PR c++/86728 - C variadic generic lambda.
[official-gcc.git] / gcc / ira.c
blobdef194a0782ca68a9edd5a0e252d49e18f459e4c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
474 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
475 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
476 CLEAR_HARD_REG_SET (processed_hard_reg_set);
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
479 ira_non_ordered_class_hard_regs[cl][i] = -1;
480 ira_class_hard_reg_index[cl][i] = -1;
482 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 #ifdef REG_ALLOC_ORDER
485 hard_regno = reg_alloc_order[i];
486 #else
487 hard_regno = i;
488 #endif
489 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
490 continue;
491 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
492 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
493 ira_class_hard_reg_index[cl][hard_regno] = -1;
494 else
496 ira_class_hard_reg_index[cl][hard_regno] = n;
497 ira_class_hard_regs[cl][n++] = hard_regno;
500 ira_class_hard_regs_num[cl] = n;
501 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
502 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
503 ira_non_ordered_class_hard_regs[cl][n++] = i;
504 ira_assert (ira_class_hard_regs_num[cl] == n);
508 /* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
514 #ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516 #endif
517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
539 for (i = 0; i < N_REG_CLASSES; i++)
541 if (i == (int) NO_REGS)
542 continue;
544 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
545 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
546 if (hard_reg_set_empty_p (temp_hard_regset))
547 continue;
548 for (j = 0; j < N_REG_CLASSES; j++)
549 if (i != j)
551 enum reg_class *p;
553 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
554 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
555 if (! hard_reg_set_subset_p (temp_hard_regset,
556 temp_hard_regset2))
557 continue;
558 p = &alloc_reg_class_subclasses[j][0];
559 while (*p != LIM_REG_CLASSES) p++;
560 *p = (enum reg_class) i;
567 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
568 static void
569 setup_class_subset_and_memory_move_costs (void)
571 int cl, cl2, mode, cost;
572 HARD_REG_SET temp_hard_regset2;
574 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
575 ira_memory_move_cost[mode][NO_REGS][0]
576 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
577 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
579 if (cl != (int) NO_REGS)
580 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
582 ira_max_memory_move_cost[mode][cl][0]
583 = ira_memory_move_cost[mode][cl][0]
584 = memory_move_cost ((machine_mode) mode,
585 (reg_class_t) cl, false);
586 ira_max_memory_move_cost[mode][cl][1]
587 = ira_memory_move_cost[mode][cl][1]
588 = memory_move_cost ((machine_mode) mode,
589 (reg_class_t) cl, true);
590 /* Costs for NO_REGS are used in cost calculation on the
591 1st pass when the preferred register classes are not
592 known yet. In this case we take the best scenario. */
593 if (ira_memory_move_cost[mode][NO_REGS][0]
594 > ira_memory_move_cost[mode][cl][0])
595 ira_max_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][cl][0];
598 if (ira_memory_move_cost[mode][NO_REGS][1]
599 > ira_memory_move_cost[mode][cl][1])
600 ira_max_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][cl][1];
605 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
608 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
610 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
611 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
612 ira_class_subset_p[cl][cl2]
613 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
614 if (! hard_reg_set_empty_p (temp_hard_regset2)
615 && hard_reg_set_subset_p (reg_class_contents[cl2],
616 reg_class_contents[cl]))
617 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
619 cost = ira_memory_move_cost[mode][cl2][0];
620 if (cost > ira_max_memory_move_cost[mode][cl][0])
621 ira_max_memory_move_cost[mode][cl][0] = cost;
622 cost = ira_memory_move_cost[mode][cl2][1];
623 if (cost > ira_max_memory_move_cost[mode][cl][1])
624 ira_max_memory_move_cost[mode][cl][1] = cost;
627 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
628 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
630 ira_memory_move_cost[mode][cl][0]
631 = ira_max_memory_move_cost[mode][cl][0];
632 ira_memory_move_cost[mode][cl][1]
633 = ira_max_memory_move_cost[mode][cl][1];
635 setup_reg_subclasses ();
640 /* Define the following macro if allocation through malloc if
641 preferable. */
642 #define IRA_NO_OBSTACK
644 #ifndef IRA_NO_OBSTACK
645 /* Obstack used for storing all dynamic data (except bitmaps) of the
646 IRA. */
647 static struct obstack ira_obstack;
648 #endif
650 /* Obstack used for storing all bitmaps of the IRA. */
651 static struct bitmap_obstack ira_bitmap_obstack;
653 /* Allocate memory of size LEN for IRA data. */
654 void *
655 ira_allocate (size_t len)
657 void *res;
659 #ifndef IRA_NO_OBSTACK
660 res = obstack_alloc (&ira_obstack, len);
661 #else
662 res = xmalloc (len);
663 #endif
664 return res;
667 /* Free memory ADDR allocated for IRA data. */
668 void
669 ira_free (void *addr ATTRIBUTE_UNUSED)
671 #ifndef IRA_NO_OBSTACK
672 /* do nothing */
673 #else
674 free (addr);
675 #endif
679 /* Allocate and returns bitmap for IRA. */
680 bitmap
681 ira_allocate_bitmap (void)
683 return BITMAP_ALLOC (&ira_bitmap_obstack);
686 /* Free bitmap B allocated for IRA. */
687 void
688 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
690 /* do nothing */
695 /* Output information about allocation of all allocnos (except for
696 caps) into file F. */
697 void
698 ira_print_disposition (FILE *f)
700 int i, n, max_regno;
701 ira_allocno_t a;
702 basic_block bb;
704 fprintf (f, "Disposition:");
705 max_regno = max_reg_num ();
706 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
707 for (a = ira_regno_allocno_map[i];
708 a != NULL;
709 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
711 if (n % 4 == 0)
712 fprintf (f, "\n");
713 n++;
714 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
715 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
716 fprintf (f, "b%-3d", bb->index);
717 else
718 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
719 if (ALLOCNO_HARD_REGNO (a) >= 0)
720 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
721 else
722 fprintf (f, " mem");
724 fprintf (f, "\n");
727 /* Outputs information about allocation of all allocnos into
728 stderr. */
729 void
730 ira_debug_disposition (void)
732 ira_print_disposition (stderr);
737 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
738 register class containing stack registers or NO_REGS if there are
739 no stack registers. To find this class, we iterate through all
740 register pressure classes and choose the first register pressure
741 class containing all the stack registers and having the biggest
742 size. */
743 static void
744 setup_stack_reg_pressure_class (void)
746 ira_stack_reg_pressure_class = NO_REGS;
747 #ifdef STACK_REGS
749 int i, best, size;
750 enum reg_class cl;
751 HARD_REG_SET temp_hard_regset2;
753 CLEAR_HARD_REG_SET (temp_hard_regset);
754 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
755 SET_HARD_REG_BIT (temp_hard_regset, i);
756 best = 0;
757 for (i = 0; i < ira_pressure_classes_num; i++)
759 cl = ira_pressure_classes[i];
760 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
761 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
762 size = hard_reg_set_size (temp_hard_regset2);
763 if (best < size)
765 best = size;
766 ira_stack_reg_pressure_class = cl;
770 #endif
773 /* Find pressure classes which are register classes for which we
774 calculate register pressure in IRA, register pressure sensitive
775 insn scheduling, and register pressure sensitive loop invariant
776 motion.
778 To make register pressure calculation easy, we always use
779 non-intersected register pressure classes. A move of hard
780 registers from one register pressure class is not more expensive
781 than load and store of the hard registers. Most likely an allocno
782 class will be a subset of a register pressure class and in many
783 cases a register pressure class. That makes usage of register
784 pressure classes a good approximation to find a high register
785 pressure. */
786 static void
787 setup_pressure_classes (void)
789 int cost, i, n, curr;
790 int cl, cl2;
791 enum reg_class pressure_classes[N_REG_CLASSES];
792 int m;
793 HARD_REG_SET temp_hard_regset2;
794 bool insert_p;
796 if (targetm.compute_pressure_classes)
797 n = targetm.compute_pressure_classes (pressure_classes);
798 else
800 n = 0;
801 for (cl = 0; cl < N_REG_CLASSES; cl++)
803 if (ira_class_hard_regs_num[cl] == 0)
804 continue;
805 if (ira_class_hard_regs_num[cl] != 1
806 /* A register class without subclasses may contain a few
807 hard registers and movement between them is costly
808 (e.g. SPARC FPCC registers). We still should consider it
809 as a candidate for a pressure class. */
810 && alloc_reg_class_subclasses[cl][0] < cl)
812 /* Check that the moves between any hard registers of the
813 current class are not more expensive for a legal mode
814 than load/store of the hard registers of the current
815 class. Such class is a potential candidate to be a
816 register pressure class. */
817 for (m = 0; m < NUM_MACHINE_MODES; m++)
819 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
820 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
821 AND_COMPL_HARD_REG_SET (temp_hard_regset,
822 ira_prohibited_class_mode_regs[cl][m]);
823 if (hard_reg_set_empty_p (temp_hard_regset))
824 continue;
825 ira_init_register_move_cost_if_necessary ((machine_mode) m);
826 cost = ira_register_move_cost[m][cl][cl];
827 if (cost <= ira_max_memory_move_cost[m][cl][1]
828 || cost <= ira_max_memory_move_cost[m][cl][0])
829 break;
831 if (m >= NUM_MACHINE_MODES)
832 continue;
834 curr = 0;
835 insert_p = true;
836 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
837 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
838 /* Remove so far added pressure classes which are subset of the
839 current candidate class. Prefer GENERAL_REGS as a pressure
840 register class to another class containing the same
841 allocatable hard registers. We do this because machine
842 dependent cost hooks might give wrong costs for the latter
843 class but always give the right cost for the former class
844 (GENERAL_REGS). */
845 for (i = 0; i < n; i++)
847 cl2 = pressure_classes[i];
848 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
849 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
850 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
851 && (! hard_reg_set_equal_p (temp_hard_regset,
852 temp_hard_regset2)
853 || cl2 == (int) GENERAL_REGS))
855 pressure_classes[curr++] = (enum reg_class) cl2;
856 insert_p = false;
857 continue;
859 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
860 && (! hard_reg_set_equal_p (temp_hard_regset2,
861 temp_hard_regset)
862 || cl == (int) GENERAL_REGS))
863 continue;
864 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
865 insert_p = false;
866 pressure_classes[curr++] = (enum reg_class) cl2;
868 /* If the current candidate is a subset of a so far added
869 pressure class, don't add it to the list of the pressure
870 classes. */
871 if (insert_p)
872 pressure_classes[curr++] = (enum reg_class) cl;
873 n = curr;
876 #ifdef ENABLE_IRA_CHECKING
878 HARD_REG_SET ignore_hard_regs;
880 /* Check pressure classes correctness: here we check that hard
881 registers from all register pressure classes contains all hard
882 registers available for the allocation. */
883 CLEAR_HARD_REG_SET (temp_hard_regset);
884 CLEAR_HARD_REG_SET (temp_hard_regset2);
885 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
886 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
888 /* For some targets (like MIPS with MD_REGS), there are some
889 classes with hard registers available for allocation but
890 not able to hold value of any mode. */
891 for (m = 0; m < NUM_MACHINE_MODES; m++)
892 if (contains_reg_of_mode[cl][m])
893 break;
894 if (m >= NUM_MACHINE_MODES)
896 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
897 continue;
899 for (i = 0; i < n; i++)
900 if ((int) pressure_classes[i] == cl)
901 break;
902 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
903 if (i < n)
904 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
907 /* Some targets (like SPARC with ICC reg) have allocatable regs
908 for which no reg class is defined. */
909 if (REGNO_REG_CLASS (i) == NO_REGS)
910 SET_HARD_REG_BIT (ignore_hard_regs, i);
911 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
912 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
913 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
915 #endif
916 ira_pressure_classes_num = 0;
917 for (i = 0; i < n; i++)
919 cl = (int) pressure_classes[i];
920 ira_reg_pressure_class_p[cl] = true;
921 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
923 setup_stack_reg_pressure_class ();
926 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
927 whose register move cost between any registers of the class is the
928 same as for all its subclasses. We use the data to speed up the
929 2nd pass of calculations of allocno costs. */
930 static void
931 setup_uniform_class_p (void)
933 int i, cl, cl2, m;
935 for (cl = 0; cl < N_REG_CLASSES; cl++)
937 ira_uniform_class_p[cl] = false;
938 if (ira_class_hard_regs_num[cl] == 0)
939 continue;
940 /* We can not use alloc_reg_class_subclasses here because move
941 cost hooks does not take into account that some registers are
942 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
943 is element of alloc_reg_class_subclasses for GENERAL_REGS
944 because SSE regs are unavailable. */
945 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
947 if (ira_class_hard_regs_num[cl2] == 0)
948 continue;
949 for (m = 0; m < NUM_MACHINE_MODES; m++)
950 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
952 ira_init_register_move_cost_if_necessary ((machine_mode) m);
953 if (ira_register_move_cost[m][cl][cl]
954 != ira_register_move_cost[m][cl2][cl2])
955 break;
957 if (m < NUM_MACHINE_MODES)
958 break;
960 if (cl2 == LIM_REG_CLASSES)
961 ira_uniform_class_p[cl] = true;
965 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
966 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
968 Target may have many subtargets and not all target hard registers can
969 be used for allocation, e.g. x86 port in 32-bit mode can not use
970 hard registers introduced in x86-64 like r8-r15). Some classes
971 might have the same allocatable hard registers, e.g. INDEX_REGS
972 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
973 calculations efforts we introduce allocno classes which contain
974 unique non-empty sets of allocatable hard-registers.
976 Pseudo class cost calculation in ira-costs.c is very expensive.
977 Therefore we are trying to decrease number of classes involved in
978 such calculation. Register classes used in the cost calculation
979 are called important classes. They are allocno classes and other
980 non-empty classes whose allocatable hard register sets are inside
981 of an allocno class hard register set. From the first sight, it
982 looks like that they are just allocno classes. It is not true. In
983 example of x86-port in 32-bit mode, allocno classes will contain
984 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
985 registers are the same for the both classes). The important
986 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
987 because a machine description insn constraint may refers for
988 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
989 of the insn constraints. */
990 static void
991 setup_allocno_and_important_classes (void)
993 int i, j, n, cl;
994 bool set_p;
995 HARD_REG_SET temp_hard_regset2;
996 static enum reg_class classes[LIM_REG_CLASSES + 1];
998 n = 0;
999 /* Collect classes which contain unique sets of allocatable hard
1000 registers. Prefer GENERAL_REGS to other classes containing the
1001 same set of hard registers. */
1002 for (i = 0; i < LIM_REG_CLASSES; i++)
1004 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1005 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1006 for (j = 0; j < n; j++)
1008 cl = classes[j];
1009 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1010 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1011 no_unit_alloc_regs);
1012 if (hard_reg_set_equal_p (temp_hard_regset,
1013 temp_hard_regset2))
1014 break;
1016 if (j >= n || targetm.additional_allocno_class_p (i))
1017 classes[n++] = (enum reg_class) i;
1018 else if (i == GENERAL_REGS)
1019 /* Prefer general regs. For i386 example, it means that
1020 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1021 (all of them consists of the same available hard
1022 registers). */
1023 classes[j] = (enum reg_class) i;
1025 classes[n] = LIM_REG_CLASSES;
1027 /* Set up classes which can be used for allocnos as classes
1028 containing non-empty unique sets of allocatable hard
1029 registers. */
1030 ira_allocno_classes_num = 0;
1031 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1032 if (ira_class_hard_regs_num[cl] > 0)
1033 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1034 ira_important_classes_num = 0;
1035 /* Add non-allocno classes containing to non-empty set of
1036 allocatable hard regs. */
1037 for (cl = 0; cl < N_REG_CLASSES; cl++)
1038 if (ira_class_hard_regs_num[cl] > 0)
1040 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1041 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1042 set_p = false;
1043 for (j = 0; j < ira_allocno_classes_num; j++)
1045 COPY_HARD_REG_SET (temp_hard_regset2,
1046 reg_class_contents[ira_allocno_classes[j]]);
1047 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1048 if ((enum reg_class) cl == ira_allocno_classes[j])
1049 break;
1050 else if (hard_reg_set_subset_p (temp_hard_regset,
1051 temp_hard_regset2))
1052 set_p = true;
1054 if (set_p && j >= ira_allocno_classes_num)
1055 ira_important_classes[ira_important_classes_num++]
1056 = (enum reg_class) cl;
1058 /* Now add allocno classes to the important classes. */
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_important_classes[ira_important_classes_num++]
1061 = ira_allocno_classes[j];
1062 for (cl = 0; cl < N_REG_CLASSES; cl++)
1064 ira_reg_allocno_class_p[cl] = false;
1065 ira_reg_pressure_class_p[cl] = false;
1067 for (j = 0; j < ira_allocno_classes_num; j++)
1068 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1069 setup_pressure_classes ();
1070 setup_uniform_class_p ();
1073 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1074 given by array CLASSES of length CLASSES_NUM. The function is used
1075 make translation any reg class to an allocno class or to an
1076 pressure class. This translation is necessary for some
1077 calculations when we can use only allocno or pressure classes and
1078 such translation represents an approximate representation of all
1079 classes.
