* events.c (hash_param_callback): Read and pass parameter type.
[official-gcc.git] / gcc / fwprop.c
blob75a354ea54df3e04fee764a2c9b3cbecf76d797d
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
27 #include "timevar.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "df.h"
38 #include "target.h"
39 #include "cfgloop.h"
40 #include "tree-pass.h"
41 #include "domwalk.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 DEF_VEC_P(df_ref);
120 DEF_VEC_ALLOC_P(df_ref,heap);
121 VEC(df_ref,heap) *use_def_ref;
122 VEC(df_ref,heap) *reg_defs;
123 VEC(df_ref,heap) *reg_defs_stack;
126 /* Return the only def in USE's use-def chain, or NULL if there is
127 more than one def in the chain. */
129 static inline df_ref
130 get_def_for_use (df_ref use)
132 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
136 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
137 TOP_FLAG says which artificials uses should be used, when DEF_REC
138 is an artificial def vector. LOCAL_MD is modified as after a
139 df_md_simulate_* function; we do more or less the same processing
140 done there, so we do not use those functions. */
142 #define DF_MD_GEN_FLAGS \
143 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
145 static void
146 process_defs (bitmap local_md, df_ref *def_rec, int top_flag)
148 df_ref def;
149 while ((def = *def_rec++) != NULL)
151 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
152 unsigned int dregno;
154 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
155 continue;
157 dregno = DF_REF_REGNO (def);
158 if (curr_def)
159 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
160 else
162 /* Do not store anything if "transitioning" from NULL to NULL. But
163 otherwise, push a special entry on the stack to tell the
164 leave_block callback that the entry in reg_defs was NULL. */
165 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
167 else
168 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
171 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
173 bitmap_set_bit (local_md, dregno);
174 VEC_replace (df_ref, reg_defs, dregno, NULL);
176 else
178 bitmap_clear_bit (local_md, dregno);
179 VEC_replace (df_ref, reg_defs, dregno, def);
185 /* Fill the use_def_ref vector with values for the uses in USE_REC,
186 taking reaching definitions info from LOCAL_MD and REG_DEFS.
187 TOP_FLAG says which artificials uses should be used, when USE_REC
188 is an artificial use vector. */
190 static void
191 process_uses (bitmap local_md, df_ref *use_rec, int top_flag)
193 df_ref use;
194 while ((use = *use_rec++) != NULL)
195 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
197 unsigned int uregno = DF_REF_REGNO (use);
198 if (VEC_index (df_ref, reg_defs, uregno)
199 && !bitmap_bit_p (local_md, uregno))
200 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
201 VEC_index (df_ref, reg_defs, uregno));
206 static void
207 single_def_use_enter_block (struct dom_walk_data *walk_data, basic_block bb)
209 bitmap local_md = (bitmap) walk_data->global_data;
210 int bb_index = bb->index;
211 struct df_md_bb_info *bb_info = df_md_get_bb_info (bb_index);
212 rtx insn;
214 bitmap_copy (local_md, bb_info->in);
216 /* Push a marker for the leave_block callback. */
217 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
219 process_uses (local_md, df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
220 process_defs (local_md, df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
222 FOR_BB_INSNS (bb, insn)
223 if (INSN_P (insn))
225 unsigned int uid = INSN_UID (insn);
226 process_uses (local_md, DF_INSN_UID_USES (uid), 0);
227 process_uses (local_md, DF_INSN_UID_EQ_USES (uid), 0);
228 process_defs (local_md, DF_INSN_UID_DEFS (uid), 0);
231 process_uses (local_md, df_get_artificial_uses (bb_index), 0);
232 process_defs (local_md, df_get_artificial_defs (bb_index), 0);
235 /* Pop the definitions created in this basic block when leaving its
236 dominated parts. */
238 static void
239 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
240 basic_block bb ATTRIBUTE_UNUSED)
242 df_ref saved_def;
243 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
245 unsigned int dregno = DF_REF_REGNO (saved_def);
247 /* See also process_defs. */
248 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
249 VEC_replace (df_ref, reg_defs, dregno, NULL);
250 else
251 VEC_replace (df_ref, reg_defs, dregno, saved_def);
256 /* Build a vector holding the reaching definitions of uses reached by a
257 single dominating definition. */
259 static void
260 build_single_def_use_links (void)
262 struct dom_walk_data walk_data;
263 bitmap local_md;
265 /* We use the multiple definitions problem to compute our restricted
266 use-def chains. */
267 df_set_flags (DF_EQ_NOTES);
268 df_md_add_problem ();
269 df_analyze ();
270 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
272 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
273 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
275 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
276 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
278 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
279 local_md = BITMAP_ALLOC (NULL);
281 /* Walk the dominator tree looking for single reaching definitions
282 dominating the uses. This is similar to how SSA form is built. */
283 walk_data.dom_direction = CDI_DOMINATORS;
284 walk_data.initialize_block_local_data = NULL;
285 walk_data.before_dom_children = single_def_use_enter_block;
286 walk_data.after_dom_children = single_def_use_leave_block;
287 walk_data.global_data = local_md;
289 init_walk_dominator_tree (&walk_data);
290 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
291 fini_walk_dominator_tree (&walk_data);
293 BITMAP_FREE (local_md);
294 VEC_free (df_ref, heap, reg_defs);
295 VEC_free (df_ref, heap, reg_defs_stack);
299 /* Do not try to replace constant addresses or addresses of local and
300 argument slots. These MEM expressions are made only once and inserted
301 in many instructions, as well as being used to control symbol table
302 output. It is not safe to clobber them.
