PR c++/86728 - C variadic generic lambda.
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob28a3dd8fe61e1d1db6170d5f9607595220b5c01f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
74 with GNAT.Heap_Sort_G;
76 package body Sem_Ch13 is
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- preanalyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
176 -- "ABC" < "DEF"
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
322 A : Uint;
323 -- The value of the address in the first case
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
415 begin
416 -- Case of component with last bit >= max machine scalar
418 if Lbit >= Max_Machine_Scalar_Size then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
443 -- Give error message for RM 13.5.1(10) violation
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
502 MSS : Uint;
503 -- Corresponding machine scalar size
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
511 -----------
512 -- CP_Lt --
513 -----------
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
522 -------------
523 -- CP_Move --
524 -------------
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
531 -- Start of processing for Sort_CC
533 begin
534 -- Collect the machine scalar relevant component clauses
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
563 -- Sort by ascending position number
565 Sorting.Sort (Num_CC);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
710 begin
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit + CSZ > System_Storage_Unit then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
734 -- Do not allow non-contiguous field
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
745 -- Case where field fits in one storage unit
747 else
748 -- Give warning if suspicious component clause
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
867 begin
868 Error_Msg_Name_1 := Chars (Id);
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
895 Set_Has_Default_Aspect (Base_Type (Ent));
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
913 N : Node_Id;
914 -- Item from Rep_Item chain
916 A : Aspect_Id;
918 begin
919 -- Loop through delayed aspects for the parent type
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
936 case A is
938 -- Alignment
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
945 -- Atomic
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
952 -- Atomic_Components
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
959 -- Bit_Order
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
970 -- Component_Size
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
980 -- Machine_Radix
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
992 | Aspect_Size
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1002 -- Pack
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1032 -- Small
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1041 -- Storage_Size
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1051 -- Value_Size
1053 when Aspect_Value_Size =>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1059 null;
1061 -- Volatile
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1082 -- That should be all the Rep Aspects
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1119 begin
1120 -- We are only checking derived types
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1126 Par := Nearest_Ancestor (E);
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1171 when others =>
1172 return;
1173 end case;
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1182 -- Local variables
1184 Prag : Node_Id;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1213 -- Local variables
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1252 else
1253 return;
1254 end if;
1255 end if;
1257 -- Look for aspect specification entries for this entity
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1267 case A_Id is
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1288 -- Otherwise create a corresponding pragma
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze (Expression (ASN));
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1333 when others =>
1334 null;
1335 end case;
1337 Ritem := Aspect_Rep_Item (ASN);
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1345 Next_Rep_Item (ASN);
1346 end loop;
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 pragma Assert (Present (E));
1365 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1369 (Prag : Node_Id;
1370 Is_Instance : Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1372 -- Abstract_State
1373 -- Attach_Handler
1374 -- Contract_Cases
1375 -- Depends
1376 -- Ghost
1377 -- Global
1378 -- Initial_Condition
1379 -- Initializes
1380 -- Post
1381 -- Pre
1382 -- Refined_Depends
1383 -- Refined_Global
1384 -- Refined_State
1385 -- SPARK_Mode
1386 -- Warnings
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1391 --------------
1392 -- Decorate --
1393 --------------
1395 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1396 begin
1397 Set_Aspect_Rep_Item (Asp, Prag);
1398 Set_Corresponding_Aspect (Prag, Asp);
1399 Set_From_Aspect_Specification (Prag);
1400 Set_Parent (Prag, Asp);
1401 end Decorate;
1403 -------------------
1404 -- Insert_Pragma --
1405 -------------------
1407 procedure Insert_Pragma
1408 (Prag : Node_Id;
1409 Is_Instance : Boolean := False)
1411 Aux : Node_Id;
1412 Decl : Node_Id;
1413 Decls : List_Id;
1414 Def : Node_Id;
1415 Inserted : Boolean := False;
1417 begin
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1421 -- pragma.
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1426 -- pragma Prag;
1428 if Nkind_In (N, N_Entry_Body,
1429 N_Package_Body,
1430 N_Protected_Body,
1431 N_Subprogram_Body,
1432 N_Task_Body)
1433 then
1434 Decls := Declarations (N);
1436 if No (Decls) then
1437 Decls := New_List;
1438 Set_Declarations (N, Decls);
1439 end if;
1441 Prepend_To (Decls, Prag);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1449 -- package Pack is
1450 -- pragma Prag;
1452 elsif Nkind_In (N, N_Generic_Package_Declaration,
1453 N_Package_Declaration)
1454 then
1455 Decls := Visible_Declarations (Specification (N));
1457 if No (Decls) then
1458 Decls := New_List;
1459 Set_Visible_Declarations (Specification (N), Decls);
1460 end if;
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1471 -- all formals.
1473 if Is_Instance then
1474 Decl := First (Decls);
1475 while Present (Decl) loop
1476 if Comes_From_Source (Decl) then
1477 Insert_Before (Decl, Prag);
1478 Inserted := True;
1479 exit;
1480 else
1481 Next (Decl);
1482 end if;
1483 end loop;
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted then
1488 Append_To (Decls, Prag);
1489 end if;
1491 -- Otherwise this is not a generic instance
1493 else
1494 Prepend_To (Decls, Prag);
1495 end if;
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1504 -- pragma Prag;
1506 elsif Nkind (N) = N_Protected_Type_Declaration then
1507 Def := Protected_Definition (N);
1509 if No (Def) then
1510 Def :=
1511 Make_Protected_Definition (Sloc (N),
1512 Visible_Declarations => New_List,
1513 End_Label => Empty);
1515 Set_Protected_Definition (N, Def);
1516 end if;
1518 Decls := Visible_Declarations (Def);
1520 if No (Decls) then
1521 Decls := New_List;
1522 Set_Visible_Declarations (Def, Decls);
1523 end if;
1525 Prepend_To (Decls, Prag);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1534 -- pragma Prag;
1536 elsif Nkind (N) = N_Task_Type_Declaration then
1537 Def := Task_Definition (N);
1539 if No (Def) then
1540 Def :=
1541 Make_Task_Definition (Sloc (N),
1542 Visible_Declarations => New_List,
1543 End_Label => Empty);
1545 Set_Task_Definition (N, Def);
1546 end if;
1548 Decls := Visible_Declarations (Def);
1550 if No (Decls) then
1551 Decls := New_List;
1552 Set_Visible_Declarations (Def, Decls);
1553 end if;
1555 Prepend_To (Decls, Prag);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1561 Aux := Aux_Decls_Node (Parent (N));
1563 if No (Pragmas_After (Aux)) then
1564 Set_Pragmas_After (Aux, New_List);
1565 end if;
1567 Prepend (Prag, Pragmas_After (Aux));
1569 -- Default, the pragma is inserted after the context
1571 else
1572 Insert_After (N, Prag);
1573 end if;
1574 end Insert_Pragma;
1576 -- Local variables
1578 Aspect : Node_Id;
1579 Aitem : Node_Id;
1580 Ent : Node_Id;
1582 L : constant List_Id := Aspect_Specifications (N);
1583 pragma Assert (Present (L));
1585 Ins_Node : Node_Id := N;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1591 begin
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect := First (L);
1614 Aspect_Loop : while Present (Aspect) loop
1615 Analyze_One_Aspect : declare
1616 Expr : constant Node_Id := Expression (Aspect);
1617 Id : constant Node_Id := Identifier (Aspect);
1618 Loc : constant Source_Ptr := Sloc (Aspect);
1619 Nam : constant Name_Id := Chars (Id);
1620 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1621 Anod : Node_Id;
1623 Delay_Required : Boolean;
1624 -- Set False if delay is not required
1626 Eloc : Source_Ptr := No_Location;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations : List_Id;
1647 Pragma_Name : Name_Id);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention is
1662 Conv : Node_Id;
1663 Dummy_1 : Node_Id;
1664 Dummy_2 : Node_Id;
1665 Dummy_3 : Node_Id;
1666 Expo : Node_Id;
1667 Imp : Node_Id;
1669 begin
1670 -- Obtain all interfacing aspects that apply to the related
1671 -- entity.
1673 Get_Interfacing_Aspects
1674 (Iface_Asp => Aspect,
1675 Conv_Asp => Dummy_1,
1676 EN_Asp => Dummy_2,
1677 Expo_Asp => Expo,
1678 Imp_Asp => Imp,
1679 LN_Asp => Dummy_3,
1680 Do_Checks => True);
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present (Expo) or else Present (Imp) then
1687 return;
1689 -- Otherwise Convention appears by itself
1691 else
1692 -- The aspect specifies a particular convention
1694 if Present (Expr) then
1695 Conv := New_Copy_Tree (Expr);
1697 -- Otherwise assume convention Ada
1699 else
1700 Conv := Make_Identifier (Loc, Name_Ada);
1701 end if;
1703 -- Generate:
1704 -- pragma Convention (<Conv>, <E>);
1706 Make_Aitem_Pragma
1707 (Pragma_Name => Name_Convention,
1708 Pragma_Argument_Associations => New_List (
1709 Make_Pragma_Argument_Association (Loc,
1710 Expression => Conv),
1711 Make_Pragma_Argument_Association (Loc,
1712 Expression => New_Occurrence_Of (E, Loc))));
1714 Decorate (Aspect, Aitem);
1715 Insert_Pragma (Aitem);
1716 end if;
1717 end Analyze_Aspect_Convention;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled is
1724 begin
1725 -- The aspect applies only to controlled records
1727 if not (Ekind (E) = E_Record_Type
1728 and then Is_Controlled_Active (E))
1729 then
1730 Error_Msg_N
1731 ("aspect % requires controlled record type", Aspect);
1732 return;
1733 end if;
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic then
1739 if Present (Expr) then
1740 Preanalyze_And_Resolve (Expr, Any_Boolean);
1741 end if;
1743 -- Otherwise the aspect resides in a nongeneric context
1745 else
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present (Expr) then
1750 Analyze_And_Resolve (Expr, Any_Boolean);
1752 if Is_OK_Static_Expression (Expr) then
1753 if Is_True (Static_Boolean (Expr)) then
1754 Set_Disable_Controlled (E);
1755 end if;
1757 -- Otherwise the expression is not static
1759 else
1760 Error_Msg_N
1761 ("expression of aspect % must be static", Aspect);
1762 end if;
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1767 else
1768 Set_Disable_Controlled (E);
1769 end if;
1770 end if;
1771 end Analyze_Aspect_Disable_Controlled;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import is
1778 Dummy_1 : Node_Id;
1779 Dummy_2 : Node_Id;
1780 Dummy_3 : Node_Id;
1781 Expo : Node_Id;
1782 Imp : Node_Id;
1784 begin
1785 -- Obtain all interfacing aspects that apply to the related
1786 -- entity.
1788 Get_Interfacing_Aspects
1789 (Iface_Asp => Aspect,
1790 Conv_Asp => Dummy_1,
1791 EN_Asp => Dummy_2,
1792 Expo_Asp => Expo,
1793 Imp_Asp => Imp,
1794 LN_Asp => Dummy_3,
1795 Do_Checks => True);
1797 -- The related entity cannot be subject to both aspects Export
1798 -- and Import.
1800 if Present (Expo) and then Present (Imp) then
1801 Error_Msg_N
1802 ("incompatible interfacing aspects given for &", E);
1803 Error_Msg_Sloc := Sloc (Expo);
1804 Error_Msg_N ("\aspect `Export` #", E);
1805 Error_Msg_Sloc := Sloc (Imp);
1806 Error_Msg_N ("\aspect `Import` #", E);
1807 end if;
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind (E) = E_Variable then
1813 Set_Never_Set_In_Source (E, False);
1814 end if;
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present (Expr)
1824 or else Is_True (Static_Boolean (Expr))
1825 then
1826 if A_Id = Aspect_Import then
1827 Set_Has_Completion (E);
1828 Set_Is_Imported (E);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind (N) = N_Object_Declaration
1833 and then Present (Expression (N))
1834 then
1835 Error_Msg_N
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression (N));
1838 end if;
1840 else
1841 pragma Assert (A_Id = Aspect_Export);
1842 Set_Is_Exported (E);
1843 end if;
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem := Build_Export_Import_Pragma (Aspect, E);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1853 else
1854 Aitem := Empty;
1855 end if;
1856 end Analyze_Aspect_Export_Import;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name is
1863 Dummy_1 : Node_Id;
1864 Dummy_2 : Node_Id;
1865 Dummy_3 : Node_Id;
1866 Expo : Node_Id;
1867 Imp : Node_Id;
1869 begin
1870 -- Obtain all interfacing aspects that apply to the related
1871 -- entity.
1873 Get_Interfacing_Aspects
1874 (Iface_Asp => Aspect,
1875 Conv_Asp => Dummy_1,
1876 EN_Asp => Dummy_2,
1877 Expo_Asp => Expo,
1878 Imp_Asp => Imp,
1879 LN_Asp => Dummy_3,
1880 Do_Checks => True);
1882 -- Ensure that aspect External_Name applies to aspect Export or
1883 -- Import.
1885 if A_Id = Aspect_External_Name then
1886 if No (Expo) and then No (Imp) then
1887 Error_Msg_N
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect);
1890 end if;
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1895 else
1896 pragma Assert (A_Id = Aspect_Link_Name);
1897 if No (Expo) and then No (Imp) then
1898 Error_Msg_N
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect);
1901 end if;
1902 end if;
1903 end Analyze_Aspect_External_Link_Name;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference is
1910 begin
1911 if not Is_Type (E) or else not Has_Discriminants (E) then
1912 Error_Msg_N
1913 ("aspect must apply to a type with discriminants", Expr);
1915 elsif not Is_Entity_Name (Expr) then
1916 Error_Msg_N
1917 ("aspect must name a discriminant of current type", Expr);
1919 else
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1925 declare
1926 Disc : Entity_Id := First_Discriminant (E);
1927 begin
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In
1931 (Etype (Disc),
1932 E_Anonymous_Access_Subprogram_Type,
1933 E_Anonymous_Access_Type)
1934 then
1935 Set_Has_Implicit_Dereference (E);
1936 Set_Has_Implicit_Dereference (Disc);
1937 exit;
1938 end if;
1940 Next_Discriminant (Disc);
1941 end loop;
1943 -- Error if no proper access discriminant
1945 if Present (Disc) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1948 -- proper.
1950 if Is_Derived_Type (E)
1951 and then Has_Discriminants (Etype (E))
1952 then
1953 declare
1954 Parent_Disc : constant Entity_Id :=
1955 Get_Reference_Discriminant (Etype (E));
1956 begin
1957 if Present (Parent_Disc)
1958 and then Corresponding_Discriminant (Disc) /=
1959 Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr);
1964 end if;
1965 end;
1966 end if;
1968 else
1969 Error_Msg_NE
1970 ("not an access discriminant of&", Expr, E);
1971 end if;
1972 end;
1973 end if;
1975 end Analyze_Aspect_Implicit_Dereference;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations : List_Id;
1983 Pragma_Name : Name_Id)
1985 Args : List_Id := Pragma_Argument_Associations;
1987 begin
1988 -- We should never get here if aspect was disabled
1990 pragma Assert (not Is_Disabled (Aspect));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No (Args) or else No (Expression (First (Args))) then
1996 Args := No_List;
1997 end if;
1999 -- Build the pragma
2001 Aitem :=
2002 Make_Pragma (Loc,
2003 Pragma_Argument_Associations => Args,
2004 Pragma_Identifier =>
2005 Make_Identifier (Sloc (Id), Pragma_Name),
2006 Class_Present => Class_Present (Aspect),
2007 Split_PPC => Split_PPC (Aspect));
2009 -- Set additional semantic fields
2011 if Is_Ignored (Aspect) then
2012 Set_Is_Ignored (Aitem);
2013 elsif Is_Checked (Aspect) then
2014 Set_Is_Checked (Aitem);
2015 end if;
2017 Set_Corresponding_Aspect (Aitem, Aspect);
2018 Set_From_Aspect_Specification (Aitem);
2019 end Make_Aitem_Pragma;
2021 -- Start of processing for Analyze_One_Aspect
2023 begin
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed (Aspect) then
2027 goto Continue;
2028 end if;
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy (Aspect);
2036 if Is_Disabled (Aspect) then
2037 goto Continue;
2038 end if;
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present (Expr) then
2049 Eloc := Sloc (First_Node (Expr));
2050 end if;
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect (A_Id) then
2055 Check_Restriction
2056 (No_Implementation_Aspect_Specifications, Aspect);
2057 end if;
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed (Aspect);
2066 Set_Entity (Aspect, E);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent := New_Occurrence_Of (E, Sloc (Id));
2072 if A_Id = Aspect_Attach_Handler
2073 or else A_Id = Aspect_Interrupt_Handler
2074 then
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference (E, Id);
2081 end if;
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed (A_Id) then
2088 Anod := First (L);
2089 while Anod /= Aspect loop
2090 if Comes_From_Source (Aspect)
2091 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2092 then
2093 Error_Msg_Name_1 := Nam;
2094 Error_Msg_Sloc := Sloc (Anod);
2096 -- Case of same aspect specified twice
2098 if Class_Present (Anod) = Class_Present (Aspect) then
2099 if not Class_Present (Anod) then
2100 Error_Msg_NE
2101 ("aspect% for & previously given#",
2102 Id, E);
2103 else
2104 Error_Msg_NE
2105 ("aspect `%''Class` for & previously given#",
2106 Id, E);
2107 end if;
2108 end if;
2109 end if;
2111 Next (Anod);
2112 end loop;
2113 end if;
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect (A_Id) then
2118 Error_Msg_Name_1 := Nam;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2122 -- as a body.
2124 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2125 Error_Msg_N
2126 ("aspect % not allowed for renaming declaration",
2127 Aspect);
2128 end if;
2130 -- Not allowed for formal type declarations
2132 if Nkind (N) = N_Formal_Type_Declaration then
2133 Error_Msg_N
2134 ("aspect % not allowed for formal type declaration",
2135 Aspect);
2136 end if;
2137 end if;
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity (Id, New_Copy_Tree (Expr));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay (A_Id) is
2147 when Always_Delay =>
2148 Delay_Required := True;
2150 when Never_Delay =>
2151 Delay_Required := False;
2153 when Rep_Aspect =>
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id in Boolean_Aspects and then No (Expr) then
2162 Delay_Required := False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id not in Boolean_Aspects
2169 and then A_Id /= Aspect_Alignment
2170 and then Present (Expr)
2171 and then Nkind (Expr) = N_Integer_Literal
2172 then
2173 Delay_Required := False;
2175 -- All other cases are delayed
2177 else
2178 Delay_Required := True;
2179 Set_Has_Delayed_Rep_Aspects (E);
2180 end if;
2181 end case;
2183 -- Processing based on specific aspect
2185 case A_Id is
2186 when Aspect_Unimplemented =>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2191 when No_Aspect =>
2192 raise Program_Error;
2194 -- Case 1: Aspects corresponding to attribute definition
2195 -- clauses.
2197 when Aspect_Address
2198 | Aspect_Alignment
2199 | Aspect_Bit_Order
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2205 | Aspect_Input
2206 | Aspect_Iterable
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2210 | Aspect_Output
2211 | Aspect_Read
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2214 | Aspect_Size
2215 | Aspect_Small
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2218 | Aspect_Value_Size
2219 | Aspect_Variable_Indexing
2220 | Aspect_Write
2222 -- Indexing aspects apply only to tagged type
2224 if (A_Id = Aspect_Constant_Indexing
2225 or else
2226 A_Id = Aspect_Variable_Indexing)
2227 and then not (Is_Type (E)
2228 and then Is_Tagged_Type (E))
2229 then
2230 Error_Msg_N
2231 ("indexing aspect can only apply to a tagged type",
2232 Aspect);
2233 goto Continue;
2234 end if;
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2244 if A_Id = Aspect_Address then
2245 Set_Never_Set_In_Source (E, False);
2246 end if;
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2253 if A_Id = Aspect_Input or else
2254 A_Id = Aspect_Output or else
2255 A_Id = Aspect_Read or else
2256 A_Id = Aspect_Write
2257 then
2258 if not Is_First_Subtype (E) then
2259 Error_Msg_N
2260 ("local name must be a first subtype", Aspect);
2261 goto Continue;
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2267 elsif Class_Present (Aspect) then
2268 Ent :=
2269 Make_Attribute_Reference (Loc,
2270 Prefix => Ent,
2271 Attribute_Name => Name_Class);
2272 end if;
2273 end if;
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2285 if ASIS_Mode then
2286 Aitem :=
2287 Make_Attribute_Definition_Clause (Loc,
2288 Name => Ent,
2289 Chars => Chars (Id),
2290 Expression => New_Copy_Tree (Expr));
2291 else
2292 Aitem :=
2293 Make_Attribute_Definition_Clause (Loc,
2294 Name => Ent,
2295 Chars => Chars (Id),
2296 Expression => Relocate_Node (Expr));
2297 end if;
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2305 if A_Id = Aspect_Address then
2306 Set_Referenced (E);
2307 end if;
2309 -- Case 2: Aspects corresponding to pragmas
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2316 -- Linker_Section/Suppress/Unsuppress
2318 when Aspect_Linker_Section
2319 | Aspect_Suppress
2320 | Aspect_Unsuppress
2322 Make_Aitem_Pragma
2323 (Pragma_Argument_Associations => New_List (
2324 Make_Pragma_Argument_Association (Loc,
2325 Expression => New_Occurrence_Of (E, Loc)),
2326 Make_Pragma_Argument_Association (Sloc (Expr),
2327 Expression => Relocate_Node (Expr))),
2328 Pragma_Name => Chars (Id));
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2337 if A_Id = Aspect_Linker_Section
2338 and then Nkind (N) = N_Object_Declaration
2339 and then Has_Init_Expression (N)
2340 then
2341 Delay_Required := False;
2342 end if;
2344 -- Synchronization
2346 -- Corresponds to pragma Implemented, construct the pragma
2348 when Aspect_Synchronization =>
2349 Make_Aitem_Pragma
2350 (Pragma_Argument_Associations => New_List (
2351 Make_Pragma_Argument_Association (Loc,
2352 Expression => New_Occurrence_Of (E, Loc)),
2353 Make_Pragma_Argument_Association (Sloc (Expr),
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Implemented);
2357 -- Attach_Handler
2359 when Aspect_Attach_Handler =>
2360 Make_Aitem_Pragma
2361 (Pragma_Argument_Associations => New_List (
2362 Make_Pragma_Argument_Association (Sloc (Ent),
2363 Expression => Ent),
2364 Make_Pragma_Argument_Association (Sloc (Expr),
2365 Expression => Relocate_Node (Expr))),
2366 Pragma_Name => Name_Attach_Handler);
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2371 Insert_Pragma (Aitem);
2372 goto Continue;
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2376 when Aspect_Dynamic_Predicate
2377 | Aspect_Predicate
2378 | Aspect_Static_Predicate
2380 -- These aspects apply only to subtypes
2382 if not Is_Type (E) then
2383 Error_Msg_N
2384 ("predicate can only be specified for a subtype",
2385 Aspect);
2386 goto Continue;
2388 elsif Is_Incomplete_Type (E) then
2389 Error_Msg_N
2390 ("predicate cannot apply to incomplete view", Aspect);
2392 elsif Is_Generic_Type (E) then
2393 Error_Msg_N
2394 ("predicate cannot apply to formal type", Aspect);
2395 goto Continue;
2396 end if;
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2402 Make_Aitem_Pragma
2403 (Pragma_Argument_Associations => New_List (
2404 Make_Pragma_Argument_Association (Sloc (Ent),
2405 Expression => Ent),
2406 Make_Pragma_Argument_Association (Sloc (Expr),
2407 Expression => Relocate_Node (Expr))),
2408 Pragma_Name => Name_Predicate);
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2414 Set_Has_Predicates (E);
2416 if A_Id = Aspect_Dynamic_Predicate then
2417 Set_Has_Dynamic_Predicate_Aspect (E);
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2423 Set_Has_Static_Predicate_Aspect (E, False);
2425 elsif A_Id = Aspect_Static_Predicate then
2426 Set_Has_Static_Predicate_Aspect (E);
2427 end if;
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2433 if Is_Private_Type (E) and then Present (Full_View (E)) then
2434 Set_Has_Predicates (Full_View (E));
2436 if A_Id = Aspect_Dynamic_Predicate then
2437 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2438 elsif A_Id = Aspect_Static_Predicate then
2439 Set_Has_Static_Predicate_Aspect (Full_View (E));
2440 end if;
2442 Set_Has_Delayed_Aspects (Full_View (E));
2443 Ensure_Freeze_Node (Full_View (E));
2444 end if;
2446 -- Predicate_Failure
2448 when Aspect_Predicate_Failure =>
2450 -- This aspect applies only to subtypes
2452 if not Is_Type (E) then
2453 Error_Msg_N
2454 ("predicate can only be specified for a subtype",
2455 Aspect);
2456 goto Continue;
2458 elsif Is_Incomplete_Type (E) then
2459 Error_Msg_N
2460 ("predicate cannot apply to incomplete view", Aspect);
2461 goto Continue;
2462 end if;
2464 -- Construct the pragma
2466 Make_Aitem_Pragma
2467 (Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Sloc (Ent),
2469 Expression => Ent),
2470 Make_Pragma_Argument_Association (Sloc (Expr),
2471 Expression => Relocate_Node (Expr))),
2472 Pragma_Name => Name_Predicate_Failure);
2474 Set_Has_Predicates (E);
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2480 if Is_Private_Type (E) and then Present (Full_View (E)) then
2481 Set_Has_Predicates (Full_View (E));
2482 Set_Has_Delayed_Aspects (Full_View (E));
2483 Ensure_Freeze_Node (Full_View (E));
2484 end if;
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2491 -- Convention
2493 when Aspect_Convention =>
2494 Analyze_Aspect_Convention;
2495 goto Continue;
2497 -- External_Name, Link_Name
2499 when Aspect_External_Name
2500 | Aspect_Link_Name
2502 Analyze_Aspect_External_Link_Name;
2503 goto Continue;
2505 -- CPU, Interrupt_Priority, Priority
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2520 when Aspect_CPU
2521 | Aspect_Interrupt_Priority
2522 | Aspect_Priority
2524 if Nkind_In (N, N_Subprogram_Body,
2525 N_Subprogram_Declaration)
2526 then
2527 -- Analyze the aspect expression
2529 Analyze_And_Resolve (Expr, Standard_Integer);
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2536 if A_Id = Aspect_Interrupt_Priority then
2537 Error_Msg_N
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr);
2541 -- The expression must be static
2543 elsif not Is_OK_Static_Expression (Expr) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr);
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2552 elsif Present (Parameter_Specifications
2553 (Specification (N)))
2554 or else not Is_Compilation_Unit (Defining_Entity (N))
2555 then
2556 -- See RM D.1(14/3) and D.16(12/3)
2558 Error_Msg_N
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr);
2562 -- Otherwise check in range and export the value
2564 -- For the CPU aspect
2566 elsif A_Id = Aspect_CPU then
2567 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2572 Set_Main_CPU
2573 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2575 else
2576 Error_Msg_N
2577 ("main subprogram CPU is out of range", Expr);
2578 end if;
2580 -- For the Priority aspect
2582 elsif A_Id = Aspect_Priority then
2583 if Is_In_Range (Expr, RTE (RE_Priority)) then
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2588 Set_Main_Priority
2589 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2594 elsif not Relaxed_RM_Semantics then
2595 Error_Msg_N
2596 ("main subprogram priority is out of range",
2597 Expr);
2598 end if;
2599 end if;
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2610 declare
2611 Discard : Entity_Id;
2612 begin
2613 if Restricted_Profile then
2614 Discard := RTE (RE_Activate_Restricted_Tasks);
2615 else
2616 Discard := RTE (RE_Activate_Tasks);
2617 end if;
2618 end;
2620 -- Handling for these aspects in subprograms is complete
2622 goto Continue;
2624 -- For task and protected types pass the aspect as an
2625 -- attribute.
2627 else
2628 Aitem :=
2629 Make_Attribute_Definition_Clause (Loc,
2630 Name => Ent,
2631 Chars => Chars (Id),
2632 Expression => Relocate_Node (Expr));
2633 end if;
2635 -- Warnings
2637 when Aspect_Warnings =>
2638 Make_Aitem_Pragma
2639 (Pragma_Argument_Associations => New_List (
2640 Make_Pragma_Argument_Association (Sloc (Expr),
2641 Expression => Relocate_Node (Expr)),
2642 Make_Pragma_Argument_Association (Loc,
2643 Expression => New_Occurrence_Of (E, Loc))),
2644 Pragma_Name => Chars (Id));
2646 Decorate (Aspect, Aitem);
2647 Insert_Pragma (Aitem);
2648 goto Continue;
2650 -- Case 2c: Aspects corresponding to pragmas with three
2651 -- arguments.
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2657 -- Invariant, Type_Invariant
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2666 Make_Aitem_Pragma
2667 (Pragma_Argument_Associations => New_List (
2668 Make_Pragma_Argument_Association (Sloc (Ent),
2669 Expression => Ent),
2670 Make_Pragma_Argument_Association (Sloc (Expr),
2671 Expression => Relocate_Node (Expr))),
2672 Pragma_Name => Name_Invariant);
2674 -- Add message unless exception messages are suppressed
2676 if not Opt.Exception_Locations_Suppressed then
2677 Append_To (Pragma_Argument_Associations (Aitem),
2678 Make_Pragma_Argument_Association (Eloc,
2679 Chars => Name_Message,
2680 Expression =>
2681 Make_String_Literal (Eloc,
2682 Strval => "failed invariant from "
2683 & Build_Location_String (Eloc))));
2684 end if;
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2690 Delay_Required := False;
2692 -- Case 2d : Aspects that correspond to a pragma with one
2693 -- argument.
2695 -- Abstract_State
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2701 -- immediately.
2703 when Aspect_Abstract_State => Abstract_State : declare
2704 Context : Node_Id := N;
2706 begin
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2711 if Nkind (Context) = N_Package_Instantiation then
2712 Context := Instance_Spec (Context);
2713 end if;
2715 if Nkind_In (Context, N_Generic_Package_Declaration,
2716 N_Package_Declaration)
2717 then
2718 Make_Aitem_Pragma
2719 (Pragma_Argument_Associations => New_List (
2720 Make_Pragma_Argument_Association (Loc,
2721 Expression => Relocate_Node (Expr))),
2722 Pragma_Name => Name_Abstract_State);
2724 Decorate (Aspect, Aitem);
2725 Insert_Pragma
2726 (Prag => Aitem,
2727 Is_Instance =>
2728 Is_Generic_Instance (Defining_Entity (Context)));
2730 else
2731 Error_Msg_NE
2732 ("aspect & must apply to a package declaration",
2733 Aspect, Id);
2734 end if;
2736 goto Continue;
2737 end Abstract_State;
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2743 when Aspect_Async_Readers =>
2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Async_Readers);
2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
2752 goto Continue;
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2758 when Aspect_Async_Writers =>
2759 Make_Aitem_Pragma
2760 (Pragma_Argument_Associations => New_List (
2761 Make_Pragma_Argument_Association (Loc,
2762 Expression => Relocate_Node (Expr))),
2763 Pragma_Name => Name_Async_Writers);
2765 Decorate (Aspect, Aitem);
2766 Insert_Pragma (Aitem);
2767 goto Continue;
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2773 when Aspect_Constant_After_Elaboration =>
2774 Make_Aitem_Pragma
2775 (Pragma_Argument_Associations => New_List (
2776 Make_Pragma_Argument_Association (Loc,
2777 Expression => Relocate_Node (Expr))),
2778 Pragma_Name =>
2779 Name_Constant_After_Elaboration);
2781 Decorate (Aspect, Aitem);
2782 Insert_Pragma (Aitem);
2783 goto Continue;
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2793 when Aspect_Default_Initial_Condition =>
2794 Make_Aitem_Pragma
2795 (Pragma_Argument_Associations => New_List (
2796 Make_Pragma_Argument_Association (Loc,
2797 Expression => Relocate_Node (Expr))),
2798 Pragma_Name =>
2799 Name_Default_Initial_Condition);
2801 Decorate (Aspect, Aitem);
2802 Insert_Pragma (Aitem);
2803 goto Continue;
2805 -- Default_Storage_Pool
2807 when Aspect_Default_Storage_Pool =>
2808 Make_Aitem_Pragma
2809 (Pragma_Argument_Associations => New_List (
2810 Make_Pragma_Argument_Association (Loc,
2811 Expression => Relocate_Node (Expr))),
2812 Pragma_Name =>
2813 Name_Default_Storage_Pool);
2815 Decorate (Aspect, Aitem);
2816 Insert_Pragma (Aitem);
2817 goto Continue;
2819 -- Depends
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2828 when Aspect_Depends =>
2829 Make_Aitem_Pragma
2830 (Pragma_Argument_Associations => New_List (
2831 Make_Pragma_Argument_Association (Loc,
2832 Expression => Relocate_Node (Expr))),
2833 Pragma_Name => Name_Depends);
2835 Decorate (Aspect, Aitem);
2836 Insert_Pragma (Aitem);
2837 goto Continue;
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2843 when Aspect_Effective_Reads =>
2844 Make_Aitem_Pragma
2845 (Pragma_Argument_Associations => New_List (
2846 Make_Pragma_Argument_Association (Loc,
2847 Expression => Relocate_Node (Expr))),
2848 Pragma_Name => Name_Effective_Reads);
2850 Decorate (Aspect, Aitem);
2851 Insert_Pragma (Aitem);
2852 goto Continue;
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2858 when Aspect_Effective_Writes =>
2859 Make_Aitem_Pragma
2860 (Pragma_Argument_Associations => New_List (
2861 Make_Pragma_Argument_Association (Loc,
2862 Expression => Relocate_Node (Expr))),
2863 Pragma_Name => Name_Effective_Writes);
2865 Decorate (Aspect, Aitem);
2866 Insert_Pragma (Aitem);
2867 goto Continue;
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2873 when Aspect_Extensions_Visible =>
2874 Make_Aitem_Pragma
2875 (Pragma_Argument_Associations => New_List (
2876 Make_Pragma_Argument_Association (Loc,
2877 Expression => Relocate_Node (Expr))),
2878 Pragma_Name => Name_Extensions_Visible);
2880 Decorate (Aspect, Aitem);
2881 Insert_Pragma (Aitem);
2882 goto Continue;
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2889 when Aspect_Ghost =>
2890 Make_Aitem_Pragma
2891 (Pragma_Argument_Associations => New_List (
2892 Make_Pragma_Argument_Association (Loc,
2893 Expression => Relocate_Node (Expr))),
2894 Pragma_Name => Name_Ghost);
2896 Decorate (Aspect, Aitem);
2897 Insert_Pragma (Aitem);
2898 goto Continue;
2900 -- Global
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2909 when Aspect_Global =>
2910 Make_Aitem_Pragma
2911 (Pragma_Argument_Associations => New_List (
2912 Make_Pragma_Argument_Association (Loc,
2913 Expression => Relocate_Node (Expr))),
2914 Pragma_Name => Name_Global);
2916 Decorate (Aspect, Aitem);
2917 Insert_Pragma (Aitem);
2918 goto Continue;
2920 -- Initial_Condition
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2928 -- for details.
2930 when Aspect_Initial_Condition => Initial_Condition : declare
2931 Context : Node_Id := N;
2933 begin
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2938 if Nkind (Context) = N_Package_Instantiation then
2939 Context := Instance_Spec (Context);
2940 end if;
2942 if Nkind_In (Context, N_Generic_Package_Declaration,
2943 N_Package_Declaration)
2944 then
2945 Make_Aitem_Pragma
2946 (Pragma_Argument_Associations => New_List (
2947 Make_Pragma_Argument_Association (Loc,
2948 Expression => Relocate_Node (Expr))),
2949 Pragma_Name =>
2950 Name_Initial_Condition);
2952 Decorate (Aspect, Aitem);
2953 Insert_Pragma
2954 (Prag => Aitem,
2955 Is_Instance =>
2956 Is_Generic_Instance (Defining_Entity (Context)));
2958 -- Otherwise the context is illegal
2960 else
2961 Error_Msg_NE
2962 ("aspect & must apply to a package declaration",
2963 Aspect, Id);
2964 end if;
2966 goto Continue;
2967 end Initial_Condition;
2969 -- Initializes
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2978 when Aspect_Initializes => Initializes : declare
2979 Context : Node_Id := N;
2981 begin
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2986 if Nkind (Context) = N_Package_Instantiation then
2987 Context := Instance_Spec (Context);
2988 end if;
2990 if Nkind_In (Context, N_Generic_Package_Declaration,
2991 N_Package_Declaration)
2992 then
2993 Make_Aitem_Pragma
2994 (Pragma_Argument_Associations => New_List (
2995 Make_Pragma_Argument_Association (Loc,
2996 Expression => Relocate_Node (Expr))),
2997 Pragma_Name => Name_Initializes);
2999 Decorate (Aspect, Aitem);
3000 Insert_Pragma
3001 (Prag => Aitem,
3002 Is_Instance =>
3003 Is_Generic_Instance (Defining_Entity (Context)));
3005 -- Otherwise the context is illegal
3007 else
3008 Error_Msg_NE
3009 ("aspect & must apply to a package declaration",
3010 Aspect, Id);
3011 end if;
3013 goto Continue;
3014 end Initializes;
3016 -- Max_Entry_Queue_Depth
3018 when Aspect_Max_Entry_Queue_Depth =>
3019 Make_Aitem_Pragma
3020 (Pragma_Argument_Associations => New_List (
3021 Make_Pragma_Argument_Association (Loc,
3022 Expression => Relocate_Node (Expr))),
3023 Pragma_Name => Name_Max_Entry_Queue_Depth);
3025 Decorate (Aspect, Aitem);
3026 Insert_Pragma (Aitem);
3027 goto Continue;
3029 -- Max_Queue_Length
3031 when Aspect_Max_Queue_Length =>
3032 Make_Aitem_Pragma
3033 (Pragma_Argument_Associations => New_List (
3034 Make_Pragma_Argument_Association (Loc,
3035 Expression => Relocate_Node (Expr))),
3036 Pragma_Name => Name_Max_Queue_Length);
3038 Decorate (Aspect, Aitem);
3039 Insert_Pragma (Aitem);
3040 goto Continue;
3042 -- Obsolescent
3044 when Aspect_Obsolescent => declare
3045 Args : List_Id;
3047 begin
3048 if No (Expr) then
3049 Args := No_List;
3050 else
3051 Args := New_List (
3052 Make_Pragma_Argument_Association (Sloc (Expr),
3053 Expression => Relocate_Node (Expr)));
3054 end if;
3056 Make_Aitem_Pragma
3057 (Pragma_Argument_Associations => Args,
3058 Pragma_Name => Chars (Id));
3059 end;
3061 -- Part_Of
3063 when Aspect_Part_Of =>
3064 if Nkind_In (N, N_Object_Declaration,
3065 N_Package_Instantiation)
3066 or else Is_Single_Concurrent_Type_Declaration (N)
3067 then
3068 Make_Aitem_Pragma
3069 (Pragma_Argument_Associations => New_List (
3070 Make_Pragma_Argument_Association (Loc,
3071 Expression => Relocate_Node (Expr))),
3072 Pragma_Name => Name_Part_Of);
3074 Decorate (Aspect, Aitem);
3075 Insert_Pragma (Aitem);
3077 else
3078 Error_Msg_NE
3079 ("aspect & must apply to package instantiation, "
3080 & "object, single protected type or single task type",
3081 Aspect, Id);
3082 end if;
3084 goto Continue;
3086 -- SPARK_Mode
3088 when Aspect_SPARK_Mode =>
3089 Make_Aitem_Pragma
3090 (Pragma_Argument_Associations => New_List (
3091 Make_Pragma_Argument_Association (Loc,
3092 Expression => Relocate_Node (Expr))),
3093 Pragma_Name => Name_SPARK_Mode);
3095 Decorate (Aspect, Aitem);
3096 Insert_Pragma (Aitem);
3097 goto Continue;
3099 -- Refined_Depends
3101 -- Aspect Refined_Depends is never delayed because it is
3102 -- equivalent to a source pragma which appears in the
3103 -- declarations of the related subprogram body. To deal with
3104 -- forward references, the generated pragma is stored in the
3105 -- contract of the related subprogram body and later analyzed
3106 -- at the end of the declarative region. For details, see
3107 -- routine Analyze_Refined_Depends_In_Decl_Part.
3109 when Aspect_Refined_Depends =>
3110 Make_Aitem_Pragma
3111 (Pragma_Argument_Associations => New_List (
3112 Make_Pragma_Argument_Association (Loc,
3113 Expression => Relocate_Node (Expr))),
3114 Pragma_Name => Name_Refined_Depends);
3116 Decorate (Aspect, Aitem);
3117 Insert_Pragma (Aitem);
3118 goto Continue;
3120 -- Refined_Global
3122 -- Aspect Refined_Global is never delayed because it is
3123 -- equivalent to a source pragma which appears in the
3124 -- declarations of the related subprogram body. To deal with
3125 -- forward references, the generated pragma is stored in the
3126 -- contract of the related subprogram body and later analyzed
3127 -- at the end of the declarative region. For details, see
3128 -- routine Analyze_Refined_Global_In_Decl_Part.
3130 when Aspect_Refined_Global =>
3131 Make_Aitem_Pragma
3132 (Pragma_Argument_Associations => New_List (
3133 Make_Pragma_Argument_Association (Loc,
3134 Expression => Relocate_Node (Expr))),
3135 Pragma_Name => Name_Refined_Global);
3137 Decorate (Aspect, Aitem);
3138 Insert_Pragma (Aitem);
3139 goto Continue;
3141 -- Refined_Post
3143 when Aspect_Refined_Post =>
3144 Make_Aitem_Pragma
3145 (Pragma_Argument_Associations => New_List (
3146 Make_Pragma_Argument_Association (Loc,
3147 Expression => Relocate_Node (Expr))),
3148 Pragma_Name => Name_Refined_Post);
3150 Decorate (Aspect, Aitem);
3151 Insert_Pragma (Aitem);
3152 goto Continue;
3154 -- Refined_State
3156 when Aspect_Refined_State =>
3158 -- The corresponding pragma for Refined_State is inserted in
3159 -- the declarations of the related package body. This action
3160 -- synchronizes both the source and from-aspect versions of
3161 -- the pragma.
3163 if Nkind (N) = N_Package_Body then
3164 Make_Aitem_Pragma
3165 (Pragma_Argument_Associations => New_List (
3166 Make_Pragma_Argument_Association (Loc,
3167 Expression => Relocate_Node (Expr))),
3168 Pragma_Name => Name_Refined_State);
3170 Decorate (Aspect, Aitem);
3171 Insert_Pragma (Aitem);
3173 -- Otherwise the context is illegal
3175 else
3176 Error_Msg_NE
3177 ("aspect & must apply to a package body", Aspect, Id);
3178 end if;
3180 goto Continue;
3182 -- Relative_Deadline
3184 when Aspect_Relative_Deadline =>
3185 Make_Aitem_Pragma
3186 (Pragma_Argument_Associations => New_List (
3187 Make_Pragma_Argument_Association (Loc,
3188 Expression => Relocate_Node (Expr))),
3189 Pragma_Name => Name_Relative_Deadline);
3191 -- If the aspect applies to a task, the corresponding pragma
3192 -- must appear within its declarations, not after.
3194 if Nkind (N) = N_Task_Type_Declaration then
3195 declare
3196 Def : Node_Id;
3197 V : List_Id;
3199 begin
3200 if No (Task_Definition (N)) then
3201 Set_Task_Definition (N,
3202 Make_Task_Definition (Loc,
3203 Visible_Declarations => New_List,
3204 End_Label => Empty));
3205 end if;
3207 Def := Task_Definition (N);
3208 V := Visible_Declarations (Def);
3209 if not Is_Empty_List (V) then
3210 Insert_Before (First (V), Aitem);
3212 else
3213 Set_Visible_Declarations (Def, New_List (Aitem));
3214 end if;
3216 goto Continue;
3217 end;
3218 end if;
3220 -- Secondary_Stack_Size
3222 -- Aspect Secondary_Stack_Size needs to be converted into a
3223 -- pragma for two reasons: the attribute is not analyzed until
3224 -- after the expansion of the task type declaration and the
3225 -- attribute does not have visibility on the discriminant.
3227 when Aspect_Secondary_Stack_Size =>
3228 Make_Aitem_Pragma
3229 (Pragma_Argument_Associations => New_List (
3230 Make_Pragma_Argument_Association (Loc,
3231 Expression => Relocate_Node (Expr))),
3232 Pragma_Name =>
3233 Name_Secondary_Stack_Size);
3235 Decorate (Aspect, Aitem);
3236 Insert_Pragma (Aitem);
3237 goto Continue;
3239 -- Volatile_Function
3241 -- Aspect Volatile_Function is never delayed because it is
3242 -- equivalent to a source pragma which appears after the
3243 -- related subprogram.
3245 when Aspect_Volatile_Function =>
3246 Make_Aitem_Pragma
3247 (Pragma_Argument_Associations => New_List (
3248 Make_Pragma_Argument_Association (Loc,
3249 Expression => Relocate_Node (Expr))),
3250 Pragma_Name => Name_Volatile_Function);
3252 Decorate (Aspect, Aitem);
3253 Insert_Pragma (Aitem);
3254 goto Continue;
3256 -- Case 2e: Annotate aspect
3258 when Aspect_Annotate =>
3259 declare
3260 Args : List_Id;
3261 Pargs : List_Id;
3262 Arg : Node_Id;
3264 begin
3265 -- The argument can be a single identifier
3267 if Nkind (Expr) = N_Identifier then
3269 -- One level of parens is allowed
3271 if Paren_Count (Expr) > 1 then
3272 Error_Msg_F ("extra parentheses ignored", Expr);
3273 end if;
3275 Set_Paren_Count (Expr, 0);
3277 -- Add the single item to the list
3279 Args := New_List (Expr);
3281 -- Otherwise we must have an aggregate
3283 elsif Nkind (Expr) = N_Aggregate then
3285 -- Must be positional
3287 if Present (Component_Associations (Expr)) then
3288 Error_Msg_F
3289 ("purely positional aggregate required", Expr);
3290 goto Continue;
3291 end if;
3293 -- Must not be parenthesized
3295 if Paren_Count (Expr) /= 0 then
3296 Error_Msg_F ("extra parentheses ignored", Expr);
3297 end if;
3299 -- List of arguments is list of aggregate expressions
3301 Args := Expressions (Expr);
3303 -- Anything else is illegal
3305 else
3306 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3307 goto Continue;
3308 end if;
3310 -- Prepare pragma arguments
3312 Pargs := New_List;
3313 Arg := First (Args);
3314 while Present (Arg) loop
3315 Append_To (Pargs,
3316 Make_Pragma_Argument_Association (Sloc (Arg),
3317 Expression => Relocate_Node (Arg)));
3318 Next (Arg);
3319 end loop;
3321 Append_To (Pargs,
3322 Make_Pragma_Argument_Association (Sloc (Ent),
3323 Chars => Name_Entity,
3324 Expression => Ent));
3326 Make_Aitem_Pragma
3327 (Pragma_Argument_Associations => Pargs,
3328 Pragma_Name => Name_Annotate);
3329 end;
3331 -- Case 3 : Aspects that don't correspond to pragma/attribute
3332 -- definition clause.
