1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Freeze
; use Freeze
;
38 with Ghost
; use Ghost
;
40 with Lib
.Xref
; use Lib
.Xref
;
41 with Namet
; use Namet
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Par_SCO
; use Par_SCO
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Case
; use Sem_Case
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Dim
; use Sem_Dim
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Prag
; use Sem_Prag
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Type
; use Sem_Type
;
62 with Sem_Util
; use Sem_Util
;
63 with Sem_Warn
; use Sem_Warn
;
64 with Sinfo
; use Sinfo
;
65 with Sinput
; use Sinput
;
66 with Snames
; use Snames
;
67 with Stand
; use Stand
;
68 with Targparm
; use Targparm
;
69 with Ttypes
; use Ttypes
;
70 with Tbuild
; use Tbuild
;
71 with Urealp
; use Urealp
;
72 with Warnsw
; use Warnsw
;
74 with GNAT
.Heap_Sort_G
;
76 package body Sem_Ch13
is
78 SSU
: constant Pos
:= System_Storage_Unit
;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
112 Id
: Entity_Id
) return Node_Id
;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ
: Entity_Id
) return Node_Id
;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- preanalyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks
(N
: Node_Id
);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
158 function Is_Predicate_Static
160 Nam
: Name_Id
) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
190 Nam
: TSS_Name_Type
);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
206 procedure Register_Address_Clause_Check
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
227 Biased
: Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry
is record
251 -- Source location used in warnings and error messages
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
257 -- The scope which encloses the pragma
260 package Compile_Time_Warnings_Errors
is new Table
.Table
(
261 Table_Component_Type
=> CTWE_Entry
,
262 Table_Index_Type
=> Int
,
263 Table_Low_Bound
=> 1,
265 Table_Increment
=> 200,
266 Table_Name
=> "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry
is record
284 Eloc
: Source_Ptr
; -- node used for posting warnings
285 Source
: Entity_Id
; -- source type for unchecked conversion
286 Target
: Entity_Id
; -- target type for unchecked conversion
287 Act_Unit
: Entity_Id
; -- actual function instantiated
290 package Unchecked_Conversions
is new Table
.Table
(
291 Table_Component_Type
=> UC_Entry
,
292 Table_Index_Type
=> Int
,
293 Table_Low_Bound
=> 1,
295 Table_Increment
=> 200,
296 Table_Name
=> "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record
is record
317 -- The address clause
320 -- The entity of the object subject to the address clause
323 -- The value of the address in the first case
326 -- The entity of the object being overlaid in the second case
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed
: Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
337 package Address_Clause_Checks
is new Table
.Table
(
338 Table_Component_Type
=> Address_Clause_Check_Record
,
339 Table_Index_Type
=> Int
,
340 Table_Low_Bound
=> 1,
342 Table_Increment
=> 200,
343 Table_Name
=> "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR
: Address_Clause_Check_Record
) return Boolean;
347 -- Return whether the alignment check generated for the address clause
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR
: Address_Clause_Check_Record
) return Boolean
358 if Checks_May_Be_Suppressed
(ACCR
.X
) then
359 return Is_Check_Suppressed
(ACCR
.X
, Alignment_Check
);
361 return ACCR
.Alignment_Checks_Suppressed
;
363 end Alignment_Checks_Suppressed
;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
370 Max_Machine_Scalar_Size
: constant Uint
:=
372 (Standard_Long_Long_Integer_Size
);
373 -- We use this as the maximum machine scalar size
375 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version
< Ada_2005
and then Debug_Flag_Dot_P
then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
);
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
406 Comp
:= First_Component_Or_Discriminant
(R
);
407 while Present
(Comp
) loop
408 CC
:= Component_Clause
(Comp
);
412 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
413 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
416 -- Case of component with last bit >= max machine scalar
418 if Lbit
>= Max_Machine_Scalar_Size
then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order
then
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC
);
432 if Bytes_Big_Endian
then
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC
);
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC
);
443 -- Give error message for RM 13.5.1(10) violation
447 ("machine scalar rules not followed for&",
448 First_Bit
(CC
), Comp
);
450 Error_Msg_Uint_1
:= Lbit
+ 1;
451 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit
(CC
));
456 if (Lbit
+ 1) mod SSU
/= 0 then
457 Error_Msg_Uint_1
:= SSU
;
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit
(CC
));
463 Error_Msg_Uint_1
:= Fbit
;
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit
(CC
));
470 -- OK case of machine scalar related component clause. For now,
474 Num_CC
:= Num_CC
+ 1;
479 Next_Component_Or_Discriminant
(Comp
);
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
487 Comps
: array (0 .. Num_CC
) of Entity_Id
;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move
(From
: Natural; To
: Natural);
495 -- Move routine for Sort
497 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
500 -- Maximum last bit value of any component in this set
503 -- Corresponding machine scalar size
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
515 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
518 Position
(Component_Clause
(Comps
(Op1
))) <
519 Position
(Component_Clause
(Comps
(Op2
)));
526 procedure CP_Move
(From
: Natural; To
: Natural) is
528 Comps
(To
) := Comps
(From
);
531 -- Start of processing for Sort_CC
534 -- Collect the machine scalar relevant component clauses
537 Comp
:= First_Component_Or_Discriminant
(R
);
538 while Present
(Comp
) loop
540 CC
: constant Node_Id
:= Component_Clause
(Comp
);
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
551 and then not Error_Posted
(Last_Bit
(CC
))
552 and then Static_Integer
(Last_Bit
(CC
)) <
553 Max_Machine_Scalar_Size
555 Num_CC
:= Num_CC
+ 1;
556 Comps
(Num_CC
) := Comp
;
560 Next_Component_Or_Discriminant
(Comp
);
563 -- Sort by ascending position number
565 Sorting
.Sort
(Num_CC
);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
573 while Stop
< Num_CC
loop
578 (Last_Bit
(Component_Clause
(Comps
(Start
))));
579 while Stop
< Num_CC
loop
581 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
583 (Position
(Component_Clause
(Comps
(Stop
))))
591 (Component_Clause
(Comps
(Stop
)))));
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
606 MSS
:= Max_Machine_Scalar_Size
;
608 and then (MSS
/ 2) >= SSU
609 and then (MSS
/ 2) > MaxL
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C
in Start
.. Stop
loop
635 Comp
: constant Entity_Id
:= Comps
(C
);
636 CC
: constant Node_Id
:= Component_Clause
(Comp
);
638 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
639 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
640 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
641 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
644 if Warn_On_Reverse_Bit_Order
then
645 Error_Msg_Uint_1
:= MSS
;
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit
(CC
));
649 Error_Msg_Uint_1
:= NFB
;
650 Error_Msg_Uint_2
:= NLB
;
652 if Bytes_Big_Endian
then
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit
(CC
), Comp
);
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit
(CC
), Comp
);
663 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
664 Set_Normalized_Position
(Comp
, Pos
+ NFB
/ SSU
);
665 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
670 end Adjust_Record_For_Reverse_Bit_Order
;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
) is
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp
:= First_Component_Or_Discriminant
(R
);
686 while Present
(Comp
) loop
687 CC
:= Component_Clause
(Comp
);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
698 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
699 CSZ
: constant Uint
:= Esize
(Comp
);
700 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
701 Pos
: constant Node_Id
:= Position
(CLC
);
702 FB
: constant Node_Id
:= First_Bit
(CLC
);
704 Storage_Unit_Offset
: constant Uint
:=
705 CFB
/ System_Storage_Unit
;
707 Start_Bit
: constant Uint
:=
708 CFB
mod System_Storage_Unit
;
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit
+ CSZ
> System_Storage_Unit
then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit
mod System_Storage_Unit
= 0
718 and then CSZ
mod System_Storage_Unit
= 0
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC
);
724 if Bytes_Big_Endian
then
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC
);
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC
);
734 -- Do not allow non-contiguous field
738 ("attempt to specify non-contiguous field not "
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC
);
745 -- Case where field fits in one storage unit
748 -- Give warning if suspicious component clause