1081 The translation in case when allocatable hard register set of a
1082 given class is subset of allocatable hard register set of a class
1083 in CLASSES is pretty simple. We use smallest classes from CLASSES
1084 containing a given class. If allocatable hard register set of a
1085 given class is not a subset of any corresponding set of a class
1086 from CLASSES, we use the cheapest (with load/store point of view)
1087 class from CLASSES whose set intersects with given class set. */
1088 static void
1089 setup_class_translate_array (enum reg_class *class_translate,
1090 int classes_num, enum reg_class *classes)
1092 int cl, mode;
1093 enum reg_class aclass, best_class, *cl_ptr;
1094 int i, cost, min_cost, best_cost;
1096 for (cl = 0; cl < N_REG_CLASSES; cl++)
1097 class_translate[cl] = NO_REGS;
1099 for (i = 0; i < classes_num; i++)
1101 aclass = classes[i];
1102 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1103 (cl = *cl_ptr) != LIM_REG_CLASSES;
1104 cl_ptr++)
1105 if (class_translate[cl] == NO_REGS)
1106 class_translate[cl] = aclass;
1107 class_translate[aclass] = aclass;
1109 /* For classes which are not fully covered by one of given classes
1110 (in other words covered by more one given class), use the
1111 cheapest class. */
1112 for (cl = 0; cl < N_REG_CLASSES; cl++)
1114 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1115 continue;
1116 best_class = NO_REGS;
1117 best_cost = INT_MAX;
1118 for (i = 0; i < classes_num; i++)
1120 aclass = classes[i];
1121 COPY_HARD_REG_SET (temp_hard_regset,
1122 reg_class_contents[aclass]);
1123 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1124 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1125 if (! hard_reg_set_empty_p (temp_hard_regset))
1127 min_cost = INT_MAX;
1128 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1130 cost = (ira_memory_move_cost[mode][aclass][0]
1131 + ira_memory_move_cost[mode][aclass][1]);
1132 if (min_cost > cost)
1133 min_cost = cost;
1135 if (best_class == NO_REGS || best_cost > min_cost)
1137 best_class = aclass;
1138 best_cost = min_cost;
1142 class_translate[cl] = best_class;
1146 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1147 IRA_PRESSURE_CLASS_TRANSLATE. */
1148 static void
1149 setup_class_translate (void)
1151 setup_class_translate_array (ira_allocno_class_translate,
1152 ira_allocno_classes_num, ira_allocno_classes);
1153 setup_class_translate_array (ira_pressure_class_translate,
1154 ira_pressure_classes_num, ira_pressure_classes);
1157 /* Order numbers of allocno classes in original target allocno class
1158 array, -1 for non-allocno classes. */
1159 static int allocno_class_order[N_REG_CLASSES];
1161 /* The function used to sort the important classes. */
1162 static int
1163 comp_reg_classes_func (const void *v1p, const void *v2p)
1165 enum reg_class cl1 = *(const enum reg_class *) v1p;
1166 enum reg_class cl2 = *(const enum reg_class *) v2p;
1167 enum reg_class tcl1, tcl2;
1168 int diff;
1170 tcl1 = ira_allocno_class_translate[cl1];
1171 tcl2 = ira_allocno_class_translate[cl2];
1172 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1173 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1174 return diff;
1175 return (int) cl1 - (int) cl2;
1178 /* For correct work of function setup_reg_class_relation we need to
1179 reorder important classes according to the order of their allocno
1180 classes. It places important classes containing the same
1181 allocatable hard register set adjacent to each other and allocno
1182 class with the allocatable hard register set right after the other
1183 important classes with the same set.
1185 In example from comments of function
1186 setup_allocno_and_important_classes, it places LEGACY_REGS and
1187 GENERAL_REGS close to each other and GENERAL_REGS is after
1188 LEGACY_REGS. */
1189 static void
1190 reorder_important_classes (void)
1192 int i;
1194 for (i = 0; i < N_REG_CLASSES; i++)
1195 allocno_class_order[i] = -1;
1196 for (i = 0; i < ira_allocno_classes_num; i++)
1197 allocno_class_order[ira_allocno_classes[i]] = i;
1198 qsort (ira_important_classes, ira_important_classes_num,
1199 sizeof (enum reg_class), comp_reg_classes_func);
1200 for (i = 0; i < ira_important_classes_num; i++)
1201 ira_important_class_nums[ira_important_classes[i]] = i;
1204 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1205 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1206 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1207 please see corresponding comments in ira-int.h. */
1208 static void
1209 setup_reg_class_relations (void)
1211 int i, cl1, cl2, cl3;
1212 HARD_REG_SET intersection_set, union_set, temp_set2;
1213 bool important_class_p[N_REG_CLASSES];
1215 memset (important_class_p, 0, sizeof (important_class_p));
1216 for (i = 0; i < ira_important_classes_num; i++)
1217 important_class_p[ira_important_classes[i]] = true;
1218 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1220 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1221 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1223 ira_reg_classes_intersect_p[cl1][cl2] = false;
1224 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1225 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1226 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1227 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1228 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1229 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1230 if (hard_reg_set_empty_p (temp_hard_regset)
1231 && hard_reg_set_empty_p (temp_set2))
1233 /* The both classes have no allocatable hard registers
1234 -- take all class hard registers into account and use
1235 reg_class_subunion and reg_class_superunion. */
1236 for (i = 0;; i++)
1238 cl3 = reg_class_subclasses[cl1][i];
1239 if (cl3 == LIM_REG_CLASSES)
1240 break;
1241 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1242 (enum reg_class) cl3))
1243 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1245 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1246 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1247 continue;
1249 ira_reg_classes_intersect_p[cl1][cl2]
1250 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1251 if (important_class_p[cl1] && important_class_p[cl2]
1252 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1254 /* CL1 and CL2 are important classes and CL1 allocatable
1255 hard register set is inside of CL2 allocatable hard
1256 registers -- make CL1 a superset of CL2. */
1257 enum reg_class *p;
1259 p = &ira_reg_class_super_classes[cl1][0];
1260 while (*p != LIM_REG_CLASSES)
1261 p++;
1262 *p++ = (enum reg_class) cl2;
1263 *p = LIM_REG_CLASSES;
1265 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1266 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1267 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1268 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1269 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1270 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1271 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1272 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1273 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1275 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1276 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1277 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1279 /* CL3 allocatable hard register set is inside of
1280 intersection of allocatable hard register sets
1281 of CL1 and CL2. */
1282 if (important_class_p[cl3])
1284 COPY_HARD_REG_SET
1285 (temp_set2,
1286 reg_class_contents
1287 [(int) ira_reg_class_intersect[cl1][cl2]]);
1288 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1289 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1290 /* If the allocatable hard register sets are
1291 the same, prefer GENERAL_REGS or the
1292 smallest class for debugging
1293 purposes. */
1294 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1295 && (cl3 == GENERAL_REGS
1296 || ((ira_reg_class_intersect[cl1][cl2]
1297 != GENERAL_REGS)
1298 && hard_reg_set_subset_p
1299 (reg_class_contents[cl3],
1300 reg_class_contents
1301 [(int)
1302 ira_reg_class_intersect[cl1][cl2]])))))
1303 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1305 COPY_HARD_REG_SET
1306 (temp_set2,
1307 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1308 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1309 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1310 /* Ignore unavailable hard registers and prefer
1311 smallest class for debugging purposes. */
1312 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1313 && hard_reg_set_subset_p
1314 (reg_class_contents[cl3],
1315 reg_class_contents
1316 [(int) ira_reg_class_subset[cl1][cl2]])))
1317 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1319 if (important_class_p[cl3]
1320 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1322 /* CL3 allocatable hard register set is inside of
1323 union of allocatable hard register sets of CL1
1324 and CL2. */
1325 COPY_HARD_REG_SET
1326 (temp_set2,
1327 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1328 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1329 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1330 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1332 && (! hard_reg_set_equal_p (temp_set2,
1333 temp_hard_regset)
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1343 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1345 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1347 /* CL3 allocatable hard register set contains union
1348 of allocatable hard register sets of CL1 and
1349 CL2. */
1350 COPY_HARD_REG_SET
1351 (temp_set2,
1352 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1353 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1354 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1355 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1357 && (! hard_reg_set_equal_p (temp_set2,
1358 temp_hard_regset)
1359 || cl3 == GENERAL_REGS
1360 /* If the allocatable hard register sets are the
1361 same, prefer GENERAL_REGS or the smallest
1362 class for debugging purposes. */
1363 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1364 && hard_reg_set_subset_p
1365 (reg_class_contents[cl3],
1366 reg_class_contents
1367 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1368 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1375 /* Output all uniform and important classes into file F. */
1376 static void
1377 print_uniform_and_important_classes (FILE *f)
1379 int i, cl;
1381 fprintf (f, "Uniform classes:\n");
1382 for (cl = 0; cl < N_REG_CLASSES; cl++)
1383 if (ira_uniform_class_p[cl])
1384 fprintf (f, " %s", reg_class_names[cl]);
1385 fprintf (f, "\nImportant classes:\n");
1386 for (i = 0; i < ira_important_classes_num; i++)
1387 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1388 fprintf (f, "\n");
1391 /* Output all possible allocno or pressure classes and their
1392 translation map into file F. */
1393 static void
1394 print_translated_classes (FILE *f, bool pressure_p)
1396 int classes_num = (pressure_p
1397 ? ira_pressure_classes_num : ira_allocno_classes_num);
1398 enum reg_class *classes = (pressure_p
1399 ? ira_pressure_classes : ira_allocno_classes);
1400 enum reg_class *class_translate = (pressure_p
1401 ? ira_pressure_class_translate
1402 : ira_allocno_class_translate);
1403 int i;
1405 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1406 for (i = 0; i < classes_num; i++)
1407 fprintf (f, " %s", reg_class_names[classes[i]]);
1408 fprintf (f, "\nClass translation:\n");
1409 for (i = 0; i < N_REG_CLASSES; i++)
1410 fprintf (f, " %s -> %s\n", reg_class_names[i],
1411 reg_class_names[class_translate[i]]);
1414 /* Output all possible allocno and translation classes and the
1415 translation maps into stderr. */
1416 void
1417 ira_debug_allocno_classes (void)
1419 print_uniform_and_important_classes (stderr);
1420 print_translated_classes (stderr, false);
1421 print_translated_classes (stderr, true);
1424 /* Set up different arrays concerning class subsets, allocno and
1425 important classes. */
1426 static void
1427 find_reg_classes (void)
1429 setup_allocno_and_important_classes ();
1430 setup_class_translate ();
1431 reorder_important_classes ();
1432 setup_reg_class_relations ();
1437 /* Set up the array above. */
1438 static void
1439 setup_hard_regno_aclass (void)
1441 int i;
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1445 #if 1
1446 ira_hard_regno_allocno_class[i]
1447 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1448 ? NO_REGS
1449 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1450 #else
1451 int j;
1452 enum reg_class cl;
1453 ira_hard_regno_allocno_class[i] = NO_REGS;
1454 for (j = 0; j < ira_allocno_classes_num; j++)
1456 cl = ira_allocno_classes[j];
1457 if (ira_class_hard_reg_index[cl][i] >= 0)
1459 ira_hard_regno_allocno_class[i] = cl;
1460 break;
1463 #endif
1469 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1470 static void
1471 setup_reg_class_nregs (void)
1473 int i, cl, cl2, m;
1475 for (m = 0; m < MAX_MACHINE_MODE; m++)
1477 for (cl = 0; cl < N_REG_CLASSES; cl++)
1478 ira_reg_class_max_nregs[cl][m]
1479 = ira_reg_class_min_nregs[cl][m]
1480 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1481 for (cl = 0; cl < N_REG_CLASSES; cl++)
1482 for (i = 0;
1483 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1484 i++)
1485 if (ira_reg_class_min_nregs[cl2][m]
1486 < ira_reg_class_min_nregs[cl][m])
1487 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1493 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1494 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1495 static void
1496 setup_prohibited_class_mode_regs (void)
1498 int j, k, hard_regno, cl, last_hard_regno, count;
1500 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1502 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1503 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1504 for (j = 0; j < NUM_MACHINE_MODES; j++)
1506 count = 0;
1507 last_hard_regno = -1;
1508 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1509 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1511 hard_regno = ira_class_hard_regs[cl][k];
1512 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1513 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1514 hard_regno);
1515 else if (in_hard_reg_set_p (temp_hard_regset,
1516 (machine_mode) j, hard_regno))
1518 last_hard_regno = hard_regno;
1519 count++;
1522 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1527 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1528 spanning from one register pressure class to another one. It is
1529 called after defining the pressure classes. */
1530 static void
1531 clarify_prohibited_class_mode_regs (void)
1533 int j, k, hard_regno, cl, pclass, nregs;
1535 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1536 for (j = 0; j < NUM_MACHINE_MODES; j++)
1538 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1539 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1541 hard_regno = ira_class_hard_regs[cl][k];
1542 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1543 continue;
1544 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1545 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1547 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1548 hard_regno);
1549 continue;
1551 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1552 for (nregs-- ;nregs >= 0; nregs--)
1553 if (((enum reg_class) pclass
1554 != ira_pressure_class_translate[REGNO_REG_CLASS
1555 (hard_regno + nregs)]))
1557 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1558 hard_regno);
1559 break;
1561 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1562 hard_regno))
1563 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1564 (machine_mode) j, hard_regno);
1569 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1570 and IRA_MAY_MOVE_OUT_COST for MODE. */
1571 void
1572 ira_init_register_move_cost (machine_mode mode)
1574 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1575 bool all_match = true;
1576 unsigned int cl1, cl2;
1578 ira_assert (ira_register_move_cost[mode] == NULL
1579 && ira_may_move_in_cost[mode] == NULL
1580 && ira_may_move_out_cost[mode] == NULL);
1581 /* Note that we might be asked about the move costs of modes that
1582 cannot be stored in any hard register, for example if an inline
1583 asm tries to create a register operand with an impossible mode.