3334 -- Case 3a: The aspects listed below don't correspond to
3335 -- pragmas/attributes but do require delayed analysis.
3337 -- Default_Value can only apply to a scalar type
3339 when Aspect_Default_Value =>
3340 if not Is_Scalar_Type (E) then
3341 Error_Msg_N
3342 ("aspect Default_Value must apply to a scalar type", N);
3343 end if;
3345 Aitem := Empty;
3347 -- Default_Component_Value can only apply to an array type
3348 -- with scalar components.
3350 when Aspect_Default_Component_Value =>
3351 if not (Is_Array_Type (E)
3352 and then Is_Scalar_Type (Component_Type (E)))
3353 then
3354 Error_Msg_N
3355 ("aspect Default_Component_Value can only apply to an "
3356 & "array of scalar components", N);
3357 end if;
3359 Aitem := Empty;
3361 -- Case 3b: The aspects listed below don't correspond to
3362 -- pragmas/attributes and don't need delayed analysis.
3364 -- Implicit_Dereference
3366 -- For Implicit_Dereference, External_Name and Link_Name, only
3367 -- the legality checks are done during the analysis, thus no
3368 -- delay is required.
3370 when Aspect_Implicit_Dereference =>
3371 Analyze_Aspect_Implicit_Dereference;
3372 goto Continue;
3374 -- Dimension
3376 when Aspect_Dimension =>
3377 Analyze_Aspect_Dimension (N, Id, Expr);
3378 goto Continue;
3380 -- Dimension_System
3382 when Aspect_Dimension_System =>
3383 Analyze_Aspect_Dimension_System (N, Id, Expr);
3384 goto Continue;
3386 -- Case 4: Aspects requiring special handling
3388 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3389 -- pragmas take care of the delay.
3391 -- Pre/Post
3393 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3394 -- with a first argument that is the expression, and a second
3395 -- argument that is an informative message if the test fails.
3396 -- This is inserted right after the declaration, to get the
3397 -- required pragma placement. The processing for the pragmas
3398 -- takes care of the required delay.
3400 when Pre_Post_Aspects => Pre_Post : declare
3401 Pname : Name_Id;
3403 begin
3404 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3405 Pname := Name_Precondition;
3406 else
3407 Pname := Name_Postcondition;
3408 end if;
3410 -- Check that the class-wide predicate cannot be applied to
3411 -- an operation of a synchronized type. AI12-0182 forbids
3412 -- these altogether, while earlier language semantics made
3413 -- them legal on tagged synchronized types.
3415 -- Other legality checks are performed when analyzing the
3416 -- contract of the operation.
3418 if Class_Present (Aspect)
3419 and then Is_Concurrent_Type (Current_Scope)
3420 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3421 then
3422 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3423 Error_Msg_N
3424 ("aspect % can only be specified for a primitive "
3425 & "operation of a tagged type", Aspect);
3427 goto Continue;
3428 end if;
3430 -- If the expressions is of the form A and then B, then
3431 -- we generate separate Pre/Post aspects for the separate
3432 -- clauses. Since we allow multiple pragmas, there is no
3433 -- problem in allowing multiple Pre/Post aspects internally.
3434 -- These should be treated in reverse order (B first and
3435 -- A second) since they are later inserted just after N in
3436 -- the order they are treated. This way, the pragma for A
3437 -- ends up preceding the pragma for B, which may have an
3438 -- importance for the error raised (either constraint error
3439 -- or precondition error).
3441 -- We do not do this for Pre'Class, since we have to put
3442 -- these conditions together in a complex OR expression.
3444 -- We do not do this in ASIS mode, as ASIS relies on the
3445 -- original node representing the complete expression, when
3446 -- retrieving it through the source aspect table. Also, we
3447 -- don't do this in GNATprove mode, because it brings no
3448 -- benefit for proof and causes annoynace for flow analysis,
3449 -- which prefers to be as close to the original source code
3450 -- as possible.
3452 if not (ASIS_Mode or GNATprove_Mode)
3453 and then (Pname = Name_Postcondition
3454 or else not Class_Present (Aspect))
3455 then
3456 while Nkind (Expr) = N_And_Then loop
3457 Insert_After (Aspect,
3458 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3459 Identifier => Identifier (Aspect),
3460 Expression => Relocate_Node (Left_Opnd (Expr)),
3461 Class_Present => Class_Present (Aspect),
3462 Split_PPC => True));
3463 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3464 Eloc := Sloc (Expr);
3465 end loop;
3466 end if;
3468 -- Build the precondition/postcondition pragma
3470 -- Add note about why we do NOT need Copy_Tree here???
3472 Make_Aitem_Pragma
3473 (Pragma_Argument_Associations => New_List (
3474 Make_Pragma_Argument_Association (Eloc,
3475 Chars => Name_Check,
3476 Expression => Relocate_Node (Expr))),
3477 Pragma_Name => Pname);
3479 -- Add message unless exception messages are suppressed
3481 if not Opt.Exception_Locations_Suppressed then
3482 Append_To (Pragma_Argument_Associations (Aitem),
3483 Make_Pragma_Argument_Association (Eloc,
3484 Chars => Name_Message,
3485 Expression =>
3486 Make_String_Literal (Eloc,
3487 Strval => "failed "
3488 & Get_Name_String (Pname)
3489 & " from "
3490 & Build_Location_String (Eloc))));
3491 end if;
3493 Set_Is_Delayed_Aspect (Aspect);
3495 -- For Pre/Post cases, insert immediately after the entity
3496 -- declaration, since that is the required pragma placement.
3497 -- Note that for these aspects, we do not have to worry
3498 -- about delay issues, since the pragmas themselves deal
3499 -- with delay of visibility for the expression analysis.
3501 Insert_Pragma (Aitem);
3503 goto Continue;
3504 end Pre_Post;
3506 -- Test_Case
3508 when Aspect_Test_Case => Test_Case : declare
3509 Args : List_Id;
3510 Comp_Expr : Node_Id;
3511 Comp_Assn : Node_Id;
3512 New_Expr : Node_Id;
3514 begin
3515 Args := New_List;
3517 if Nkind (Parent (N)) = N_Compilation_Unit then
3518 Error_Msg_Name_1 := Nam;
3519 Error_Msg_N ("incorrect placement of aspect `%`", E);
3520 goto Continue;
3521 end if;
3523 if Nkind (Expr) /= N_Aggregate then
3524 Error_Msg_Name_1 := Nam;
3525 Error_Msg_NE
3526 ("wrong syntax for aspect `%` for &", Id, E);
3527 goto Continue;
3528 end if;
3530 -- Make pragma expressions refer to the original aspect
3531 -- expressions through the Original_Node link. This is used
3532 -- in semantic analysis for ASIS mode, so that the original
3533 -- expression also gets analyzed.
3535 Comp_Expr := First (Expressions (Expr));
3536 while Present (Comp_Expr) loop
3537 New_Expr := Relocate_Node (Comp_Expr);
3538 Append_To (Args,
3539 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3540 Expression => New_Expr));
3541 Next (Comp_Expr);
3542 end loop;
3544 Comp_Assn := First (Component_Associations (Expr));
3545 while Present (Comp_Assn) loop
3546 if List_Length (Choices (Comp_Assn)) /= 1
3547 or else
3548 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3549 then
3550 Error_Msg_Name_1 := Nam;
3551 Error_Msg_NE
3552 ("wrong syntax for aspect `%` for &", Id, E);
3553 goto Continue;
3554 end if;
3556 Append_To (Args,
3557 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3558 Chars => Chars (First (Choices (Comp_Assn))),
3559 Expression =>
3560 Relocate_Node (Expression (Comp_Assn))));
3561 Next (Comp_Assn);
3562 end loop;
3564 -- Build the test-case pragma
3566 Make_Aitem_Pragma
3567 (Pragma_Argument_Associations => Args,
3568 Pragma_Name => Nam);
3569 end Test_Case;
3571 -- Contract_Cases
3573 when Aspect_Contract_Cases =>
3574 Make_Aitem_Pragma
3575 (Pragma_Argument_Associations => New_List (
3576 Make_Pragma_Argument_Association (Loc,
3577 Expression => Relocate_Node (Expr))),
3578 Pragma_Name => Nam);
3580 Decorate (Aspect, Aitem);
3581 Insert_Pragma (Aitem);
3582 goto Continue;
3584 -- Case 5: Special handling for aspects with an optional
3585 -- boolean argument.
3587 -- In the delayed case, the corresponding pragma cannot be
3588 -- generated yet because the evaluation of the boolean needs
3589 -- to be delayed till the freeze point.
3591 when Boolean_Aspects
3592 | Library_Unit_Aspects
3594 Set_Is_Boolean_Aspect (Aspect);
3596 -- Lock_Free aspect only apply to protected objects
3598 if A_Id = Aspect_Lock_Free then
3599 if Ekind (E) /= E_Protected_Type then
3600 Error_Msg_Name_1 := Nam;
3601 Error_Msg_N
3602 ("aspect % only applies to a protected object",
3603 Aspect);
3605 else
3606 -- Set the Uses_Lock_Free flag to True if there is no
3607 -- expression or if the expression is True. The
3608 -- evaluation of this aspect should be delayed to the
3609 -- freeze point (why???)
3611 if No (Expr)
3612 or else Is_True (Static_Boolean (Expr))
3613 then
3614 Set_Uses_Lock_Free (E);
3615 end if;
3617 Record_Rep_Item (E, Aspect);
3618 end if;
3620 goto Continue;
3622 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3623 Analyze_Aspect_Export_Import;
3625 -- Disable_Controlled
3627 elsif A_Id = Aspect_Disable_Controlled then
3628 Analyze_Aspect_Disable_Controlled;
3629 goto Continue;
3630 end if;
3632 -- Library unit aspects require special handling in the case
3633 -- of a package declaration, the pragma needs to be inserted
3634 -- in the list of declarations for the associated package.
3635 -- There is no issue of visibility delay for these aspects.
3637 if A_Id in Library_Unit_Aspects
3638 and then
3639 Nkind_In (N, N_Package_Declaration,
3640 N_Generic_Package_Declaration)
3641 and then Nkind (Parent (N)) /= N_Compilation_Unit
3643 -- Aspect is legal on a local instantiation of a library-
3644 -- level generic unit.
3646 and then not Is_Generic_Instance (Defining_Entity (N))
3647 then
3648 Error_Msg_N
3649 ("incorrect context for library unit aspect&", Id);
3650 goto Continue;
3651 end if;
3653 -- Cases where we do not delay, includes all cases where the
3654 -- expression is missing other than the above cases.
3656 if not Delay_Required or else No (Expr) then
3658 -- Exclude aspects Export and Import because their pragma
3659 -- syntax does not map directly to a Boolean aspect.
3661 if A_Id /= Aspect_Export
3662 and then A_Id /= Aspect_Import
3663 then
3664 Make_Aitem_Pragma
3665 (Pragma_Argument_Associations => New_List (
3666 Make_Pragma_Argument_Association (Sloc (Ent),
3667 Expression => Ent)),
3668 Pragma_Name => Chars (Id));
3669 end if;
3671 Delay_Required := False;
3673 -- In general cases, the corresponding pragma/attribute
3674 -- definition clause will be inserted later at the freezing
3675 -- point, and we do not need to build it now.
3677 else
3678 Aitem := Empty;
3679 end if;
3681 -- Storage_Size
3683 -- This is special because for access types we need to generate
3684 -- an attribute definition clause. This also works for single
3685 -- task declarations, but it does not work for task type
3686 -- declarations, because we have the case where the expression
3687 -- references a discriminant of the task type. That can't use
3688 -- an attribute definition clause because we would not have
3689 -- visibility on the discriminant. For that case we must
3690 -- generate a pragma in the task definition.
3692 when Aspect_Storage_Size =>
3694 -- Task type case
3696 if Ekind (E) = E_Task_Type then
3697 declare
3698 Decl : constant Node_Id := Declaration_Node (E);
3700 begin
3701 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3703 -- If no task definition, create one
3705 if No (Task_Definition (Decl)) then
3706 Set_Task_Definition (Decl,
3707 Make_Task_Definition (Loc,
3708 Visible_Declarations => Empty_List,
3709 End_Label => Empty));
3710 end if;
3712 -- Create a pragma and put it at the start of the task
3713 -- definition for the task type declaration.
3715 Make_Aitem_Pragma
3716 (Pragma_Argument_Associations => New_List (
3717 Make_Pragma_Argument_Association (Loc,
3718 Expression => Relocate_Node (Expr))),
3719 Pragma_Name => Name_Storage_Size);
3721 Prepend
3722 (Aitem,
3723 Visible_Declarations (Task_Definition (Decl)));
3724 goto Continue;
3725 end;
3727 -- All other cases, generate attribute definition
3729 else
3730 Aitem :=
3731 Make_Attribute_Definition_Clause (Loc,
3732 Name => Ent,
3733 Chars => Chars (Id),
3734 Expression => Relocate_Node (Expr));
3735 end if;
3736 end case;
3738 -- Attach the corresponding pragma/attribute definition clause to
3739 -- the aspect specification node.
3741 if Present (Aitem) then
3742 Set_From_Aspect_Specification (Aitem);
3743 end if;
3745 -- In the context of a compilation unit, we directly put the
3746 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3747 -- node (no delay is required here) except for aspects on a
3748 -- subprogram body (see below) and a generic package, for which we
3749 -- need to introduce the pragma before building the generic copy
3750 -- (see sem_ch12), and for package instantiations, where the
3751 -- library unit pragmas are better handled early.
3753 if Nkind (Parent (N)) = N_Compilation_Unit
3754 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3755 then
3756 declare
3757 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3759 begin
3760 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3762 -- For a Boolean aspect, create the corresponding pragma if
3763 -- no expression or if the value is True.
3765 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3766 if Is_True (Static_Boolean (Expr)) then
3767 Make_Aitem_Pragma
3768 (Pragma_Argument_Associations => New_List (
3769 Make_Pragma_Argument_Association (Sloc (Ent),
3770 Expression => Ent)),
3771 Pragma_Name => Chars (Id));
3773 Set_From_Aspect_Specification (Aitem, True);
3774 Set_Corresponding_Aspect (Aitem, Aspect);
3776 else
3777 goto Continue;
3778 end if;
3779 end if;
3781 -- If the aspect is on a subprogram body (relevant aspect
3782 -- is Inline), add the pragma in front of the declarations.
3784 if Nkind (N) = N_Subprogram_Body then
3785 if No (Declarations (N)) then
3786 Set_Declarations (N, New_List);
3787 end if;
3789 Prepend (Aitem, Declarations (N));
3791 elsif Nkind (N) = N_Generic_Package_Declaration then
3792 if No (Visible_Declarations (Specification (N))) then
3793 Set_Visible_Declarations (Specification (N), New_List);
3794 end if;
3796 Prepend (Aitem,
3797 Visible_Declarations (Specification (N)));
3799 elsif Nkind (N) = N_Package_Instantiation then
3800 declare
3801 Spec : constant Node_Id :=
3802 Specification (Instance_Spec (N));
3803 begin
3804 if No (Visible_Declarations (Spec)) then
3805 Set_Visible_Declarations (Spec, New_List);
3806 end if;
3808 Prepend (Aitem, Visible_Declarations (Spec));
3809 end;
3811 else
3812 if No (Pragmas_After (Aux)) then
3813 Set_Pragmas_After (Aux, New_List);
3814 end if;
3816 Append (Aitem, Pragmas_After (Aux));
3817 end if;
3819 goto Continue;
3820 end;
3821 end if;
3823 -- The evaluation of the aspect is delayed to the freezing point.
3824 -- The pragma or attribute clause if there is one is then attached
3825 -- to the aspect specification which is put in the rep item list.
3827 if Delay_Required then
3828 if Present (Aitem) then
3829 Set_Is_Delayed_Aspect (Aitem);
3830 Set_Aspect_Rep_Item (Aspect, Aitem);
3831 Set_Parent (Aitem, Aspect);
3832 end if;
3834 Set_Is_Delayed_Aspect (Aspect);
3836 -- In the case of Default_Value, link the aspect to base type
3837 -- as well, even though it appears on a first subtype. This is
3838 -- mandated by the semantics of the aspect. Do not establish
3839 -- the link when processing the base type itself as this leads
3840 -- to a rep item circularity. Verify that we are dealing with
3841 -- a scalar type to prevent cascaded errors.
3843 if A_Id = Aspect_Default_Value
3844 and then Is_Scalar_Type (E)
3845 and then Base_Type (E) /= E
3846 then
3847 Set_Has_Delayed_Aspects (Base_Type (E));
3848 Record_Rep_Item (Base_Type (E), Aspect);
3849 end if;
3851 Set_Has_Delayed_Aspects (E);
3852 Record_Rep_Item (E, Aspect);
3854 -- When delay is not required and the context is a package or a
3855 -- subprogram body, insert the pragma in the body declarations.
3857 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3858 if No (Declarations (N)) then
3859 Set_Declarations (N, New_List);
3860 end if;
3862 -- The pragma is added before source declarations
3864 Prepend_To (Declarations (N), Aitem);
3866 -- When delay is not required and the context is not a compilation
3867 -- unit, we simply insert the pragma/attribute definition clause
3868 -- in sequence.
3870 elsif Present (Aitem) then
3871 Insert_After (Ins_Node, Aitem);
3872 Ins_Node := Aitem;
3873 end if;
3874 end Analyze_One_Aspect;
3876 <<Continue>>
3877 Next (Aspect);
3878 end loop Aspect_Loop;
3880 if Has_Delayed_Aspects (E) then
3881 Ensure_Freeze_Node (E);
3882 end if;
3883 end Analyze_Aspect_Specifications;
3885 ------------------------------------------------
3886 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
3887 ------------------------------------------------
3889 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub (N : Node_Id) is
3890 Body_Id : constant Entity_Id := Defining_Entity (N);
3892 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3893 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3894 -- error message depending on the aspects involved. Spec_Id denotes the
3895 -- entity of the corresponding spec.
3897 --------------------------------
3898 -- Diagnose_Misplaced_Aspects --
3899 --------------------------------
3901 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3902 procedure Misplaced_Aspect_Error
3903 (Asp : Node_Id;
3904 Ref_Nam : Name_Id);
3905 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3906 -- the name of the refined version of the aspect.
3908 ----------------------------
3909 -- Misplaced_Aspect_Error --
3910 ----------------------------
3912 procedure Misplaced_Aspect_Error
3913 (Asp : Node_Id;
3914 Ref_Nam : Name_Id)
3916 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3917 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3919 begin
3920 -- The corresponding spec already contains the aspect in question
3921 -- and the one appearing on the body must be the refined form:
3923 -- procedure P with Global ...;
3924 -- procedure P with Global ... is ... end P;
3925 -- ^
3926 -- Refined_Global
3928 if Has_Aspect (Spec_Id, Asp_Id) then
3929 Error_Msg_Name_1 := Asp_Nam;
3931 -- Subunits cannot carry aspects that apply to a subprogram
3932 -- declaration.
3934 if Nkind (Parent (N)) = N_Subunit then
3935 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3937 -- Otherwise suggest the refined form
3939 else
3940 Error_Msg_Name_2 := Ref_Nam;
3941 Error_Msg_N ("aspect % should be %", Asp);
3942 end if;
3944 -- Otherwise the aspect must appear on the spec, not on the body
3946 -- procedure P;
3947 -- procedure P with Global ... is ... end P;
3949 else
3950 Error_Msg_N
3951 ("aspect specification must appear on initial declaration",
3952 Asp);
3953 end if;
3954 end Misplaced_Aspect_Error;
3956 -- Local variables
3958 Asp : Node_Id;
3959 Asp_Nam : Name_Id;
3961 -- Start of processing for Diagnose_Misplaced_Aspects
3963 begin
3964 -- Iterate over the aspect specifications and emit specific errors
3965 -- where applicable.
3967 Asp := First (Aspect_Specifications (N));
3968 while Present (Asp) loop
3969 Asp_Nam := Chars (Identifier (Asp));
3971 -- Do not emit errors on aspects that can appear on a subprogram
3972 -- body. This scenario occurs when the aspect specification list
3973 -- contains both misplaced and properly placed aspects.
3975 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3976 null;
3978 -- Special diagnostics for SPARK aspects
3980 elsif Asp_Nam = Name_Depends then
3981 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3983 elsif Asp_Nam = Name_Global then
3984 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3986 elsif Asp_Nam = Name_Post then
3987 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3989 -- Otherwise a language-defined aspect is misplaced
3991 else
3992 Error_Msg_N
3993 ("aspect specification must appear on initial declaration",
3994 Asp);
3995 end if;
3997 Next (Asp);
3998 end loop;
3999 end Diagnose_Misplaced_Aspects;
4001 -- Local variables
4003 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
4005 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
4007 begin
4008 -- Language-defined aspects cannot be associated with a subprogram body
4009 -- [stub] if the subprogram has a spec. Certain implementation defined
4010 -- aspects are allowed to break this rule (for all applicable cases, see
4011 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
4013 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
4014 Diagnose_Misplaced_Aspects (Spec_Id);
4015 else
4016 Analyze_Aspect_Specifications (N, Body_Id);
4017 end if;
4018 end Analyze_Aspects_On_Subprogram_Body_Or_Stub;
4020 -----------------------
4021 -- Analyze_At_Clause --
4022 -----------------------
4024 -- An at clause is replaced by the corresponding Address attribute
4025 -- definition clause that is the preferred approach in Ada 95.
4027 procedure Analyze_At_Clause (N : Node_Id) is
4028 CS : constant Boolean := Comes_From_Source (N);
4030 begin
4031 -- This is an obsolescent feature
4033 Check_Restriction (No_Obsolescent_Features, N);
4035 if Warn_On_Obsolescent_Feature then
4036 Error_Msg_N
4037 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
4038 Error_Msg_N
4039 ("\?j?use address attribute definition clause instead", N);
4040 end if;
4042 -- Rewrite as address clause
4044 Rewrite (N,
4045 Make_Attribute_Definition_Clause (Sloc (N),
4046 Name => Identifier (N),
4047 Chars => Name_Address,
4048 Expression => Expression (N)));
4050 -- We preserve Comes_From_Source, since logically the clause still comes
4051 -- from the source program even though it is changed in form.
4053 Set_Comes_From_Source (N, CS);
4055 -- Analyze rewritten clause
4057 Analyze_Attribute_Definition_Clause (N);
4058 end Analyze_At_Clause;
4060 -----------------------------------------
4061 -- Analyze_Attribute_Definition_Clause --
4062 -----------------------------------------
4064 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4065 Loc : constant Source_Ptr := Sloc (N);
4066 Nam : constant Node_Id := Name (N);
4067 Attr : constant Name_Id := Chars (N);
4068 Expr : constant Node_Id := Expression (N);
4069 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4071 Ent : Entity_Id;
4072 -- The entity of Nam after it is analyzed. In the case of an incomplete
4073 -- type, this is the underlying type.
4075 U_Ent : Entity_Id;
4076 -- The underlying entity to which the attribute applies. Generally this
4077 -- is the Underlying_Type of Ent, except in the case where the clause
4078 -- applies to the full view of an incomplete or private type, in which
4079 -- case U_Ent is just a copy of Ent.
4081 FOnly : Boolean := False;
4082 -- Reset to True for subtype specific attribute (Alignment, Size)
4083 -- and for stream attributes, i.e. those cases where in the call to
4084 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4085 -- are checked. Note that the case of stream attributes is not clear
4086 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4087 -- Storage_Size for derived task types, but that is also clearly
4088 -- unintentional.
4090 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4091 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4092 -- definition clauses.
4094 function Duplicate_Clause return Boolean;
4095 -- This routine checks if the aspect for U_Ent being given by attribute
4096 -- definition clause N is for an aspect that has already been specified,
4097 -- and if so gives an error message. If there is a duplicate, True is
4098 -- returned, otherwise if there is no error, False is returned.
4100 procedure Check_Indexing_Functions;
4101 -- Check that the function in Constant_Indexing or Variable_Indexing
4102 -- attribute has the proper type structure. If the name is overloaded,
4103 -- check that some interpretation is legal.
4105 procedure Check_Iterator_Functions;
4106 -- Check that there is a single function in Default_Iterator attribute
4107 -- that has the proper type structure.
4109 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4110 -- Common legality check for the previous two
4112 -----------------------------------
4113 -- Analyze_Stream_TSS_Definition --
4114 -----------------------------------
4116 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4117 Subp : Entity_Id := Empty;
4118 I : Interp_Index;
4119 It : Interp;
4120 Pnam : Entity_Id;
4122 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4123 -- True for Read attribute, False for other attributes
4125 function Has_Good_Profile
4126 (Subp : Entity_Id;
4127 Report : Boolean := False) return Boolean;
4128 -- Return true if the entity is a subprogram with an appropriate
4129 -- profile for the attribute being defined. If result is False and
4130 -- Report is True, function emits appropriate error.
4132 ----------------------
4133 -- Has_Good_Profile --
4134 ----------------------
4136 function Has_Good_Profile
4137 (Subp : Entity_Id;
4138 Report : Boolean := False) return Boolean
4140 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4141 (False => E_Procedure, True => E_Function);
4142 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4143 F : Entity_Id;
4144 Typ : Entity_Id;
4146 begin
4147 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4148 return False;
4149 end if;
4151 F := First_Formal (Subp);
4153 if No (F)
4154 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4155 or else Designated_Type (Etype (F)) /=
4156 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4157 then
4158 return False;
4159 end if;
4161 if not Is_Function then
4162 Next_Formal (F);
4164 declare
4165 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4166 (False => E_In_Parameter,
4167 True => E_Out_Parameter);
4168 begin
4169 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4170 return False;
4171 end if;
4172 end;
4174 Typ := Etype (F);
4176 -- If the attribute specification comes from an aspect
4177 -- specification for a class-wide stream, the parameter must be
4178 -- a class-wide type of the entity to which the aspect applies.
4180 if From_Aspect_Specification (N)
4181 and then Class_Present (Parent (N))
4182 and then Is_Class_Wide_Type (Typ)
4183 then
4184 Typ := Etype (Typ);
4185 end if;
4187 else
4188 Typ := Etype (Subp);
4189 end if;
4191 -- Verify that the prefix of the attribute and the local name for
4192 -- the type of the formal match, or one is the class-wide of the
4193 -- other, in the case of a class-wide stream operation.
4195 if Base_Type (Typ) = Base_Type (Ent)
4196 or else (Is_Class_Wide_Type (Typ)
4197 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4198 or else (Is_Class_Wide_Type (Ent)
4199 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4200 then
4201 null;
4202 else
4203 return False;
4204 end if;
4206 if Present (Next_Formal (F)) then
4207 return False;
4209 elsif not Is_Scalar_Type (Typ)
4210 and then not Is_First_Subtype (Typ)
4211 and then not Is_Class_Wide_Type (Typ)
4212 then
4213 if Report and not Is_First_Subtype (Typ) then
4214 Error_Msg_N
4215 ("subtype of formal in stream operation must be a first "
4216 & "subtype", Parameter_Type (Parent (F)));
4217 end if;
4219 return False;
4221 else
4222 return True;
4223 end if;
4224 end Has_Good_Profile;
4226 -- Start of processing for Analyze_Stream_TSS_Definition
4228 begin
4229 FOnly := True;
4231 if not Is_Type (U_Ent) then
4232 Error_Msg_N ("local name must be a subtype", Nam);
4233 return;
4235 elsif not Is_First_Subtype (U_Ent) then
4236 Error_Msg_N ("local name must be a first subtype", Nam);
4237 return;
4238 end if;
4240 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4242 -- If Pnam is present, it can be either inherited from an ancestor
4243 -- type (in which case it is legal to redefine it for this type), or
4244 -- be a previous definition of the attribute for the same type (in
4245 -- which case it is illegal).
4247 -- In the first case, it will have been analyzed already, and we
4248 -- can check that its profile does not match the expected profile
4249 -- for a stream attribute of U_Ent. In the second case, either Pnam
4250 -- has been analyzed (and has the expected profile), or it has not
4251 -- been analyzed yet (case of a type that has not been frozen yet
4252 -- and for which the stream attribute has been set using Set_TSS).
4254 if Present (Pnam)
4255 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4256 then
4257 Error_Msg_Sloc := Sloc (Pnam);
4258 Error_Msg_Name_1 := Attr;
4259 Error_Msg_N ("% attribute already defined #", Nam);
4260 return;
4261 end if;
4263 Analyze (Expr);
4265 if Is_Entity_Name (Expr) then
4266 if not Is_Overloaded (Expr) then
4267 if Has_Good_Profile (Entity (Expr), Report => True) then
4268 Subp := Entity (Expr);
4269 end if;
4271 else
4272 Get_First_Interp (Expr, I, It);
4273 while Present (It.Nam) loop
4274 if Has_Good_Profile (It.Nam) then
4275 Subp := It.Nam;
4276 exit;
4277 end if;
4279 Get_Next_Interp (I, It);
4280 end loop;
4281 end if;
4282 end if;
4284 if Present (Subp) then
4285 if Is_Abstract_Subprogram (Subp) then
4286 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4287 return;
4289 -- A stream subprogram for an interface type must be a null
4290 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4291 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4293 elsif Is_Interface (U_Ent)
4294 and then not Is_Class_Wide_Type (U_Ent)
4295 and then not Inside_A_Generic
4296 and then
4297 (Ekind (Subp) = E_Function
4298 or else
4299 not Null_Present
4300 (Specification
4301 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4302 then
4303 Error_Msg_N
4304 ("stream subprogram for interface type must be null "
4305 & "procedure", Expr);
4306 end if;
4308 Set_Entity (Expr, Subp);
4309 Set_Etype (Expr, Etype (Subp));
4311 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4313 else
4314 Error_Msg_Name_1 := Attr;
4315 Error_Msg_N ("incorrect expression for% attribute", Expr);
4316 end if;
4317 end Analyze_Stream_TSS_Definition;
4319 ------------------------------
4320 -- Check_Indexing_Functions --
4321 ------------------------------
4323 procedure Check_Indexing_Functions is
4324 Indexing_Found : Boolean := False;
4326 procedure Check_Inherited_Indexing;
4327 -- For a derived type, check that no indexing aspect is specified
4328 -- for the type if it is also inherited
4330 procedure Check_One_Function (Subp : Entity_Id);
4331 -- Check one possible interpretation. Sets Indexing_Found True if a
4332 -- legal indexing function is found.
4334 procedure Illegal_Indexing (Msg : String);
4335 -- Diagnose illegal indexing function if not overloaded. In the
4336 -- overloaded case indicate that no legal interpretation exists.
4338 ------------------------------
4339 -- Check_Inherited_Indexing --
4340 ------------------------------
4342 procedure Check_Inherited_Indexing is
4343 Inherited : Node_Id;
4345 begin
4346 if Attr = Name_Constant_Indexing then
4347 Inherited :=
4348 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4349 else pragma Assert (Attr = Name_Variable_Indexing);
4350 Inherited :=
4351 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4352 end if;
4354 if Present (Inherited) then
4355 if Debug_Flag_Dot_XX then
4356 null;
4358 -- OK if current attribute_definition_clause is expansion of
4359 -- inherited aspect.
4361 elsif Aspect_Rep_Item (Inherited) = N then
4362 null;
4364 -- Indicate the operation that must be overridden, rather than
4365 -- redefining the indexing aspect.
4367 else
4368 Illegal_Indexing
4369 ("indexing function already inherited from parent type");
4370 Error_Msg_NE
4371 ("!override & instead",
4372 N, Entity (Expression (Inherited)));
4373 end if;
4374 end if;
4375 end Check_Inherited_Indexing;
4377 ------------------------
4378 -- Check_One_Function --
4379 ------------------------
4381 procedure Check_One_Function (Subp : Entity_Id) is
4382 Default_Element : Node_Id;
4383 Ret_Type : constant Entity_Id := Etype (Subp);
4385 begin
4386 if not Is_Overloadable (Subp) then
4387 Illegal_Indexing ("illegal indexing function for type&");
4388 return;
4390 elsif Scope (Subp) /= Scope (Ent) then
4391 if Nkind (Expr) = N_Expanded_Name then
4393 -- Indexing function can't be declared elsewhere
4395 Illegal_Indexing
4396 ("indexing function must be declared in scope of type&");
4397 end if;
4399 return;
4401 elsif No (First_Formal (Subp)) then
4402 Illegal_Indexing
4403 ("Indexing requires a function that applies to type&");
4404 return;
4406 elsif No (Next_Formal (First_Formal (Subp))) then
4407 Illegal_Indexing
4408 ("indexing function must have at least two parameters");
4409 return;
4411 elsif Is_Derived_Type (Ent) then
4412 Check_Inherited_Indexing;
4413 end if;
4415 if not Check_Primitive_Function (Subp) then
4416 Illegal_Indexing
4417 ("Indexing aspect requires a function that applies to type&");
4418 return;
4419 end if;
4421 -- If partial declaration exists, verify that it is not tagged.
4423 if Ekind (Current_Scope) = E_Package
4424 and then Has_Private_Declaration (Ent)
4425 and then From_Aspect_Specification (N)
4426 and then
4427 List_Containing (Parent (Ent)) =
4428 Private_Declarations
4429 (Specification (Unit_Declaration_Node (Current_Scope)))
4430 and then Nkind (N) = N_Attribute_Definition_Clause
4431 then
4432 declare
4433 Decl : Node_Id;
4435 begin
4436 Decl :=
4437 First (Visible_Declarations
4438 (Specification
4439 (Unit_Declaration_Node (Current_Scope))));
4441 while Present (Decl) loop
4442 if Nkind (Decl) = N_Private_Type_Declaration
4443 and then Ent = Full_View (Defining_Identifier (Decl))
4444 and then Tagged_Present (Decl)
4445 and then No (Aspect_Specifications (Decl))
4446 then
4447 Illegal_Indexing
4448 ("Indexing aspect cannot be specified on full view "
4449 & "if partial view is tagged");
4450 return;
4451 end if;
4453 Next (Decl);
4454 end loop;
4455 end;
4456 end if;
4458 -- An indexing function must return either the default element of
4459 -- the container, or a reference type. For variable indexing it
4460 -- must be the latter.
4462 Default_Element :=
4463 Find_Value_Of_Aspect
4464 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4466 if Present (Default_Element) then
4467 Analyze (Default_Element);
4468 end if;
4470 -- For variable_indexing the return type must be a reference type
4472 if Attr = Name_Variable_Indexing then
4473 if not Has_Implicit_Dereference (Ret_Type) then
4474 Illegal_Indexing
4475 ("variable indexing must return a reference type");
4476 return;
4478 elsif Is_Access_Constant
4479 (Etype (First_Discriminant (Ret_Type)))
4480 then
4481 Illegal_Indexing
4482 ("variable indexing must return an access to variable");
4483 return;
4484 end if;
4486 else
4487 if Has_Implicit_Dereference (Ret_Type)
4488 and then not
4489 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4490 then
4491 Illegal_Indexing
4492 ("constant indexing must return an access to constant");
4493 return;
4495 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4496 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4497 then
4498 Illegal_Indexing
4499 ("constant indexing must apply to an access to constant");
4500 return;
4501 end if;
4502 end if;
4504 -- All checks succeeded.
4506 Indexing_Found := True;
4507 end Check_One_Function;
4509 -----------------------
4510 -- Illegal_Indexing --
4511 -----------------------
4513 procedure Illegal_Indexing (Msg : String) is
4514 begin
4515 Error_Msg_NE (Msg, N, Ent);
4516 end Illegal_Indexing;
4518 -- Start of processing for Check_Indexing_Functions
4520 begin
4521 if In_Instance then
4522 Check_Inherited_Indexing;
4523 end if;
4525 Analyze (Expr);
4527 if not Is_Overloaded (Expr) then
4528 Check_One_Function (Entity (Expr));
4530 else
4531 declare
4532 I : Interp_Index;
4533 It : Interp;
4535 begin
4536 Indexing_Found := False;
4537 Get_First_Interp (Expr, I, It);
4538 while Present (It.Nam) loop
4540 -- Note that analysis will have added the interpretation
4541 -- that corresponds to the dereference. We only check the
4542 -- subprogram itself. Ignore homonyms that may come from
4543 -- derived types in the context.
4545 if Is_Overloadable (It.Nam)
4546 and then Comes_From_Source (It.Nam)
4547 then
4548 Check_One_Function (It.Nam);
4549 end if;
4551 Get_Next_Interp (I, It);
4552 end loop;
4553 end;
4554 end if;
4556 if not Indexing_Found and then not Error_Posted (N) then
4557 Error_Msg_NE
4558 ("aspect Indexing requires a local function that applies to "
4559 & "type&", Expr, Ent);
4560 end if;
4561 end Check_Indexing_Functions;
4563 ------------------------------
4564 -- Check_Iterator_Functions --
4565 ------------------------------
4567 procedure Check_Iterator_Functions is
4568 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4569 -- Check one possible interpretation for validity
4571 ----------------------------
4572 -- Valid_Default_Iterator --
4573 ----------------------------
4575 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4576 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4577 Formal : Entity_Id;
4579 begin
4580 if not Check_Primitive_Function (Subp) then
4581 return False;
4583 -- The return type must be derived from a type in an instance
4584 -- of Iterator.Interfaces, and thus its root type must have a
4585 -- predefined name.
4587 elsif Chars (Root_T) /= Name_Forward_Iterator
4588 and then Chars (Root_T) /= Name_Reversible_Iterator
4589 then
4590 return False;
4592 else
4593 Formal := First_Formal (Subp);
4594 end if;
4596 -- False if any subsequent formal has no default expression
4598 Formal := Next_Formal (Formal);
4599 while Present (Formal) loop
4600 if No (Expression (Parent (Formal))) then
4601 return False;
4602 end if;
4604 Next_Formal (Formal);
4605 end loop;
4607 -- True if all subsequent formals have default expressions
4609 return True;
4610 end Valid_Default_Iterator;
4612 -- Start of processing for Check_Iterator_Functions
4614 begin
4615 Analyze (Expr);
4617 if not Is_Entity_Name (Expr) then
4618 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4619 end if;
4621 if not Is_Overloaded (Expr) then
4622 if not Check_Primitive_Function (Entity (Expr)) then
4623 Error_Msg_NE
4624 ("aspect Indexing requires a function that applies to type&",
4625 Entity (Expr), Ent);
4626 end if;
4628 -- Flag the default_iterator as well as the denoted function.
4630 if not Valid_Default_Iterator (Entity (Expr)) then
4631 Error_Msg_N ("improper function for default iterator!", Expr);
4632 end if;
4634 else
4635 declare
4636 Default : Entity_Id := Empty;
4637 I : Interp_Index;
4638 It : Interp;
4640 begin
4641 Get_First_Interp (Expr, I, It);
4642 while Present (It.Nam) loop
4643 if not Check_Primitive_Function (It.Nam)
4644 or else not Valid_Default_Iterator (It.Nam)
4645 then
4646 Remove_Interp (I);
4648 elsif Present (Default) then
4650 -- An explicit one should override an implicit one
4652 if Comes_From_Source (Default) =
4653 Comes_From_Source (It.Nam)
4654 then
4655 Error_Msg_N ("default iterator must be unique", Expr);
4656 Error_Msg_Sloc := Sloc (Default);
4657 Error_Msg_N ("\\possible interpretation#", Expr);
4658 Error_Msg_Sloc := Sloc (It.Nam);
4659 Error_Msg_N ("\\possible interpretation#", Expr);
4661 elsif Comes_From_Source (It.Nam) then
4662 Default := It.Nam;
4663 end if;
4664 else
4665 Default := It.Nam;
4666 end if;
4668 Get_Next_Interp (I, It);
4669 end loop;
4671 if Present (Default) then
4672 Set_Entity (Expr, Default);
4673 Set_Is_Overloaded (Expr, False);
4674 else
4675 Error_Msg_N
4676 ("no interpretation is a valid default iterator!", Expr);
4677 end if;
4678 end;
4679 end if;
4680 end Check_Iterator_Functions;
4682 -------------------------------
4683 -- Check_Primitive_Function --
4684 -------------------------------
4686 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4687 Ctrl : Entity_Id;
4689 begin
4690 if Ekind (Subp) /= E_Function then
4691 return False;
4692 end if;
4694 if No (First_Formal (Subp)) then
4695 return False;
4696 else
4697 Ctrl := Etype (First_Formal (Subp));
4698 end if;
4700 -- To be a primitive operation subprogram has to be in same scope.
4702 if Scope (Ctrl) /= Scope (Subp) then
4703 return False;
4704 end if;
4706 -- Type of formal may be the class-wide type, an access to such,
4707 -- or an incomplete view.
4709 if Ctrl = Ent
4710 or else Ctrl = Class_Wide_Type (Ent)
4711 or else
4712 (Ekind (Ctrl) = E_Anonymous_Access_Type
4713 and then (Designated_Type (Ctrl) = Ent
4714 or else
4715 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4716 or else
4717 (Ekind (Ctrl) = E_Incomplete_Type
4718 and then Full_View (Ctrl) = Ent)
4719 then
4720 null;
4721 else
4722 return False;
4723 end if;
4725 return True;
4726 end Check_Primitive_Function;
4728 ----------------------
4729 -- Duplicate_Clause --
4730 ----------------------
4732 function Duplicate_Clause return Boolean is
4733 A : Node_Id;
4735 begin
4736 -- Nothing to do if this attribute definition clause comes from
4737 -- an aspect specification, since we could not be duplicating an
4738 -- explicit clause, and we dealt with the case of duplicated aspects
4739 -- in Analyze_Aspect_Specifications.
4741 if From_Aspect_Specification (N) then
4742 return False;
4743 end if;
4745 -- Otherwise current clause may duplicate previous clause, or a
4746 -- previously given pragma or aspect specification for the same
4747 -- aspect.
4749 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4751 if Present (A) then
4752 Error_Msg_Name_1 := Chars (N);
4753 Error_Msg_Sloc := Sloc (A);
4755 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4756 return True;
4757 end if;
4759 return False;
4760 end Duplicate_Clause;
4762 -- Start of processing for Analyze_Attribute_Definition_Clause
4764 begin
4765 -- The following code is a defense against recursion. Not clear that
4766 -- this can happen legitimately, but perhaps some error situations can
4767 -- cause it, and we did see this recursion during testing.
4769 if Analyzed (N) then
4770 return;
4771 else
4772 Set_Analyzed (N, True);
4773 end if;
4775 Check_Restriction_No_Use_Of_Attribute (N);
4777 -- Ignore some selected attributes in CodePeer mode since they are not
4778 -- relevant in this context.
4780 if CodePeer_Mode then
4781 case Id is
4783 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4784 -- internal representation of types by implicitly packing them.
4786 when Attribute_Component_Size =>
4787 Rewrite (N, Make_Null_Statement (Sloc (N)));
4788 return;
4790 when others =>
4791 null;
4792 end case;
4793 end if;
4795 -- Process Ignore_Rep_Clauses option
4797 if Ignore_Rep_Clauses then
4798 case Id is
4800 -- The following should be ignored. They do not affect legality
4801 -- and may be target dependent. The basic idea of -gnatI is to
4802 -- ignore any rep clauses that may be target dependent but do not
4803 -- affect legality (except possibly to be rejected because they
4804 -- are incompatible with the compilation target).
4806 when Attribute_Alignment
4807 | Attribute_Bit_Order
4808 | Attribute_Component_Size
4809 | Attribute_Default_Scalar_Storage_Order
4810 | Attribute_Machine_Radix
4811 | Attribute_Object_Size
4812 | Attribute_Scalar_Storage_Order
4813 | Attribute_Size
4814 | Attribute_Small
4815 | Attribute_Stream_Size
4816 | Attribute_Value_Size
4818 Kill_Rep_Clause (N);
4819 return;
4821 -- The following should not be ignored, because in the first place
4822 -- they are reasonably portable, and should not cause problems
4823 -- in compiling code from another target, and also they do affect
4824 -- legality, e.g. failing to provide a stream attribute for a type
4825 -- may make a program illegal.
4827 when Attribute_External_Tag
4828 | Attribute_Input
4829 | Attribute_Output
4830 | Attribute_Read
4831 | Attribute_Simple_Storage_Pool
4832 | Attribute_Storage_Pool
4833 | Attribute_Storage_Size
4834 | Attribute_Write
4836 null;
4838 -- We do not do anything here with address clauses, they will be
4839 -- removed by Freeze later on, but for now, it works better to
4840 -- keep them in the tree.
4842 when Attribute_Address =>
4843 null;
4845 -- Other cases are errors ("attribute& cannot be set with
4846 -- definition clause"), which will be caught below.
4848 when others =>
4849 null;
4850 end case;
4851 end if;
4853 Analyze (Nam);
4854 Ent := Entity (Nam);
4856 if Rep_Item_Too_Early (Ent, N) then
4857 return;
4858 end if;
4860 -- Rep clause applies to full view of incomplete type or private type if
4861 -- we have one (if not, this is a premature use of the type). However,
4862 -- certain semantic checks need to be done on the specified entity (i.e.
4863 -- the private view), so we save it in Ent.
4865 if Is_Private_Type (Ent)
4866 and then Is_Derived_Type (Ent)
4867 and then not Is_Tagged_Type (Ent)
4868 and then No (Full_View (Ent))
4869 then
4870 -- If this is a private type whose completion is a derivation from
4871 -- another private type, there is no full view, and the attribute
4872 -- belongs to the type itself, not its underlying parent.
4874 U_Ent := Ent;
4876 elsif Ekind (Ent) = E_Incomplete_Type then
4878 -- The attribute applies to the full view, set the entity of the
4879 -- attribute definition accordingly.
4881 Ent := Underlying_Type (Ent);
4882 U_Ent := Ent;
4883 Set_Entity (Nam, Ent);
4885 else
4886 U_Ent := Underlying_Type (Ent);
4887 end if;
4889 -- Avoid cascaded error
4891 if Etype (Nam) = Any_Type then
4892 return;
4894 -- Must be declared in current scope or in case of an aspect
4895 -- specification, must be visible in current scope.
4897 elsif Scope (Ent) /= Current_Scope
4898 and then
4899 not (From_Aspect_Specification (N)
4900 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4901 then
4902 Error_Msg_N ("entity must be declared in this scope", Nam);
4903 return;
4905 -- Must not be a source renaming (we do have some cases where the
4906 -- expander generates a renaming, and those cases are OK, in such
4907 -- cases any attribute applies to the renamed object as well).