750 if Intval
(FB
) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos
);
757 Intval
(Pos
) + Intval
(FB
) /
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos
);
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset
(Comp
,
784 (Storage_Unit_Offset
* System_Storage_Unit
) +
785 (System_Storage_Unit
- 1) -
786 (Start_Bit
+ CSZ
- 1));
788 Set_Normalized_Position
(Comp
,
789 Component_Bit_Offset
(Comp
) / System_Storage_Unit
);
791 Set_Normalized_First_Bit
(Comp
,
792 Component_Bit_Offset
(Comp
) mod System_Storage_Unit
);
797 Next_Component_Or_Discriminant
(Comp
);
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95
;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment
(Typ
)
813 and then not Has_Alignment_Clause
(Typ
)
814 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
816 Init_Alignment
(Typ
);
818 end Alignment_Check_For_Size_Change
;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
825 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
862 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
863 Ent
: constant Entity_Id
:= Entity
(ASN
);
864 Expr
: constant Node_Id
:= Expression
(ASN
);
865 Id
: constant Node_Id
:= Identifier
(ASN
);
868 Error_Msg_Name_1
:= Chars
(Id
);
870 if not Is_Type
(Ent
) then
871 Error_Msg_N
("aspect% can only apply to a type", Id
);
874 elsif not Is_First_Subtype
(Ent
) then
875 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
878 elsif A_Id
= Aspect_Default_Value
879 and then not Is_Scalar_Type
(Ent
)
881 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
884 elsif A_Id
= Aspect_Default_Component_Value
then
885 if not Is_Array_Type
(Ent
) then
886 Error_Msg_N
("aspect% can only be applied to array type", Id
);
889 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
890 Error_Msg_N
("aspect% requires scalar components", Id
);
895 Set_Has_Default_Aspect
(Base_Type
(Ent
));
897 if Is_Scalar_Type
(Ent
) then
898 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
900 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
902 end Analyze_Aspect_Default_Value
;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
909 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
910 P
: constant Entity_Id
:= Entity
(ASN
);
911 -- Entithy for parent type
914 -- Item from Rep_Item chain
919 -- Loop through delayed aspects for the parent type
922 while Present
(N
) loop
923 if Nkind
(N
) = N_Aspect_Specification
then
924 exit when Entity
(N
) /= P
;
926 if Is_Delayed_Aspect
(N
) then
927 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
940 when Aspect_Alignment
=>
941 if not Has_Alignment_Clause
(E
) then
942 Set_Alignment
(E
, Alignment
(P
));
947 when Aspect_Atomic
=>
948 if Is_Atomic
(P
) then
954 when Aspect_Atomic_Components
=>
955 if Has_Atomic_Components
(P
) then
956 Set_Has_Atomic_Components
(Base_Type
(E
));
961 when Aspect_Bit_Order
=>
962 if Is_Record_Type
(E
)
963 and then No
(Get_Attribute_Definition_Clause
964 (E
, Attribute_Bit_Order
))
965 and then Reverse_Bit_Order
(P
)
967 Set_Reverse_Bit_Order
(Base_Type
(E
));
972 when Aspect_Component_Size
=>
974 and then not Has_Component_Size_Clause
(E
)
977 (Base_Type
(E
), Component_Size
(P
));
982 when Aspect_Machine_Radix
=>
983 if Is_Decimal_Fixed_Point_Type
(E
)
984 and then not Has_Machine_Radix_Clause
(E
)
986 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
994 if not Has_Size_Clause
(E
)
996 No
(Get_Attribute_Definition_Clause
997 (E
, Attribute_Object_Size
))
999 Set_Esize
(E
, Esize
(P
));
1005 if not Is_Packed
(E
) then
1006 Set_Is_Packed
(Base_Type
(E
));
1008 if Is_Bit_Packed_Array
(P
) then
1009 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
1010 Set_Packed_Array_Impl_Type
1011 (E
, Packed_Array_Impl_Type
(P
));
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order
=>
1018 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
1019 and then No
(Get_Attribute_Definition_Clause
1020 (E
, Attribute_Scalar_Storage_Order
))
1021 and then Reverse_Storage_Order
(P
)
1023 Set_Reverse_Storage_Order
(Base_Type
(E
));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
1029 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
1034 when Aspect_Small
=>
1035 if Is_Fixed_Point_Type
(E
)
1036 and then not Has_Small_Clause
(E
)
1038 Set_Small_Value
(E
, Small_Value
(P
));
1043 when Aspect_Storage_Size
=>
1044 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
1045 and then not Has_Storage_Size_Clause
(E
)
1047 Set_Storage_Size_Variable
1048 (Base_Type
(E
), Storage_Size_Variable
(P
));
1053 when Aspect_Value_Size
=>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1063 when Aspect_Volatile
=>
1064 if Is_Volatile
(P
) then
1065 Set_Is_Volatile
(E
);
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access
=>
1071 if Is_Volatile_Full_Access
(P
) then
1072 Set_Is_Volatile_Full_Access
(E
);
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components
=>
1078 if Has_Volatile_Components
(P
) then
1079 Set_Has_Volatile_Components
(Base_Type
(E
));
1082 -- That should be all the Rep Aspects
1085 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
1091 N
:= Next_Rep_Item
(N
);
1093 end Inherit_Delayed_Rep_Aspects
;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
1100 Ident
: constant Node_Id
:= Identifier
(ASN
);
1101 A_Name
: constant Name_Id
:= Chars
(Ident
);
1102 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
1103 Ent
: constant Entity_Id
:= Entity
(ASN
);
1104 Expr
: constant Node_Id
:= Expression
(ASN
);
1105 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1107 procedure Check_False_Aspect_For_Derived_Type
;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type
is
1120 -- We are only checking derived types
1122 if not Is_Derived_Type
(E
) then
1126 Par
:= Nearest_Ancestor
(E
);
1132 if not Is_Atomic
(Par
) then
1136 when Aspect_Atomic_Components
=>
1137 if not Has_Atomic_Components
(Par
) then
1141 when Aspect_Discard_Names
=>
1142 if not Discard_Names
(Par
) then
1147 if not Is_Packed
(Par
) then
1151 when Aspect_Unchecked_Union
=>
1152 if not Is_Unchecked_Union
(Par
) then
1156 when Aspect_Volatile
=>
1157 if not Is_Volatile
(Par
) then
1161 when Aspect_Volatile_Components
=>
1162 if not Has_Volatile_Components
(Par
) then
1166 when Aspect_Volatile_Full_Access
=>
1167 if not Is_Volatile_Full_Access
(Par
) then
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1
:= A_Name
;
1179 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1180 end Check_False_Aspect_For_Derived_Type
;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False
(Static_Boolean
(Expr
)) then
1194 Check_False_Aspect_For_Derived_Type
;
1199 Pragma_Identifier
=>
1200 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)),
1201 Pragma_Argument_Associations
=> New_List
(
1202 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1203 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))));
1205 Set_From_Aspect_Specification
(Prag
, True);
1206 Set_Corresponding_Aspect
(Prag
, ASN
);
1207 Set_Aspect_Rep_Item
(ASN
, Prag
);
1208 Set_Is_Delayed_Aspect
(Prag
);
1209 Set_Parent
(Prag
, ASN
);
1211 end Make_Pragma_From_Boolean_Aspect
;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1229 if Is_Type
(E
) and then From_Nested_Package
(E
) then
1231 Pack
: constant Entity_Id
:= Scope
(E
);
1235 Install_Visible_Declarations
(Pack
);
1236 Install_Private_Declarations
(Pack
);
1237 Analyze_Aspects_At_Freeze_Point
(E
);
1239 if Is_Private_Type
(E
)
1240 and then Present
(Full_View
(E
))
1242 Analyze_Aspects_At_Freeze_Point
(Full_View
(E
));
1245 End_Package_Scope
(Pack
);
1249 -- Aspects from other entities in different contexts are analyzed
1257 -- Look for aspect specification entries for this entity
1259 ASN
:= First_Rep_Item
(E
);
1260 while Present
(ASN
) loop
1261 if Nkind
(ASN
) = N_Aspect_Specification
then
1262 exit when Entity
(ASN
) /= E
;
1264 if Is_Delayed_Aspect
(ASN
) then
1265 A_Id
:= Get_Aspect_Id
(ASN
);
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
1288 -- Otherwise create a corresponding pragma
1291 Make_Pragma_From_Boolean_Aspect
(ASN
);
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type
(E
)
1306 and then not Comes_From_Source
(E
)
1307 and then E
/= First_Subtype
(E
)
1311 Analyze_Aspect_Default_Value
(ASN
);
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze
(Expression
(ASN
));
1324 if Etype
(Expression
(ASN
)) = Any_Type
then
1326 ("\aspect must be fully defined before & is frozen",
1330 when Aspect_Iterable
=>
1331 Validate_Iterable_Aspect
(E
, ASN
);
1337 Ritem
:= Aspect_Rep_Item
(ASN
);
1339 if Present
(Ritem
) then
1345 Next_Rep_Item
(ASN
);
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1354 Inherit_Delayed_Rep_Aspects
(ASN
);
1356 end Analyze_Aspects_At_Freeze_Point
;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1363 pragma Assert
(Present
(E
));
1365 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1370 Is_Instance
: Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1378 -- Initial_Condition
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1395 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1397 Set_Aspect_Rep_Item
(Asp
, Prag
);
1398 Set_Corresponding_Aspect
(Prag
, Asp
);
1399 Set_From_Aspect_Specification
(Prag
);
1400 Set_Parent
(Prag
, Asp
);
1407 procedure Insert_Pragma
1409 Is_Instance
: Boolean := False)
