PR c++/86728 - C variadic generic lambda.
[official-gcc.git] / gcc / tree-vectorizer.h
blobd91cc075f0ea2cc747d2ed2fb747725f02c193d3
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef struct _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
30 /* Used for naming of new temporaries. */
31 enum vect_var_kind {
32 vect_simple_var,
33 vect_pointer_var,
34 vect_scalar_var,
35 vect_mask_var
38 /* Defines type of operation. */
39 enum operation_type {
40 unary_op = 1,
41 binary_op,
42 ternary_op
45 /* Define type of available alignment support. */
46 enum dr_alignment_support {
47 dr_unaligned_unsupported,
48 dr_unaligned_supported,
49 dr_explicit_realign,
50 dr_explicit_realign_optimized,
51 dr_aligned
54 /* Define type of def-use cross-iteration cycle. */
55 enum vect_def_type {
56 vect_uninitialized_def = 0,
57 vect_constant_def = 1,
58 vect_external_def,
59 vect_internal_def,
60 vect_induction_def,
61 vect_reduction_def,
62 vect_double_reduction_def,
63 vect_nested_cycle,
64 vect_unknown_def_type
67 /* Define type of reduction. */
68 enum vect_reduction_type {
69 TREE_CODE_REDUCTION,
70 COND_REDUCTION,
71 INTEGER_INDUC_COND_REDUCTION,
72 CONST_COND_REDUCTION,
74 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
75 to implement:
77 for (int i = 0; i < VF; ++i)
78 res = cond[i] ? val[i] : res; */
79 EXTRACT_LAST_REDUCTION,
81 /* Use a folding reduction within the loop to implement:
83 for (int i = 0; i < VF; ++i)
84 res = res OP val[i];
86 (with no reassocation). */
87 FOLD_LEFT_REDUCTION
90 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
91 || ((D) == vect_double_reduction_def) \
92 || ((D) == vect_nested_cycle))
94 /* Structure to encapsulate information about a group of like
95 instructions to be presented to the target cost model. */
96 struct stmt_info_for_cost {
97 int count;
98 enum vect_cost_for_stmt kind;
99 enum vect_cost_model_location where;
100 stmt_vec_info stmt_info;
101 int misalign;
104 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
106 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
107 known alignment for that base. */
108 typedef hash_map<tree_operand_hash,
109 innermost_loop_behavior *> vec_base_alignments;
111 /************************************************************************
113 ************************************************************************/
114 typedef struct _slp_tree *slp_tree;
116 /* A computation tree of an SLP instance. Each node corresponds to a group of
117 stmts to be packed in a SIMD stmt. */
118 struct _slp_tree {
119 /* Nodes that contain def-stmts of this node statements operands. */
120 vec<slp_tree> children;
121 /* A group of scalar stmts to be vectorized together. */
122 vec<stmt_vec_info> stmts;
123 /* Load permutation relative to the stores, NULL if there is no
124 permutation. */
125 vec<unsigned> load_permutation;
126 /* Vectorized stmt/s. */
127 vec<stmt_vec_info> vec_stmts;
128 /* Number of vector stmts that are created to replace the group of scalar
129 stmts. It is calculated during the transformation phase as the number of
130 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
131 divided by vector size. */
132 unsigned int vec_stmts_size;
133 /* Whether the scalar computations use two different operators. */
134 bool two_operators;
135 /* The DEF type of this node. */
136 enum vect_def_type def_type;
140 /* SLP instance is a sequence of stmts in a loop that can be packed into
141 SIMD stmts. */
142 typedef struct _slp_instance {
143 /* The root of SLP tree. */
144 slp_tree root;
146 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
147 unsigned int group_size;
149 /* The unrolling factor required to vectorized this SLP instance. */
150 poly_uint64 unrolling_factor;
152 /* The group of nodes that contain loads of this SLP instance. */
153 vec<slp_tree> loads;
155 /* The SLP node containing the reduction PHIs. */
156 slp_tree reduc_phis;
157 } *slp_instance;
160 /* Access Functions. */
161 #define SLP_INSTANCE_TREE(S) (S)->root
162 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
163 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
164 #define SLP_INSTANCE_LOADS(S) (S)->loads
166 #define SLP_TREE_CHILDREN(S) (S)->children
167 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
168 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
169 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
170 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
171 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
172 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
176 /* Describes two objects whose addresses must be unequal for the vectorized
177 loop to be valid. */
178 typedef std::pair<tree, tree> vec_object_pair;
180 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
181 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
182 struct vec_lower_bound {
183 vec_lower_bound () {}
184 vec_lower_bound (tree e, bool u, poly_uint64 m)
185 : expr (e), unsigned_p (u), min_value (m) {}
187 tree expr;
188 bool unsigned_p;
189 poly_uint64 min_value;
192 /* Vectorizer state shared between different analyses like vector sizes
193 of the same CFG region. */
194 struct vec_info_shared {
195 vec_info_shared();
196 ~vec_info_shared();
198 void save_datarefs();
199 void check_datarefs();
201 /* All data references. Freed by free_data_refs, so not an auto_vec. */
202 vec<data_reference_p> datarefs;
203 vec<data_reference> datarefs_copy;
205 /* The loop nest in which the data dependences are computed. */
206 auto_vec<loop_p> loop_nest;
208 /* All data dependences. Freed by free_dependence_relations, so not
209 an auto_vec. */
210 vec<ddr_p> ddrs;
213 /* Vectorizer state common between loop and basic-block vectorization. */
214 struct vec_info {
215 enum vec_kind { bb, loop };
217 vec_info (vec_kind, void *, vec_info_shared *);
218 ~vec_info ();
220 stmt_vec_info add_stmt (gimple *);
221 stmt_vec_info lookup_stmt (gimple *);
222 stmt_vec_info lookup_def (tree);
223 stmt_vec_info lookup_single_use (tree);
224 struct dr_vec_info *lookup_dr (data_reference *);
225 void move_dr (stmt_vec_info, stmt_vec_info);
226 void remove_stmt (stmt_vec_info);
227 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
229 /* The type of vectorization. */
230 vec_kind kind;
232 /* Shared vectorizer state. */
233 vec_info_shared *shared;
235 /* The mapping of GIMPLE UID to stmt_vec_info. */
236 vec<stmt_vec_info> stmt_vec_infos;
238 /* All SLP instances. */
239 auto_vec<slp_instance> slp_instances;
241 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
242 known alignment for that base. */
243 vec_base_alignments base_alignments;
245 /* All interleaving chains of stores, represented by the first
246 stmt in the chain. */
247 auto_vec<stmt_vec_info> grouped_stores;
249 /* Cost data used by the target cost model. */
250 void *target_cost_data;
252 private:
253 stmt_vec_info new_stmt_vec_info (gimple *stmt);
254 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
255 void free_stmt_vec_infos ();
256 void free_stmt_vec_info (stmt_vec_info);
259 struct _loop_vec_info;
260 struct _bb_vec_info;
262 template<>
263 template<>
264 inline bool
265 is_a_helper <_loop_vec_info *>::test (vec_info *i)
267 return i->kind == vec_info::loop;
270 template<>
271 template<>
272 inline bool
273 is_a_helper <_bb_vec_info *>::test (vec_info *i)
275 return i->kind == vec_info::bb;
279 /* In general, we can divide the vector statements in a vectorized loop
280 into related groups ("rgroups") and say that for each rgroup there is
281 some nS such that the rgroup operates on nS values from one scalar
282 iteration followed by nS values from the next. That is, if VF is the
283 vectorization factor of the loop, the rgroup operates on a sequence:
285 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
287 where (i,j) represents a scalar value with index j in a scalar
288 iteration with index i.
