_block bb)
1948 edge e;
1949 edge_iterator ei;
1950 unsigned i;
1952 FOR_EACH_EDGE (e, ei, bb->succs)
1954 gimple phi;
1955 gimple_vec phis;
1957 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1958 continue;
1960 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1961 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1963 tree arg, lhs_sym, reaching_def = NULL;
1964 use_operand_p arg_p;
1966 gcc_assert (rewrite_uses_p (phi));
1968 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1969 arg = USE_FROM_PTR (arg_p);
1971 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1972 continue;
1974 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
1976 if (arg == NULL_TREE)
1978 /* When updating a PHI node for a recently introduced
1979 symbol we may find NULL arguments. That's why we
1980 take the symbol from the LHS of the PHI node. */
1981 reaching_def = get_reaching_def (lhs_sym);
1984 else
1986 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1988 if (symbol_marked_for_renaming (sym))
1989 reaching_def = get_reaching_def (sym);
1990 else if (is_old_name (arg))
1991 reaching_def = get_reaching_def (arg);
1994 /* Update the argument if there is a reaching def. */
1995 if (reaching_def)
1997 gimple stmt;
1998 source_location locus;
1999 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2001 SET_USE (arg_p, reaching_def);
2002 stmt = SSA_NAME_DEF_STMT (reaching_def);
2004 /* Single element PHI nodes behave like copies, so get the
2005 location from the phi argument. */
2006 if (gimple_code (stmt) == GIMPLE_PHI &&
2007 gimple_phi_num_args (stmt) == 1)
2008 locus = gimple_phi_arg_location (stmt, 0);
2009 else
2010 locus = gimple_location (stmt);
2012 gimple_phi_arg_set_location (phi, arg_i, locus);
2016 if (e->flags & EDGE_ABNORMAL)
2017 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2023 /* Initialization of block data structures for the incremental SSA
2024 update pass. Create a block local stack of reaching definitions
2025 for new SSA names produced in this block (BLOCK_DEFS). Register
2026 new definitions for every PHI node in the block. */
2028 static void
2029 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2030 basic_block bb)
2032 edge e;
2033 edge_iterator ei;
2034 bool is_abnormal_phi;
2035 gimple_stmt_iterator gsi;
2037 if (dump_file && (dump_flags & TDF_DETAILS))
2038 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2039 bb->index);
2041 /* Mark the unwind point for this block. */
2042 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2044 if (!bitmap_bit_p (blocks_to_update, bb->index))
2045 return;
2047 /* Mark the LHS if any of the arguments flows through an abnormal
2048 edge. */
2049 is_abnormal_phi = false;
2050 FOR_EACH_EDGE (e, ei, bb->preds)
2051 if (e->flags & EDGE_ABNORMAL)
2053 is_abnormal_phi = true;
2054 break;
2057 /* If any of the PHI nodes is a replacement for a name in
2058 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2059 register it as a new definition for its corresponding name. Also
2060 register definitions for names whose underlying symbols are
2061 marked for renaming. */
2062 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2064 tree lhs, lhs_sym;
2065 gimple phi = gsi_stmt (gsi);
2067 if (!register_defs_p (phi))
2068 continue;
2070 lhs = gimple_phi_result (phi);
2071 lhs_sym = SSA_NAME_VAR (lhs);
2073 if (symbol_marked_for_renaming (lhs_sym))
2074 register_new_update_single (lhs, lhs_sym);
2075 else
2078 /* If LHS is a new name, register a new definition for all
2079 the names replaced by LHS. */
2080 if (is_new_name (lhs))
2081 register_new_update_set (lhs, names_replaced_by (lhs));
2083 /* If LHS is an OLD name, register it as a new definition
2084 for itself. */
2085 if (is_old_name (lhs))
2086 register_new_update_single (lhs, lhs);
2089 if (is_abnormal_phi)
2090 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2093 /* Step 2. Rewrite every variable used in each statement in the block. */
2094 if (TEST_BIT (interesting_blocks, bb->index))
2096 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2097 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2098 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2101 /* Step 3. Update PHI nodes. */
2102 rewrite_update_phi_arguments (bb);
2105 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2106 the current reaching definition of every name re-written in BB to
2107 the original reaching definition before visiting BB. This
2108 unwinding must be done in the opposite order to what is done in
2109 register_new_update_set. */
2111 static void
2112 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2113 basic_block bb ATTRIBUTE_UNUSED)
2115 while (VEC_length (tree, block_defs_stack) > 0)
2117 tree var = VEC_pop (tree, block_defs_stack);
2118 tree saved_def;
2120 /* NULL indicates the unwind stop point for this block (see
2121 rewrite_update_enter_block). */
2122 if (var == NULL)
2123 return;
2125 saved_def = VEC_pop (tree, block_defs_stack);
2126 set_current_def (var, saved_def);
2131 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2132 form.