304 There are some uncommon cases where the address is already in a register
305 for some reason, but we cannot take advantage of that because we have
306 no easy way to unshare the MEM. In addition, looking up all stack
307 addresses is costly. */
309 static bool
310 can_simplify_addr (rtx addr)
312 rtx reg;
314 if (CONSTANT_ADDRESS_P (addr))
315 return false;
317 if (GET_CODE (addr) == PLUS)
318 reg = XEXP (addr, 0);
319 else
320 reg = addr;
322 return (!REG_P (reg)
323 || (REGNO (reg) != FRAME_POINTER_REGNUM
324 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
325 && REGNO (reg) != ARG_POINTER_REGNUM));
328 /* Returns a canonical version of X for the address, from the point of view,
329 that all multiplications are represented as MULT instead of the multiply
330 by a power of 2 being represented as ASHIFT.
332 Every ASHIFT we find has been made by simplify_gen_binary and was not
333 there before, so it is not shared. So we can do this in place. */
335 static void
336 canonicalize_address (rtx x)
338 for (;;)
339 switch (GET_CODE (x))
341 case ASHIFT:
342 if (CONST_INT_P (XEXP (x, 1))
343 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
344 && INTVAL (XEXP (x, 1)) >= 0)
346 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
347 PUT_CODE (x, MULT);
348 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
349 GET_MODE (x));
352 x = XEXP (x, 0);
353 break;
355 case PLUS:
356 if (GET_CODE (XEXP (x, 0)) == PLUS
357 || GET_CODE (XEXP (x, 0)) == ASHIFT
358 || GET_CODE (XEXP (x, 0)) == CONST)
359 canonicalize_address (XEXP (x, 0));
361 x = XEXP (x, 1);
362 break;
364 case CONST:
365 x = XEXP (x, 0);
366 break;
368 default:
369 return;
373 /* OLD is a memory address. Return whether it is good to use NEW instead,
374 for a memory access in the given MODE. */
376 static bool
377 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
378 addr_space_t as, bool speed)
380 int gain;
382 if (rtx_equal_p (old_rtx, new_rtx)
383 || !memory_address_addr_space_p (mode, new_rtx, as))
384 return false;
386 /* Copy propagation is always ok. */
387 if (REG_P (old_rtx) && REG_P (new_rtx))
388 return true;
390 /* Prefer the new address if it is less expensive. */
391 gain = (address_cost (old_rtx, mode, as, speed)
392 - address_cost (new_rtx, mode, as, speed));
394 /* If the addresses have equivalent cost, prefer the new address
395 if it has the highest `rtx_cost'. That has the potential of
396 eliminating the most insns without additional costs, and it
397 is the same that cse.c used to do. */
398 if (gain == 0)
399 gain = rtx_cost (new_rtx, SET, speed) - rtx_cost (old_rtx, SET, speed);
401 return (gain > 0);
405 /* Flags for the last parameter of propagate_rtx_1. */
407 enum {
408 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
409 if it is false, propagate_rtx_1 returns false if, for at least
410 one occurrence OLD, it failed to collapse the result to a constant.
411 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
412 collapse to zero if replacing (reg:M B) with (reg:M A).
414 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
415 propagate_rtx_1 just tries to make cheaper and valid memory
416 addresses. */
417 PR_CAN_APPEAR = 1,
419 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
420 outside memory addresses. This is needed because propagate_rtx_1 does
421 not do any analysis on memory; thus it is very conservative and in general
422 it will fail if non-read-only MEMs are found in the source expression.
424 PR_HANDLE_MEM is set when the source of the propagation was not
425 another MEM. Then, it is safe not to treat non-read-only MEMs as
426 ``opaque'' objects. */
427 PR_HANDLE_MEM = 2,
429 /* Set when costs should be optimized for speed. */
430 PR_OPTIMIZE_FOR_SPEED = 4
434 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
435 resulting expression. Replace *PX with a new RTL expression if an
436 occurrence of OLD was found.