4909 elsif Is_Object (Ent)
4910 and then Present (Renamed_Object (Ent))
4911 then
4912 -- Case of renamed object from source, this is an error
4914 if Comes_From_Source (Renamed_Object (Ent)) then
4915 Get_Name_String (Chars (N));
4916 Error_Msg_Strlen := Name_Len;
4917 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4918 Error_Msg_N
4919 ("~ clause not allowed for a renaming declaration "
4920 & "(RM 13.1(6))", Nam);
4921 return;
4923 -- For the case of a compiler generated renaming, the attribute
4924 -- definition clause applies to the renamed object created by the
4925 -- expander. The easiest general way to handle this is to create a
4926 -- copy of the attribute definition clause for this object.
4928 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4929 Insert_Action (N,
4930 Make_Attribute_Definition_Clause (Loc,
4931 Name =>
4932 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4933 Chars => Chars (N),
4934 Expression => Duplicate_Subexpr (Expression (N))));
4936 -- If the renamed object is not an entity, it must be a dereference
4937 -- of an unconstrained function call, and we must introduce a new
4938 -- declaration to capture the expression. This is needed in the case
4939 -- of 'Alignment, where the original declaration must be rewritten.
4941 else
4942 pragma Assert
4943 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4944 null;
4945 end if;
4947 -- If no underlying entity, use entity itself, applies to some
4948 -- previously detected error cases ???
4950 elsif No (U_Ent) then
4951 U_Ent := Ent;
4953 -- Cannot specify for a subtype (exception Object/Value_Size)
4955 elsif Is_Type (U_Ent)
4956 and then not Is_First_Subtype (U_Ent)
4957 and then Id /= Attribute_Object_Size
4958 and then Id /= Attribute_Value_Size
4959 and then not From_At_Mod (N)
4960 then
4961 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4962 return;
4963 end if;
4965 Set_Entity (N, U_Ent);
4967 -- Switch on particular attribute
4969 case Id is
4971 -------------
4972 -- Address --
4973 -------------
4975 -- Address attribute definition clause
4977 when Attribute_Address => Address : begin
4979 -- A little error check, catch for X'Address use X'Address;
4981 if Nkind (Nam) = N_Identifier
4982 and then Nkind (Expr) = N_Attribute_Reference
4983 and then Attribute_Name (Expr) = Name_Address
4984 and then Nkind (Prefix (Expr)) = N_Identifier
4985 and then Chars (Nam) = Chars (Prefix (Expr))
4986 then
4987 Error_Msg_NE
4988 ("address for & is self-referencing", Prefix (Expr), Ent);
4989 return;
4990 end if;
4992 -- Not that special case, carry on with analysis of expression
4994 Analyze_And_Resolve (Expr, RTE (RE_Address));
4996 -- Even when ignoring rep clauses we need to indicate that the
4997 -- entity has an address clause and thus it is legal to declare
4998 -- it imported. Freeze will get rid of the address clause later.
4999 -- Also call Set_Address_Taken to indicate that an address clause
5000 -- was present, even if we are about to remove it.
5002 if Ignore_Rep_Clauses then
5003 Set_Address_Taken (U_Ent);
5005 if Ekind_In (U_Ent, E_Variable, E_Constant) then
5006 Record_Rep_Item (U_Ent, N);
5007 end if;
5009 return;
5010 end if;
5012 if Duplicate_Clause then
5013 null;
5015 -- Case of address clause for subprogram
5017 elsif Is_Subprogram (U_Ent) then
5018 if Has_Homonym (U_Ent) then
5019 Error_Msg_N
5020 ("address clause cannot be given for overloaded "
5021 & "subprogram", Nam);
5022 return;
5023 end if;
5025 -- For subprograms, all address clauses are permitted, and we
5026 -- mark the subprogram as having a deferred freeze so that Gigi
5027 -- will not elaborate it too soon.
5029 -- Above needs more comments, what is too soon about???
5031 Set_Has_Delayed_Freeze (U_Ent);
5033 -- Case of address clause for entry
5035 elsif Ekind (U_Ent) = E_Entry then
5036 if Nkind (Parent (N)) = N_Task_Body then
5037 Error_Msg_N
5038 ("entry address must be specified in task spec", Nam);
5039 return;
5040 end if;
5042 -- For entries, we require a constant address
5044 Check_Constant_Address_Clause (Expr, U_Ent);
5046 -- Special checks for task types
5048 if Is_Task_Type (Scope (U_Ent))
5049 and then Comes_From_Source (Scope (U_Ent))
5050 then
5051 Error_Msg_N
5052 ("??entry address declared for entry in task type", N);
5053 Error_Msg_N
5054 ("\??only one task can be declared of this type", N);
5055 end if;
5057 -- Entry address clauses are obsolescent
5059 Check_Restriction (No_Obsolescent_Features, N);
5061 if Warn_On_Obsolescent_Feature then
5062 Error_Msg_N
5063 ("?j?attaching interrupt to task entry is an obsolescent "
5064 & "feature (RM J.7.1)", N);
5065 Error_Msg_N
5066 ("\?j?use interrupt procedure instead", N);
5067 end if;
5069 -- Case of an address clause for a class-wide object, which is
5070 -- considered erroneous.
5072 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5073 Error_Msg_NE
5074 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5075 Error_Msg_N
5076 ("\??Program_Error will be raised at run time", Nam);
5077 Insert_Action (Declaration_Node (U_Ent),
5078 Make_Raise_Program_Error (Loc,
5079 Reason => PE_Overlaid_Controlled_Object));
5080 return;
5082 -- Case of address clause for an object
5084 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5085 declare
5086 Expr : constant Node_Id := Expression (N);
5087 O_Ent : Entity_Id;
5088 Off : Boolean;
5090 begin
5091 -- Exported variables cannot have an address clause, because
5092 -- this cancels the effect of the pragma Export.
5094 if Is_Exported (U_Ent) then
5095 Error_Msg_N
5096 ("cannot export object with address clause", Nam);
5097 return;
5098 end if;
5100 Find_Overlaid_Entity (N, O_Ent, Off);
5102 if Present (O_Ent) then
5104 -- If the object overlays a constant object, mark it so
5106 if Is_Constant_Object (O_Ent) then
5107 Set_Overlays_Constant (U_Ent);
5108 end if;
5110 -- If the address clause is of the form:
5112 -- for X'Address use Y'Address;
5114 -- or
5116 -- C : constant Address := Y'Address;
5117 -- ...
5118 -- for X'Address use C;
5120 -- then we make an entry in the table to check the size
5121 -- and alignment of the overlaying variable. But we defer
5122 -- this check till after code generation to take full
5123 -- advantage of the annotation done by the back end.
5125 -- If the entity has a generic type, the check will be
5126 -- performed in the instance if the actual type justifies
5127 -- it, and we do not insert the clause in the table to
5128 -- prevent spurious warnings.
5130 -- Note: we used to test Comes_From_Source and only give
5131 -- this warning for source entities, but we have removed
5132 -- this test. It really seems bogus to generate overlays
5133 -- that would trigger this warning in generated code.
5134 -- Furthermore, by removing the test, we handle the
5135 -- aspect case properly.
5137 if Is_Object (O_Ent)
5138 and then not Is_Generic_Type (Etype (U_Ent))
5139 and then Address_Clause_Overlay_Warnings
5140 then
5141 Register_Address_Clause_Check
5142 (N, U_Ent, No_Uint, O_Ent, Off);
5143 end if;
5145 -- If the overlay changes the storage order, mark the
5146 -- entity as being volatile to block any optimization
5147 -- for it since the construct is not really supported
5148 -- by the back end.
5150 if (Is_Record_Type (Etype (U_Ent))
5151 or else Is_Array_Type (Etype (U_Ent)))
5152 and then (Is_Record_Type (Etype (O_Ent))
5153 or else Is_Array_Type (Etype (O_Ent)))
5154 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5155 Reverse_Storage_Order (Etype (O_Ent))
5156 then
5157 Set_Treat_As_Volatile (U_Ent);
5158 end if;
5160 else
5161 -- If this is not an overlay, mark a variable as being
5162 -- volatile to prevent unwanted optimizations. It's a
5163 -- conservative interpretation of RM 13.3(19) for the
5164 -- cases where the compiler cannot detect potential
5165 -- aliasing issues easily and it also covers the case
5166 -- of an absolute address where the volatile aspect is
5167 -- kind of implicit.
5169 if Ekind (U_Ent) = E_Variable then
5170 Set_Treat_As_Volatile (U_Ent);
5171 end if;
5173 -- Make an entry in the table for an absolute address as
5174 -- above to check that the value is compatible with the
5175 -- alignment of the object.
5177 declare
5178 Addr : constant Node_Id := Address_Value (Expr);
5179 begin
5180 if Compile_Time_Known_Value (Addr)
5181 and then Address_Clause_Overlay_Warnings
5182 then
5183 Register_Address_Clause_Check
5184 (N, U_Ent, Expr_Value (Addr), Empty, False);
5185 end if;
5186 end;
5187 end if;
5189 -- Issue an unconditional warning for a constant overlaying
5190 -- a variable. For the reverse case, we will issue it only
5191 -- if the variable is modified.
5193 if Ekind (U_Ent) = E_Constant
5194 and then Present (O_Ent)
5195 and then not Overlays_Constant (U_Ent)
5196 and then Address_Clause_Overlay_Warnings
5197 then
5198 Error_Msg_N ("??constant overlays a variable", Expr);
5200 -- Imported variables can have an address clause, but then
5201 -- the import is pretty meaningless except to suppress
5202 -- initializations, so we do not need such variables to
5203 -- be statically allocated (and in fact it causes trouble
5204 -- if the address clause is a local value).
5206 elsif Is_Imported (U_Ent) then
5207 Set_Is_Statically_Allocated (U_Ent, False);
5208 end if;
5210 -- We mark a possible modification of a variable with an
5211 -- address clause, since it is likely aliasing is occurring.
5213 Note_Possible_Modification (Nam, Sure => False);
5215 -- Legality checks on the address clause for initialized
5216 -- objects is deferred until the freeze point, because
5217 -- a subsequent pragma might indicate that the object
5218 -- is imported and thus not initialized. Also, the address
5219 -- clause might involve entities that have yet to be
5220 -- elaborated.
5222 Set_Has_Delayed_Freeze (U_Ent);
5224 -- If an initialization call has been generated for this
5225 -- object, it needs to be deferred to after the freeze node
5226 -- we have just now added, otherwise GIGI will see a
5227 -- reference to the variable (as actual to the IP call)
5228 -- before its definition.
5230 declare
5231 Init_Call : constant Node_Id :=
5232 Remove_Init_Call (U_Ent, N);
5234 begin
5235 if Present (Init_Call) then
5236 Append_Freeze_Action (U_Ent, Init_Call);
5238 -- Reset Initialization_Statements pointer so that
5239 -- if there is a pragma Import further down, it can
5240 -- clear any default initialization.
5242 Set_Initialization_Statements (U_Ent, Init_Call);
5243 end if;
5244 end;
5246 -- Entity has delayed freeze, so we will generate an
5247 -- alignment check at the freeze point unless suppressed.
5249 if not Range_Checks_Suppressed (U_Ent)
5250 and then not Alignment_Checks_Suppressed (U_Ent)
5251 then
5252 Set_Check_Address_Alignment (N);
5253 end if;
5255 -- Kill the size check code, since we are not allocating
5256 -- the variable, it is somewhere else.
5258 Kill_Size_Check_Code (U_Ent);
5259 end;
5261 -- Not a valid entity for an address clause
5263 else
5264 Error_Msg_N ("address cannot be given for &", Nam);
5265 end if;
5266 end Address;
5268 ---------------
5269 -- Alignment --
5270 ---------------
5272 -- Alignment attribute definition clause
5274 when Attribute_Alignment => Alignment : declare
5275 Align : constant Uint := Get_Alignment_Value (Expr);
5276 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5278 begin
5279 FOnly := True;
5281 if not Is_Type (U_Ent)
5282 and then Ekind (U_Ent) /= E_Variable
5283 and then Ekind (U_Ent) /= E_Constant
5284 then
5285 Error_Msg_N ("alignment cannot be given for &", Nam);
5287 elsif Duplicate_Clause then
5288 null;
5290 elsif Align /= No_Uint then
5291 Set_Has_Alignment_Clause (U_Ent);
5293 -- Tagged type case, check for attempt to set alignment to a
5294 -- value greater than Max_Align, and reset if so. This error
5295 -- is suppressed in ASIS mode to allow for different ASIS
5296 -- back ends or ASIS-based tools to query the illegal clause.
5298 if Is_Tagged_Type (U_Ent)
5299 and then Align > Max_Align
5300 and then not ASIS_Mode
5301 then
5302 Error_Msg_N
5303 ("alignment for & set to Maximum_Aligment??", Nam);
5304 Set_Alignment (U_Ent, Max_Align);
5306 -- All other cases
5308 else
5309 Set_Alignment (U_Ent, Align);
5310 end if;
5312 -- For an array type, U_Ent is the first subtype. In that case,
5313 -- also set the alignment of the anonymous base type so that
5314 -- other subtypes (such as the itypes for aggregates of the
5315 -- type) also receive the expected alignment.
5317 if Is_Array_Type (U_Ent) then
5318 Set_Alignment (Base_Type (U_Ent), Align);
5319 end if;
5320 end if;
5321 end Alignment;
5323 ---------------
5324 -- Bit_Order --
5325 ---------------
5327 -- Bit_Order attribute definition clause
5329 when Attribute_Bit_Order =>
5330 if not Is_Record_Type (U_Ent) then
5331 Error_Msg_N
5332 ("Bit_Order can only be defined for record type", Nam);
5334 elsif Is_Tagged_Type (U_Ent) and then Is_Derived_Type (U_Ent) then
5335 Error_Msg_N
5336 ("Bit_Order cannot be defined for record extensions", Nam);
5338 elsif Duplicate_Clause then
5339 null;
5341 else
5342 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5344 if Etype (Expr) = Any_Type then
5345 return;
5347 elsif not Is_OK_Static_Expression (Expr) then
5348 Flag_Non_Static_Expr
5349 ("Bit_Order requires static expression!", Expr);
5351 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5352 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5353 end if;
5354 end if;
5356 --------------------
5357 -- Component_Size --
5358 --------------------
5360 -- Component_Size attribute definition clause
5362 when Attribute_Component_Size => Component_Size_Case : declare
5363 Csize : constant Uint := Static_Integer (Expr);
5364 Ctyp : Entity_Id;
5365 Btype : Entity_Id;
5366 Biased : Boolean;
5367 New_Ctyp : Entity_Id;
5368 Decl : Node_Id;
5370 begin
5371 if not Is_Array_Type (U_Ent) then
5372 Error_Msg_N ("component size requires array type", Nam);
5373 return;
5374 end if;
5376 Btype := Base_Type (U_Ent);
5377 Ctyp := Component_Type (Btype);
5379 if Duplicate_Clause then
5380 null;
5382 elsif Rep_Item_Too_Early (Btype, N) then
5383 null;
5385 elsif Csize /= No_Uint then
5386 Check_Size (Expr, Ctyp, Csize, Biased);
5388 -- For the biased case, build a declaration for a subtype that
5389 -- will be used to represent the biased subtype that reflects
5390 -- the biased representation of components. We need the subtype
5391 -- to get proper conversions on referencing elements of the
5392 -- array.
5394 if Biased then
5395 New_Ctyp :=
5396 Make_Defining_Identifier (Loc,
5397 Chars =>
5398 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5400 Decl :=
5401 Make_Subtype_Declaration (Loc,
5402 Defining_Identifier => New_Ctyp,
5403 Subtype_Indication =>
5404 New_Occurrence_Of (Component_Type (Btype), Loc));
5406 Set_Parent (Decl, N);
5407 Analyze (Decl, Suppress => All_Checks);
5409 Set_Has_Delayed_Freeze (New_Ctyp, False);
5410 Set_Esize (New_Ctyp, Csize);
5411 Set_RM_Size (New_Ctyp, Csize);
5412 Init_Alignment (New_Ctyp);
5413 Set_Is_Itype (New_Ctyp, True);
5414 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5416 Set_Component_Type (Btype, New_Ctyp);
5417 Set_Biased (New_Ctyp, N, "component size clause");
5418 end if;
5420 Set_Component_Size (Btype, Csize);
5422 -- Deal with warning on overridden size
5424 if Warn_On_Overridden_Size
5425 and then Has_Size_Clause (Ctyp)
5426 and then RM_Size (Ctyp) /= Csize
5427 then
5428 Error_Msg_NE
5429 ("component size overrides size clause for&?S?", N, Ctyp);
5430 end if;
5432 Set_Has_Component_Size_Clause (Btype, True);
5433 Set_Has_Non_Standard_Rep (Btype, True);
5434 end if;
5435 end Component_Size_Case;
5437 -----------------------
5438 -- Constant_Indexing --
5439 -----------------------
5441 when Attribute_Constant_Indexing =>
5442 Check_Indexing_Functions;
5444 ---------
5445 -- CPU --
5446 ---------
5448 when Attribute_CPU =>
5450 -- CPU attribute definition clause not allowed except from aspect
5451 -- specification.
5453 if From_Aspect_Specification (N) then
5454 if not Is_Task_Type (U_Ent) then
5455 Error_Msg_N ("CPU can only be defined for task", Nam);
5457 elsif Duplicate_Clause then
5458 null;
5460 else
5461 -- The expression must be analyzed in the special manner
5462 -- described in "Handling of Default and Per-Object
5463 -- Expressions" in sem.ads.
5465 -- The visibility to the discriminants must be restored
5467 Push_Scope_And_Install_Discriminants (U_Ent);
5468 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5469 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5471 if not Is_OK_Static_Expression (Expr) then
5472 Check_Restriction (Static_Priorities, Expr);
5473 end if;
5474 end if;
5476 else
5477 Error_Msg_N
5478 ("attribute& cannot be set with definition clause", N);
5479 end if;
5481 ----------------------
5482 -- Default_Iterator --
5483 ----------------------
5485 when Attribute_Default_Iterator => Default_Iterator : declare
5486 Func : Entity_Id;
5487 Typ : Entity_Id;
5489 begin
5490 -- If target type is untagged, further checks are irrelevant
5492 if not Is_Tagged_Type (U_Ent) then
5493 Error_Msg_N
5494 ("aspect Default_Iterator applies to tagged type", Nam);
5495 return;
5496 end if;
5498 Check_Iterator_Functions;
5500 Analyze (Expr);
5502 if not Is_Entity_Name (Expr)
5503 or else Ekind (Entity (Expr)) /= E_Function
5504 then
5505 Error_Msg_N ("aspect Iterator must be a function", Expr);
5506 return;
5507 else
5508 Func := Entity (Expr);
5509 end if;
5511 -- The type of the first parameter must be T, T'class, or a
5512 -- corresponding access type (5.5.1 (8/3). If function is
5513 -- parameterless label type accordingly.
5515 if No (First_Formal (Func)) then
5516 Typ := Any_Type;
5517 else
5518 Typ := Etype (First_Formal (Func));
5519 end if;
5521 if Typ = U_Ent
5522 or else Typ = Class_Wide_Type (U_Ent)
5523 or else (Is_Access_Type (Typ)
5524 and then Designated_Type (Typ) = U_Ent)
5525 or else (Is_Access_Type (Typ)
5526 and then Designated_Type (Typ) =
5527 Class_Wide_Type (U_Ent))
5528 then
5529 null;
5531 else
5532 Error_Msg_NE
5533 ("Default Iterator must be a primitive of&", Func, U_Ent);
5534 end if;
5535 end Default_Iterator;
5537 ------------------------
5538 -- Dispatching_Domain --
5539 ------------------------
5541 when Attribute_Dispatching_Domain =>
5543 -- Dispatching_Domain attribute definition clause not allowed
5544 -- except from aspect specification.
5546 if From_Aspect_Specification (N) then
5547 if not Is_Task_Type (U_Ent) then
5548 Error_Msg_N
5549 ("Dispatching_Domain can only be defined for task", Nam);
5551 elsif Duplicate_Clause then
5552 null;
5554 else
5555 -- The expression must be analyzed in the special manner
5556 -- described in "Handling of Default and Per-Object
5557 -- Expressions" in sem.ads.
5559 -- The visibility to the discriminants must be restored
5561 Push_Scope_And_Install_Discriminants (U_Ent);
5563 Preanalyze_Spec_Expression
5564 (Expr, RTE (RE_Dispatching_Domain));
5566 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5567 end if;
5569 else
5570 Error_Msg_N
5571 ("attribute& cannot be set with definition clause", N);
5572 end if;
5574 ------------------
5575 -- External_Tag --
5576 ------------------
5578 when Attribute_External_Tag =>
5579 if not Is_Tagged_Type (U_Ent) then
5580 Error_Msg_N ("should be a tagged type", Nam);
5581 end if;
5583 if Duplicate_Clause then
5584 null;
5586 else
5587 Analyze_And_Resolve (Expr, Standard_String);
5589 if not Is_OK_Static_Expression (Expr) then
5590 Flag_Non_Static_Expr
5591 ("static string required for tag name!", Nam);
5592 end if;
5594 if not Is_Library_Level_Entity (U_Ent) then
5595 Error_Msg_NE
5596 ("??non-unique external tag supplied for &", N, U_Ent);
5597 Error_Msg_N
5598 ("\??same external tag applies to all subprogram calls",
5600 Error_Msg_N
5601 ("\??corresponding internal tag cannot be obtained", N);
5602 end if;
5603 end if;
5605 --------------------------
5606 -- Implicit_Dereference --
5607 --------------------------
5609 when Attribute_Implicit_Dereference =>
5611 -- Legality checks already performed at the point of the type
5612 -- declaration, aspect is not delayed.
5614 null;
5616 -----------
5617 -- Input --
5618 -----------
5620 when Attribute_Input =>
5621 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5622 Set_Has_Specified_Stream_Input (Ent);
5624 ------------------------
5625 -- Interrupt_Priority --
5626 ------------------------
5628 when Attribute_Interrupt_Priority =>
5630 -- Interrupt_Priority attribute definition clause not allowed
5631 -- except from aspect specification.
5633 if From_Aspect_Specification (N) then
5634 if not Is_Concurrent_Type (U_Ent) then
5635 Error_Msg_N
5636 ("Interrupt_Priority can only be defined for task and "
5637 & "protected object", Nam);
5639 elsif Duplicate_Clause then
5640 null;
5642 else
5643 -- The expression must be analyzed in the special manner
5644 -- described in "Handling of Default and Per-Object
5645 -- Expressions" in sem.ads.
5647 -- The visibility to the discriminants must be restored
5649 Push_Scope_And_Install_Discriminants (U_Ent);
5651 Preanalyze_Spec_Expression
5652 (Expr, RTE (RE_Interrupt_Priority));
5654 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5656 -- Check the No_Task_At_Interrupt_Priority restriction
5658 if Is_Task_Type (U_Ent) then
5659 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5660 end if;
5661 end if;
5663 else
5664 Error_Msg_N
5665 ("attribute& cannot be set with definition clause", N);
5666 end if;
5668 --------------
5669 -- Iterable --
5670 --------------
5672 when Attribute_Iterable =>
5673 Analyze (Expr);
5675 if Nkind (Expr) /= N_Aggregate then
5676 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5677 end if;
5679 declare
5680 Assoc : Node_Id;
5682 begin
5683 Assoc := First (Component_Associations (Expr));
5684 while Present (Assoc) loop
5685 if not Is_Entity_Name (Expression (Assoc)) then
5686 Error_Msg_N ("value must be a function", Assoc);
5687 end if;
5689 Next (Assoc);
5690 end loop;
5691 end;
5693 ----------------------
5694 -- Iterator_Element --
5695 ----------------------
5697 when Attribute_Iterator_Element =>
5698 Analyze (Expr);
5700 if not Is_Entity_Name (Expr)
5701 or else not Is_Type (Entity (Expr))
5702 then
5703 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5704 end if;
5706 -------------------
5707 -- Machine_Radix --
5708 -------------------
5710 -- Machine radix attribute definition clause
5712 when Attribute_Machine_Radix => Machine_Radix : declare
5713 Radix : constant Uint := Static_Integer (Expr);
5715 begin
5716 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5717 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5719 elsif Duplicate_Clause then
5720 null;
5722 elsif Radix /= No_Uint then
5723 Set_Has_Machine_Radix_Clause (U_Ent);
5724 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5726 if Radix = 2 then
5727 null;
5729 elsif Radix = 10 then
5730 Set_Machine_Radix_10 (U_Ent);
5732 -- The following error is suppressed in ASIS mode to allow for
5733 -- different ASIS back ends or ASIS-based tools to query the
5734 -- illegal clause.
5736 elsif not ASIS_Mode then
5737 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5738 end if;
5739 end if;
5740 end Machine_Radix;
5742 -----------------
5743 -- Object_Size --
5744 -----------------
5746 -- Object_Size attribute definition clause
5748 when Attribute_Object_Size => Object_Size : declare
5749 Size : constant Uint := Static_Integer (Expr);
5751 Biased : Boolean;
5752 pragma Warnings (Off, Biased);
5754 begin
5755 if not Is_Type (U_Ent) then
5756 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5758 elsif Duplicate_Clause then
5759 null;
5761 else
5762 Check_Size (Expr, U_Ent, Size, Biased);
5764 -- The following errors are suppressed in ASIS mode to allow
5765 -- for different ASIS back ends or ASIS-based tools to query
5766 -- the illegal clause.
5768 if ASIS_Mode then
5769 null;
5771 elsif Is_Scalar_Type (U_Ent) then
5772 if Size /= 8 and then Size /= 16 and then Size /= 32
5773 and then UI_Mod (Size, 64) /= 0
5774 then
5775 Error_Msg_N
5776 ("Object_Size must be 8, 16, 32, or multiple of 64",
5777 Expr);
5778 end if;
5780 elsif Size mod 8 /= 0 then
5781 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5782 end if;
5784 Set_Esize (U_Ent, Size);
5785 Set_Has_Object_Size_Clause (U_Ent);
5786 Alignment_Check_For_Size_Change (U_Ent, Size);
5787 end if;
5788 end Object_Size;
5790 ------------
5791 -- Output --
5792 ------------
5794 when Attribute_Output =>
5795 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5796 Set_Has_Specified_Stream_Output (Ent);
5798 --------------
5799 -- Priority --
5800 --------------
5802 when Attribute_Priority =>
5804 -- Priority attribute definition clause not allowed except from
5805 -- aspect specification.
5807 if From_Aspect_Specification (N) then
5808 if not (Is_Concurrent_Type (U_Ent)
5809 or else Ekind (U_Ent) = E_Procedure)
5810 then
5811 Error_Msg_N
5812 ("Priority can only be defined for task and protected "
5813 & "object", Nam);
5815 elsif Duplicate_Clause then
5816 null;
5818 else
5819 -- The expression must be analyzed in the special manner
5820 -- described in "Handling of Default and Per-Object
5821 -- Expressions" in sem.ads.
5823 -- The visibility to the discriminants must be restored
5825 Push_Scope_And_Install_Discriminants (U_Ent);
5826 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5827 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5829 if not Is_OK_Static_Expression (Expr) then
5830 Check_Restriction (Static_Priorities, Expr);
5831 end if;
5832 end if;
5834 else
5835 Error_Msg_N
5836 ("attribute& cannot be set with definition clause", N);
5837 end if;
5839 ----------
5840 -- Read --
5841 ----------
5843 when Attribute_Read =>
5844 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5845 Set_Has_Specified_Stream_Read (Ent);
5847 --------------------------
5848 -- Scalar_Storage_Order --
5849 --------------------------
5851 -- Scalar_Storage_Order attribute definition clause
5853 when Attribute_Scalar_Storage_Order =>
5854 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5855 Error_Msg_N
5856 ("Scalar_Storage_Order can only be defined for record or "
5857 & "array type", Nam);
5859 elsif Duplicate_Clause then
5860 null;
5862 else
5863 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5865 if Etype (Expr) = Any_Type then
5866 return;
5868 elsif not Is_OK_Static_Expression (Expr) then
5869 Flag_Non_Static_Expr
5870 ("Scalar_Storage_Order requires static expression!", Expr);
5872 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5874 -- Here for the case of a non-default (i.e. non-confirming)
5875 -- Scalar_Storage_Order attribute definition.
5877 if Support_Nondefault_SSO_On_Target then
5878 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5879 else
5880 Error_Msg_N
5881 ("non-default Scalar_Storage_Order not supported on "
5882 & "target", Expr);
5883 end if;
5884 end if;
5886 -- Clear SSO default indications since explicit setting of the
5887 -- order overrides the defaults.
5889 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5890 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5891 end if;
5893 ----------
5894 -- Size --
5895 ----------
5897 -- Size attribute definition clause
5899 when Attribute_Size => Size : declare
5900 Size : constant Uint := Static_Integer (Expr);
5901 Etyp : Entity_Id;
5902 Biased : Boolean;
5904 begin
5905 FOnly := True;
5907 if Duplicate_Clause then
5908 null;
5910 elsif not Is_Type (U_Ent)
5911 and then Ekind (U_Ent) /= E_Variable
5912 and then Ekind (U_Ent) /= E_Constant
5913 then
5914 Error_Msg_N ("size cannot be given for &", Nam);
5916 elsif Is_Array_Type (U_Ent)
5917 and then not Is_Constrained (U_Ent)
5918 then
5919 Error_Msg_N
5920 ("size cannot be given for unconstrained array", Nam);
5922 elsif Size /= No_Uint then
5923 if Is_Type (U_Ent) then
5924 Etyp := U_Ent;
5925 else
5926 Etyp := Etype (U_Ent);
5927 end if;
5929 -- Check size, note that Gigi is in charge of checking that the
5930 -- size of an array or record type is OK. Also we do not check
5931 -- the size in the ordinary fixed-point case, since it is too
5932 -- early to do so (there may be subsequent small clause that
5933 -- affects the size). We can check the size if a small clause
5934 -- has already been given.
5936 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5937 or else Has_Small_Clause (U_Ent)
5938 then
5939 Check_Size (Expr, Etyp, Size, Biased);
5940 Set_Biased (U_Ent, N, "size clause", Biased);
5941 end if;
5943 -- For types set RM_Size and Esize if possible
5945 if Is_Type (U_Ent) then
5946 Set_RM_Size (U_Ent, Size);
5948 -- For elementary types, increase Object_Size to power of 2,
5949 -- but not less than a storage unit in any case (normally
5950 -- this means it will be byte addressable).
5952 -- For all other types, nothing else to do, we leave Esize
5953 -- (object size) unset, the back end will set it from the
5954 -- size and alignment in an appropriate manner.
5956 -- In both cases, we check whether the alignment must be
5957 -- reset in the wake of the size change.
5959 if Is_Elementary_Type (U_Ent) then
5960 if Size <= System_Storage_Unit then
5961 Init_Esize (U_Ent, System_Storage_Unit);
5962 elsif Size <= 16 then
5963 Init_Esize (U_Ent, 16);
5964 elsif Size <= 32 then
5965 Init_Esize (U_Ent, 32);
5966 else
5967 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5968 end if;
5970 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5971 else
5972 Alignment_Check_For_Size_Change (U_Ent, Size);
5973 end if;
5975 -- For objects, set Esize only
5977 else
5978 -- The following error is suppressed in ASIS mode to allow
5979 -- for different ASIS back ends or ASIS-based tools to query
5980 -- the illegal clause.
5982 if Is_Elementary_Type (Etyp)
5983 and then Size /= System_Storage_Unit
5984 and then Size /= System_Storage_Unit * 2
5985 and then Size /= System_Storage_Unit * 4
5986 and then Size /= System_Storage_Unit * 8
5987 and then not ASIS_Mode
5988 then
5989 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5990 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5991 Error_Msg_N
5992 ("size for primitive object must be a power of 2 in "
5993 & "the range ^-^", N);
5994 end if;
5996 Set_Esize (U_Ent, Size);
5997 end if;
5999 Set_Has_Size_Clause (U_Ent);
6000 end if;
6001 end Size;
6003 -----------
6004 -- Small --
6005 -----------
6007 -- Small attribute definition clause
6009 when Attribute_Small => Small : declare
6010 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
6011 Small : Ureal;
6013 begin
6014 Analyze_And_Resolve (Expr, Any_Real);
6016 if Etype (Expr) = Any_Type then
6017 return;
6019 elsif not Is_OK_Static_Expression (Expr) then
6020 Flag_Non_Static_Expr
6021 ("small requires static expression!", Expr);
6022 return;
6024 else
6025 Small := Expr_Value_R (Expr);
6027 if Small <= Ureal_0 then
6028 Error_Msg_N ("small value must be greater than zero", Expr);
6029 return;
6030 end if;
6032 end if;
6034 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6035 Error_Msg_N
6036 ("small requires an ordinary fixed point type", Nam);
6038 elsif Has_Small_Clause (U_Ent) then
6039 Error_Msg_N ("small already given for &", Nam);
6041 elsif Small > Delta_Value (U_Ent) then
6042 Error_Msg_N
6043 ("small value must not be greater than delta value", Nam);
6045 else
6046 Set_Small_Value (U_Ent, Small);
6047 Set_Small_Value (Implicit_Base, Small);
6048 Set_Has_Small_Clause (U_Ent);
6049 Set_Has_Small_Clause (Implicit_Base);
6050 Set_Has_Non_Standard_Rep (Implicit_Base);
6051 end if;
6052 end Small;
6054 ------------------
6055 -- Storage_Pool --
6056 ------------------
6058 -- Storage_Pool attribute definition clause
6060 when Attribute_Simple_Storage_Pool
6061 | Attribute_Storage_Pool
6063 Storage_Pool : declare
6064 Pool : Entity_Id;
6065 T : Entity_Id;
6067 begin
6068 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6069 Error_Msg_N
6070 ("storage pool cannot be given for access-to-subprogram type",
6071 Nam);
6072 return;
6074 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6075 then
6076 Error_Msg_N
6077 ("storage pool can only be given for access types", Nam);
6078 return;
6080 elsif Is_Derived_Type (U_Ent) then
6081 Error_Msg_N
6082 ("storage pool cannot be given for a derived access type",
6083 Nam);
6085 elsif Duplicate_Clause then
6086 return;
6088 elsif Present (Associated_Storage_Pool (U_Ent)) then
6089 Error_Msg_N ("storage pool already given for &", Nam);
6090 return;
6091 end if;
6093 -- Check for Storage_Size previously given
6095 declare
6096 SS : constant Node_Id :=
6097 Get_Attribute_Definition_Clause
6098 (U_Ent, Attribute_Storage_Size);
6099 begin
6100 if Present (SS) then
6101 Check_Pool_Size_Clash (U_Ent, N, SS);
6102 end if;
6103 end;
6105 -- Storage_Pool case
6107 if Id = Attribute_Storage_Pool then
6108 Analyze_And_Resolve
6109 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6111 -- In the Simple_Storage_Pool case, we allow a variable of any
6112 -- simple storage pool type, so we Resolve without imposing an
6113 -- expected type.
6115 else
6116 Analyze_And_Resolve (Expr);
6118 if not Present (Get_Rep_Pragma
6119 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6120 then
6121 Error_Msg_N
6122 ("expression must be of a simple storage pool type", Expr);
6123 end if;
6124 end if;
6126 if not Denotes_Variable (Expr) then
6127 Error_Msg_N ("storage pool must be a variable", Expr);
6128 return;
6129 end if;
6131 if Nkind (Expr) = N_Type_Conversion then
6132 T := Etype (Expression (Expr));
6133 else
6134 T := Etype (Expr);
6135 end if;
6137 -- The Stack_Bounded_Pool is used internally for implementing
6138 -- access types with a Storage_Size. Since it only work properly
6139 -- when used on one specific type, we need to check that it is not
6140 -- hijacked improperly:
6142 -- type T is access Integer;
6143 -- for T'Storage_Size use n;
6144 -- type Q is access Float;
6145 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6147 if RTE_Available (RE_Stack_Bounded_Pool)
6148 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6149 then
6150 Error_Msg_N ("non-shareable internal Pool", Expr);
6151 return;
6152 end if;
6154 -- If the argument is a name that is not an entity name, then
6155 -- we construct a renaming operation to define an entity of
6156 -- type storage pool.
6158 if not Is_Entity_Name (Expr)
6159 and then Is_Object_Reference (Expr)
6160 then
6161 Pool := Make_Temporary (Loc, 'P', Expr);
6163 declare
6164 Rnode : constant Node_Id :=
6165 Make_Object_Renaming_Declaration (Loc,
6166 Defining_Identifier => Pool,
6167 Subtype_Mark =>
6168 New_Occurrence_Of (Etype (Expr), Loc),
6169 Name => Expr);
6171 begin
6172 -- If the attribute definition clause comes from an aspect
6173 -- clause, then insert the renaming before the associated
6174 -- entity's declaration, since the attribute clause has
6175 -- not yet been appended to the declaration list.
6177 if From_Aspect_Specification (N) then
6178 Insert_Before (Parent (Entity (N)), Rnode);
6179 else
6180 Insert_Before (N, Rnode);
6181 end if;
6183 Analyze (Rnode);
6184 Set_Associated_Storage_Pool (U_Ent, Pool);
6185 end;
6187 elsif Is_Entity_Name (Expr) then
6188 Pool := Entity (Expr);
6190 -- If pool is a renamed object, get original one. This can
6191 -- happen with an explicit renaming, and within instances.
6193 while Present (Renamed_Object (Pool))
6194 and then Is_Entity_Name (Renamed_Object (Pool))
6195 loop
6196 Pool := Entity (Renamed_Object (Pool));
6197 end loop;
6199 if Present (Renamed_Object (Pool))
6200 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6201 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6202 then
6203 Pool := Entity (Expression (Renamed_Object (Pool)));
6204 end if;
6206 Set_Associated_Storage_Pool (U_Ent, Pool);
6208 elsif Nkind (Expr) = N_Type_Conversion
6209 and then Is_Entity_Name (Expression (Expr))
6210 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6211 then
6212 Pool := Entity (Expression (Expr));
6213 Set_Associated_Storage_Pool (U_Ent, Pool);
6215 else
6216 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6217 return;
6218 end if;
6219 end Storage_Pool;
6221 ------------------
6222 -- Storage_Size --
6223 ------------------
6225 -- Storage_Size attribute definition clause
6227 when Attribute_Storage_Size => Storage_Size : declare
6228 Btype : constant Entity_Id := Base_Type (U_Ent);
6230 begin
6231 if Is_Task_Type (U_Ent) then
6233 -- Check obsolescent (but never obsolescent if from aspect)
6235 if not From_Aspect_Specification (N) then
6236 Check_Restriction (No_Obsolescent_Features, N);
6238 if Warn_On_Obsolescent_Feature then
6239 Error_Msg_N
6240 ("?j?storage size clause for task is an obsolescent "
6241 & "feature (RM J.9)", N);
6242 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6243 end if;
6244 end if;
6246 FOnly := True;
6247 end if;
6249 if not Is_Access_Type (U_Ent)
6250 and then Ekind (U_Ent) /= E_Task_Type
6251 then
6252 Error_Msg_N ("storage size cannot be given for &", Nam);
6254 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6255 Error_Msg_N
6256 ("storage size cannot be given for a derived access type",
6257 Nam);
6259 elsif Duplicate_Clause then
6260 null;
6262 else
6263 Analyze_And_Resolve (Expr, Any_Integer);
6265 if Is_Access_Type (U_Ent) then
6267 -- Check for Storage_Pool previously given
6269 declare
6270 SP : constant Node_Id :=
6271 Get_Attribute_Definition_Clause
6272 (U_Ent, Attribute_Storage_Pool);
6274 begin
6275 if Present (SP) then
6276 Check_Pool_Size_Clash (U_Ent, SP, N);
6277 end if;
6278 end;
6280 -- Special case of for x'Storage_Size use 0
6282 if Is_OK_Static_Expression (Expr)
6283 and then Expr_Value (Expr) = 0
6284 then
6285 Set_No_Pool_Assigned (Btype);
6286 end if;
6287 end if;
6289 Set_Has_Storage_Size_Clause (Btype);
6290 end if;
6291 end Storage_Size;
6293 -----------------
6294 -- Stream_Size --
6295 -----------------
6297 when Attribute_Stream_Size => Stream_Size : declare
6298 Size : constant Uint := Static_Integer (Expr);
6300 begin
6301 if Ada_Version <= Ada_95 then
6302 Check_Restriction (No_Implementation_Attributes, N);
6303 end if;
6305 if Duplicate_Clause then
6306 null;
6308 elsif Is_Elementary_Type (U_Ent) then
6310 -- The following errors are suppressed in ASIS mode to allow
6311 -- for different ASIS back ends or ASIS-based tools to query
6312 -- the illegal clause.
6314 if ASIS_Mode then
6315 null;
6317 elsif Size /= System_Storage_Unit
6318 and then Size /= System_Storage_Unit * 2
6319 and then Size /= System_Storage_Unit * 4
6320 and then Size /= System_Storage_Unit * 8
6321 then
6322 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6323 Error_Msg_N
6324 ("stream size for elementary type must be a power of 2 "
6325 & "and at least ^", N);
6327 elsif RM_Size (U_Ent) > Size then
6328 Error_Msg_Uint_1 := RM_Size (U_Ent);
6329 Error_Msg_N
6330 ("stream size for elementary type must be a power of 2 "
6331 & "and at least ^", N);
6332 end if;
6334 Set_Has_Stream_Size_Clause (U_Ent);
6336 else
6337 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6338 end if;
6339 end Stream_Size;
6341 ----------------
6342 -- Value_Size --
6343 ----------------
6345 -- Value_Size attribute definition clause
6347 when Attribute_Value_Size => Value_Size : declare
6348 Size : constant Uint := Static_Integer (Expr);
6349 Biased : Boolean;
6351 begin
6352 if not Is_Type (U_Ent) then
6353 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6355 elsif Duplicate_Clause then
6356 null;
6358 elsif Is_Array_Type (U_Ent)
6359 and then not Is_Constrained (U_Ent)
6360 then
6361 Error_Msg_N
6362 ("Value_Size cannot be given for unconstrained array", Nam);
6364 else
6365 if Is_Elementary_Type (U_Ent) then
6366 Check_Size (Expr, U_Ent, Size, Biased);
6367 Set_Biased (U_Ent, N, "value size clause", Biased);
6368 end if;
6370 Set_RM_Size (U_Ent, Size);
6371 end if;
6372 end Value_Size;
6374 -----------------------
6375 -- Variable_Indexing --
6376 -----------------------
6378 when Attribute_Variable_Indexing =>
6379 Check_Indexing_Functions;
6381 -----------
6382 -- Write --
6383 -----------
6385 when Attribute_Write =>
6386 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6387 Set_Has_Specified_Stream_Write (Ent);
6389 -- All other attributes cannot be set
6391 when others =>
6392 Error_Msg_N
6393 ("attribute& cannot be set with definition clause", N);
6394 end case;
6396 -- The test for the type being frozen must be performed after any
6397 -- expression the clause has been analyzed since the expression itself
6398 -- might cause freezing that makes the clause illegal.
6400 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6401 return;
6402 end if;
6403 end Analyze_Attribute_Definition_Clause;
6405 ----------------------------
6406 -- Analyze_Code_Statement --
6407 ----------------------------
6409 procedure Analyze_Code_Statement (N : Node_Id) is
6410 HSS : constant Node_Id := Parent (N);
6411 SBody : constant Node_Id := Parent (HSS);
6412 Subp : constant Entity_Id := Current_Scope;
6413 Stmt : Node_Id;
6414 Decl : Node_Id;
6415 StmtO : Node_Id;
6416 DeclO : Node_Id;
6418 begin
6419 -- Accept foreign code statements for CodePeer. The analysis is skipped
6420 -- to avoid rejecting unrecognized constructs.
6422 if CodePeer_Mode then
6423 Set_Analyzed (N);
6424 return;
6425 end if;
6427 -- Analyze and check we get right type, note that this implements the
6428 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6429 -- the only way that Asm_Insn could possibly be visible.
6431 Analyze_And_Resolve (Expression (N));
6433 if Etype (Expression (N)) = Any_Type then
6434 return;
6435 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6436 Error_Msg_N ("incorrect type for code statement", N);
6437 return;
6438 end if;
6440 Check_Code_Statement (N);
6442 -- Make sure we appear in the handled statement sequence of a subprogram
6443 -- (RM 13.8(3)).
6445 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6446 or else Nkind (SBody) /= N_Subprogram_Body
6447 then
6448 Error_Msg_N
6449 ("code statement can only appear in body of subprogram", N);
6450 return;
6451 end if;
6453 -- Do remaining checks (RM 13.8(3)) if not already done
6455 if not Is_Machine_Code_Subprogram (Subp) then
6456 Set_Is_Machine_Code_Subprogram (Subp);
6458 -- No exception handlers allowed
6460 if Present (Exception_Handlers (HSS)) then
6461 Error_Msg_N
6462 ("exception handlers not permitted in machine code subprogram",
6463 First (Exception_Handlers (HSS)));
6464 end if;
6466 -- No declarations other than use clauses and pragmas (we allow
6467 -- certain internally generated declarations as well).
6469 Decl := First (Declarations (SBody));
6470 while Present (Decl) loop
6471 DeclO := Original_Node (Decl);
6472 if Comes_From_Source (DeclO)
6473 and not Nkind_In (DeclO, N_Pragma,
6474 N_Use_Package_Clause,
6475 N_Use_Type_Clause,
6476 N_Implicit_Label_Declaration)
6477 then
6478 Error_Msg_N
6479 ("this declaration not allowed in machine code subprogram",
6480 DeclO);
6481 end if;
6483 Next (Decl);
6484 end loop;
6486 -- No statements other than code statements, pragmas, and labels.
6487 -- Again we allow certain internally generated statements.
6489 -- In Ada 2012, qualified expressions are names, and the code
6490 -- statement is initially parsed as a procedure call.
6492 Stmt := First (Statements (HSS));
6493 while Present (Stmt) loop
6494 StmtO := Original_Node (Stmt);
6496 -- A procedure call transformed into a code statement is OK
6498 if Ada_Version >= Ada_2012
6499 and then Nkind (StmtO) = N_Procedure_Call_Statement
6500 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6501 then
6502 null;
6504 elsif Comes_From_Source (StmtO)
6505 and then not Nkind_In (StmtO, N_Pragma,
6506 N_Label,
6507 N_Code_Statement)
6508 then
6509 Error_Msg_N
6510 ("this statement is not allowed in machine code subprogram",
6511 StmtO);
6512 end if;
6514 Next (Stmt);
6515 end loop;
6516 end if;
6517 end Analyze_Code_Statement;
6519 -----------------------------------------------
6520 -- Analyze_Enumeration_Representation_Clause --
6521 -----------------------------------------------
6523 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6524 Ident : constant Node_Id := Identifier (N);
6525 Aggr : constant Node_Id := Array_Aggregate (N);
6526 Enumtype : Entity_Id;
6527 Elit : Entity_Id;
6528 Expr : Node_Id;
6529 Assoc : Node_Id;
6530 Choice : Node_Id;
6531 Val : Uint;
6533 Err : Boolean := False;
6534 -- Set True to avoid cascade errors and crashes on incorrect source code
6536 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6537 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6538 -- Allowed range of universal integer (= allowed range of enum lit vals)
6540 Min : Uint;
6541 Max : Uint;
6542 -- Minimum and maximum values of entries
6544 Max_Node : Node_Id := Empty; -- init to avoid warning
6545 -- Pointer to node for literal providing max value
6547 begin
6548 if Ignore_Rep_Clauses then
6549 Kill_Rep_Clause (N);
6550 return;
6551 end if;
6553 -- Ignore enumeration rep clauses by default in CodePeer mode,
6554 -- unless -gnatd.I is specified, as a work around for potential false
6555 -- positive messages.