1584 We therefore can't assert have_regs_of_mode[mode] here. */
1585 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1586 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1588 int cost;
1589 if (!contains_reg_of_mode[cl1][mode]
1590 || !contains_reg_of_mode[cl2][mode])
1592 if ((ira_reg_class_max_nregs[cl1][mode]
1593 > ira_class_hard_regs_num[cl1])
1594 || (ira_reg_class_max_nregs[cl2][mode]
1595 > ira_class_hard_regs_num[cl2]))
1596 cost = 65535;
1597 else
1598 cost = (ira_memory_move_cost[mode][cl1][0]
1599 + ira_memory_move_cost[mode][cl2][1]) * 2;
1601 else
1603 cost = register_move_cost (mode, (enum reg_class) cl1,
1604 (enum reg_class) cl2);
1605 ira_assert (cost < 65535);
1607 all_match &= (last_move_cost[cl1][cl2] == cost);
1608 last_move_cost[cl1][cl2] = cost;
1610 if (all_match && last_mode_for_init_move_cost != -1)
1612 ira_register_move_cost[mode]
1613 = ira_register_move_cost[last_mode_for_init_move_cost];
1614 ira_may_move_in_cost[mode]
1615 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1616 ira_may_move_out_cost[mode]
1617 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1618 return;
1620 last_mode_for_init_move_cost = mode;
1621 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1622 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1623 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1624 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1625 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1627 int cost;
1628 enum reg_class *p1, *p2;
1630 if (last_move_cost[cl1][cl2] == 65535)
1632 ira_register_move_cost[mode][cl1][cl2] = 65535;
1633 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1634 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1636 else
1638 cost = last_move_cost[cl1][cl2];
1640 for (p2 = &reg_class_subclasses[cl2][0];
1641 *p2 != LIM_REG_CLASSES; p2++)
1642 if (ira_class_hard_regs_num[*p2] > 0
1643 && (ira_reg_class_max_nregs[*p2][mode]
1644 <= ira_class_hard_regs_num[*p2]))
1645 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1647 for (p1 = &reg_class_subclasses[cl1][0];
1648 *p1 != LIM_REG_CLASSES; p1++)
1649 if (ira_class_hard_regs_num[*p1] > 0
1650 && (ira_reg_class_max_nregs[*p1][mode]
1651 <= ira_class_hard_regs_num[*p1]))
1652 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1654 ira_assert (cost <= 65535);
1655 ira_register_move_cost[mode][cl1][cl2] = cost;
1657 if (ira_class_subset_p[cl1][cl2])
1658 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1659 else
1660 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1662 if (ira_class_subset_p[cl2][cl1])
1663 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1664 else
1665 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1672 /* This is called once during compiler work. It sets up
1673 different arrays whose values don't depend on the compiled
1674 function. */
1675 void
1676 ira_init_once (void)
1678 ira_init_costs_once ();
1679 lra_init_once ();
1681 ira_use_lra_p = targetm.lra_p ();
1684 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1685 ira_may_move_out_cost for each mode. */
1686 void
1687 target_ira_int::free_register_move_costs (void)
1689 int mode, i;
1691 /* Reset move_cost and friends, making sure we only free shared
1692 table entries once. */
1693 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1694 if (x_ira_register_move_cost[mode])
1696 for (i = 0;
1697 i < mode && (x_ira_register_move_cost[i]
1698 != x_ira_register_move_cost[mode]);
1699 i++)
1701 if (i == mode)
1703 free (x_ira_register_move_cost[mode]);
1704 free (x_ira_may_move_in_cost[mode]);
1705 free (x_ira_may_move_out_cost[mode]);
1708 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1709 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1710 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1711 last_mode_for_init_move_cost = -1;
1714 target_ira_int::~target_ira_int ()
1716 free_ira_costs ();
1717 free_register_move_costs ();
1720 /* This is called every time when register related information is
1721 changed. */
1722 void
1723 ira_init (void)
1725 this_target_ira_int->free_register_move_costs ();
1726 setup_reg_mode_hard_regset ();
1727 setup_alloc_regs (flag_omit_frame_pointer != 0);
1728 setup_class_subset_and_memory_move_costs ();
1729 setup_reg_class_nregs ();
1730 setup_prohibited_class_mode_regs ();
1731 find_reg_classes ();
1732 clarify_prohibited_class_mode_regs ();
1733 setup_hard_regno_aclass ();
1734 ira_init_costs ();
1738 #define ira_prohibited_mode_move_regs_initialized_p \
1739 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1741 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1742 static void
1743 setup_prohibited_mode_move_regs (void)
1745 int i, j;
1746 rtx test_reg1, test_reg2, move_pat;
1747 rtx_insn *move_insn;
1749 if (ira_prohibited_mode_move_regs_initialized_p)
1750 return;
1751 ira_prohibited_mode_move_regs_initialized_p = true;
1752 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1753 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1754 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1755 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1756 for (i = 0; i < NUM_MACHINE_MODES; i++)
1758 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1759 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1761 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1762 continue;
1763 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1764 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1765 INSN_CODE (move_insn) = -1;
1766 recog_memoized (move_insn);
1767 if (INSN_CODE (move_insn) < 0)
1768 continue;
1769 extract_insn (move_insn);
1770 /* We don't know whether the move will be in code that is optimized
1771 for size or speed, so consider all enabled alternatives. */
1772 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1773 continue;
1774 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1781 /* Setup possible alternatives in ALTS for INSN. */
1782 void
1783 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1785 /* MAP nalt * nop -> start of constraints for given operand and
1786 alternative. */
1787 static vec<const char *> insn_constraints;
1788 int nop, nalt;
1789 bool curr_swapped;
1790 const char *p;
1791 int commutative = -1;
1793 extract_insn (insn);
1794 alternative_mask preferred = get_preferred_alternatives (insn);
1795 CLEAR_HARD_REG_SET (alts);
1796 insn_constraints.release ();
1797 insn_constraints.safe_grow_cleared (recog_data.n_operands
1798 * recog_data.n_alternatives + 1);
1799 /* Check that the hard reg set is enough for holding all
1800 alternatives. It is hard to imagine the situation when the
1801 assertion is wrong. */
1802 ira_assert (recog_data.n_alternatives
1803 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1804 FIRST_PSEUDO_REGISTER));
1805 for (curr_swapped = false;; curr_swapped = true)
1807 /* Calculate some data common for all alternatives to speed up the
1808 function. */
1809 for (nop = 0; nop < recog_data.n_operands; nop++)
1811 for (nalt = 0, p = recog_data.constraints[nop];
1812 nalt < recog_data.n_alternatives;
1813 nalt++)
1815 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1816 while (*p && *p != ',')
1818 /* We only support one commutative marker, the first
1819 one. We already set commutative above. */
1820 if (*p == '%' && commutative < 0)
1821 commutative = nop;
1822 p++;
1824 if (*p)
1825 p++;
1828 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1830 if (!TEST_BIT (preferred, nalt)
1831 || TEST_HARD_REG_BIT (alts, nalt))
1832 continue;
1834 for (nop = 0; nop < recog_data.n_operands; nop++)
1836 int c, len;
1838 rtx op = recog_data.operand[nop];
1839 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1840 if (*p == 0 || *p == ',')
1841 continue;
1844 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1846 case '#':
1847 case ',':
1848 c = '\0';
1849 /* FALLTHRU */
1850 case '\0':
1851 len = 0;
1852 break;
1854 case '%':
1855 /* The commutative modifier is handled above. */
1856 break;
1858 case '0': case '1': case '2': case '3': case '4':
1859 case '5': case '6': case '7': case '8': case '9':
1860 goto op_success;
1861 break;
1863 case 'g':
1864 goto op_success;
1865 break;
1867 default:
1869 enum constraint_num cn = lookup_constraint (p);
1870 switch (get_constraint_type (cn))
1872 case CT_REGISTER:
1873 if (reg_class_for_constraint (cn) != NO_REGS)
1874 goto op_success;
1875 break;
1877 case CT_CONST_INT:
1878 if (CONST_INT_P (op)
1879 && (insn_const_int_ok_for_constraint
1880 (INTVAL (op), cn)))
1881 goto op_success;
1882 break;
1884 case CT_ADDRESS:
1885 case CT_MEMORY:
1886 case CT_SPECIAL_MEMORY:
1887 goto op_success;
1889 case CT_FIXED_FORM:
1890 if (constraint_satisfied_p (op, cn))
1891 goto op_success;
1892 break;
1894 break;
1897 while (p += len, c);
1898 break;
1899 op_success:
1902 if (nop >= recog_data.n_operands)
1903 SET_HARD_REG_BIT (alts, nalt);
1905 if (commutative < 0)
1906 break;
1907 /* Swap forth and back to avoid changing recog_data. */
1908 std::swap (recog_data.operand[commutative],
1909 recog_data.operand[commutative + 1]);
1910 if (curr_swapped)
1911 break;
1915 /* Return the number of the output non-early clobber operand which
1916 should be the same in any case as operand with number OP_NUM (or
1917 negative value if there is no such operand). The function takes
1918 only really possible alternatives into consideration. */
1920 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1922 int curr_alt, c, original, dup;
1923 bool ignore_p, use_commut_op_p;
1924 const char *str;
1926 if (op_num < 0 || recog_data.n_alternatives == 0)
1927 return -1;
1928 /* We should find duplications only for input operands. */
1929 if (recog_data.operand_type[op_num] != OP_IN)
1930 return -1;
1931 str = recog_data.constraints[op_num];
1932 use_commut_op_p = false;
1933 for (;;)
1935 rtx op = recog_data.operand[op_num];
1937 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1938 original = -1;;)
1940 c = *str;
1941 if (c == '\0')
1942 break;
1943 if (c == '#')
1944 ignore_p = true;
1945 else if (c == ',')
1947 curr_alt++;
1948 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1950 else if (! ignore_p)
1951 switch (c)
1953 case 'g':
1954 goto fail;
1955 default:
1957 enum constraint_num cn = lookup_constraint (str);
1958 enum reg_class cl = reg_class_for_constraint (cn);
1959 if (cl != NO_REGS
1960 && !targetm.class_likely_spilled_p (cl))
1961 goto fail;
1962 if (constraint_satisfied_p (op, cn))
1963 goto fail;
1964 break;
1967 case '0': case '1': case '2': case '3': case '4':
1968 case '5': case '6': case '7': case '8': case '9':
1969 if (original != -1 && original != c)
1970 goto fail;
1971 original = c;
1972 break;
1974 str += CONSTRAINT_LEN (c, str);
1976 if (original == -1)
1977 goto fail;
1978 dup = -1;
1979 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1980 *str != 0;
1981 str++)
1982 if (ignore_p)
1984 if (*str == ',')
1985 ignore_p = false;
1987 else if (*str == '#')
1988 ignore_p = true;
1989 else if (! ignore_p)
1991 if (*str == '=')
1992 dup = original - '0';
1993 /* It is better ignore an alternative with early clobber. */
1994 else if (*str == '&')
1995 goto fail;
1997 if (dup >= 0)
1998 return dup;
1999 fail:
2000 if (use_commut_op_p)
2001 break;
2002 use_commut_op_p = true;
2003 if (recog_data.constraints[op_num][0] == '%')
2004 str = recog_data.constraints[op_num + 1];
2005 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2006 str = recog_data.constraints[op_num - 1];
2007 else
2008 break;
2010 return -1;
2015 /* Search forward to see if the source register of a copy insn dies
2016 before either it or the destination register is modified, but don't
2017 scan past the end of the basic block. If so, we can replace the
2018 source with the destination and let the source die in the copy
2019 insn.
2021 This will reduce the number of registers live in that range and may
2022 enable the destination and the source coalescing, thus often saving
2023 one register in addition to a register-register copy. */
2025 static void
2026 decrease_live_ranges_number (void)
2028 basic_block bb;
2029 rtx_insn *insn;
2030 rtx set, src, dest, dest_death, note;
2031 rtx_insn *p, *q;
2032 int sregno, dregno;
2034 if (! flag_expensive_optimizations)
2035 return;
2037 if (ira_dump_file)
2038 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2040 FOR_EACH_BB_FN (bb, cfun)
2041 FOR_BB_INSNS (bb, insn)
2043 set = single_set (insn);
2044 if (! set)
2045 continue;
2046 src = SET_SRC (set);
2047 dest = SET_DEST (set);
2048 if (! REG_P (src) || ! REG_P (dest)
2049 || find_reg_note (insn, REG_DEAD, src))
2050 continue;
2051 sregno = REGNO (src);
2052 dregno = REGNO (dest);
2054 /* We don't want to mess with hard regs if register classes
2055 are small. */
2056 if (sregno == dregno
2057 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2058 && (sregno < FIRST_PSEUDO_REGISTER
2059 || dregno < FIRST_PSEUDO_REGISTER))
2060 /* We don't see all updates to SP if they are in an
2061 auto-inc memory reference, so we must disallow this
2062 optimization on them. */
2063 || sregno == STACK_POINTER_REGNUM
2064 || dregno == STACK_POINTER_REGNUM)
2065 continue;
2067 dest_death = NULL_RTX;
2069 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2071 if (! INSN_P (p))
2072 continue;
2073 if (BLOCK_FOR_INSN (p) != bb)
2074 break;
2076 if (reg_set_p (src, p) || reg_set_p (dest, p)
2077 /* If SRC is an asm-declared register, it must not be
2078 replaced in any asm. Unfortunately, the REG_EXPR
2079 tree for the asm variable may be absent in the SRC
2080 rtx, so we can't check the actual register
2081 declaration easily (the asm operand will have it,
2082 though). To avoid complicating the test for a rare
2083 case, we just don't perform register replacement
2084 for a hard reg mentioned in an asm. */
2085 || (sregno < FIRST_PSEUDO_REGISTER
2086 && asm_noperands (PATTERN (p)) >= 0
2087 && reg_overlap_mentioned_p (src, PATTERN (p)))
2088 /* Don't change hard registers used by a call. */
2089 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2090 && find_reg_fusage (p, USE, src))
2091 /* Don't change a USE of a register. */
2092 || (GET_CODE (PATTERN (p)) == USE
2093 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2094 break;
2096 /* See if all of SRC dies in P. This test is slightly
2097 more conservative than it needs to be. */
2098 if ((note = find_regno_note (p, REG_DEAD, sregno))
2099 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2101 int failed = 0;
2103 /* We can do the optimization. Scan forward from INSN
2104 again, replacing regs as we go. Set FAILED if a
2105 replacement can't be done. In that case, we can't
2106 move the death note for SRC. This should be
2107 rare. */
2109 /* Set to stop at next insn. */
2110 for (q = next_real_insn (insn);
2111 q != next_real_insn (p);
2112 q = next_real_insn (q))
2114 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2116 /* If SRC is a hard register, we might miss
2117 some overlapping registers with
2118 validate_replace_rtx, so we would have to
2119 undo it. We can't if DEST is present in
2120 the insn, so fail in that combination of
2121 cases. */
2122 if (sregno < FIRST_PSEUDO_REGISTER
2123 && reg_mentioned_p (dest, PATTERN (q)))
2124 failed = 1;
2126 /* Attempt to replace all uses. */
2127 else if (!validate_replace_rtx (src, dest, q))
2128 failed = 1;
2130 /* If this succeeded, but some part of the
2131 register is still present, undo the
2132 replacement. */
2133 else if (sregno < FIRST_PSEUDO_REGISTER
2134 && reg_overlap_mentioned_p (src, PATTERN (q)))
2136 validate_replace_rtx (dest, src, q);
2137 failed = 1;
2141 /* If DEST dies here, remove the death note and
2142 save it for later. Make sure ALL of DEST dies
2143 here; again, this is overly conservative. */
2144 if (! dest_death
2145 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2147 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2148 remove_note (q, dest_death);
2149 else
2151 failed = 1;
2152 dest_death = 0;
2157 if (! failed)
2159 /* Move death note of SRC from P to INSN. */
2160 remove_note (p, note);
2161 XEXP (note, 1) = REG_NOTES (insn);
2162 REG_NOTES (insn) = note;
2165 /* DEST is also dead if INSN has a REG_UNUSED note for
2166 DEST. */
2167 if (! dest_death
2168 && (dest_death
2169 = find_regno_note (insn, REG_UNUSED, dregno)))
2171 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2172 remove_note (insn, dest_death);
2175 /* Put death note of DEST on P if we saw it die. */
2176 if (dest_death)
2178 XEXP (dest_death, 1) = REG_NOTES (p);
2179 REG_NOTES (p) = dest_death;
2181 break;
2184 /* If SRC is a hard register which is set or killed in
2185 some other way, we can't do this optimization. */
2186 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2187 break;
2194 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2195 static bool
2196 ira_bad_reload_regno_1 (int regno, rtx x)
2198 int x_regno, n, i;
2199 ira_allocno_t a;
2200 enum reg_class pref;
2202 /* We only deal with pseudo regs. */
2203 if (! x || GET_CODE (x) != REG)
2204 return false;
2206 x_regno = REGNO (x);
2207 if (x_regno < FIRST_PSEUDO_REGISTER)
2208 return false;
2210 /* If the pseudo prefers REGNO explicitly, then do not consider
2211 REGNO a bad spill choice. */
2212 pref = reg_preferred_class (x_regno);
2213 if (reg_class_size[pref] == 1)
2214 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2216 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2217 poor choice for a reload regno. */
2218 a = ira_regno_allocno_map[x_regno];
2219 n = ALLOCNO_NUM_OBJECTS (a);
2220 for (i = 0; i < n; i++)
2222 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2223 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2224 return true;
2226 return false;
2229 /* Return nonzero if REGNO is a particularly bad choice for reloading
2230 IN or OUT. */
2231 bool
2232 ira_bad_reload_regno (int regno, rtx in, rtx out)
2234 return (ira_bad_reload_regno_1 (regno, in)
2235 || ira_bad_reload_regno_1 (regno, out));
2238 /* Add register clobbers from asm statements. */
2239 static void
2240 compute_regs_asm_clobbered (void)
2242 basic_block bb;
2244 FOR_EACH_BB_FN (bb, cfun)
2246 rtx_insn *insn;
2247 FOR_BB_INSNS_REVERSE (bb, insn)
2249 df_ref def;
2251 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2252 FOR_EACH_INSN_DEF (def, insn)
2254 unsigned int dregno = DF_REF_REGNO (def);
2255 if (HARD_REGISTER_NUM_P (dregno))
2256 add_to_hard_reg_set (&crtl->asm_clobbers,
2257 GET_MODE (DF_REF_REAL_REG (def)),
2258 dregno);
2265 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2266 REGS_EVER_LIVE. */
2267 void
2268 ira_setup_eliminable_regset (void)
2270 int i;
2271 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2273 /* Setup is_leaf as frame_pointer_required may use it. This function
2274 is called by sched_init before ira if scheduling is enabled. */
2275 crtl->is_leaf = leaf_function_p ();
2277 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2278 sp for alloca. So we can't eliminate the frame pointer in that
2279 case. At some point, we should improve this by emitting the
2280 sp-adjusting insns for this case. */
2281 frame_pointer_needed
2282 = (! flag_omit_frame_pointer
2283 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2284 /* We need the frame pointer to catch stack overflow exceptions if
2285 the stack pointer is moving (as for the alloca case just above). */
2286 || (STACK_CHECK_MOVING_SP
2287 && flag_stack_check
2288 && flag_exceptions
2289 && cfun->can_throw_non_call_exceptions)
2290 || crtl->accesses_prior_frames
2291 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2292 || targetm.frame_pointer_required ());
2294 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2295 RTL is very small. So if we use frame pointer for RA and RTL
2296 actually prevents this, we will spill pseudos assigned to the
2297 frame pointer in LRA. */
2299 if (frame_pointer_needed)
2300 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2302 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2303 CLEAR_HARD_REG_SET (eliminable_regset);
2305 compute_regs_asm_clobbered ();
2307 /* Build the regset of all eliminable registers and show we can't
2308 use those that we already know won't be eliminated. */
2309 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2311 bool cannot_elim
2312 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2313 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2315 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2317 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2319 if (cannot_elim)
2320 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2322 else if (cannot_elim)
2323 error ("%s cannot be used in asm here",
2324 reg_names[eliminables[i].from]);
2325 else
2326 df_set_regs_ever_live (eliminables[i].from, true);
2328 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2330 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2332 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2333 if (frame_pointer_needed)
2334 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2336 else if (frame_pointer_needed)
2337 error ("%s cannot be used in asm here",
2338 reg_names[HARD_FRAME_POINTER_REGNUM]);
2339 else
2340 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2346 /* Vector of substitutions of register numbers,
2347 used to map pseudo regs into hardware regs.
2348 This is set up as a result of register allocation.
2349 Element N is the hard reg assigned to pseudo reg N,
2350 or is -1 if no hard reg was assigned.