438 This is only a wrapper around simplify-rtx.c: do not add any pattern
439 matching code here. (The sole exception is the handling of LO_SUM, but
440 that is because there is no simplify_gen_* function for LO_SUM). */
442 static bool
443 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
445 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
446 enum rtx_code code = GET_CODE (x);
447 enum machine_mode mode = GET_MODE (x);
448 enum machine_mode op_mode;
449 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
450 bool valid_ops = true;
452 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
454 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
455 they have side effects or not). */
456 *px = (side_effects_p (x)
457 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
458 : gen_rtx_SCRATCH (GET_MODE (x)));
459 return false;
462 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
463 address, and we are *not* inside one. */
464 if (x == old_rtx)
466 *px = new_rtx;
467 return can_appear;
470 /* If this is an expression, try recursive substitution. */
471 switch (GET_RTX_CLASS (code))
473 case RTX_UNARY:
474 op0 = XEXP (x, 0);
475 op_mode = GET_MODE (op0);
476 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
477 if (op0 == XEXP (x, 0))
478 return true;
479 tem = simplify_gen_unary (code, mode, op0, op_mode);
480 break;
482 case RTX_BIN_ARITH:
483 case RTX_COMM_ARITH:
484 op0 = XEXP (x, 0);
485 op1 = XEXP (x, 1);
486 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
487 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
488 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
489 return true;
490 tem = simplify_gen_binary (code, mode, op0, op1);
491 break;
493 case RTX_COMPARE:
494 case RTX_COMM_COMPARE:
495 op0 = XEXP (x, 0);
496 op1 = XEXP (x, 1);
497 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
498 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
499 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
500 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
501 return true;
502 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
503 break;
505 case RTX_TERNARY:
506 case RTX_BITFIELD_OPS:
507 op0 = XEXP (x, 0);
508 op1 = XEXP (x, 1);
509 op2 = XEXP (x, 2);
510 op_mode = GET_MODE (op0);
511 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
512 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
513 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
514 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
515 return true;
516 if (op_mode == VOIDmode)
517 op_mode = GET_MODE (op0);
518 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
519 break;
521 case RTX_EXTRA:
522 /* The only case we try to handle is a SUBREG. */
523 if (code == SUBREG)
525 op0 = XEXP (x, 0);
526 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
527 if (op0 == XEXP (x, 0))
528 return true;
529 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
530 SUBREG_BYTE (x));
532 break;
534 case RTX_OBJ:
535 if (code == MEM && x != new_rtx)
537 rtx new_op0;
538 op0 = XEXP (x, 0);
540 /* There are some addresses that we cannot work on. */
541 if (!can_simplify_addr (op0))
542 return true;
544 op0 = new_op0 = targetm.delegitimize_address (op0);
545 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
546 flags | PR_CAN_APPEAR);
548 /* Dismiss transformation that we do not want to carry on. */
549 if (!valid_ops
550 || new_op0 == op0
551 || !(GET_MODE (new_op0) == GET_MODE (op0)
552 || GET_MODE (new_op0) == VOIDmode))
553 return true;
555 canonicalize_address (new_op0);
557 /* Copy propagations are always ok. Otherwise check the costs. */
558 if (!(REG_P (old_rtx) && REG_P (new_rtx))
559 && !should_replace_address (op0, new_op0, GET_MODE (x),
560 MEM_ADDR_SPACE (x),
561 flags & PR_OPTIMIZE_FOR_SPEED))
562 return true;
564 tem = replace_equiv_address_nv (x, new_op0);
567 else if (code == LO_SUM)
569 op0 = XEXP (x, 0);
570 op1 = XEXP (x, 1);
572 /* The only simplification we do attempts to remove references to op0
573 or make it constant -- in both cases, op0's invalidity will not
574 make the result invalid. */
575 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
576 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
577 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
578 return true;
580 /* (lo_sum (high x) x) -> x */
581 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
582 tem = op1;
583 else
584 tem = gen_rtx_LO_SUM (mode, op0, op1);
586 /* OP1 is likely not a legitimate address, otherwise there would have
587 been no LO_SUM. We want it to disappear if it is invalid, return
588 false in that case. */
589 return memory_address_p (mode, tem);
592 else if (code == REG)
594 if (rtx_equal_p (x, old_rtx))
596 *px = new_rtx;
597 return can_appear;
600 break;
602 default:
603 break;
606 /* No change, no trouble. */
607 if (tem == NULL_RTX)
608 return true;
610 *px = tem;
612 /* The replacement we made so far is valid, if all of the recursive
613 replacements were valid, or we could simplify everything to
614 a constant. */
615 return valid_ops || can_appear || CONSTANT_P (tem);
619 /* for_each_rtx traversal function that returns 1 if BODY points to
620 a non-constant mem. */
622 static int
623 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
625 rtx x = *body;
626 return MEM_P (x) && !MEM_READONLY_P (x);
630 /* Replace all occurrences of OLD in X with NEW and try to simplify the
631 resulting expression (in mode MODE). Return a new expression if it is
632 a constant, otherwise X.