6557 if CodePeer_Mode and not Debug_Flag_Dot_II then
6558 return;
6559 end if;
6561 -- First some basic error checks
6563 Find_Type (Ident);
6564 Enumtype := Entity (Ident);
6566 if Enumtype = Any_Type
6567 or else Rep_Item_Too_Early (Enumtype, N)
6568 then
6569 return;
6570 else
6571 Enumtype := Underlying_Type (Enumtype);
6572 end if;
6574 if not Is_Enumeration_Type (Enumtype) then
6575 Error_Msg_NE
6576 ("enumeration type required, found}",
6577 Ident, First_Subtype (Enumtype));
6578 return;
6579 end if;
6581 -- Ignore rep clause on generic actual type. This will already have
6582 -- been flagged on the template as an error, and this is the safest
6583 -- way to ensure we don't get a junk cascaded message in the instance.
6585 if Is_Generic_Actual_Type (Enumtype) then
6586 return;
6588 -- Type must be in current scope
6590 elsif Scope (Enumtype) /= Current_Scope then
6591 Error_Msg_N ("type must be declared in this scope", Ident);
6592 return;
6594 -- Type must be a first subtype
6596 elsif not Is_First_Subtype (Enumtype) then
6597 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6598 return;
6600 -- Ignore duplicate rep clause
6602 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6603 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6604 return;
6606 -- Don't allow rep clause for standard [wide_[wide_]]character
6608 elsif Is_Standard_Character_Type (Enumtype) then
6609 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6610 return;
6612 -- Check that the expression is a proper aggregate (no parentheses)
6614 elsif Paren_Count (Aggr) /= 0 then
6615 Error_Msg
6616 ("extra parentheses surrounding aggregate not allowed",
6617 First_Sloc (Aggr));
6618 return;
6620 -- All tests passed, so set rep clause in place
6622 else
6623 Set_Has_Enumeration_Rep_Clause (Enumtype);
6624 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6625 end if;
6627 -- Now we process the aggregate. Note that we don't use the normal
6628 -- aggregate code for this purpose, because we don't want any of the
6629 -- normal expansion activities, and a number of special semantic
6630 -- rules apply (including the component type being any integer type)
6632 Elit := First_Literal (Enumtype);
6634 -- First the positional entries if any
6636 if Present (Expressions (Aggr)) then
6637 Expr := First (Expressions (Aggr));
6638 while Present (Expr) loop
6639 if No (Elit) then
6640 Error_Msg_N ("too many entries in aggregate", Expr);
6641 return;
6642 end if;
6644 Val := Static_Integer (Expr);
6646 -- Err signals that we found some incorrect entries processing
6647 -- the list. The final checks for completeness and ordering are
6648 -- skipped in this case.
6650 if Val = No_Uint then
6651 Err := True;
6653 elsif Val < Lo or else Hi < Val then
6654 Error_Msg_N ("value outside permitted range", Expr);
6655 Err := True;
6656 end if;
6658 Set_Enumeration_Rep (Elit, Val);
6659 Set_Enumeration_Rep_Expr (Elit, Expr);
6660 Next (Expr);
6661 Next (Elit);
6662 end loop;
6663 end if;
6665 -- Now process the named entries if present
6667 if Present (Component_Associations (Aggr)) then
6668 Assoc := First (Component_Associations (Aggr));
6669 while Present (Assoc) loop
6670 Choice := First (Choices (Assoc));
6672 if Present (Next (Choice)) then
6673 Error_Msg_N
6674 ("multiple choice not allowed here", Next (Choice));
6675 Err := True;
6676 end if;
6678 if Nkind (Choice) = N_Others_Choice then
6679 Error_Msg_N ("others choice not allowed here", Choice);
6680 Err := True;
6682 elsif Nkind (Choice) = N_Range then
6684 -- ??? should allow zero/one element range here
6686 Error_Msg_N ("range not allowed here", Choice);
6687 Err := True;
6689 else
6690 Analyze_And_Resolve (Choice, Enumtype);
6692 if Error_Posted (Choice) then
6693 Err := True;
6694 end if;
6696 if not Err then
6697 if Is_Entity_Name (Choice)
6698 and then Is_Type (Entity (Choice))
6699 then
6700 Error_Msg_N ("subtype name not allowed here", Choice);
6701 Err := True;
6703 -- ??? should allow static subtype with zero/one entry
6705 elsif Etype (Choice) = Base_Type (Enumtype) then
6706 if not Is_OK_Static_Expression (Choice) then
6707 Flag_Non_Static_Expr
6708 ("non-static expression used for choice!", Choice);
6709 Err := True;
6711 else
6712 Elit := Expr_Value_E (Choice);
6714 if Present (Enumeration_Rep_Expr (Elit)) then
6715 Error_Msg_Sloc :=
6716 Sloc (Enumeration_Rep_Expr (Elit));
6717 Error_Msg_NE
6718 ("representation for& previously given#",
6719 Choice, Elit);
6720 Err := True;
6721 end if;
6723 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6725 Expr := Expression (Assoc);
6726 Val := Static_Integer (Expr);
6728 if Val = No_Uint then
6729 Err := True;
6731 elsif Val < Lo or else Hi < Val then
6732 Error_Msg_N ("value outside permitted range", Expr);
6733 Err := True;
6734 end if;
6736 Set_Enumeration_Rep (Elit, Val);
6737 end if;
6738 end if;
6739 end if;
6740 end if;
6742 Next (Assoc);
6743 end loop;
6744 end if;
6746 -- Aggregate is fully processed. Now we check that a full set of
6747 -- representations was given, and that they are in range and in order.
6748 -- These checks are only done if no other errors occurred.
6750 if not Err then
6751 Min := No_Uint;
6752 Max := No_Uint;
6754 Elit := First_Literal (Enumtype);
6755 while Present (Elit) loop
6756 if No (Enumeration_Rep_Expr (Elit)) then
6757 Error_Msg_NE ("missing representation for&!", N, Elit);
6759 else
6760 Val := Enumeration_Rep (Elit);
6762 if Min = No_Uint then
6763 Min := Val;
6764 end if;
6766 if Val /= No_Uint then
6767 if Max /= No_Uint and then Val <= Max then
6768 Error_Msg_NE
6769 ("enumeration value for& not ordered!",
6770 Enumeration_Rep_Expr (Elit), Elit);
6771 end if;
6773 Max_Node := Enumeration_Rep_Expr (Elit);
6774 Max := Val;
6775 end if;
6777 -- If there is at least one literal whose representation is not
6778 -- equal to the Pos value, then note that this enumeration type
6779 -- has a non-standard representation.
6781 if Val /= Enumeration_Pos (Elit) then
6782 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6783 end if;
6784 end if;
6786 Next (Elit);
6787 end loop;
6789 -- Now set proper size information
6791 declare
6792 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6794 begin
6795 if Has_Size_Clause (Enumtype) then
6797 -- All OK, if size is OK now
6799 if RM_Size (Enumtype) >= Minsize then
6800 null;
6802 else
6803 -- Try if we can get by with biasing
6805 Minsize :=
6806 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6808 -- Error message if even biasing does not work
6810 if RM_Size (Enumtype) < Minsize then
6811 Error_Msg_Uint_1 := RM_Size (Enumtype);
6812 Error_Msg_Uint_2 := Max;
6813 Error_Msg_N
6814 ("previously given size (^) is too small "
6815 & "for this value (^)", Max_Node);
6817 -- If biasing worked, indicate that we now have biased rep
6819 else
6820 Set_Biased
6821 (Enumtype, Size_Clause (Enumtype), "size clause");
6822 end if;
6823 end if;
6825 else
6826 Set_RM_Size (Enumtype, Minsize);
6827 Set_Enum_Esize (Enumtype);
6828 end if;
6830 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6831 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6832 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6833 end;
6834 end if;
6836 -- We repeat the too late test in case it froze itself
6838 if Rep_Item_Too_Late (Enumtype, N) then
6839 null;
6840 end if;
6841 end Analyze_Enumeration_Representation_Clause;
6843 ----------------------------
6844 -- Analyze_Free_Statement --
6845 ----------------------------
6847 procedure Analyze_Free_Statement (N : Node_Id) is
6848 begin
6849 Analyze (Expression (N));
6850 end Analyze_Free_Statement;
6852 ---------------------------
6853 -- Analyze_Freeze_Entity --
6854 ---------------------------
6856 procedure Analyze_Freeze_Entity (N : Node_Id) is
6857 begin
6858 Freeze_Entity_Checks (N);
6859 end Analyze_Freeze_Entity;
6861 -----------------------------------
6862 -- Analyze_Freeze_Generic_Entity --
6863 -----------------------------------
6865 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6866 E : constant Entity_Id := Entity (N);
6868 begin
6869 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6870 Analyze_Aspects_At_Freeze_Point (E);
6871 end if;
6873 Freeze_Entity_Checks (N);
6874 end Analyze_Freeze_Generic_Entity;
6876 ------------------------------------------
6877 -- Analyze_Record_Representation_Clause --
6878 ------------------------------------------
6880 -- Note: we check as much as we can here, but we can't do any checks
6881 -- based on the position values (e.g. overlap checks) until freeze time
6882 -- because especially in Ada 2005 (machine scalar mode), the processing
6883 -- for non-standard bit order can substantially change the positions.
6884 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6885 -- for the remainder of this processing.
6887 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6888 Ident : constant Node_Id := Identifier (N);
6889 Biased : Boolean;
6890 CC : Node_Id;
6891 Comp : Entity_Id;
6892 Fbit : Uint;
6893 Hbit : Uint := Uint_0;
6894 Lbit : Uint;
6895 Ocomp : Entity_Id;
6896 Posit : Uint;
6897 Rectype : Entity_Id;
6898 Recdef : Node_Id;
6900 function Is_Inherited (Comp : Entity_Id) return Boolean;
6901 -- True if Comp is an inherited component in a record extension
6903 ------------------
6904 -- Is_Inherited --
6905 ------------------
6907 function Is_Inherited (Comp : Entity_Id) return Boolean is
6908 Comp_Base : Entity_Id;
6910 begin
6911 if Ekind (Rectype) = E_Record_Subtype then
6912 Comp_Base := Original_Record_Component (Comp);
6913 else
6914 Comp_Base := Comp;
6915 end if;
6917 return Comp_Base /= Original_Record_Component (Comp_Base);
6918 end Is_Inherited;
6920 -- Local variables
6922 Is_Record_Extension : Boolean;
6923 -- True if Rectype is a record extension
6925 CR_Pragma : Node_Id := Empty;
6926 -- Points to N_Pragma node if Complete_Representation pragma present
6928 -- Start of processing for Analyze_Record_Representation_Clause
6930 begin
6931 if Ignore_Rep_Clauses then
6932 Kill_Rep_Clause (N);
6933 return;
6934 end if;
6936 Find_Type (Ident);
6937 Rectype := Entity (Ident);
6939 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6940 return;
6941 else
6942 Rectype := Underlying_Type (Rectype);
6943 end if;
6945 -- First some basic error checks
6947 if not Is_Record_Type (Rectype) then
6948 Error_Msg_NE
6949 ("record type required, found}", Ident, First_Subtype (Rectype));
6950 return;
6952 elsif Scope (Rectype) /= Current_Scope then
6953 Error_Msg_N ("type must be declared in this scope", N);
6954 return;
6956 elsif not Is_First_Subtype (Rectype) then
6957 Error_Msg_N ("cannot give record rep clause for subtype", N);
6958 return;
6960 elsif Has_Record_Rep_Clause (Rectype) then
6961 Error_Msg_N ("duplicate record rep clause ignored", N);
6962 return;
6964 elsif Rep_Item_Too_Late (Rectype, N) then
6965 return;
6966 end if;
6968 -- We know we have a first subtype, now possibly go to the anonymous
6969 -- base type to determine whether Rectype is a record extension.
6971 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6972 Is_Record_Extension :=
6973 Nkind (Recdef) = N_Derived_Type_Definition
6974 and then Present (Record_Extension_Part (Recdef));
6976 if Present (Mod_Clause (N)) then
6977 declare
6978 Loc : constant Source_Ptr := Sloc (N);
6979 M : constant Node_Id := Mod_Clause (N);
6980 P : constant List_Id := Pragmas_Before (M);
6981 AtM_Nod : Node_Id;
6983 Mod_Val : Uint;
6984 pragma Warnings (Off, Mod_Val);
6986 begin
6987 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6989 if Warn_On_Obsolescent_Feature then
6990 Error_Msg_N
6991 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6992 Error_Msg_N
6993 ("\?j?use alignment attribute definition clause instead", N);
6994 end if;
6996 if Present (P) then
6997 Analyze_List (P);
6998 end if;
7000 -- In ASIS_Mode mode, expansion is disabled, but we must convert
7001 -- the Mod clause into an alignment clause anyway, so that the
7002 -- back end can compute and back-annotate properly the size and
7003 -- alignment of types that may include this record.
7005 -- This seems dubious, this destroys the source tree in a manner
7006 -- not detectable by ASIS ???
7008 if Operating_Mode = Check_Semantics and then ASIS_Mode then
7009 AtM_Nod :=
7010 Make_Attribute_Definition_Clause (Loc,
7011 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
7012 Chars => Name_Alignment,
7013 Expression => Relocate_Node (Expression (M)));
7015 Set_From_At_Mod (AtM_Nod);
7016 Insert_After (N, AtM_Nod);
7017 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
7018 Set_Mod_Clause (N, Empty);
7020 else
7021 -- Get the alignment value to perform error checking
7023 Mod_Val := Get_Alignment_Value (Expression (M));
7024 end if;
7025 end;
7026 end if;
7028 -- For untagged types, clear any existing component clauses for the
7029 -- type. If the type is derived, this is what allows us to override
7030 -- a rep clause for the parent. For type extensions, the representation
7031 -- of the inherited components is inherited, so we want to keep previous
7032 -- component clauses for completeness.
7034 if not Is_Tagged_Type (Rectype) then
7035 Comp := First_Component_Or_Discriminant (Rectype);
7036 while Present (Comp) loop
7037 Set_Component_Clause (Comp, Empty);
7038 Next_Component_Or_Discriminant (Comp);
7039 end loop;
7040 end if;
7042 -- All done if no component clauses
7044 CC := First (Component_Clauses (N));
7046 if No (CC) then
7047 return;
7048 end if;
7050 -- A representation like this applies to the base type
7052 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7053 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7054 Set_Has_Specified_Layout (Base_Type (Rectype));
7056 -- Process the component clauses
7058 while Present (CC) loop
7060 -- Pragma
7062 if Nkind (CC) = N_Pragma then
7063 Analyze (CC);
7065 -- The only pragma of interest is Complete_Representation
7067 if Pragma_Name (CC) = Name_Complete_Representation then
7068 CR_Pragma := CC;
7069 end if;
7071 -- Processing for real component clause
7073 else
7074 Posit := Static_Integer (Position (CC));
7075 Fbit := Static_Integer (First_Bit (CC));
7076 Lbit := Static_Integer (Last_Bit (CC));
7078 if Posit /= No_Uint
7079 and then Fbit /= No_Uint
7080 and then Lbit /= No_Uint
7081 then
7082 if Posit < 0 then
7083 Error_Msg_N ("position cannot be negative", Position (CC));
7085 elsif Fbit < 0 then
7086 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7088 -- The Last_Bit specified in a component clause must not be
7089 -- less than the First_Bit minus one (RM-13.5.1(10)).
7091 elsif Lbit < Fbit - 1 then
7092 Error_Msg_N
7093 ("last bit cannot be less than first bit minus one",
7094 Last_Bit (CC));
7096 -- Values look OK, so find the corresponding record component
7097 -- Even though the syntax allows an attribute reference for
7098 -- implementation-defined components, GNAT does not allow the
7099 -- tag to get an explicit position.
7101 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7102 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7103 Error_Msg_N ("position of tag cannot be specified", CC);
7104 else
7105 Error_Msg_N ("illegal component name", CC);
7106 end if;
7108 else
7109 Comp := First_Entity (Rectype);
7110 while Present (Comp) loop
7111 exit when Chars (Comp) = Chars (Component_Name (CC));
7112 Next_Entity (Comp);
7113 end loop;
7115 if No (Comp) then
7117 -- Maybe component of base type that is absent from
7118 -- statically constrained first subtype.
7120 Comp := First_Entity (Base_Type (Rectype));
7121 while Present (Comp) loop
7122 exit when Chars (Comp) = Chars (Component_Name (CC));
7123 Next_Entity (Comp);
7124 end loop;
7125 end if;
7127 if No (Comp) then
7128 Error_Msg_N
7129 ("component clause is for non-existent field", CC);
7131 -- Ada 2012 (AI05-0026): Any name that denotes a
7132 -- discriminant of an object of an unchecked union type
7133 -- shall not occur within a record_representation_clause.
7135 -- The general restriction of using record rep clauses on
7136 -- Unchecked_Union types has now been lifted. Since it is
7137 -- possible to introduce a record rep clause which mentions
7138 -- the discriminant of an Unchecked_Union in non-Ada 2012
7139 -- code, this check is applied to all versions of the
7140 -- language.
7142 elsif Ekind (Comp) = E_Discriminant
7143 and then Is_Unchecked_Union (Rectype)
7144 then
7145 Error_Msg_N
7146 ("cannot reference discriminant of unchecked union",
7147 Component_Name (CC));
7149 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7150 Error_Msg_NE
7151 ("component clause not allowed for inherited "
7152 & "component&", CC, Comp);
7154 elsif Present (Component_Clause (Comp)) then
7156 -- Diagnose duplicate rep clause, or check consistency
7157 -- if this is an inherited component. In a double fault,
7158 -- there may be a duplicate inconsistent clause for an
7159 -- inherited component.
7161 if Scope (Original_Record_Component (Comp)) = Rectype
7162 or else Parent (Component_Clause (Comp)) = N
7163 then
7164 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7165 Error_Msg_N ("component clause previously given#", CC);
7167 else
7168 declare
7169 Rep1 : constant Node_Id := Component_Clause (Comp);
7170 begin
7171 if Intval (Position (Rep1)) /=
7172 Intval (Position (CC))
7173 or else Intval (First_Bit (Rep1)) /=
7174 Intval (First_Bit (CC))
7175 or else Intval (Last_Bit (Rep1)) /=
7176 Intval (Last_Bit (CC))
7177 then
7178 Error_Msg_N
7179 ("component clause inconsistent with "
7180 & "representation of ancestor", CC);
7182 elsif Warn_On_Redundant_Constructs then
7183 Error_Msg_N
7184 ("?r?redundant confirming component clause "
7185 & "for component!", CC);
7186 end if;
7187 end;
7188 end if;
7190 -- Normal case where this is the first component clause we
7191 -- have seen for this entity, so set it up properly.
7193 else
7194 -- Make reference for field in record rep clause and set
7195 -- appropriate entity field in the field identifier.
7197 Generate_Reference
7198 (Comp, Component_Name (CC), Set_Ref => False);
7199 Set_Entity (Component_Name (CC), Comp);
7201 -- Update Fbit and Lbit to the actual bit number
7203 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7204 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7206 if Has_Size_Clause (Rectype)
7207 and then RM_Size (Rectype) <= Lbit
7208 then
7209 Error_Msg_N
7210 ("bit number out of range of specified size",
7211 Last_Bit (CC));
7212 else
7213 Set_Component_Clause (Comp, CC);
7214 Set_Component_Bit_Offset (Comp, Fbit);
7215 Set_Esize (Comp, 1 + (Lbit - Fbit));
7216 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7217 Set_Normalized_Position (Comp, Fbit / SSU);
7219 if Warn_On_Overridden_Size
7220 and then Has_Size_Clause (Etype (Comp))
7221 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7222 then
7223 Error_Msg_NE
7224 ("?S?component size overrides size clause for&",
7225 Component_Name (CC), Etype (Comp));
7226 end if;
7228 -- This information is also set in the corresponding
7229 -- component of the base type, found by accessing the
7230 -- Original_Record_Component link if it is present.
7232 Ocomp := Original_Record_Component (Comp);
7234 if Hbit < Lbit then
7235 Hbit := Lbit;
7236 end if;
7238 Check_Size
7239 (Component_Name (CC),
7240 Etype (Comp),
7241 Esize (Comp),
7242 Biased);
7244 Set_Biased
7245 (Comp, First_Node (CC), "component clause", Biased);
7247 if Present (Ocomp) then
7248 Set_Component_Clause (Ocomp, CC);
7249 Set_Component_Bit_Offset (Ocomp, Fbit);
7250 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7251 Set_Normalized_Position (Ocomp, Fbit / SSU);
7252 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7254 Set_Normalized_Position_Max
7255 (Ocomp, Normalized_Position (Ocomp));
7257 -- Note: we don't use Set_Biased here, because we
7258 -- already gave a warning above if needed, and we
7259 -- would get a duplicate for the same name here.
7261 Set_Has_Biased_Representation
7262 (Ocomp, Has_Biased_Representation (Comp));
7263 end if;
7265 if Esize (Comp) < 0 then
7266 Error_Msg_N ("component size is negative", CC);
7267 end if;
7268 end if;
7269 end if;
7270 end if;
7271 end if;
7272 end if;
7274 Next (CC);
7275 end loop;
7277 -- Check missing components if Complete_Representation pragma appeared
7279 if Present (CR_Pragma) then
7280 Comp := First_Component_Or_Discriminant (Rectype);
7281 while Present (Comp) loop
7282 if No (Component_Clause (Comp)) then
7283 Error_Msg_NE
7284 ("missing component clause for &", CR_Pragma, Comp);
7285 end if;
7287 Next_Component_Or_Discriminant (Comp);
7288 end loop;
7290 -- Give missing components warning if required
7292 elsif Warn_On_Unrepped_Components then
7293 declare
7294 Num_Repped_Components : Nat := 0;
7295 Num_Unrepped_Components : Nat := 0;
7297 begin
7298 -- First count number of repped and unrepped components
7300 Comp := First_Component_Or_Discriminant (Rectype);
7301 while Present (Comp) loop
7302 if Present (Component_Clause (Comp)) then
7303 Num_Repped_Components := Num_Repped_Components + 1;
7304 else
7305 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7306 end if;
7308 Next_Component_Or_Discriminant (Comp);
7309 end loop;
7311 -- We are only interested in the case where there is at least one
7312 -- unrepped component, and at least half the components have rep
7313 -- clauses. We figure that if less than half have them, then the
7314 -- partial rep clause is really intentional. If the component
7315 -- type has no underlying type set at this point (as for a generic
7316 -- formal type), we don't know enough to give a warning on the
7317 -- component.
7319 if Num_Unrepped_Components > 0
7320 and then Num_Unrepped_Components < Num_Repped_Components
7321 then
7322 Comp := First_Component_Or_Discriminant (Rectype);
7323 while Present (Comp) loop
7324 if No (Component_Clause (Comp))
7325 and then Comes_From_Source (Comp)
7326 and then Present (Underlying_Type (Etype (Comp)))
7327 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7328 or else Size_Known_At_Compile_Time
7329 (Underlying_Type (Etype (Comp))))
7330 and then not Has_Warnings_Off (Rectype)
7332 -- Ignore discriminant in unchecked union, since it is
7333 -- not there, and cannot have a component clause.
7335 and then (not Is_Unchecked_Union (Rectype)
7336 or else Ekind (Comp) /= E_Discriminant)
7337 then
7338 Error_Msg_Sloc := Sloc (Comp);
7339 Error_Msg_NE
7340 ("?C?no component clause given for & declared #",
7341 N, Comp);
7342 end if;
7344 Next_Component_Or_Discriminant (Comp);
7345 end loop;
7346 end if;
7347 end;
7348 end if;
7349 end Analyze_Record_Representation_Clause;
7351 -------------------------------------
7352 -- Build_Discrete_Static_Predicate --
7353 -------------------------------------
7355 procedure Build_Discrete_Static_Predicate
7356 (Typ : Entity_Id;
7357 Expr : Node_Id;
7358 Nam : Name_Id)
7360 Loc : constant Source_Ptr := Sloc (Expr);
7362 Non_Static : exception;
7363 -- Raised if something non-static is found
7365 Btyp : constant Entity_Id := Base_Type (Typ);
7367 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7368 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7369 -- Low bound and high bound value of base type of Typ
7371 TLo : Uint;
7372 THi : Uint;
7373 -- Bounds for constructing the static predicate. We use the bound of the
7374 -- subtype if it is static, otherwise the corresponding base type bound.
7375 -- Note: a non-static subtype can have a static predicate.
7377 type REnt is record
7378 Lo, Hi : Uint;
7379 end record;
7380 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7381 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7382 -- value.
7384 type RList is array (Nat range <>) of REnt;
7385 -- A list of ranges. The ranges are sorted in increasing order, and are
7386 -- disjoint (there is a gap of at least one value between each range in
7387 -- the table). A value is in the set of ranges in Rlist if it lies
7388 -- within one of these ranges.
7390 False_Range : constant RList :=
7391 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7392 -- An empty set of ranges represents a range list that can never be
7393 -- satisfied, since there are no ranges in which the value could lie,
7394 -- so it does not lie in any of them. False_Range is a canonical value
7395 -- for this empty set, but general processing should test for an Rlist
7396 -- with length zero (see Is_False predicate), since other null ranges
7397 -- may appear which must be treated as False.
7399 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7400 -- Range representing True, value must be in the base range
7402 function "and" (Left : RList; Right : RList) return RList;
7403 -- And's together two range lists, returning a range list. This is a set
7404 -- intersection operation.
7406 function "or" (Left : RList; Right : RList) return RList;
7407 -- Or's together two range lists, returning a range list. This is a set
7408 -- union operation.
7410 function "not" (Right : RList) return RList;
7411 -- Returns complement of a given range list, i.e. a range list
7412 -- representing all the values in TLo .. THi that are not in the input
7413 -- operand Right.
7415 function Build_Val (V : Uint) return Node_Id;
7416 -- Return an analyzed N_Identifier node referencing this value, suitable
7417 -- for use as an entry in the Static_Discrte_Predicate list. This node
7418 -- is typed with the base type.
7420 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7421 -- Return an analyzed N_Range node referencing this range, suitable for
7422 -- use as an entry in the Static_Discrete_Predicate list. This node is
7423 -- typed with the base type.
7425 function Get_RList (Exp : Node_Id) return RList;
7426 -- This is a recursive routine that converts the given expression into a
7427 -- list of ranges, suitable for use in building the static predicate.
7429 function Is_False (R : RList) return Boolean;
7430 pragma Inline (Is_False);
7431 -- Returns True if the given range list is empty, and thus represents a
7432 -- False list of ranges that can never be satisfied.
7434 function Is_True (R : RList) return Boolean;
7435 -- Returns True if R trivially represents the True predicate by having a
7436 -- single range from BLo to BHi.
7438 function Is_Type_Ref (N : Node_Id) return Boolean;
7439 pragma Inline (Is_Type_Ref);
7440 -- Returns if True if N is a reference to the type for the predicate in
7441 -- the expression (i.e. if it is an identifier whose Chars field matches
7442 -- the Nam given in the call). N must not be parenthesized, if the type
7443 -- name appears in parens, this routine will return False.
7445 function Lo_Val (N : Node_Id) return Uint;
7446 -- Given an entry from a Static_Discrete_Predicate list that is either
7447 -- a static expression or static range, gets either the expression value
7448 -- or the low bound of the range.
7450 function Hi_Val (N : Node_Id) return Uint;
7451 -- Given an entry from a Static_Discrete_Predicate list that is either
7452 -- a static expression or static range, gets either the expression value
7453 -- or the high bound of the range.
7455 function Membership_Entry (N : Node_Id) return RList;
7456 -- Given a single membership entry (range, value, or subtype), returns
7457 -- the corresponding range list. Raises Static_Error if not static.
7459 function Membership_Entries (N : Node_Id) return RList;
7460 -- Given an element on an alternatives list of a membership operation,
7461 -- returns the range list corresponding to this entry and all following
7462 -- entries (i.e. returns the "or" of this list of values).
7464 function Stat_Pred (Typ : Entity_Id) return RList;
7465 -- Given a type, if it has a static predicate, then return the predicate
7466 -- as a range list, otherwise raise Non_Static.
7468 -----------
7469 -- "and" --
7470 -----------
7472 function "and" (Left : RList; Right : RList) return RList is
7473 FEnt : REnt;
7474 -- First range of result
7476 SLeft : Nat := Left'First;
7477 -- Start of rest of left entries
7479 SRight : Nat := Right'First;
7480 -- Start of rest of right entries
7482 begin
7483 -- If either range is True, return the other
7485 if Is_True (Left) then
7486 return Right;
7487 elsif Is_True (Right) then
7488 return Left;
7489 end if;
7491 -- If either range is False, return False
7493 if Is_False (Left) or else Is_False (Right) then
7494 return False_Range;
7495 end if;
7497 -- Loop to remove entries at start that are disjoint, and thus just
7498 -- get discarded from the result entirely.
7500 loop
7501 -- If no operands left in either operand, result is false
7503 if SLeft > Left'Last or else SRight > Right'Last then
7504 return False_Range;
7506 -- Discard first left operand entry if disjoint with right
7508 elsif Left (SLeft).Hi < Right (SRight).Lo then
7509 SLeft := SLeft + 1;
7511 -- Discard first right operand entry if disjoint with left
7513 elsif Right (SRight).Hi < Left (SLeft).Lo then
7514 SRight := SRight + 1;
7516 -- Otherwise we have an overlapping entry
7518 else
7519 exit;
7520 end if;
7521 end loop;
7523 -- Now we have two non-null operands, and first entries overlap. The
7524 -- first entry in the result will be the overlapping part of these
7525 -- two entries.
7527 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7528 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7530 -- Now we can remove the entry that ended at a lower value, since its
7531 -- contribution is entirely contained in Fent.
7533 if Left (SLeft).Hi <= Right (SRight).Hi then
7534 SLeft := SLeft + 1;
7535 else
7536 SRight := SRight + 1;
7537 end if;
7539 -- Compute result by concatenating this first entry with the "and" of
7540 -- the remaining parts of the left and right operands. Note that if
7541 -- either of these is empty, "and" will yield empty, so that we will
7542 -- end up with just Fent, which is what we want in that case.
7544 return
7545 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7546 end "and";
7548 -----------
7549 -- "not" --
7550 -----------
7552 function "not" (Right : RList) return RList is
7553 begin
7554 -- Return True if False range
7556 if Is_False (Right) then
7557 return True_Range;
7558 end if;
7560 -- Return False if True range
7562 if Is_True (Right) then
7563 return False_Range;
7564 end if;
7566 -- Here if not trivial case
7568 declare
7569 Result : RList (1 .. Right'Length + 1);
7570 -- May need one more entry for gap at beginning and end
7572 Count : Nat := 0;
7573 -- Number of entries stored in Result
7575 begin
7576 -- Gap at start
7578 if Right (Right'First).Lo > TLo then
7579 Count := Count + 1;
7580 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7581 end if;
7583 -- Gaps between ranges
7585 for J in Right'First .. Right'Last - 1 loop
7586 Count := Count + 1;
7587 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7588 end loop;
7590 -- Gap at end
7592 if Right (Right'Last).Hi < THi then
7593 Count := Count + 1;
7594 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7595 end if;
7597 return Result (1 .. Count);
7598 end;
7599 end "not";
7601 ----------
7602 -- "or" --
7603 ----------
7605 function "or" (Left : RList; Right : RList) return RList is
7606 FEnt : REnt;
7607 -- First range of result
7609 SLeft : Nat := Left'First;
7610 -- Start of rest of left entries
7612 SRight : Nat := Right'First;
7613 -- Start of rest of right entries
7615 begin
7616 -- If either range is True, return True
7618 if Is_True (Left) or else Is_True (Right) then
7619 return True_Range;
7620 end if;
7622 -- If either range is False (empty), return the other
7624 if Is_False (Left) then
7625 return Right;
7626 elsif Is_False (Right) then
7627 return Left;
7628 end if;
7630 -- Initialize result first entry from left or right operand depending
7631 -- on which starts with the lower range.
7633 if Left (SLeft).Lo < Right (SRight).Lo then
7634 FEnt := Left (SLeft);
7635 SLeft := SLeft + 1;
7636 else
7637 FEnt := Right (SRight);
7638 SRight := SRight + 1;
7639 end if;
7641 -- This loop eats ranges from left and right operands that are
7642 -- contiguous with the first range we are gathering.
7644 loop
7645 -- Eat first entry in left operand if contiguous or overlapped by
7646 -- gathered first operand of result.
7648 if SLeft <= Left'Last
7649 and then Left (SLeft).Lo <= FEnt.Hi + 1
7650 then
7651 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7652 SLeft := SLeft + 1;
7654 -- Eat first entry in right operand if contiguous or overlapped by
7655 -- gathered right operand of result.
7657 elsif SRight <= Right'Last
7658 and then Right (SRight).Lo <= FEnt.Hi + 1
7659 then
7660 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7661 SRight := SRight + 1;
7663 -- All done if no more entries to eat
7665 else
7666 exit;
7667 end if;
7668 end loop;
7670 -- Obtain result as the first entry we just computed, concatenated
7671 -- to the "or" of the remaining results (if one operand is empty,
7672 -- this will just concatenate with the other
7674 return
7675 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7676 end "or";
7678 -----------------
7679 -- Build_Range --
7680 -----------------
7682 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7683 Result : Node_Id;
7684 begin
7685 Result :=
7686 Make_Range (Loc,
7687 Low_Bound => Build_Val (Lo),
7688 High_Bound => Build_Val (Hi));
7689 Set_Etype (Result, Btyp);
7690 Set_Analyzed (Result);
7691 return Result;
7692 end Build_Range;
7694 ---------------
7695 -- Build_Val --
7696 ---------------
7698 function Build_Val (V : Uint) return Node_Id is
7699 Result : Node_Id;
7701 begin
7702 if Is_Enumeration_Type (Typ) then
7703 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7704 else
7705 Result := Make_Integer_Literal (Loc, V);
7706 end if;
7708 Set_Etype (Result, Btyp);
7709 Set_Is_Static_Expression (Result);
7710 Set_Analyzed (Result);
7711 return Result;
7712 end Build_Val;
7714 ---------------
7715 -- Get_RList --
7716 ---------------
7718 function Get_RList (Exp : Node_Id) return RList is
7719 Op : Node_Kind;
7720 Val : Uint;
7722 begin
7723 -- Static expression can only be true or false
7725 if Is_OK_Static_Expression (Exp) then
7726 if Expr_Value (Exp) = 0 then
7727 return False_Range;
7728 else
7729 return True_Range;
7730 end if;
7731 end if;
7733 -- Otherwise test node type
7735 Op := Nkind (Exp);
7737 case Op is
7739 -- And
7741 when N_And_Then
7742 | N_Op_And
7744 return Get_RList (Left_Opnd (Exp))
7746 Get_RList (Right_Opnd (Exp));
7748 -- Or
7750 when N_Op_Or
7751 | N_Or_Else
7753 return Get_RList (Left_Opnd (Exp))
7755 Get_RList (Right_Opnd (Exp));
7757 -- Not
7759 when N_Op_Not =>
7760 return not Get_RList (Right_Opnd (Exp));
7762 -- Comparisons of type with static value
7764 when N_Op_Compare =>
7766 -- Type is left operand
7768 if Is_Type_Ref (Left_Opnd (Exp))
7769 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7770 then
7771 Val := Expr_Value (Right_Opnd (Exp));
7773 -- Typ is right operand
7775 elsif Is_Type_Ref (Right_Opnd (Exp))
7776 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7777 then
7778 Val := Expr_Value (Left_Opnd (Exp));
7780 -- Invert sense of comparison
7782 case Op is
7783 when N_Op_Gt => Op := N_Op_Lt;
7784 when N_Op_Lt => Op := N_Op_Gt;
7785 when N_Op_Ge => Op := N_Op_Le;
7786 when N_Op_Le => Op := N_Op_Ge;
7787 when others => null;
7788 end case;
7790 -- Other cases are non-static
7792 else
7793 raise Non_Static;
7794 end if;
7796 -- Construct range according to comparison operation
7798 case Op is
7799 when N_Op_Eq =>
7800 return RList'(1 => REnt'(Val, Val));
7802 when N_Op_Ge =>
7803 return RList'(1 => REnt'(Val, BHi));
7805 when N_Op_Gt =>
7806 return RList'(1 => REnt'(Val + 1, BHi));
7808 when N_Op_Le =>
7809 return RList'(1 => REnt'(BLo, Val));
7811 when N_Op_Lt =>
7812 return RList'(1 => REnt'(BLo, Val - 1));
7814 when N_Op_Ne =>
7815 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7817 when others =>
7818 raise Program_Error;
7819 end case;
7821 -- Membership (IN)
7823 when N_In =>
7824 if not Is_Type_Ref (Left_Opnd (Exp)) then
7825 raise Non_Static;
7826 end if;
7828 if Present (Right_Opnd (Exp)) then
7829 return Membership_Entry (Right_Opnd (Exp));
7830 else
7831 return Membership_Entries (First (Alternatives (Exp)));
7832 end if;
7834 -- Negative membership (NOT IN)
7836 when N_Not_In =>
7837 if not Is_Type_Ref (Left_Opnd (Exp)) then
7838 raise Non_Static;
7839 end if;
7841 if Present (Right_Opnd (Exp)) then
7842 return not Membership_Entry (Right_Opnd (Exp));
7843 else
7844 return not Membership_Entries (First (Alternatives (Exp)));
7845 end if;
7847 -- Function call, may be call to static predicate
7849 when N_Function_Call =>
7850 if Is_Entity_Name (Name (Exp)) then
7851 declare
7852 Ent : constant Entity_Id := Entity (Name (Exp));
7853 begin
7854 if Is_Predicate_Function (Ent)
7855 or else
7856 Is_Predicate_Function_M (Ent)
7857 then
7858 return Stat_Pred (Etype (First_Formal (Ent)));
7859 end if;
7860 end;
7861 end if;
7863 -- Other function call cases are non-static
7865 raise Non_Static;
7867 -- Qualified expression, dig out the expression
7869 when N_Qualified_Expression =>
7870 return Get_RList (Expression (Exp));
7872 when N_Case_Expression =>
7873 declare
7874 Alt : Node_Id;
7875 Choices : List_Id;
7876 Dep : Node_Id;
7878 begin
7879 if not Is_Entity_Name (Expression (Expr))
7880 or else Etype (Expression (Expr)) /= Typ
7881 then
7882 Error_Msg_N
7883 ("expression must denaote subtype", Expression (Expr));
7884 return False_Range;
7885 end if;
7887 -- Collect discrete choices in all True alternatives
7889 Choices := New_List;
7890 Alt := First (Alternatives (Exp));
7891 while Present (Alt) loop
7892 Dep := Expression (Alt);
7894 if not Is_OK_Static_Expression (Dep) then
7895 raise Non_Static;
7897 elsif Is_True (Expr_Value (Dep)) then
7898 Append_List_To (Choices,
7899 New_Copy_List (Discrete_Choices (Alt)));
7900 end if;
7902 Next (Alt);
7903 end loop;
7905 return Membership_Entries (First (Choices));
7906 end;
7908 -- Expression with actions: if no actions, dig out expression
7910 when N_Expression_With_Actions =>
7911 if Is_Empty_List (Actions (Exp)) then
7912 return Get_RList (Expression (Exp));
7913 else
7914 raise Non_Static;
7915 end if;
7917 -- Xor operator
7919 when N_Op_Xor =>
7920 return (Get_RList (Left_Opnd (Exp))
7921 and not Get_RList (Right_Opnd (Exp)))
7922 or (Get_RList (Right_Opnd (Exp))
7923 and not Get_RList (Left_Opnd (Exp)));
7925 -- Any other node type is non-static
7927 when others =>
7928 raise Non_Static;
7929 end case;
7930 end Get_RList;
7932 ------------
7933 -- Hi_Val --
7934 ------------
7936 function Hi_Val (N : Node_Id) return Uint is
7937 begin
7938 if Is_OK_Static_Expression (N) then
7939 return Expr_Value (N);
7940 else
7941 pragma Assert (Nkind (N) = N_Range);
7942 return Expr_Value (High_Bound (N));
7943 end if;
7944 end Hi_Val;
7946 --------------
7947 -- Is_False --
7948 --------------
7950 function Is_False (R : RList) return Boolean is
7951 begin
7952 return R'Length = 0;
7953 end Is_False;
7955 -------------
7956 -- Is_True --
7957 -------------
7959 function Is_True (R : RList) return Boolean is
7960 begin
7961 return R'Length = 1
7962 and then R (R'First).Lo = BLo
7963 and then R (R'First).Hi = BHi;
7964 end Is_True;
7966 -----------------
7967 -- Is_Type_Ref --
7968 -----------------
7970 function Is_Type_Ref (N : Node_Id) return Boolean is
7971 begin
7972 return Nkind (N) = N_Identifier
7973 and then Chars (N) = Nam
7974 and then Paren_Count (N) = 0;
7975 end Is_Type_Ref;
7977 ------------
7978 -- Lo_Val --
7979 ------------
7981 function Lo_Val (N : Node_Id) return Uint is
7982 begin
7983 if Is_OK_Static_Expression (N) then
7984 return Expr_Value (N);
7985 else
7986 pragma Assert (Nkind (N) = N_Range);
7987 return Expr_Value (Low_Bound (N));
7988 end if;
7989 end Lo_Val;
7991 ------------------------
7992 -- Membership_Entries --
7993 ------------------------
7995 function Membership_Entries (N : Node_Id) return RList is
7996 begin
7997 if No (Next (N)) then
7998 return Membership_Entry (N);
7999 else
8000 return Membership_Entry (N) or Membership_Entries (Next (N));
8001 end if;
8002 end Membership_Entries;
8004 ----------------------
8005 -- Membership_Entry --
8006 ----------------------
8008 function Membership_Entry (N : Node_Id) return RList is
8009 Val : Uint;
8010 SLo : Uint;
8011 SHi : Uint;
8013 begin
8014 -- Range case
8016 if Nkind (N) = N_Range then
8017 if not Is_OK_Static_Expression (Low_Bound (N))
8018 or else
8019 not Is_OK_Static_Expression (High_Bound (N))
8020 then
8021 raise Non_Static;
8022 else
8023 SLo := Expr_Value (Low_Bound (N));
8024 SHi := Expr_Value (High_Bound (N));
8025 return RList'(1 => REnt'(SLo, SHi));
8026 end if;
8028 -- Static expression case
8030 elsif Is_OK_Static_Expression (N) then
8031 Val := Expr_Value (N);
8032 return RList'(1 => REnt'(Val, Val));
8034 -- Identifier (other than static expression) case
8036 else pragma Assert (Nkind (N) = N_Identifier);
8038 -- Type case
8040 if Is_Type (Entity (N)) then
8042 -- If type has predicates, process them
8044 if Has_Predicates (Entity (N)) then
8045 return Stat_Pred (Entity (N));
8047 -- For static subtype without predicates, get range
8049 elsif Is_OK_Static_Subtype (Entity (N)) then
8050 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8051 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8052 return RList'(1 => REnt'(SLo, SHi));
8054 -- Any other type makes us non-static
8056 else
8057 raise Non_Static;
8058 end if;
8060 -- Any other kind of identifier in predicate (e.g. a non-static
8061 -- expression value) means this is not a static predicate.
8063 else
8064 raise Non_Static;
8065 end if;
8066 end if;
8067 end Membership_Entry;
8069 ---------------
8070 -- Stat_Pred --
8071 ---------------
8073 function Stat_Pred (Typ : Entity_Id) return RList is
8074 begin
8075 -- Not static if type does not have static predicates
8077 if not Has_Static_Predicate (Typ) then
8078 raise Non_Static;
8079 end if;
8081 -- Otherwise we convert the predicate list to a range list
8083 declare
8084 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8085 Result : RList (1 .. List_Length (Spred));
8086 P : Node_Id;
8088 begin
8089 P := First (Static_Discrete_Predicate (Typ));
8090 for J in Result'Range loop
8091 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8092 Next (P);
8093 end loop;
8095 return Result;
8096 end;
8097 end Stat_Pred;
8099 -- Start of processing for Build_Discrete_Static_Predicate
8101 begin
8102 -- Establish bounds for the predicate
8104 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8105 TLo := Expr_Value (Type_Low_Bound (Typ));
8106 else
8107 TLo := BLo;
8108 end if;
8110 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8111 THi := Expr_Value (Type_High_Bound (Typ));
8112 else
8113 THi := BHi;
8114 end if;
8116 -- Analyze the expression to see if it is a static predicate
8118 declare
8119 Ranges : constant RList := Get_RList (Expr);
8120 -- Range list from expression if it is static
8122 Plist : List_Id;
8124 begin
8125 -- Convert range list into a form for the static predicate. In the
8126 -- Ranges array, we just have raw ranges, these must be converted
8127 -- to properly typed and analyzed static expressions or range nodes.
8129 -- Note: here we limit ranges to the ranges of the subtype, so that
8130 -- a predicate is always false for values outside the subtype. That
8131 -- seems fine, such values are invalid anyway, and considering them
8132 -- to fail the predicate seems allowed and friendly, and furthermore
8133 -- simplifies processing for case statements and loops.
8135 Plist := New_List;
8137 for J in Ranges'Range loop
8138 declare
8139 Lo : Uint := Ranges (J).Lo;
8140 Hi : Uint := Ranges (J).Hi;
8142 begin
8143 -- Ignore completely out of range entry
8145 if Hi < TLo or else Lo > THi then
8146 null;
8148 -- Otherwise process entry
8150 else
8151 -- Adjust out of range value to subtype range
8153 if Lo < TLo then
8154 Lo := TLo;
8155 end if;
8157 if Hi > THi then
8158 Hi := THi;
8159 end if;
8161 -- Convert range into required form
8163 Append_To (Plist, Build_Range (Lo, Hi));
8164 end if;
8165 end;
8166 end loop;
8168 -- Processing was successful and all entries were static, so now we
8169 -- can store the result as the predicate list.