2351 If N is a hard reg number, element N is N. */
2352 short *reg_renumber;
2354 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2355 the allocation found by IRA. */
2356 static void
2357 setup_reg_renumber (void)
2359 int regno, hard_regno;
2360 ira_allocno_t a;
2361 ira_allocno_iterator ai;
2363 caller_save_needed = 0;
2364 FOR_EACH_ALLOCNO (a, ai)
2366 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2367 continue;
2368 /* There are no caps at this point. */
2369 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2370 if (! ALLOCNO_ASSIGNED_P (a))
2371 /* It can happen if A is not referenced but partially anticipated
2372 somewhere in a region. */
2373 ALLOCNO_ASSIGNED_P (a) = true;
2374 ira_free_allocno_updated_costs (a);
2375 hard_regno = ALLOCNO_HARD_REGNO (a);
2376 regno = ALLOCNO_REGNO (a);
2377 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2378 if (hard_regno >= 0)
2380 int i, nwords;
2381 enum reg_class pclass;
2382 ira_object_t obj;
2384 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2385 nwords = ALLOCNO_NUM_OBJECTS (a);
2386 for (i = 0; i < nwords; i++)
2388 obj = ALLOCNO_OBJECT (a, i);
2389 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2390 reg_class_contents[pclass]);
2392 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2393 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2394 call_used_reg_set))
2396 ira_assert (!optimize || flag_caller_saves
2397 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2398 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2399 || regno >= ira_reg_equiv_len
2400 || ira_equiv_no_lvalue_p (regno));
2401 caller_save_needed = 1;
2407 /* Set up allocno assignment flags for further allocation
2408 improvements. */
2409 static void
2410 setup_allocno_assignment_flags (void)
2412 int hard_regno;
2413 ira_allocno_t a;
2414 ira_allocno_iterator ai;
2416 FOR_EACH_ALLOCNO (a, ai)
2418 if (! ALLOCNO_ASSIGNED_P (a))
2419 /* It can happen if A is not referenced but partially anticipated
2420 somewhere in a region. */
2421 ira_free_allocno_updated_costs (a);
2422 hard_regno = ALLOCNO_HARD_REGNO (a);
2423 /* Don't assign hard registers to allocnos which are destination
2424 of removed store at the end of loop. It has no sense to keep
2425 the same value in different hard registers. It is also
2426 impossible to assign hard registers correctly to such
2427 allocnos because the cost info and info about intersected
2428 calls are incorrect for them. */
2429 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2430 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2431 || (ALLOCNO_MEMORY_COST (a)
2432 - ALLOCNO_CLASS_COST (a)) < 0);
2433 ira_assert
2434 (hard_regno < 0
2435 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2436 reg_class_contents[ALLOCNO_CLASS (a)]));
2440 /* Evaluate overall allocation cost and the costs for using hard
2441 registers and memory for allocnos. */
2442 static void
2443 calculate_allocation_cost (void)
2445 int hard_regno, cost;
2446 ira_allocno_t a;
2447 ira_allocno_iterator ai;
2449 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2450 FOR_EACH_ALLOCNO (a, ai)
2452 hard_regno = ALLOCNO_HARD_REGNO (a);
2453 ira_assert (hard_regno < 0
2454 || (ira_hard_reg_in_set_p
2455 (hard_regno, ALLOCNO_MODE (a),
2456 reg_class_contents[ALLOCNO_CLASS (a)])));
2457 if (hard_regno < 0)
2459 cost = ALLOCNO_MEMORY_COST (a);
2460 ira_mem_cost += cost;
2462 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2464 cost = (ALLOCNO_HARD_REG_COSTS (a)
2465 [ira_class_hard_reg_index
2466 [ALLOCNO_CLASS (a)][hard_regno]]);
2467 ira_reg_cost += cost;
2469 else
2471 cost = ALLOCNO_CLASS_COST (a);
2472 ira_reg_cost += cost;
2474 ira_overall_cost += cost;
2477 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2479 fprintf (ira_dump_file,
2480 "+++Costs: overall %" PRId64
2481 ", reg %" PRId64
2482 ", mem %" PRId64
2483 ", ld %" PRId64
2484 ", st %" PRId64
2485 ", move %" PRId64,
2486 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2487 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2488 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2489 ira_move_loops_num, ira_additional_jumps_num);
2494 #ifdef ENABLE_IRA_CHECKING
2495 /* Check the correctness of the allocation. We do need this because
2496 of complicated code to transform more one region internal
2497 representation into one region representation. */
2498 static void
2499 check_allocation (void)
2501 ira_allocno_t a;
2502 int hard_regno, nregs, conflict_nregs;
2503 ira_allocno_iterator ai;
2505 FOR_EACH_ALLOCNO (a, ai)
2507 int n = ALLOCNO_NUM_OBJECTS (a);
2508 int i;
2510 if (ALLOCNO_CAP_MEMBER (a) != NULL
2511 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2512 continue;
2513 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2514 if (nregs == 1)
2515 /* We allocated a single hard register. */
2516 n = 1;
2517 else if (n > 1)
2518 /* We allocated multiple hard registers, and we will test
2519 conflicts in a granularity of single hard regs. */
2520 nregs = 1;
2522 for (i = 0; i < n; i++)
2524 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2525 ira_object_t conflict_obj;
2526 ira_object_conflict_iterator oci;
2527 int this_regno = hard_regno;
2528 if (n > 1)
2530 if (REG_WORDS_BIG_ENDIAN)
2531 this_regno += n - i - 1;
2532 else
2533 this_regno += i;
2535 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2537 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2538 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2539 if (conflict_hard_regno < 0)
2540 continue;
2542 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2543 ALLOCNO_MODE (conflict_a));
2545 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2548 if (REG_WORDS_BIG_ENDIAN)
2549 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 - OBJECT_SUBWORD (conflict_obj) - 1);
2551 else
2552 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 conflict_nregs = 1;
2556 if ((conflict_hard_regno <= this_regno
2557 && this_regno < conflict_hard_regno + conflict_nregs)
2558 || (this_regno <= conflict_hard_regno
2559 && conflict_hard_regno < this_regno + nregs))
2561 fprintf (stderr, "bad allocation for %d and %d\n",
2562 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 gcc_unreachable ();
2569 #endif
2571 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2572 be already calculated. */
2573 static void
2574 setup_reg_equiv_init (void)
2576 int i;
2577 int max_regno = max_reg_num ();
2579 for (i = 0; i < max_regno; i++)
2580 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2584 are insns which were generated for such movement. It is assumed
2585 that FROM_REGNO and TO_REGNO always have the same value at the
2586 point of any move containing such registers. This function is used
2587 to update equiv info for register shuffles on the region borders
2588 and for caller save/restore insns. */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2592 rtx_insn *insn;
2593 rtx x, note;
2595 if (! ira_reg_equiv[from_regno].defined_p
2596 && (! ira_reg_equiv[to_regno].defined_p
2597 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 && ! MEM_READONLY_P (x))))
2599 return;
2600 insn = insns;
2601 if (NEXT_INSN (insn) != NULL_RTX)
2603 if (! ira_reg_equiv[to_regno].defined_p)
2605 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 return;
2608 ira_reg_equiv[to_regno].defined_p = false;
2609 ira_reg_equiv[to_regno].memory
2610 = ira_reg_equiv[to_regno].constant
2611 = ira_reg_equiv[to_regno].invariant
2612 = ira_reg_equiv[to_regno].init_insns = NULL;
2613 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 fprintf (ira_dump_file,
2615 " Invalidating equiv info for reg %d\n", to_regno);
2616 return;
2618 /* It is possible that FROM_REGNO still has no equivalence because
2619 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620 insn was not processed yet. */
2621 if (ira_reg_equiv[from_regno].defined_p)
2623 ira_reg_equiv[to_regno].defined_p = true;
2624 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2626 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 ira_reg_equiv[to_regno].memory = x;
2631 if (! MEM_READONLY_P (x))
2632 /* We don't add the insn to insn init list because memory
2633 equivalence is just to say what memory is better to use
2634 when the pseudo is spilled. */
2635 return;
2637 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2639 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 ira_reg_equiv[to_regno].constant = x;
2644 else
2646 x = ira_reg_equiv[from_regno].invariant;
2647 ira_assert (x != NULL_RTX);
2648 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 ira_reg_equiv[to_regno].invariant = x;
2652 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2654 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2655 gcc_assert (note != NULL_RTX);
2656 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 fprintf (ira_dump_file,
2659 " Adding equiv note to insn %u for reg %d ",
2660 INSN_UID (insn), to_regno);
2661 dump_value_slim (ira_dump_file, x, 1);
2662 fprintf (ira_dump_file, "\n");
2666 ira_reg_equiv[to_regno].init_insns
2667 = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 ira_reg_equiv[to_regno].init_insns);
2669 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670 fprintf (ira_dump_file,
2671 " Adding equiv init move insn %u to reg %d\n",
2672 INSN_UID (insn), to_regno);
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676 by IRA. */
2677 static void
2678 fix_reg_equiv_init (void)
2680 int max_regno = max_reg_num ();
2681 int i, new_regno, max;
2682 rtx set;
2683 rtx_insn_list *x, *next, *prev;
2684 rtx_insn *insn;
2686 if (max_regno_before_ira < max_regno)
2688 max = vec_safe_length (reg_equivs);
2689 grow_reg_equivs ();
2690 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 for (prev = NULL, x = reg_equiv_init (i);
2692 x != NULL_RTX;
2693 x = next)
2695 next = x->next ();
2696 insn = x->insn ();
2697 set = single_set (insn);
2698 ira_assert (set != NULL_RTX
2699 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 if (REG_P (SET_DEST (set))
2701 && ((int) REGNO (SET_DEST (set)) == i
2702 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 new_regno = REGNO (SET_DEST (set));
2704 else if (REG_P (SET_SRC (set))
2705 && ((int) REGNO (SET_SRC (set)) == i
2706 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 new_regno = REGNO (SET_SRC (set));
2708 else
2709 gcc_unreachable ();
2710 if (new_regno == i)
2711 prev = x;
2712 else
2714 /* Remove the wrong list element. */
2715 if (prev == NULL_RTX)
2716 reg_equiv_init (i) = next;
2717 else
2718 XEXP (prev, 1) = next;
2719 XEXP (x, 1) = reg_equiv_init (new_regno);
2720 reg_equiv_init (new_regno) = x;
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies. */
2728 static void
2729 print_redundant_copies (void)
2731 int hard_regno;
2732 ira_allocno_t a;
2733 ira_copy_t cp, next_cp;
2734 ira_allocno_iterator ai;
2736 FOR_EACH_ALLOCNO (a, ai)
2738 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 /* It is a cap. */
2740 continue;
2741 hard_regno = ALLOCNO_HARD_REGNO (a);
2742 if (hard_regno >= 0)
2743 continue;
2744 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 if (cp->first == a)
2746 next_cp = cp->next_first_allocno_copy;
2747 else
2749 next_cp = cp->next_second_allocno_copy;
2750 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 && cp->insn != NULL_RTX
2752 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 fprintf (ira_dump_file,
2754 " Redundant move from %d(freq %d):%d\n",
2755 INSN_UID (cp->insn), cp->freq, hard_regno);
2759 #endif
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762 created by IRA starting with START. */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2766 int i, old_regno;
2767 int max_regno = max_reg_num ();
2769 for (i = start; i < max_regno; i++)
2771 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772 ira_assert (i != old_regno);
2773 setup_reg_classes (i, reg_preferred_class (old_regno),
2774 reg_alternate_class (old_regno),
2775 reg_allocno_class (old_regno));
2776 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 fprintf (ira_dump_file,
2778 " New r%d: setting preferred %s, alternative %s\n",
2779 i, reg_class_names[reg_preferred_class (old_regno)],
2780 reg_class_names[reg_alternate_class (old_regno)]);
2785 /* The number of entries allocated in reg_info. */
2786 static int allocated_reg_info_size;
2788 /* Regional allocation can create new pseudo-registers. This function
2789 expands some arrays for pseudo-registers. */
2790 static void
2791 expand_reg_info (void)
2793 int i;
2794 int size = max_reg_num ();
2796 resize_reg_info ();
2797 for (i = allocated_reg_info_size; i < size; i++)
2798 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800 allocated_reg_info_size = size;
2803 /* Return TRUE if there is too high register pressure in the function.
2804 It is used to decide when stack slot sharing is worth to do. */
2805 static bool
2806 too_high_register_pressure_p (void)
2808 int i;
2809 enum reg_class pclass;
2811 for (i = 0; i < ira_pressure_classes_num; i++)
2813 pclass = ira_pressure_classes[i];
2814 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 return true;
2817 return false;
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823 an offset from hard register number TO. The status of hard registers live
2824 at the start of a basic block is updated by replacing a use of FROM with
2825 a use of TO. */
2827 void
2828 mark_elimination (int from, int to)
2830 basic_block bb;
2831 bitmap r;
2833 FOR_EACH_BB_FN (bb, cfun)
2835 r = DF_LR_IN (bb);
2836 if (bitmap_bit_p (r, from))
2838 bitmap_clear_bit (r, from);
2839 bitmap_set_bit (r, to);
2841 if (! df_live)
2842 continue;
2843 r = DF_LIVE_IN (bb);
2844 if (bitmap_bit_p (r, from))
2846 bitmap_clear_bit (r, from);
2847 bitmap_set_bit (r, to);
2854 /* The length of the following array. */
2855 int ira_reg_equiv_len;
2857 /* Info about equiv. info for each register. */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2860 /* Expand ira_reg_equiv if necessary. */
2861 void
2862 ira_expand_reg_equiv (void)
2864 int old = ira_reg_equiv_len;
2866 if (ira_reg_equiv_len > max_reg_num ())
2867 return;
2868 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869 ira_reg_equiv
2870 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 ira_reg_equiv_len
2872 * sizeof (struct ira_reg_equiv_s));
2873 gcc_assert (old < ira_reg_equiv_len);
2874 memset (ira_reg_equiv + old, 0,
2875 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2878 static void
2879 init_reg_equiv (void)
2881 ira_reg_equiv_len = 0;
2882 ira_reg_equiv = NULL;
2883 ira_expand_reg_equiv ();
2886 static void
2887 finish_reg_equiv (void)
2889 free (ira_reg_equiv);
2894 struct equivalence
2896 /* Set when a REG_EQUIV note is found or created. Use to
2897 keep track of what memory accesses might be created later,
2898 e.g. by reload. */
2899 rtx replacement;
2900 rtx *src_p;
2902 /* The list of each instruction which initializes this register.
2904 NULL indicates we know nothing about this register's equivalence
2905 properties.
2907 An INSN_LIST with a NULL insn indicates this pseudo is already
2908 known to not have a valid equivalence. */
2909 rtx_insn_list *init_insns;
2911 /* Loop depth is used to recognize equivalences which appear
2912 to be present within the same loop (or in an inner loop). */
2913 short loop_depth;
2914 /* Nonzero if this had a preexisting REG_EQUIV note. */
2915 unsigned char is_arg_equivalence : 1;
2916 /* Set when an attempt should be made to replace a register
2917 with the associated src_p entry. */
2918 unsigned char replace : 1;
2919 /* Set if this register has no known equivalence. */
2920 unsigned char no_equiv : 1;
2921 /* Set if this register is mentioned in a paradoxical subreg. */
2922 unsigned char pdx_subregs : 1;
2925 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2926 structure for that register. */
2927 static struct equivalence *reg_equiv;
2929 /* Used for communication between the following two functions. */
2930 struct equiv_mem_data
2932 /* A MEM that we wish to ensure remains unchanged. */
2933 rtx equiv_mem;
2935 /* Set true if EQUIV_MEM is modified. */
2936 bool equiv_mem_modified;
2939 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2940 Called via note_stores. */
2941 static void
2942 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2943 void *data)
2945 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2947 if ((REG_P (dest)
2948 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2949 || (MEM_P (dest)
2950 && anti_dependence (info->equiv_mem, dest)))
2951 info->equiv_mem_modified = true;
2954 enum valid_equiv { valid_none, valid_combine, valid_reload };
2956 /* Verify that no store between START and the death of REG invalidates
2957 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2958 by storing into an overlapping memory location, or with a non-const
2959 CALL_INSN.
2961 Return VALID_RELOAD if MEMREF remains valid for both reload and
2962 combine_and_move insns, VALID_COMBINE if only valid for
2963 combine_and_move_insns, and VALID_NONE otherwise. */
2964 static enum valid_equiv
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2967 rtx_insn *insn;
2968 rtx note;
2969 struct equiv_mem_data info = { memref, false };
2970 enum valid_equiv ret = valid_reload;
2972 /* If the memory reference has side effects or is volatile, it isn't a
2973 valid equivalence. */
2974 if (side_effects_p (memref))
2975 return valid_none;
2977 for (insn = start; insn; insn = NEXT_INSN (insn))
2979 if (!INSN_P (insn))
2980 continue;
2982 if (find_reg_note (insn, REG_DEAD, reg))
2983 return ret;
2985 if (CALL_P (insn))
2987 /* We can combine a reg def from one insn into a reg use in
2988 another over a call if the memory is readonly or the call
2989 const/pure. However, we can't set reg_equiv notes up for
2990 reload over any call. The problem is the equivalent form
2991 may reference a pseudo which gets assigned a call
2992 clobbered hard reg. When we later replace REG with its
2993 equivalent form, the value in the call-clobbered reg has
2994 been changed and all hell breaks loose. */
2995 ret = valid_combine;
2996 if (!MEM_READONLY_P (memref)
2997 && !RTL_CONST_OR_PURE_CALL_P (insn))
2998 return valid_none;
3001 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3002 if (info.equiv_mem_modified)
3003 return valid_none;
3005 /* If a register mentioned in MEMREF is modified via an
3006 auto-increment, we lose the equivalence. Do the same if one
3007 dies; although we could extend the life, it doesn't seem worth
3008 the trouble. */
3010 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3011 if ((REG_NOTE_KIND (note) == REG_INC
3012 || REG_NOTE_KIND (note) == REG_DEAD)
3013 && REG_P (XEXP (note, 0))
3014 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3015 return valid_none;
3018 return valid_none;
3021 /* Returns zero if X is known to be invariant. */
3022 static int
3023 equiv_init_varies_p (rtx x)
3025 RTX_CODE code = GET_CODE (x);
3026 int i;
3027 const char *fmt;
3029 switch (code)
3031 case MEM:
3032 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3034 case CONST:
3035 CASE_CONST_ANY:
3036 case SYMBOL_REF:
3037 case LABEL_REF:
3038 return 0;
3040 case REG:
3041 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3043 case ASM_OPERANDS:
3044 if (MEM_VOLATILE_P (x))
3045 return 1;
3047 /* Fall through. */
3049 default:
3050 break;
3053 fmt = GET_RTX_FORMAT (code);
3054 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3055 if (fmt[i] == 'e')
3057 if (equiv_init_varies_p (XEXP (x, i)))
3058 return 1;
3060 else if (fmt[i] == 'E')
3062 int j;
3063 for (j = 0; j < XVECLEN (x, i); j++)
3064 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3065 return 1;
3068 return 0;
3071 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3072 X is only movable if the registers it uses have equivalent initializations
3073 which appear to be within the same loop (or in an inner loop) and movable
3074 or if they are not candidates for local_alloc and don't vary. */
3075 static int
3076 equiv_init_movable_p (rtx x, int regno)
3078 int i, j;
3079 const char *fmt;
3080 enum rtx_code code = GET_CODE (x);
3082 switch (code)
3084 case SET:
3085 return equiv_init_movable_p (SET_SRC (x), regno);
3087 case CC0:
3088 case CLOBBER:
3089 case CLOBBER_HIGH:
3090 return 0;
3092 case PRE_INC:
3093 case PRE_DEC:
3094 case POST_INC:
3095 case POST_DEC:
3096 case PRE_MODIFY:
3097 case POST_MODIFY:
3098 return 0;
3100 case REG:
3101 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3102 && reg_equiv[REGNO (x)].replace)
3103 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3104 && ! rtx_varies_p (x, 0)));
3106 case UNSPEC_VOLATILE:
3107 return 0;
3109 case ASM_OPERANDS:
3110 if (MEM_VOLATILE_P (x))
3111 return 0;
3113 /* Fall through. */
3115 default:
3116 break;
3119 fmt = GET_RTX_FORMAT (code);
3120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3121 switch (fmt[i])
3123 case 'e':
3124 if (! equiv_init_movable_p (XEXP (x, i), regno))
3125 return 0;
3126 break;
3127 case 'E':
3128 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3129 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3130 return 0;
3131 break;
3134 return 1;
3137 /* TRUE if X references a memory location that would be affected by a store
3138 to MEMREF. */
3139 static int
3140 memref_referenced_p (rtx memref, rtx x)
3142 int i, j;
3143 const char *fmt;
3144 enum rtx_code code = GET_CODE (x);
3146 switch (code)
3148 case CONST:
3149 case LABEL_REF:
3150 case SYMBOL_REF:
3151 CASE_CONST_ANY:
3152 case PC:
3153 case CC0:
3154 case HIGH:
3155 case LO_SUM:
3156 return 0;
3158 case REG:
3159 return (reg_equiv[REGNO (x)].replacement
3160 && memref_referenced_p (memref,
3161 reg_equiv[REGNO (x)].replacement));
3163 case MEM:
3164 if (true_dependence (memref, VOIDmode, x))
3165 return 1;
3166 break;
3168 case SET:
3169 /* If we are setting a MEM, it doesn't count (its address does), but any
3170 other SET_DEST that has a MEM in it is referencing the MEM. */
3171 if (MEM_P (SET_DEST (x)))
3173 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3174 return 1;
3176 else if (memref_referenced_p (memref, SET_DEST (x)))
3177 return 1;
3179 return memref_referenced_p (memref, SET_SRC (x));
3181 default:
3182 break;
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3187 switch (fmt[i])
3189 case 'e':
3190 if (memref_referenced_p (memref, XEXP (x, i)))
3191 return 1;
3192 break;
3193 case 'E':
3194 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3195 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3196 return 1;
3197 break;
3200 return 0;
3203 /* TRUE if some insn in the range (START, END] references a memory location
3204 that would be affected by a store to MEMREF.