290 [ We use the term "rgroup" to emphasise that this grouping isn't
291 necessarily the same as the grouping of statements used elsewhere.
292 For example, if we implement a group of scalar loads using gather
293 loads, we'll use a separate gather load for each scalar load, and
294 thus each gather load will belong to its own rgroup. ]
296 In general this sequence will occupy nV vectors concatenated
297 together. If these vectors have nL lanes each, the total number
298 of scalar values N is given by:
300 N = nS * VF = nV * nL
302 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
303 are compile-time constants but VF and nL can be variable (if the target
304 supports variable-length vectors).
306 In classical vectorization, each iteration of the vector loop would
307 handle exactly VF iterations of the original scalar loop. However,
308 in a fully-masked loop, a particular iteration of the vector loop
309 might handle fewer than VF iterations of the scalar loop. The vector
310 lanes that correspond to iterations of the scalar loop are said to be
311 "active" and the other lanes are said to be "inactive".
313 In a fully-masked loop, many rgroups need to be masked to ensure that
314 they have no effect for the inactive lanes. Each such rgroup needs a
315 sequence of booleans in the same order as above, but with each (i,j)
316 replaced by a boolean that indicates whether iteration i is active.
317 This sequence occupies nV vector masks that again have nL lanes each.
318 Thus the mask sequence as a whole consists of VF independent booleans
319 that are each repeated nS times.
321 We make the simplifying assumption that if a sequence of nV masks is
322 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
323 VIEW_CONVERTing it. This holds for all current targets that support
324 fully-masked loops. For example, suppose the scalar loop is:
326 float *f;
327 double *d;
328 for (int i = 0; i < n; ++i)
330 f[i * 2 + 0] += 1.0f;
331 f[i * 2 + 1] += 2.0f;
332 d[i] += 3.0;
335 and suppose that vectors have 256 bits. The vectorized f accesses
336 will belong to one rgroup and the vectorized d access to another:
338 f rgroup: nS = 2, nV = 1, nL = 8
339 d rgroup: nS = 1, nV = 1, nL = 4
340 VF = 4
342 [ In this simple example the rgroups do correspond to the normal
343 SLP grouping scheme. ]
345 If only the first three lanes are active, the masks we need are:
347 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
348 d rgroup: 1 | 1 | 1 | 0
350 Here we can use a mask calculated for f's rgroup for d's, but not
351 vice versa.
353 Thus for each value of nV, it is enough to provide nV masks, with the
354 mask being calculated based on the highest nL (or, equivalently, based
355 on the highest nS) required by any rgroup with that nV. We therefore
356 represent the entire collection of masks as a two-level table, with the
357 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
358 the second being indexed by the mask index 0 <= i < nV. */
360 /* The masks needed by rgroups with nV vectors, according to the
361 description above. */
362 struct rgroup_masks {
363 /* The largest nS for all rgroups that use these masks. */
364 unsigned int max_nscalars_per_iter;
366 /* The type of mask to use, based on the highest nS recorded above. */
367 tree mask_type;
369 /* A vector of nV masks, in iteration order. */
370 vec<tree> masks;
373 typedef auto_vec<rgroup_masks> vec_loop_masks;
375 /*-----------------------------------------------------------------*/
376 /* Info on vectorized loops. */
377 /*-----------------------------------------------------------------*/
378 typedef struct _loop_vec_info : public vec_info {
379 _loop_vec_info (struct loop *, vec_info_shared *);
380 ~_loop_vec_info ();
382 /* The loop to which this info struct refers to. */
383 struct loop *loop;
385 /* The loop basic blocks. */
386 basic_block *bbs;
388 /* Number of latch executions. */
389 tree num_itersm1;
390 /* Number of iterations. */
391 tree num_iters;
392 /* Number of iterations of the original loop. */
393 tree num_iters_unchanged;
394 /* Condition under which this loop is analyzed and versioned. */
395 tree num_iters_assumptions;
397 /* Threshold of number of iterations below which vectorzation will not be
398 performed. It is calculated from MIN_PROFITABLE_ITERS and
399 PARAM_MIN_VECT_LOOP_BOUND. */
400 unsigned int th;
402 /* When applying loop versioning, the vector form should only be used
403 if the number of scalar iterations is >= this value, on top of all
404 the other requirements. Ignored when loop versioning is not being
405 used. */
406 poly_uint64 versioning_threshold;
408 /* Unrolling factor */
409 poly_uint64 vectorization_factor;
411 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
412 if there is no particular limit. */
413 unsigned HOST_WIDE_INT max_vectorization_factor;
415 /* The masks that a fully-masked loop should use to avoid operating
416 on inactive scalars. */
417 vec_loop_masks masks;
419 /* If we are using a loop mask to align memory addresses, this variable
420 contains the number of vector elements that we should skip in the
421 first iteration of the vector loop (i.e. the number of leading
422 elements that should be false in the first mask). */
423 tree mask_skip_niters;
425 /* Type of the variables to use in the WHILE_ULT call for fully-masked
426 loops. */
427 tree mask_compare_type;
429 /* Unknown DRs according to which loop was peeled. */
430 struct dr_vec_info *unaligned_dr;
432 /* peeling_for_alignment indicates whether peeling for alignment will take
433 place, and what the peeling factor should be:
434 peeling_for_alignment = X means:
435 If X=0: Peeling for alignment will not be applied.
436 If X>0: Peel first X iterations.
437 If X=-1: Generate a runtime test to calculate the number of iterations
438 to be peeled, using the dataref recorded in the field
439 unaligned_dr. */
440 int peeling_for_alignment;
442 /* The mask used to check the alignment of pointers or arrays. */
443 int ptr_mask;
445 /* Data Dependence Relations defining address ranges that are candidates
446 for a run-time aliasing check. */
447 auto_vec<ddr_p> may_alias_ddrs;
449 /* Data Dependence Relations defining address ranges together with segment
450 lengths from which the run-time aliasing check is built. */
451 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
453 /* Check that the addresses of each pair of objects is unequal. */
454 auto_vec<vec_object_pair> check_unequal_addrs;
456 /* List of values that are required to be nonzero. This is used to check
457 whether things like "x[i * n] += 1;" are safe and eventually gets added
458 to the checks for lower bounds below. */
459 auto_vec<tree> check_nonzero;
461 /* List of values that need to be checked for a minimum value. */
462 auto_vec<vec_lower_bound> lower_bounds;
464 /* Statements in the loop that have data references that are candidates for a
465 runtime (loop versioning) misalignment check. */
466 auto_vec<stmt_vec_info> may_misalign_stmts;
468 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
469 auto_vec<stmt_vec_info> reductions;
471 /* All reduction chains in the loop, represented by the first
472 stmt in the chain. */
473 auto_vec<stmt_vec_info> reduction_chains;
475 /* Cost vector for a single scalar iteration. */
476 auto_vec<stmt_info_for_cost> scalar_cost_vec;
478 /* Map of IV base/step expressions to inserted name in the preheader. */
479 hash_map<tree_operand_hash, tree> *ivexpr_map;
481 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
482 applied to the loop, i.e., no unrolling is needed, this is 1. */
483 poly_uint64 slp_unrolling_factor;
485 /* Cost of a single scalar iteration. */
486 int single_scalar_iteration_cost;
488 /* Is the loop vectorizable? */
489 bool vectorizable;
491 /* Records whether we still have the option of using a fully-masked loop. */
492 bool can_fully_mask_p;
494 /* True if have decided to use a fully-masked loop. */
495 bool fully_masked_p;
497 /* When we have grouped data accesses with gaps, we may introduce invalid
498 memory accesses. We peel the last iteration of the loop to prevent
499 this. */
500 bool peeling_for_gaps;
502 /* When the number of iterations is not a multiple of the vector size
503 we need to peel off iterations at the end to form an epilogue loop. */
504 bool peeling_for_niter;
506 /* Reductions are canonicalized so that the last operand is the reduction
507 operand. If this places a constant into RHS1, this decanonicalizes
508 GIMPLE for other phases, so we must track when this has occurred and
509 fix it up. */
510 bool operands_swapped;
512 /* True if there are no loop carried data dependencies in the loop.
513 If loop->safelen <= 1, then this is always true, either the loop
514 didn't have any loop carried data dependencies, or the loop is being
515 vectorized guarded with some runtime alias checks, or couldn't
516 be vectorized at all, but then this field shouldn't be used.
517 For loop->safelen >= 2, the user has asserted that there are no
518 backward dependencies, but there still could be loop carried forward
519 dependencies in such loops. This flag will be false if normal
520 vectorizer data dependency analysis would fail or require versioning
521 for alias, but because of loop->safelen >= 2 it has been vectorized
522 even without versioning for alias. E.g. in:
523 #pragma omp simd
524 for (int i = 0; i < m; i++)
525 a[i] = a[i + k] * c;
526 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
527 DTRT even for k > 0 && k < m, but without safelen we would not
528 vectorize this, so this field would be false. */
529 bool no_data_dependencies;
531 /* Mark loops having masked stores. */
532 bool has_mask_store;
534 /* If if-conversion versioned this loop before conversion, this is the
535 loop version without if-conversion. */
536 struct loop *scalar_loop;
538 /* For loops being epilogues of already vectorized loops
539 this points to the original vectorized loop. Otherwise NULL. */
540 _loop_vec_info *orig_loop_info;
542 } *loop_vec_info;
544 /* Access Functions. */
545 #define LOOP_VINFO_LOOP(L) (L)->loop
546 #define LOOP_VINFO_BBS(L) (L)->bbs
547 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
548 #define LOOP_VINFO_NITERS(L) (L)->num_iters
549 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
550 prologue peeling retain total unchanged scalar loop iterations for
551 cost model. */
552 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
553 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
554 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
555 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
556 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
557 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
558 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
559 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
560 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
561 #define LOOP_VINFO_MASKS(L) (L)->masks
562 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
563 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
564 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
565 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
566 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
567 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
568 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
569 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
570 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
571 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
572 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
573 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
574 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
575 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
576 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
577 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
578 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
579 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
580 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
581 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
582 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
583 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
584 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
585 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
586 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
587 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
588 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
589 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
590 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
591 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
593 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
594 ((L)->may_misalign_stmts.length () > 0)
595 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
596 ((L)->comp_alias_ddrs.length () > 0 \
597 || (L)->check_unequal_addrs.length () > 0 \
598 || (L)->lower_bounds.length () > 0)
599 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
600 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
601 #define LOOP_REQUIRES_VERSIONING(L) \
602 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
603 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
604 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
606 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
607 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
609 #define LOOP_VINFO_EPILOGUE_P(L) \