2134 ENTRY indicates the block where to start. Every block dominated by
2135 ENTRY will be rewritten.
2137 WHAT indicates what actions will be taken by the renamer (see enum
2138 rewrite_mode).
2140 BLOCKS are the set of interesting blocks for the dominator walker
2141 to process. If this set is NULL, then all the nodes dominated
2142 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2143 are not present in BLOCKS are ignored. */
2145 static void
2146 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2148 struct dom_walk_data walk_data;
2150 /* Rewrite all the basic blocks in the program. */
2151 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2153 /* Setup callbacks for the generic dominator tree walker. */
2154 memset (&walk_data, 0, sizeof (walk_data));
2156 walk_data.dom_direction = CDI_DOMINATORS;
2158 if (what == REWRITE_ALL)
2160 walk_data.before_dom_children = rewrite_enter_block;
2161 walk_data.after_dom_children = rewrite_leave_block;
2163 else if (what == REWRITE_UPDATE)
2165 walk_data.before_dom_children = rewrite_update_enter_block;
2166 walk_data.after_dom_children = rewrite_update_leave_block;
2168 else
2169 gcc_unreachable ();
2171 block_defs_stack = VEC_alloc (tree, heap, 10);
2173 /* Initialize the dominator walker. */
2174 init_walk_dominator_tree (&walk_data);
2176 /* Recursively walk the dominator tree rewriting each statement in
2177 each basic block. */
2178 walk_dominator_tree (&walk_data, entry);
2180 /* Finalize the dominator walker. */
2181 fini_walk_dominator_tree (&walk_data);
2183 /* Debugging dumps. */
2184 if (dump_file && (dump_flags & TDF_STATS))
2186 dump_dfa_stats (dump_file);
2187 if (def_blocks)
2188 dump_tree_ssa_stats (dump_file);
2191 VEC_free (tree, heap, block_defs_stack);
2193 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2197 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2198 at the start of each block, and call mark_def_sites for each statement. */
2200 static void
2201 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2203 struct mark_def_sites_global_data *gd;
2204 bitmap kills;
2205 gimple_stmt_iterator gsi;
2207 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2208 kills = gd->kills;
2210 bitmap_clear (kills);
2211 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2212 mark_def_sites (bb, gsi_stmt (gsi), kills);
2216 /* Mark the definition site blocks for each variable, so that we know
2217 where the variable is actually live.
2219 The INTERESTING_BLOCKS global will be filled in with all the blocks
2220 that should be processed by the renamer. It is assumed that the
2221 caller has already initialized and zeroed it. */
2223 static void
2224 mark_def_site_blocks (void)
2226 struct dom_walk_data walk_data;
2227 struct mark_def_sites_global_data mark_def_sites_global_data;
2229 /* Setup callbacks for the generic dominator tree walker to find and
2230 mark definition sites. */
2231 walk_data.dom_direction = CDI_DOMINATORS;
2232 walk_data.initialize_block_local_data = NULL;
2233 walk_data.before_dom_children = mark_def_sites_block;
2234 walk_data.after_dom_children = NULL;
2236 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2237 large enough to accommodate all the variables referenced in the
2238 function, not just the ones we are renaming. */
2239 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2240 walk_data.global_data = &mark_def_sites_global_data;
2242 /* We do not have any local data. */
2243 walk_data.block_local_data_size = 0;
2245 /* Initialize the dominator walker. */
2246 init_walk_dominator_tree (&walk_data);
2248 /* Recursively walk the dominator tree. */
2249 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2251 /* Finalize the dominator walker. */
2252 fini_walk_dominator_tree (&walk_data);
2254 /* We no longer need this bitmap, clear and free it. */
2255 BITMAP_FREE (mark_def_sites_global_data.kills);
2259 /* Initialize internal data needed during renaming. */
2261 static void
2262 init_ssa_renamer (void)
2264 tree var;
2265 referenced_var_iterator rvi;
2267 cfun->gimple_df->in_ssa_p = false;
2269 /* Allocate memory for the DEF_BLOCKS hash table. */
2270 gcc_assert (def_blocks == NULL);
2271 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2272 def_blocks_eq, def_blocks_free);
2274 FOR_EACH_REFERENCED_VAR(var, rvi)
2275 set_current_def (var, NULL_TREE);
2279 /* Deallocate internal data structures used by the renamer. */
2281 static void
2282 fini_ssa_renamer (void)
2284 if (def_blocks)
2286 htab_delete (def_blocks);
2287 def_blocks = NULL;
2290 cfun->gimple_df->in_ssa_p = true;
2293 /* Main entry point into the SSA builder. The renaming process
2294 proceeds in four main phases:
2296 1- Compute dominance frontier and immediate dominators, needed to
2297 insert PHI nodes and rename the function in dominator tree
2298 order.
2300 2- Find and mark all the blocks that define variables
2301 (mark_def_site_blocks).