634 Simplifications where occurrences of NEW collapse to a constant are always
635 accepted. All simplifications are accepted if NEW is a pseudo too.
636 Otherwise, we accept simplifications that have a lower or equal cost. */
638 static rtx
639 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
640 bool speed)
642 rtx tem;
643 bool collapsed;
644 int flags;
646 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
647 return NULL_RTX;
649 flags = 0;
650 if (REG_P (new_rtx) || CONSTANT_P (new_rtx))
651 flags |= PR_CAN_APPEAR;
652 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
653 flags |= PR_HANDLE_MEM;
655 if (speed)
656 flags |= PR_OPTIMIZE_FOR_SPEED;
658 tem = x;
659 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
660 if (tem == x || !collapsed)
661 return NULL_RTX;
663 /* gen_lowpart_common will not be able to process VOIDmode entities other
664 than CONST_INTs. */
665 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
666 return NULL_RTX;
668 if (GET_MODE (tem) == VOIDmode)
669 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
670 else
671 gcc_assert (GET_MODE (tem) == mode);
673 return tem;
679 /* Return true if the register from reference REF is killed
680 between FROM to (but not including) TO. */
682 static bool
683 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
685 rtx insn;
687 for (insn = from; insn != to; insn = NEXT_INSN (insn))
689 df_ref *def_rec;
690 if (!INSN_P (insn))
691 continue;
693 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
695 df_ref def = *def_rec;
696 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
697 return true;
700 return false;
704 /* Check if the given DEF is available in INSN. This would require full
705 computation of available expressions; we check only restricted conditions:
706 - if DEF is the sole definition of its register, go ahead;
707 - in the same basic block, we check for no definitions killing the
708 definition of DEF_INSN;
709 - if USE's basic block has DEF's basic block as the sole predecessor,
710 we check if the definition is killed after DEF_INSN or before
711 TARGET_INSN insn, in their respective basic blocks. */
712 static bool
713 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
715 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
716 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
717 int regno;
718 df_ref def;
720 /* We used to have a def reaching a use that is _before_ the def,
721 with the def not dominating the use even though the use and def
722 are in the same basic block, when a register may be used
723 uninitialized in a loop. This should not happen anymore since
724 we do not use reaching definitions, but still we test for such
725 cases and assume that DEF is not available. */
726 if (def_bb == target_bb
727 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
728 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
729 return true;
731 /* Check if the reg in USE has only one definition. We already
732 know that this definition reaches use, or we wouldn't be here.
733 However, this is invalid for hard registers because if they are
734 live at the beginning of the function it does not mean that we
735 have an uninitialized access. */
736 regno = DF_REF_REGNO (use);
737 def = DF_REG_DEF_CHAIN (regno);
738 if (def
739 && DF_REF_NEXT_REG (def) == NULL
740 && regno >= FIRST_PSEUDO_REGISTER)
741 return false;
743 /* Check locally if we are in the same basic block. */
744 if (def_bb == target_bb)
745 return local_ref_killed_between_p (use, def_insn, target_insn);
747 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
748 if (single_pred_p (target_bb)
749 && single_pred (target_bb) == def_bb)
751 df_ref x;
753 /* See if USE is killed between DEF_INSN and the last insn in the
754 basic block containing DEF_INSN. */
755 x = df_bb_regno_last_def_find (def_bb, regno);
756 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
757 return true;
759 /* See if USE is killed between TARGET_INSN and the first insn in the
760 basic block containing TARGET_INSN. */
761 x = df_bb_regno_first_def_find (target_bb, regno);
762 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
763 return true;
765 return false;
768 /* Otherwise assume the worst case. */
769 return true;
773 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
774 would require full computation of available expressions;
775 we check only restricted conditions, see use_killed_between. */
776 static bool
777 all_uses_available_at (rtx def_insn, rtx target_insn)
779 df_ref *use_rec;
780 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
781 rtx def_set = single_set (def_insn);
783 gcc_assert (def_set);
785 /* If target_insn comes right after def_insn, which is very common
786 for addresses, we can use a quicker test. */
787 if (NEXT_INSN (def_insn) == target_insn
788 && REG_P (SET_DEST (def_set)))
790 rtx def_reg = SET_DEST (def_set);
792 /* If the insn uses the reg that it defines, the substitution is
793 invalid. */
794 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
796 df_ref use = *use_rec;
797 if (rtx_equal_p (DF_REF_REG (use), def_reg))
798 return false;
800 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
802 df_ref use = *use_rec;
803 if (rtx_equal_p (DF_REF_REG (use), def_reg))
804 return false;
807 else
809 /* Look at all the uses of DEF_INSN, and see if they are not
810 killed between DEF_INSN and TARGET_INSN. */
811 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
813 df_ref use = *use_rec;
814 if (use_killed_between (use, def_insn, target_insn))
815 return false;
817 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
819 df_ref use = *use_rec;
820 if (use_killed_between (use, def_insn, target_insn))
821 return false;
825 return true;
829 struct find_occurrence_data
831 rtx find;
832 rtx *retval;
835 /* Callback for for_each_rtx, used in find_occurrence.