610 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
612 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
613 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
615 static inline loop_vec_info
616 loop_vec_info_for_loop (struct loop *loop)
618 return (loop_vec_info) loop->aux;
621 typedef struct _bb_vec_info : public vec_info
623 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
624 ~_bb_vec_info ();
626 basic_block bb;
627 gimple_stmt_iterator region_begin;
628 gimple_stmt_iterator region_end;
629 } *bb_vec_info;
631 #define BB_VINFO_BB(B) (B)->bb
632 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
633 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
634 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
635 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
636 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
638 static inline bb_vec_info
639 vec_info_for_bb (basic_block bb)
641 return (bb_vec_info) bb->aux;
644 /*-----------------------------------------------------------------*/
645 /* Info on vectorized defs. */
646 /*-----------------------------------------------------------------*/
647 enum stmt_vec_info_type {
648 undef_vec_info_type = 0,
649 load_vec_info_type,
650 store_vec_info_type,
651 shift_vec_info_type,
652 op_vec_info_type,
653 call_vec_info_type,
654 call_simd_clone_vec_info_type,
655 assignment_vec_info_type,
656 condition_vec_info_type,
657 comparison_vec_info_type,
658 reduc_vec_info_type,
659 induc_vec_info_type,
660 type_promotion_vec_info_type,
661 type_demotion_vec_info_type,
662 type_conversion_vec_info_type,
663 loop_exit_ctrl_vec_info_type
666 /* Indicates whether/how a variable is used in the scope of loop/basic
667 block. */
668 enum vect_relevant {
669 vect_unused_in_scope = 0,
671 /* The def is only used outside the loop. */
672 vect_used_only_live,
673 /* The def is in the inner loop, and the use is in the outer loop, and the
674 use is a reduction stmt. */
675 vect_used_in_outer_by_reduction,
676 /* The def is in the inner loop, and the use is in the outer loop (and is
677 not part of reduction). */
678 vect_used_in_outer,
680 /* defs that feed computations that end up (only) in a reduction. These
681 defs may be used by non-reduction stmts, but eventually, any
682 computations/values that are affected by these defs are used to compute
683 a reduction (i.e. don't get stored to memory, for example). We use this
684 to identify computations that we can change the order in which they are
685 computed. */
686 vect_used_by_reduction,
688 vect_used_in_scope
691 /* The type of vectorization that can be applied to the stmt: regular loop-based
692 vectorization; pure SLP - the stmt is a part of SLP instances and does not
693 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
694 a part of SLP instance and also must be loop-based vectorized, since it has
695 uses outside SLP sequences.
697 In the loop context the meanings of pure and hybrid SLP are slightly
698 different. By saying that pure SLP is applied to the loop, we mean that we
699 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
700 vectorized without doing any conceptual unrolling, cause we don't pack
701 together stmts from different iterations, only within a single iteration.
702 Loop hybrid SLP means that we exploit both intra-iteration and
703 inter-iteration parallelism (e.g., number of elements in the vector is 4
704 and the slp-group-size is 2, in which case we don't have enough parallelism
705 within an iteration, so we obtain the rest of the parallelism from subsequent
706 iterations by unrolling the loop by 2). */
707 enum slp_vect_type {
708 loop_vect = 0,
709 pure_slp,
710 hybrid
713 /* Says whether a statement is a load, a store of a vectorized statement
714 result, or a store of an invariant value. */
715 enum vec_load_store_type {
716 VLS_LOAD,
717 VLS_STORE,
718 VLS_STORE_INVARIANT
721 /* Describes how we're going to vectorize an individual load or store,
722 or a group of loads or stores. */
723 enum vect_memory_access_type {
724 /* An access to an invariant address. This is used only for loads. */
725 VMAT_INVARIANT,
727 /* A simple contiguous access. */
728 VMAT_CONTIGUOUS,
730 /* A contiguous access that goes down in memory rather than up,
731 with no additional permutation. This is used only for stores
732 of invariants. */
733 VMAT_CONTIGUOUS_DOWN,
735 /* A simple contiguous access in which the elements need to be permuted
736 after loading or before storing. Only used for loop vectorization;
737 SLP uses separate permutes. */
738 VMAT_CONTIGUOUS_PERMUTE,
740 /* A simple contiguous access in which the elements need to be reversed
741 after loading or before storing. */
742 VMAT_CONTIGUOUS_REVERSE,
744 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
745 VMAT_LOAD_STORE_LANES,
747 /* An access in which each scalar element is loaded or stored
748 individually. */
749 VMAT_ELEMENTWISE,
751 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
752 SLP accesses. Each unrolled iteration uses a contiguous load
753 or store for the whole group, but the groups from separate iterations
754 are combined in the same way as for VMAT_ELEMENTWISE. */
755 VMAT_STRIDED_SLP,
757 /* The access uses gather loads or scatter stores. */
758 VMAT_GATHER_SCATTER
761 struct dr_vec_info {
762 /* The data reference itself. */
763 data_reference *dr;
764 /* The statement that contains the data reference. */
765 stmt_vec_info stmt;
766 /* The misalignment in bytes of the reference, or -1 if not known. */
767 int misalignment;
768 /* The byte alignment that we'd ideally like the reference to have,
769 and the value that misalignment is measured against. */
770 int target_alignment;
771 /* If true the alignment of base_decl needs to be increased. */
772 bool base_misaligned;
773 tree base_decl;
776 typedef struct data_reference *dr_p;
778 struct _stmt_vec_info {
780 enum stmt_vec_info_type type;
782 /* Indicates whether this stmts is part of a computation whose result is
783 used outside the loop. */
784 bool live;
786 /* Stmt is part of some pattern (computation idiom) */
787 bool in_pattern_p;
789 /* True if the statement was created during pattern recognition as
790 part of the replacement for RELATED_STMT. This implies that the
791 statement isn't part of any basic block, although for convenience
792 its gimple_bb is the same as for RELATED_STMT. */
793 bool pattern_stmt_p;
795 /* Is this statement vectorizable or should it be skipped in (partial)
796 vectorization. */
797 bool vectorizable;
799 /* The stmt to which this info struct refers to. */
800 gimple *stmt;
802 /* The vec_info with respect to which STMT is vectorized. */
803 vec_info *vinfo;
805 /* The vector type to be used for the LHS of this statement. */
806 tree vectype;
808 /* The vectorized version of the stmt. */
809 stmt_vec_info vectorized_stmt;
812 /* The following is relevant only for stmts that contain a non-scalar
813 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
814 at most one such data-ref. */
816 dr_vec_info dr_aux;
818 /* Information about the data-ref relative to this loop
819 nest (the loop that is being considered for vectorization). */
820 innermost_loop_behavior dr_wrt_vec_loop;
822 /* For loop PHI nodes, the base and evolution part of it. This makes sure
823 this information is still available in vect_update_ivs_after_vectorizer
824 where we may not be able to re-analyze the PHI nodes evolution as
825 peeling for the prologue loop can make it unanalyzable. The evolution
826 part is still correct after peeling, but the base may have changed from
827 the version here. */
828 tree loop_phi_evolution_base_unchanged;
829 tree loop_phi_evolution_part;
831 /* Used for various bookkeeping purposes, generally holding a pointer to
832 some other stmt S that is in some way "related" to this stmt.