8171 Set_Static_Discrete_Predicate (Typ, Plist);
8173 -- The processing for static predicates put the expression into
8174 -- canonical form as a series of ranges. It also eliminated
8175 -- duplicates and collapsed and combined ranges. We might as well
8176 -- replace the alternatives list of the right operand of the
8177 -- membership test with the static predicate list, which will
8178 -- usually be more efficient.
8180 declare
8181 New_Alts : constant List_Id := New_List;
8182 Old_Node : Node_Id;
8183 New_Node : Node_Id;
8185 begin
8186 Old_Node := First (Plist);
8187 while Present (Old_Node) loop
8188 New_Node := New_Copy (Old_Node);
8190 if Nkind (New_Node) = N_Range then
8191 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8192 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8193 end if;
8195 Append_To (New_Alts, New_Node);
8196 Next (Old_Node);
8197 end loop;
8199 -- If empty list, replace by False
8201 if Is_Empty_List (New_Alts) then
8202 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8204 -- Else replace by set membership test
8206 else
8207 Rewrite (Expr,
8208 Make_In (Loc,
8209 Left_Opnd => Make_Identifier (Loc, Nam),
8210 Right_Opnd => Empty,
8211 Alternatives => New_Alts));
8213 -- Resolve new expression in function context
8215 Install_Formals (Predicate_Function (Typ));
8216 Push_Scope (Predicate_Function (Typ));
8217 Analyze_And_Resolve (Expr, Standard_Boolean);
8218 Pop_Scope;
8219 end if;
8220 end;
8221 end;
8223 -- If non-static, return doing nothing
8225 exception
8226 when Non_Static =>
8227 return;
8228 end Build_Discrete_Static_Predicate;
8230 --------------------------------
8231 -- Build_Export_Import_Pragma --
8232 --------------------------------
8234 function Build_Export_Import_Pragma
8235 (Asp : Node_Id;
8236 Id : Entity_Id) return Node_Id
8238 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8239 Expr : constant Node_Id := Expression (Asp);
8240 Loc : constant Source_Ptr := Sloc (Asp);
8242 Args : List_Id;
8243 Conv : Node_Id;
8244 Conv_Arg : Node_Id;
8245 Dummy_1 : Node_Id;
8246 Dummy_2 : Node_Id;
8247 EN : Node_Id;
8248 LN : Node_Id;
8249 Prag : Node_Id;
8251 Create_Pragma : Boolean := False;
8252 -- This flag is set when the aspect form is such that it warrants the
8253 -- creation of a corresponding pragma.
8255 begin
8256 if Present (Expr) then
8257 if Error_Posted (Expr) then
8258 null;
8260 elsif Is_True (Expr_Value (Expr)) then
8261 Create_Pragma := True;
8262 end if;
8264 -- Otherwise the aspect defaults to True
8266 else
8267 Create_Pragma := True;
8268 end if;
8270 -- Nothing to do when the expression is False or is erroneous
8272 if not Create_Pragma then
8273 return Empty;
8274 end if;
8276 -- Obtain all interfacing aspects that apply to the related entity
8278 Get_Interfacing_Aspects
8279 (Iface_Asp => Asp,
8280 Conv_Asp => Conv,
8281 EN_Asp => EN,
8282 Expo_Asp => Dummy_1,
8283 Imp_Asp => Dummy_2,
8284 LN_Asp => LN);
8286 Args := New_List;
8288 -- Handle the convention argument
8290 if Present (Conv) then
8291 Conv_Arg := New_Copy_Tree (Expression (Conv));
8293 -- Assume convention "Ada' when aspect Convention is missing
8295 else
8296 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8297 end if;
8299 Append_To (Args,
8300 Make_Pragma_Argument_Association (Loc,
8301 Chars => Name_Convention,
8302 Expression => Conv_Arg));
8304 -- Handle the entity argument
8306 Append_To (Args,
8307 Make_Pragma_Argument_Association (Loc,
8308 Chars => Name_Entity,
8309 Expression => New_Occurrence_Of (Id, Loc)));
8311 -- Handle the External_Name argument
8313 if Present (EN) then
8314 Append_To (Args,
8315 Make_Pragma_Argument_Association (Loc,
8316 Chars => Name_External_Name,
8317 Expression => New_Copy_Tree (Expression (EN))));
8318 end if;
8320 -- Handle the Link_Name argument
8322 if Present (LN) then
8323 Append_To (Args,
8324 Make_Pragma_Argument_Association (Loc,
8325 Chars => Name_Link_Name,
8326 Expression => New_Copy_Tree (Expression (LN))));
8327 end if;
8329 -- Generate:
8330 -- pragma Export/Import
8331 -- (Convention => <Conv>/Ada,
8332 -- Entity => <Id>,
8333 -- [External_Name => <EN>,]
8334 -- [Link_Name => <LN>]);
8336 Prag :=
8337 Make_Pragma (Loc,
8338 Pragma_Identifier =>
8339 Make_Identifier (Loc, Chars (Identifier (Asp))),
8340 Pragma_Argument_Associations => Args);
8342 -- Decorate the relevant aspect and the pragma
8344 Set_Aspect_Rep_Item (Asp, Prag);
8346 Set_Corresponding_Aspect (Prag, Asp);
8347 Set_From_Aspect_Specification (Prag);
8348 Set_Parent (Prag, Asp);
8350 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8351 Set_Import_Pragma (Id, Prag);
8352 end if;
8354 return Prag;
8355 end Build_Export_Import_Pragma;
8357 -------------------------------
8358 -- Build_Predicate_Functions --
8359 -------------------------------
8361 -- The functions that are constructed here have the form:
8363 -- function typPredicate (Ixxx : typ) return Boolean is
8364 -- begin
8365 -- return
8366 -- typ1Predicate (typ1 (Ixxx))
8367 -- and then typ2Predicate (typ2 (Ixxx))
8368 -- and then ...
8369 -- and then exp1 and then exp2 and then ...;
8370 -- end typPredicate;
8372 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8373 -- this is the point at which these expressions get analyzed, providing the
8374 -- required delay, and typ1, typ2, are entities from which predicates are
8375 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8376 -- use this function even if checks are off, e.g. for membership tests.
8378 -- Note that the inherited predicates are evaluated first, as required by
8379 -- AI12-0071-1.
8381 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8382 -- the form of this return expression.
8384 -- If the expression has at least one Raise_Expression, then we also build
8385 -- the typPredicateM version of the function, in which any occurrence of a
8386 -- Raise_Expression is converted to "return False".
8388 -- WARNING: This routine manages Ghost regions. Return statements must be
8389 -- replaced by gotos which jump to the end of the routine and restore the
8390 -- Ghost mode.
8392 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8393 Loc : constant Source_Ptr := Sloc (Typ);
8395 Expr : Node_Id;
8396 -- This is the expression for the result of the function. It is
8397 -- is build by connecting the component predicates with AND THEN.
8399 Expr_M : Node_Id := Empty; -- init to avoid warning
8400 -- This is the corresponding return expression for the Predicate_M
8401 -- function. It differs in that raise expressions are marked for
8402 -- special expansion (see Process_REs).
8404 Object_Name : Name_Id;
8405 -- Name for argument of Predicate procedure. Note that we use the same
8406 -- name for both predicate functions. That way the reference within the
8407 -- predicate expression is the same in both functions.
8409 Object_Entity : Entity_Id;
8410 -- Entity for argument of Predicate procedure
8412 Object_Entity_M : Entity_Id;
8413 -- Entity for argument of separate Predicate procedure when exceptions
8414 -- are present in expression.
8416 FDecl : Node_Id;
8417 -- The function declaration
8419 SId : Entity_Id;
8420 -- Its entity
8422 Raise_Expression_Present : Boolean := False;
8423 -- Set True if Expr has at least one Raise_Expression
8425 procedure Add_Condition (Cond : Node_Id);
8426 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8427 -- Expr is empty).
8429 procedure Add_Predicates;
8430 -- Appends expressions for any Predicate pragmas in the rep item chain
8431 -- Typ to Expr. Note that we look only at items for this exact entity.
8432 -- Inheritance of predicates for the parent type is done by calling the
8433 -- Predicate_Function of the parent type, using Add_Call above.
8435 procedure Add_Call (T : Entity_Id);
8436 -- Includes a call to the predicate function for type T in Expr if T
8437 -- has predicates and Predicate_Function (T) is non-empty.
8439 function Process_RE (N : Node_Id) return Traverse_Result;
8440 -- Used in Process REs, tests if node N is a raise expression, and if
8441 -- so, marks it to be converted to return False.
8443 procedure Process_REs is new Traverse_Proc (Process_RE);
8444 -- Marks any raise expressions in Expr_M to return False
8446 function Test_RE (N : Node_Id) return Traverse_Result;
8447 -- Used in Test_REs, tests one node for being a raise expression, and if
8448 -- so sets Raise_Expression_Present True.
8450 procedure Test_REs is new Traverse_Proc (Test_RE);
8451 -- Tests to see if Expr contains any raise expressions
8453 --------------
8454 -- Add_Call --
8455 --------------
8457 procedure Add_Call (T : Entity_Id) is
8458 Exp : Node_Id;
8460 begin
8461 if Present (T) and then Present (Predicate_Function (T)) then
8462 Set_Has_Predicates (Typ);
8464 -- Build the call to the predicate function of T. The type may be
8465 -- derived, so use an unchecked conversion for the actual.
8467 Exp :=
8468 Make_Predicate_Call
8469 (Typ => T,
8470 Expr =>
8471 Unchecked_Convert_To (T,
8472 Make_Identifier (Loc, Object_Name)));
8474 -- "and"-in the call to evolving expression
8476 Add_Condition (Exp);
8478 -- Output info message on inheritance if required. Note we do not
8479 -- give this information for generic actual types, since it is
8480 -- unwelcome noise in that case in instantiations. We also
8481 -- generally suppress the message in instantiations, and also
8482 -- if it involves internal names.
8484 if Opt.List_Inherited_Aspects
8485 and then not Is_Generic_Actual_Type (Typ)
8486 and then Instantiation_Depth (Sloc (Typ)) = 0
8487 and then not Is_Internal_Name (Chars (T))
8488 and then not Is_Internal_Name (Chars (Typ))
8489 then
8490 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8491 Error_Msg_Node_2 := T;
8492 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8493 end if;
8494 end if;
8495 end Add_Call;
8497 -------------------
8498 -- Add_Condition --
8499 -------------------
8501 procedure Add_Condition (Cond : Node_Id) is
8502 begin
8503 -- This is the first predicate expression
8505 if No (Expr) then
8506 Expr := Cond;
8508 -- Otherwise concatenate to the existing predicate expressions by
8509 -- using "and then".
8511 else
8512 Expr :=
8513 Make_And_Then (Loc,
8514 Left_Opnd => Relocate_Node (Expr),
8515 Right_Opnd => Cond);
8516 end if;
8517 end Add_Condition;
8519 --------------------
8520 -- Add_Predicates --
8521 --------------------
8523 procedure Add_Predicates is
8524 procedure Add_Predicate (Prag : Node_Id);
8525 -- Concatenate the expression of predicate pragma Prag to Expr by
8526 -- using a short circuit "and then" operator.
8528 -------------------
8529 -- Add_Predicate --
8530 -------------------
8532 procedure Add_Predicate (Prag : Node_Id) is
8533 procedure Replace_Type_Reference (N : Node_Id);
8534 -- Replace a single occurrence N of the subtype name with a
8535 -- reference to the formal of the predicate function. N can be an
8536 -- identifier referencing the subtype, or a selected component,
8537 -- representing an appropriately qualified occurrence of the
8538 -- subtype name.
8540 procedure Replace_Type_References is
8541 new Replace_Type_References_Generic (Replace_Type_Reference);
8542 -- Traverse an expression changing every occurrence of an
8543 -- identifier whose name matches the name of the subtype with a
8544 -- reference to the formal parameter of the predicate function.
8546 ----------------------------
8547 -- Replace_Type_Reference --
8548 ----------------------------
8550 procedure Replace_Type_Reference (N : Node_Id) is
8551 begin
8552 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8553 -- Use the Sloc of the usage name, not the defining name
8555 Set_Etype (N, Typ);
8556 Set_Entity (N, Object_Entity);
8558 -- We want to treat the node as if it comes from source, so
8559 -- that ASIS will not ignore it.
8561 Set_Comes_From_Source (N, True);
8562 end Replace_Type_Reference;
8564 -- Local variables
8566 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8567 Arg1 : Node_Id;
8568 Arg2 : Node_Id;
8570 -- Start of processing for Add_Predicate
8572 begin
8573 -- Mark corresponding SCO as enabled
8575 Set_SCO_Pragma_Enabled (Sloc (Prag));
8577 -- Extract the arguments of the pragma. The expression itself
8578 -- is copied for use in the predicate function, to preserve the
8579 -- original version for ASIS use.
8581 Arg1 := First (Pragma_Argument_Associations (Prag));
8582 Arg2 := Next (Arg1);
8584 Arg1 := Get_Pragma_Arg (Arg1);
8585 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8587 -- When the predicate pragma applies to the current type or its
8588 -- full view, replace all occurrences of the subtype name with
8589 -- references to the formal parameter of the predicate function.
8591 if Entity (Arg1) = Typ
8592 or else Full_View (Entity (Arg1)) = Typ
8593 then
8594 Replace_Type_References (Arg2, Typ);
8596 -- If the predicate pragma comes from an aspect, replace the
8597 -- saved expression because we need the subtype references
8598 -- replaced for the calls to Preanalyze_Spec_Expression in
8599 -- Check_Aspect_At_xxx routines.
8601 if Present (Asp) then
8602 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8603 end if;
8605 -- "and"-in the Arg2 condition to evolving expression
8607 Add_Condition (Relocate_Node (Arg2));
8608 end if;
8609 end Add_Predicate;
8611 -- Local variables
8613 Ritem : Node_Id;
8615 -- Start of processing for Add_Predicates
8617 begin
8618 Ritem := First_Rep_Item (Typ);
8620 -- If the type is private, check whether full view has inherited
8621 -- predicates.
8623 if Is_Private_Type (Typ) and then No (Ritem) then
8624 Ritem := First_Rep_Item (Full_View (Typ));
8625 end if;
8627 while Present (Ritem) loop
8628 if Nkind (Ritem) = N_Pragma
8629 and then Pragma_Name (Ritem) = Name_Predicate
8630 then
8631 Add_Predicate (Ritem);
8633 -- If the type is declared in an inner package it may be frozen
8634 -- outside of the package, and the generated pragma has not been
8635 -- analyzed yet, so capture the expression for the predicate
8636 -- function at this point.
8638 elsif Nkind (Ritem) = N_Aspect_Specification
8639 and then Present (Aspect_Rep_Item (Ritem))
8640 and then Scope (Typ) /= Current_Scope
8641 then
8642 declare
8643 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8645 begin
8646 if Nkind (Prag) = N_Pragma
8647 and then Pragma_Name (Prag) = Name_Predicate
8648 then
8649 Add_Predicate (Prag);
8650 end if;
8651 end;
8652 end if;
8654 Next_Rep_Item (Ritem);
8655 end loop;
8656 end Add_Predicates;
8658 ----------------
8659 -- Process_RE --
8660 ----------------
8662 function Process_RE (N : Node_Id) return Traverse_Result is
8663 begin
8664 if Nkind (N) = N_Raise_Expression then
8665 Set_Convert_To_Return_False (N);
8666 return Skip;
8667 else
8668 return OK;
8669 end if;
8670 end Process_RE;
8672 -------------
8673 -- Test_RE --
8674 -------------
8676 function Test_RE (N : Node_Id) return Traverse_Result is
8677 begin
8678 if Nkind (N) = N_Raise_Expression then
8679 Raise_Expression_Present := True;
8680 return Abandon;
8681 else
8682 return OK;
8683 end if;
8684 end Test_RE;
8686 -- Local variables
8688 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8689 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
8690 -- Save the Ghost-related attributes to restore on exit
8692 -- Start of processing for Build_Predicate_Functions
8694 begin
8695 -- Return if already built or if type does not have predicates
8697 SId := Predicate_Function (Typ);
8698 if not Has_Predicates (Typ)
8699 or else (Present (SId) and then Has_Completion (SId))
8700 then
8701 return;
8702 end if;
8704 -- The related type may be subject to pragma Ghost. Set the mode now to
8705 -- ensure that the predicate functions are properly marked as Ghost.
8707 Set_Ghost_Mode (Typ);
8709 -- Prepare to construct predicate expression
8711 Expr := Empty;
8713 if Present (SId) then
8714 FDecl := Unit_Declaration_Node (SId);
8716 else
8717 FDecl := Build_Predicate_Function_Declaration (Typ);
8718 SId := Defining_Entity (FDecl);
8719 end if;
8721 -- Recover name of formal parameter of function that replaces references
8722 -- to the type in predicate expressions.
8724 Object_Entity :=
8725 Defining_Identifier
8726 (First (Parameter_Specifications (Specification (FDecl))));
8728 Object_Name := Chars (Object_Entity);
8729 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8731 -- Add predicates for ancestor if present. These must come before the
8732 -- ones for the current type, as required by AI12-0071-1.
8734 declare
8735 Atyp : Entity_Id;
8736 begin
8737 Atyp := Nearest_Ancestor (Typ);
8739 -- The type may be private but the full view may inherit predicates
8741 if No (Atyp) and then Is_Private_Type (Typ) then
8742 Atyp := Nearest_Ancestor (Full_View (Typ));
8743 end if;
8745 if Present (Atyp) then
8746 Add_Call (Atyp);
8747 end if;
8748 end;
8750 -- Add Predicates for the current type
8752 Add_Predicates;
8754 -- Case where predicates are present
8756 if Present (Expr) then
8758 -- Test for raise expression present
8760 Test_REs (Expr);
8762 -- If raise expression is present, capture a copy of Expr for use
8763 -- in building the predicateM function version later on. For this
8764 -- copy we replace references to Object_Entity by Object_Entity_M.
8766 if Raise_Expression_Present then
8767 declare
8768 Map : constant Elist_Id := New_Elmt_List;
8769 New_V : Entity_Id := Empty;
8771 -- The unanalyzed expression will be copied and appear in
8772 -- both functions. Normally expressions do not declare new
8773 -- entities, but quantified expressions do, so we need to
8774 -- create new entities for their bound variables, to prevent
8775 -- multiple definitions in gigi.
8777 function Reset_Loop_Variable (N : Node_Id)
8778 return Traverse_Result;
8780 procedure Collect_Loop_Variables is
8781 new Traverse_Proc (Reset_Loop_Variable);
8783 ------------------------
8784 -- Reset_Loop_Variable --
8785 ------------------------
8787 function Reset_Loop_Variable (N : Node_Id)
8788 return Traverse_Result
8790 begin
8791 if Nkind (N) = N_Iterator_Specification then
8792 New_V := Make_Defining_Identifier
8793 (Sloc (N), Chars (Defining_Identifier (N)));
8795 Set_Defining_Identifier (N, New_V);
8796 end if;
8798 return OK;
8799 end Reset_Loop_Variable;
8801 begin
8802 Append_Elmt (Object_Entity, Map);
8803 Append_Elmt (Object_Entity_M, Map);
8804 Expr_M := New_Copy_Tree (Expr, Map => Map);
8805 Collect_Loop_Variables (Expr_M);
8806 end;
8807 end if;
8809 -- Build the main predicate function
8811 declare
8812 SIdB : constant Entity_Id :=
8813 Make_Defining_Identifier (Loc,
8814 Chars => New_External_Name (Chars (Typ), "Predicate"));
8815 -- The entity for the function body
8817 Spec : Node_Id;
8818 FBody : Node_Id;
8820 begin
8821 Set_Ekind (SIdB, E_Function);
8822 Set_Is_Predicate_Function (SIdB);
8824 -- The predicate function is shared between views of a type
8826 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8827 Set_Predicate_Function (Full_View (Typ), SId);
8828 end if;
8830 -- Build function body
8832 Spec :=
8833 Make_Function_Specification (Loc,
8834 Defining_Unit_Name => SIdB,
8835 Parameter_Specifications => New_List (
8836 Make_Parameter_Specification (Loc,
8837 Defining_Identifier =>
8838 Make_Defining_Identifier (Loc, Object_Name),
8839 Parameter_Type =>
8840 New_Occurrence_Of (Typ, Loc))),
8841 Result_Definition =>
8842 New_Occurrence_Of (Standard_Boolean, Loc));
8844 FBody :=
8845 Make_Subprogram_Body (Loc,
8846 Specification => Spec,
8847 Declarations => Empty_List,
8848 Handled_Statement_Sequence =>
8849 Make_Handled_Sequence_Of_Statements (Loc,
8850 Statements => New_List (
8851 Make_Simple_Return_Statement (Loc,
8852 Expression => Expr))));
8854 -- The declaration has been analyzed when created, and placed
8855 -- after type declaration. Insert body itself after freeze node.
8857 Insert_After_And_Analyze (N, FBody);
8859 -- within a generic unit, prevent a double analysis of the body
8860 -- which will not be marked analyzed yet. This will happen when
8861 -- the freeze node is created during the preanalysis of an
8862 -- expression function.
8864 if Inside_A_Generic then
8865 Set_Analyzed (FBody);
8866 end if;
8868 -- Static predicate functions are always side-effect free, and
8869 -- in most cases dynamic predicate functions are as well. Mark
8870 -- them as such whenever possible, so redundant predicate checks
8871 -- can be optimized. If there is a variable reference within the
8872 -- expression, the function is not pure.
8874 if Expander_Active then
8875 Set_Is_Pure (SId,
8876 Side_Effect_Free (Expr, Variable_Ref => True));
8877 Set_Is_Inlined (SId);
8878 end if;
8879 end;
8881 -- Test for raise expressions present and if so build M version
8883 if Raise_Expression_Present then
8884 declare
8885 SId : constant Entity_Id :=
8886 Make_Defining_Identifier (Loc,
8887 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8888 -- The entity for the function spec
8890 SIdB : constant Entity_Id :=
8891 Make_Defining_Identifier (Loc,
8892 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8893 -- The entity for the function body
8895 Spec : Node_Id;
8896 FBody : Node_Id;
8897 FDecl : Node_Id;
8898 BTemp : Entity_Id;
8900 begin
8901 -- Mark any raise expressions for special expansion
8903 Process_REs (Expr_M);
8905 -- Build function declaration
8907 Set_Ekind (SId, E_Function);
8908 Set_Is_Predicate_Function_M (SId);
8909 Set_Predicate_Function_M (Typ, SId);
8911 -- The predicate function is shared between views of a type
8913 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8914 Set_Predicate_Function_M (Full_View (Typ), SId);
8915 end if;
8917 Spec :=
8918 Make_Function_Specification (Loc,
8919 Defining_Unit_Name => SId,
8920 Parameter_Specifications => New_List (
8921 Make_Parameter_Specification (Loc,
8922 Defining_Identifier => Object_Entity_M,
8923 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8924 Result_Definition =>
8925 New_Occurrence_Of (Standard_Boolean, Loc));
8927 FDecl :=
8928 Make_Subprogram_Declaration (Loc,
8929 Specification => Spec);
8931 -- Build function body
8933 Spec :=
8934 Make_Function_Specification (Loc,
8935 Defining_Unit_Name => SIdB,
8936 Parameter_Specifications => New_List (
8937 Make_Parameter_Specification (Loc,
8938 Defining_Identifier =>
8939 Make_Defining_Identifier (Loc, Object_Name),
8940 Parameter_Type =>
8941 New_Occurrence_Of (Typ, Loc))),
8942 Result_Definition =>
8943 New_Occurrence_Of (Standard_Boolean, Loc));
8945 -- Build the body, we declare the boolean expression before
8946 -- doing the return, because we are not really confident of
8947 -- what happens if a return appears within a return.
8949 BTemp :=
8950 Make_Defining_Identifier (Loc,
8951 Chars => New_Internal_Name ('B'));
8953 FBody :=
8954 Make_Subprogram_Body (Loc,
8955 Specification => Spec,
8957 Declarations => New_List (
8958 Make_Object_Declaration (Loc,
8959 Defining_Identifier => BTemp,
8960 Constant_Present => True,
8961 Object_Definition =>
8962 New_Occurrence_Of (Standard_Boolean, Loc),
8963 Expression => Expr_M)),
8965 Handled_Statement_Sequence =>
8966 Make_Handled_Sequence_Of_Statements (Loc,
8967 Statements => New_List (
8968 Make_Simple_Return_Statement (Loc,
8969 Expression => New_Occurrence_Of (BTemp, Loc)))));
8971 -- Insert declaration before freeze node and body after
8973 Insert_Before_And_Analyze (N, FDecl);
8974 Insert_After_And_Analyze (N, FBody);
8975 end;
8976 end if;
8978 -- See if we have a static predicate. Note that the answer may be
8979 -- yes even if we have an explicit Dynamic_Predicate present.
8981 declare
8982 PS : Boolean;
8983 EN : Node_Id;
8985 begin
8986 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8987 PS := False;
8988 else
8989 PS := Is_Predicate_Static (Expr, Object_Name);
8990 end if;
8992 -- Case where we have a predicate-static aspect
8994 if PS then
8996 -- We don't set Has_Static_Predicate_Aspect, since we can have
8997 -- any of the three cases (Predicate, Dynamic_Predicate, or
8998 -- Static_Predicate) generating a predicate with an expression
8999 -- that is predicate-static. We just indicate that we have a
9000 -- predicate that can be treated as static.
9002 Set_Has_Static_Predicate (Typ);
9004 -- For discrete subtype, build the static predicate list
9006 if Is_Discrete_Type (Typ) then
9007 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
9009 -- If we don't get a static predicate list, it means that we
9010 -- have a case where this is not possible, most typically in
9011 -- the case where we inherit a dynamic predicate. We do not
9012 -- consider this an error, we just leave the predicate as
9013 -- dynamic. But if we do succeed in building the list, then
9014 -- we mark the predicate as static.
9016 if No (Static_Discrete_Predicate (Typ)) then
9017 Set_Has_Static_Predicate (Typ, False);
9018 end if;
9020 -- For real or string subtype, save predicate expression
9022 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9023 Set_Static_Real_Or_String_Predicate (Typ, Expr);
9024 end if;
9026 -- Case of dynamic predicate (expression is not predicate-static)
9028 else
9029 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9030 -- is only set if we have an explicit Dynamic_Predicate aspect
9031 -- given. Here we may simply have a Predicate aspect where the
9032 -- expression happens not to be predicate-static.
9034 -- Emit an error when the predicate is categorized as static
9035 -- but its expression is not predicate-static.
9037 -- First a little fiddling to get a nice location for the
9038 -- message. If the expression is of the form (A and then B),
9039 -- where A is an inherited predicate, then use the right
9040 -- operand for the Sloc. This avoids getting confused by a call
9041 -- to an inherited predicate with a less convenient source
9042 -- location.
9044 EN := Expr;
9045 while Nkind (EN) = N_And_Then
9046 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9047 and then Is_Predicate_Function
9048 (Entity (Name (Left_Opnd (EN))))
9049 loop
9050 EN := Right_Opnd (EN);
9051 end loop;
9053 -- Now post appropriate message
9055 if Has_Static_Predicate_Aspect (Typ) then
9056 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9057 Error_Msg_F
9058 ("expression is not predicate-static (RM 3.2.4(16-22))",
9059 EN);
9060 else
9061 Error_Msg_F
9062 ("static predicate requires scalar or string type", EN);
9063 end if;
9064 end if;
9065 end if;
9066 end;
9067 end if;
9069 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9070 end Build_Predicate_Functions;
9072 ------------------------------------------
9073 -- Build_Predicate_Function_Declaration --
9074 ------------------------------------------
9076 -- WARNING: This routine manages Ghost regions. Return statements must be
9077 -- replaced by gotos which jump to the end of the routine and restore the
9078 -- Ghost mode.
9080 function Build_Predicate_Function_Declaration
9081 (Typ : Entity_Id) return Node_Id
9083 Loc : constant Source_Ptr := Sloc (Typ);
9085 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9086 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
9087 -- Save the Ghost-related attributes to restore on exit
9089 Func_Decl : Node_Id;
9090 Func_Id : Entity_Id;
9091 Spec : Node_Id;
9093 begin
9094 -- The related type may be subject to pragma Ghost. Set the mode now to
9095 -- ensure that the predicate functions are properly marked as Ghost.
9097 Set_Ghost_Mode (Typ);
9099 Func_Id :=
9100 Make_Defining_Identifier (Loc,
9101 Chars => New_External_Name (Chars (Typ), "Predicate"));
9103 -- The predicate function requires debug info when the predicates are
9104 -- subject to Source Coverage Obligations.
9106 if Opt.Generate_SCO then
9107 Set_Debug_Info_Needed (Func_Id);
9108 end if;
9110 Spec :=
9111 Make_Function_Specification (Loc,
9112 Defining_Unit_Name => Func_Id,
9113 Parameter_Specifications => New_List (
9114 Make_Parameter_Specification (Loc,
9115 Defining_Identifier => Make_Temporary (Loc, 'I'),
9116 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9117 Result_Definition =>
9118 New_Occurrence_Of (Standard_Boolean, Loc));
9120 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9122 Set_Ekind (Func_Id, E_Function);
9123 Set_Etype (Func_Id, Standard_Boolean);
9124 Set_Is_Internal (Func_Id);
9125 Set_Is_Predicate_Function (Func_Id);
9126 Set_Predicate_Function (Typ, Func_Id);
9128 Insert_After (Parent (Typ), Func_Decl);
9129 Analyze (Func_Decl);
9131 Restore_Ghost_Region (Saved_GM, Saved_IGR);
9133 return Func_Decl;
9134 end Build_Predicate_Function_Declaration;
9136 -----------------------------------------
9137 -- Check_Aspect_At_End_Of_Declarations --
9138 -----------------------------------------
9140 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9141 Ent : constant Entity_Id := Entity (ASN);
9142 Ident : constant Node_Id := Identifier (ASN);
9143 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9145 End_Decl_Expr : constant Node_Id := Entity (Ident);
9146 -- Expression to be analyzed at end of declarations
9148 Freeze_Expr : constant Node_Id := Expression (ASN);
9149 -- Expression from call to Check_Aspect_At_Freeze_Point.
9151 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9152 -- Type required for preanalyze call. We use the original expression to
9153 -- get the proper type, to prevent cascaded errors when the expression
9154 -- is constant-folded.
9156 Err : Boolean;
9157 -- Set False if error
9159 -- On entry to this procedure, Entity (Ident) contains a copy of the
9160 -- original expression from the aspect, saved for this purpose, and
9161 -- but Expression (Ident) is a preanalyzed copy of the expression,
9162 -- preanalyzed just after the freeze point.
9164 procedure Check_Overloaded_Name;
9165 -- For aspects whose expression is simply a name, this routine checks if
9166 -- the name is overloaded or not. If so, it verifies there is an
9167 -- interpretation that matches the entity obtained at the freeze point,
9168 -- otherwise the compiler complains.
9170 ---------------------------
9171 -- Check_Overloaded_Name --
9172 ---------------------------
9174 procedure Check_Overloaded_Name is
9175 begin
9176 if not Is_Overloaded (End_Decl_Expr) then
9177 Err := not Is_Entity_Name (End_Decl_Expr)
9178 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9180 else
9181 Err := True;
9183 declare
9184 Index : Interp_Index;
9185 It : Interp;
9187 begin
9188 Get_First_Interp (End_Decl_Expr, Index, It);
9189 while Present (It.Typ) loop
9190 if It.Nam = Entity (Freeze_Expr) then
9191 Err := False;
9192 exit;
9193 end if;
9195 Get_Next_Interp (Index, It);
9196 end loop;
9197 end;
9198 end if;
9199 end Check_Overloaded_Name;
9201 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9203 begin
9204 -- In an instance we do not perform the consistency check between freeze
9205 -- point and end of declarations, because it was done already in the
9206 -- analysis of the generic. Furthermore, the delayed analysis of an
9207 -- aspect of the instance may produce spurious errors when the generic
9208 -- is a child unit that references entities in the parent (which might
9209 -- not be in scope at the freeze point of the instance).
9211 if In_Instance then
9212 return;
9214 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9215 -- task body is rewritten as a procedure) after this conformance check
9216 -- has been performed, so do not perform it again (it may not easily be
9217 -- done if full visibility of local entities is not available).
9219 elsif not Comes_From_Source (Current_Scope) then
9220 return;
9222 -- Case of aspects Dimension, Dimension_System and Synchronization
9224 elsif A_Id = Aspect_Synchronization then
9225 return;
9227 -- Case of stream attributes, just have to compare entities. However,
9228 -- the expression is just a name (possibly overloaded), and there may
9229 -- be stream operations declared for unrelated types, so we just need
9230 -- to verify that one of these interpretations is the one available at
9231 -- at the freeze point.
9233 elsif A_Id = Aspect_Input or else
9234 A_Id = Aspect_Output or else
9235 A_Id = Aspect_Read or else
9236 A_Id = Aspect_Write
9237 then
9238 Analyze (End_Decl_Expr);
9239 Check_Overloaded_Name;
9241 elsif A_Id = Aspect_Variable_Indexing or else
9242 A_Id = Aspect_Constant_Indexing or else
9243 A_Id = Aspect_Default_Iterator or else
9244 A_Id = Aspect_Iterator_Element
9245 then
9246 -- Make type unfrozen before analysis, to prevent spurious errors
9247 -- about late attributes.
9249 Set_Is_Frozen (Ent, False);
9250 Analyze (End_Decl_Expr);
9251 Set_Is_Frozen (Ent, True);
9253 -- If the end of declarations comes before any other freeze
9254 -- point, the Freeze_Expr is not analyzed: no check needed.
9256 if Analyzed (Freeze_Expr) and then not In_Instance then
9257 Check_Overloaded_Name;
9258 else
9259 Err := False;
9260 end if;
9262 -- All other cases
9264 else
9265 -- Indicate that the expression comes from an aspect specification,
9266 -- which is used in subsequent analysis even if expansion is off.
9268 Set_Parent (End_Decl_Expr, ASN);
9270 -- In a generic context the aspect expressions have not been
9271 -- preanalyzed, so do it now. There are no conformance checks
9272 -- to perform in this case.
9274 if No (T) then
9275 Check_Aspect_At_Freeze_Point (ASN);
9276 return;
9278 -- The default values attributes may be defined in the private part,
9279 -- and the analysis of the expression may take place when only the
9280 -- partial view is visible. The expression must be scalar, so use
9281 -- the full view to resolve.
9283 elsif (A_Id = Aspect_Default_Value
9284 or else
9285 A_Id = Aspect_Default_Component_Value)
9286 and then Is_Private_Type (T)
9287 then
9288 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9290 else
9291 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9292 end if;
9294 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9295 end if;
9297 -- Output error message if error. Force error on aspect specification
9298 -- even if there is an error on the expression itself.
9300 if Err then
9301 Error_Msg_NE
9302 ("!visibility of aspect for& changes after freeze point",
9303 ASN, Ent);
9304 Error_Msg_NE
9305 ("info: & is frozen here, aspects evaluated at this point??",
9306 Freeze_Node (Ent), Ent);
9307 end if;
9308 end Check_Aspect_At_End_Of_Declarations;
9310 ----------------------------------
9311 -- Check_Aspect_At_Freeze_Point --
9312 ----------------------------------
9314 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9315 Ident : constant Node_Id := Identifier (ASN);
9316 -- Identifier (use Entity field to save expression)
9318 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9320 T : Entity_Id := Empty;
9321 -- Type required for preanalyze call
9323 begin
9324 -- On entry to this procedure, Entity (Ident) contains a copy of the
9325 -- original expression from the aspect, saved for this purpose.
9327 -- On exit from this procedure Entity (Ident) is unchanged, still
9328 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9329 -- of the expression, preanalyzed just after the freeze point.
9331 -- Make a copy of the expression to be preanalyzed
9333 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9335 -- Find type for preanalyze call
9337 case A_Id is
9339 -- No_Aspect should be impossible
9341 when No_Aspect =>
9342 raise Program_Error;
9344 -- Aspects taking an optional boolean argument
9346 when Boolean_Aspects
9347 | Library_Unit_Aspects
9349 T := Standard_Boolean;
9351 -- Aspects corresponding to attribute definition clauses
9353 when Aspect_Address =>
9354 T := RTE (RE_Address);
9356 when Aspect_Attach_Handler =>
9357 T := RTE (RE_Interrupt_ID);
9359 when Aspect_Bit_Order
9360 | Aspect_Scalar_Storage_Order
9362 T := RTE (RE_Bit_Order);
9364 when Aspect_Convention =>
9365 return;
9367 when Aspect_CPU =>
9368 T := RTE (RE_CPU_Range);
9370 -- Default_Component_Value is resolved with the component type
9372 when Aspect_Default_Component_Value =>
9373 T := Component_Type (Entity (ASN));
9375 when Aspect_Default_Storage_Pool =>
9376 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9378 -- Default_Value is resolved with the type entity in question
9380 when Aspect_Default_Value =>
9381 T := Entity (ASN);
9383 when Aspect_Dispatching_Domain =>
9384 T := RTE (RE_Dispatching_Domain);
9386 when Aspect_External_Tag =>
9387 T := Standard_String;
9389 when Aspect_External_Name =>
9390 T := Standard_String;
9392 when Aspect_Link_Name =>
9393 T := Standard_String;
9395 when Aspect_Interrupt_Priority
9396 | Aspect_Priority
9398 T := Standard_Integer;
9400 when Aspect_Relative_Deadline =>
9401 T := RTE (RE_Time_Span);
9403 when Aspect_Secondary_Stack_Size =>
9404 T := Standard_Integer;
9406 when Aspect_Small =>
9408 -- Note that the expression can be of any real type (not just a
9409 -- real universal literal) as long as it is a static constant.
9411 T := Any_Real;
9413 -- For a simple storage pool, we have to retrieve the type of the
9414 -- pool object associated with the aspect's corresponding attribute
9415 -- definition clause.
9417 when Aspect_Simple_Storage_Pool =>
9418 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9420 when Aspect_Storage_Pool =>
9421 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9423 when Aspect_Alignment
9424 | Aspect_Component_Size
9425 | Aspect_Machine_Radix
9426 | Aspect_Object_Size
9427 | Aspect_Size
9428 | Aspect_Storage_Size
9429 | Aspect_Stream_Size
9430 | Aspect_Value_Size
9432 T := Any_Integer;
9434 when Aspect_Linker_Section =>
9435 T := Standard_String;
9437 when Aspect_Synchronization =>
9438 return;
9440 -- Special case, the expression of these aspects is just an entity
9441 -- that does not need any resolution, so just analyze.
9443 when Aspect_Input
9444 | Aspect_Output
9445 | Aspect_Read
9446 | Aspect_Suppress
9447 | Aspect_Unsuppress
9448 | Aspect_Warnings
9449 | Aspect_Write
9451 Analyze (Expression (ASN));
9452 return;
9454 -- Same for Iterator aspects, where the expression is a function
9455 -- name. Legality rules are checked separately.
9457 when Aspect_Constant_Indexing
9458 | Aspect_Default_Iterator
9459 | Aspect_Iterator_Element
9460 | Aspect_Variable_Indexing
9462 Analyze (Expression (ASN));
9463 return;
9465 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9467 when Aspect_Iterable =>
9468 T := Entity (ASN);
9470 declare
9471 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9472 Assoc : Node_Id;
9473 Expr : Node_Id;
9475 begin
9476 if Cursor = Any_Type then
9477 return;
9478 end if;
9480 Assoc := First (Component_Associations (Expression (ASN)));
9481 while Present (Assoc) loop
9482 Expr := Expression (Assoc);
9483 Analyze (Expr);
9485 if not Error_Posted (Expr) then
9486 Resolve_Iterable_Operation
9487 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9488 end if;
9490 Next (Assoc);
9491 end loop;
9492 end;
9494 return;
9496 -- Invariant/Predicate take boolean expressions
9498 when Aspect_Dynamic_Predicate
9499 | Aspect_Invariant
9500 | Aspect_Predicate
9501 | Aspect_Static_Predicate
9502 | Aspect_Type_Invariant
9504 T := Standard_Boolean;
9506 when Aspect_Predicate_Failure =>
9507 T := Standard_String;
9509 -- Here is the list of aspects that don't require delay analysis
9511 when Aspect_Abstract_State
9512 | Aspect_Annotate
9513 | Aspect_Async_Readers
9514 | Aspect_Async_Writers
9515 | Aspect_Constant_After_Elaboration
9516 | Aspect_Contract_Cases
9517 | Aspect_Default_Initial_Condition
9518 | Aspect_Depends
9519 | Aspect_Dimension
9520 | Aspect_Dimension_System
9521 | Aspect_Effective_Reads
9522 | Aspect_Effective_Writes
9523 | Aspect_Extensions_Visible
9524 | Aspect_Ghost
9525 | Aspect_Global
9526 | Aspect_Implicit_Dereference
9527 | Aspect_Initial_Condition
9528 | Aspect_Initializes
9529 | Aspect_Max_Entry_Queue_Depth
9530 | Aspect_Max_Queue_Length
9531 | Aspect_Obsolescent
9532 | Aspect_Part_Of
9533 | Aspect_Post
9534 | Aspect_Postcondition
9535 | Aspect_Pre
9536 | Aspect_Precondition
9537 | Aspect_Refined_Depends
9538 | Aspect_Refined_Global
9539 | Aspect_Refined_Post
9540 | Aspect_Refined_State
9541 | Aspect_SPARK_Mode
9542 | Aspect_Test_Case
9543 | Aspect_Unimplemented
9544 | Aspect_Volatile_Function
9546 raise Program_Error;
9548 end case;
9550 -- Do the preanalyze call
9552 Preanalyze_Spec_Expression (Expression (ASN), T);
9553 end Check_Aspect_At_Freeze_Point;
9555 -----------------------------------
9556 -- Check_Constant_Address_Clause --
9557 -----------------------------------
9559 procedure Check_Constant_Address_Clause
9560 (Expr : Node_Id;
9561 U_Ent : Entity_Id)
9563 procedure Check_At_Constant_Address (Nod : Node_Id);
9564 -- Checks that the given node N represents a name whose 'Address is
9565 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9566 -- address value is the same at the point of declaration of U_Ent and at
9567 -- the time of elaboration of the address clause.
9569 procedure Check_Expr_Constants (Nod : Node_Id);
9570 -- Checks that Nod meets the requirements for a constant address clause
9571 -- in the sense of the enclosing procedure.
9573 procedure Check_List_Constants (Lst : List_Id);
9574 -- Check that all elements of list Lst meet the requirements for a
9575 -- constant address clause in the sense of the enclosing procedure.
9577 -------------------------------
9578 -- Check_At_Constant_Address --
9579 -------------------------------
9581 procedure Check_At_Constant_Address (Nod : Node_Id) is
9582 begin
9583 if Is_Entity_Name (Nod) then
9584 if Present (Address_Clause (Entity ((Nod)))) then
9585 Error_Msg_NE
9586 ("invalid address clause for initialized object &!",
9587 Nod, U_Ent);
9588 Error_Msg_NE
9589 ("address for& cannot depend on another address clause! "
9590 & "(RM 13.1(22))!", Nod, U_Ent);
9592 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9593 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9594 then
9595 Error_Msg_NE
9596 ("invalid address clause for initialized object &!",
9597 Nod, U_Ent);
9598 Error_Msg_Node_2 := U_Ent;
9599 Error_Msg_NE
9600 ("\& must be defined before & (RM 13.1(22))!",
9601 Nod, Entity (Nod));
9602 end if;
9604 elsif Nkind (Nod) = N_Selected_Component then
9605 declare
9606 T : constant Entity_Id := Etype (Prefix (Nod));
9608 begin
9609 if (Is_Record_Type (T)
9610 and then Has_Discriminants (T))
9611 or else
9612 (Is_Access_Type (T)
9613 and then Is_Record_Type (Designated_Type (T))
9614 and then Has_Discriminants (Designated_Type (T)))
9615 then
9616 Error_Msg_NE
9617 ("invalid address clause for initialized object &!",
9618 Nod, U_Ent);
9619 Error_Msg_N
9620 ("\address cannot depend on component of discriminated "
9621 & "record (RM 13.1(22))!", Nod);
9622 else
9623 Check_At_Constant_Address (Prefix (Nod));
9624 end if;
9625 end;
9627 elsif Nkind (Nod) = N_Indexed_Component then
9628 Check_At_Constant_Address (Prefix (Nod));
9629 Check_List_Constants (Expressions (Nod));
9631 else
9632 Check_Expr_Constants (Nod);
9633 end if;
9634 end Check_At_Constant_Address;
9636 --------------------------
9637 -- Check_Expr_Constants --
9638 --------------------------
9640 procedure Check_Expr_Constants (Nod : Node_Id) is
9641 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9642 Ent : Entity_Id := Empty;
9644 begin
9645 if Nkind (Nod) in N_Has_Etype
9646 and then Etype (Nod) = Any_Type
9647 then
9648 return;
9649 end if;
9651 case Nkind (Nod) is
9652 when N_Empty
9653 | N_Error
9655 return;
9657 when N_Expanded_Name
9658 | N_Identifier
9660 Ent := Entity (Nod);
9662 -- We need to look at the original node if it is different
9663 -- from the node, since we may have rewritten things and
9664 -- substituted an identifier representing the rewrite.
9666 if Is_Rewrite_Substitution (Nod) then
9667 Check_Expr_Constants (Original_Node (Nod));
9669 -- If the node is an object declaration without initial
9670 -- value, some code has been expanded, and the expression
9671 -- is not constant, even if the constituents might be
9672 -- acceptable, as in A'Address + offset.
9674 if Ekind (Ent) = E_Variable
9675 and then
9676 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9677 and then
9678 No (Expression (Declaration_Node (Ent)))
9679 then
9680 Error_Msg_NE
9681 ("invalid address clause for initialized object &!",
9682 Nod, U_Ent);
9684 -- If entity is constant, it may be the result of expanding
9685 -- a check. We must verify that its declaration appears
9686 -- before the object in question, else we also reject the
9687 -- address clause.
9689 elsif Ekind (Ent) = E_Constant
9690 and then In_Same_Source_Unit (Ent, U_Ent)
9691 and then Sloc (Ent) > Loc_U_Ent
9692 then
9693 Error_Msg_NE
9694 ("invalid address clause for initialized object &!",
9695 Nod, U_Ent);
9696 end if;
9698 return;
9699 end if;
9701 -- Otherwise look at the identifier and see if it is OK
9703 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9704 or else Is_Type (Ent)
9705 then
9706 return;
9708 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9710 -- This is the case where we must have Ent defined before
9711 -- U_Ent. Clearly if they are in different units this
9712 -- requirement is met since the unit containing Ent is
9713 -- already processed.
9715 if not In_Same_Source_Unit (Ent, U_Ent) then
9716 return;
9718 -- Otherwise location of Ent must be before the location
9719 -- of U_Ent, that's what prior defined means.