3206 Callers should not call this routine if START is after END in the
3207 RTL chain. */
3209 static int
3210 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3212 rtx_insn *insn;
3214 for (insn = NEXT_INSN (start);
3215 insn && insn != NEXT_INSN (end);
3216 insn = NEXT_INSN (insn))
3218 if (!NONDEBUG_INSN_P (insn))
3219 continue;
3221 if (memref_referenced_p (memref, PATTERN (insn)))
3222 return 1;
3224 /* Nonconst functions may access memory. */
3225 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3226 return 1;
3229 gcc_assert (insn == NEXT_INSN (end));
3230 return 0;
3233 /* Mark REG as having no known equivalence.
3234 Some instructions might have been processed before and furnished
3235 with REG_EQUIV notes for this register; these notes will have to be
3236 removed.
3237 STORE is the piece of RTL that does the non-constant / conflicting
3238 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3239 but needs to be there because this function is called from note_stores. */
3240 static void
3241 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3242 void *data ATTRIBUTE_UNUSED)
3244 int regno;
3245 rtx_insn_list *list;
3247 if (!REG_P (reg))
3248 return;
3249 regno = REGNO (reg);
3250 reg_equiv[regno].no_equiv = 1;
3251 list = reg_equiv[regno].init_insns;
3252 if (list && list->insn () == NULL)
3253 return;
3254 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3255 reg_equiv[regno].replacement = NULL_RTX;
3256 /* This doesn't matter for equivalences made for argument registers, we
3257 should keep their initialization insns. */
3258 if (reg_equiv[regno].is_arg_equivalence)
3259 return;
3260 ira_reg_equiv[regno].defined_p = false;
3261 ira_reg_equiv[regno].init_insns = NULL;
3262 for (; list; list = list->next ())
3264 rtx_insn *insn = list->insn ();
3265 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3269 /* Check whether the SUBREG is a paradoxical subreg and set the result
3270 in PDX_SUBREGS. */
3272 static void
3273 set_paradoxical_subreg (rtx_insn *insn)
3275 subrtx_iterator::array_type array;
3276 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3278 const_rtx subreg = *iter;
3279 if (GET_CODE (subreg) == SUBREG)
3281 const_rtx reg = SUBREG_REG (subreg);
3282 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3283 reg_equiv[REGNO (reg)].pdx_subregs = true;
3288 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3289 equivalent replacement. */
3291 static rtx
3292 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3294 if (REG_P (loc))
3296 bitmap cleared_regs = (bitmap) data;
3297 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3298 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3299 NULL_RTX, adjust_cleared_regs, data);
3301 return NULL_RTX;
3304 /* Given register REGNO is set only once, return true if the defining
3305 insn dominates all uses. */
3307 static bool
3308 def_dominates_uses (int regno)
3310 df_ref def = DF_REG_DEF_CHAIN (regno);
3312 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3313 /* If this is an artificial def (eh handler regs, hard frame pointer
3314 for non-local goto, regs defined on function entry) then def_info
3315 is NULL and the reg is always live before any use. We might
3316 reasonably return true in that case, but since the only call
3317 of this function is currently here in ira.c when we are looking
3318 at a defining insn we can't have an artificial def as that would
3319 bump DF_REG_DEF_COUNT. */
3320 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3322 rtx_insn *def_insn = DF_REF_INSN (def);
3323 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3325 for (df_ref use = DF_REG_USE_CHAIN (regno);
3326 use;
3327 use = DF_REF_NEXT_REG (use))
3329 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3330 /* Only check real uses, not artificial ones. */
3331 if (use_info)
3333 rtx_insn *use_insn = DF_REF_INSN (use);
3334 if (!DEBUG_INSN_P (use_insn))
3336 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3337 if (use_bb != def_bb
3338 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3339 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3340 return false;
3344 return true;
3347 /* Find registers that are equivalent to a single value throughout the
3348 compilation (either because they can be referenced in memory or are
3349 set once from a single constant). Lower their priority for a
3350 register.
3352 If such a register is only referenced once, try substituting its
3353 value into the using insn. If it succeeds, we can eliminate the
3354 register completely.
3356 Initialize init_insns in ira_reg_equiv array. */
3357 static void
3358 update_equiv_regs (void)
3360 rtx_insn *insn;
3361 basic_block bb;
3363 /* Scan insns and set pdx_subregs if the reg is used in a
3364 paradoxical subreg. Don't set such reg equivalent to a mem,
3365 because lra will not substitute such equiv memory in order to
3366 prevent access beyond allocated memory for paradoxical memory subreg. */
3367 FOR_EACH_BB_FN (bb, cfun)
3368 FOR_BB_INSNS (bb, insn)
3369 if (NONDEBUG_INSN_P (insn))
3370 set_paradoxical_subreg (insn);
3372 /* Scan the insns and find which registers have equivalences. Do this
3373 in a separate scan of the insns because (due to -fcse-follow-jumps)
3374 a register can be set below its use. */
3375 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3376 FOR_EACH_BB_FN (bb, cfun)
3378 int loop_depth = bb_loop_depth (bb);
3380 for (insn = BB_HEAD (bb);
3381 insn != NEXT_INSN (BB_END (bb));
3382 insn = NEXT_INSN (insn))
3384 rtx note;
3385 rtx set;
3386 rtx dest, src;
3387 int regno;
3389 if (! INSN_P (insn))
3390 continue;
3392 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3393 if (REG_NOTE_KIND (note) == REG_INC)
3394 no_equiv (XEXP (note, 0), note, NULL);
3396 set = single_set (insn);
3398 /* If this insn contains more (or less) than a single SET,
3399 only mark all destinations as having no known equivalence. */
3400 if (set == NULL_RTX
3401 || side_effects_p (SET_SRC (set)))
3403 note_stores (PATTERN (insn), no_equiv, NULL);
3404 continue;
3406 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3408 int i;
3410 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3412 rtx part = XVECEXP (PATTERN (insn), 0, i);
3413 if (part != set)
3414 note_stores (part, no_equiv, NULL);
3418 dest = SET_DEST (set);
3419 src = SET_SRC (set);
3421 /* See if this is setting up the equivalence between an argument
3422 register and its stack slot. */
3423 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3424 if (note)
3426 gcc_assert (REG_P (dest));
3427 regno = REGNO (dest);
3429 /* Note that we don't want to clear init_insns in
3430 ira_reg_equiv even if there are multiple sets of this
3431 register. */
3432 reg_equiv[regno].is_arg_equivalence = 1;
3434 /* The insn result can have equivalence memory although
3435 the equivalence is not set up by the insn. We add
3436 this insn to init insns as it is a flag for now that
3437 regno has an equivalence. We will remove the insn
3438 from init insn list later. */
3439 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3440 ira_reg_equiv[regno].init_insns
3441 = gen_rtx_INSN_LIST (VOIDmode, insn,
3442 ira_reg_equiv[regno].init_insns);
3444 /* Continue normally in case this is a candidate for
3445 replacements. */
3448 if (!optimize)
3449 continue;
3451 /* We only handle the case of a pseudo register being set
3452 once, or always to the same value. */
3453 /* ??? The mn10200 port breaks if we add equivalences for
3454 values that need an ADDRESS_REGS register and set them equivalent
3455 to a MEM of a pseudo. The actual problem is in the over-conservative
3456 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3457 calculate_needs, but we traditionally work around this problem
3458 here by rejecting equivalences when the destination is in a register
3459 that's likely spilled. This is fragile, of course, since the
3460 preferred class of a pseudo depends on all instructions that set
3461 or use it. */
3463 if (!REG_P (dest)
3464 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3465 || (reg_equiv[regno].init_insns
3466 && reg_equiv[regno].init_insns->insn () == NULL)
3467 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3468 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3470 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3471 also set somewhere else to a constant. */
3472 note_stores (set, no_equiv, NULL);
3473 continue;
3476 /* Don't set reg mentioned in a paradoxical subreg
3477 equivalent to a mem. */
3478 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3480 note_stores (set, no_equiv, NULL);
3481 continue;
3484 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3486 /* cse sometimes generates function invariants, but doesn't put a
3487 REG_EQUAL note on the insn. Since this note would be redundant,
3488 there's no point creating it earlier than here. */
3489 if (! note && ! rtx_varies_p (src, 0))
3490 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3492 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3493 since it represents a function call. */
3494 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3495 note = NULL_RTX;
3497 if (DF_REG_DEF_COUNT (regno) != 1)
3499 bool equal_p = true;
3500 rtx_insn_list *list;
3502 /* If we have already processed this pseudo and determined it
3503 can not have an equivalence, then honor that decision. */
3504 if (reg_equiv[regno].no_equiv)
3505 continue;
3507 if (! note
3508 || rtx_varies_p (XEXP (note, 0), 0)
3509 || (reg_equiv[regno].replacement
3510 && ! rtx_equal_p (XEXP (note, 0),
3511 reg_equiv[regno].replacement)))
3513 no_equiv (dest, set, NULL);
3514 continue;
3517 list = reg_equiv[regno].init_insns;
3518 for (; list; list = list->next ())
3520 rtx note_tmp;
3521 rtx_insn *insn_tmp;
3523 insn_tmp = list->insn ();
3524 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3525 gcc_assert (note_tmp);
3526 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3528 equal_p = false;
3529 break;
3533 if (! equal_p)
3535 no_equiv (dest, set, NULL);
3536 continue;
3540 /* Record this insn as initializing this register. */
3541 reg_equiv[regno].init_insns
3542 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3544 /* If this register is known to be equal to a constant, record that
3545 it is always equivalent to the constant.
3546 Note that it is possible to have a register use before
3547 the def in loops (see gcc.c-torture/execute/pr79286.c)
3548 where the reg is undefined on first use. If the def insn
3549 won't trap we can use it as an equivalence, effectively
3550 choosing the "undefined" value for the reg to be the
3551 same as the value set by the def. */
3552 if (DF_REG_DEF_COUNT (regno) == 1
3553 && note
3554 && !rtx_varies_p (XEXP (note, 0), 0)
3555 && (!may_trap_or_fault_p (XEXP (note, 0))
3556 || def_dominates_uses (regno)))
3558 rtx note_value = XEXP (note, 0);
3559 remove_note (insn, note);
3560 set_unique_reg_note (insn, REG_EQUIV, note_value);
3563 /* If this insn introduces a "constant" register, decrease the priority
3564 of that register. Record this insn if the register is only used once
3565 more and the equivalence value is the same as our source.
3567 The latter condition is checked for two reasons: First, it is an
3568 indication that it may be more efficient to actually emit the insn
3569 as written (if no registers are available, reload will substitute
3570 the equivalence). Secondly, it avoids problems with any registers
3571 dying in this insn whose death notes would be missed.
3573 If we don't have a REG_EQUIV note, see if this insn is loading
3574 a register used only in one basic block from a MEM. If so, and the
3575 MEM remains unchanged for the life of the register, add a REG_EQUIV
3576 note. */
3577 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3579 rtx replacement = NULL_RTX;
3580 if (note)
3581 replacement = XEXP (note, 0);
3582 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3583 && MEM_P (SET_SRC (set)))
3585 enum valid_equiv validity;
3586 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3587 if (validity != valid_none)
3589 replacement = copy_rtx (SET_SRC (set));
3590 if (validity == valid_reload)
3591 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3595 /* If we haven't done so, record for reload that this is an
3596 equivalencing insn. */
3597 if (note && !reg_equiv[regno].is_arg_equivalence)
3598 ira_reg_equiv[regno].init_insns
3599 = gen_rtx_INSN_LIST (VOIDmode, insn,
3600 ira_reg_equiv[regno].init_insns);
3602 if (replacement)
3604 reg_equiv[regno].replacement = replacement;
3605 reg_equiv[regno].src_p = &SET_SRC (set);
3606 reg_equiv[regno].loop_depth = (short) loop_depth;
3608 /* Don't mess with things live during setjmp. */
3609 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3611 /* If the register is referenced exactly twice, meaning it is
3612 set once and used once, indicate that the reference may be
3613 replaced by the equivalence we computed above. Do this
3614 even if the register is only used in one block so that
3615 dependencies can be handled where the last register is
3616 used in a different block (i.e. HIGH / LO_SUM sequences)
3617 and to reduce the number of registers alive across
3618 calls. */
3620 if (REG_N_REFS (regno) == 2
3621 && (rtx_equal_p (replacement, src)
3622 || ! equiv_init_varies_p (src))
3623 && NONJUMP_INSN_P (insn)
3624 && equiv_init_movable_p (PATTERN (insn), regno))
3625 reg_equiv[regno].replace = 1;
3632 /* For insns that set a MEM to the contents of a REG that is only used
3633 in a single basic block, see if the register is always equivalent
3634 to that memory location and if moving the store from INSN to the
3635 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3636 initializing insn. */
3637 static void
3638 add_store_equivs (void)
3640 auto_bitmap seen_insns;
3642 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3644 rtx set, src, dest;
3645 unsigned regno;
3646 rtx_insn *init_insn;
3648 bitmap_set_bit (seen_insns, INSN_UID (insn));
3650 if (! INSN_P (insn))
3651 continue;
3653 set = single_set (insn);
3654 if (! set)
3655 continue;
3657 dest = SET_DEST (set);
3658 src = SET_SRC (set);
3660 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3661 REG_EQUIV is likely more useful than the one we are adding. */
3662 if (MEM_P (dest) && REG_P (src)
3663 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3664 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3665 && DF_REG_DEF_COUNT (regno) == 1
3666 && ! reg_equiv[regno].pdx_subregs
3667 && reg_equiv[regno].init_insns != NULL
3668 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3669 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3670 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3671 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3672 && ! memref_used_between_p (dest, init_insn, insn)
3673 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3674 multiple sets. */
3675 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3677 /* This insn makes the equivalence, not the one initializing
3678 the register. */
3679 ira_reg_equiv[regno].init_insns
3680 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3681 df_notes_rescan (init_insn);
3682 if (dump_file)
3683 fprintf (dump_file,
3684 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3685 INSN_UID (init_insn),
3686 INSN_UID (insn));
3691 /* Scan all regs killed in an insn to see if any of them are registers
3692 only used that once. If so, see if we can replace the reference
3693 with the equivalent form. If we can, delete the initializing
3694 reference and this register will go away. If we can't replace the
3695 reference, and the initializing reference is within the same loop
3696 (or in an inner loop), then move the register initialization just
3697 before the use, so that they are in the same basic block. */
3698 static void
3699 combine_and_move_insns (void)
3701 auto_bitmap cleared_regs;
3702 int max = max_reg_num ();
3704 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3706 if (!reg_equiv[regno].replace)
3707 continue;
3709 rtx_insn *use_insn = 0;
3710 for (df_ref use = DF_REG_USE_CHAIN (regno);
3711 use;
3712 use = DF_REF_NEXT_REG (use))
3713 if (DF_REF_INSN_INFO (use))
3715 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3716 continue;
3717 gcc_assert (!use_insn);
3718 use_insn = DF_REF_INSN (use);
3720 gcc_assert (use_insn);
3722 /* Don't substitute into jumps. indirect_jump_optimize does
3723 this for anything we are prepared to handle. */
3724 if (JUMP_P (use_insn))
3725 continue;
3727 /* Also don't substitute into a conditional trap insn -- it can become
3728 an unconditional trap, and that is a flow control insn. */
3729 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3730 continue;
3732 df_ref def = DF_REG_DEF_CHAIN (regno);
3733 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3734 rtx_insn *def_insn = DF_REF_INSN (def);
3736 /* We may not move instructions that can throw, since that
3737 changes basic block boundaries and we are not prepared to
3738 adjust the CFG to match. */
3739 if (can_throw_internal (def_insn))
3740 continue;
3742 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3743 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3744 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3745 continue;
3747 if (asm_noperands (PATTERN (def_insn)) < 0
3748 && validate_replace_rtx (regno_reg_rtx[regno],
3749 *reg_equiv[regno].src_p, use_insn))
3751 rtx link;
3752 /* Append the REG_DEAD notes from def_insn. */
3753 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3755 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3757 *p = XEXP (link, 1);
3758 XEXP (link, 1) = REG_NOTES (use_insn);
3759 REG_NOTES (use_insn) = link;
3761 else
3762 p = &XEXP (link, 1);
3765 remove_death (regno, use_insn);
3766 SET_REG_N_REFS (regno, 0);
3767 REG_FREQ (regno) = 0;
3768 df_ref use;
3769 FOR_EACH_INSN_USE (use, def_insn)
3771 unsigned int use_regno = DF_REF_REGNO (use);
3772 if (!HARD_REGISTER_NUM_P (use_regno))
3773 reg_equiv[use_regno].replace = 0;
3776 delete_insn (def_insn);
3778 reg_equiv[regno].init_insns = NULL;
3779 ira_reg_equiv[regno].init_insns = NULL;
3780 bitmap_set_bit (cleared_regs, regno);
3783 /* Move the initialization of the register to just before
3784 USE_INSN. Update the flow information. */
3785 else if (prev_nondebug_insn (use_insn) != def_insn)
3787 rtx_insn *new_insn;
3789 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3790 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3791 REG_NOTES (def_insn) = 0;
3792 /* Rescan it to process the notes. */
3793 df_insn_rescan (new_insn);
3795 /* Make sure this insn is recognized before reload begins,
3796 otherwise eliminate_regs_in_insn will die. */
3797 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3799 delete_insn (def_insn);
3801 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3803 REG_BASIC_BLOCK (regno) = use_bb->index;
3804 REG_N_CALLS_CROSSED (regno) = 0;
3806 if (use_insn == BB_HEAD (use_bb))
3807 BB_HEAD (use_bb) = new_insn;
3809 /* We know regno dies in use_insn, but inside a loop
3810 REG_DEAD notes might be missing when def_insn was in
3811 another basic block. However, when we move def_insn into
3812 this bb we'll definitely get a REG_DEAD note and reload
3813 will see the death. It's possible that update_equiv_regs
3814 set up an equivalence referencing regno for a reg set by
3815 use_insn, when regno was seen as non-local. Now that
3816 regno is local to this block, and dies, such an
3817 equivalence is invalid. */
3818 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3820 rtx set = single_set (use_insn);
3821 if (set && REG_P (SET_DEST (set)))
3822 no_equiv (SET_DEST (set), set, NULL);
3825 ira_reg_equiv[regno].init_insns
3826 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3827 bitmap_set_bit (cleared_regs, regno);
3831 if (!bitmap_empty_p (cleared_regs))
3833 basic_block bb;
3835 FOR_EACH_BB_FN (bb, cfun)
3837 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3838 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3839 if (!df_live)
3840 continue;
3841 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3842 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3845 /* Last pass - adjust debug insns referencing cleared regs. */
3846 if (MAY_HAVE_DEBUG_BIND_INSNS)
3847 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3848 if (DEBUG_BIND_INSN_P (insn))
3850 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3851 INSN_VAR_LOCATION_LOC (insn)
3852 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3853 adjust_cleared_regs,
3854 (void *) cleared_regs);
3855 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3856 df_insn_rescan (insn);
3861 /* A pass over indirect jumps, converting simple cases to direct jumps.