1415 Inserted
: Boolean := False;
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1428 if Nkind_In
(N
, N_Entry_Body
,
1434 Decls
:= Declarations
(N
);
1438 Set_Declarations
(N
, Decls
);
1441 Prepend_To
(Decls
, Prag
);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1452 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
1453 N_Package_Declaration
)
1455 Decls
:= Visible_Declarations
(Specification
(N
));
1459 Set_Visible_Declarations
(Specification
(N
), Decls
);
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1474 Decl
:= First
(Decls
);
1475 while Present
(Decl
) loop
1476 if Comes_From_Source
(Decl
) then
1477 Insert_Before
(Decl
, Prag
);
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted
then
1488 Append_To
(Decls
, Prag
);
1491 -- Otherwise this is not a generic instance
1494 Prepend_To
(Decls
, Prag
);
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1506 elsif Nkind
(N
) = N_Protected_Type_Declaration
then
1507 Def
:= Protected_Definition
(N
);
1511 Make_Protected_Definition
(Sloc
(N
),
1512 Visible_Declarations
=> New_List
,
1513 End_Label
=> Empty
);
1515 Set_Protected_Definition
(N
, Def
);
1518 Decls
:= Visible_Declarations
(Def
);
1522 Set_Visible_Declarations
(Def
, Decls
);
1525 Prepend_To
(Decls
, Prag
);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1536 elsif Nkind
(N
) = N_Task_Type_Declaration
then
1537 Def
:= Task_Definition
(N
);
1541 Make_Task_Definition
(Sloc
(N
),
1542 Visible_Declarations
=> New_List
,
1543 End_Label
=> Empty
);
1545 Set_Task_Definition
(N
, Def
);
1548 Decls
:= Visible_Declarations
(Def
);
1552 Set_Visible_Declarations
(Def
, Decls
);
1555 Prepend_To
(Decls
, Prag
);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1561 Aux
:= Aux_Decls_Node
(Parent
(N
));
1563 if No
(Pragmas_After
(Aux
)) then
1564 Set_Pragmas_After
(Aux
, New_List
);
1567 Prepend
(Prag
, Pragmas_After
(Aux
));
1569 -- Default, the pragma is inserted after the context
1572 Insert_After
(N
, Prag
);
1582 L
: constant List_Id
:= Aspect_Specifications
(N
);
1583 pragma Assert
(Present
(L
));
1585 Ins_Node
: Node_Id
:= N
;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect
:= First
(L
);
1614 Aspect_Loop
: while Present
(Aspect
) loop
1615 Analyze_One_Aspect
: declare
1616 Expr
: constant Node_Id
:= Expression
(Aspect
);
1617 Id
: constant Node_Id
:= Identifier
(Aspect
);
1618 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1619 Nam
: constant Name_Id
:= Chars
(Id
);
1620 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1623 Delay_Required
: Boolean;
1624 -- Set False if delay is not required
1626 Eloc
: Source_Ptr
:= No_Location
;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention
;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled
;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import
;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name
;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference
;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations
: List_Id
;
1647 Pragma_Name
: Name_Id
);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention
is
1670 -- Obtain all interfacing aspects that apply to the related
1673 Get_Interfacing_Aspects
1674 (Iface_Asp
=> Aspect
,
1675 Conv_Asp
=> Dummy_1
,
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present
(Expo
) or else Present
(Imp
) then
1689 -- Otherwise Convention appears by itself
1692 -- The aspect specifies a particular convention
1694 if Present
(Expr
) then
1695 Conv
:= New_Copy_Tree
(Expr
);
1697 -- Otherwise assume convention Ada
1700 Conv
:= Make_Identifier
(Loc
, Name_Ada
);
1704 -- pragma Convention (<Conv>, <E>);
1707 (Pragma_Name
=> Name_Convention
,
1708 Pragma_Argument_Associations
=> New_List
(
1709 Make_Pragma_Argument_Association
(Loc
,
1710 Expression
=> Conv
),
1711 Make_Pragma_Argument_Association
(Loc
,
1712 Expression
=> New_Occurrence_Of
(E
, Loc
))));
1714 Decorate
(Aspect
, Aitem
);
1715 Insert_Pragma
(Aitem
);
1717 end Analyze_Aspect_Convention
;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled
is
1725 -- The aspect applies only to controlled records
1727 if not (Ekind
(E
) = E_Record_Type
1728 and then Is_Controlled_Active
(E
))
1731 ("aspect % requires controlled record type", Aspect
);
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic
then
1739 if Present
(Expr
) then
1740 Preanalyze_And_Resolve
(Expr
, Any_Boolean
);
1743 -- Otherwise the aspect resides in a nongeneric context
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present
(Expr
) then
1750 Analyze_And_Resolve
(Expr
, Any_Boolean
);
1752 if Is_OK_Static_Expression
(Expr
) then
1753 if Is_True
(Static_Boolean
(Expr
)) then
1754 Set_Disable_Controlled
(E
);
1757 -- Otherwise the expression is not static
1761 ("expression of aspect % must be static", Aspect
);
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1768 Set_Disable_Controlled
(E
);
1771 end Analyze_Aspect_Disable_Controlled
;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import
is
1785 -- Obtain all interfacing aspects that apply to the related
1788 Get_Interfacing_Aspects
1789 (Iface_Asp
=> Aspect
,
1790 Conv_Asp
=> Dummy_1
,
1797 -- The related entity cannot be subject to both aspects Export
1800 if Present
(Expo
) and then Present
(Imp
) then
1802 ("incompatible interfacing aspects given for &", E
);
1803 Error_Msg_Sloc
:= Sloc
(Expo
);
1804 Error_Msg_N
("\aspect `Export` #", E
);
1805 Error_Msg_Sloc
:= Sloc
(Imp
);
1806 Error_Msg_N
("\aspect `Import` #", E
);
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind
(E
) = E_Variable
then
1813 Set_Never_Set_In_Source
(E
, False);
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present
(Expr
)
1824 or else Is_True
(Static_Boolean
(Expr
))
1826 if A_Id
= Aspect_Import
then
1827 Set_Has_Completion
(E
);
1828 Set_Is_Imported
(E
);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind
(N
) = N_Object_Declaration
1833 and then Present
(Expression
(N
))
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression
(N
));
1841 pragma Assert
(A_Id
= Aspect_Export
);
1842 Set_Is_Exported
(E
);
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem
:= Build_Export_Import_Pragma
(Aspect
, E
);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1856 end Analyze_Aspect_Export_Import
;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name
is
1870 -- Obtain all interfacing aspects that apply to the related
1873 Get_Interfacing_Aspects
1874 (Iface_Asp
=> Aspect
,
1875 Conv_Asp
=> Dummy_1
,
1882 -- Ensure that aspect External_Name applies to aspect Export or
1885 if A_Id
= Aspect_External_Name
then
1886 if No
(Expo
) and then No
(Imp
) then
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect
);
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1896 pragma Assert
(A_Id
= Aspect_Link_Name
);
1897 if No
(Expo
) and then No
(Imp
) then
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect
);
1903 end Analyze_Aspect_External_Link_Name
;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference
is
1911 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1913 ("aspect must apply to a type with discriminants", Expr
);
1915 elsif not Is_Entity_Name
(Expr
) then
1917 ("aspect must name a discriminant of current type", Expr
);
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1926 Disc
: Entity_Id
:= First_Discriminant
(E
);
1928 while Present
(Disc
) loop
1929 if Chars
(Expr
) = Chars
(Disc
)
1932 E_Anonymous_Access_Subprogram_Type
,
1933 E_Anonymous_Access_Type
)
1935 Set_Has_Implicit_Dereference
(E
);
1936 Set_Has_Implicit_Dereference
(Disc
);
1940 Next_Discriminant
(Disc
);
1943 -- Error if no proper access discriminant
1945 if Present
(Disc
) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1950 if Is_Derived_Type
(E
)
1951 and then Has_Discriminants
(Etype
(E
))
1954 Parent_Disc
: constant Entity_Id
:=
1955 Get_Reference_Discriminant
(Etype
(E
));
1957 if Present
(Parent_Disc
)
1958 and then Corresponding_Discriminant
(Disc
) /=
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr
);
1970 ("not an access discriminant of&", Expr
, E
);
1975 end Analyze_Aspect_Implicit_Dereference
;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations
: List_Id
;
1983 Pragma_Name
: Name_Id
)
1985 Args
: List_Id
:= Pragma_Argument_Associations
;
1988 -- We should never get here if aspect was disabled
1990 pragma Assert
(not Is_Disabled
(Aspect
));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No
(Args
) or else No
(Expression
(First
(Args
))) then
2003 Pragma_Argument_Associations
=> Args
,
2004 Pragma_Identifier
=>
2005 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
2006 Class_Present
=> Class_Present
(Aspect
),
2007 Split_PPC
=> Split_PPC
(Aspect
));
2009 -- Set additional semantic fields
2011 if Is_Ignored
(Aspect
) then
2012 Set_Is_Ignored
(Aitem
);
2013 elsif Is_Checked
(Aspect
) then
2014 Set_Is_Checked
(Aitem
);
2017 Set_Corresponding_Aspect
(Aitem
, Aspect
);
2018 Set_From_Aspect_Specification
(Aitem
);
2019 end Make_Aitem_Pragma
;
2021 -- Start of processing for Analyze_One_Aspect
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed
(Aspect
) then
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy
(Aspect
);
2036 if Is_Disabled
(Aspect
) then
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present
(Expr
) then
2049 Eloc
:= Sloc