9721 elsif Sloc (Ent) < Loc_U_Ent then
9722 return;
9724 else
9725 Error_Msg_NE
9726 ("invalid address clause for initialized object &!",
9727 Nod, U_Ent);
9728 Error_Msg_Node_2 := U_Ent;
9729 Error_Msg_NE
9730 ("\& must be defined before & (RM 13.1(22))!",
9731 Nod, Ent);
9732 end if;
9734 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9735 Check_Expr_Constants (Original_Node (Nod));
9737 else
9738 Error_Msg_NE
9739 ("invalid address clause for initialized object &!",
9740 Nod, U_Ent);
9742 if Comes_From_Source (Ent) then
9743 Error_Msg_NE
9744 ("\reference to variable& not allowed"
9745 & " (RM 13.1(22))!", Nod, Ent);
9746 else
9747 Error_Msg_N
9748 ("non-static expression not allowed"
9749 & " (RM 13.1(22))!", Nod);
9750 end if;
9751 end if;
9753 when N_Integer_Literal =>
9755 -- If this is a rewritten unchecked conversion, in a system
9756 -- where Address is an integer type, always use the base type
9757 -- for a literal value. This is user-friendly and prevents
9758 -- order-of-elaboration issues with instances of unchecked
9759 -- conversion.
9761 if Nkind (Original_Node (Nod)) = N_Function_Call then
9762 Set_Etype (Nod, Base_Type (Etype (Nod)));
9763 end if;
9765 when N_Character_Literal
9766 | N_Real_Literal
9767 | N_String_Literal
9769 return;
9771 when N_Range =>
9772 Check_Expr_Constants (Low_Bound (Nod));
9773 Check_Expr_Constants (High_Bound (Nod));
9775 when N_Explicit_Dereference =>
9776 Check_Expr_Constants (Prefix (Nod));
9778 when N_Indexed_Component =>
9779 Check_Expr_Constants (Prefix (Nod));
9780 Check_List_Constants (Expressions (Nod));
9782 when N_Slice =>
9783 Check_Expr_Constants (Prefix (Nod));
9784 Check_Expr_Constants (Discrete_Range (Nod));
9786 when N_Selected_Component =>
9787 Check_Expr_Constants (Prefix (Nod));
9789 when N_Attribute_Reference =>
9790 if Nam_In (Attribute_Name (Nod), Name_Address,
9791 Name_Access,
9792 Name_Unchecked_Access,
9793 Name_Unrestricted_Access)
9794 then
9795 Check_At_Constant_Address (Prefix (Nod));
9797 -- Normally, System'To_Address will have been transformed into
9798 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9799 -- and we don't want to give an error, because the whole point
9800 -- of 'To_Address is that it is static.
9802 elsif Attribute_Name (Nod) = Name_To_Address then
9803 pragma Assert (Operating_Mode = Check_Semantics);
9804 null;
9806 else
9807 Check_Expr_Constants (Prefix (Nod));
9808 Check_List_Constants (Expressions (Nod));
9809 end if;
9811 when N_Aggregate =>
9812 Check_List_Constants (Component_Associations (Nod));
9813 Check_List_Constants (Expressions (Nod));
9815 when N_Component_Association =>
9816 Check_Expr_Constants (Expression (Nod));
9818 when N_Extension_Aggregate =>
9819 Check_Expr_Constants (Ancestor_Part (Nod));
9820 Check_List_Constants (Component_Associations (Nod));
9821 Check_List_Constants (Expressions (Nod));
9823 when N_Null =>
9824 return;
9826 when N_Binary_Op
9827 | N_Membership_Test
9828 | N_Short_Circuit
9830 Check_Expr_Constants (Left_Opnd (Nod));
9831 Check_Expr_Constants (Right_Opnd (Nod));
9833 when N_Unary_Op =>
9834 Check_Expr_Constants (Right_Opnd (Nod));
9836 when N_Allocator
9837 | N_Qualified_Expression
9838 | N_Type_Conversion
9839 | N_Unchecked_Type_Conversion
9841 Check_Expr_Constants (Expression (Nod));
9843 when N_Function_Call =>
9844 if not Is_Pure (Entity (Name (Nod))) then
9845 Error_Msg_NE
9846 ("invalid address clause for initialized object &!",
9847 Nod, U_Ent);
9849 Error_Msg_NE
9850 ("\function & is not pure (RM 13.1(22))!",
9851 Nod, Entity (Name (Nod)));
9853 else
9854 Check_List_Constants (Parameter_Associations (Nod));
9855 end if;
9857 when N_Parameter_Association =>
9858 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9860 when others =>
9861 Error_Msg_NE
9862 ("invalid address clause for initialized object &!",
9863 Nod, U_Ent);
9864 Error_Msg_NE
9865 ("\must be constant defined before& (RM 13.1(22))!",
9866 Nod, U_Ent);
9867 end case;
9868 end Check_Expr_Constants;
9870 --------------------------
9871 -- Check_List_Constants --
9872 --------------------------
9874 procedure Check_List_Constants (Lst : List_Id) is
9875 Nod1 : Node_Id;
9877 begin
9878 if Present (Lst) then
9879 Nod1 := First (Lst);
9880 while Present (Nod1) loop
9881 Check_Expr_Constants (Nod1);
9882 Next (Nod1);
9883 end loop;
9884 end if;
9885 end Check_List_Constants;
9887 -- Start of processing for Check_Constant_Address_Clause
9889 begin
9890 -- If rep_clauses are to be ignored, no need for legality checks. In
9891 -- particular, no need to pester user about rep clauses that violate the
9892 -- rule on constant addresses, given that these clauses will be removed
9893 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9894 -- we want to relax these checks.
9896 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9897 Check_Expr_Constants (Expr);
9898 end if;
9899 end Check_Constant_Address_Clause;
9901 ---------------------------
9902 -- Check_Pool_Size_Clash --
9903 ---------------------------
9905 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9906 Post : Node_Id;
9908 begin
9909 -- We need to find out which one came first. Note that in the case of
9910 -- aspects mixed with pragmas there are cases where the processing order
9911 -- is reversed, which is why we do the check here.
9913 if Sloc (SP) < Sloc (SS) then
9914 Error_Msg_Sloc := Sloc (SP);
9915 Post := SS;
9916 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9918 else
9919 Error_Msg_Sloc := Sloc (SS);
9920 Post := SP;
9921 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9922 end if;
9924 Error_Msg_N
9925 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9926 end Check_Pool_Size_Clash;
9928 ----------------------------------------
9929 -- Check_Record_Representation_Clause --
9930 ----------------------------------------
9932 procedure Check_Record_Representation_Clause (N : Node_Id) is
9933 Loc : constant Source_Ptr := Sloc (N);
9934 Ident : constant Node_Id := Identifier (N);
9935 Rectype : Entity_Id;
9936 Fent : Entity_Id;
9937 CC : Node_Id;
9938 Fbit : Uint;
9939 Lbit : Uint;
9940 Hbit : Uint := Uint_0;
9941 Comp : Entity_Id;
9942 Pcomp : Entity_Id;
9944 Max_Bit_So_Far : Uint;
9945 -- Records the maximum bit position so far. If all field positions
9946 -- are monotonically increasing, then we can skip the circuit for
9947 -- checking for overlap, since no overlap is possible.
9949 Tagged_Parent : Entity_Id := Empty;
9950 -- This is set in the case of an extension for which we have either a
9951 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9952 -- components are positioned by record representation clauses) on the
9953 -- parent type. In this case we check for overlap between components of
9954 -- this tagged type and the parent component. Tagged_Parent will point
9955 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9957 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
9958 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9959 -- last bit position for any field in the parent type. We only need to
9960 -- check overlap for fields starting below this point.
9962 Overlap_Check_Required : Boolean;
9963 -- Used to keep track of whether or not an overlap check is required
9965 Overlap_Detected : Boolean := False;
9966 -- Set True if an overlap is detected
9968 Ccount : Natural := 0;
9969 -- Number of component clauses in record rep clause
9971 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9972 -- Given two entities for record components or discriminants, checks
9973 -- if they have overlapping component clauses and issues errors if so.
9975 procedure Find_Component;
9976 -- Finds component entity corresponding to current component clause (in
9977 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9978 -- start/stop bits for the field. If there is no matching component or
9979 -- if the matching component does not have a component clause, then
9980 -- that's an error and Comp is set to Empty, but no error message is
9981 -- issued, since the message was already given. Comp is also set to
9982 -- Empty if the current "component clause" is in fact a pragma.
9984 -----------------------------
9985 -- Check_Component_Overlap --
9986 -----------------------------
9988 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9989 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9990 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9992 begin
9993 if Present (CC1) and then Present (CC2) then
9995 -- Exclude odd case where we have two tag components in the same
9996 -- record, both at location zero. This seems a bit strange, but
9997 -- it seems to happen in some circumstances, perhaps on an error.
9999 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
10000 return;
10001 end if;
10003 -- Here we check if the two fields overlap
10005 declare
10006 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
10007 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
10008 E1 : constant Uint := S1 + Esize (C1_Ent);
10009 E2 : constant Uint := S2 + Esize (C2_Ent);
10011 begin
10012 if E2 <= S1 or else E1 <= S2 then
10013 null;
10014 else
10015 Error_Msg_Node_2 := Component_Name (CC2);
10016 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
10017 Error_Msg_Node_1 := Component_Name (CC1);
10018 Error_Msg_N
10019 ("component& overlaps & #", Component_Name (CC1));
10020 Overlap_Detected := True;
10021 end if;
10022 end;
10023 end if;
10024 end Check_Component_Overlap;
10026 --------------------
10027 -- Find_Component --
10028 --------------------
10030 procedure Find_Component is
10032 procedure Search_Component (R : Entity_Id);
10033 -- Search components of R for a match. If found, Comp is set
10035 ----------------------
10036 -- Search_Component --
10037 ----------------------
10039 procedure Search_Component (R : Entity_Id) is
10040 begin
10041 Comp := First_Component_Or_Discriminant (R);
10042 while Present (Comp) loop
10044 -- Ignore error of attribute name for component name (we
10045 -- already gave an error message for this, so no need to
10046 -- complain here)
10048 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10049 null;
10050 else
10051 exit when Chars (Comp) = Chars (Component_Name (CC));
10052 end if;
10054 Next_Component_Or_Discriminant (Comp);
10055 end loop;
10056 end Search_Component;
10058 -- Start of processing for Find_Component
10060 begin
10061 -- Return with Comp set to Empty if we have a pragma
10063 if Nkind (CC) = N_Pragma then
10064 Comp := Empty;
10065 return;
10066 end if;
10068 -- Search current record for matching component
10070 Search_Component (Rectype);
10072 -- If not found, maybe component of base type discriminant that is
10073 -- absent from statically constrained first subtype.
10075 if No (Comp) then
10076 Search_Component (Base_Type (Rectype));
10077 end if;
10079 -- If no component, or the component does not reference the component
10080 -- clause in question, then there was some previous error for which
10081 -- we already gave a message, so just return with Comp Empty.
10083 if No (Comp) or else Component_Clause (Comp) /= CC then
10084 Check_Error_Detected;
10085 Comp := Empty;
10087 -- Normal case where we have a component clause
10089 else
10090 Fbit := Component_Bit_Offset (Comp);
10091 Lbit := Fbit + Esize (Comp) - 1;
10092 end if;
10093 end Find_Component;
10095 -- Start of processing for Check_Record_Representation_Clause
10097 begin
10098 Find_Type (Ident);
10099 Rectype := Entity (Ident);
10101 if Rectype = Any_Type then
10102 return;
10103 end if;
10105 Rectype := Underlying_Type (Rectype);
10107 -- See if we have a fully repped derived tagged type
10109 declare
10110 PS : constant Entity_Id := Parent_Subtype (Rectype);
10112 begin
10113 if Present (PS) and then Known_Static_RM_Size (PS) then
10114 Tagged_Parent := PS;
10115 Parent_Last_Bit := RM_Size (PS) - 1;
10117 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10118 Tagged_Parent := PS;
10120 -- Find maximum bit of any component of the parent type
10122 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10123 Pcomp := First_Entity (Tagged_Parent);
10124 while Present (Pcomp) loop
10125 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10126 if Component_Bit_Offset (Pcomp) /= No_Uint
10127 and then Known_Static_Esize (Pcomp)
10128 then
10129 Parent_Last_Bit :=
10130 UI_Max
10131 (Parent_Last_Bit,
10132 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10133 end if;
10134 else
10136 -- Skip anonymous types generated for constrained array
10137 -- or record components.
10139 null;
10140 end if;
10142 Next_Entity (Pcomp);
10143 end loop;
10144 end if;
10145 end;
10147 -- All done if no component clauses
10149 CC := First (Component_Clauses (N));
10151 if No (CC) then
10152 return;
10153 end if;
10155 -- If a tag is present, then create a component clause that places it
10156 -- at the start of the record (otherwise gigi may place it after other
10157 -- fields that have rep clauses).
10159 Fent := First_Entity (Rectype);
10161 if Nkind (Fent) = N_Defining_Identifier
10162 and then Chars (Fent) = Name_uTag
10163 then
10164 Set_Component_Bit_Offset (Fent, Uint_0);
10165 Set_Normalized_Position (Fent, Uint_0);
10166 Set_Normalized_First_Bit (Fent, Uint_0);
10167 Set_Normalized_Position_Max (Fent, Uint_0);
10168 Init_Esize (Fent, System_Address_Size);
10170 Set_Component_Clause (Fent,
10171 Make_Component_Clause (Loc,
10172 Component_Name => Make_Identifier (Loc, Name_uTag),
10174 Position => Make_Integer_Literal (Loc, Uint_0),
10175 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10176 Last_Bit =>
10177 Make_Integer_Literal (Loc,
10178 UI_From_Int (System_Address_Size))));
10180 Ccount := Ccount + 1;
10181 end if;
10183 Max_Bit_So_Far := Uint_Minus_1;
10184 Overlap_Check_Required := False;
10186 -- Process the component clauses
10188 while Present (CC) loop
10189 Find_Component;
10191 if Present (Comp) then
10192 Ccount := Ccount + 1;
10194 -- We need a full overlap check if record positions non-monotonic
10196 if Fbit <= Max_Bit_So_Far then
10197 Overlap_Check_Required := True;
10198 end if;
10200 Max_Bit_So_Far := Lbit;
10202 -- Check bit position out of range of specified size
10204 if Has_Size_Clause (Rectype)
10205 and then RM_Size (Rectype) <= Lbit
10206 then
10207 Error_Msg_N
10208 ("bit number out of range of specified size",
10209 Last_Bit (CC));
10211 -- Check for overlap with tag or parent component
10213 else
10214 if Is_Tagged_Type (Rectype)
10215 and then Fbit < System_Address_Size
10216 then
10217 Error_Msg_NE
10218 ("component overlaps tag field of&",
10219 Component_Name (CC), Rectype);
10220 Overlap_Detected := True;
10222 elsif Present (Tagged_Parent)
10223 and then Fbit <= Parent_Last_Bit
10224 then
10225 Error_Msg_NE
10226 ("component overlaps parent field of&",
10227 Component_Name (CC), Rectype);
10228 Overlap_Detected := True;
10229 end if;
10231 if Hbit < Lbit then
10232 Hbit := Lbit;
10233 end if;
10234 end if;
10235 end if;
10237 Next (CC);
10238 end loop;
10240 -- Now that we have processed all the component clauses, check for
10241 -- overlap. We have to leave this till last, since the components can
10242 -- appear in any arbitrary order in the representation clause.
10244 -- We do not need this check if all specified ranges were monotonic,
10245 -- as recorded by Overlap_Check_Required being False at this stage.
10247 -- This first section checks if there are any overlapping entries at
10248 -- all. It does this by sorting all entries and then seeing if there are
10249 -- any overlaps. If there are none, then that is decisive, but if there
10250 -- are overlaps, they may still be OK (they may result from fields in
10251 -- different variants).
10253 if Overlap_Check_Required then
10254 Overlap_Check1 : declare
10256 OC_Fbit : array (0 .. Ccount) of Uint;
10257 -- First-bit values for component clauses, the value is the offset
10258 -- of the first bit of the field from start of record. The zero
10259 -- entry is for use in sorting.
10261 OC_Lbit : array (0 .. Ccount) of Uint;
10262 -- Last-bit values for component clauses, the value is the offset
10263 -- of the last bit of the field from start of record. The zero
10264 -- entry is for use in sorting.
10266 OC_Count : Natural := 0;
10267 -- Count of entries in OC_Fbit and OC_Lbit
10269 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10270 -- Compare routine for Sort
10272 procedure OC_Move (From : Natural; To : Natural);
10273 -- Move routine for Sort
10275 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10277 -----------
10278 -- OC_Lt --
10279 -----------
10281 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10282 begin
10283 return OC_Fbit (Op1) < OC_Fbit (Op2);
10284 end OC_Lt;
10286 -------------
10287 -- OC_Move --
10288 -------------
10290 procedure OC_Move (From : Natural; To : Natural) is
10291 begin
10292 OC_Fbit (To) := OC_Fbit (From);
10293 OC_Lbit (To) := OC_Lbit (From);
10294 end OC_Move;
10296 -- Start of processing for Overlap_Check
10298 begin
10299 CC := First (Component_Clauses (N));
10300 while Present (CC) loop
10302 -- Exclude component clause already marked in error
10304 if not Error_Posted (CC) then
10305 Find_Component;
10307 if Present (Comp) then
10308 OC_Count := OC_Count + 1;
10309 OC_Fbit (OC_Count) := Fbit;
10310 OC_Lbit (OC_Count) := Lbit;
10311 end if;
10312 end if;
10314 Next (CC);
10315 end loop;
10317 Sorting.Sort (OC_Count);
10319 Overlap_Check_Required := False;
10320 for J in 1 .. OC_Count - 1 loop
10321 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10322 Overlap_Check_Required := True;
10323 exit;
10324 end if;
10325 end loop;
10326 end Overlap_Check1;
10327 end if;
10329 -- If Overlap_Check_Required is still True, then we have to do the full
10330 -- scale overlap check, since we have at least two fields that do
10331 -- overlap, and we need to know if that is OK since they are in
10332 -- different variant, or whether we have a definite problem.
10334 if Overlap_Check_Required then
10335 Overlap_Check2 : declare
10336 C1_Ent, C2_Ent : Entity_Id;
10337 -- Entities of components being checked for overlap
10339 Clist : Node_Id;
10340 -- Component_List node whose Component_Items are being checked
10342 Citem : Node_Id;
10343 -- Component declaration for component being checked
10345 begin
10346 C1_Ent := First_Entity (Base_Type (Rectype));
10348 -- Loop through all components in record. For each component check
10349 -- for overlap with any of the preceding elements on the component
10350 -- list containing the component and also, if the component is in
10351 -- a variant, check against components outside the case structure.
10352 -- This latter test is repeated recursively up the variant tree.
10354 Main_Component_Loop : while Present (C1_Ent) loop
10355 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10356 goto Continue_Main_Component_Loop;
10357 end if;
10359 -- Skip overlap check if entity has no declaration node. This
10360 -- happens with discriminants in constrained derived types.
10361 -- Possibly we are missing some checks as a result, but that
10362 -- does not seem terribly serious.
10364 if No (Declaration_Node (C1_Ent)) then
10365 goto Continue_Main_Component_Loop;
10366 end if;
10368 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10370 -- Loop through component lists that need checking. Check the
10371 -- current component list and all lists in variants above us.
10373 Component_List_Loop : loop
10375 -- If derived type definition, go to full declaration
10376 -- If at outer level, check discriminants if there are any.
10378 if Nkind (Clist) = N_Derived_Type_Definition then
10379 Clist := Parent (Clist);
10380 end if;
10382 -- Outer level of record definition, check discriminants
10384 if Nkind_In (Clist, N_Full_Type_Declaration,
10385 N_Private_Type_Declaration)
10386 then
10387 if Has_Discriminants (Defining_Identifier (Clist)) then
10388 C2_Ent :=
10389 First_Discriminant (Defining_Identifier (Clist));
10390 while Present (C2_Ent) loop
10391 exit when C1_Ent = C2_Ent;
10392 Check_Component_Overlap (C1_Ent, C2_Ent);
10393 Next_Discriminant (C2_Ent);
10394 end loop;
10395 end if;
10397 -- Record extension case
10399 elsif Nkind (Clist) = N_Derived_Type_Definition then
10400 Clist := Empty;
10402 -- Otherwise check one component list
10404 else
10405 Citem := First (Component_Items (Clist));
10406 while Present (Citem) loop
10407 if Nkind (Citem) = N_Component_Declaration then
10408 C2_Ent := Defining_Identifier (Citem);
10409 exit when C1_Ent = C2_Ent;
10410 Check_Component_Overlap (C1_Ent, C2_Ent);
10411 end if;
10413 Next (Citem);
10414 end loop;
10415 end if;
10417 -- Check for variants above us (the parent of the Clist can
10418 -- be a variant, in which case its parent is a variant part,
10419 -- and the parent of the variant part is a component list
10420 -- whose components must all be checked against the current
10421 -- component for overlap).
10423 if Nkind (Parent (Clist)) = N_Variant then
10424 Clist := Parent (Parent (Parent (Clist)));
10426 -- Check for possible discriminant part in record, this
10427 -- is treated essentially as another level in the
10428 -- recursion. For this case the parent of the component
10429 -- list is the record definition, and its parent is the
10430 -- full type declaration containing the discriminant
10431 -- specifications.
10433 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10434 Clist := Parent (Parent ((Clist)));
10436 -- If neither of these two cases, we are at the top of
10437 -- the tree.
10439 else
10440 exit Component_List_Loop;
10441 end if;
10442 end loop Component_List_Loop;
10444 <<Continue_Main_Component_Loop>>
10445 Next_Entity (C1_Ent);
10447 end loop Main_Component_Loop;
10448 end Overlap_Check2;
10449 end if;
10451 -- The following circuit deals with warning on record holes (gaps). We
10452 -- skip this check if overlap was detected, since it makes sense for the
10453 -- programmer to fix this illegality before worrying about warnings.
10455 if not Overlap_Detected and Warn_On_Record_Holes then
10456 Record_Hole_Check : declare
10457 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10458 -- Full declaration of record type
10460 procedure Check_Component_List
10461 (CL : Node_Id;
10462 Sbit : Uint;
10463 DS : List_Id);
10464 -- Check component list CL for holes. The starting bit should be
10465 -- Sbit. which is zero for the main record component list and set
10466 -- appropriately for recursive calls for variants. DS is set to
10467 -- a list of discriminant specifications to be included in the
10468 -- consideration of components. It is No_List if none to consider.
10470 --------------------------
10471 -- Check_Component_List --
10472 --------------------------
10474 procedure Check_Component_List
10475 (CL : Node_Id;
10476 Sbit : Uint;
10477 DS : List_Id)
10479 Compl : Integer;
10481 begin
10482 Compl := Integer (List_Length (Component_Items (CL)));
10484 if DS /= No_List then
10485 Compl := Compl + Integer (List_Length (DS));
10486 end if;
10488 declare
10489 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10490 -- Gather components (zero entry is for sort routine)
10492 Ncomps : Natural := 0;
10493 -- Number of entries stored in Comps (starting at Comps (1))
10495 Citem : Node_Id;
10496 -- One component item or discriminant specification
10498 Nbit : Uint;
10499 -- Starting bit for next component
10501 CEnt : Entity_Id;
10502 -- Component entity
10504 Variant : Node_Id;
10505 -- One variant
10507 function Lt (Op1, Op2 : Natural) return Boolean;
10508 -- Compare routine for Sort
10510 procedure Move (From : Natural; To : Natural);
10511 -- Move routine for Sort
10513 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10515 --------
10516 -- Lt --
10517 --------
10519 function Lt (Op1, Op2 : Natural) return Boolean is
10520 begin
10521 return Component_Bit_Offset (Comps (Op1))
10523 Component_Bit_Offset (Comps (Op2));
10524 end Lt;
10526 ----------
10527 -- Move --
10528 ----------
10530 procedure Move (From : Natural; To : Natural) is
10531 begin
10532 Comps (To) := Comps (From);
10533 end Move;
10535 begin
10536 -- Gather discriminants into Comp
10538 if DS /= No_List then
10539 Citem := First (DS);
10540 while Present (Citem) loop
10541 if Nkind (Citem) = N_Discriminant_Specification then
10542 declare
10543 Ent : constant Entity_Id :=
10544 Defining_Identifier (Citem);
10545 begin
10546 if Ekind (Ent) = E_Discriminant then
10547 Ncomps := Ncomps + 1;
10548 Comps (Ncomps) := Ent;
10549 end if;
10550 end;
10551 end if;
10553 Next (Citem);
10554 end loop;
10555 end if;
10557 -- Gather component entities into Comp
10559 Citem := First (Component_Items (CL));
10560 while Present (Citem) loop
10561 if Nkind (Citem) = N_Component_Declaration then
10562 Ncomps := Ncomps + 1;
10563 Comps (Ncomps) := Defining_Identifier (Citem);
10564 end if;
10566 Next (Citem);
10567 end loop;
10569 -- Now sort the component entities based on the first bit.
10570 -- Note we already know there are no overlapping components.
10572 Sorting.Sort (Ncomps);
10574 -- Loop through entries checking for holes
10576 Nbit := Sbit;
10577 for J in 1 .. Ncomps loop
10578 CEnt := Comps (J);
10580 declare
10581 CBO : constant Uint := Component_Bit_Offset (CEnt);
10583 begin
10584 -- Skip components with unknown offsets
10586 if CBO /= No_Uint and then CBO >= 0 then
10587 Error_Msg_Uint_1 := CBO - Nbit;
10589 if Error_Msg_Uint_1 > 0 then
10590 Error_Msg_NE
10591 ("?H?^-bit gap before component&",
10592 Component_Name (Component_Clause (CEnt)),
10593 CEnt);
10594 end if;
10596 Nbit := CBO + Esize (CEnt);
10597 end if;
10598 end;
10599 end loop;
10601 -- Process variant parts recursively if present
10603 if Present (Variant_Part (CL)) then
10604 Variant := First (Variants (Variant_Part (CL)));
10605 while Present (Variant) loop
10606 Check_Component_List
10607 (Component_List (Variant), Nbit, No_List);
10608 Next (Variant);
10609 end loop;
10610 end if;
10611 end;
10612 end Check_Component_List;
10614 -- Start of processing for Record_Hole_Check
10616 begin
10617 declare
10618 Sbit : Uint;
10620 begin
10621 if Is_Tagged_Type (Rectype) then
10622 Sbit := UI_From_Int (System_Address_Size);
10623 else
10624 Sbit := Uint_0;
10625 end if;
10627 if Nkind (Decl) = N_Full_Type_Declaration
10628 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10629 then
10630 Check_Component_List
10631 (Component_List (Type_Definition (Decl)),
10632 Sbit,
10633 Discriminant_Specifications (Decl));
10634 end if;
10635 end;
10636 end Record_Hole_Check;
10637 end if;
10639 -- For records that have component clauses for all components, and whose
10640 -- size is less than or equal to 32, we need to know the size in the
10641 -- front end to activate possible packed array processing where the
10642 -- component type is a record.
10644 -- At this stage Hbit + 1 represents the first unused bit from all the
10645 -- component clauses processed, so if the component clauses are
10646 -- complete, then this is the length of the record.
10648 -- For records longer than System.Storage_Unit, and for those where not
10649 -- all components have component clauses, the back end determines the
10650 -- length (it may for example be appropriate to round up the size
10651 -- to some convenient boundary, based on alignment considerations, etc).
10653 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10655 -- Nothing to do if at least one component has no component clause
10657 Comp := First_Component_Or_Discriminant (Rectype);
10658 while Present (Comp) loop
10659 exit when No (Component_Clause (Comp));
10660 Next_Component_Or_Discriminant (Comp);
10661 end loop;
10663 -- If we fall out of loop, all components have component clauses
10664 -- and so we can set the size to the maximum value.
10666 if No (Comp) then
10667 Set_RM_Size (Rectype, Hbit + 1);
10668 end if;
10669 end if;
10670 end Check_Record_Representation_Clause;
10672 ----------------
10673 -- Check_Size --
10674 ----------------
10676 procedure Check_Size
10677 (N : Node_Id;
10678 T : Entity_Id;
10679 Siz : Uint;
10680 Biased : out Boolean)
10682 procedure Size_Too_Small_Error (Min_Siz : Uint);
10683 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10684 -- minimum size.
10686 --------------------------
10687 -- Size_Too_Small_Error --
10688 --------------------------
10690 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10691 begin
10692 -- This error is suppressed in ASIS mode to allow for different ASIS
10693 -- back ends or ASIS-based tools to query the illegal clause.
10695 if not ASIS_Mode then
10696 Error_Msg_Uint_1 := Min_Siz;
10697 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10698 end if;
10699 end Size_Too_Small_Error;
10701 -- Local variables
10703 UT : constant Entity_Id := Underlying_Type (T);
10704 M : Uint;
10706 -- Start of processing for Check_Size
10708 begin
10709 Biased := False;
10711 -- Reject patently improper size values
10713 if Is_Elementary_Type (T)
10714 and then Siz > UI_From_Int (Int'Last)
10715 then
10716 Error_Msg_N ("Size value too large for elementary type", N);
10718 if Nkind (Original_Node (N)) = N_Op_Expon then
10719 Error_Msg_N
10720 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10721 end if;
10722 end if;
10724 -- Dismiss generic types
10726 if Is_Generic_Type (T)
10727 or else
10728 Is_Generic_Type (UT)
10729 or else
10730 Is_Generic_Type (Root_Type (UT))
10731 then
10732 return;
10734 -- Guard against previous errors
10736 elsif No (UT) or else UT = Any_Type then
10737 Check_Error_Detected;
10738 return;
10740 -- Check case of bit packed array
10742 elsif Is_Array_Type (UT)
10743 and then Known_Static_Component_Size (UT)
10744 and then Is_Bit_Packed_Array (UT)
10745 then
10746 declare
10747 Asiz : Uint;
10748 Indx : Node_Id;
10749 Ityp : Entity_Id;
10751 begin
10752 Asiz := Component_Size (UT);
10753 Indx := First_Index (UT);
10754 loop
10755 Ityp := Etype (Indx);
10757 -- If non-static bound, then we are not in the business of
10758 -- trying to check the length, and indeed an error will be
10759 -- issued elsewhere, since sizes of non-static array types
10760 -- cannot be set implicitly or explicitly.
10762 if not Is_OK_Static_Subtype (Ityp) then
10763 return;
10764 end if;
10766 -- Otherwise accumulate next dimension
10768 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10769 Expr_Value (Type_Low_Bound (Ityp)) +
10770 Uint_1);
10772 Next_Index (Indx);
10773 exit when No (Indx);
10774 end loop;
10776 if Asiz <= Siz then
10777 return;
10779 else
10780 Size_Too_Small_Error (Asiz);
10781 Set_Esize (T, Asiz);
10782 Set_RM_Size (T, Asiz);
10783 end if;
10784 end;
10786 -- All other composite types are ignored
10788 elsif Is_Composite_Type (UT) then
10789 return;
10791 -- For fixed-point types, don't check minimum if type is not frozen,
10792 -- since we don't know all the characteristics of the type that can
10793 -- affect the size (e.g. a specified small) till freeze time.
10795 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10796 null;
10798 -- Cases for which a minimum check is required
10800 else
10801 -- Ignore if specified size is correct for the type
10803 if Known_Esize (UT) and then Siz = Esize (UT) then
10804 return;
10805 end if;
10807 -- Otherwise get minimum size
10809 M := UI_From_Int (Minimum_Size (UT));
10811 if Siz < M then
10813 -- Size is less than minimum size, but one possibility remains
10814 -- that we can manage with the new size if we bias the type.
10816 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10818 if Siz < M then
10819 Size_Too_Small_Error (M);
10820 Set_Esize (T, M);
10821 Set_RM_Size (T, M);
10822 else
10823 Biased := True;
10824 end if;
10825 end if;
10826 end if;
10827 end Check_Size;
10829 --------------------------
10830 -- Freeze_Entity_Checks --
10831 --------------------------
10833 procedure Freeze_Entity_Checks (N : Node_Id) is
10834 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10835 -- Inspect the primitive operations of type Typ and hide all pairs of
10836 -- implicitly declared non-overridden non-fully conformant homographs
10837 -- (Ada RM 8.3 12.3/2).
10839 -------------------------------------
10840 -- Hide_Non_Overridden_Subprograms --
10841 -------------------------------------
10843 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10844 procedure Hide_Matching_Homographs
10845 (Subp_Id : Entity_Id;
10846 Start_Elmt : Elmt_Id);
10847 -- Inspect a list of primitive operations starting with Start_Elmt
10848 -- and find matching implicitly declared non-overridden non-fully
10849 -- conformant homographs of Subp_Id. If found, all matches along
10850 -- with Subp_Id are hidden from all visibility.
10852 function Is_Non_Overridden_Or_Null_Procedure
10853 (Subp_Id : Entity_Id) return Boolean;
10854 -- Determine whether subprogram Subp_Id is implicitly declared non-
10855 -- overridden subprogram or an implicitly declared null procedure.
10857 ------------------------------
10858 -- Hide_Matching_Homographs --
10859 ------------------------------
10861 procedure Hide_Matching_Homographs
10862 (Subp_Id : Entity_Id;
10863 Start_Elmt : Elmt_Id)
10865 Prim : Entity_Id;
10866 Prim_Elmt : Elmt_Id;
10868 begin
10869 Prim_Elmt := Start_Elmt;
10870 while Present (Prim_Elmt) loop
10871 Prim := Node (Prim_Elmt);
10873 -- The current primitive is implicitly declared non-overridden
10874 -- non-fully conformant homograph of Subp_Id. Both subprograms
10875 -- must be hidden from visibility.
10877 if Chars (Prim) = Chars (Subp_Id)
10878 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10879 and then not Fully_Conformant (Prim, Subp_Id)
10880 then
10881 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10882 Set_Is_Immediately_Visible (Prim, False);
10883 Set_Is_Potentially_Use_Visible (Prim, False);
10885 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10886 Set_Is_Immediately_Visible (Subp_Id, False);
10887 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10888 end if;
10890 Next_Elmt (Prim_Elmt);
10891 end loop;
10892 end Hide_Matching_Homographs;
10894 -----------------------------------------
10895 -- Is_Non_Overridden_Or_Null_Procedure --
10896 -----------------------------------------
10898 function Is_Non_Overridden_Or_Null_Procedure
10899 (Subp_Id : Entity_Id) return Boolean
10901 Alias_Id : Entity_Id;
10903 begin
10904 -- The subprogram is inherited (implicitly declared), it does not
10905 -- override and does not cover a primitive of an interface.
10907 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10908 and then Present (Alias (Subp_Id))
10909 and then No (Interface_Alias (Subp_Id))
10910 and then No (Overridden_Operation (Subp_Id))
10911 then
10912 Alias_Id := Alias (Subp_Id);
10914 if Requires_Overriding (Alias_Id) then
10915 return True;
10917 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10918 and then Null_Present (Parent (Alias_Id))
10919 then
10920 return True;
10921 end if;
10922 end if;
10924 return False;
10925 end Is_Non_Overridden_Or_Null_Procedure;
10927 -- Local variables
10929 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10930 Prim : Entity_Id;
10931 Prim_Elmt : Elmt_Id;
10933 -- Start of processing for Hide_Non_Overridden_Subprograms
10935 begin
10936 -- Inspect the list of primitives looking for non-overridden
10937 -- subprograms.
10939 if Present (Prim_Ops) then
10940 Prim_Elmt := First_Elmt (Prim_Ops);
10941 while Present (Prim_Elmt) loop
10942 Prim := Node (Prim_Elmt);
10943 Next_Elmt (Prim_Elmt);
10945 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10946 Hide_Matching_Homographs
10947 (Subp_Id => Prim,
10948 Start_Elmt => Prim_Elmt);
10949 end if;
10950 end loop;
10951 end if;
10952 end Hide_Non_Overridden_Subprograms;
10954 -- Local variables
10956 E : constant Entity_Id := Entity (N);
10958 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10959 -- True in nongeneric case. Some of the processing here is skipped
10960 -- for the generic case since it is not needed. Basically in the
10961 -- generic case, we only need to do stuff that might generate error
10962 -- messages or warnings.
10964 -- Start of processing for Freeze_Entity_Checks
10966 begin
10967 -- Remember that we are processing a freezing entity. Required to
10968 -- ensure correct decoration of internal entities associated with
10969 -- interfaces (see New_Overloaded_Entity).
10971 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10973 -- For tagged types covering interfaces add internal entities that link
10974 -- the primitives of the interfaces with the primitives that cover them.
10975 -- Note: These entities were originally generated only when generating
10976 -- code because their main purpose was to provide support to initialize
10977 -- the secondary dispatch tables. They are now generated also when
10978 -- compiling with no code generation to provide ASIS the relationship
10979 -- between interface primitives and tagged type primitives. They are
10980 -- also used to locate primitives covering interfaces when processing
10981 -- generics (see Derive_Subprograms).
10983 -- This is not needed in the generic case
10985 if Ada_Version >= Ada_2005
10986 and then Nongeneric_Case
10987 and then Ekind (E) = E_Record_Type
10988 and then Is_Tagged_Type (E)
10989 and then not Is_Interface (E)
10990 and then Has_Interfaces (E)
10991 then
10992 -- This would be a good common place to call the routine that checks
10993 -- overriding of interface primitives (and thus factorize calls to
10994 -- Check_Abstract_Overriding located at different contexts in the
10995 -- compiler). However, this is not possible because it causes
10996 -- spurious errors in case of late overriding.
10998 Add_Internal_Interface_Entities (E);
10999 end if;
11001 -- After all forms of overriding have been resolved, a tagged type may
11002 -- be left with a set of implicitly declared and possibly erroneous
11003 -- abstract subprograms, null procedures and subprograms that require
11004 -- overriding. If this set contains fully conformant homographs, then
11005 -- one is chosen arbitrarily (already done during resolution), otherwise
11006 -- all remaining non-fully conformant homographs are hidden from
11007 -- visibility (Ada RM 8.3 12.3/2).
11009 if Is_Tagged_Type (E) then
11010 Hide_Non_Overridden_Subprograms (E);
11011 end if;
11013 -- Check CPP types
11015 if Ekind (E) = E_Record_Type
11016 and then Is_CPP_Class (E)
11017 and then Is_Tagged_Type (E)
11018 and then Tagged_Type_Expansion
11019 then
11020 if CPP_Num_Prims (E) = 0 then
11022 -- If the CPP type has user defined components then it must import
11023 -- primitives from C++. This is required because if the C++ class
11024 -- has no primitives then the C++ compiler does not added the _tag
11025 -- component to the type.
11027 if First_Entity (E) /= Last_Entity (E) then
11028 Error_Msg_N
11029 ("'C'P'P type must import at least one primitive from C++??",
11031 end if;
11032 end if;
11034 -- Check that all its primitives are abstract or imported from C++.
11035 -- Check also availability of the C++ constructor.
11037 declare
11038 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11039 Elmt : Elmt_Id;
11040 Error_Reported : Boolean := False;
11041 Prim : Node_Id;
11043 begin
11044 Elmt := First_Elmt (Primitive_Operations (E));
11045 while Present (Elmt) loop
11046 Prim := Node (Elmt);
11048 if Comes_From_Source (Prim) then
11049 if Is_Abstract_Subprogram (Prim) then
11050 null;
11052 elsif not Is_Imported (Prim)
11053 or else Convention (Prim) /= Convention_CPP
11054 then
11055 Error_Msg_N
11056 ("primitives of 'C'P'P types must be imported from C++ "
11057 & "or abstract??", Prim);
11059 elsif not Has_Constructors
11060 and then not Error_Reported
11061 then
11062 Error_Msg_Name_1 := Chars (E);
11063 Error_Msg_N
11064 ("??'C'P'P constructor required for type %", Prim);
11065 Error_Reported := True;
11066 end if;
11067 end if;
11069 Next_Elmt (Elmt);
11070 end loop;
11071 end;
11072 end if;
11074 -- Check Ada derivation of CPP type
11076 if Expander_Active -- why? losing errors in -gnatc mode???
11077 and then Present (Etype (E)) -- defend against errors
11078 and then Tagged_Type_Expansion
11079 and then Ekind (E) = E_Record_Type
11080 and then Etype (E) /= E
11081 and then Is_CPP_Class (Etype (E))
11082 and then CPP_Num_Prims (Etype (E)) > 0
11083 and then not Is_CPP_Class (E)
11084 and then not Has_CPP_Constructors (Etype (E))
11085 then
11086 -- If the parent has C++ primitives but it has no constructor then
11087 -- check that all the primitives are overridden in this derivation;
11088 -- otherwise the constructor of the parent is needed to build the
11089 -- dispatch table.
11091 declare
11092 Elmt : Elmt_Id;
11093 Prim : Node_Id;
11095 begin
11096 Elmt := First_Elmt (Primitive_Operations (E));
11097 while Present (Elmt) loop
11098 Prim := Node (Elmt);
11100 if not Is_Abstract_Subprogram (Prim)
11101 and then No (Interface_Alias (Prim))
11102 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11103 then
11104 Error_Msg_Name_1 := Chars (Etype (E));
11105 Error_Msg_N
11106 ("'C'P'P constructor required for parent type %", E);
11107 exit;
11108 end if;
11110 Next_Elmt (Elmt);
11111 end loop;
11112 end;
11113 end if;
11115 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11117 -- If we have a type with predicates, build predicate function. This is
11118 -- not needed in the generic case, nor within TSS subprograms and other
11119 -- predefined primitives. For a derived type, ensure that the parent
11120 -- type is already frozen so that its predicate function has been
11121 -- constructed already. This is necessary if the parent is declared
11122 -- in a nested package and its own freeze point has not been reached.
11124 if Is_Type (E)
11125 and then Nongeneric_Case
11126 and then not Within_Internal_Subprogram
11127 and then Has_Predicates (E)
11128 then
11129 declare
11130 Atyp : constant Entity_Id := Nearest_Ancestor (E);
11131 begin
11132 if Present (Atyp)
11133 and then Has_Predicates (Atyp)
11134 and then not Is_Frozen (Atyp)
11135 then
11136 Freeze_Before (N, Atyp);
11137 end if;
11138 end;
11140 Build_Predicate_Functions (E, N);
11141 end if;
11143 -- If type has delayed aspects, this is where we do the preanalysis at
11144 -- the freeze point, as part of the consistent visibility check. Note
11145 -- that this must be done after calling Build_Predicate_Functions or
11146 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11147 -- the subtype name in the saved expression so that they will not cause
11148 -- trouble in the preanalysis.
11150 -- This is also not needed in the generic case
11152 if Nongeneric_Case
11153 and then Has_Delayed_Aspects (E)
11154 and then Scope (E) = Current_Scope
11155 then
11156 -- Retrieve the visibility to the discriminants in order to properly
11157 -- analyze the aspects.
11159 Push_Scope_And_Install_Discriminants (E);
11161 declare
11162 Ritem : Node_Id;
11164 begin
11165 -- Look for aspect specification entries for this entity
11167 Ritem := First_Rep_Item (E);
11168 while Present (Ritem) loop
11169 if Nkind (Ritem) = N_Aspect_Specification
11170 and then Entity (Ritem) = E
11171 and then Is_Delayed_Aspect (Ritem)
11172 then
11173 Check_Aspect_At_Freeze_Point (Ritem);
11174 end if;
11176 Next_Rep_Item (Ritem);
11177 end loop;
11178 end;
11180 Uninstall_Discriminants_And_Pop_Scope (E);
11181 end if;
11183 -- For a record type, deal with variant parts. This has to be delayed
11184 -- to this point, because of the issue of statically predicated
11185 -- subtypes, which we have to ensure are frozen before checking
11186 -- choices, since we need to have the static choice list set.
11188 if Is_Record_Type (E) then
11189 Check_Variant_Part : declare
11190 D : constant Node_Id := Declaration_Node (E);
11191 T : Node_Id;
11192 C : Node_Id;
11193 VP : Node_Id;
11195 Others_Present : Boolean;
11196 pragma Warnings (Off, Others_Present);
11197 -- Indicates others present, not used in this case
11199 procedure Non_Static_Choice_Error (Choice : Node_Id);
11200 -- Error routine invoked by the generic instantiation below when
11201 -- the variant part has a non static choice.
11203 procedure Process_Declarations (Variant : Node_Id);
11204 -- Processes declarations associated with a variant. We analyzed
11205 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11206 -- but we still need the recursive call to Check_Choices for any
11207 -- nested variant to get its choices properly processed. This is
11208 -- also where we expand out the choices if expansion is active.
11210 package Variant_Choices_Processing is new
11211 Generic_Check_Choices
11212 (Process_Empty_Choice => No_OP,
11213 Process_Non_Static_Choice => Non_Static_Choice_Error,
11214 Process_Associated_Node => Process_Declarations);
11215 use Variant_Choices_Processing;
11217 -----------------------------
11218 -- Non_Static_Choice_Error --
11219 -----------------------------
11221 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11222 begin
11223 Flag_Non_Static_Expr
11224 ("choice given in variant part is not static!", Choice);
11225 end Non_Static_Choice_Error;
11227 --------------------------
11228 -- Process_Declarations --
11229 --------------------------
11231 procedure Process_Declarations (Variant : Node_Id) is
11232 CL : constant Node_Id := Component_List (Variant);
11233 VP : Node_Id;
11235 begin
11236 -- Check for static predicate present in this variant
11238 if Has_SP_Choice (Variant) then
11240 -- Here we expand. You might expect to find this call in
11241 -- Expand_N_Variant_Part, but that is called when we first
11242 -- see the variant part, and we cannot do this expansion
11243 -- earlier than the freeze point, since for statically
11244 -- predicated subtypes, the predicate is not known till
11245 -- the freeze point.
11247 -- Furthermore, we do this expansion even if the expander
11248 -- is not active, because other semantic processing, e.g.
11249 -- for aggregates, requires the expanded list of choices.
11251 -- If the expander is not active, then we can't just clobber
11252 -- the list since it would invalidate the ASIS -gnatct tree.
11253 -- So we have to rewrite the variant part with a Rewrite
11254 -- call that replaces it with a copy and clobber the copy.
11256 if not Expander_Active then
11257 declare
11258 NewV : constant Node_Id := New_Copy (Variant);
11259 begin
11260 Set_Discrete_Choices
11261 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11262 Rewrite (Variant, NewV);
11263 end;
11264 end if;
11266 Expand_Static_Predicates_In_Choices (Variant);
11267 end if;
11269 -- We don't need to worry about the declarations in the variant
11270 -- (since they were analyzed by Analyze_Choices when we first
11271 -- encountered the variant), but we do need to take care of
11272 -- expansion of any nested variants.