3862 Combine does this optimization too, but only within a basic block. */
3863 static void
3864 indirect_jump_optimize (void)
3866 basic_block bb;
3867 bool rebuild_p = false;
3869 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3871 rtx_insn *insn = BB_END (bb);
3872 if (!JUMP_P (insn)
3873 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3874 continue;
3876 rtx x = pc_set (insn);
3877 if (!x || !REG_P (SET_SRC (x)))
3878 continue;
3880 int regno = REGNO (SET_SRC (x));
3881 if (DF_REG_DEF_COUNT (regno) == 1)
3883 df_ref def = DF_REG_DEF_CHAIN (regno);
3884 if (!DF_REF_IS_ARTIFICIAL (def))
3886 rtx_insn *def_insn = DF_REF_INSN (def);
3887 rtx lab = NULL_RTX;
3888 rtx set = single_set (def_insn);
3889 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3890 lab = SET_SRC (set);
3891 else
3893 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3894 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3895 lab = XEXP (eqnote, 0);
3897 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3898 rebuild_p = true;
3903 if (rebuild_p)
3905 timevar_push (TV_JUMP);
3906 rebuild_jump_labels (get_insns ());
3907 if (purge_all_dead_edges ())
3908 delete_unreachable_blocks ();
3909 timevar_pop (TV_JUMP);
3913 /* Set up fields memory, constant, and invariant from init_insns in
3914 the structures of array ira_reg_equiv. */
3915 static void
3916 setup_reg_equiv (void)
3918 int i;
3919 rtx_insn_list *elem, *prev_elem, *next_elem;
3920 rtx_insn *insn;
3921 rtx set, x;
3923 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3924 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3925 elem;
3926 prev_elem = elem, elem = next_elem)
3928 next_elem = elem->next ();
3929 insn = elem->insn ();
3930 set = single_set (insn);
3932 /* Init insns can set up equivalence when the reg is a destination or
3933 a source (in this case the destination is memory). */
3934 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3936 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3938 x = XEXP (x, 0);
3939 if (REG_P (SET_DEST (set))
3940 && REGNO (SET_DEST (set)) == (unsigned int) i
3941 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3943 /* This insn reporting the equivalence but
3944 actually not setting it. Remove it from the
3945 list. */
3946 if (prev_elem == NULL)
3947 ira_reg_equiv[i].init_insns = next_elem;
3948 else
3949 XEXP (prev_elem, 1) = next_elem;
3950 elem = prev_elem;
3953 else if (REG_P (SET_DEST (set))
3954 && REGNO (SET_DEST (set)) == (unsigned int) i)
3955 x = SET_SRC (set);
3956 else
3958 gcc_assert (REG_P (SET_SRC (set))
3959 && REGNO (SET_SRC (set)) == (unsigned int) i);
3960 x = SET_DEST (set);
3962 if (! function_invariant_p (x)
3963 || ! flag_pic
3964 /* A function invariant is often CONSTANT_P but may
3965 include a register. We promise to only pass
3966 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3967 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3969 /* It can happen that a REG_EQUIV note contains a MEM
3970 that is not a legitimate memory operand. As later
3971 stages of reload assume that all addresses found in
3972 the lra_regno_equiv_* arrays were originally
3973 legitimate, we ignore such REG_EQUIV notes. */
3974 if (memory_operand (x, VOIDmode))
3976 ira_reg_equiv[i].defined_p = true;
3977 ira_reg_equiv[i].memory = x;
3978 continue;
3980 else if (function_invariant_p (x))
3982 machine_mode mode;
3984 mode = GET_MODE (SET_DEST (set));
3985 if (GET_CODE (x) == PLUS
3986 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3987 /* This is PLUS of frame pointer and a constant,
3988 or fp, or argp. */
3989 ira_reg_equiv[i].invariant = x;
3990 else if (targetm.legitimate_constant_p (mode, x))
3991 ira_reg_equiv[i].constant = x;
3992 else
3994 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3995 if (ira_reg_equiv[i].memory == NULL_RTX)
3997 ira_reg_equiv[i].defined_p = false;
3998 ira_reg_equiv[i].init_insns = NULL;
3999 break;
4002 ira_reg_equiv[i].defined_p = true;
4003 continue;
4007 ira_reg_equiv[i].defined_p = false;
4008 ira_reg_equiv[i].init_insns = NULL;
4009 break;
4015 /* Print chain C to FILE. */
4016 static void
4017 print_insn_chain (FILE *file, struct insn_chain *c)
4019 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4020 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4021 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4025 /* Print all reload_insn_chains to FILE. */
4026 static void
4027 print_insn_chains (FILE *file)
4029 struct insn_chain *c;
4030 for (c = reload_insn_chain; c ; c = c->next)
4031 print_insn_chain (file, c);
4034 /* Return true if pseudo REGNO should be added to set live_throughout
4035 or dead_or_set of the insn chains for reload consideration. */
4036 static bool
4037 pseudo_for_reload_consideration_p (int regno)
4039 /* Consider spilled pseudos too for IRA because they still have a
4040 chance to get hard-registers in the reload when IRA is used. */
4041 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4044 /* Return true if we can track the individual bytes of subreg X.
4045 When returning true, set *OUTER_SIZE to the number of bytes in
4046 X itself, *INNER_SIZE to the number of bytes in the inner register
4047 and *START to the offset of the first byte. */
4048 static bool
4049 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4050 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4052 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4053 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4054 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4055 && SUBREG_BYTE (x).is_constant (start));
4058 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4059 a register with SIZE bytes, making the register live if INIT_VALUE. */
4060 static void
4061 init_live_subregs (bool init_value, sbitmap *live_subregs,
4062 bitmap live_subregs_used, int allocnum, int size)
4064 gcc_assert (size > 0);
4066 /* Been there, done that. */
4067 if (bitmap_bit_p (live_subregs_used, allocnum))
4068 return;
4070 /* Create a new one. */
4071 if (live_subregs[allocnum] == NULL)
4072 live_subregs[allocnum] = sbitmap_alloc (size);
4074 /* If the entire reg was live before blasting into subregs, we need
4075 to init all of the subregs to ones else init to 0. */
4076 if (init_value)
4077 bitmap_ones (live_subregs[allocnum]);
4078 else
4079 bitmap_clear (live_subregs[allocnum]);
4081 bitmap_set_bit (live_subregs_used, allocnum);
4084 /* Walk the insns of the current function and build reload_insn_chain,
4085 and record register life information. */
4086 static void
4087 build_insn_chain (void)
4089 unsigned int i;
4090 struct insn_chain **p = &reload_insn_chain;
4091 basic_block bb;
4092 struct insn_chain *c = NULL;
4093 struct insn_chain *next = NULL;
4094 auto_bitmap live_relevant_regs;
4095 auto_bitmap elim_regset;
4096 /* live_subregs is a vector used to keep accurate information about
4097 which hardregs are live in multiword pseudos. live_subregs and
4098 live_subregs_used are indexed by pseudo number. The live_subreg
4099 entry for a particular pseudo is only used if the corresponding
4100 element is non zero in live_subregs_used. The sbitmap size of
4101 live_subreg[allocno] is number of bytes that the pseudo can
4102 occupy. */
4103 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4104 auto_bitmap live_subregs_used;
4106 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4107 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4108 bitmap_set_bit (elim_regset, i);
4109 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4111 bitmap_iterator bi;
4112 rtx_insn *insn;
4114 CLEAR_REG_SET (live_relevant_regs);
4115 bitmap_clear (live_subregs_used);
4117 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4119 if (i >= FIRST_PSEUDO_REGISTER)
4120 break;
4121 bitmap_set_bit (live_relevant_regs, i);
4124 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4125 FIRST_PSEUDO_REGISTER, i, bi)
4127 if (pseudo_for_reload_consideration_p (i))
4128 bitmap_set_bit (live_relevant_regs, i);
4131 FOR_BB_INSNS_REVERSE (bb, insn)
4133 if (!NOTE_P (insn) && !BARRIER_P (insn))
4135 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4136 df_ref def, use;
4138 c = new_insn_chain ();
4139 c->next = next;
4140 next = c;
4141 *p = c;
4142 p = &c->prev;
4144 c->insn = insn;
4145 c->block = bb->index;
4147 if (NONDEBUG_INSN_P (insn))
4148 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4150 unsigned int regno = DF_REF_REGNO (def);
4152 /* Ignore may clobbers because these are generated
4153 from calls. However, every other kind of def is
4154 added to dead_or_set. */
4155 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4157 if (regno < FIRST_PSEUDO_REGISTER)
4159 if (!fixed_regs[regno])
4160 bitmap_set_bit (&c->dead_or_set, regno);
4162 else if (pseudo_for_reload_consideration_p (regno))
4163 bitmap_set_bit (&c->dead_or_set, regno);
4166 if ((regno < FIRST_PSEUDO_REGISTER
4167 || reg_renumber[regno] >= 0
4168 || ira_conflicts_p)
4169 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4171 rtx reg = DF_REF_REG (def);
4172 HOST_WIDE_INT outer_size, inner_size, start;
4174 /* We can usually track the liveness of individual
4175 bytes within a subreg. The only exceptions are
4176 subregs wrapped in ZERO_EXTRACTs and subregs whose
4177 size is not known; in those cases we need to be
4178 conservative and treat the definition as a partial
4179 definition of the full register rather than a full
4180 definition of a specific part of the register. */
4181 if (GET_CODE (reg) == SUBREG
4182 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4183 && get_subreg_tracking_sizes (reg, &outer_size,
4184 &inner_size, &start))
4186 HOST_WIDE_INT last = start + outer_size;
4188 init_live_subregs
4189 (bitmap_bit_p (live_relevant_regs, regno),
4190 live_subregs, live_subregs_used, regno,
4191 inner_size);
4193 if (!DF_REF_FLAGS_IS_SET
4194 (def, DF_REF_STRICT_LOW_PART))
4196 /* Expand the range to cover entire words.
4197 Bytes added here are "don't care". */
4198 start
4199 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4200 last = ((last + UNITS_PER_WORD - 1)
4201 / UNITS_PER_WORD * UNITS_PER_WORD);
4204 /* Ignore the paradoxical bits. */
4205 if (last > SBITMAP_SIZE (live_subregs[regno]))
4206 last = SBITMAP_SIZE (live_subregs[regno]);
4208 while (start < last)
4210 bitmap_clear_bit (live_subregs[regno], start);
4211 start++;
4214 if (bitmap_empty_p (live_subregs[regno]))
4216 bitmap_clear_bit (live_subregs_used, regno);
4217 bitmap_clear_bit (live_relevant_regs, regno);
4219 else
4220 /* Set live_relevant_regs here because
4221 that bit has to be true to get us to
4222 look at the live_subregs fields. */
4223 bitmap_set_bit (live_relevant_regs, regno);
4225 else
4227 /* DF_REF_PARTIAL is generated for
4228 subregs, STRICT_LOW_PART, and
4229 ZERO_EXTRACT. We handle the subreg
4230 case above so here we have to keep from
4231 modeling the def as a killing def. */
4232 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4234 bitmap_clear_bit (live_subregs_used, regno);
4235 bitmap_clear_bit (live_relevant_regs, regno);
4241 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4242 bitmap_copy (&c->live_throughout, live_relevant_regs);
4244 if (NONDEBUG_INSN_P (insn))
4245 FOR_EACH_INSN_INFO_USE (use, insn_info)
4247 unsigned int regno = DF_REF_REGNO (use);
4248 rtx reg = DF_REF_REG (use);
4250 /* DF_REF_READ_WRITE on a use means that this use
4251 is fabricated from a def that is a partial set
4252 to a multiword reg. Here, we only model the
4253 subreg case that is not wrapped in ZERO_EXTRACT
4254 precisely so we do not need to look at the
4255 fabricated use. */
4256 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4257 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4258 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4259 continue;
4261 /* Add the last use of each var to dead_or_set. */
4262 if (!bitmap_bit_p (live_relevant_regs, regno))
4264 if (regno < FIRST_PSEUDO_REGISTER)
4266 if (!fixed_regs[regno])
4267 bitmap_set_bit (&c->dead_or_set, regno);
4269 else if (pseudo_for_reload_consideration_p (regno))
4270 bitmap_set_bit (&c->dead_or_set, regno);
4273 if (regno < FIRST_PSEUDO_REGISTER
4274 || pseudo_for_reload_consideration_p (regno))
4276 HOST_WIDE_INT outer_size, inner_size, start;
4277 if (GET_CODE (reg) == SUBREG
4278 && !DF_REF_FLAGS_IS_SET (use,
4279 DF_REF_SIGN_EXTRACT
4280 | DF_REF_ZERO_EXTRACT)
4281 && get_subreg_tracking_sizes (reg, &outer_size,
4282 &inner_size, &start))
4284 HOST_WIDE_INT last = start + outer_size;
4286 init_live_subregs
4287 (bitmap_bit_p (live_relevant_regs, regno),
4288 live_subregs, live_subregs_used, regno,
4289 inner_size);
4291 /* Ignore the paradoxical bits. */
4292 if (last > SBITMAP_SIZE (live_subregs[regno]))
4293 last = SBITMAP_SIZE (live_subregs[regno]);
4295 while (start < last)
4297 bitmap_set_bit (live_subregs[regno], start);
4298 start++;
4301 else
4302 /* Resetting the live_subregs_used is
4303 effectively saying do not use the subregs
4304 because we are reading the whole
4305 pseudo. */
4306 bitmap_clear_bit (live_subregs_used, regno);
4307 bitmap_set_bit (live_relevant_regs, regno);
4313 /* FIXME!! The following code is a disaster. Reload needs to see the
4314 labels and jump tables that are just hanging out in between
4315 the basic blocks. See pr33676. */
4316 insn = BB_HEAD (bb);
4318 /* Skip over the barriers and cruft. */
4319 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4320 || BLOCK_FOR_INSN (insn) == bb))
4321 insn = PREV_INSN (insn);
4323 /* While we add anything except barriers and notes, the focus is
4324 to get the labels and jump tables into the
4325 reload_insn_chain. */
4326 while (insn)
4328 if (!NOTE_P (insn) && !BARRIER_P (insn))
4330 if (BLOCK_FOR_INSN (insn))
4331 break;
4333 c = new_insn_chain ();
4334 c->next = next;
4335 next = c;
4336 *p = c;
4337 p = &c->prev;
4339 /* The block makes no sense here, but it is what the old
4340 code did. */
4341 c->block = bb->index;
4342 c->insn = insn;
4343 bitmap_copy (&c->live_throughout, live_relevant_regs);
4345 insn = PREV_INSN (insn);
4349 reload_insn_chain = c;
4350 *p = NULL;
4352 for (i = 0; i < (unsigned int) max_regno; i++)
4353 if (live_subregs[i] != NULL)
4354 sbitmap_free (live_subregs[i]);
4355 free (live_subregs);
4357 if (dump_file)
4358 print_insn_chains (dump_file);
4361 /* Examine the rtx found in *LOC, which is read or written to as determined
4362 by TYPE. Return false if we find a reason why an insn containing this
4363 rtx should not be moved (such as accesses to non-constant memory), true
4364 otherwise. */
4365 static bool
4366 rtx_moveable_p (rtx *loc, enum op_type type)
4368 const char *fmt;
4369 rtx x = *loc;
4370 enum rtx_code code = GET_CODE (x);
4371 int i, j;
4373 code = GET_CODE (x);
4374 switch (code)
4376 case CONST:
4377 CASE_CONST_ANY:
4378 case SYMBOL_REF:
4379 case LABEL_REF:
4380 return true;
4382 case PC:
4383 return type == OP_IN;
4385 case CC0:
4386 return false;
4388 case REG:
4389 if (x == frame_pointer_rtx)
4390 return true;
4391 if (HARD_REGISTER_P (x))
4392 return false;
4394 return true;
4396 case MEM:
4397 if (type == OP_IN && MEM_READONLY_P (x))
4398 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4399 return false;
4401 case SET:
4402 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4403 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4405 case STRICT_LOW_PART:
4406 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4408 case ZERO_EXTRACT:
4409 case SIGN_EXTRACT:
4410 return (rtx_moveable_p (&XEXP (x, 0), type)
4411 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4412 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4414 case CLOBBER:
4415 case CLOBBER_HIGH:
4416 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4418 case UNSPEC_VOLATILE:
4419 /* It is a bad idea to consider insns with such rtl
4420 as moveable ones. The insn scheduler also considers them as barrier
4421 for a reason. */
4422 return false;
4424 case ASM_OPERANDS:
4425 /* The same is true for volatile asm: it has unknown side effects, it
4426 cannot be moved at will. */
4427 if (MEM_VOLATILE_P (x))
4428 return false;
4430 default:
4431 break;
4434 fmt = GET_RTX_FORMAT (code);
4435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4437 if (fmt[i] == 'e')
4439 if (!rtx_moveable_p (&XEXP (x, i), type))
4440 return false;
4442 else if (fmt[i] == 'E')
4443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4445 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4446 return false;
4449 return true;
4452 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4453 to give dominance relationships between two insns I1 and I2. */
4454 static bool
4455 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4457 basic_block bb1 = BLOCK_FOR_INSN (i1);
4458 basic_block bb2 = BLOCK_FOR_INSN (i2);
4460 if (bb1 == bb2)
4461 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4462 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4465 /* Record the range of register numbers added by find_moveable_pseudos. */
4466 int first_moveable_pseudo, last_moveable_pseudo;
4468 /* These two vectors hold data for every register added by
4469 find_movable_pseudos, with index 0 holding data for the
4470 first_moveable_pseudo. */
4471 /* The original home register. */
4472 static vec<rtx> pseudo_replaced_reg;
4474 /* Look for instances where we have an instruction that is known to increase
4475 register pressure, and whose result is not used immediately. If it is
4476 possible to move the instruction downwards to just before its first use,
4477 split its lifetime into two ranges. We create a new pseudo to compute the
4478 value, and emit a move instruction just before the first use. If, after
4479 register allocation, the new pseudo remains unallocated, the function
4480 move_unallocated_pseudos then deletes the move instruction and places
4481 the computation just before the first use.