(First_Node
(Expr
));
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect
(A_Id
) then
2056 (No_Implementation_Aspect_Specifications
, Aspect
);
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed
(Aspect
);
2066 Set_Entity
(Aspect
, E
);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
2072 if A_Id
= Aspect_Attach_Handler
2073 or else A_Id
= Aspect_Interrupt_Handler
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference
(E
, Id
);
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed
(A_Id
) then
2089 while Anod
/= Aspect
loop
2090 if Comes_From_Source
(Aspect
)
2091 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
2093 Error_Msg_Name_1
:= Nam
;
2094 Error_Msg_Sloc
:= Sloc
(Anod
);
2096 -- Case of same aspect specified twice
2098 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
2099 if not Class_Present
(Anod
) then
2101 ("aspect% for & previously given#",
2105 ("aspect `%''Class` for & previously given#",
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect
(A_Id
) then
2118 Error_Msg_Name_1
:= Nam
;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2124 if Nkind
(Original_Node
(N
)) in N_Renaming_Declaration
then
2126 ("aspect % not allowed for renaming declaration",
2130 -- Not allowed for formal type declarations
2132 if Nkind
(N
) = N_Formal_Type_Declaration
then
2134 ("aspect % not allowed for formal type declaration",
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay
(A_Id
) is
2147 when Always_Delay
=>
2148 Delay_Required
:= True;
2151 Delay_Required
:= False;
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id
in Boolean_Aspects
and then No
(Expr
) then
2162 Delay_Required
:= False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id
not in Boolean_Aspects
2169 and then A_Id
/= Aspect_Alignment
2170 and then Present
(Expr
)
2171 and then Nkind
(Expr
) = N_Integer_Literal
2173 Delay_Required
:= False;
2175 -- All other cases are delayed
2178 Delay_Required
:= True;
2179 Set_Has_Delayed_Rep_Aspects
(E
);
2183 -- Processing based on specific aspect
2186 when Aspect_Unimplemented
=>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2192 raise Program_Error
;
2194 -- Case 1: Aspects corresponding to attribute definition
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2219 | Aspect_Variable_Indexing
2222 -- Indexing aspects apply only to tagged type
2224 if (A_Id
= Aspect_Constant_Indexing
2226 A_Id
= Aspect_Variable_Indexing
)
2227 and then not (Is_Type
(E
)
2228 and then Is_Tagged_Type
(E
))
2231 ("indexing aspect can only apply to a tagged type",
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2244 if A_Id
= Aspect_Address
then
2245 Set_Never_Set_In_Source
(E
, False);
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2253 if A_Id
= Aspect_Input
or else
2254 A_Id
= Aspect_Output
or else
2255 A_Id
= Aspect_Read
or else
2258 if not Is_First_Subtype
(E
) then
2260 ("local name must be a first subtype", Aspect
);
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2267 elsif Class_Present
(Aspect
) then
2269 Make_Attribute_Reference
(Loc
,
2271 Attribute_Name
=> Name_Class
);
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2287 Make_Attribute_Definition_Clause
(Loc
,
2289 Chars
=> Chars
(Id
),
2290 Expression
=> New_Copy_Tree
(Expr
));
2293 Make_Attribute_Definition_Clause
(Loc
,
2295 Chars
=> Chars
(Id
),
2296 Expression
=> Relocate_Node
(Expr
));
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2305 if A_Id
= Aspect_Address
then
2309 -- Case 2: Aspects corresponding to pragmas
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2316 -- Linker_Section/Suppress/Unsuppress
2318 when Aspect_Linker_Section
2323 (Pragma_Argument_Associations
=> New_List
(
2324 Make_Pragma_Argument_Association
(Loc
,
2325 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2326 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2327 Expression
=> Relocate_Node
(Expr
))),
2328 Pragma_Name
=> Chars
(Id
));
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2337 if A_Id
= Aspect_Linker_Section
2338 and then Nkind
(N
) = N_Object_Declaration
2339 and then Has_Init_Expression
(N
)
2341 Delay_Required
:= False;
2346 -- Corresponds to pragma Implemented, construct the pragma
2348 when Aspect_Synchronization
=>
2350 (Pragma_Argument_Associations
=> New_List
(
2351 Make_Pragma_Argument_Association
(Loc
,
2352 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2353 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2354 Expression
=> Relocate_Node
(Expr
))),
2355 Pragma_Name
=> Name_Implemented
);
2359 when Aspect_Attach_Handler
=>
2361 (Pragma_Argument_Associations
=> New_List
(
2362 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2364 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2365 Expression
=> Relocate_Node
(Expr
))),
2366 Pragma_Name
=> Name_Attach_Handler
);
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2371 Insert_Pragma
(Aitem
);
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2376 when Aspect_Dynamic_Predicate
2378 | Aspect_Static_Predicate
2380 -- These aspects apply only to subtypes
2382 if not Is_Type
(E
) then
2384 ("predicate can only be specified for a subtype",
2388 elsif Is_Incomplete_Type
(E
) then
2390 ("predicate cannot apply to incomplete view", Aspect
);
2392 elsif Is_Generic_Type
(E
) then
2394 ("predicate cannot apply to formal type", Aspect
);
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2403 (Pragma_Argument_Associations
=> New_List
(
2404 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2406 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2407 Expression
=> Relocate_Node
(Expr
))),
2408 Pragma_Name
=> Name_Predicate
);
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2414 Set_Has_Predicates
(E
);
2416 if A_Id
= Aspect_Dynamic_Predicate
then
2417 Set_Has_Dynamic_Predicate_Aspect
(E
);
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2423 Set_Has_Static_Predicate_Aspect
(E
, False);
2425 elsif A_Id
= Aspect_Static_Predicate
then
2426 Set_Has_Static_Predicate_Aspect
(E
);
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2433 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2434 Set_Has_Predicates
(Full_View
(E
));
2436 if A_Id
= Aspect_Dynamic_Predicate
then
2437 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
2438 elsif A_Id
= Aspect_Static_Predicate
then
2439 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
2442 Set_Has_Delayed_Aspects
(Full_View
(E
));
2443 Ensure_Freeze_Node
(Full_View
(E
));
2446 -- Predicate_Failure
2448 when Aspect_Predicate_Failure
=>
2450 -- This aspect applies only to subtypes
2452 if not Is_Type
(E
) then
2454 ("predicate can only be specified for a subtype",
2458 elsif Is_Incomplete_Type
(E
) then
2460 ("predicate cannot apply to incomplete view", Aspect
);
2464 -- Construct the pragma
2467 (Pragma_Argument_Associations
=> New_List
(
2468 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2470 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2471 Expression
=> Relocate_Node
(Expr
))),
2472 Pragma_Name
=> Name_Predicate_Failure
);
2474 Set_Has_Predicates
(E
);
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2480 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2481 Set_Has_Predicates
(Full_View
(E
));
2482 Set_Has_Delayed_Aspects
(Full_View
(E
));
2483 Ensure_Freeze_Node
(Full_View
(E
));
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2493 when Aspect_Convention
=>
2494 Analyze_Aspect_Convention
;
2497 -- External_Name, Link_Name
2499 when Aspect_External_Name
2502 Analyze_Aspect_External_Link_Name
;
2505 -- CPU, Interrupt_Priority, Priority
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2521 | Aspect_Interrupt_Priority
2524 if Nkind_In
(N
, N_Subprogram_Body
,
2525 N_Subprogram_Declaration
)
2527 -- Analyze the aspect expression
2529 Analyze_And_Resolve
(Expr
, Standard_Integer
);
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2536 if A_Id
= Aspect_Interrupt_Priority
then
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr
);
2541 -- The expression must be static
2543 elsif not Is_OK_Static_Expression
(Expr
) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr
);
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2552 elsif Present
(Parameter_Specifications
2553 (Specification
(N
)))
2554 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2556 -- See RM D.1(14/3) and D.16(12/3)
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr
);
2562 -- Otherwise check in range and export the value
2564 -- For the CPU aspect
2566 elsif A_Id
= Aspect_CPU
then
2567 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2573 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2577 ("main subprogram CPU is out of range", Expr
);
2580 -- For the Priority aspect
2582 elsif A_Id
= Aspect_Priority
then
2583 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2589 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2594 elsif not Relaxed_RM_Semantics
then
2596 ("main subprogram priority is out of range",
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2611 Discard
: Entity_Id
;
2613 if Restricted_Profile
then
2614 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2616 Discard
:= RTE
(RE_Activate_Tasks
);
2620 -- Handling for these aspects in subprograms is complete
2624 -- For task and protected types pass the aspect as an