2303 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2305 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2307 Steps 3 and 4 are done using the dominator tree walker
2308 (walk_dominator_tree). */
2310 static unsigned int
2311 rewrite_into_ssa (void)
2313 bitmap *dfs;
2314 basic_block bb;
2316 timevar_push (TV_TREE_SSA_OTHER);
2318 /* Initialize operand data structures. */
2319 init_ssa_operands ();
2321 /* Initialize internal data needed by the renamer. */
2322 init_ssa_renamer ();
2324 /* Initialize the set of interesting blocks. The callback
2325 mark_def_sites will add to this set those blocks that the renamer
2326 should process. */
2327 interesting_blocks = sbitmap_alloc (last_basic_block);
2328 sbitmap_zero (interesting_blocks);
2330 /* Initialize dominance frontier. */
2331 dfs = XNEWVEC (bitmap, last_basic_block);
2332 FOR_EACH_BB (bb)
2333 dfs[bb->index] = BITMAP_ALLOC (NULL);
2335 /* 1- Compute dominance frontiers. */
2336 calculate_dominance_info (CDI_DOMINATORS);
2337 compute_dominance_frontiers (dfs);
2339 /* 2- Find and mark definition sites. */
2340 mark_def_site_blocks ();
2342 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2343 insert_phi_nodes (dfs);
2345 /* 4- Rename all the blocks. */
2346 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2348 /* Free allocated memory. */
2349 FOR_EACH_BB (bb)
2350 BITMAP_FREE (dfs[bb->index]);
2351 free (dfs);
2353 sbitmap_free (interesting_blocks);
2355 fini_ssa_renamer ();
2357 timevar_pop (TV_TREE_SSA_OTHER);
2358 return 0;
2362 struct gimple_opt_pass pass_build_ssa =
2365 GIMPLE_PASS,
2366 "ssa", /* name */
2367 NULL, /* gate */
2368 rewrite_into_ssa, /* execute */
2369 NULL, /* sub */
2370 NULL, /* next */
2371 0, /* static_pass_number */
2372 TV_NONE, /* tv_id */
2373 PROP_cfg | PROP_referenced_vars, /* properties_required */
2374 PROP_ssa, /* properties_provided */
2375 0, /* properties_destroyed */
2376 0, /* todo_flags_start */
2377 TODO_dump_func
2378 | TODO_update_ssa_only_virtuals
2379 | TODO_verify_ssa
2380 | TODO_remove_unused_locals /* todo_flags_finish */
2385 /* Mark the definition of VAR at STMT and BB as interesting for the
2386 renamer. BLOCKS is the set of blocks that need updating. */
2388 static void
2389 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2391 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2392 set_register_defs (stmt, true);
2394 if (insert_phi_p)
2396 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2398 set_def_block (var, bb, is_phi_p);
2400 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2401 site for both itself and all the old names replaced by it. */
2402 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2404 bitmap_iterator bi;
2405 unsigned i;
2406 bitmap set = names_replaced_by (var);
2407 if (set)
2408 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2409 set_def_block (ssa_name (i), bb, is_phi_p);
2415 /* Mark the use of VAR at STMT and BB as interesting for the
2416 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2417 nodes. */
2419 static inline void
2420 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2422 basic_block def_bb = gimple_bb (stmt);
2424 mark_block_for_update (def_bb);
2425 mark_block_for_update (bb);
2427 if (gimple_code (stmt) == GIMPLE_PHI)
2428 mark_phi_for_rewrite (def_bb, stmt);
2429 else
2431 set_rewrite_uses (stmt, true);
2433 if (is_gimple_debug (stmt))
2434 return;
2437 /* If VAR has not been defined in BB, then it is live-on-entry
2438 to BB. Note that we cannot just use the block holding VAR's
2439 definition because if VAR is one of the names in OLD_SSA_NAMES,
2440 it will have several definitions (itself and all the names that
2441 replace it). */
2442 if (insert_phi_p)
2444 struct def_blocks_d *db_p = get_def_blocks_for (var);
2445 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2446 set_livein_block (var, bb);
2451 /* Do a dominator walk starting at BB processing statements that
2452 reference symbols in SYMS_TO_RENAME. This is very similar to
2453 mark_def_sites, but the scan handles statements whose operands may
2454 already be SSA names.
2456 If INSERT_PHI_P is true, mark those uses as live in the
2457 corresponding block. This is later used by the PHI placement
2458 algorithm to make PHI pruning decisions.