4483 Such a move is safe and profitable if all the input registers remain live
4484 and unchanged between the original computation and its first use. In such
4485 a situation, the computation is known to increase register pressure, and
4486 moving it is known to at least not worsen it.
4488 We restrict moves to only those cases where a register remains unallocated,
4489 in order to avoid interfering too much with the instruction schedule. As
4490 an exception, we may move insns which only modify their input register
4491 (typically induction variables), as this increases the freedom for our
4492 intended transformation, and does not limit the second instruction
4493 scheduler pass. */
4495 static void
4496 find_moveable_pseudos (void)
4498 unsigned i;
4499 int max_regs = max_reg_num ();
4500 int max_uid = get_max_uid ();
4501 basic_block bb;
4502 int *uid_luid = XNEWVEC (int, max_uid);
4503 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4504 /* A set of registers which are live but not modified throughout a block. */
4505 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4506 last_basic_block_for_fn (cfun));
4507 /* A set of registers which only exist in a given basic block. */
4508 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4509 last_basic_block_for_fn (cfun));
4510 /* A set of registers which are set once, in an instruction that can be
4511 moved freely downwards, but are otherwise transparent to a block. */
4512 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4513 last_basic_block_for_fn (cfun));
4514 auto_bitmap live, used, set, interesting, unusable_as_input;
4515 bitmap_iterator bi;
4517 first_moveable_pseudo = max_regs;
4518 pseudo_replaced_reg.release ();
4519 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4521 df_analyze ();
4522 calculate_dominance_info (CDI_DOMINATORS);
4524 i = 0;
4525 FOR_EACH_BB_FN (bb, cfun)
4527 rtx_insn *insn;
4528 bitmap transp = bb_transp_live + bb->index;
4529 bitmap moveable = bb_moveable_reg_sets + bb->index;
4530 bitmap local = bb_local + bb->index;
4532 bitmap_initialize (local, 0);
4533 bitmap_initialize (transp, 0);
4534 bitmap_initialize (moveable, 0);
4535 bitmap_copy (live, df_get_live_out (bb));
4536 bitmap_and_into (live, df_get_live_in (bb));
4537 bitmap_copy (transp, live);
4538 bitmap_clear (moveable);
4539 bitmap_clear (live);
4540 bitmap_clear (used);
4541 bitmap_clear (set);
4542 FOR_BB_INSNS (bb, insn)
4543 if (NONDEBUG_INSN_P (insn))
4545 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4546 df_ref def, use;
4548 uid_luid[INSN_UID (insn)] = i++;
4550 def = df_single_def (insn_info);
4551 use = df_single_use (insn_info);
4552 if (use
4553 && def
4554 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4555 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4556 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4558 unsigned regno = DF_REF_REGNO (use);
4559 bitmap_set_bit (moveable, regno);
4560 bitmap_set_bit (set, regno);
4561 bitmap_set_bit (used, regno);
4562 bitmap_clear_bit (transp, regno);
4563 continue;
4565 FOR_EACH_INSN_INFO_USE (use, insn_info)
4567 unsigned regno = DF_REF_REGNO (use);
4568 bitmap_set_bit (used, regno);
4569 if (bitmap_clear_bit (moveable, regno))
4570 bitmap_clear_bit (transp, regno);
4573 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4575 unsigned regno = DF_REF_REGNO (def);
4576 bitmap_set_bit (set, regno);
4577 bitmap_clear_bit (transp, regno);
4578 bitmap_clear_bit (moveable, regno);
4583 FOR_EACH_BB_FN (bb, cfun)
4585 bitmap local = bb_local + bb->index;
4586 rtx_insn *insn;
4588 FOR_BB_INSNS (bb, insn)
4589 if (NONDEBUG_INSN_P (insn))
4591 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4592 rtx_insn *def_insn;
4593 rtx closest_use, note;
4594 df_ref def, use;
4595 unsigned regno;
4596 bool all_dominated, all_local;
4597 machine_mode mode;
4599 def = df_single_def (insn_info);
4600 /* There must be exactly one def in this insn. */
4601 if (!def || !single_set (insn))
4602 continue;
4603 /* This must be the only definition of the reg. We also limit
4604 which modes we deal with so that we can assume we can generate
4605 move instructions. */
4606 regno = DF_REF_REGNO (def);
4607 mode = GET_MODE (DF_REF_REG (def));
4608 if (DF_REG_DEF_COUNT (regno) != 1
4609 || !DF_REF_INSN_INFO (def)
4610 || HARD_REGISTER_NUM_P (regno)
4611 || DF_REG_EQ_USE_COUNT (regno) > 0
4612 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4613 continue;
4614 def_insn = DF_REF_INSN (def);
4616 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4617 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4618 break;
4620 if (note)
4622 if (dump_file)
4623 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4624 regno);
4625 bitmap_set_bit (unusable_as_input, regno);
4626 continue;
4629 use = DF_REG_USE_CHAIN (regno);
4630 all_dominated = true;
4631 all_local = true;
4632 closest_use = NULL_RTX;
4633 for (; use; use = DF_REF_NEXT_REG (use))
4635 rtx_insn *insn;
4636 if (!DF_REF_INSN_INFO (use))
4638 all_dominated = false;
4639 all_local = false;
4640 break;
4642 insn = DF_REF_INSN (use);
4643 if (DEBUG_INSN_P (insn))
4644 continue;
4645 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4646 all_local = false;
4647 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4648 all_dominated = false;
4649 if (closest_use != insn && closest_use != const0_rtx)
4651 if (closest_use == NULL_RTX)
4652 closest_use = insn;
4653 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4654 closest_use = insn;
4655 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4656 closest_use = const0_rtx;
4659 if (!all_dominated)
4661 if (dump_file)
4662 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4663 regno);
4664 continue;
4666 if (all_local)
4667 bitmap_set_bit (local, regno);
4668 if (closest_use == const0_rtx || closest_use == NULL
4669 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4671 if (dump_file)
4672 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4673 closest_use == const0_rtx || closest_use == NULL
4674 ? " (no unique first use)" : "");
4675 continue;
4677 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4679 if (dump_file)
4680 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4681 regno);
4682 continue;
4685 bitmap_set_bit (interesting, regno);
4686 /* If we get here, we know closest_use is a non-NULL insn
4687 (as opposed to const_0_rtx). */
4688 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4690 if (dump_file && (all_local || all_dominated))
4692 fprintf (dump_file, "Reg %u:", regno);
4693 if (all_local)
4694 fprintf (dump_file, " local to bb %d", bb->index);
4695 if (all_dominated)
4696 fprintf (dump_file, " def dominates all uses");
4697 if (closest_use != const0_rtx)
4698 fprintf (dump_file, " has unique first use");
4699 fputs ("\n", dump_file);
4704 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4706 df_ref def = DF_REG_DEF_CHAIN (i);
4707 rtx_insn *def_insn = DF_REF_INSN (def);
4708 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4709 bitmap def_bb_local = bb_local + def_block->index;
4710 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4711 bitmap def_bb_transp = bb_transp_live + def_block->index;
4712 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4713 rtx_insn *use_insn = closest_uses[i];
4714 df_ref use;
4715 bool all_ok = true;
4716 bool all_transp = true;
4718 if (!REG_P (DF_REF_REG (def)))
4719 continue;
4721 if (!local_to_bb_p)
4723 if (dump_file)
4724 fprintf (dump_file, "Reg %u not local to one basic block\n",
4726 continue;
4728 if (reg_equiv_init (i) != NULL_RTX)
4730 if (dump_file)
4731 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4733 continue;
4735 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4737 if (dump_file)
4738 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4739 INSN_UID (def_insn), i);
4740 continue;
4742 if (dump_file)
4743 fprintf (dump_file, "Examining insn %d, def for %d\n",
4744 INSN_UID (def_insn), i);
4745 FOR_EACH_INSN_USE (use, def_insn)
4747 unsigned regno = DF_REF_REGNO (use);
4748 if (bitmap_bit_p (unusable_as_input, regno))
4750 all_ok = false;
4751 if (dump_file)
4752 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4753 break;
4755 if (!bitmap_bit_p (def_bb_transp, regno))
4757 if (bitmap_bit_p (def_bb_moveable, regno)
4758 && !control_flow_insn_p (use_insn)
4759 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4761 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4763 rtx_insn *x = NEXT_INSN (def_insn);
4764 while (!modified_in_p (DF_REF_REG (use), x))
4766 gcc_assert (x != use_insn);
4767 x = NEXT_INSN (x);
4769 if (dump_file)
4770 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4771 regno, INSN_UID (x));
4772 emit_insn_after (PATTERN (x), use_insn);
4773 set_insn_deleted (x);
4775 else
4777 if (dump_file)
4778 fprintf (dump_file, " input reg %u modified between def and use\n",
4779 regno);
4780 all_transp = false;
4783 else
4784 all_transp = false;
4787 if (!all_ok)
4788 continue;
4789 if (!dbg_cnt (ira_move))
4790 break;
4791 if (dump_file)
4792 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4794 if (all_transp)
4796 rtx def_reg = DF_REF_REG (def);
4797 rtx newreg = ira_create_new_reg (def_reg);
4798 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4800 unsigned nregno = REGNO (newreg);
4801 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4802 nregno -= max_regs;
4803 pseudo_replaced_reg[nregno] = def_reg;
4808 FOR_EACH_BB_FN (bb, cfun)
4810 bitmap_clear (bb_local + bb->index);
4811 bitmap_clear (bb_transp_live + bb->index);
4812 bitmap_clear (bb_moveable_reg_sets + bb->index);
4814 free (uid_luid);
4815 free (closest_uses);
4816 free (bb_local);
4817 free (bb_transp_live);
4818 free (bb_moveable_reg_sets);
4820 last_moveable_pseudo = max_reg_num ();
4822 fix_reg_equiv_init ();
4823 expand_reg_info ();
4824 regstat_free_n_sets_and_refs ();
4825 regstat_free_ri ();
4826 regstat_init_n_sets_and_refs ();
4827 regstat_compute_ri ();
4828 free_dominance_info (CDI_DOMINATORS);
4831 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4832 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4833 the destination. Otherwise return NULL. */
4835 static rtx
4836 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4838 rtx src = SET_SRC (set);
4839 rtx dest = SET_DEST (set);
4840 if (!REG_P (src) || !HARD_REGISTER_P (src)
4841 || !REG_P (dest) || HARD_REGISTER_P (dest)
4842 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4843 return NULL;
4844 return dest;
4847 /* If insn is interesting for parameter range-splitting shrink-wrapping
4848 preparation, i.e. it is a single set from a hard register to a pseudo, which
4849 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4850 parallel statement with only one such statement, return the destination.