2629 Make_Attribute_Definition_Clause
(Loc
,
2631 Chars
=> Chars
(Id
),
2632 Expression
=> Relocate_Node
(Expr
));
2637 when Aspect_Warnings
=>
2639 (Pragma_Argument_Associations
=> New_List
(
2640 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2641 Expression
=> Relocate_Node
(Expr
)),
2642 Make_Pragma_Argument_Association
(Loc
,
2643 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2644 Pragma_Name
=> Chars
(Id
));
2646 Decorate
(Aspect
, Aitem
);
2647 Insert_Pragma
(Aitem
);
2650 -- Case 2c: Aspects corresponding to pragmas with three
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2657 -- Invariant, Type_Invariant
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2667 (Pragma_Argument_Associations
=> New_List
(
2668 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2670 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2671 Expression
=> Relocate_Node
(Expr
))),
2672 Pragma_Name
=> Name_Invariant
);
2674 -- Add message unless exception messages are suppressed
2676 if not Opt
.Exception_Locations_Suppressed
then
2677 Append_To
(Pragma_Argument_Associations
(Aitem
),
2678 Make_Pragma_Argument_Association
(Eloc
,
2679 Chars
=> Name_Message
,
2681 Make_String_Literal
(Eloc
,
2682 Strval
=> "failed invariant from "
2683 & Build_Location_String
(Eloc
))));
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2690 Delay_Required
:= False;
2692 -- Case 2d : Aspects that correspond to a pragma with one
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2703 when Aspect_Abstract_State
=> Abstract_State
: declare
2704 Context
: Node_Id
:= N
;
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2711 if Nkind
(Context
) = N_Package_Instantiation
then
2712 Context
:= Instance_Spec
(Context
);
2715 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2716 N_Package_Declaration
)
2719 (Pragma_Argument_Associations
=> New_List
(
2720 Make_Pragma_Argument_Association
(Loc
,
2721 Expression
=> Relocate_Node
(Expr
))),
2722 Pragma_Name
=> Name_Abstract_State
);
2724 Decorate
(Aspect
, Aitem
);
2728 Is_Generic_Instance
(Defining_Entity
(Context
)));
2732 ("aspect & must apply to a package declaration",
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2743 when Aspect_Async_Readers
=>
2745 (Pragma_Argument_Associations
=> New_List
(
2746 Make_Pragma_Argument_Association
(Loc
,
2747 Expression
=> Relocate_Node
(Expr
))),
2748 Pragma_Name
=> Name_Async_Readers
);
2750 Decorate
(Aspect
, Aitem
);
2751 Insert_Pragma
(Aitem
);
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2758 when Aspect_Async_Writers
=>
2760 (Pragma_Argument_Associations
=> New_List
(
2761 Make_Pragma_Argument_Association
(Loc
,
2762 Expression
=> Relocate_Node
(Expr
))),
2763 Pragma_Name
=> Name_Async_Writers
);
2765 Decorate
(Aspect
, Aitem
);
2766 Insert_Pragma
(Aitem
);
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2773 when Aspect_Constant_After_Elaboration
=>
2775 (Pragma_Argument_Associations
=> New_List
(
2776 Make_Pragma_Argument_Association
(Loc
,
2777 Expression
=> Relocate_Node
(Expr
))),
2779 Name_Constant_After_Elaboration
);
2781 Decorate
(Aspect
, Aitem
);
2782 Insert_Pragma
(Aitem
);
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2793 when Aspect_Default_Initial_Condition
=>
2795 (Pragma_Argument_Associations
=> New_List
(
2796 Make_Pragma_Argument_Association
(Loc
,
2797 Expression
=> Relocate_Node
(Expr
))),
2799 Name_Default_Initial_Condition
);
2801 Decorate
(Aspect
, Aitem
);
2802 Insert_Pragma
(Aitem
);
2805 -- Default_Storage_Pool
2807 when Aspect_Default_Storage_Pool
=>
2809 (Pragma_Argument_Associations
=> New_List
(
2810 Make_Pragma_Argument_Association
(Loc
,
2811 Expression
=> Relocate_Node
(Expr
))),
2813 Name_Default_Storage_Pool
);
2815 Decorate
(Aspect
, Aitem
);
2816 Insert_Pragma
(Aitem
);
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2828 when Aspect_Depends
=>
2830 (Pragma_Argument_Associations
=> New_List
(
2831 Make_Pragma_Argument_Association
(Loc
,
2832 Expression
=> Relocate_Node
(Expr
))),
2833 Pragma_Name
=> Name_Depends
);
2835 Decorate
(Aspect
, Aitem
);
2836 Insert_Pragma
(Aitem
);
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2843 when Aspect_Effective_Reads
=>
2845 (Pragma_Argument_Associations
=> New_List
(
2846 Make_Pragma_Argument_Association
(Loc
,
2847 Expression
=> Relocate_Node
(Expr
))),
2848 Pragma_Name
=> Name_Effective_Reads
);
2850 Decorate
(Aspect
, Aitem
);
2851 Insert_Pragma
(Aitem
);
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2858 when Aspect_Effective_Writes
=>
2860 (Pragma_Argument_Associations
=> New_List
(
2861 Make_Pragma_Argument_Association
(Loc
,
2862 Expression
=> Relocate_Node
(Expr
))),
2863 Pragma_Name
=> Name_Effective_Writes
);
2865 Decorate
(Aspect
, Aitem
);
2866 Insert_Pragma
(Aitem
);
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2873 when Aspect_Extensions_Visible
=>
2875 (Pragma_Argument_Associations
=> New_List
(
2876 Make_Pragma_Argument_Association
(Loc
,
2877 Expression
=> Relocate_Node
(Expr
))),
2878 Pragma_Name
=> Name_Extensions_Visible
);
2880 Decorate
(Aspect
, Aitem
);
2881 Insert_Pragma
(Aitem
);
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2889 when Aspect_Ghost
=>
2891 (Pragma_Argument_Associations
=> New_List
(
2892 Make_Pragma_Argument_Association
(Loc
,
2893 Expression
=> Relocate_Node
(Expr
))),
2894 Pragma_Name
=> Name_Ghost
);
2896 Decorate
(Aspect
, Aitem
);
2897 Insert_Pragma
(Aitem
);
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2909 when Aspect_Global
=>
2911 (Pragma_Argument_Associations
=> New_List
(
2912 Make_Pragma_Argument_Association
(Loc
,
2913 Expression
=> Relocate_Node
(Expr
))),
2914 Pragma_Name
=> Name_Global
);
2916 Decorate
(Aspect
, Aitem
);
2917 Insert_Pragma
(Aitem
);
2920 -- Initial_Condition
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2930 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2931 Context
: Node_Id
:= N
;
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2938 if Nkind
(Context
) = N_Package_Instantiation
then
2939 Context
:= Instance_Spec
(Context
);
2942 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2943 N_Package_Declaration
)
2946 (Pragma_Argument_Associations
=> New_List
(
2947 Make_Pragma_Argument_Association
(Loc
,
2948 Expression
=> Relocate_Node
(Expr
))),
2950 Name_Initial_Condition
);
2952 Decorate
(Aspect
, Aitem
);
2956 Is_Generic_Instance
(Defining_Entity
(Context
)));
2958 -- Otherwise the context is illegal
2962 ("aspect & must apply to a package declaration",
2967 end Initial_Condition
;
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2978 when Aspect_Initializes
=> Initializes
: declare
2979 Context
: Node_Id
:= N
;
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2986 if Nkind
(Context
) = N_Package_Instantiation
then
2987 Context
:= Instance_Spec
(Context
);
2990 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2991 N_Package_Declaration
)
2994 (Pragma_Argument_Associations
=> New_List
(
2995 Make_Pragma_Argument_Association
(Loc
,
2996 Expression
=> Relocate_Node
(Expr
))),
2997 Pragma_Name
=> Name_Initializes
);
2999 Decorate
(Aspect
, Aitem
);
3003 Is_Generic_Instance
(Defining_Entity
(Context
)));
3005 -- Otherwise the context is illegal
3009 ("aspect & must apply to a package declaration",
3016 -- Max_Entry_Queue_Depth
3018 when Aspect_Max_Entry_Queue_Depth
=>
3020 (Pragma_Argument_Associations
=> New_List
(
3021 Make_Pragma_Argument_Association
(Loc
,
3022 Expression
=> Relocate_Node
(Expr
))),
3023 Pragma_Name
=> Name_Max_Entry_Queue_Depth
);
3025 Decorate
(Aspect
, Aitem
);
3026 Insert_Pragma
(Aitem
);
3031 when Aspect_Max_Queue_Length
=>
3033 (Pragma_Argument_Associations
=> New_List
(
3034 Make_Pragma_Argument_Association
(Loc
,
3035 Expression
=> Relocate_Node
(Expr
))),
3036 Pragma_Name
=> Name_Max_Queue_Length
);
3038 Decorate
(Aspect
, Aitem
);
3039 Insert_Pragma
(Aitem
);
3044 when Aspect_Obsolescent
=> declare
3052 Make_Pragma_Argument_Association
(Sloc
(Expr
),
3053 Expression
=> Relocate_Node
(Expr
)));
3057 (Pragma_Argument_Associations
=> Args
,
3058 Pragma_Name
=> Chars
(Id
));
3063 when Aspect_Part_Of
=>
3064 if Nkind_In
(N
, N_Object_Declaration
,
3065 N_Package_Instantiation
)
3066 or else Is_Single_Concurrent_Type_Declaration
(N
)
3069 (Pragma_Argument_Associations
=> New_List
(
3070 Make_Pragma_Argument_Association
(Loc
,
3071 Expression
=> Relocate_Node
(Expr
))),
3072 Pragma_Name
=> Name_Part_Of
);
3074 Decorate
(Aspect
, Aitem
);
3075 Insert_Pragma
(Aitem
);
3079 ("aspect & must apply to package instantiation, "
3080 & "object, single protected type or single task type",
3088 when Aspect_SPARK_Mode
=>
3090 (Pragma_Argument_Associations
=> New_List
(
3091 Make_Pragma_Argument_Association
(Loc
,
3092 Expression
=> Relocate_Node
(Expr
))),
3093 Pragma_Name
=> Name_SPARK_Mode
);
3095 Decorate
(Aspect
, Aitem
);
3096 Insert_Pragma
(Aitem
);
3101 -- Aspect Refined_Depends is never delayed because it is
3102 -- equivalent to a source pragma which appears in the
3103 -- declarations of the related subprogram body. To deal with
3104 -- forward references, the generated pragma is stored in the
3105 -- contract of the related subprogram body and later analyzed
3106 -- at the end of the declarative region. For details, see
3107 -- routine Analyze_Refined_Depends_In_Decl_Part.