2460 FIXME. Most of this would be unnecessary if we could associate a
2461 symbol to all the SSA names that reference it. But that
2462 sounds like it would be expensive to maintain. Still, it
2463 would be interesting to see if it makes better sense to do
2464 that. */
2466 static void
2467 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2469 basic_block son;
2470 gimple_stmt_iterator si;
2471 edge e;
2472 edge_iterator ei;
2474 mark_block_for_update (bb);
2476 /* Process PHI nodes marking interesting those that define or use
2477 the symbols that we are interested in. */
2478 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2480 gimple phi = gsi_stmt (si);
2481 tree lhs_sym, lhs = gimple_phi_result (phi);
2483 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2485 if (!symbol_marked_for_renaming (lhs_sym))
2486 continue;
2488 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2490 /* Mark the uses in phi nodes as interesting. It would be more correct
2491 to process the arguments of the phi nodes of the successor edges of
2492 BB at the end of prepare_block_for_update, however, that turns out
2493 to be significantly more expensive. Doing it here is conservatively
2494 correct -- it may only cause us to believe a value to be live in a
2495 block that also contains its definition, and thus insert a few more
2496 phi nodes for it. */
2497 FOR_EACH_EDGE (e, ei, bb->preds)
2498 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2501 /* Process the statements. */
2502 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2504 gimple stmt;
2505 ssa_op_iter i;
2506 use_operand_p use_p;
2507 def_operand_p def_p;
2509 stmt = gsi_stmt (si);
2511 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2513 tree use = USE_FROM_PTR (use_p);
2514 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2515 if (symbol_marked_for_renaming (sym))
2516 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2519 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2521 tree def = DEF_FROM_PTR (def_p);
2522 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2523 if (symbol_marked_for_renaming (sym))
2524 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2528 /* Now visit all the blocks dominated by BB. */
2529 for (son = first_dom_son (CDI_DOMINATORS, bb);
2530 son;
2531 son = next_dom_son (CDI_DOMINATORS, son))
2532 prepare_block_for_update (son, insert_phi_p);
2536 /* Helper for prepare_names_to_update. Mark all the use sites for
2537 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2538 prepare_names_to_update. */
2540 static void
2541 prepare_use_sites_for (tree name, bool insert_phi_p)
2543 use_operand_p use_p;
2544 imm_use_iterator iter;
2546 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2548 gimple stmt = USE_STMT (use_p);
2549 basic_block bb = gimple_bb (stmt);
2551 if (gimple_code (stmt) == GIMPLE_PHI)
2553 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2554 edge e = gimple_phi_arg_edge (stmt, ix);
2555 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2557 else
2559 /* For regular statements, mark this as an interesting use
2560 for NAME. */
2561 mark_use_interesting (name, stmt, bb, insert_phi_p);
2567 /* Helper for prepare_names_to_update. Mark the definition site for
2568 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2569 prepare_names_to_update. */
2571 static void
2572 prepare_def_site_for (tree name, bool insert_phi_p)
2574 gimple stmt;
2575 basic_block bb;
2577 gcc_assert (names_to_release == NULL
2578 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2580 stmt = SSA_NAME_DEF_STMT (name);
2581 bb = gimple_bb (stmt);
2582 if (bb)
2584 gcc_assert (bb->index < last_basic_block);
2585 mark_block_for_update (bb);
2586 mark_def_interesting (name, stmt, bb, insert_phi_p);
2591 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2592 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2593 PHI nodes for newly created names. */
2595 static void
2596 prepare_names_to_update (bool insert_phi_p)
2598 unsigned i = 0;
2599 bitmap_iterator bi;
2600 sbitmap_iterator sbi;
2602 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2603 remove it from NEW_SSA_NAMES so that we don't try to visit its
2604 defining basic block (which most likely doesn't exist). Notice
2605 that we cannot do the same with names in OLD_SSA_NAMES because we
2606 want to replace existing instances. */
2607 if (names_to_release)
2608 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2609 RESET_BIT (new_ssa_names, i);
2611 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2612 names may be considered to be live-in on blocks that contain
2613 definitions for their replacements. */
2614 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2615 prepare_def_site_for (ssa_name (i), insert_phi_p);
2617 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2618 OLD_SSA_NAMES, but we have to ignore its definition site. */
2619 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2621 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2622 prepare_def_site_for (ssa_name (i), insert_phi_p);
2623 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2628 /* Dump all the names replaced by NAME to FILE. */
2630 void
2631 dump_names_replaced_by (FILE *file, tree name)
2633 unsigned i;
2634 bitmap old_set;
2635 bitmap_iterator bi;
2637 print_generic_expr (file, name, 0);
2638 fprintf (file, " -> { ");
2640 old_set = names_replaced_by (name);
2641 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2643 print_generic_expr (file, ssa_name (i), 0);
2644 fprintf (file, " ");
2647 fprintf (file, "}\n");
2651 /* Dump all the names replaced by NAME to stderr. */
2653 void
2654 debug_names_replaced_by (tree name)
2656 dump_names_replaced_by (stderr, name);
2660 /* Dump SSA update information to FILE. */
2662 void
2663 dump_update_ssa (FILE *file)
2665 unsigned i = 0;
2666 bitmap_iterator bi;
2668 if (!need_ssa_update_p (cfun))
2669 return;
2671 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2673 sbitmap_iterator sbi;
2675 fprintf (file, "\nSSA replacement table\n");
2676 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2677 "O_1, ..., O_j\n\n");
2679 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2680 dump_names_replaced_by (file, ssa_name (i));
2682 fprintf (file, "\n");
2683 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2684 update_ssa_stats.num_virtual_mappings);