4851 Otherwise return NULL. */
4853 static rtx
4854 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4856 if (!INSN_P (insn))
4857 return NULL;
4858 rtx pat = PATTERN (insn);
4859 if (GET_CODE (pat) == SET)
4860 return interesting_dest_for_shprep_1 (pat, call_dom);
4862 if (GET_CODE (pat) != PARALLEL)
4863 return NULL;
4864 rtx ret = NULL;
4865 for (int i = 0; i < XVECLEN (pat, 0); i++)
4867 rtx sub = XVECEXP (pat, 0, i);
4868 if (GET_CODE (sub) == USE
4869 || GET_CODE (sub) == CLOBBER
4870 || GET_CODE (sub) == CLOBBER_HIGH)
4871 continue;
4872 if (GET_CODE (sub) != SET
4873 || side_effects_p (sub))
4874 return NULL;
4875 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4876 if (dest && ret)
4877 return NULL;
4878 if (dest)
4879 ret = dest;
4881 return ret;
4884 /* Split live ranges of pseudos that are loaded from hard registers in the
4885 first BB in a BB that dominates all non-sibling call if such a BB can be
4886 found and is not in a loop. Return true if the function has made any
4887 changes. */
4889 static bool
4890 split_live_ranges_for_shrink_wrap (void)
4892 basic_block bb, call_dom = NULL;
4893 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4894 rtx_insn *insn, *last_interesting_insn = NULL;
4895 auto_bitmap need_new, reachable;
4896 vec<basic_block> queue;
4898 if (!SHRINK_WRAPPING_ENABLED)
4899 return false;
4901 queue.create (n_basic_blocks_for_fn (cfun));
4903 FOR_EACH_BB_FN (bb, cfun)
4904 FOR_BB_INSNS (bb, insn)
4905 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4907 if (bb == first)
4909 queue.release ();
4910 return false;
4913 bitmap_set_bit (need_new, bb->index);
4914 bitmap_set_bit (reachable, bb->index);
4915 queue.quick_push (bb);
4916 break;
4919 if (queue.is_empty ())
4921 queue.release ();
4922 return false;
4925 while (!queue.is_empty ())
4927 edge e;
4928 edge_iterator ei;
4930 bb = queue.pop ();
4931 FOR_EACH_EDGE (e, ei, bb->succs)
4932 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4933 && bitmap_set_bit (reachable, e->dest->index))
4934 queue.quick_push (e->dest);
4936 queue.release ();
4938 FOR_BB_INSNS (first, insn)
4940 rtx dest = interesting_dest_for_shprep (insn, NULL);
4941 if (!dest)
4942 continue;
4944 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4945 return false;
4947 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4948 use;
4949 use = DF_REF_NEXT_REG (use))
4951 int ubbi = DF_REF_BB (use)->index;
4952 if (bitmap_bit_p (reachable, ubbi))
4953 bitmap_set_bit (need_new, ubbi);
4955 last_interesting_insn = insn;
4958 if (!last_interesting_insn)
4959 return false;
4961 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
4962 if (call_dom == first)
4963 return false;
4965 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4966 while (bb_loop_depth (call_dom) > 0)
4967 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4968 loop_optimizer_finalize ();
4970 if (call_dom == first)
4971 return false;
4973 calculate_dominance_info (CDI_POST_DOMINATORS);
4974 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4976 free_dominance_info (CDI_POST_DOMINATORS);
4977 return false;
4979 free_dominance_info (CDI_POST_DOMINATORS);
4981 if (dump_file)
4982 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4983 call_dom->index);
4985 bool ret = false;
4986 FOR_BB_INSNS (first, insn)
4988 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4989 if (!dest || dest == pic_offset_table_rtx)
4990 continue;
4992 bool need_newreg = false;
4993 df_ref use, next;
4994 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4996 rtx_insn *uin = DF_REF_INSN (use);
4997 next = DF_REF_NEXT_REG (use);
4999 if (DEBUG_INSN_P (uin))
5000 continue;
5002 basic_block ubb = BLOCK_FOR_INSN (uin);
5003 if (ubb == call_dom
5004 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5006 need_newreg = true;
5007 break;
5011 if (need_newreg)
5013 rtx newreg = ira_create_new_reg (dest);
5015 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5017 rtx_insn *uin = DF_REF_INSN (use);
5018 next = DF_REF_NEXT_REG (use);
5020 basic_block ubb = BLOCK_FOR_INSN (uin);
5021 if (ubb == call_dom
5022 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5023 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5026 rtx_insn *new_move = gen_move_insn (newreg, dest);
5027 emit_insn_after (new_move, bb_note (call_dom));
5028 if (dump_file)
5030 fprintf (dump_file, "Split live-range of register ");
5031 print_rtl_single (dump_file, dest);
5033 ret = true;
5036 if (insn == last_interesting_insn)
5037 break;
5039 apply_change_group ();
5040 return ret;
5043 /* Perform the second half of the transformation started in
5044 find_moveable_pseudos. We look for instances where the newly introduced
5045 pseudo remains unallocated, and remove it by moving the definition to
5046 just before its use, replacing the move instruction generated by
5047 find_moveable_pseudos. */
5048 static void
5049 move_unallocated_pseudos (void)
5051 int i;
5052 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5053 if (reg_renumber[i] < 0)
5055 int idx = i - first_moveable_pseudo;
5056 rtx other_reg = pseudo_replaced_reg[idx];
5057 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5058 /* The use must follow all definitions of OTHER_REG, so we can
5059 insert the new definition immediately after any of them. */
5060 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5061 rtx_insn *move_insn = DF_REF_INSN (other_def);
5062 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5063 rtx set;
5064 int success;
5066 if (dump_file)
5067 fprintf (dump_file, "moving def of %d (insn %d now) ",
5068 REGNO (other_reg), INSN_UID (def_insn));
5070 delete_insn (move_insn);
5071 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5072 delete_insn (DF_REF_INSN (other_def));
5073 delete_insn (def_insn);
5075 set = single_set (newinsn);
5076 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5077 gcc_assert (success);
5078 if (dump_file)
5079 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5080 INSN_UID (newinsn), i);
5081 SET_REG_N_REFS (i, 0);
5085 /* If the backend knows where to allocate pseudos for hard
5086 register initial values, register these allocations now. */
5087 static void
5088 allocate_initial_values (void)
5090 if (targetm.allocate_initial_value)
5092 rtx hreg, preg, x;
5093 int i, regno;
5095 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5097 if (! initial_value_entry (i, &hreg, &preg))
5098 break;
5100 x = targetm.allocate_initial_value (hreg);
5101 regno = REGNO (preg);
5102 if (x && REG_N_SETS (regno) <= 1)
5104 if (MEM_P (x))
5105 reg_equiv_memory_loc (regno) = x;
5106 else
5108 basic_block bb;
5109 int new_regno;
5111 gcc_assert (REG_P (x));
5112 new_regno = REGNO (x);
5113 reg_renumber[regno] = new_regno;
5114 /* Poke the regno right into regno_reg_rtx so that even
5115 fixed regs are accepted. */
5116 SET_REGNO (preg, new_regno);
5117 /* Update global register liveness information. */
5118 FOR_EACH_BB_FN (bb, cfun)
5120 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5121 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5122 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5123 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5129 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5130 &hreg, &preg));
5135 /* True when we use LRA instead of reload pass for the current
5136 function. */
5137 bool ira_use_lra_p;
5139 /* True if we have allocno conflicts. It is false for non-optimized
5140 mode or when the conflict table is too big. */
5141 bool ira_conflicts_p;
5143 /* Saved between IRA and reload. */
5144 static int saved_flag_ira_share_spill_slots;
5146 /* This is the main entry of IRA. */
5147 static void
5148 ira (FILE *f)
5150 bool loops_p;
5151 int ira_max_point_before_emit;
5152 bool saved_flag_caller_saves = flag_caller_saves;
5153 enum ira_region saved_flag_ira_region = flag_ira_region;
5155 clear_bb_flags ();
5157 /* Determine if the current function is a leaf before running IRA
5158 since this can impact optimizations done by the prologue and
5159 epilogue thus changing register elimination offsets.
5160 Other target callbacks may use crtl->is_leaf too, including
5161 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5162 crtl->is_leaf = leaf_function_p ();
5164 /* Perform target specific PIC register initialization. */
5165 targetm.init_pic_reg ();
5167 ira_conflicts_p = optimize > 0;
5169 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5170 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5171 use simplified and faster algorithms in LRA. */
5172 lra_simple_p
5173 = (ira_use_lra_p
5174 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5175 if (lra_simple_p)
5177 /* It permits to skip live range splitting in LRA. */
5178 flag_caller_saves = false;
5179 /* There is no sense to do regional allocation when we use
5180 simplified LRA. */
5181 flag_ira_region = IRA_REGION_ONE;
5182 ira_conflicts_p = false;
5185 #ifndef IRA_NO_OBSTACK
5186 gcc_obstack_init (&ira_obstack);
5187 #endif
5188 bitmap_obstack_initialize (&ira_bitmap_obstack);
5190 /* LRA uses its own infrastructure to handle caller save registers. */
5191 if (flag_caller_saves && !ira_use_lra_p)
5192 init_caller_save ();
5194 if (flag_ira_verbose < 10)
5196 internal_flag_ira_verbose = flag_ira_verbose;
5197 ira_dump_file = f;
5199 else
5201 internal_flag_ira_verbose = flag_ira_verbose - 10;
5202 ira_dump_file = stderr;
5205 setup_prohibited_mode_move_regs ();
5206 decrease_live_ranges_number ();
5207 df_note_add_problem ();
5209 /* DF_LIVE can't be used in the register allocator, too many other
5210 parts of the compiler depend on using the "classic" liveness
5211 interpretation of the DF_LR problem. See PR38711.
5212 Remove the problem, so that we don't spend time updating it in
5213 any of the df_analyze() calls during IRA/LRA. */
5214 if (optimize > 1)
5215 df_remove_problem (df_live);
5216 gcc_checking_assert (df_live == NULL);
5218 if (flag_checking)
5219 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5221 df_analyze ();
5223 init_reg_equiv ();
5224 if (ira_conflicts_p)
5226 calculate_dominance_info (CDI_DOMINATORS);
5228 if (split_live_ranges_for_shrink_wrap ())
5229 df_analyze ();
5231 free_dominance_info (CDI_DOMINATORS);
5234 df_clear_flags (DF_NO_INSN_RESCAN);
5236 indirect_jump_optimize ();
5237 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5238 df_analyze ();
5240 regstat_init_n_sets_and_refs ();
5241 regstat_compute_ri ();
5243 /* If we are not optimizing, then this is the only place before
5244 register allocation where dataflow is done. And that is needed
5245 to generate these warnings. */
5246 if (warn_clobbered)
5247 generate_setjmp_warnings ();
5249 if (resize_reg_info () && flag_ira_loop_pressure)
5250 ira_set_pseudo_classes (true, ira_dump_file);
5252 init_alias_analysis ();
5253 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5254 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5255 update_equiv_regs ();
5257 /* Don't move insns if live range shrinkage or register
5258 pressure-sensitive scheduling were done because it will not
5259 improve allocation but likely worsen insn scheduling. */
5260 if (optimize
5261 && !flag_live_range_shrinkage
5262 && !(flag_sched_pressure && flag_schedule_insns))
5263 combine_and_move_insns ();
5265 /* Gather additional equivalences with memory. */
5266 if (optimize)
5267 add_store_equivs ();
5269 loop_optimizer_finalize ();
5270 free_dominance_info (CDI_DOMINATORS);
5271 end_alias_analysis ();
5272 free (reg_equiv);
5274 setup_reg_equiv ();
5275 grow_reg_equivs ();
5276 setup_reg_equiv_init ();
5278 allocated_reg_info_size = max_reg_num ();
5280 /* It is not worth to do such improvement when we use a simple
5281 allocation because of -O0 usage or because the function is too
5282 big. */
5283 if (ira_conflicts_p)
5284 find_moveable_pseudos ();
5286 max_regno_before_ira = max_reg_num ();
5287 ira_setup_eliminable_regset ();
5289 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5290 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5291 ira_move_loops_num = ira_additional_jumps_num = 0;
5293 ira_assert (current_loops == NULL);
5294 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5295 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5297 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5298 fprintf (ira_dump_file, "Building IRA IR\n");
5299 loops_p = ira_build ();
5301 ira_assert (ira_conflicts_p || !loops_p);
5303 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5304 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5305 /* It is just wasting compiler's time to pack spilled pseudos into
5306 stack slots in this case -- prohibit it. We also do this if
5307 there is setjmp call because a variable not modified between
5308 setjmp and longjmp the compiler is required to preserve its
5309 value and sharing slots does not guarantee it. */
5310 flag_ira_share_spill_slots = FALSE;
5312 ira_color ();
5314 ira_max_point_before_emit = ira_max_point;
5316 ira_initiate_emit_data ();
5318 ira_emit (loops_p);
5320 max_regno = max_reg_num ();
5321 if (ira_conflicts_p)
5323 if (! loops_p)
5325 if (! ira_use_lra_p)
5326 ira_initiate_assign ();
5328 else
5330 expand_reg_info ();
5332 if (ira_use_lra_p)
5334 ira_allocno_t a;
5335 ira_allocno_iterator ai;
5337 FOR_EACH_ALLOCNO (a, ai)
5339 int old_regno = ALLOCNO_REGNO (a);
5340 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5342 ALLOCNO_REGNO (a) = new_regno;
5344 if (old_regno != new_regno)
5345 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5346 reg_alternate_class (old_regno),
5347 reg_allocno_class (old_regno));
5350 else
5352 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5353 fprintf (ira_dump_file, "Flattening IR\n");
5354 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5356 /* New insns were generated: add notes and recalculate live
5357 info. */
5358 df_analyze ();
5360 /* ??? Rebuild the loop tree, but why? Does the loop tree
5361 change if new insns were generated? Can that be handled
5362 by updating the loop tree incrementally? */
5363 loop_optimizer_finalize ();
5364 free_dominance_info (CDI_DOMINATORS);
5365 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5366 | LOOPS_HAVE_RECORDED_EXITS);
5368 if (! ira_use_lra_p)
5370 setup_allocno_assignment_flags ();
5371 ira_initiate_assign ();
5372 ira_reassign_conflict_allocnos (max_regno);
5377 ira_finish_emit_data ();
5379 setup_reg_renumber ();
5381 calculate_allocation_cost ();
5383 #ifdef ENABLE_IRA_CHECKING
5384 if (ira_conflicts_p && ! ira_use_lra_p)
5385 /* Opposite to reload pass, LRA does not use any conflict info
5386 from IRA. We don't rebuild conflict info for LRA (through
5387 ira_flattening call) and can not use the check here. We could
5388 rebuild this info for LRA in the check mode but there is a risk
5389 that code generated with the check and without it will be a bit
5390 different. Calling ira_flattening in any mode would be a
5391 wasting CPU time. So do not check the allocation for LRA. */
5392 check_allocation ();
5393 #endif
5395 if (max_regno != max_regno_before_ira)
5397 regstat_free_n_sets_and_refs ();
5398 regstat_free_ri ();
5399 regstat_init_n_sets_and_refs ();
5400 regstat_compute_ri ();
5403 overall_cost_before = ira_overall_cost;
5404 if (! ira_conflicts_p)
5405 grow_reg_equivs ();
5406 else
5408 fix_reg_equiv_init ();
5410 #ifdef ENABLE_IRA_CHECKING
5411 print_redundant_copies ();
5412 #endif
5413 if (! ira_use_lra_p)
5415 ira_spilled_reg_stack_slots_num = 0;
5416 ira_spilled_reg_stack_slots
5417 = ((struct ira_spilled_reg_stack_slot *)
5418 ira_allocate (max_regno
5419 * sizeof (struct ira_spilled_reg_stack_slot)));
5420 memset (ira_spilled_reg_stack_slots, 0,
5421 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5424 allocate_initial_values ();
5426 /* See comment for find_moveable_pseudos call. */
5427 if (ira_conflicts_p)
5428 move_unallocated_pseudos ();
5430 /* Restore original values. */
5431 if (lra_simple_p)
5433 flag_caller_saves = saved_flag_caller_saves;
5434 flag_ira_region = saved_flag_ira_region;
5438 static void
5439 do_reload (void)
5441 basic_block bb;
5442 bool need_dce;
5443 unsigned pic_offset_table_regno = INVALID_REGNUM;
5445 if (flag_ira_verbose < 10)
5446 ira_dump_file = dump_file;
5448 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5449 after reload to avoid possible wrong usages of hard reg assigned
5450 to it. */
5451 if (pic_offset_table_rtx
5452 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5453 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5455 timevar_push (TV_RELOAD);
5456 if (ira_use_lra_p)
5458 if (current_loops != NULL)
5460 loop_optimizer_finalize ();
5461 free_dominance_info (CDI_DOMINATORS);
5463 FOR_ALL_BB_FN (bb, cfun)
5464 bb->loop_father = NULL;
5465 current_loops = NULL;
5467 ira_destroy ();
5469 lra (ira_dump_file);
5470 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5471 LRA. */
5472 vec_free (reg_equivs);
5473 reg_equivs = NULL;
5474 need_dce = false;
5476 else
5478 df_set_flags (DF_NO_INSN_RESCAN);
5479 build_insn_chain ();
5481 need_dce = reload (get_insns (), ira_conflicts_p);
5484 timevar_pop (TV_RELOAD);
5486 timevar_push (TV_IRA);
5488 if (ira_conflicts_p && ! ira_use_lra_p)
5490 ira_free (ira_spilled_reg_stack_slots);
5491 ira_finish_assign ();
5494 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5495 && overall_cost_before != ira_overall_cost)
5496 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5497 ira_overall_cost);
5499 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5501 if (! ira_use_lra_p)
5503 ira_destroy ();
5504 if (current_loops != NULL)
5506 loop_optimizer_finalize ();
5507 free_dominance_info (CDI_DOMINATORS);
5509 FOR_ALL_BB_FN (bb, cfun)
5510 bb->loop_father = NULL;
5511 current_loops = NULL;
5513 regstat_free_ri ();
5514 regstat_free_n_sets_and_refs ();
5517 if (optimize)
5518 cleanup_cfg (CLEANUP_EXPENSIVE);
5520 finish_reg_equiv ();
5522 bitmap_obstack_release (&ira_bitmap_obstack);
5523 #ifndef IRA_NO_OBSTACK
5524 obstack_free (&ira_obstack, NULL);
5525 #endif
5527 /* The code after the reload has changed so much that at this point
5528 we might as well just rescan everything. Note that
5529 df_rescan_all_insns is not going to help here because it does not
5530 touch the artificial uses and defs. */
5531 df_finish_pass (true);
5532 df_scan_alloc (NULL);
5533 df_scan_blocks ();
5535 if (optimize > 1)
5537 df_live_add_problem ();
5538 df_live_set_all_dirty ();
5541 if (optimize)
5542 df_analyze ();
5544 if (need_dce && optimize)
5545 run_fast_dce ();
5547 /* Diagnose uses of the hard frame pointer when it is used as a global
5548 register. Often we can get away with letting the user appropriate
5549 the frame pointer, but we should let them know when code generation
5550 makes that impossible. */
5551 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5553 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5554 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5555 "frame pointer required, but reserved");
5556 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5559 /* If we are doing generic stack checking, give a warning if this
5560 function's frame size is larger than we expect. */
5561 if (flag_stack_check == GENERIC_STACK_CHECK)
5563 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5565 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5566 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5567 size += UNITS_PER_WORD;
5569 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5570 warning (0, "frame size too large for reliable stack checking");
5573 if (pic_offset_table_regno != INVALID_REGNUM)
5574 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5576 timevar_pop (TV_IRA);
5579 /* Run the integrated register allocator. */
5581 namespace {
5583 const pass_data pass_data_ira =
5585 RTL_PASS, /* type */
5586 "ira", /* name */
5587 OPTGROUP_NONE, /* optinfo_flags */
5588 TV_IRA, /* tv_id */
5589 0, /* properties_required */
5590 0, /* properties_provided */
5591 0, /* properties_destroyed */
5592 0, /* todo_flags_start */
5593 TODO_do_not_ggc_collect, /* todo_flags_finish */
5596 class pass_ira : public rtl_opt_pass
5598 public:
5599 pass_ira (gcc::context *ctxt)
5600 : rtl_opt_pass (pass_data_ira, ctxt)
5603 /* opt_pass methods: */
5604 virtual bool gate (function *)
5606 return !targetm.no_register_allocation;
5608 virtual unsigned int execute (function *)
5610 ira (dump_file);
5611 return 0;
5614 }; // class pass_ira
5616 } // anon namespace
5618 rtl_opt_pass *
5619 make_pass_ira (gcc::context *ctxt)
5621 return new pass_ira (ctxt);
5624 namespace {
5626 const pass_data pass_data_reload =
5628 RTL_PASS, /* type */
5629 "reload", /* name */
5630 OPTGROUP_NONE, /* optinfo_flags */
5631 TV_RELOAD, /* tv_id */
5632 0, /* properties_required */
5633 0, /* properties_provided */
5634 0, /* properties_destroyed */
5635 0, /* todo_flags_start */
5636 0, /* todo_flags_finish */
5639 class pass_reload : public rtl_opt_pass
5641 public:
5642 pass_reload (gcc::context *ctxt)
5643 : rtl_opt_pass (pass_data_reload, ctxt)
5646 /* opt_pass methods: */
5647 virtual bool gate (function *)
5649 return !targetm.no_register_allocation;
5651 virtual unsigned int execute (function *)
5653 do_reload ();
5654 return 0;
5657 }; // class pass_reload
5659 } // anon namespace
5661 rtl_opt_pass *
5662 make_pass_reload (gcc::context *ctxt)
5664 return new pass_reload (ctxt);