833 Current use of this field is:
834 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
835 true): S is the "pattern stmt" that represents (and replaces) the
836 sequence of stmts that constitutes the pattern. Similarly, the
837 related_stmt of the "pattern stmt" points back to this stmt (which is
838 the last stmt in the original sequence of stmts that constitutes the
839 pattern). */
840 stmt_vec_info related_stmt;
842 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
843 The sequence is attached to the original statement rather than the
844 pattern statement. */
845 gimple_seq pattern_def_seq;
847 /* List of datarefs that are known to have the same alignment as the dataref
848 of this stmt. */
849 vec<dr_p> same_align_refs;
851 /* Selected SIMD clone's function info. First vector element
852 is SIMD clone's function decl, followed by a pair of trees (base + step)
853 for linear arguments (pair of NULLs for other arguments). */
854 vec<tree> simd_clone_info;
856 /* Classify the def of this stmt. */
857 enum vect_def_type def_type;
859 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
860 enum slp_vect_type slp_type;
862 /* Interleaving and reduction chains info. */
863 /* First element in the group. */
864 stmt_vec_info first_element;
865 /* Pointer to the next element in the group. */
866 stmt_vec_info next_element;
867 /* For data-refs, in case that two or more stmts share data-ref, this is the
868 pointer to the previously detected stmt with the same dr. */
869 stmt_vec_info same_dr_stmt;
870 /* The size of the group. */
871 unsigned int size;
872 /* For stores, number of stores from this group seen. We vectorize the last
873 one. */
874 unsigned int store_count;
875 /* For loads only, the gap from the previous load. For consecutive loads, GAP
876 is 1. */
877 unsigned int gap;
879 /* The minimum negative dependence distance this stmt participates in
880 or zero if none. */
881 unsigned int min_neg_dist;
883 /* Not all stmts in the loop need to be vectorized. e.g, the increment
884 of the loop induction variable and computation of array indexes. relevant
885 indicates whether the stmt needs to be vectorized. */
886 enum vect_relevant relevant;
888 /* For loads if this is a gather, for stores if this is a scatter. */
889 bool gather_scatter_p;
891 /* True if this is an access with loop-invariant stride. */
892 bool strided_p;
894 /* For both loads and stores. */
895 bool simd_lane_access_p;
897 /* Classifies how the load or store is going to be implemented
898 for loop vectorization. */
899 vect_memory_access_type memory_access_type;
901 /* For reduction loops, this is the type of reduction. */
902 enum vect_reduction_type v_reduc_type;
904 /* For CONST_COND_REDUCTION, record the reduc code. */
905 enum tree_code const_cond_reduc_code;
907 /* On a reduction PHI the reduction type as detected by
908 vect_force_simple_reduction. */
909 enum vect_reduction_type reduc_type;
911 /* On a reduction PHI the def returned by vect_force_simple_reduction.