2685 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2686 update_ssa_stats.num_total_mappings
2687 - update_ssa_stats.num_virtual_mappings);
2688 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2689 update_ssa_stats.num_total_mappings);
2691 fprintf (file, "\nNumber of virtual symbols: %u\n",
2692 update_ssa_stats.num_virtual_symbols);
2695 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2697 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2698 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2699 fprintf (file, "\n");
2702 if (names_to_release && !bitmap_empty_p (names_to_release))
2704 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2705 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2707 print_generic_expr (file, ssa_name (i), 0);
2708 fprintf (file, " ");
2712 fprintf (file, "\n\n");
2716 /* Dump SSA update information to stderr. */
2718 void
2719 debug_update_ssa (void)
2721 dump_update_ssa (stderr);
2725 /* Initialize data structures used for incremental SSA updates. */
2727 static void
2728 init_update_ssa (struct function *fn)
2730 /* Reserve more space than the current number of names. The calls to
2731 add_new_name_mapping are typically done after creating new SSA
2732 names, so we'll need to reallocate these arrays. */
2733 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2734 sbitmap_zero (old_ssa_names);
2736 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2737 sbitmap_zero (new_ssa_names);
2739 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2740 names_to_release = NULL;
2741 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2742 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2743 update_ssa_initialized_fn = fn;
2747 /* Deallocate data structures used for incremental SSA updates. */
2749 void
2750 delete_update_ssa (void)
2752 unsigned i;
2753 bitmap_iterator bi;
2755 sbitmap_free (old_ssa_names);
2756 old_ssa_names = NULL;
2758 sbitmap_free (new_ssa_names);
2759 new_ssa_names = NULL;
2761 htab_delete (repl_tbl);
2762 repl_tbl = NULL;
2764 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2765 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2767 if (names_to_release)
2769 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2770 release_ssa_name (ssa_name (i));
2771 BITMAP_FREE (names_to_release);
2774 clear_ssa_name_info ();
2776 fini_ssa_renamer ();
2778 if (blocks_with_phis_to_rewrite)
2779 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2781 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2783 VEC_free (gimple, heap, phis);
2784 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2787 BITMAP_FREE (blocks_with_phis_to_rewrite);
2788 BITMAP_FREE (blocks_to_update);
2789 update_ssa_initialized_fn = NULL;
2793 /* Create a new name for OLD_NAME in statement STMT and replace the
2794 operand pointed to by DEF_P with the newly created name. Return
2795 the new name and register the replacement mapping <NEW, OLD> in
2796 update_ssa's tables. */
2798 tree
2799 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2801 tree new_name = duplicate_ssa_name (old_name, stmt);
2803 SET_DEF (def, new_name);
2805 if (gimple_code (stmt) == GIMPLE_PHI)
2807 edge e;
2808 edge_iterator ei;
2809 basic_block bb = gimple_bb (stmt);
2811 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2812 FOR_EACH_EDGE (e, ei, bb->preds)
2813 if (e->flags & EDGE_ABNORMAL)
2815 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2816 break;
2820 register_new_name_mapping (new_name, old_name);
2822 /* For the benefit of passes that will be updating the SSA form on
2823 their own, set the current reaching definition of OLD_NAME to be
2824 NEW_NAME. */
2825 set_current_def (old_name, new_name);
2827 return new_name;
2831 /* Register name NEW to be a replacement for name OLD. This function
2832 must be called for every replacement that should be performed by
2833 update_ssa. */
2835 void
2836 register_new_name_mapping (tree new_tree, tree old)
2838 if (!update_ssa_initialized_fn)
2839 init_update_ssa (cfun);
2841 gcc_assert (update_ssa_initialized_fn == cfun);
2843 add_new_name_mapping (new_tree, old);
2847 /* Register symbol SYM to be renamed by update_ssa. */
2849 void
2850 mark_sym_for_renaming (tree sym)
2852 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2856 /* Register all the symbols in SET to be renamed by update_ssa. */
2858 void
2859 mark_set_for_renaming (bitmap set)
2861 bitmap_iterator bi;
2862 unsigned i;
2864 if (set == NULL || bitmap_empty_p (set))
2865 return;
2867 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2868 mark_sym_for_renaming (referenced_var (i));
2872 /* Return true if there is any work to be done by update_ssa
2873 for function FN. */
2875 bool
2876 need_ssa_update_p (struct function *fn)
2878 gcc_assert (fn != NULL);
2879 return (update_ssa_initialized_fn == fn
2880 || (fn->gimple_df
2881 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2884 /* Return true if SSA name mappings have been registered for SSA updating. */
2886 bool
2887 name_mappings_registered_p (void)
2889 if (!update_ssa_initialized_fn)
2890 return false;
2892 gcc_assert (update_ssa_initialized_fn == cfun);
2894 return repl_tbl && htab_elements (repl_tbl) > 0;
2897 /* Return true if name N has been registered in the replacement table. */
2899 bool
2900 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2902 if (!update_ssa_initialized_fn)
2903 return false;
2905 gcc_assert (update_ssa_initialized_fn == cfun);
2907 return is_new_name (n) || is_old_name (n);
2911 /* Return the set of all the SSA names marked to be replaced. */
2913 bitmap
2914 ssa_names_to_replace (void)
2916 unsigned i = 0;
2917 bitmap ret;
2918 sbitmap_iterator sbi;
2920 gcc_assert (update_ssa_initialized_fn == NULL
2921 || update_ssa_initialized_fn == cfun);
2923 ret = BITMAP_ALLOC (NULL);
2924 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2925 bitmap_set_bit (ret, i);
2927 return ret;
2931 /* Mark NAME to be released after update_ssa has finished. */
2933 void
2934 release_ssa_name_after_update_ssa (tree name)
2936 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2938 if (names_to_release == NULL)
2939 names_to_release = BITMAP_ALLOC (NULL);
2941 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2945 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2946 frontier information. BLOCKS is the set of blocks to be updated.