836 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
837 if successful, or 0 to continue traversing otherwise. */
839 static int
840 find_occurrence_callback (rtx *px, void *data)
842 struct find_occurrence_data *fod = (struct find_occurrence_data *) data;
843 rtx x = *px;
844 rtx find = fod->find;
846 if (x == find)
848 fod->retval = px;
849 return 1;
852 return 0;
855 /* Return a pointer to one of the occurrences of register FIND in *PX. */
857 static rtx *
858 find_occurrence (rtx *px, rtx find)
860 struct find_occurrence_data data;
862 gcc_assert (REG_P (find)
863 || (GET_CODE (find) == SUBREG
864 && REG_P (SUBREG_REG (find))));
866 data.find = find;
867 data.retval = NULL;
868 for_each_rtx (px, find_occurrence_callback, &data);
869 return data.retval;
873 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
874 uses from USE_VEC. Find those that are present, and create new items
875 in the data flow object of the pass. Mark any new uses as having the
876 given TYPE. */
877 static void
878 update_df (rtx insn, rtx *loc, df_ref *use_rec, enum df_ref_type type,
879 int new_flags)
881 bool changed = false;
883 /* Add a use for the registers that were propagated. */
884 while (*use_rec)
886 df_ref use = *use_rec;
887 df_ref orig_use = use, new_use;
888 int width = -1;
889 int offset = -1;
890 enum machine_mode mode = VOIDmode;
891 rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
892 use_rec++;
894 if (!new_loc)
895 continue;
897 if (DF_REF_FLAGS_IS_SET (orig_use, DF_REF_SIGN_EXTRACT | DF_REF_ZERO_EXTRACT))
899 width = DF_REF_EXTRACT_WIDTH (orig_use);
900 offset = DF_REF_EXTRACT_OFFSET (orig_use);
901 mode = DF_REF_EXTRACT_MODE (orig_use);
904 /* Add a new insn use. Use the original type, because it says if the
905 use was within a MEM. */
906 new_use = df_ref_create (DF_REF_REG (orig_use), new_loc,
907 insn, BLOCK_FOR_INSN (insn),
908 type, DF_REF_FLAGS (orig_use) | new_flags,
909 width, offset, mode);
911 /* Set up the use-def chain. */
912 gcc_assert (DF_REF_ID (new_use) == (int) VEC_length (df_ref, use_def_ref));
913 VEC_safe_push (df_ref, heap, use_def_ref, get_def_for_use (orig_use));
914 changed = true;
916 if (changed)
917 df_insn_rescan (insn);
921 /* Try substituting NEW into LOC, which originated from forward propagation
922 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
923 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
924 new insn is not recognized. Return whether the substitution was
925 performed. */
927 static bool
928 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
930 rtx insn = DF_REF_INSN (use);
931 enum df_ref_type type = DF_REF_TYPE (use);
932 int flags = DF_REF_FLAGS (use);
933 rtx set = single_set (insn);
934 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
935 int old_cost = 0;
936 bool ok;
938 /* forward_propagate_subreg may be operating on an instruction with
939 multiple sets. If so, assume the cost of the new instruction is
940 not greater than the old one. */
941 if (set)
942 old_cost = rtx_cost (SET_SRC (set), SET, speed);
943 if (dump_file)
945 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
946 print_inline_rtx (dump_file, *loc, 2);
947 fprintf (dump_file, "\n with ");
948 print_inline_rtx (dump_file, new_rtx, 2);
949 fprintf (dump_file, "\n");
952 validate_unshare_change (insn, loc, new_rtx, true);
953 if (!verify_changes (0))
955 if (dump_file)
956 fprintf (dump_file, "Changes to insn %d not recognized\n",
957 INSN_UID (insn));
958 ok = false;
961 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
962 && set
963 && rtx_cost (SET_SRC (set), SET, speed) > old_cost)
965 if (dump_file)
966 fprintf (dump_file, "Changes to insn %d not profitable\n",
967 INSN_UID (insn));
968 ok = false;
971 else
973 if (dump_file)
974 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
975 ok = true;
978 if (ok)
980 confirm_change_group ();
981 num_changes++;
983 df_ref_remove (use);
984 if (!CONSTANT_P (new_rtx))
986 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
987 update_df (insn, loc, DF_INSN_INFO_USES (insn_info), type, flags);
988 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info), type, flags);
991 else
993 cancel_changes (0);
995 /* Can also record a simplified value in a REG_EQUAL note,
996 making a new one if one does not already exist. */
997 if (set_reg_equal)
999 if (dump_file)
1000 fprintf (dump_file, " Setting REG_EQUAL note\n");
1002 set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1004 /* ??? Is this still necessary if we add the note through