912 On the def returned by vect_force_simple_reduction the
913 corresponding PHI. */
914 stmt_vec_info reduc_def;
916 /* The number of scalar stmt references from active SLP instances. */
917 unsigned int num_slp_uses;
919 /* If nonzero, the lhs of the statement could be truncated to this
920 many bits without affecting any users of the result. */
921 unsigned int min_output_precision;
923 /* If nonzero, all non-boolean input operands have the same precision,
924 and they could each be truncated to this many bits without changing
925 the result. */
926 unsigned int min_input_precision;
928 /* If OPERATION_BITS is nonzero, the statement could be performed on
929 an integer with the sign and number of bits given by OPERATION_SIGN
930 and OPERATION_BITS without changing the result. */
931 unsigned int operation_precision;
932 signop operation_sign;
935 /* Information about a gather/scatter call. */
936 struct gather_scatter_info {
937 /* The internal function to use for the gather/scatter operation,
938 or IFN_LAST if a built-in function should be used instead. */
939 internal_fn ifn;
941 /* The FUNCTION_DECL for the built-in gather/scatter function,
942 or null if an internal function should be used instead. */
943 tree decl;
945 /* The loop-invariant base value. */
946 tree base;
948 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
949 tree offset;
951 /* Each offset element should be multiplied by this amount before
952 being added to the base. */
953 int scale;
955 /* The definition type for the vectorized offset. */
956 enum vect_def_type offset_dt;
958 /* The type of the vectorized offset. */
959 tree offset_vectype;
961 /* The type of the scalar elements after loading or before storing. */
962 tree element_type;
964 /* The type of the scalar elements being loaded or stored. */
965 tree memory_type;
968 /* Access Functions. */
969 #define STMT_VINFO_TYPE(S) (S)->type
970 #define STMT_VINFO_STMT(S) (S)->stmt
971 inline loop_vec_info
972 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
974 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
975 return loop_vinfo;
976 return NULL;
978 inline bb_vec_info
979 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
981 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
982 return bb_vinfo;
983 return NULL;
985 #define STMT_VINFO_RELEVANT(S) (S)->relevant
986 #define STMT_VINFO_LIVE_P(S) (S)->live
987 #define STMT_VINFO_VECTYPE(S) (S)->vectype
988 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
989 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
990 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
991 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
992 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
993 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
994 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
995 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
996 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
998 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
999 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1000 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1001 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1002 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1003 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1004 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1005 (S)->dr_wrt_vec_loop.base_misalignment
1006 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1007 (S)->dr_wrt_vec_loop.offset_alignment
1008 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1009 (S)->dr_wrt_vec_loop.step_alignment
1011 #define STMT_VINFO_DR_INFO(S) \
1012 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1014 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1015 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1016 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1017 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1018 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1019 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1020 #define STMT_VINFO_GROUPED_ACCESS(S) \
1021 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1022 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1023 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1024 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1025 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1026 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1027 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1029 #define DR_GROUP_FIRST_ELEMENT(S) \
1030 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1031 #define DR_GROUP_NEXT_ELEMENT(S) \
1032 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1033 #define DR_GROUP_SIZE(S) \
1034 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1035 #define DR_GROUP_STORE_COUNT(S) \
1036 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1037 #define DR_GROUP_GAP(S) \
1038 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1039 #define DR_GROUP_SAME_DR_STMT(S) \
1040 (gcc_checking_assert ((S)->dr_aux.dr), (S)->same_dr_stmt)
1042 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1043 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1044 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1045 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1046 #define REDUC_GROUP_SIZE(S) \
1047 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1049 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1051 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1052 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1053 #define STMT_SLP_TYPE(S) (S)->slp_type
1055 #define VECT_MAX_COST 1000
1057 /* The maximum number of intermediate steps required in multi-step type
1058 conversion. */
1059 #define MAX_INTERM_CVT_STEPS 3
1061 #define MAX_VECTORIZATION_FACTOR INT_MAX
1063 /* Nonzero if TYPE represents a (scalar) boolean type or type
1064 in the middle-end compatible with it (unsigned precision 1 integral
1065 types). Used to determine which types should be vectorized as
1066 VECTOR_BOOLEAN_TYPE_P. */
1068 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1069 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1070 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1071 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1072 && TYPE_PRECISION (TYPE) == 1 \
1073 && TYPE_UNSIGNED (TYPE)))
1075 static inline bool
1076 nested_in_vect_loop_p (struct loop *loop, stmt_vec_info stmt_info)
1078 return (loop->inner
1079 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1082 /* Return the earlier statement between STMT1_INFO and STMT2_INFO. */
1084 static inline stmt_vec_info
1085 get_earlier_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1087 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1088 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1089 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1090 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1092 if (gimple_uid (stmt1_info->stmt) < gimple_uid (stmt2_info->stmt))
1093 return stmt1_info;
1094 else
1095 return stmt2_info;
1098 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1100 static inline stmt_vec_info
1101 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1103 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (stmt1_info)
1104 || !STMT_VINFO_RELATED_STMT (stmt1_info))
1105 && (STMT_VINFO_IN_PATTERN_P (stmt2_info)
1106 || !STMT_VINFO_RELATED_STMT (stmt2_info)));
1108 if (gimple_uid (stmt1_info->stmt) > gimple_uid (stmt2_info->stmt))
1109 return stmt1_info;
1110 else
1111 return stmt2_info;
1114 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1115 pattern. */
1117 static inline bool
1118 is_pattern_stmt_p (stmt_vec_info stmt_info)
1120 return stmt_info->pattern_stmt_p;
1123 /* If STMT_INFO is a pattern statement, return the statement that it
1124 replaces, otherwise return STMT_INFO itself. */
1126 inline stmt_vec_info
1127 vect_orig_stmt (stmt_vec_info stmt_info)
1129 if (is_pattern_stmt_p (stmt_info))
1130 return STMT_VINFO_RELATED_STMT (stmt_info);
1131 return stmt_info;
1134 /* If STMT_INFO has been replaced by a pattern statement, return the
1135 replacement statement, otherwise return STMT_INFO itself. */
1137 inline stmt_vec_info
1138 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1140 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1141 return STMT_VINFO_RELATED_STMT (stmt_info);
1142 return stmt_info;
1145 /* Return true if BB is a loop header. */
1147 static inline bool
1148 is_loop_header_bb_p (basic_block bb)
1150 if (bb == (bb->loop_father)->header)
1151 return true;
1152 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1153 return false;
1156 /* Return pow2 (X). */
1158 static inline int