2948 This is slightly different than the regular PHI insertion
2949 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2950 real names (i.e., GIMPLE registers) are inserted:
2952 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2953 nodes inside the region affected by the block that defines VAR
2954 and the blocks that define all its replacements. All these
2955 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2957 First, we compute the entry point to the region (ENTRY). This is
2958 given by the nearest common dominator to all the definition
2959 blocks. When computing the iterated dominance frontier (IDF), any
2960 block not strictly dominated by ENTRY is ignored.
2962 We then call the standard PHI insertion algorithm with the pruned
2963 IDF.
2965 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2966 names is not pruned. PHI nodes are inserted at every IDF block. */
2968 static void
2969 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2970 unsigned update_flags)
2972 basic_block entry;
2973 struct def_blocks_d *db;
2974 bitmap idf, pruned_idf;
2975 bitmap_iterator bi;
2976 unsigned i;
2978 #if defined ENABLE_CHECKING
2979 if (TREE_CODE (var) == SSA_NAME)
2980 gcc_assert (is_old_name (var));
2981 else
2982 gcc_assert (symbol_marked_for_renaming (var));
2983 #endif
2985 /* Get all the definition sites for VAR. */
2986 db = find_def_blocks_for (var);
2988 /* No need to do anything if there were no definitions to VAR. */
2989 if (db == NULL || bitmap_empty_p (db->def_blocks))
2990 return;
2992 /* Compute the initial iterated dominance frontier. */
2993 idf = compute_idf (db->def_blocks, dfs);
2994 pruned_idf = BITMAP_ALLOC (NULL);
2996 if (TREE_CODE (var) == SSA_NAME)
2998 if (update_flags == TODO_update_ssa)
3000 /* If doing regular SSA updates for GIMPLE registers, we are
3001 only interested in IDF blocks dominated by the nearest
3002 common dominator of all the definition blocks. */
3003 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3004 db->def_blocks);
3005 if (entry != ENTRY_BLOCK_PTR)
3006 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3007 if (BASIC_BLOCK (i) != entry
3008 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3009 bitmap_set_bit (pruned_idf, i);
3011 else
3013 /* Otherwise, do not prune the IDF for VAR. */
3014 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3015 bitmap_copy (pruned_idf, idf);
3018 else
3020 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3021 for the first time, so we need to compute the full IDF for
3022 it. */
3023 bitmap_copy (pruned_idf, idf);
3026 if (!bitmap_empty_p (pruned_idf))
3028 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3029 are included in the region to be updated. The feeding blocks
3030 are important to guarantee that the PHI arguments are renamed
3031 properly. */
3033 /* FIXME, this is not needed if we are updating symbols. We are
3034 already starting at the ENTRY block anyway. */
3035 bitmap_ior_into (blocks, pruned_idf);
3036 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3038 edge e;
3039 edge_iterator ei;
3040 basic_block bb = BASIC_BLOCK (i);
3042 FOR_EACH_EDGE (e, ei, bb->preds)
3043 if (e->src->index >= 0)
3044 bitmap_set_bit (blocks, e->src->index);
3047 insert_phi_nodes_for (var, pruned_idf, true);
3050 BITMAP_FREE (pruned_idf);
3051 BITMAP_FREE (idf);
3055 /* Heuristic to determine whether SSA name mappings for virtual names
3056 should be discarded and their symbols rewritten from scratch. When
3057 there is a large number of mappings for virtual names, the
3058 insertion of PHI nodes for the old names in the mappings takes
3059 considerable more time than if we inserted PHI nodes for the
3060 symbols instead.
3062 Currently the heuristic takes these stats into account:
3064 - Number of mappings for virtual SSA names.
3065 - Number of distinct virtual symbols involved in those mappings.