11274 if not Null_Present (CL) then
11275 VP := Variant_Part (CL);
11277 if Present (VP) then
11278 Check_Choices
11279 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11280 end if;
11281 end if;
11282 end Process_Declarations;
11284 -- Start of processing for Check_Variant_Part
11286 begin
11287 -- Find component list
11289 C := Empty;
11291 if Nkind (D) = N_Full_Type_Declaration then
11292 T := Type_Definition (D);
11294 if Nkind (T) = N_Record_Definition then
11295 C := Component_List (T);
11297 elsif Nkind (T) = N_Derived_Type_Definition
11298 and then Present (Record_Extension_Part (T))
11299 then
11300 C := Component_List (Record_Extension_Part (T));
11301 end if;
11302 end if;
11304 -- Case of variant part present
11306 if Present (C) and then Present (Variant_Part (C)) then
11307 VP := Variant_Part (C);
11309 -- Check choices
11311 Check_Choices
11312 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11314 -- If the last variant does not contain the Others choice,
11315 -- replace it with an N_Others_Choice node since Gigi always
11316 -- wants an Others. Note that we do not bother to call Analyze
11317 -- on the modified variant part, since its only effect would be
11318 -- to compute the Others_Discrete_Choices node laboriously, and
11319 -- of course we already know the list of choices corresponding
11320 -- to the others choice (it's the list we're replacing).
11322 -- We only want to do this if the expander is active, since
11323 -- we do not want to clobber the ASIS tree.
11325 if Expander_Active then
11326 declare
11327 Last_Var : constant Node_Id :=
11328 Last_Non_Pragma (Variants (VP));
11330 Others_Node : Node_Id;
11332 begin
11333 if Nkind (First (Discrete_Choices (Last_Var))) /=
11334 N_Others_Choice
11335 then
11336 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11337 Set_Others_Discrete_Choices
11338 (Others_Node, Discrete_Choices (Last_Var));
11339 Set_Discrete_Choices
11340 (Last_Var, New_List (Others_Node));
11341 end if;
11342 end;
11343 end if;
11344 end if;
11345 end Check_Variant_Part;
11346 end if;
11347 end Freeze_Entity_Checks;
11349 -------------------------
11350 -- Get_Alignment_Value --
11351 -------------------------
11353 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11354 Align : constant Uint := Static_Integer (Expr);
11356 begin
11357 if Align = No_Uint then
11358 return No_Uint;
11360 elsif Align <= 0 then
11362 -- This error is suppressed in ASIS mode to allow for different ASIS
11363 -- back ends or ASIS-based tools to query the illegal clause.
11365 if not ASIS_Mode then
11366 Error_Msg_N ("alignment value must be positive", Expr);
11367 end if;
11369 return No_Uint;
11371 else
11372 for J in Int range 0 .. 64 loop
11373 declare
11374 M : constant Uint := Uint_2 ** J;
11376 begin
11377 exit when M = Align;
11379 if M > Align then
11381 -- This error is suppressed in ASIS mode to allow for
11382 -- different ASIS back ends or ASIS-based tools to query the
11383 -- illegal clause.
11385 if not ASIS_Mode then
11386 Error_Msg_N ("alignment value must be power of 2", Expr);
11387 end if;
11389 return No_Uint;
11390 end if;
11391 end;
11392 end loop;
11394 return Align;
11395 end if;
11396 end Get_Alignment_Value;
11398 -------------------------------------
11399 -- Inherit_Aspects_At_Freeze_Point --
11400 -------------------------------------
11402 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11403 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11404 (Rep_Item : Node_Id) return Boolean;
11405 -- This routine checks if Rep_Item is either a pragma or an aspect
11406 -- specification node whose correponding pragma (if any) is present in
11407 -- the Rep Item chain of the entity it has been specified to.
11409 --------------------------------------------------
11410 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11411 --------------------------------------------------
11413 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11414 (Rep_Item : Node_Id) return Boolean
11416 begin
11417 return
11418 Nkind (Rep_Item) = N_Pragma
11419 or else Present_In_Rep_Item
11420 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11421 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11423 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11425 begin
11426 -- A representation item is either subtype-specific (Size and Alignment
11427 -- clauses) or type-related (all others). Subtype-specific aspects may
11428 -- differ for different subtypes of the same type (RM 13.1.8).
11430 -- A derived type inherits each type-related representation aspect of
11431 -- its parent type that was directly specified before the declaration of
11432 -- the derived type (RM 13.1.15).
11434 -- A derived subtype inherits each subtype-specific representation
11435 -- aspect of its parent subtype that was directly specified before the
11436 -- declaration of the derived type (RM 13.1.15).
11438 -- The general processing involves inheriting a representation aspect
11439 -- from a parent type whenever the first rep item (aspect specification,
11440 -- attribute definition clause, pragma) corresponding to the given
11441 -- representation aspect in the rep item chain of Typ, if any, isn't
11442 -- directly specified to Typ but to one of its parents.
11444 -- ??? Note that, for now, just a limited number of representation
11445 -- aspects have been inherited here so far. Many of them are
11446 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11447 -- a non- exhaustive list of aspects that likely also need to
11448 -- be moved to this routine: Alignment, Component_Alignment,
11449 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11450 -- Preelaborable_Initialization, RM_Size and Small.
11452 -- In addition, Convention must be propagated from base type to subtype,
11453 -- because the subtype may have been declared on an incomplete view.
11455 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11456 return;
11457 end if;
11459 -- Ada_05/Ada_2005
11461 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11462 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11463 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11464 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11465 then
11466 Set_Is_Ada_2005_Only (Typ);
11467 end if;
11469 -- Ada_12/Ada_2012
11471 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11472 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11473 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11474 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11475 then
11476 Set_Is_Ada_2012_Only (Typ);
11477 end if;
11479 -- Atomic/Shared
11481 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11482 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11483 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11484 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11485 then
11486 Set_Is_Atomic (Typ);
11487 Set_Is_Volatile (Typ);
11488 Set_Treat_As_Volatile (Typ);
11489 end if;
11491 -- Convention
11493 if Is_Record_Type (Typ)
11494 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11495 then
11496 Set_Convention (Typ, Convention (Base_Type (Typ)));
11497 end if;
11499 -- Default_Component_Value
11501 -- Verify that there is no rep_item declared for the type, and there
11502 -- is one coming from an ancestor.
11504 if Is_Array_Type (Typ)
11505 and then Is_Base_Type (Typ)
11506 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11507 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11508 then
11509 Set_Default_Aspect_Component_Value (Typ,
11510 Default_Aspect_Component_Value
11511 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11512 end if;
11514 -- Default_Value
11516 if Is_Scalar_Type (Typ)
11517 and then Is_Base_Type (Typ)
11518 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11519 and then Has_Rep_Item (Typ, Name_Default_Value)
11520 then
11521 Set_Has_Default_Aspect (Typ);
11522 Set_Default_Aspect_Value (Typ,
11523 Default_Aspect_Value
11524 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11525 end if;
11527 -- Discard_Names
11529 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11530 and then Has_Rep_Item (Typ, Name_Discard_Names)
11531 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11532 (Get_Rep_Item (Typ, Name_Discard_Names))
11533 then
11534 Set_Discard_Names (Typ);
11535 end if;
11537 -- Volatile
11539 if not Has_Rep_Item (Typ, Name_Volatile, False)
11540 and then Has_Rep_Item (Typ, Name_Volatile)
11541 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11542 (Get_Rep_Item (Typ, Name_Volatile))
11543 then
11544 Set_Is_Volatile (Typ);
11545 Set_Treat_As_Volatile (Typ);
11546 end if;
11548 -- Volatile_Full_Access
11550 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11551 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11552 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11553 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11554 then
11555 Set_Is_Volatile_Full_Access (Typ);
11556 Set_Is_Volatile (Typ);
11557 Set_Treat_As_Volatile (Typ);
11558 end if;
11560 -- Inheritance for derived types only
11562 if Is_Derived_Type (Typ) then
11563 declare
11564 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11565 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11567 begin
11568 -- Atomic_Components
11570 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11571 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11572 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11573 (Get_Rep_Item (Typ, Name_Atomic_Components))
11574 then
11575 Set_Has_Atomic_Components (Imp_Bas_Typ);
11576 end if;
11578 -- Volatile_Components
11580 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11581 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11582 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11583 (Get_Rep_Item (Typ, Name_Volatile_Components))
11584 then
11585 Set_Has_Volatile_Components (Imp_Bas_Typ);
11586 end if;
11588 -- Finalize_Storage_Only
11590 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11591 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11592 then
11593 Set_Finalize_Storage_Only (Bas_Typ);
11594 end if;
11596 -- Universal_Aliasing
11598 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11599 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11600 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11601 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11602 then
11603 Set_Universal_Aliasing (Imp_Bas_Typ);
11604 end if;
11606 -- Bit_Order
11608 if Is_Record_Type (Typ) then
11609 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11610 and then Has_Rep_Item (Typ, Name_Bit_Order)
11611 then
11612 Set_Reverse_Bit_Order (Bas_Typ,
11613 Reverse_Bit_Order (Entity (Name
11614 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11615 end if;
11616 end if;
11618 -- Scalar_Storage_Order
11620 -- Note: the aspect is specified on a first subtype, but recorded
11621 -- in a flag of the base type!
11623 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11624 and then Typ = Bas_Typ
11625 then
11626 -- For a type extension, always inherit from parent; otherwise
11627 -- inherit if no default applies. Note: we do not check for
11628 -- an explicit rep item on the parent type when inheriting,
11629 -- because the parent SSO may itself have been set by default.
11631 if not Has_Rep_Item (First_Subtype (Typ),
11632 Name_Scalar_Storage_Order, False)
11633 and then (Is_Tagged_Type (Bas_Typ)
11634 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11635 or else
11636 SSO_Set_High_By_Default (Bas_Typ)))
11637 then
11638 Set_Reverse_Storage_Order (Bas_Typ,
11639 Reverse_Storage_Order
11640 (Implementation_Base_Type (Etype (Bas_Typ))));
11642 -- Clear default SSO indications, since the inherited aspect
11643 -- which was set explicitly overrides the default.
11645 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11646 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11647 end if;
11648 end if;
11649 end;
11650 end if;
11651 end Inherit_Aspects_At_Freeze_Point;
11653 ----------------
11654 -- Initialize --
11655 ----------------
11657 procedure Initialize is
11658 begin
11659 Address_Clause_Checks.Init;
11660 Compile_Time_Warnings_Errors.Init;
11661 Unchecked_Conversions.Init;
11663 -- ??? Might be needed in the future for some non GCC back-ends
11664 -- if AAMP_On_Target then
11665 -- Independence_Checks.Init;
11666 -- end if;
11667 end Initialize;
11669 ---------------------------
11670 -- Install_Discriminants --
11671 ---------------------------
11673 procedure Install_Discriminants (E : Entity_Id) is
11674 Disc : Entity_Id;
11675 Prev : Entity_Id;
11676 begin
11677 Disc := First_Discriminant (E);
11678 while Present (Disc) loop
11679 Prev := Current_Entity (Disc);
11680 Set_Current_Entity (Disc);
11681 Set_Is_Immediately_Visible (Disc);
11682 Set_Homonym (Disc, Prev);
11683 Next_Discriminant (Disc);
11684 end loop;
11685 end Install_Discriminants;
11687 -------------------------
11688 -- Is_Operational_Item --
11689 -------------------------
11691 function Is_Operational_Item (N : Node_Id) return Boolean is
11692 begin
11693 if Nkind (N) /= N_Attribute_Definition_Clause then
11694 return False;
11696 else
11697 declare
11698 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11699 begin
11701 -- List of operational items is given in AARM 13.1(8.mm/1).
11702 -- It is clearly incomplete, as it does not include iterator
11703 -- aspects, among others.
11705 return Id = Attribute_Constant_Indexing
11706 or else Id = Attribute_Default_Iterator
11707 or else Id = Attribute_Implicit_Dereference
11708 or else Id = Attribute_Input
11709 or else Id = Attribute_Iterator_Element
11710 or else Id = Attribute_Iterable
11711 or else Id = Attribute_Output
11712 or else Id = Attribute_Read
11713 or else Id = Attribute_Variable_Indexing
11714 or else Id = Attribute_Write
11715 or else Id = Attribute_External_Tag;
11716 end;
11717 end if;
11718 end Is_Operational_Item;
11720 -------------------------
11721 -- Is_Predicate_Static --
11722 -------------------------
11724 -- Note: the basic legality of the expression has already been checked, so
11725 -- we don't need to worry about cases or ranges on strings for example.
11727 function Is_Predicate_Static
11728 (Expr : Node_Id;
11729 Nam : Name_Id) return Boolean
11731 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11732 -- Given a list of case expression alternatives, returns True if all
11733 -- the alternatives are static (have all static choices, and a static
11734 -- expression).
11736 function All_Static_Choices (L : List_Id) return Boolean;
11737 -- Returns true if all elements of the list are OK static choices
11738 -- as defined below for Is_Static_Choice. Used for case expression
11739 -- alternatives and for the right operand of a membership test. An
11740 -- others_choice is static if the corresponding expression is static.
11741 -- The staticness of the bounds is checked separately.
11743 function Is_Static_Choice (N : Node_Id) return Boolean;
11744 -- Returns True if N represents a static choice (static subtype, or
11745 -- static subtype indication, or static expression, or static range).
11747 -- Note that this is a bit more inclusive than we actually need
11748 -- (in particular membership tests do not allow the use of subtype
11749 -- indications). But that doesn't matter, we have already checked
11750 -- that the construct is legal to get this far.
11752 function Is_Type_Ref (N : Node_Id) return Boolean;
11753 pragma Inline (Is_Type_Ref);
11754 -- Returns True if N is a reference to the type for the predicate in the
11755 -- expression (i.e. if it is an identifier whose Chars field matches the
11756 -- Nam given in the call). N must not be parenthesized, if the type name
11757 -- appears in parens, this routine will return False.
11759 -- The routine also returns True for function calls generated during the
11760 -- expansion of comparison operators on strings, which are intended to
11761 -- be legal in static predicates, and are converted into calls to array
11762 -- comparison routines in the body of the corresponding predicate
11763 -- function.
11765 ----------------------------------
11766 -- All_Static_Case_Alternatives --
11767 ----------------------------------
11769 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11770 N : Node_Id;
11772 begin
11773 N := First (L);
11774 while Present (N) loop
11775 if not (All_Static_Choices (Discrete_Choices (N))
11776 and then Is_OK_Static_Expression (Expression (N)))
11777 then
11778 return False;
11779 end if;
11781 Next (N);
11782 end loop;
11784 return True;
11785 end All_Static_Case_Alternatives;
11787 ------------------------
11788 -- All_Static_Choices --
11789 ------------------------
11791 function All_Static_Choices (L : List_Id) return Boolean is
11792 N : Node_Id;
11794 begin
11795 N := First (L);
11796 while Present (N) loop
11797 if not Is_Static_Choice (N) then
11798 return False;
11799 end if;
11801 Next (N);
11802 end loop;
11804 return True;
11805 end All_Static_Choices;
11807 ----------------------
11808 -- Is_Static_Choice --
11809 ----------------------
11811 function Is_Static_Choice (N : Node_Id) return Boolean is
11812 begin
11813 return Nkind (N) = N_Others_Choice
11814 or else Is_OK_Static_Expression (N)
11815 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11816 and then Is_OK_Static_Subtype (Entity (N)))
11817 or else (Nkind (N) = N_Subtype_Indication
11818 and then Is_OK_Static_Subtype (Entity (N)))
11819 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11820 end Is_Static_Choice;
11822 -----------------
11823 -- Is_Type_Ref --
11824 -----------------
11826 function Is_Type_Ref (N : Node_Id) return Boolean is
11827 begin
11828 return (Nkind (N) = N_Identifier
11829 and then Chars (N) = Nam
11830 and then Paren_Count (N) = 0)
11831 or else Nkind (N) = N_Function_Call;
11832 end Is_Type_Ref;
11834 -- Start of processing for Is_Predicate_Static
11836 begin
11837 -- Predicate_Static means one of the following holds. Numbers are the
11838 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11840 -- 16: A static expression
11842 if Is_OK_Static_Expression (Expr) then
11843 return True;
11845 -- 17: A membership test whose simple_expression is the current
11846 -- instance, and whose membership_choice_list meets the requirements
11847 -- for a static membership test.
11849 elsif Nkind (Expr) in N_Membership_Test
11850 and then ((Present (Right_Opnd (Expr))
11851 and then Is_Static_Choice (Right_Opnd (Expr)))
11852 or else
11853 (Present (Alternatives (Expr))
11854 and then All_Static_Choices (Alternatives (Expr))))
11855 then
11856 return True;
11858 -- 18. A case_expression whose selecting_expression is the current
11859 -- instance, and whose dependent expressions are static expressions.
11861 elsif Nkind (Expr) = N_Case_Expression
11862 and then Is_Type_Ref (Expression (Expr))
11863 and then All_Static_Case_Alternatives (Alternatives (Expr))
11864 then
11865 return True;
11867 -- 19. A call to a predefined equality or ordering operator, where one
11868 -- operand is the current instance, and the other is a static
11869 -- expression.
11871 -- Note: the RM is clearly wrong here in not excluding string types.
11872 -- Without this exclusion, we would allow expressions like X > "ABC"
11873 -- to be considered as predicate-static, which is clearly not intended,
11874 -- since the idea is for predicate-static to be a subset of normal
11875 -- static expressions (and "DEF" > "ABC" is not a static expression).
11877 -- However, we do allow internally generated (not from source) equality
11878 -- and inequality operations to be valid on strings (this helps deal
11879 -- with cases where we transform A in "ABC" to A = "ABC).
11881 -- In fact, it appears that the intent of the ARG is to extend static
11882 -- predicates to strings, and that the extension should probably apply
11883 -- to static expressions themselves. The code below accepts comparison
11884 -- operators that apply to static strings.
11886 elsif Nkind (Expr) in N_Op_Compare
11887 and then ((Is_Type_Ref (Left_Opnd (Expr))
11888 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11889 or else
11890 (Is_Type_Ref (Right_Opnd (Expr))
11891 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11892 then
11893 return True;
11895 -- 20. A call to a predefined boolean logical operator, where each
11896 -- operand is predicate-static.
11898 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11899 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11900 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11901 or else
11902 (Nkind (Expr) = N_Op_Not
11903 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11904 then
11905 return True;
11907 -- 21. A short-circuit control form where both operands are
11908 -- predicate-static.
11910 elsif Nkind (Expr) in N_Short_Circuit
11911 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11912 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11913 then
11914 return True;
11916 -- 22. A parenthesized predicate-static expression. This does not
11917 -- require any special test, since we just ignore paren levels in
11918 -- all the cases above.
11920 -- One more test that is an implementation artifact caused by the fact
11921 -- that we are analyzing not the original expression, but the generated
11922 -- expression in the body of the predicate function. This can include
11923 -- references to inherited predicates, so that the expression we are
11924 -- processing looks like:
11926 -- xxPredicate (typ (Inns)) and then expression
11928 -- Where the call is to a Predicate function for an inherited predicate.
11929 -- We simply ignore such a call, which could be to either a dynamic or
11930 -- a static predicate. Note that if the parent predicate is dynamic then
11931 -- eventually this type will be marked as dynamic, but you are allowed
11932 -- to specify a static predicate for a subtype which is inheriting a
11933 -- dynamic predicate, so the static predicate validation here ignores
11934 -- the inherited predicate even if it is dynamic.
11935 -- In all cases, a static predicate can only apply to a scalar type.
11937 elsif Nkind (Expr) = N_Function_Call
11938 and then Is_Predicate_Function (Entity (Name (Expr)))
11939 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11940 then
11941 return True;
11943 elsif Is_Entity_Name (Expr)
11944 and then Entity (Expr) = Standard_True
11945 then
11946 Error_Msg_N ("predicate is redundant (always True)?", Expr);
11947 return True;
11949 -- That's an exhaustive list of tests, all other cases are not
11950 -- predicate-static, so we return False.
11952 else
11953 return False;
11954 end if;
11955 end Is_Predicate_Static;
11957 ---------------------
11958 -- Kill_Rep_Clause --
11959 ---------------------
11961 procedure Kill_Rep_Clause (N : Node_Id) is
11962 begin
11963 pragma Assert (Ignore_Rep_Clauses);
11965 -- Note: we use Replace rather than Rewrite, because we don't want
11966 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11967 -- rep clause that is being replaced.
11969 Replace (N, Make_Null_Statement (Sloc (N)));
11971 -- The null statement must be marked as not coming from source. This is
11972 -- so that ASIS ignores it, and also the back end does not expect bogus
11973 -- "from source" null statements in weird places (e.g. in declarative
11974 -- regions where such null statements are not allowed).
11976 Set_Comes_From_Source (N, False);
11977 end Kill_Rep_Clause;
11979 ------------------
11980 -- Minimum_Size --
11981 ------------------
11983 function Minimum_Size
11984 (T : Entity_Id;
11985 Biased : Boolean := False) return Nat
11987 Lo : Uint := No_Uint;
11988 Hi : Uint := No_Uint;
11989 LoR : Ureal := No_Ureal;
11990 HiR : Ureal := No_Ureal;
11991 LoSet : Boolean := False;
11992 HiSet : Boolean := False;
11993 B : Uint;
11994 S : Nat;
11995 Ancest : Entity_Id;
11996 R_Typ : constant Entity_Id := Root_Type (T);
11998 begin
11999 -- If bad type, return 0
12001 if T = Any_Type then
12002 return 0;
12004 -- For generic types, just return zero. There cannot be any legitimate
12005 -- need to know such a size, but this routine may be called with a
12006 -- generic type as part of normal processing.
12008 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
12009 return 0;
12011 -- Access types (cannot have size smaller than System.Address)
12013 elsif Is_Access_Type (T) then
12014 return System_Address_Size;
12016 -- Floating-point types
12018 elsif Is_Floating_Point_Type (T) then
12019 return UI_To_Int (Esize (R_Typ));
12021 -- Discrete types
12023 elsif Is_Discrete_Type (T) then
12025 -- The following loop is looking for the nearest compile time known
12026 -- bounds following the ancestor subtype chain. The idea is to find
12027 -- the most restrictive known bounds information.
12029 Ancest := T;
12030 loop
12031 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12032 return 0;
12033 end if;
12035 if not LoSet then
12036 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12037 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12038 LoSet := True;
12039 exit when HiSet;
12040 end if;
12041 end if;
12043 if not HiSet then
12044 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12045 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12046 HiSet := True;
12047 exit when LoSet;
12048 end if;
12049 end if;
12051 Ancest := Ancestor_Subtype (Ancest);
12053 if No (Ancest) then
12054 Ancest := Base_Type (T);
12056 if Is_Generic_Type (Ancest) then
12057 return 0;
12058 end if;
12059 end if;
12060 end loop;
12062 -- Fixed-point types. We can't simply use Expr_Value to get the
12063 -- Corresponding_Integer_Value values of the bounds, since these do not
12064 -- get set till the type is frozen, and this routine can be called
12065 -- before the type is frozen. Similarly the test for bounds being static
12066 -- needs to include the case where we have unanalyzed real literals for
12067 -- the same reason.
12069 elsif Is_Fixed_Point_Type (T) then
12071 -- The following loop is looking for the nearest compile time known
12072 -- bounds following the ancestor subtype chain. The idea is to find
12073 -- the most restrictive known bounds information.
12075 Ancest := T;
12076 loop
12077 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12078 return 0;
12079 end if;
12081 -- Note: In the following two tests for LoSet and HiSet, it may
12082 -- seem redundant to test for N_Real_Literal here since normally
12083 -- one would assume that the test for the value being known at
12084 -- compile time includes this case. However, there is a glitch.
12085 -- If the real literal comes from folding a non-static expression,
12086 -- then we don't consider any non- static expression to be known
12087 -- at compile time if we are in configurable run time mode (needed
12088 -- in some cases to give a clearer definition of what is and what
12089 -- is not accepted). So the test is indeed needed. Without it, we
12090 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12092 if not LoSet then
12093 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12094 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12095 then
12096 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12097 LoSet := True;
12098 exit when HiSet;
12099 end if;
12100 end if;
12102 if not HiSet then
12103 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12104 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12105 then
12106 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12107 HiSet := True;
12108 exit when LoSet;
12109 end if;
12110 end if;
12112 Ancest := Ancestor_Subtype (Ancest);
12114 if No (Ancest) then
12115 Ancest := Base_Type (T);
12117 if Is_Generic_Type (Ancest) then
12118 return 0;
12119 end if;
12120 end if;
12121 end loop;
12123 Lo := UR_To_Uint (LoR / Small_Value (T));
12124 Hi := UR_To_Uint (HiR / Small_Value (T));
12126 -- No other types allowed
12128 else
12129 raise Program_Error;
12130 end if;
12132 -- Fall through with Hi and Lo set. Deal with biased case
12134 if (Biased
12135 and then not Is_Fixed_Point_Type (T)
12136 and then not (Is_Enumeration_Type (T)
12137 and then Has_Non_Standard_Rep (T)))
12138 or else Has_Biased_Representation (T)
12139 then
12140 Hi := Hi - Lo;
12141 Lo := Uint_0;
12142 end if;
12144 -- Null range case, size is always zero. We only do this in the discrete
12145 -- type case, since that's the odd case that came up. Probably we should
12146 -- also do this in the fixed-point case, but doing so causes peculiar
12147 -- gigi failures, and it is not worth worrying about this incredibly
12148 -- marginal case (explicit null-range fixed-point type declarations)???
12150 if Lo > Hi and then Is_Discrete_Type (T) then
12151 S := 0;
12153 -- Signed case. Note that we consider types like range 1 .. -1 to be
12154 -- signed for the purpose of computing the size, since the bounds have
12155 -- to be accommodated in the base type.
12157 elsif Lo < 0 or else Hi < 0 then
12158 S := 1;
12159 B := Uint_1;
12161 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12162 -- Note that we accommodate the case where the bounds cross. This
12163 -- can happen either because of the way the bounds are declared
12164 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12166 while Lo < -B
12167 or else Hi < -B
12168 or else Lo >= B
12169 or else Hi >= B
12170 loop
12171 B := Uint_2 ** S;
12172 S := S + 1;
12173 end loop;
12175 -- Unsigned case
12177 else
12178 -- If both bounds are positive, make sure that both are represen-
12179 -- table in the case where the bounds are crossed. This can happen
12180 -- either because of the way the bounds are declared, or because of
12181 -- the algorithm in Freeze_Fixed_Point_Type.
12183 if Lo > Hi then
12184 Hi := Lo;
12185 end if;
12187 -- S = size, (can accommodate 0 .. (2**size - 1))
12189 S := 0;
12190 while Hi >= Uint_2 ** S loop
12191 S := S + 1;
12192 end loop;
12193 end if;
12195 return S;
12196 end Minimum_Size;
12198 ---------------------------
12199 -- New_Stream_Subprogram --
12200 ---------------------------
12202 procedure New_Stream_Subprogram
12203 (N : Node_Id;
12204 Ent : Entity_Id;
12205 Subp : Entity_Id;
12206 Nam : TSS_Name_Type)
12208 Loc : constant Source_Ptr := Sloc (N);
12209 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12210 Subp_Id : Entity_Id;
12211 Subp_Decl : Node_Id;
12212 F : Entity_Id;
12213 Etyp : Entity_Id;
12215 Defer_Declaration : constant Boolean :=
12216 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12217 -- For a tagged type, there is a declaration for each stream attribute
12218 -- at the freeze point, and we must generate only a completion of this
12219 -- declaration. We do the same for private types, because the full view
12220 -- might be tagged. Otherwise we generate a declaration at the point of
12221 -- the attribute definition clause. If the attribute definition comes
12222 -- from an aspect specification the declaration is part of the freeze
12223 -- actions of the type.
12225 function Build_Spec return Node_Id;
12226 -- Used for declaration and renaming declaration, so that this is
12227 -- treated as a renaming_as_body.
12229 ----------------
12230 -- Build_Spec --
12231 ----------------
12233 function Build_Spec return Node_Id is
12234 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12235 Formals : List_Id;
12236 Spec : Node_Id;
12237 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12239 begin
12240 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12242 -- S : access Root_Stream_Type'Class
12244 Formals := New_List (
12245 Make_Parameter_Specification (Loc,
12246 Defining_Identifier =>
12247 Make_Defining_Identifier (Loc, Name_S),
12248 Parameter_Type =>
12249 Make_Access_Definition (Loc,
12250 Subtype_Mark =>
12251 New_Occurrence_Of (
12252 Designated_Type (Etype (F)), Loc))));
12254 if Nam = TSS_Stream_Input then
12255 Spec :=
12256 Make_Function_Specification (Loc,
12257 Defining_Unit_Name => Subp_Id,
12258 Parameter_Specifications => Formals,
12259 Result_Definition => T_Ref);
12260 else
12261 -- V : [out] T
12263 Append_To (Formals,
12264 Make_Parameter_Specification (Loc,
12265 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12266 Out_Present => Out_P,
12267 Parameter_Type => T_Ref));
12269 Spec :=
12270 Make_Procedure_Specification (Loc,
12271 Defining_Unit_Name => Subp_Id,
12272 Parameter_Specifications => Formals);
12273 end if;
12275 return Spec;
12276 end Build_Spec;
12278 -- Start of processing for New_Stream_Subprogram
12280 begin
12281 F := First_Formal (Subp);
12283 if Ekind (Subp) = E_Procedure then
12284 Etyp := Etype (Next_Formal (F));
12285 else
12286 Etyp := Etype (Subp);
12287 end if;
12289 -- Prepare subprogram declaration and insert it as an action on the
12290 -- clause node. The visibility for this entity is used to test for
12291 -- visibility of the attribute definition clause (in the sense of
12292 -- 8.3(23) as amended by AI-195).
12294 if not Defer_Declaration then
12295 Subp_Decl :=
12296 Make_Subprogram_Declaration (Loc,
12297 Specification => Build_Spec);
12299 -- For a tagged type, there is always a visible declaration for each
12300 -- stream TSS (it is a predefined primitive operation), and the
12301 -- completion of this declaration occurs at the freeze point, which is
12302 -- not always visible at places where the attribute definition clause is
12303 -- visible. So, we create a dummy entity here for the purpose of
12304 -- tracking the visibility of the attribute definition clause itself.
12306 else
12307 Subp_Id :=
12308 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12309 Subp_Decl :=
12310 Make_Object_Declaration (Loc,
12311 Defining_Identifier => Subp_Id,
12312 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12313 end if;
12315 if not Defer_Declaration
12316 and then From_Aspect_Specification (N)
12317 and then Has_Delayed_Freeze (Ent)
12318 then
12319 Append_Freeze_Action (Ent, Subp_Decl);
12321 else
12322 Insert_Action (N, Subp_Decl);
12323 Set_Entity (N, Subp_Id);
12324 end if;
12326 Subp_Decl :=
12327 Make_Subprogram_Renaming_Declaration (Loc,
12328 Specification => Build_Spec,
12329 Name => New_Occurrence_Of (Subp, Loc));
12331 if Defer_Declaration then
12332 Set_TSS (Base_Type (Ent), Subp_Id);
12334 else
12335 if From_Aspect_Specification (N) then
12336 Append_Freeze_Action (Ent, Subp_Decl);
12337 else
12338 Insert_Action (N, Subp_Decl);
12339 end if;
12341 Copy_TSS (Subp_Id, Base_Type (Ent));
12342 end if;
12343 end New_Stream_Subprogram;
12345 ------------------------------------------
12346 -- Push_Scope_And_Install_Discriminants --
12347 ------------------------------------------
12349 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12350 begin
12351 if Is_Type (E) and then Has_Discriminants (E) then
12352 Push_Scope (E);
12354 -- Make the discriminants visible for type declarations and protected
12355 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12357 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12358 Install_Discriminants (E);
12359 end if;
12360 end if;
12361 end Push_Scope_And_Install_Discriminants;
12363 -----------------------------------
12364 -- Register_Address_Clause_Check --
12365 -----------------------------------
12367 procedure Register_Address_Clause_Check
12368 (N : Node_Id;
12369 X : Entity_Id;
12370 A : Uint;
12371 Y : Entity_Id;
12372 Off : Boolean)
12374 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12375 begin
12376 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12377 end Register_Address_Clause_Check;
12379 ------------------------
12380 -- Rep_Item_Too_Early --
12381 ------------------------
12383 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12384 begin
12385 -- Cannot apply non-operational rep items to generic types
12387 if Is_Operational_Item (N) then
12388 return False;
12390 elsif Is_Type (T)
12391 and then Is_Generic_Type (Root_Type (T))
12392 and then (Nkind (N) /= N_Pragma
12393 or else Get_Pragma_Id (N) /= Pragma_Convention)
12394 then
12395 Error_Msg_N ("representation item not allowed for generic type", N);
12396 return True;
12397 end if;
12399 -- Otherwise check for incomplete type
12401 if Is_Incomplete_Or_Private_Type (T)
12402 and then No (Underlying_Type (T))
12403 and then
12404 (Nkind (N) /= N_Pragma
12405 or else Get_Pragma_Id (N) /= Pragma_Import)
12406 then
12407 Error_Msg_N
12408 ("representation item must be after full type declaration", N);
12409 return True;
12411 -- If the type has incomplete components, a representation clause is
12412 -- illegal but stream attributes and Convention pragmas are correct.
12414 elsif Has_Private_Component (T) then
12415 if Nkind (N) = N_Pragma then
12416 return False;
12418 else
12419 Error_Msg_N
12420 ("representation item must appear after type is fully defined",
12422 return True;
12423 end if;
12424 else
12425 return False;
12426 end if;
12427 end Rep_Item_Too_Early;
12429 -----------------------
12430 -- Rep_Item_Too_Late --
12431 -----------------------
12433 function Rep_Item_Too_Late
12434 (T : Entity_Id;
12435 N : Node_Id;
12436 FOnly : Boolean := False) return Boolean
12438 S : Entity_Id;
12439 Parent_Type : Entity_Id;
12441 procedure No_Type_Rep_Item;
12442 -- Output message indicating that no type-related aspects can be
12443 -- specified due to some property of the parent type.
12445 procedure Too_Late;
12446 -- Output message for an aspect being specified too late
12448 -- Note that neither of the above errors is considered a serious one,
12449 -- since the effect is simply that we ignore the representation clause
12450 -- in these cases.
12451 -- Is this really true? In any case if we make this change we must
12452 -- document the requirement in the spec of Rep_Item_Too_Late that
12453 -- if True is returned, then the rep item must be completely ignored???
12455 ----------------------
12456 -- No_Type_Rep_Item --
12457 ----------------------
12459 procedure No_Type_Rep_Item is
12460 begin
12461 Error_Msg_N ("|type-related representation item not permitted!", N);
12462 end No_Type_Rep_Item;
12464 --------------
12465 -- Too_Late --
12466 --------------
12468 procedure Too_Late is
12469 begin
12470 -- Other compilers seem more relaxed about rep items appearing too
12471 -- late. Since analysis tools typically don't care about rep items
12472 -- anyway, no reason to be too strict about this.
12474 if not Relaxed_RM_Semantics then
12475 Error_Msg_N ("|representation item appears too late!", N);
12476 end if;
12477 end Too_Late;
12479 -- Start of processing for Rep_Item_Too_Late
12481 begin
12482 -- First make sure entity is not frozen (RM 13.1(9))
12484 if Is_Frozen (T)
12486 -- Exclude imported types, which may be frozen if they appear in a
12487 -- representation clause for a local type.
12489 and then not From_Limited_With (T)
12491 -- Exclude generated entities (not coming from source). The common
12492 -- case is when we generate a renaming which prematurely freezes the
12493 -- renamed internal entity, but we still want to be able to set copies
12494 -- of attribute values such as Size/Alignment.
12496 and then Comes_From_Source (T)
12497 then
12498 -- A self-referential aspect is illegal if it forces freezing the
12499 -- entity before the corresponding pragma has been analyzed.
12501 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12502 and then From_Aspect_Specification (N)
12503 then
12504 Error_Msg_NE
12505 ("aspect specification causes premature freezing of&", N, T);
12506 Set_Has_Delayed_Freeze (T, False);
12507 return True;
12508 end if;
12510 Too_Late;
12511 S := First_Subtype (T);
12513 if Present (Freeze_Node (S)) then
12514 if not Relaxed_RM_Semantics then
12515 Error_Msg_NE
12516 ("??no more representation items for }", Freeze_Node (S), S);
12517 end if;
12518 end if;
12520 return True;
12522 -- Check for case of untagged derived type whose parent either has
12523 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12524 -- this case we do not output a Too_Late message, since there is no
12525 -- earlier point where the rep item could be placed to make it legal.
12527 elsif Is_Type (T)
12528 and then not FOnly
12529 and then Is_Derived_Type (T)
12530 and then not Is_Tagged_Type (T)
12531 then
12532 Parent_Type := Etype (Base_Type (T));
12534 if Has_Primitive_Operations (Parent_Type) then
12535 No_Type_Rep_Item;
12537 if not Relaxed_RM_Semantics then
12538 Error_Msg_NE
12539 ("\parent type & has primitive operations!", N, Parent_Type);
12540 end if;
12542 return True;
12544 elsif Is_By_Reference_Type (Parent_Type) then
12545 No_Type_Rep_Item;
12547 if not Relaxed_RM_Semantics then
12548 Error_Msg_NE
12549 ("\parent type & is a by reference type!", N, Parent_Type);
12550 end if;
12552 return True;
12553 end if;
12554 end if;
12556 -- No error, but one more warning to consider. The RM (surprisingly)
12557 -- allows this pattern:
12559 -- type S is ...
12560 -- primitive operations for S
12561 -- type R is new S;
12562 -- rep clause for S
12564 -- Meaning that calls on the primitive operations of S for values of
12565 -- type R may require possibly expensive implicit conversion operations.
12566 -- This is not an error, but is worth a warning.
12568 if not Relaxed_RM_Semantics and then Is_Type (T) then
12569 declare
12570 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12572 begin
12573 if Present (DTL)
12574 and then Has_Primitive_Operations (Base_Type (T))
12576 -- For now, do not generate this warning for the case of aspect
12577 -- specification using Ada 2012 syntax, since we get wrong
12578 -- messages we do not understand. The whole business of derived
12579 -- types and rep items seems a bit confused when aspects are
12580 -- used, since the aspects are not evaluated till freeze time.
12582 and then not From_Aspect_Specification (N)
12583 then
12584 Error_Msg_Sloc := Sloc (DTL);
12585 Error_Msg_N
12586 ("representation item for& appears after derived type "
12587 & "declaration#??", N);
12588 Error_Msg_NE
12589 ("\may result in implicit conversions for primitive "
12590 & "operations of&??", N, T);
12591 Error_Msg_NE
12592 ("\to change representations when called with arguments "
12593 & "of type&??", N, DTL);
12594 end if;
12595 end;
12596 end if;
12598 -- No error, link item into head of chain of rep items for the entity,
12599 -- but avoid chaining if we have an overloadable entity, and the pragma
12600 -- is one that can apply to multiple overloaded entities.
12602 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12603 declare
12604 Pname : constant Name_Id := Pragma_Name (N);
12605 begin
12606 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12607 Name_External, Name_Interface)
12608 then
12609 return False;
12610 end if;
12611 end;
12612 end if;
12614 Record_Rep_Item (T, N);
12615 return False;
12616 end Rep_Item_Too_Late;
12618 -------------------------------------
12619 -- Replace_Type_References_Generic --
12620 -------------------------------------
12622 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12623 TName : constant Name_Id := Chars (T);
12625 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12626 -- Processes a single node in the traversal procedure below, checking
12627 -- if node N should be replaced, and if so, doing the replacement.
12629 function Visible_Component (Comp : Name_Id) return Entity_Id;
12630 -- Given an identifier in the expression, check whether there is a
12631 -- discriminant or component of the type that is directy visible, and
12632 -- rewrite it as the corresponding selected component of the formal of
12633 -- the subprogram. The entity is located by a sequential search, which
12634 -- seems acceptable given the typical size of component lists and check
12635 -- expressions. Possible optimization ???
12637 ----------------------
12638 -- Replace_Type_Ref --
12639 ----------------------
12641 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12642 Loc : constant Source_Ptr := Sloc (N);
12644 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12645 -- Add the proper prefix to a reference to a component of the type
12646 -- when it is not already a selected component.
12648 ----------------
12649 -- Add_Prefix --
12650 ----------------
12652 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12653 begin
12654 Rewrite (Ref,
12655 Make_Selected_Component (Loc,
12656 Prefix => New_Occurrence_Of (T, Loc),
12657 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12658 Replace_Type_Reference (Prefix (Ref));
12659 end Add_Prefix;
12661 -- Local variables
12663 Comp : Entity_Id;
12664 Pref : Node_Id;
12665 Scop : Entity_Id;
12667 -- Start of processing for Replace_Type_Ref
12669 begin
12670 if Nkind (N) = N_Identifier then
12672 -- If not the type name, check whether it is a reference to some
12673 -- other type, which must be frozen before the predicate function
12674 -- is analyzed, i.e. before the freeze node of the type to which
12675 -- the predicate applies.
12677 if Chars (N) /= TName then
12678 if Present (Current_Entity (N))
12679 and then Is_Type (Current_Entity (N))
12680 then
12681 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12682 end if;
12684 -- The components of the type are directly visible and can
12685 -- be referenced without a prefix.
12687 if Nkind (Parent (N)) = N_Selected_Component then
12688 null;
12690 -- In expression C (I), C may be a directly visible function
12691 -- or a visible component that has an array type. Disambiguate
12692 -- by examining the component type.
12694 elsif Nkind (Parent (N)) = N_Indexed_Component
12695 and then N = Prefix (Parent (N))
12696 then
12697 Comp := Visible_Component (Chars (N));
12699 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12700 Add_Prefix (N, Comp);
12701 end if;
12703 else
12704 Comp := Visible_Component (Chars (N));
12706 if Present (Comp) then
12707 Add_Prefix (N, Comp);
12708 end if;
12709 end if;
12711 return Skip;
12713 -- Otherwise do the replacement if this is not a qualified
12714 -- reference to a homograph of the type itself. Note that the
12715 -- current instance could not appear in such a context, e.g.
12716 -- the prefix of a type conversion.
12718 else
12719 if Nkind (Parent (N)) /= N_Selected_Component
12720 or else N /= Selector_Name (Parent (N))
12721 then
12722 Replace_Type_Reference (N);
12723 end if;
12725 return Skip;
12726 end if;
12728 -- Case of selected component, which may be a subcomponent of the
12729 -- current instance, or an expanded name which is still unanalyzed.
12731 elsif Nkind (N) = N_Selected_Component then
12733 -- If selector name is not our type, keep going (we might still
12734 -- have an occurrence of the type in the prefix). If it is a
12735 -- subcomponent of the current entity, add prefix.
12737 if Nkind (Selector_Name (N)) /= N_Identifier
12738 or else Chars (Selector_Name (N)) /= TName
12739 then
12740 if Nkind (Prefix (N)) = N_Identifier then
12741 Comp := Visible_Component (Chars (Prefix (N)));
12743 if Present (Comp) then
12744 Add_Prefix (Prefix (N), Comp);
12745 end if;
12746 end if;
12748 return OK;
12750 -- Selector name is our type, check qualification
12752 else
12753 -- Loop through scopes and prefixes, doing comparison
12755 Scop := Current_Scope;
12756 Pref := Prefix (N);
12757 loop
12758 -- Continue if no more scopes or scope with no name
12760 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12761 return OK;
12762 end if;
12764 -- Do replace if prefix is an identifier matching the scope
12765 -- that we are currently looking at.
12767 if Nkind (Pref) = N_Identifier
12768 and then Chars (Pref) = Chars (Scop)
12769 then
12770 Replace_Type_Reference (N);
12771 return Skip;
12772 end if;
12774 -- Go check scope above us if prefix is itself of the form
12775 -- of a selected component, whose selector matches the scope
12776 -- we are currently looking at.
12778 if Nkind (Pref) = N_Selected_Component
12779 and then Nkind (Selector_Name (Pref)) = N_Identifier
12780 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12781 then
12782 Scop := Scope (Scop);
12783 Pref := Prefix (Pref);
12785 -- For anything else, we don't have a match, so keep on
12786 -- going, there are still some weird cases where we may
12787 -- still have a replacement within the prefix.
12789 else
12790 return OK;
12791 end if;
12792 end loop;
12793 end if;
12795 -- Continue for any other node kind
12797 else
12798 return OK;
12799 end if;
12800 end Replace_Type_Ref;
12802 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12804 -----------------------
12805 -- Visible_Component --
12806 -----------------------
12808 function Visible_Component (Comp : Name_Id) return Entity_Id is
12809 E : Entity_Id;
12811 begin
12812 -- Types with nameable components are records and discriminated
12813 -- private types.
12815 if Ekind (T) = E_Record_Type
12816 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12817 then
12818 E := First_Entity (T);
12819 while Present (E) loop
12820 if Comes_From_Source (E) and then Chars (E) = Comp then
12821 return E;
12822 end if;
12824 Next_Entity (E);
12825 end loop;
12826 end if;
12828 -- Nothing by that name, or the type has no components
12830 return Empty;
12831 end Visible_Component;
12833 -- Start of processing for Replace_Type_References_Generic
12835 begin
12836 Replace_Type_Refs (N);
12837 end Replace_Type_References_Generic;
12839 --------------------------------
12840 -- Resolve_Aspect_Expressions --
12841 --------------------------------
12843 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12844 function Resolve_Name (N : Node_Id) return Traverse_Result;
12845 -- Verify that all identifiers in the expression, with the exception
12846 -- of references to the current entity, denote visible entities. This
12847 -- is done only to detect visibility errors, as the expression will be
12848 -- properly analyzed/expanded during analysis of the predicate function
12849 -- body. We omit quantified expressions from this test, given that they
12850 -- introduce a local identifier that would require proper expansion to
12851 -- handle properly.
12853 -- In ASIS_Mode we preserve the entity in the source because there is
12854 -- no subsequent expansion to decorate the tree.
12856 ------------------
12857 -- Resolve_Name --
12858 ------------------
12860 function Resolve_Name (N : Node_Id) return Traverse_Result is
12861 Dummy : Traverse_Result;
12863 begin
12864 if Nkind (N) = N_Selected_Component then
12865 if Nkind (Prefix (N)) = N_Identifier
12866 and then Chars (Prefix (N)) /= Chars (E)
12867 then
12868 Find_Selected_Component (N);
12869 end if;
12871 return Skip;
12873 -- Resolve identifiers that are not selectors in parameter
12874 -- associations (these are never resolved by visibility).
12876 elsif Nkind (N) = N_Identifier
12877 and then Chars (N) /= Chars (E)
12878 and then (Nkind (Parent (N)) /= N_Parameter_Association
12879 or else N /= Selector_Name (Parent (N)))
12880 then
12881 Find_Direct_Name (N);
12883 -- In ASIS mode we must analyze overloaded identifiers to ensure
12884 -- their correct decoration because expansion is disabled (and
12885 -- the expansion of freeze nodes takes care of resolving aspect
12886 -- expressions).