1159 vect_pow2 (int x)
1161 int i, res = 1;
1163 for (i = 0; i < x; i++)
1164 res *= 2;
1166 return res;
1169 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1171 static inline int
1172 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1173 tree vectype, int misalign)
1175 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1176 vectype, misalign);
1179 /* Get cost by calling cost target builtin. */
1181 static inline
1182 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1184 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1187 /* Alias targetm.vectorize.init_cost. */
1189 static inline void *
1190 init_cost (struct loop *loop_info)
1192 return targetm.vectorize.init_cost (loop_info);
1195 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1196 stmt_vec_info, int, enum vect_cost_model_location);
1198 /* Alias targetm.vectorize.add_stmt_cost. */
1200 static inline unsigned
1201 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1202 stmt_vec_info stmt_info, int misalign,
1203 enum vect_cost_model_location where)
1205 if (dump_file && (dump_flags & TDF_DETAILS))
1206 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1207 return targetm.vectorize.add_stmt_cost (data, count, kind,
1208 stmt_info, misalign, where);
1211 /* Alias targetm.vectorize.finish_cost. */
1213 static inline void
1214 finish_cost (void *data, unsigned *prologue_cost,
1215 unsigned *body_cost, unsigned *epilogue_cost)
1217 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1220 /* Alias targetm.vectorize.destroy_cost_data. */
1222 static inline void
1223 destroy_cost_data (void *data)
1225 targetm.vectorize.destroy_cost_data (data);
1228 inline void
1229 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1231 stmt_info_for_cost *cost;
1232 unsigned i;
1233 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1234 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1235 cost->misalign, cost->where);
1238 /*-----------------------------------------------------------------*/
1239 /* Info on data references alignment. */
1240 /*-----------------------------------------------------------------*/
1241 #define DR_MISALIGNMENT_UNKNOWN (-1)
1242 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1244 inline void
1245 set_dr_misalignment (dr_vec_info *dr_info, int val)
1247 dr_info->misalignment = val;
1250 inline int
1251 dr_misalignment (dr_vec_info *dr_info)
1253 int misalign = dr_info->misalignment;
1254 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1255 return misalign;
1258 /* Reflects actual alignment of first access in the vectorized loop,
1259 taking into account peeling/versioning if applied. */
1260 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1261 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1263 /* Only defined once DR_MISALIGNMENT is defined. */
1264 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1266 /* Return true if data access DR_INFO is aligned to its target alignment
1267 (which may be less than a full vector). */
1269 static inline bool
1270 aligned_access_p (dr_vec_info *dr_info)
1272 return (DR_MISALIGNMENT (dr_info) == 0);
1275 /* Return TRUE if the alignment of the data access is known, and FALSE
1276 otherwise. */
1278 static inline bool
1279 known_alignment_for_access_p (dr_vec_info *dr_info)
1281 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1284 /* Return the minimum alignment in bytes that the vectorized version
1285 of DR_INFO is guaranteed to have. */
1287 static inline unsigned int
1288 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1290 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1291 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1292 if (DR_MISALIGNMENT (dr_info) == 0)
1293 return DR_TARGET_ALIGNMENT (dr_info);
1294 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1297 /* Return the behavior of DR_INFO with respect to the vectorization context
1298 (which for outer loop vectorization might not be the behavior recorded
1299 in DR_INFO itself). */
1301 static inline innermost_loop_behavior *
1302 vect_dr_behavior (dr_vec_info *dr_info)
1304 stmt_vec_info stmt_info = dr_info->stmt;
1305 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1306 if (loop_vinfo == NULL
1307 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1308 return &DR_INNERMOST (dr_info->dr);
1309 else
1310 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1313 /* Return true if the vect cost model is unlimited. */
1314 static inline bool
1315 unlimited_cost_model (loop_p loop)
1317 if (loop != NULL && loop->force_vectorize
1318 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1319 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1320 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1323 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1324 if the first iteration should use a partial mask in order to achieve
1325 alignment. */
1327 static inline bool
1328 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1330 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1331 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1334 /* Return the number of vectors of type VECTYPE that are needed to get
1335 NUNITS elements. NUNITS should be based on the vectorization factor,
1336 so it is always a known multiple of the number of elements in VECTYPE. */
1338 static inline unsigned int
1339 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1341 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1344 /* Return the number of copies needed for loop vectorization when
1345 a statement operates on vectors of type VECTYPE. This is the
1346 vectorization factor divided by the number of elements in
1347 VECTYPE and is always known at compile time. */
1349 static inline unsigned int
1350 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1352 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1355 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1356 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1357 if we haven't yet recorded any vector types. */
1359 static inline void
1360 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1362 /* All unit counts have the form current_vector_size * X for some
1363 rational X, so two unit sizes must have a common multiple.
1364 Everything is a multiple of the initial value of 1. */
1365 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1366 *max_nunits = force_common_multiple (*max_nunits, nunits);
1369 /* Return the vectorization factor that should be used for costing
1370 purposes while vectorizing the loop described by LOOP_VINFO.
1371 Pick a reasonable estimate if the vectorization factor isn't
1372 known at compile time. */
1374 static inline unsigned int
1375 vect_vf_for_cost (loop_vec_info loop_vinfo)
1377 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1380 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1381 Pick a reasonable estimate if the exact number isn't known at
1382 compile time. */
1384 static inline unsigned int
1385 vect_nunits_for_cost (tree vec_type)
1387 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1390 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1392 static inline unsigned HOST_WIDE_INT
1393 vect_max_vf (loop_vec_info loop_vinfo)
1395 unsigned HOST_WIDE_INT vf;
1396 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1397 return vf;
1398 return MAX_VECTORIZATION_FACTOR;
1401 /* Return the size of the value accessed by unvectorized data reference
1402 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1403 for the associated gimple statement, since that guarantees that DR_INFO
1404 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1405 here includes things like V1SI, which can be vectorized in the same way
1406 as a plain SI.) */
1408 inline unsigned int
1409 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1411 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1414 /* Source location + hotness information. */
1415 extern dump_user_location_t vect_location;
1417 /* A macro for calling:
1418 dump_begin_scope (MSG, vect_location);
1419 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1420 and then calling
1421 dump_end_scope ();
1422 once the object goes out of scope, thus capturing the nesting of
1423 the scopes. */
1425 #define DUMP_VECT_SCOPE(MSG) \
1426 AUTO_DUMP_SCOPE (MSG, vect_location)
1428 /*-----------------------------------------------------------------*/
1429 /* Function prototypes. */
1430 /*-----------------------------------------------------------------*/
1432 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1433 in tree-vect-loop-manip.c. */
1434 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1435 tree, tree, tree, bool);