3067 If the number of virtual mappings is much larger than the number of
3068 virtual symbols, then it will be faster to compute PHI insertion
3069 spots for the symbols. Even if this involves traversing the whole
3070 CFG, which is what happens when symbols are renamed from scratch. */
3072 static bool
3073 switch_virtuals_to_full_rewrite_p (void)
3075 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3076 return false;
3078 if (update_ssa_stats.num_virtual_mappings
3079 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3080 * update_ssa_stats.num_virtual_symbols)
3081 return true;
3083 return false;
3087 /* Remove every virtual mapping and mark all the affected virtual
3088 symbols for renaming. */
3090 static void
3091 switch_virtuals_to_full_rewrite (void)
3093 unsigned i = 0;
3094 sbitmap_iterator sbi;
3096 if (dump_file)
3098 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3099 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3100 update_ssa_stats.num_virtual_mappings);
3101 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3102 update_ssa_stats.num_virtual_symbols);
3103 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3104 "faster than processing\nthe name mappings.\n\n");
3107 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3108 Note that it is not really necessary to remove the mappings from
3109 REPL_TBL, that would only waste time. */
3110 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3111 if (!is_gimple_reg (ssa_name (i)))
3112 RESET_BIT (new_ssa_names, i);
3114 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3115 if (!is_gimple_reg (ssa_name (i)))
3116 RESET_BIT (old_ssa_names, i);
3118 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3122 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3123 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3125 1- The names in OLD_SSA_NAMES dominated by the definitions of
3126 NEW_SSA_NAMES are all re-written to be reached by the
3127 appropriate definition from NEW_SSA_NAMES.
3129 2- If needed, new PHI nodes are added to the iterated dominance
3130 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3132 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3133 calling register_new_name_mapping for every pair of names that the
3134 caller wants to replace.
3136 The caller identifies the new names that have been inserted and the
3137 names that need to be replaced by calling register_new_name_mapping
3138 for every pair <NEW, OLD>. Note that the function assumes that the
3139 new names have already been inserted in the IL.
3141 For instance, given the following code:
3143 1 L0:
3144 2 x_1 = PHI (0, x_5)
3145 3 if (x_1 < 10)
3146 4 if (x_1 > 7)
3147 5 y_2 = 0
3148 6 else
3149 7 y_3 = x_1 + x_7
3150 8 endif
3151 9 x_5 = x_1 + 1
3152 10 goto L0;
3153 11 endif
3155 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3157 1 L0:
3158 2 x_1 = PHI (0, x_5)
3159 3 if (x_1 < 10)
3160 4 x_10 = ...
3161 5 if (x_1 > 7)
3162 6 y_2 = 0
3163 7 else
3164 8 x_11 = ...
3165 9 y_3 = x_1 + x_7
3166 10 endif
3167 11 x_5 = x_1 + 1
3168 12 goto L0;
3169 13 endif
3171 We want to replace all the uses of x_1 with the new definitions of
3172 x_10 and x_11. Note that the only uses that should be replaced are
3173 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3174 *not* be replaced (this is why we cannot just mark symbol 'x' for
3175 renaming).
3177 Additionally, we may need to insert a PHI node at line 11 because
3178 that is a merge point for x_10 and x_11. So the use of x_1 at line
3179 11 will be replaced with the new PHI node. The insertion of PHI
3180 nodes is optional. They are not strictly necessary to preserve the
3181 SSA form, and depending on what the caller inserted, they may not
3182 even be useful for the optimizers. UPDATE_FLAGS controls various
3183 aspects of how update_ssa operates, see the documentation for
3184 TODO_update_ssa*. */
3186 void
3187 update_ssa (unsigned update_flags)
3189 basic_block bb, start_bb;
3190 bitmap_iterator bi;
3191 unsigned i = 0;
3192 bool insert_phi_p;
3193 sbitmap_iterator sbi;
3195 if (!need_ssa_update_p (cfun))
3196 return;
3198 timevar_push (TV_TREE_SSA_INCREMENTAL);
3200 if (!update_ssa_initialized_fn)
3201 init_update_ssa (cfun);
3202 gcc_assert (update_ssa_initialized_fn == cfun);
3204 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3205 if (!phis_to_rewrite)
3206 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3207 blocks_to_update = BITMAP_ALLOC (NULL);
3209 /* Ensure that the dominance information is up-to-date. */
3210 calculate_dominance_info (CDI_DOMINATORS);
3212 /* Only one update flag should be set. */
3213 gcc_assert (update_flags == TODO_update_ssa
3214 || update_flags == TODO_update_ssa_no_phi
3215 || update_flags == TODO_update_ssa_full_phi
3216 || update_flags == TODO_update_ssa_only_virtuals);
3218 /* If we only need to update virtuals, remove all the mappings for
3219 real names before proceeding. The caller is responsible for
3220 having dealt with the name mappings before calling update_ssa. */
3221 if (update_flags == TODO_update_ssa_only_virtuals)
3223 sbitmap_zero (old_ssa_names);
3224 sbitmap_zero (new_ssa_names);
3225 htab_empty (repl_tbl);