1005 set_unique_reg_note? */
1006 if (!CONSTANT_P (new_rtx))
1008 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
1009 update_df (insn, loc, DF_INSN_INFO_USES (insn_info),
1010 type, DF_REF_IN_NOTE);
1011 update_df (insn, loc, DF_INSN_INFO_EQ_USES (insn_info),
1012 type, DF_REF_IN_NOTE);
1017 return ok;
1020 /* For the given single_set INSN, containing SRC known to be a
1021 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1022 is redundant due to the register being set by a LOAD_EXTEND_OP
1023 load from memory. */
1025 static bool
1026 free_load_extend (rtx src, rtx insn)
1028 rtx reg;
1029 df_ref *use_vec;
1030 df_ref use, def;
1032 reg = XEXP (src, 0);
1033 #ifdef LOAD_EXTEND_OP
1034 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1035 #endif
1036 return false;
1038 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1040 use = *use_vec;
1042 if (!DF_REF_IS_ARTIFICIAL (use)
1043 && DF_REF_TYPE (use) == DF_REF_REG_USE
1044 && DF_REF_REG (use) == reg)
1045 break;
1047 if (!use)
1048 return false;
1050 def = get_def_for_use (use);
1051 if (!def)
1052 return false;
1054 if (DF_REF_IS_ARTIFICIAL (def))
1055 return false;
1057 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1059 rtx patt = PATTERN (DF_REF_INSN (def));
1061 if (GET_CODE (patt) == SET
1062 && GET_CODE (SET_SRC (patt)) == MEM
1063 && rtx_equal_p (SET_DEST (patt), reg))
1064 return true;
1066 return false;
1069 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1071 static bool
1072 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1074 rtx use_reg = DF_REF_REG (use);
1075 rtx use_insn, src;
1077 /* Only consider subregs... */
1078 enum machine_mode use_mode = GET_MODE (use_reg);
1079 if (GET_CODE (use_reg) != SUBREG
1080 || !REG_P (SET_DEST (def_set)))
1081 return false;
1083 /* If this is a paradoxical SUBREG... */
1084 if (GET_MODE_SIZE (use_mode)
1085 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1087 /* If this is a paradoxical SUBREG, we have no idea what value the
1088 extra bits would have. However, if the operand is equivalent to
1089 a SUBREG whose operand is the same as our mode, and all the modes
1090 are within a word, we can just use the inner operand because
1091 these SUBREGs just say how to treat the register. */
1092 use_insn = DF_REF_INSN (use);
1093 src = SET_SRC (def_set);
1094 if (GET_CODE (src) == SUBREG
1095 && REG_P (SUBREG_REG (src))
1096 && GET_MODE (SUBREG_REG (src)) == use_mode
1097 && subreg_lowpart_p (src)
1098 && all_uses_available_at (def_insn, use_insn))
1099 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1100 def_insn, false);
1103 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1104 is the low part of the reg being extended then just use the inner
1105 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1106 be removed due to it matching a LOAD_EXTEND_OP load from memory. */
1107 else if (subreg_lowpart_p (use_reg))
1109 use_insn = DF_REF_INSN (use);
1110 src = SET_SRC (def_set);
1111 if ((GET_CODE (src) == ZERO_EXTEND
1112 || GET_CODE (src) == SIGN_EXTEND)
1113 && REG_P (XEXP (src, 0))
1114 && GET_MODE (XEXP (src, 0)) == use_mode
1115 && !free_load_extend (src, def_insn)
1116 && all_uses_available_at (def_insn, use_insn))
1117 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1118 def_insn, false);
1121 return false;
1124 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1126 static bool
1127 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1129 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1130 int speed_p, i;
1131 df_ref *use_vec;
1133 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1135 src = SET_SRC (def_set);
1136 use_pat = PATTERN (use_insn);
1138 /* In __asm don't replace if src might need more registers than
1139 reg, as that could increase register pressure on the __asm. */
1140 use_vec = DF_INSN_USES (def_insn);
1141 if (use_vec[0] && use_vec[1])
1142 return false;
1144 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1145 asm_operands = NULL_RTX;
1146 switch (GET_CODE (use_pat))
1148 case ASM_OPERANDS:
1149 asm_operands = use_pat;
1150 break;
1151 case SET:
1152 if (MEM_P (SET_DEST (use_pat)))
1154 loc = &SET_DEST (use_pat);
1155 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1156 if (new_rtx)
1157 validate_unshare_change (use_insn, loc, new_rtx, true);
1159 asm_operands = SET_SRC (use_pat);
1160 break;
1161 case PARALLEL:
1162 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1163 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1165 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1167 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1168 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1169 src, speed_p);
1170 if (new_rtx)
1171 validate_unshare_change (use_insn, loc, new_rtx, true);
1173 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1175 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1176 asm_operands = XVECEXP (use_pat, 0, i);
1177 break;
1178 default:
1179 gcc_unreachable ();
1182 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1183 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1185 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1186 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1187 if (new_rtx)
1188 validate_unshare_change (use_insn, loc, new_rtx, true);
1191 if (num_changes_pending () == 0 || !apply_change_group ())
1192 return false;
1194 num_changes++;
1195 return true;
1198 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1199 result. */
1201 static bool
1202 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1204 rtx use_insn = DF_REF_INSN (use);
1205 rtx use_set = single_set (use_insn);
1206 rtx src, reg, new_rtx, *loc;
1207 bool set_reg_equal;
1208 enum machine_mode mode;
1209 int asm_use = -1;
1211 if (INSN_CODE (use_insn) < 0)
1212 asm_use = asm_noperands (PATTERN (use_insn));
1214 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1215 return false;
1217 /* Do not propagate into PC, CC0, etc. */
1218 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1219 return false;
1221 /* If def and use are subreg, check if they match. */
1222 reg = DF_REF_REG (use);
1223 if (GET_CODE (reg) == SUBREG
1224 && GET_CODE (SET_DEST (def_set)) == SUBREG
1225 && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
1226 || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
1227 return false;
1229 /* Check if the def had a subreg, but the use has the whole reg. */
1230 if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1231 return false;
1233 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1234 previous case, the optimization is possible and often useful indeed. */
1235 if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1236 reg = SUBREG_REG (reg);
1238 /* Check if the substitution is valid (last, because it's the most
1239 expensive check!). */
1240 src = SET_SRC (def_set);
1241 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1242 return false;
1244 /* Check if the def is loading something from the constant pool; in this
1245 case we would undo optimization such as compress_float_constant.
1246 Still, we can set a REG_EQUAL note. */
1247 if (MEM_P (src) && MEM_READONLY_P (src))
1249 rtx x = avoid_constant_pool_reference (src);
1250 if (x != src && use_set)
1252 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1253 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1254 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1255 if (old_rtx != new_rtx)
1256 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1258 return false;
1261 if (asm_use >= 0)
1262 return forward_propagate_asm (use, def_insn, def_set, reg);
1264 /* Else try simplifying. */
1266 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1268 loc = &SET_DEST (use_set);
1269 set_reg_equal = false;
1271 else if (!use_set)
1273 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1274 set_reg_equal = false;
1276 else
1278 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1279 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1280 loc = &XEXP (note, 0);
1281 else
1282 loc = &SET_SRC (use_set);
1284 /* Do not replace an existing REG_EQUAL note if the insn is not
1285 recognized. Either we're already replacing in the note, or
1286 we'll separately try plugging the definition in the note and
1287 simplifying. */
1288 set_reg_equal = (note == NULL_RTX);
1291 if (GET_MODE (*loc) == VOIDmode)
1292 mode = GET_MODE (SET_DEST (use_set));
1293 else
1294 mode = GET_MODE (*loc);
1296 new_rtx = propagate_rtx (*loc, mode, reg, src,
1297 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1299 if (!new_rtx)
1300 return false;
1302 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1306 /* Given a use USE of an insn, if it has a single reaching
1307 definition, try to forward propagate it into that insn. */
1309 static void
1310 forward_propagate_into (df_ref use)
1312 df_ref def;
1313 rtx def_insn, def_set, use_insn;
1314 rtx parent;