1436 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1437 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1438 struct loop *, edge);
1439 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1440 poly_uint64);
1441 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1442 tree *, tree *, tree *, int, bool, bool);
1443 extern void vect_prepare_for_masked_peels (loop_vec_info);
1444 extern dump_user_location_t find_loop_location (struct loop *);
1445 extern bool vect_can_advance_ivs_p (loop_vec_info);
1447 /* In tree-vect-stmts.c. */
1448 extern poly_uint64 current_vector_size;
1449 extern tree get_vectype_for_scalar_type (tree);
1450 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1451 extern tree get_mask_type_for_scalar_type (tree);
1452 extern tree get_same_sized_vectype (tree, tree);
1453 extern bool vect_get_loop_mask_type (loop_vec_info);
1454 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1455 stmt_vec_info * = NULL, gimple ** = NULL);
1456 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1457 tree *, stmt_vec_info * = NULL,
1458 gimple ** = NULL);
1459 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1460 tree, tree, enum tree_code *,
1461 enum tree_code *, int *,
1462 vec<tree> *);
1463 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1464 enum tree_code *,
1465 int *, vec<tree> *);
1466 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1467 enum vect_cost_for_stmt, stmt_vec_info,
1468 int, enum vect_cost_model_location);
1469 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1470 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1471 gimple_stmt_iterator *);
1472 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1473 extern tree vect_get_store_rhs (stmt_vec_info);
1474 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1475 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1476 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1477 vec<tree> *, slp_tree);
1478 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1479 vec<tree> *, vec<tree> *);
1480 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1481 gimple_stmt_iterator *);
1482 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1483 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1484 slp_tree, slp_instance);
1485 extern void vect_remove_stores (stmt_vec_info);
1486 extern bool vect_analyze_stmt (stmt_vec_info, bool *, slp_tree, slp_instance,
1487 stmt_vector_for_cost *);
1488 extern bool vectorizable_condition (stmt_vec_info, gimple_stmt_iterator *,
1489 stmt_vec_info *, tree, int, slp_tree,
1490 stmt_vector_for_cost *);
1491 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1492 unsigned int *, unsigned int *,
1493 stmt_vector_for_cost *,
1494 stmt_vector_for_cost *, bool);
1495 extern void vect_get_store_cost (stmt_vec_info, int,
1496 unsigned int *, stmt_vector_for_cost *);
1497 extern bool vect_supportable_shift (enum tree_code, tree);
1498 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1499 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1500 extern void optimize_mask_stores (struct loop*);
1501 extern gcall *vect_gen_while (tree, tree, tree);
1502 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1503 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1504 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1506 /* In tree-vect-data-refs.c. */
1507 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1508 extern enum dr_alignment_support vect_supportable_dr_alignment
1509 (dr_vec_info *, bool);
1510 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1511 HOST_WIDE_INT *);
1512 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1513 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1514 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1515 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1516 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1517 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1518 extern bool vect_analyze_data_ref_accesses (vec_info *);
1519 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1520 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1521 signop, int, internal_fn *, tree *);
1522 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1523 gather_scatter_info *);
1524 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1525 vec<data_reference_p> *);
1526 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1527 extern void vect_record_base_alignments (vec_info *);
1528 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, struct loop *, tree,
1529 tree *, gimple_stmt_iterator *,
1530 gimple **, bool,
1531 tree = NULL_TREE, tree = NULL_TREE);
1532 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1533 stmt_vec_info, tree);
1534 extern void vect_copy_ref_info (tree, tree);
1535 extern tree vect_create_destination_var (tree, tree);
1536 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1537 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1538 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1539 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1540 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1541 gimple_stmt_iterator *, vec<tree> *);
1542 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1543 tree *, enum dr_alignment_support, tree,
1544 struct loop **);
1545 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1546 gimple_stmt_iterator *);
1547 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1548 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1549 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1550 const char * = NULL);
1551 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1552 tree, tree = NULL_TREE);
1554 /* In tree-vect-loop.c. */
1555 /* FORNOW: Used in tree-parloops.c. */
1556 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1557 bool *, bool);
1558 /* Used in gimple-loop-interchange.c. */
1559 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1560 enum tree_code);
1561 /* Drive for loop analysis stage. */
1562 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1563 vec_info_shared *);
1564 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1565 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1566 tree *, bool);
1567 extern tree vect_halve_mask_nunits (tree);
1568 extern tree vect_double_mask_nunits (tree);
1569 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1570 unsigned int, tree);
1571 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1572 unsigned int, tree, unsigned int);
1574 /* Drive for loop transformation stage. */
1575 extern struct loop *vect_transform_loop (loop_vec_info);
1576 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1577 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1578 slp_tree, int, stmt_vec_info *,
1579 stmt_vector_for_cost *);
1580 extern bool vectorizable_reduction (stmt_vec_info, gimple_stmt_iterator *,
1581 stmt_vec_info *, slp_tree, slp_instance,
1582 stmt_vector_for_cost *);
1583 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1584 stmt_vec_info *, slp_tree,
1585 stmt_vector_for_cost *);
1586 extern tree get_initial_def_for_reduction (stmt_vec_info, tree, tree *);
1587 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1588 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1589 stmt_vector_for_cost *,
1590 stmt_vector_for_cost *,
1591 stmt_vector_for_cost *);
1592 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1594 /* In tree-vect-slp.c. */
1595 extern void vect_free_slp_instance (slp_instance, bool);
1596 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1597 gimple_stmt_iterator *, poly_uint64,
1598 slp_instance, bool, unsigned *);
1599 extern bool vect_slp_analyze_operations (vec_info *);
1600 extern void vect_schedule_slp (vec_info *);
1601 extern bool vect_analyze_slp (vec_info *, unsigned);
1602 extern bool vect_make_slp_decision (loop_vec_info);
1603 extern void vect_detect_hybrid_slp (loop_vec_info);
1604 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1605 extern bool vect_slp_bb (basic_block);
1606 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1607 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1608 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1609 unsigned int * = NULL,
1610 tree * = NULL, tree * = NULL);
1611 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1612 unsigned int, vec<tree> &);
1613 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1615 /* In tree-vect-patterns.c. */
1616 /* Pattern recognition functions.
1617 Additional pattern recognition functions can (and will) be added
1618 in the future. */
1619 void vect_pattern_recog (vec_info *);
1621 /* In tree-vectorizer.c. */
1622 unsigned vectorize_loops (void);
1623 void vect_free_loop_info_assumptions (struct loop *);
1625 #endif /* GCC_TREE_VECTORIZER_H */