3109 when Aspect_Refined_Depends
=>
3111 (Pragma_Argument_Associations
=> New_List
(
3112 Make_Pragma_Argument_Association
(Loc
,
3113 Expression
=> Relocate_Node
(Expr
))),
3114 Pragma_Name
=> Name_Refined_Depends
);
3116 Decorate
(Aspect
, Aitem
);
3117 Insert_Pragma
(Aitem
);
3122 -- Aspect Refined_Global is never delayed because it is
3123 -- equivalent to a source pragma which appears in the
3124 -- declarations of the related subprogram body. To deal with
3125 -- forward references, the generated pragma is stored in the
3126 -- contract of the related subprogram body and later analyzed
3127 -- at the end of the declarative region. For details, see
3128 -- routine Analyze_Refined_Global_In_Decl_Part.
3130 when Aspect_Refined_Global
=>
3132 (Pragma_Argument_Associations
=> New_List
(
3133 Make_Pragma_Argument_Association
(Loc
,
3134 Expression
=> Relocate_Node
(Expr
))),
3135 Pragma_Name
=> Name_Refined_Global
);
3137 Decorate
(Aspect
, Aitem
);
3138 Insert_Pragma
(Aitem
);
3143 when Aspect_Refined_Post
=>
3145 (Pragma_Argument_Associations
=> New_List
(
3146 Make_Pragma_Argument_Association
(Loc
,
3147 Expression
=> Relocate_Node
(Expr
))),
3148 Pragma_Name
=> Name_Refined_Post
);
3150 Decorate
(Aspect
, Aitem
);
3151 Insert_Pragma
(Aitem
);
3156 when Aspect_Refined_State
=>
3158 -- The corresponding pragma for Refined_State is inserted in
3159 -- the declarations of the related package body. This action
3160 -- synchronizes both the source and from-aspect versions of
3163 if Nkind
(N
) = N_Package_Body
then
3165 (Pragma_Argument_Associations
=> New_List
(
3166 Make_Pragma_Argument_Association
(Loc
,
3167 Expression
=> Relocate_Node
(Expr
))),
3168 Pragma_Name
=> Name_Refined_State
);
3170 Decorate
(Aspect
, Aitem
);
3171 Insert_Pragma
(Aitem
);
3173 -- Otherwise the context is illegal
3177 ("aspect & must apply to a package body", Aspect
, Id
);
3182 -- Relative_Deadline
3184 when Aspect_Relative_Deadline
=>
3186 (Pragma_Argument_Associations
=> New_List
(
3187 Make_Pragma_Argument_Association
(Loc
,
3188 Expression
=> Relocate_Node
(Expr
))),
3189 Pragma_Name
=> Name_Relative_Deadline
);
3191 -- If the aspect applies to a task, the corresponding pragma
3192 -- must appear within its declarations, not after.
3194 if Nkind
(N
) = N_Task_Type_Declaration
then
3200 if No
(Task_Definition
(N
)) then
3201 Set_Task_Definition
(N
,
3202 Make_Task_Definition
(Loc
,
3203 Visible_Declarations
=> New_List
,
3204 End_Label
=> Empty
));
3207 Def
:= Task_Definition
(N
);
3208 V
:= Visible_Declarations
(Def
);
3209 if not Is_Empty_List
(V
) then
3210 Insert_Before
(First
(V
), Aitem
);
3213 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
3220 -- Secondary_Stack_Size
3222 -- Aspect Secondary_Stack_Size needs to be converted into a
3223 -- pragma for two reasons: the attribute is not analyzed until
3224 -- after the expansion of the task type declaration and the
3225 -- attribute does not have visibility on the discriminant.
3227 when Aspect_Secondary_Stack_Size
=>
3229 (Pragma_Argument_Associations
=> New_List
(
3230 Make_Pragma_Argument_Association
(Loc
,
3231 Expression
=> Relocate_Node
(Expr
))),
3233 Name_Secondary_Stack_Size
);
3235 Decorate
(Aspect
, Aitem
);
3236 Insert_Pragma
(Aitem
);
3239 -- Volatile_Function
3241 -- Aspect Volatile_Function is never delayed because it is
3242 -- equivalent to a source pragma which appears after the
3243 -- related subprogram.
3245 when Aspect_Volatile_Function
=>
3247 (Pragma_Argument_Associations
=> New_List
(
3248 Make_Pragma_Argument_Association
(Loc
,
3249 Expression
=> Relocate_Node
(Expr
))),
3250 Pragma_Name
=> Name_Volatile_Function
);
3252 Decorate
(Aspect
, Aitem
);
3253 Insert_Pragma
(Aitem
);
3256 -- Case 2e: Annotate aspect
3258 when Aspect_Annotate
=>
3265 -- The argument can be a single identifier
3267 if Nkind
(Expr
) = N_Identifier
then
3269 -- One level of parens is allowed
3271 if Paren_Count
(Expr
) > 1 then
3272 Error_Msg_F
("extra parentheses ignored", Expr
);
3275 Set_Paren_Count
(Expr
, 0);
3277 -- Add the single item to the list
3279 Args
:= New_List
(Expr
);
3281 -- Otherwise we must have an aggregate
3283 elsif Nkind
(Expr
) = N_Aggregate
then
3285 -- Must be positional
3287 if Present
(Component_Associations
(Expr
)) then
3289 ("purely positional aggregate required", Expr
);
3293 -- Must not be parenthesized
3295 if Paren_Count
(Expr
) /= 0 then
3296 Error_Msg_F
("extra parentheses ignored", Expr
);
3299 -- List of arguments is list of aggregate expressions
3301 Args
:= Expressions
(Expr
);
3303 -- Anything else is illegal
3306 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
3310 -- Prepare pragma arguments
3313 Arg
:= First
(Args
);
3314 while Present
(Arg
) loop
3316 Make_Pragma_Argument_Association
(Sloc
(Arg
),
3317 Expression
=> Relocate_Node
(Arg
)));
3322 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3323 Chars
=> Name_Entity
,
3324 Expression
=> Ent
));
3327 (Pragma_Argument_Associations
=> Pargs
,
3328 Pragma_Name
=> Name_Annotate
);
3331 -- Case 3 : Aspects that don't correspond to pragma/attribute
3332 -- definition clause.
3334 -- Case 3a: The aspects listed below don't correspond to
3335 -- pragmas/attributes but do require delayed analysis.
3337 -- Default_Value can only apply to a scalar type
3339 when Aspect_Default_Value
=>
3340 if not Is_Scalar_Type
(E
) then
3342 ("aspect Default_Value must apply to a scalar type", N
);
3347 -- Default_Component_Value can only apply to an array type
3348 -- with scalar components.
3350 when Aspect_Default_Component_Value
=>
3351 if not (Is_Array_Type
(E
)
3352 and then Is_Scalar_Type
(Component_Type
(E
)))
3355 ("aspect Default_Component_Value can only apply to an "
3356 & "array of scalar components", N
);
3361 -- Case 3b: The aspects listed below don't correspond to
3362 -- pragmas/attributes and don't need delayed analysis.