1316 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1317 return;
1318 if (DF_REF_IS_ARTIFICIAL (use))
1319 return;
1321 /* Only consider uses that have a single definition. */
1322 def = get_def_for_use (use);
1323 if (!def)
1324 return;
1325 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1326 return;
1327 if (DF_REF_IS_ARTIFICIAL (def))
1328 return;
1330 /* Do not propagate loop invariant definitions inside the loop. */
1331 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1332 return;
1334 /* Check if the use is still present in the insn! */
1335 use_insn = DF_REF_INSN (use);
1336 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1337 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1338 else
1339 parent = PATTERN (use_insn);
1341 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1342 return;
1344 def_insn = DF_REF_INSN (def);
1345 if (multiple_sets (def_insn))
1346 return;
1347 def_set = single_set (def_insn);
1348 if (!def_set)
1349 return;
1351 /* Only try one kind of propagation. If two are possible, we'll
1352 do it on the following iterations. */
1353 if (!forward_propagate_and_simplify (use, def_insn, def_set))
1354 forward_propagate_subreg (use, def_insn, def_set);
1358 static void
1359 fwprop_init (void)
1361 num_changes = 0;
1362 calculate_dominance_info (CDI_DOMINATORS);
1364 /* We do not always want to propagate into loops, so we have to find
1365 loops and be careful about them. But we have to call flow_loops_find
1366 before df_analyze, because flow_loops_find may introduce new jump
1367 insns (sadly) if we are not working in cfglayout mode. */
1368 loop_optimizer_init (0);
1370 build_single_def_use_links ();
1371 df_set_flags (DF_DEFER_INSN_RESCAN);
1374 static void
1375 fwprop_done (void)
1377 loop_optimizer_finalize ();
1379 VEC_free (df_ref, heap, use_def_ref);
1380 free_dominance_info (CDI_DOMINATORS);
1381 cleanup_cfg (0);
1382 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1384 if (dump_file)
1385 fprintf (dump_file,
1386 "\nNumber of successful forward propagations: %d\n\n",
1387 num_changes);
1388 df_remove_problem (df_chain);
1393 /* Main entry point. */
1395 static bool
1396 gate_fwprop (void)
1398 return optimize > 0 && flag_forward_propagate;
1401 static unsigned int
1402 fwprop (void)
1404 unsigned i;
1406 fwprop_init ();
1408 /* Go through all the uses. update_df will create new ones at the
1409 end, and we'll go through them as well.
1411 Do not forward propagate addresses into loops until after unrolling.
1412 CSE did so because it was able to fix its own mess, but we are not. */
1414 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1416 df_ref use = DF_USES_GET (i);
1417 if (use)
1418 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1419 || DF_REF_BB (use)->loop_father == NULL
1420 /* The outer most loop is not really a loop. */
1421 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1422 forward_propagate_into (use);
1425 fwprop_done ();
1426 return 0;
1429 struct rtl_opt_pass pass_rtl_fwprop =
1432 RTL_PASS,
1433 "fwprop1", /* name */
1434 gate_fwprop, /* gate */
1435 fwprop, /* execute */
1436 NULL, /* sub */
1437 NULL, /* next */
1438 0, /* static_pass_number */
1439 TV_FWPROP, /* tv_id */
1440 0, /* properties_required */
1441 0, /* properties_provided */
1442 0, /* properties_destroyed */
1443 0, /* todo_flags_start */
1444 TODO_df_finish | TODO_verify_rtl_sharing |
1445 TODO_dump_func /* todo_flags_finish */
1449 static unsigned int
1450 fwprop_addr (void)
1452 unsigned i;
1453 fwprop_init ();
1455 /* Go through all the uses. update_df will create new ones at the
1456 end, and we'll go through them as well. */
1457 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1459 df_ref use = DF_USES_GET (i);
1460 if (use)
1461 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1462 && DF_REF_BB (use)->loop_father != NULL
1463 /* The outer most loop is not really a loop. */
1464 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1465 forward_propagate_into (use);
1468 fwprop_done ();
1470 return 0;
1473 struct rtl_opt_pass pass_rtl_fwprop_addr =
1476 RTL_PASS,
1477 "fwprop2", /* name */
1478 gate_fwprop, /* gate */
1479 fwprop_addr, /* execute */
1480 NULL, /* sub */
1481 NULL, /* next */
1482 0, /* static_pass_number */
1483 TV_FWPROP, /* tv_id */
1484 0, /* properties_required */
1485 0, /* properties_provided */
1486 0, /* properties_destroyed */
1487 0, /* todo_flags_start */
1488 TODO_df_finish | TODO_verify_rtl_sharing |
1489 TODO_dump_func /* todo_flags_finish */