12888 if ASIS_Mode then
12889 if Is_Overloaded (N) then
12890 Analyze (Parent (N));
12891 end if;
12892 else
12893 Set_Entity (N, Empty);
12894 end if;
12896 -- The name is component association needs no resolution.
12898 elsif Nkind (N) = N_Component_Association then
12899 Dummy := Resolve_Name (Expression (N));
12900 return Skip;
12902 elsif Nkind (N) = N_Quantified_Expression then
12903 return Skip;
12904 end if;
12906 return OK;
12907 end Resolve_Name;
12909 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12911 -- Local variables
12913 ASN : Node_Id := First_Rep_Item (E);
12915 -- Start of processing for Resolve_Aspect_Expressions
12917 begin
12918 -- Need to make sure discriminants, if any, are directly visible
12920 Push_Scope_And_Install_Discriminants (E);
12922 while Present (ASN) loop
12923 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12924 declare
12925 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12926 Expr : constant Node_Id := Expression (ASN);
12928 begin
12929 case A_Id is
12931 -- For now we only deal with aspects that do not generate
12932 -- subprograms, or that may mention current instances of
12933 -- types. These will require special handling (???TBD).
12935 when Aspect_Invariant
12936 | Aspect_Predicate
12937 | Aspect_Predicate_Failure
12939 null;
12941 when Aspect_Dynamic_Predicate
12942 | Aspect_Static_Predicate
12944 -- Build predicate function specification and preanalyze
12945 -- expression after type replacement. The function
12946 -- declaration must be analyzed in the scope of the
12947 -- type, but the expression must see components.
12949 if No (Predicate_Function (E)) then
12950 Uninstall_Discriminants_And_Pop_Scope (E);
12951 declare
12952 FDecl : constant Node_Id :=
12953 Build_Predicate_Function_Declaration (E);
12954 pragma Unreferenced (FDecl);
12956 begin
12957 Push_Scope_And_Install_Discriminants (E);
12958 Resolve_Aspect_Expression (Expr);
12959 end;
12960 end if;
12962 when Pre_Post_Aspects =>
12963 null;
12965 when Aspect_Iterable =>
12966 if Nkind (Expr) = N_Aggregate then
12967 declare
12968 Assoc : Node_Id;
12970 begin
12971 Assoc := First (Component_Associations (Expr));
12972 while Present (Assoc) loop
12973 Find_Direct_Name (Expression (Assoc));
12974 Next (Assoc);
12975 end loop;
12976 end;
12977 end if;
12979 -- The expression for Default_Value is a static expression
12980 -- of the type, but this expression does not freeze the
12981 -- type, so it can still appear in a representation clause
12982 -- before the actual freeze point.
12984 when Aspect_Default_Value =>
12985 Set_Must_Not_Freeze (Expr);
12986 Preanalyze_Spec_Expression (Expr, E);
12988 -- Ditto for Storage_Size. Any other aspects that carry
12989 -- expressions that should not freeze ??? This is only
12990 -- relevant to the misuse of deferred constants.
12992 when Aspect_Storage_Size =>
12993 Set_Must_Not_Freeze (Expr);
12994 Preanalyze_Spec_Expression (Expr, Any_Integer);
12996 when others =>
12997 if Present (Expr) then
12998 case Aspect_Argument (A_Id) is
12999 when Expression
13000 | Optional_Expression
13002 Analyze_And_Resolve (Expr);
13004 when Name
13005 | Optional_Name
13007 if Nkind (Expr) = N_Identifier then
13008 Find_Direct_Name (Expr);
13010 elsif Nkind (Expr) = N_Selected_Component then
13011 Find_Selected_Component (Expr);
13012 end if;
13013 end case;
13014 end if;
13015 end case;
13016 end;
13017 end if;
13019 ASN := Next_Rep_Item (ASN);
13020 end loop;
13022 Uninstall_Discriminants_And_Pop_Scope (E);
13023 end Resolve_Aspect_Expressions;
13025 -------------------------
13026 -- Same_Representation --
13027 -------------------------
13029 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
13030 T1 : constant Entity_Id := Underlying_Type (Typ1);
13031 T2 : constant Entity_Id := Underlying_Type (Typ2);
13033 begin
13034 -- A quick check, if base types are the same, then we definitely have
13035 -- the same representation, because the subtype specific representation
13036 -- attributes (Size and Alignment) do not affect representation from
13037 -- the point of view of this test.
13039 if Base_Type (T1) = Base_Type (T2) then
13040 return True;
13042 elsif Is_Private_Type (Base_Type (T2))
13043 and then Base_Type (T1) = Full_View (Base_Type (T2))
13044 then
13045 return True;
13046 end if;
13048 -- Tagged types always have the same representation, because it is not
13049 -- possible to specify different representations for common fields.
13051 if Is_Tagged_Type (T1) then
13052 return True;
13053 end if;
13055 -- Representations are definitely different if conventions differ
13057 if Convention (T1) /= Convention (T2) then
13058 return False;
13059 end if;
13061 -- Representations are different if component alignments or scalar
13062 -- storage orders differ.
13064 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13065 and then
13066 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13067 and then
13068 (Component_Alignment (T1) /= Component_Alignment (T2)
13069 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13070 then
13071 return False;
13072 end if;
13074 -- For arrays, the only real issue is component size. If we know the
13075 -- component size for both arrays, and it is the same, then that's
13076 -- good enough to know we don't have a change of representation.
13078 if Is_Array_Type (T1) then
13079 if Known_Component_Size (T1)
13080 and then Known_Component_Size (T2)
13081 and then Component_Size (T1) = Component_Size (T2)
13082 then
13083 return True;
13084 end if;
13085 end if;
13087 -- For records, representations are different if reorderings differ
13089 if Is_Record_Type (T1)
13090 and then Is_Record_Type (T2)
13091 and then No_Reordering (T1) /= No_Reordering (T2)
13092 then
13093 return False;
13094 end if;
13096 -- Types definitely have same representation if neither has non-standard
13097 -- representation since default representations are always consistent.
13098 -- If only one has non-standard representation, and the other does not,
13099 -- then we consider that they do not have the same representation. They
13100 -- might, but there is no way of telling early enough.
13102 if Has_Non_Standard_Rep (T1) then
13103 if not Has_Non_Standard_Rep (T2) then
13104 return False;
13105 end if;
13106 else
13107 return not Has_Non_Standard_Rep (T2);
13108 end if;
13110 -- Here the two types both have non-standard representation, and we need
13111 -- to determine if they have the same non-standard representation.
13113 -- For arrays, we simply need to test if the component sizes are the
13114 -- same. Pragma Pack is reflected in modified component sizes, so this
13115 -- check also deals with pragma Pack.
13117 if Is_Array_Type (T1) then
13118 return Component_Size (T1) = Component_Size (T2);
13120 -- Case of record types
13122 elsif Is_Record_Type (T1) then
13124 -- Packed status must conform
13126 if Is_Packed (T1) /= Is_Packed (T2) then
13127 return False;
13129 -- Otherwise we must check components. Typ2 maybe a constrained
13130 -- subtype with fewer components, so we compare the components
13131 -- of the base types.
13133 else
13134 Record_Case : declare
13135 CD1, CD2 : Entity_Id;
13137 function Same_Rep return Boolean;
13138 -- CD1 and CD2 are either components or discriminants. This
13139 -- function tests whether they have the same representation.
13141 --------------
13142 -- Same_Rep --
13143 --------------
13145 function Same_Rep return Boolean is
13146 begin
13147 if No (Component_Clause (CD1)) then
13148 return No (Component_Clause (CD2));
13149 else
13150 -- Note: at this point, component clauses have been
13151 -- normalized to the default bit order, so that the
13152 -- comparison of Component_Bit_Offsets is meaningful.
13154 return
13155 Present (Component_Clause (CD2))
13156 and then
13157 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13158 and then
13159 Esize (CD1) = Esize (CD2);
13160 end if;
13161 end Same_Rep;
13163 -- Start of processing for Record_Case
13165 begin
13166 if Has_Discriminants (T1) then
13168 -- The number of discriminants may be different if the
13169 -- derived type has fewer (constrained by values). The
13170 -- invisible discriminants retain the representation of
13171 -- the original, so the discrepancy does not per se
13172 -- indicate a different representation.
13174 CD1 := First_Discriminant (T1);
13175 CD2 := First_Discriminant (T2);
13176 while Present (CD1) and then Present (CD2) loop
13177 if not Same_Rep then
13178 return False;
13179 else
13180 Next_Discriminant (CD1);
13181 Next_Discriminant (CD2);
13182 end if;
13183 end loop;
13184 end if;
13186 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13187 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13188 while Present (CD1) loop
13189 if not Same_Rep then
13190 return False;
13191 else
13192 Next_Component (CD1);
13193 Next_Component (CD2);
13194 end if;
13195 end loop;
13197 return True;
13198 end Record_Case;
13199 end if;
13201 -- For enumeration types, we must check each literal to see if the
13202 -- representation is the same. Note that we do not permit enumeration
13203 -- representation clauses for Character and Wide_Character, so these
13204 -- cases were already dealt with.
13206 elsif Is_Enumeration_Type (T1) then
13207 Enumeration_Case : declare
13208 L1, L2 : Entity_Id;
13210 begin
13211 L1 := First_Literal (T1);
13212 L2 := First_Literal (T2);
13213 while Present (L1) loop
13214 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13215 return False;
13216 else
13217 Next_Literal (L1);
13218 Next_Literal (L2);
13219 end if;
13220 end loop;
13222 return True;
13223 end Enumeration_Case;
13225 -- Any other types have the same representation for these purposes
13227 else
13228 return True;
13229 end if;
13230 end Same_Representation;
13232 --------------------------------
13233 -- Resolve_Iterable_Operation --
13234 --------------------------------
13236 procedure Resolve_Iterable_Operation
13237 (N : Node_Id;
13238 Cursor : Entity_Id;
13239 Typ : Entity_Id;
13240 Nam : Name_Id)
13242 Ent : Entity_Id;
13243 F1 : Entity_Id;
13244 F2 : Entity_Id;
13246 begin
13247 if not Is_Overloaded (N) then
13248 if not Is_Entity_Name (N)
13249 or else Ekind (Entity (N)) /= E_Function
13250 or else Scope (Entity (N)) /= Scope (Typ)
13251 or else No (First_Formal (Entity (N)))
13252 or else Etype (First_Formal (Entity (N))) /= Typ
13253 then
13254 Error_Msg_N
13255 ("iterable primitive must be local function name whose first "
13256 & "formal is an iterable type", N);
13257 return;
13258 end if;
13260 Ent := Entity (N);
13261 F1 := First_Formal (Ent);
13263 if Nam = Name_First or else Nam = Name_Last then
13265 -- First or Last (Container) => Cursor
13267 if Etype (Ent) /= Cursor then
13268 Error_Msg_N ("primitive for First must yield a curosr", N);
13269 end if;
13271 elsif Nam = Name_Next then
13273 -- Next (Container, Cursor) => Cursor
13275 F2 := Next_Formal (F1);
13277 if Etype (F2) /= Cursor
13278 or else Etype (Ent) /= Cursor
13279 or else Present (Next_Formal (F2))
13280 then
13281 Error_Msg_N ("no match for Next iterable primitive", N);
13282 end if;
13284 elsif Nam = Name_Previous then
13286 -- Previous (Container, Cursor) => Cursor
13288 F2 := Next_Formal (F1);
13290 if Etype (F2) /= Cursor
13291 or else Etype (Ent) /= Cursor
13292 or else Present (Next_Formal (F2))
13293 then
13294 Error_Msg_N ("no match for Previous iterable primitive", N);
13295 end if;
13297 elsif Nam = Name_Has_Element then
13299 -- Has_Element (Container, Cursor) => Boolean
13301 F2 := Next_Formal (F1);
13303 if Etype (F2) /= Cursor
13304 or else Etype (Ent) /= Standard_Boolean
13305 or else Present (Next_Formal (F2))
13306 then
13307 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13308 end if;
13310 elsif Nam = Name_Element then
13311 F2 := Next_Formal (F1);
13313 if No (F2)
13314 or else Etype (F2) /= Cursor
13315 or else Present (Next_Formal (F2))
13316 then
13317 Error_Msg_N ("no match for Element iterable primitive", N);
13318 end if;
13320 else
13321 raise Program_Error;
13322 end if;
13324 else
13325 -- Overloaded case: find subprogram with proper signature. Caller
13326 -- will report error if no match is found.
13328 declare
13329 I : Interp_Index;
13330 It : Interp;
13332 begin
13333 Get_First_Interp (N, I, It);
13334 while Present (It.Typ) loop
13335 if Ekind (It.Nam) = E_Function
13336 and then Scope (It.Nam) = Scope (Typ)
13337 and then Etype (First_Formal (It.Nam)) = Typ
13338 then
13339 F1 := First_Formal (It.Nam);
13341 if Nam = Name_First then
13342 if Etype (It.Nam) = Cursor
13343 and then No (Next_Formal (F1))
13344 then
13345 Set_Entity (N, It.Nam);
13346 exit;
13347 end if;
13349 elsif Nam = Name_Next then
13350 F2 := Next_Formal (F1);
13352 if Present (F2)
13353 and then No (Next_Formal (F2))
13354 and then Etype (F2) = Cursor
13355 and then Etype (It.Nam) = Cursor
13356 then
13357 Set_Entity (N, It.Nam);
13358 exit;
13359 end if;
13361 elsif Nam = Name_Has_Element then
13362 F2 := Next_Formal (F1);
13364 if Present (F2)
13365 and then No (Next_Formal (F2))
13366 and then Etype (F2) = Cursor
13367 and then Etype (It.Nam) = Standard_Boolean
13368 then
13369 Set_Entity (N, It.Nam);
13370 F2 := Next_Formal (F1);
13371 exit;
13372 end if;
13374 elsif Nam = Name_Element then
13375 F2 := Next_Formal (F1);
13377 if Present (F2)
13378 and then No (Next_Formal (F2))
13379 and then Etype (F2) = Cursor
13380 then
13381 Set_Entity (N, It.Nam);
13382 exit;
13383 end if;
13384 end if;
13385 end if;
13387 Get_Next_Interp (I, It);
13388 end loop;
13389 end;
13390 end if;
13391 end Resolve_Iterable_Operation;
13393 ----------------
13394 -- Set_Biased --
13395 ----------------
13397 procedure Set_Biased
13398 (E : Entity_Id;
13399 N : Node_Id;
13400 Msg : String;
13401 Biased : Boolean := True)
13403 begin
13404 if Biased then
13405 Set_Has_Biased_Representation (E);
13407 if Warn_On_Biased_Representation then
13408 Error_Msg_NE
13409 ("?B?" & Msg & " forces biased representation for&", N, E);
13410 end if;
13411 end if;
13412 end Set_Biased;
13414 --------------------
13415 -- Set_Enum_Esize --
13416 --------------------
13418 procedure Set_Enum_Esize (T : Entity_Id) is
13419 Lo : Uint;
13420 Hi : Uint;
13421 Sz : Nat;
13423 begin
13424 Init_Alignment (T);
13426 -- Find the minimum standard size (8,16,32,64) that fits
13428 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13429 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13431 if Lo < 0 then
13432 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13433 Sz := Standard_Character_Size; -- May be > 8 on some targets
13435 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13436 Sz := 16;
13438 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13439 Sz := 32;
13441 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13442 Sz := 64;
13443 end if;
13445 else
13446 if Hi < Uint_2**08 then
13447 Sz := Standard_Character_Size; -- May be > 8 on some targets
13449 elsif Hi < Uint_2**16 then
13450 Sz := 16;
13452 elsif Hi < Uint_2**32 then
13453 Sz := 32;
13455 else pragma Assert (Hi < Uint_2**63);
13456 Sz := 64;
13457 end if;
13458 end if;
13460 -- That minimum is the proper size unless we have a foreign convention
13461 -- and the size required is 32 or less, in which case we bump the size
13462 -- up to 32. This is required for C and C++ and seems reasonable for
13463 -- all other foreign conventions.
13465 if Has_Foreign_Convention (T)
13466 and then Esize (T) < Standard_Integer_Size
13468 -- Don't do this if Short_Enums on target
13470 and then not Target_Short_Enums
13471 then
13472 Init_Esize (T, Standard_Integer_Size);
13473 else
13474 Init_Esize (T, Sz);
13475 end if;
13476 end Set_Enum_Esize;
13478 -----------------------------
13479 -- Uninstall_Discriminants --
13480 -----------------------------
13482 procedure Uninstall_Discriminants (E : Entity_Id) is
13483 Disc : Entity_Id;
13484 Prev : Entity_Id;
13485 Outer : Entity_Id;
13487 begin
13488 -- Discriminants have been made visible for type declarations and
13489 -- protected type declarations, not for subtype declarations.
13491 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13492 Disc := First_Discriminant (E);
13493 while Present (Disc) loop
13494 if Disc /= Current_Entity (Disc) then
13495 Prev := Current_Entity (Disc);
13496 while Present (Prev)
13497 and then Present (Homonym (Prev))
13498 and then Homonym (Prev) /= Disc
13499 loop
13500 Prev := Homonym (Prev);
13501 end loop;
13502 else
13503 Prev := Empty;
13504 end if;
13506 Set_Is_Immediately_Visible (Disc, False);
13508 Outer := Homonym (Disc);
13509 while Present (Outer) and then Scope (Outer) = E loop
13510 Outer := Homonym (Outer);
13511 end loop;
13513 -- Reset homonym link of other entities, but do not modify link
13514 -- between entities in current scope, so that the back end can
13515 -- have a proper count of local overloadings.
13517 if No (Prev) then
13518 Set_Name_Entity_Id (Chars (Disc), Outer);
13520 elsif Scope (Prev) /= Scope (Disc) then
13521 Set_Homonym (Prev, Outer);
13522 end if;
13524 Next_Discriminant (Disc);
13525 end loop;
13526 end if;
13527 end Uninstall_Discriminants;
13529 -------------------------------------------
13530 -- Uninstall_Discriminants_And_Pop_Scope --
13531 -------------------------------------------
13533 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13534 begin
13535 if Is_Type (E) and then Has_Discriminants (E) then
13536 Uninstall_Discriminants (E);
13537 Pop_Scope;
13538 end if;
13539 end Uninstall_Discriminants_And_Pop_Scope;
13541 ------------------------------
13542 -- Validate_Address_Clauses --
13543 ------------------------------
13545 procedure Validate_Address_Clauses is
13546 function Offset_Value (Expr : Node_Id) return Uint;
13547 -- Given an Address attribute reference, return the value in bits of its
13548 -- offset from the first bit of the underlying entity, or 0 if it is not
13549 -- known at compile time.
13551 ------------------
13552 -- Offset_Value --
13553 ------------------
13555 function Offset_Value (Expr : Node_Id) return Uint is
13556 N : Node_Id := Prefix (Expr);
13557 Off : Uint;
13558 Val : Uint := Uint_0;
13560 begin
13561 -- Climb the prefix chain and compute the cumulative offset
13563 loop
13564 if Is_Entity_Name (N) then
13565 return Val;
13567 elsif Nkind (N) = N_Selected_Component then
13568 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13569 if Off /= No_Uint and then Off >= Uint_0 then
13570 Val := Val + Off;
13571 N := Prefix (N);
13572 else
13573 return Uint_0;
13574 end if;
13576 elsif Nkind (N) = N_Indexed_Component then
13577 Off := Indexed_Component_Bit_Offset (N);
13578 if Off /= No_Uint then
13579 Val := Val + Off;
13580 N := Prefix (N);
13581 else
13582 return Uint_0;
13583 end if;
13585 else
13586 return Uint_0;
13587 end if;
13588 end loop;
13589 end Offset_Value;
13591 -- Start of processing for Validate_Address_Clauses
13593 begin
13594 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13595 declare
13596 ACCR : Address_Clause_Check_Record
13597 renames Address_Clause_Checks.Table (J);
13599 Expr : Node_Id;
13601 X_Alignment : Uint;
13602 Y_Alignment : Uint := Uint_0;
13604 X_Size : Uint;
13605 Y_Size : Uint := Uint_0;
13607 X_Offs : Uint;
13609 begin
13610 -- Skip processing of this entry if warning already posted
13612 if not Address_Warning_Posted (ACCR.N) then
13613 Expr := Original_Node (Expression (ACCR.N));
13615 -- Get alignments, sizes and offset, if any
13617 X_Alignment := Alignment (ACCR.X);
13618 X_Size := Esize (ACCR.X);
13620 if Present (ACCR.Y) then
13621 Y_Alignment := Alignment (ACCR.Y);
13622 Y_Size := Esize (ACCR.Y);
13623 end if;
13625 if ACCR.Off
13626 and then Nkind (Expr) = N_Attribute_Reference
13627 and then Attribute_Name (Expr) = Name_Address
13628 then
13629 X_Offs := Offset_Value (Expr);
13630 else
13631 X_Offs := Uint_0;
13632 end if;
13634 -- Check for known value not multiple of alignment
13636 if No (ACCR.Y) then
13637 if not Alignment_Checks_Suppressed (ACCR)
13638 and then X_Alignment /= 0
13639 and then ACCR.A mod X_Alignment /= 0
13640 then
13641 Error_Msg_NE
13642 ("??specified address for& is inconsistent with "
13643 & "alignment", ACCR.N, ACCR.X);
13644 Error_Msg_N
13645 ("\??program execution may be erroneous (RM 13.3(27))",
13646 ACCR.N);
13648 Error_Msg_Uint_1 := X_Alignment;
13649 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13650 end if;
13652 -- Check for large object overlaying smaller one
13654 elsif Y_Size > Uint_0
13655 and then X_Size > Uint_0
13656 and then X_Offs + X_Size > Y_Size
13657 then
13658 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13659 Error_Msg_N
13660 ("\??program execution may be erroneous", ACCR.N);
13662 Error_Msg_Uint_1 := X_Size;
13663 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13665 Error_Msg_Uint_1 := Y_Size;
13666 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13668 if Y_Size >= X_Size then
13669 Error_Msg_Uint_1 := X_Offs;
13670 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13671 end if;
13673 -- Check for inadequate alignment, both of the base object
13674 -- and of the offset, if any. We only do this check if the
13675 -- run-time Alignment_Check is active. No point in warning
13676 -- if this check has been suppressed (or is suppressed by
13677 -- default in the non-strict alignment machine case).
13679 -- Note: we do not check the alignment if we gave a size
13680 -- warning, since it would likely be redundant.
13682 elsif not Alignment_Checks_Suppressed (ACCR)
13683 and then Y_Alignment /= Uint_0
13684 and then
13685 (Y_Alignment < X_Alignment
13686 or else
13687 (ACCR.Off
13688 and then Nkind (Expr) = N_Attribute_Reference
13689 and then Attribute_Name (Expr) = Name_Address
13690 and then Has_Compatible_Alignment
13691 (ACCR.X, Prefix (Expr), True) /=
13692 Known_Compatible))
13693 then
13694 Error_Msg_NE
13695 ("??specified address for& may be inconsistent with "
13696 & "alignment", ACCR.N, ACCR.X);
13697 Error_Msg_N
13698 ("\??program execution may be erroneous (RM 13.3(27))",
13699 ACCR.N);
13701 Error_Msg_Uint_1 := X_Alignment;
13702 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13704 Error_Msg_Uint_1 := Y_Alignment;
13705 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13707 if Y_Alignment >= X_Alignment then
13708 Error_Msg_N
13709 ("\??but offset is not multiple of alignment", ACCR.N);
13710 end if;
13711 end if;
13712 end if;
13713 end;
13714 end loop;
13715 end Validate_Address_Clauses;
13717 -----------------------------------------
13718 -- Validate_Compile_Time_Warning_Error --
13719 -----------------------------------------
13721 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13722 begin
13723 Compile_Time_Warnings_Errors.Append
13724 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13725 Scope => Current_Scope,
13726 Prag => N));
13727 end Validate_Compile_Time_Warning_Error;
13729 ------------------------------------------
13730 -- Validate_Compile_Time_Warning_Errors --
13731 ------------------------------------------
13733 procedure Validate_Compile_Time_Warning_Errors is
13734 procedure Set_Scope (S : Entity_Id);
13735 -- Install all enclosing scopes of S along with S itself
13737 procedure Unset_Scope (S : Entity_Id);
13738 -- Uninstall all enclosing scopes of S along with S itself
13740 ---------------
13741 -- Set_Scope --
13742 ---------------
13744 procedure Set_Scope (S : Entity_Id) is
13745 begin
13746 if S /= Standard_Standard then
13747 Set_Scope (Scope (S));
13748 end if;
13750 Push_Scope (S);
13751 end Set_Scope;
13753 -----------------
13754 -- Unset_Scope --
13755 -----------------
13757 procedure Unset_Scope (S : Entity_Id) is
13758 begin
13759 if S /= Standard_Standard then
13760 Unset_Scope (Scope (S));
13761 end if;
13763 Pop_Scope;
13764 end Unset_Scope;
13766 -- Start of processing for Validate_Compile_Time_Warning_Errors
13768 begin
13769 Expander_Mode_Save_And_Set (False);
13770 In_Compile_Time_Warning_Or_Error := True;
13772 for N in Compile_Time_Warnings_Errors.First ..
13773 Compile_Time_Warnings_Errors.Last
13774 loop
13775 declare
13776 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13778 begin
13779 Set_Scope (T.Scope);
13780 Reset_Analyzed_Flags (T.Prag);
13781 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13782 Unset_Scope (T.Scope);
13783 end;
13784 end loop;
13786 In_Compile_Time_Warning_Or_Error := False;
13787 Expander_Mode_Restore;
13788 end Validate_Compile_Time_Warning_Errors;
13790 ---------------------------
13791 -- Validate_Independence --
13792 ---------------------------
13794 procedure Validate_Independence is
13795 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13796 N : Node_Id;
13797 E : Entity_Id;
13798 IC : Boolean;
13799 Comp : Entity_Id;
13800 Addr : Node_Id;
13801 P : Node_Id;
13803 procedure Check_Array_Type (Atyp : Entity_Id);
13804 -- Checks if the array type Atyp has independent components, and
13805 -- if not, outputs an appropriate set of error messages.
13807 procedure No_Independence;
13808 -- Output message that independence cannot be guaranteed
13810 function OK_Component (C : Entity_Id) return Boolean;
13811 -- Checks one component to see if it is independently accessible, and
13812 -- if so yields True, otherwise yields False if independent access
13813 -- cannot be guaranteed. This is a conservative routine, it only
13814 -- returns True if it knows for sure, it returns False if it knows
13815 -- there is a problem, or it cannot be sure there is no problem.
13817 procedure Reason_Bad_Component (C : Entity_Id);
13818 -- Outputs continuation message if a reason can be determined for
13819 -- the component C being bad.
13821 ----------------------
13822 -- Check_Array_Type --
13823 ----------------------
13825 procedure Check_Array_Type (Atyp : Entity_Id) is
13826 Ctyp : constant Entity_Id := Component_Type (Atyp);
13828 begin
13829 -- OK if no alignment clause, no pack, and no component size
13831 if not Has_Component_Size_Clause (Atyp)
13832 and then not Has_Alignment_Clause (Atyp)
13833 and then not Is_Packed (Atyp)
13834 then
13835 return;
13836 end if;
13838 -- Case of component size is greater than or equal to 64 and the
13839 -- alignment of the array is at least as large as the alignment
13840 -- of the component. We are definitely OK in this situation.
13842 if Known_Component_Size (Atyp)
13843 and then Component_Size (Atyp) >= 64
13844 and then Known_Alignment (Atyp)
13845 and then Known_Alignment (Ctyp)
13846 and then Alignment (Atyp) >= Alignment (Ctyp)
13847 then
13848 return;
13849 end if;
13851 -- Check actual component size
13853 if not Known_Component_Size (Atyp)
13854 or else not (Addressable (Component_Size (Atyp))
13855 and then Component_Size (Atyp) < 64)
13856 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13857 then
13858 No_Independence;
13860 -- Bad component size, check reason
13862 if Has_Component_Size_Clause (Atyp) then
13863 P := Get_Attribute_Definition_Clause
13864 (Atyp, Attribute_Component_Size);
13866 if Present (P) then
13867 Error_Msg_Sloc := Sloc (P);
13868 Error_Msg_N ("\because of Component_Size clause#", N);
13869 return;
13870 end if;
13871 end if;
13873 if Is_Packed (Atyp) then
13874 P := Get_Rep_Pragma (Atyp, Name_Pack);
13876 if Present (P) then
13877 Error_Msg_Sloc := Sloc (P);
13878 Error_Msg_N ("\because of pragma Pack#", N);
13879 return;
13880 end if;
13881 end if;
13883 -- No reason found, just return
13885 return;
13886 end if;
13888 -- Array type is OK independence-wise
13890 return;
13891 end Check_Array_Type;
13893 ---------------------
13894 -- No_Independence --
13895 ---------------------
13897 procedure No_Independence is
13898 begin
13899 if Pragma_Name (N) = Name_Independent then
13900 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13901 else
13902 Error_Msg_NE
13903 ("independent components cannot be guaranteed for&", N, E);
13904 end if;
13905 end No_Independence;
13907 ------------------
13908 -- OK_Component --
13909 ------------------
13911 function OK_Component (C : Entity_Id) return Boolean is
13912 Rec : constant Entity_Id := Scope (C);
13913 Ctyp : constant Entity_Id := Etype (C);
13915 begin
13916 -- OK if no component clause, no Pack, and no alignment clause
13918 if No (Component_Clause (C))
13919 and then not Is_Packed (Rec)
13920 and then not Has_Alignment_Clause (Rec)
13921 then
13922 return True;
13923 end if;
13925 -- Here we look at the actual component layout. A component is
13926 -- addressable if its size is a multiple of the Esize of the
13927 -- component type, and its starting position in the record has
13928 -- appropriate alignment, and the record itself has appropriate
13929 -- alignment to guarantee the component alignment.
13931 -- Make sure sizes are static, always assume the worst for any
13932 -- cases where we cannot check static values.
13934 if not (Known_Static_Esize (C)
13935 and then
13936 Known_Static_Esize (Ctyp))
13937 then
13938 return False;
13939 end if;
13941 -- Size of component must be addressable or greater than 64 bits
13942 -- and a multiple of bytes.
13944 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13945 return False;
13946 end if;
13948 -- Check size is proper multiple
13950 if Esize (C) mod Esize (Ctyp) /= 0 then
13951 return False;
13952 end if;
13954 -- Check alignment of component is OK
13956 if not Known_Component_Bit_Offset (C)
13957 or else Component_Bit_Offset (C) < Uint_0
13958 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13959 then
13960 return False;
13961 end if;
13963 -- Check alignment of record type is OK
13965 if not Known_Alignment (Rec)
13966 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13967 then
13968 return False;
13969 end if;
13971 -- All tests passed, component is addressable
13973 return True;
13974 end OK_Component;
13976 --------------------------
13977 -- Reason_Bad_Component --
13978 --------------------------
13980 procedure Reason_Bad_Component (C : Entity_Id) is
13981 Rec : constant Entity_Id := Scope (C);
13982 Ctyp : constant Entity_Id := Etype (C);
13984 begin
13985 -- If component clause present assume that's the problem
13987 if Present (Component_Clause (C)) then
13988 Error_Msg_Sloc := Sloc (Component_Clause (C));
13989 Error_Msg_N ("\because of Component_Clause#", N);
13990 return;
13991 end if;
13993 -- If pragma Pack clause present, assume that's the problem
13995 if Is_Packed (Rec) then
13996 P := Get_Rep_Pragma (Rec, Name_Pack);
13998 if Present (P) then
13999 Error_Msg_Sloc := Sloc (P);
14000 Error_Msg_N ("\because of pragma Pack#", N);
14001 return;
14002 end if;
14003 end if;
14005 -- See if record has bad alignment clause
14007 if Has_Alignment_Clause (Rec)
14008 and then Known_Alignment (Rec)
14009 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14010 then
14011 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
14013 if Present (P) then
14014 Error_Msg_Sloc := Sloc (P);
14015 Error_Msg_N ("\because of Alignment clause#", N);
14016 end if;
14017 end if;
14019 -- Couldn't find a reason, so return without a message
14021 return;
14022 end Reason_Bad_Component;
14024 -- Start of processing for Validate_Independence
14026 begin
14027 for J in Independence_Checks.First .. Independence_Checks.Last loop
14028 N := Independence_Checks.Table (J).N;
14029 E := Independence_Checks.Table (J).E;
14030 IC := Pragma_Name (N) = Name_Independent_Components;
14032 -- Deal with component case
14034 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
14035 if not OK_Component (E) then
14036 No_Independence;
14037 Reason_Bad_Component (E);
14038 goto Continue;
14039 end if;
14040 end if;
14042 -- Deal with record with Independent_Components
14044 if IC and then Is_Record_Type (E) then
14045 Comp := First_Component_Or_Discriminant (E);
14046 while Present (Comp) loop
14047 if not OK_Component (Comp) then
14048 No_Independence;
14049 Reason_Bad_Component (Comp);
14050 goto Continue;
14051 end if;
14053 Next_Component_Or_Discriminant (Comp);
14054 end loop;
14055 end if;
14057 -- Deal with address clause case
14059 if Is_Object (E) then
14060 Addr := Address_Clause (E);
14062 if Present (Addr) then
14063 No_Independence;
14064 Error_Msg_Sloc := Sloc (Addr);
14065 Error_Msg_N ("\because of Address clause#", N);
14066 goto Continue;
14067 end if;
14068 end if;
14070 -- Deal with independent components for array type
14072 if IC and then Is_Array_Type (E) then
14073 Check_Array_Type (E);
14074 end if;
14076 -- Deal with independent components for array object
14078 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14079 Check_Array_Type (Etype (E));
14080 end if;
14082 <<Continue>> null;
14083 end loop;
14084 end Validate_Independence;
14086 ------------------------------
14087 -- Validate_Iterable_Aspect --
14088 ------------------------------
14090 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14091 Assoc : Node_Id;
14092 Expr : Node_Id;
14094 Prim : Node_Id;
14095 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14097 First_Id : Entity_Id;
14098 Last_Id : Entity_Id;
14099 Next_Id : Entity_Id;
14100 Has_Element_Id : Entity_Id;
14101 Element_Id : Entity_Id;
14103 begin
14104 -- If previous error aspect is unusable
14106 if Cursor = Any_Type then
14107 return;
14108 end if;
14110 First_Id := Empty;
14111 Last_Id := Empty;
14112 Next_Id := Empty;
14113 Has_Element_Id := Empty;
14114 Element_Id := Empty;
14116 -- Each expression must resolve to a function with the proper signature
14118 Assoc := First (Component_Associations (Expression (ASN)));
14119 while Present (Assoc) loop
14120 Expr := Expression (Assoc);
14121 Analyze (Expr);
14123 Prim := First (Choices (Assoc));
14125 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14126 Error_Msg_N ("illegal name in association", Prim);
14128 elsif Chars (Prim) = Name_First then
14129 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14130 First_Id := Entity (Expr);
14132 elsif Chars (Prim) = Name_Last then
14133 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14134 Last_Id := Entity (Expr);
14136 elsif Chars (Prim) = Name_Previous then
14137 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14138 Last_Id := Entity (Expr);
14140 elsif Chars (Prim) = Name_Next then
14141 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14142 Next_Id := Entity (Expr);
14144 elsif Chars (Prim) = Name_Has_Element then
14145 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14146 Has_Element_Id := Entity (Expr);
14148 elsif Chars (Prim) = Name_Element then
14149 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14150 Element_Id := Entity (Expr);
14152 else
14153 Error_Msg_N ("invalid name for iterable function", Prim);
14154 end if;
14156 Next (Assoc);
14157 end loop;
14159 if No (First_Id) then
14160 Error_Msg_N ("match for First primitive not found", ASN);
14162 elsif No (Next_Id) then
14163 Error_Msg_N ("match for Next primitive not found", ASN);
14165 elsif No (Has_Element_Id) then
14166 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14168 elsif No (Element_Id) or else No (Last_Id) then
14169 null; -- optional
14170 end if;
14171 end Validate_Iterable_Aspect;
14173 -----------------------------------
14174 -- Validate_Unchecked_Conversion --
14175 -----------------------------------
14177 procedure Validate_Unchecked_Conversion
14178 (N : Node_Id;
14179 Act_Unit : Entity_Id)
14181 Source : Entity_Id;
14182 Target : Entity_Id;
14183 Vnode : Node_Id;
14185 begin
14186 -- Obtain source and target types. Note that we call Ancestor_Subtype
14187 -- here because the processing for generic instantiation always makes
14188 -- subtypes, and we want the original frozen actual types.
14190 -- If we are dealing with private types, then do the check on their
14191 -- fully declared counterparts if the full declarations have been
14192 -- encountered (they don't have to be visible, but they must exist).
14194 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14196 if Is_Private_Type (Source)
14197 and then Present (Underlying_Type (Source))
14198 then
14199 Source := Underlying_Type (Source);
14200 end if;
14202 Target := Ancestor_Subtype (Etype (Act_Unit));
14204 -- If either type is generic, the instantiation happens within a generic
14205 -- unit, and there is nothing to check. The proper check will happen
14206 -- when the enclosing generic is instantiated.
14208 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14209 return;
14210 end if;
14212 if Is_Private_Type (Target)
14213 and then Present (Underlying_Type (Target))
14214 then
14215 Target := Underlying_Type (Target);
14216 end if;
14218 -- Source may be unconstrained array, but not target, except in relaxed
14219 -- semantics mode.
14221 if Is_Array_Type (Target)
14222 and then not Is_Constrained (Target)
14223 and then not Relaxed_RM_Semantics
14224 then
14225 Error_Msg_N
14226 ("unchecked conversion to unconstrained array not allowed", N);
14227 return;
14228 end if;
14230 -- Warn if conversion between two different convention pointers
14232 if Is_Access_Type (Target)
14233 and then Is_Access_Type (Source)
14234 and then Convention (Target) /= Convention (Source)
14235 and then Warn_On_Unchecked_Conversion
14236 then
14237 -- Give warnings for subprogram pointers only on most targets
14239 if Is_Access_Subprogram_Type (Target)
14240 or else Is_Access_Subprogram_Type (Source)
14241 then
14242 Error_Msg_N
14243 ("?z?conversion between pointers with different conventions!",
14245 end if;
14246 end if;
14248 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14249 -- warning when compiling GNAT-related sources.
14251 if Warn_On_Unchecked_Conversion
14252 and then not In_Predefined_Unit (N)
14253 and then RTU_Loaded (Ada_Calendar)
14254 and then (Chars (Source) = Name_Time
14255 or else
14256 Chars (Target) = Name_Time)
14257 then
14258 -- If Ada.Calendar is loaded and the name of one of the operands is
14259 -- Time, there is a good chance that this is Ada.Calendar.Time.
14261 declare
14262 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14263 begin
14264 pragma Assert (Present (Calendar_Time));
14266 if Source = Calendar_Time or else Target = Calendar_Time then
14267 Error_Msg_N
14268 ("?z?representation of 'Time values may change between "
14269 & "'G'N'A'T versions", N);
14270 end if;
14271 end;
14272 end if;
14274 -- Make entry in unchecked conversion table for later processing by
14275 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14276 -- (using values set by the back end where possible). This is only done
14277 -- if the appropriate warning is active.
14279 if Warn_On_Unchecked_Conversion then
14280 Unchecked_Conversions.Append
14281 (New_Val => UC_Entry'(Eloc => Sloc (N),
14282 Source => Source,
14283 Target => Target,
14284 Act_Unit => Act_Unit));
14286 -- If both sizes are known statically now, then back-end annotation
14287 -- is not required to do a proper check but if either size is not
14288 -- known statically, then we need the annotation.
14290 if Known_Static_RM_Size (Source)
14291 and then
14292 Known_Static_RM_Size (Target)
14293 then
14294 null;
14295 else
14296 Back_Annotate_Rep_Info := True;
14297 end if;
14298 end if;
14300 -- If unchecked conversion to access type, and access type is declared
14301 -- in the same unit as the unchecked conversion, then set the flag
14302 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14304 if Is_Access_Type (Target) and then
14305 In_Same_Source_Unit (Target, N)
14306 then
14307 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14308 end if;
14310 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14311 -- the back end needs to perform special validation checks.
14313 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14314 -- have full expansion and the back end is called ???
14316 Vnode :=
14317 Make_Validate_Unchecked_Conversion (Sloc (N));
14318 Set_Source_Type (Vnode, Source);
14319 Set_Target_Type (Vnode, Target);
14321 -- If the unchecked conversion node is in a list, just insert before it.
14322 -- If not we have some strange case, not worth bothering about.
14324 if Is_List_Member (N) then
14325 Insert_After (N, Vnode);
14326 end if;
14327 end Validate_Unchecked_Conversion;
14329 ------------------------------------
14330 -- Validate_Unchecked_Conversions --
14331 ------------------------------------
14333 procedure Validate_Unchecked_Conversions is
14334 begin
14335 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14336 declare
14337 T : UC_Entry renames Unchecked_Conversions.Table (N);
14339 Act_Unit : constant Entity_Id := T.Act_Unit;
14340 Eloc : constant Source_Ptr := T.Eloc;
14341 Source : constant Entity_Id := T.Source;
14342 Target : constant Entity_Id := T.Target;
14344 Source_Siz : Uint;
14345 Target_Siz : Uint;
14347 begin
14348 -- Skip if function marked as warnings off
14350 if Warnings_Off (Act_Unit) then
14351 goto Continue;
14352 end if;
14354 -- This validation check, which warns if we have unequal sizes for
14355 -- unchecked conversion, and thus potentially implementation
14356 -- dependent semantics, is one of the few occasions on which we
14357 -- use the official RM size instead of Esize. See description in
14358 -- Einfo "Handling of Type'Size Values" for details.
14360 if Serious_Errors_Detected = 0
14361 and then Known_Static_RM_Size (Source)
14362 and then Known_Static_RM_Size (Target)
14364 -- Don't do the check if warnings off for either type, note the
14365 -- deliberate use of OR here instead of OR ELSE to get the flag
14366 -- Warnings_Off_Used set for both types if appropriate.
14368 and then not (Has_Warnings_Off (Source)
14370 Has_Warnings_Off (Target))
14371 then
14372 Source_Siz := RM_Size (Source);
14373 Target_Siz := RM_Size (Target);
14375 if Source_Siz /= Target_Siz then
14376 Error_Msg
14377 ("?z?types for unchecked conversion have different sizes!",
14378 Eloc, Act_Unit);
14380 if All_Errors_Mode then
14381 Error_Msg_Name_1 := Chars (Source);
14382 Error_Msg_Uint_1 := Source_Siz;
14383 Error_Msg_Name_2 := Chars (Target);
14384 Error_Msg_Uint_2 := Target_Siz;
14385 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14387 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14389 if Is_Discrete_Type (Source)
14390 and then
14391 Is_Discrete_Type (Target)
14392 then
14393 if Source_Siz > Target_Siz then
14394 Error_Msg
14395 ("\?z?^ high order bits of source will "
14396 & "be ignored!", Eloc);
14398 elsif Is_Unsigned_Type (Source) then
14399 Error_Msg
14400 ("\?z?source will be extended with ^ high order "
14401 & "zero bits!", Eloc);
14403 else
14404 Error_Msg
14405 ("\?z?source will be extended with ^ high order "
14406 & "sign bits!", Eloc);
14407 end if;
14409 elsif Source_Siz < Target_Siz then
14410 if Is_Discrete_Type (Target) then
14411 if Bytes_Big_Endian then
14412 Error_Msg
14413 ("\?z?target value will include ^ undefined "
14414 & "low order bits!", Eloc, Act_Unit);
14415 else
14416 Error_Msg
14417 ("\?z?target value will include ^ undefined "
14418 & "high order bits!", Eloc, Act_Unit);
14419 end if;
14421 else
14422 Error_Msg
14423 ("\?z?^ trailing bits of target value will be "
14424 & "undefined!", Eloc, Act_Unit);
14425 end if;
14427 else pragma Assert (Source_Siz > Target_Siz);
14428 if Is_Discrete_Type (Source) then
14429 if Bytes_Big_Endian then
14430 Error_Msg
14431 ("\?z?^ low order bits of source will be "
14432 & "ignored!", Eloc, Act_Unit);
14433 else
14434 Error_Msg
14435 ("\?z?^ high order bits of source will be "
14436 & "ignored!", Eloc, Act_Unit);
14437 end if;
14439 else
14440 Error_Msg
14441 ("\?z?^ trailing bits of source will be "
14442 & "ignored!", Eloc, Act_Unit);
14443 end if;
14444 end if;
14445 end if;
14446 end if;
14447 end if;
14449 -- If both types are access types, we need to check the alignment.
14450 -- If the alignment of both is specified, we can do it here.
14452 if Serious_Errors_Detected = 0
14453 and then Is_Access_Type (Source)
14454 and then Is_Access_Type (Target)
14455 and then Target_Strict_Alignment
14456 and then Present (Designated_Type (Source))
14457 and then Present (Designated_Type (Target))
14458 then
14459 declare
14460 D_Source : constant Entity_Id := Designated_Type (Source);
14461 D_Target : constant Entity_Id := Designated_Type (Target);
14463 begin
14464 if Known_Alignment (D_Source)
14465 and then
14466 Known_Alignment (D_Target)
14467 then
14468 declare
14469 Source_Align : constant Uint := Alignment (D_Source);
14470 Target_Align : constant Uint := Alignment (D_Target);
14472 begin
14473 if Source_Align < Target_Align
14474 and then not Is_Tagged_Type (D_Source)
14476 -- Suppress warning if warnings suppressed on either
14477 -- type or either designated type. Note the use of
14478 -- OR here instead of OR ELSE. That is intentional,
14479 -- we would like to set flag Warnings_Off_Used in
14480 -- all types for which warnings are suppressed.
14482 and then not (Has_Warnings_Off (D_Source)
14484 Has_Warnings_Off (D_Target)
14486 Has_Warnings_Off (Source)
14488 Has_Warnings_Off (Target))
14489 then
14490 Error_Msg_Uint_1 := Target_Align;
14491 Error_Msg_Uint_2 := Source_Align;
14492 Error_Msg_Node_1 := D_Target;
14493 Error_Msg_Node_2 := D_Source;
14494 Error_Msg
14495 ("?z?alignment of & (^) is stricter than "
14496 & "alignment of & (^)!", Eloc, Act_Unit);
14497 Error_Msg
14498 ("\?z?resulting access value may have invalid "
14499 & "alignment!", Eloc, Act_Unit);
14500 end if;
14501 end;
14502 end if;
14503 end;
14504 end if;
14505 end;
14507 <<Continue>>
14508 null;
14509 end loop;
14510 end Validate_Unchecked_Conversions;
14512 end Sem_Ch13;