3364 -- Implicit_Dereference
3366 -- For Implicit_Dereference, External_Name and Link_Name, only
3367 -- the legality checks are done during the analysis, thus no
3368 -- delay is required.
3370 when Aspect_Implicit_Dereference
=>
3371 Analyze_Aspect_Implicit_Dereference
;
3376 when Aspect_Dimension
=>
3377 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
3382 when Aspect_Dimension_System
=>
3383 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
3386 -- Case 4: Aspects requiring special handling
3388 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3389 -- pragmas take care of the delay.
3393 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3394 -- with a first argument that is the expression, and a second
3395 -- argument that is an informative message if the test fails.
3396 -- This is inserted right after the declaration, to get the
3397 -- required pragma placement. The processing for the pragmas
3398 -- takes care of the required delay.
3400 when Pre_Post_Aspects
=> Pre_Post
: declare
3404 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
3405 Pname
:= Name_Precondition
;
3407 Pname
:= Name_Postcondition
;
3410 -- Check that the class-wide predicate cannot be applied to
3411 -- an operation of a synchronized type. AI12-0182 forbids
3412 -- these altogether, while earlier language semantics made
3413 -- them legal on tagged synchronized types.
3415 -- Other legality checks are performed when analyzing the
3416 -- contract of the operation.
3418 if Class_Present
(Aspect
)
3419 and then Is_Concurrent_Type
(Current_Scope
)
3420 and then Ekind_In
(E
, E_Entry
, E_Function
, E_Procedure
)
3422 Error_Msg_Name_1
:= Original_Aspect_Pragma_Name
(Aspect
);
3424 ("aspect % can only be specified for a primitive "
3425 & "operation of a tagged type", Aspect
);
3430 -- If the expressions is of the form A and then B, then
3431 -- we generate separate Pre/Post aspects for the separate
3432 -- clauses. Since we allow multiple pragmas, there is no
3433 -- problem in allowing multiple Pre/Post aspects internally.
3434 -- These should be treated in reverse order (B first and
3435 -- A second) since they are later inserted just after N in
3436 -- the order they are treated. This way, the pragma for A
3437 -- ends up preceding the pragma for B, which may have an
3438 -- importance for the error raised (either constraint error
3439 -- or precondition error).
3441 -- We do not do this for Pre'Class, since we have to put
3442 -- these conditions together in a complex OR expression.
3444 -- We do not do this in ASIS mode, as ASIS relies on the
3445 -- original node representing the complete expression, when
3446 -- retrieving it through the source aspect table. Also, we
3447 -- don't do this in GNATprove mode, because it brings no
3448 -- benefit for proof and causes annoynace for flow analysis,
3449 -- which prefers to be as close to the original source code
3452 if not (ASIS_Mode
or GNATprove_Mode
)
3453 and then (Pname
= Name_Postcondition
3454 or else not Class_Present
(Aspect
))
3456 while Nkind
(Expr
) = N_And_Then
loop
3457 Insert_After
(Aspect
,
3458 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
3459 Identifier
=> Identifier
(Aspect
),
3460 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
3461 Class_Present
=> Class_Present
(Aspect
),
3462 Split_PPC
=> True));
3463 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
3464 Eloc
:= Sloc
(Expr
);
3468 -- Build the precondition/postcondition pragma
3470 -- Add note about why we do NOT need Copy_Tree here???
3473 (Pragma_Argument_Associations
=> New_List
(
3474 Make_Pragma_Argument_Association
(Eloc
,
3475 Chars
=> Name_Check
,
3476 Expression
=> Relocate_Node
(Expr
))),
3477 Pragma_Name
=> Pname
);
3479 -- Add message unless exception messages are suppressed
3481 if not Opt
.Exception_Locations_Suppressed
then
3482 Append_To
(Pragma_Argument_Associations
(Aitem
),
3483 Make_Pragma_Argument_Association
(Eloc
,
3484 Chars
=> Name_Message
,
3486 Make_String_Literal
(Eloc
,
3488 & Get_Name_String
(Pname
)
3490 & Build_Location_String
(Eloc
))));
3493 Set_Is_Delayed_Aspect
(Aspect
);
3495 -- For Pre/Post cases, insert immediately after the entity
3496 -- declaration, since that is the required pragma placement.
3497 -- Note that for these aspects, we do not have to worry
3498 -- about delay issues, since the pragmas themselves deal
3499 -- with delay of visibility for the expression analysis.
3501 Insert_Pragma
(Aitem
);
3508 when Aspect_Test_Case
=> Test_Case
: declare
3510 Comp_Expr
: Node_Id
;
3511 Comp_Assn
: Node_Id
;
3517 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3518 Error_Msg_Name_1
:= Nam
;
3519 Error_Msg_N
("incorrect placement of aspect `%`", E
);
3523 if Nkind
(Expr
) /= N_Aggregate
then
3524 Error_Msg_Name_1
:= Nam
;
3526 ("wrong syntax for aspect `%` for &", Id
, E
);
3530 -- Make pragma expressions refer to the original aspect
3531 -- expressions through the Original_Node link. This is used
3532 -- in semantic analysis for ASIS mode, so that the original
3533 -- expression also gets analyzed.
3535 Comp_Expr
:= First
(Expressions
(Expr
));
3536 while Present
(Comp_Expr
) loop
3537 New_Expr
:= Relocate_Node
(Comp_Expr
);
3539 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
3540 Expression
=> New_Expr
));
3544 Comp_Assn
:= First
(Component_Associations
(Expr
));
3545 while Present
(Comp_Assn
) loop
3546 if List_Length
(Choices
(Comp_Assn
)) /= 1
3548 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
3550 Error_Msg_Name_1
:= Nam
;
3552 ("wrong syntax for aspect `%` for &", Id
, E
);
3557 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
3558 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
3560 Relocate_Node
(Expression
(Comp_Assn
))));
3564 -- Build the test-case pragma
3567 (Pragma_Argument_Associations
=> Args
,
3568 Pragma_Name
=> Nam
);
3573 when Aspect_Contract_Cases
=>
3575 (Pragma_Argument_Associations
=> New_List
(
3576 Make_Pragma_Argument_Association
(Loc
,
3577 Expression
=> Relocate_Node
(Expr
))),
3578 Pragma_Name
=> Nam
);
3580 Decorate
(Aspect
, Aitem
);
3581 Insert_Pragma
(Aitem
);
3584 -- Case 5: Special handling for aspects with an optional
3585 -- boolean argument.
3587 -- In the delayed case, the corresponding pragma cannot be
3588 -- generated yet because the evaluation of the boolean needs
3589 -- to be delayed till the freeze point.
3591 when Boolean_Aspects
3592 | Library_Unit_Aspects
3594 Set_Is_Boolean_Aspect
(Aspect
);
3596 -- Lock_Free aspect only apply to protected objects
3598 if A_Id
= Aspect_Lock_Free
then
3599 if Ekind
(E
) /= E_Protected_Type
then
3600 Error_Msg_Name_1
:= Nam
;
3602 ("aspect % only applies to a protected object",
3606 -- Set the Uses_Lock_Free flag to True if there is no
3607 -- expression or if the expression is True. The
3608 -- evaluation of this aspect should be delayed to the
3609 -- freeze point (why???)
3612 or else Is_True
(Static_Boolean
(Expr
))
3614 Set_Uses_Lock_Free
(E
);
3617 Record_Rep_Item
(E
, Aspect
);
3622 elsif A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
3623 Analyze_Aspect_Export_Import
;
3625 -- Disable_Controlled
3627 elsif A_Id
= Aspect_Disable_Controlled
then
3628 Analyze_Aspect_Disable_Controlled
;
3632 -- Library unit aspects require special handling in the case
3633 -- of a package declaration, the pragma needs to be inserted
3634 -- in the list of declarations for the associated package.
3635 -- There is no issue of visibility delay for these aspects.
3637 if A_Id
in Library_Unit_Aspects
3639 Nkind_In
(N
, N_Package_Declaration
,
3640 N_Generic_Package_Declaration
)
3641 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3643 -- Aspect is legal on a local instantiation of a library-
3644 -- level generic unit.
3646 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3649 ("incorrect context for library unit aspect&", Id
);
3653 -- Cases where we do not delay, includes all cases where the
3654 -- expression is missing other than the above cases.
3656 if not Delay_Required
or else No
(Expr
) then
3658 -- Exclude aspects Export and Import because their pragma
3659 -- syntax does not map directly to a Boolean aspect.
3661 if A_Id
/= Aspect_Export
3662 and then A_Id
/= Aspect_Import
3665 (Pragma_Argument_Associations
=> New_List
(
3666 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3667 Expression
=> Ent
)),
3668 Pragma_Name
=> Chars
(Id
));
3671 Delay_Required
:= False;
3673 -- In general cases, the corresponding pragma/attribute
3674 -- definition clause will be inserted later at the freezing
3675 -- point, and we do not need to build it now.