3228 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3230 if (insert_phi_p)
3232 /* If the caller requested PHI nodes to be added, initialize
3233 live-in information data structures (DEF_BLOCKS). */
3235 /* For each SSA name N, the DEF_BLOCKS table describes where the
3236 name is defined, which blocks have PHI nodes for N, and which
3237 blocks have uses of N (i.e., N is live-on-entry in those
3238 blocks). */
3239 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3240 def_blocks_eq, def_blocks_free);
3242 else
3244 def_blocks = NULL;
3247 /* Heuristic to avoid massive slow downs when the replacement
3248 mappings include lots of virtual names. */
3249 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3250 switch_virtuals_to_full_rewrite ();
3252 /* If there are names defined in the replacement table, prepare
3253 definition and use sites for all the names in NEW_SSA_NAMES and
3254 OLD_SSA_NAMES. */
3255 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3257 prepare_names_to_update (insert_phi_p);
3259 /* If all the names in NEW_SSA_NAMES had been marked for
3260 removal, and there are no symbols to rename, then there's
3261 nothing else to do. */
3262 if (sbitmap_first_set_bit (new_ssa_names) < 0
3263 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3264 goto done;
3267 /* Next, determine the block at which to start the renaming process. */
3268 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3270 /* If we have to rename some symbols from scratch, we need to
3271 start the process at the root of the CFG. FIXME, it should
3272 be possible to determine the nearest block that had a
3273 definition for each of the symbols that are marked for
3274 updating. For now this seems more work than it's worth. */
3275 start_bb = ENTRY_BLOCK_PTR;
3277 /* Traverse the CFG looking for existing definitions and uses of
3278 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3279 statements and set local live-in information for the PHI
3280 placement heuristics. */
3281 prepare_block_for_update (start_bb, insert_phi_p);
3283 else
3285 /* Otherwise, the entry block to the region is the nearest
3286 common dominator for the blocks in BLOCKS. */
3287 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3288 blocks_to_update);
3291 /* If requested, insert PHI nodes at the iterated dominance frontier
3292 of every block, creating new definitions for names in OLD_SSA_NAMES
3293 and for symbols in SYMS_TO_RENAME. */
3294 if (insert_phi_p)
3296 bitmap *dfs;
3298 /* If the caller requested PHI nodes to be added, compute
3299 dominance frontiers. */
3300 dfs = XNEWVEC (bitmap, last_basic_block);
3301 FOR_EACH_BB (bb)
3302 dfs[bb->index] = BITMAP_ALLOC (NULL);
3303 compute_dominance_frontiers (dfs);
3305 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3307 sbitmap_iterator sbi;
3309 /* insert_update_phi_nodes_for will call add_new_name_mapping
3310 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3311 will grow while we are traversing it (but it will not
3312 gain any new members). Copy OLD_SSA_NAMES to a temporary
3313 for traversal. */
3314 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3315 sbitmap_copy (tmp, old_ssa_names);
3316 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3317 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3318 update_flags);
3319 sbitmap_free (tmp);
3322 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3323 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3324 update_flags);
3326 FOR_EACH_BB (bb)
3327 BITMAP_FREE (dfs[bb->index]);
3328 free (dfs);
3330 /* Insertion of PHI nodes may have added blocks to the region.
3331 We need to re-compute START_BB to include the newly added
3332 blocks. */
3333 if (start_bb != ENTRY_BLOCK_PTR)
3334 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3335 blocks_to_update);
3338 /* Reset the current definition for name and symbol before renaming
3339 the sub-graph. */
3340 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3341 set_current_def (ssa_name (i), NULL_TREE);
3343 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3344 set_current_def (referenced_var (i), NULL_TREE);
3346 /* Now start the renaming process at START_BB. */
3347 interesting_blocks = sbitmap_alloc (last_basic_block);
3348 sbitmap_zero (interesting_blocks);
3349 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3350 SET_BIT (interesting_blocks, i);
3352 rewrite_blocks (start_bb, REWRITE_UPDATE);
3354 sbitmap_free (interesting_blocks);
3356 /* Debugging dumps. */
3357 if (dump_file)
3359 int c;
3360 unsigned i;
3362 dump_update_ssa (dump_file);
3364 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3365 start_bb->index);
3367 c = 0;
3368 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3369 c++;
3370 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3371 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3372 c, PERCENT (c, last_basic_block));
3374 if (dump_flags & TDF_DETAILS)
3376 fprintf (dump_file, "Affected blocks: ");
3377 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3378 fprintf (dump_file, "%u ", i);
3379 fprintf (dump_file, "\n");
3382 fprintf (dump_file, "\n\n");
3385 /* Free allocated memory. */
3386 done:
3387 delete_update_ssa ();
3389 timevar_pop (TV_TREE_SSA_INCREMENTAL);