3683 -- This is special because for access types we need to generate
3684 -- an attribute definition clause. This also works for single
3685 -- task declarations, but it does not work for task type
3686 -- declarations, because we have the case where the expression
3687 -- references a discriminant of the task type. That can't use
3688 -- an attribute definition clause because we would not have
3689 -- visibility on the discriminant. For that case we must
3690 -- generate a pragma in the task definition.
3692 when Aspect_Storage_Size
=>
3696 if Ekind
(E
) = E_Task_Type
then
3698 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3701 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3703 -- If no task definition, create one
3705 if No
(Task_Definition
(Decl
)) then
3706 Set_Task_Definition
(Decl
,
3707 Make_Task_Definition
(Loc
,
3708 Visible_Declarations
=> Empty_List
,
3709 End_Label
=> Empty
));
3712 -- Create a pragma and put it at the start of the task
3713 -- definition for the task type declaration.
3716 (Pragma_Argument_Associations
=> New_List
(
3717 Make_Pragma_Argument_Association
(Loc
,
3718 Expression
=> Relocate_Node
(Expr
))),
3719 Pragma_Name
=> Name_Storage_Size
);
3723 Visible_Declarations
(Task_Definition
(Decl
)));
3727 -- All other cases, generate attribute definition
3731 Make_Attribute_Definition_Clause
(Loc
,
3733 Chars
=> Chars
(Id
),
3734 Expression
=> Relocate_Node
(Expr
));
3738 -- Attach the corresponding pragma/attribute definition clause to
3739 -- the aspect specification node.
3741 if Present
(Aitem
) then
3742 Set_From_Aspect_Specification
(Aitem
);
3745 -- In the context of a compilation unit, we directly put the
3746 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3747 -- node (no delay is required here) except for aspects on a
3748 -- subprogram body (see below) and a generic package, for which we
3749 -- need to introduce the pragma before building the generic copy
3750 -- (see sem_ch12), and for package instantiations, where the
3751 -- library unit pragmas are better handled early.
3753 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3754 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3757 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3760 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3762 -- For a Boolean aspect, create the corresponding pragma if
3763 -- no expression or if the value is True.
3765 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3766 if Is_True
(Static_Boolean
(Expr
)) then
3768 (Pragma_Argument_Associations
=> New_List
(
3769 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3770 Expression
=> Ent
)),
3771 Pragma_Name
=> Chars
(Id
));
3773 Set_From_Aspect_Specification
(Aitem
, True);
3774 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3781 -- If the aspect is on a subprogram body (relevant aspect
3782 -- is Inline), add the pragma in front of the declarations.
3784 if Nkind
(N
) = N_Subprogram_Body
then
3785 if No
(Declarations
(N
)) then
3786 Set_Declarations
(N
, New_List
);
3789 Prepend
(Aitem
, Declarations
(N
));
3791 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3792 if No
(Visible_Declarations
(Specification
(N
))) then
3793 Set_Visible_Declarations
(Specification
(N
), New_List
);
3797 Visible_Declarations
(Specification
(N
)));
3799 elsif Nkind
(N
) = N_Package_Instantiation
then
3801 Spec
: constant Node_Id
:=
3802 Specification
(Instance_Spec
(N
));
3804 if No
(Visible_Declarations
(Spec
)) then
3805 Set_Visible_Declarations
(Spec
, New_List
);
3808 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3812 if No
(Pragmas_After
(Aux
)) then
3813 Set_Pragmas_After
(Aux
, New_List
);
3816 Append
(Aitem
, Pragmas_After
(Aux
));
3823 -- The evaluation of the aspect is delayed to the freezing point.
3824 -- The pragma or attribute clause if there is one is then attached
3825 -- to the aspect specification which is put in the rep item list.
3827 if Delay_Required
then
3828 if Present
(Aitem
) then
3829 Set_Is_Delayed_Aspect
(Aitem
);
3830 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3831 Set_Parent
(Aitem
, Aspect
);
3834 Set_Is_Delayed_Aspect
(Aspect
);
3836 -- In the case of Default_Value, link the aspect to base type
3837 -- as well, even though it appears on a first subtype. This is
3838 -- mandated by the semantics of the aspect. Do not establish
3839 -- the link when processing the base type itself as this leads
3840 -- to a rep item circularity. Verify that we are dealing with
3841 -- a scalar type to prevent cascaded errors.
3843 if A_Id
= Aspect_Default_Value
3844 and then Is_Scalar_Type
(E
)
3845 and then Base_Type
(E
) /= E
3847 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3848 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3851 Set_Has_Delayed_Aspects
(E
);
3852 Record_Rep_Item
(E
, Aspect
);
3854 -- When delay is not required and the context is a package or a
3855 -- subprogram body, insert the pragma in the body declarations.
3857 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3858 if No
(Declarations
(N
)) then
3859 Set_Declarations
(N
, New_List
);
3862 -- The pragma is added before source declarations
3864 Prepend_To
(Declarations
(N
), Aitem
);
3866 -- When delay is not required and the context is not a compilation
3867 -- unit, we simply insert the pragma/attribute definition clause
3870 elsif Present
(Aitem
) then
3871 Insert_After
(Ins_Node
, Aitem
);
3874 end Analyze_One_Aspect
;
3878 end loop Aspect_Loop
;
3880 if Has_Delayed_Aspects
(E
) then
3881 Ensure_Freeze_Node
(E
);
3883 end Analyze_Aspect_Specifications
;
3885 ------------------------------------------------
3886 -- Analyze_Aspects_On_Subprogram_Body_Or_Stub --
3887 ------------------------------------------------
3889 procedure Analyze_Aspects_On_Subprogram_Body_Or_Stub
(N
: Node_Id
) is
3890 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
3892 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
);
3893 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3894 -- error message depending on the aspects involved. Spec_Id denotes the
3895 -- entity of the corresponding spec.
3897 --------------------------------
3898 -- Diagnose_Misplaced_Aspects --
3899 --------------------------------
3901 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
) is
3902 procedure Misplaced_Aspect_Error
3905 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3906 -- the name of the refined version of the aspect.
3908 ----------------------------
3909 -- Misplaced_Aspect_Error --
3910 ----------------------------
3912 procedure Misplaced_Aspect_Error
3916 Asp_Nam
: constant Name_Id
:= Chars
(Identifier
(Asp
));
3917 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp_Nam
);
3920 -- The corresponding spec already contains the aspect in question
3921 -- and the one appearing on the body must be the refined form:
3923 -- procedure P with Global ...;
3924 -- procedure P with Global ... is ... end P;
3928 if Has_Aspect
(Spec_Id
, Asp_Id
) then
3929 Error_Msg_Name_1
:= Asp_Nam
;
3931 -- Subunits cannot carry aspects that apply to a subprogram
3934 if Nkind
(Parent
(N
)) = N_Subunit
then
3935 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
3937 -- Otherwise suggest the refined form
3940 Error_Msg_Name_2
:= Ref_Nam
;
3941 Error_Msg_N
("aspect % should be %", Asp
);
3944 -- Otherwise the aspect must appear on the spec, not on the body
3947 -- procedure P with Global ... is ... end P;
3951 ("aspect specification must appear on initial declaration",
3954 end Misplaced_Aspect_Error
;
3961 -- Start of processing for Diagnose_Misplaced_Aspects
3964 -- Iterate over the aspect specifications and emit specific errors
3965 -- where applicable.
3967 Asp
:= First
(Aspect_Specifications
(N
));
3968 while Present
(Asp
) loop
3969 Asp_Nam
:= Chars
(Identifier
(Asp
));
3971 -- Do not emit errors on aspects that can appear on a subprogram
3972 -- body. This scenario occurs when the aspect specification list
3973 -- contains both misplaced and properly placed aspects.
3975 if Aspect_On_Body_Or_Stub_OK
(Get_Aspect_Id
(Asp_Nam
)) then
3978 -- Special diagnostics for SPARK aspects
3980 elsif Asp_Nam
= Name_Depends
then
3981 Misplaced_Aspect_Error
(Asp
, Name_Refined_Depends
);
3983 elsif Asp_Nam
= Name_Global
then
3984 Misplaced_Aspect_Error
(Asp
, Name_Refined_Global
);
3986 elsif Asp_Nam
= Name_Post
then
3987 Misplaced_Aspect_Error
(Asp
, Name_Refined_Post
);
3989 -- Otherwise a language-defined aspect is misplaced
3993 ("aspect specification must appear on initial declaration",
3999 end Diagnose_Misplaced_Aspects
;
4003 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
4005 -- Start of processing for Analyze_Aspects_On_Subprogram_Body_Or_Stub
4008 -- Language-defined aspects cannot be associated with a subprogram body
4009 -- [stub] if the subprogram has a spec. Certain implementation defined
4010 -- aspects are allowed to break this rule (for all applicable cases, see
4011 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
4013 if Spec_Id
/= Body_Id
and then not Aspects_On_Body_Or_Stub_OK
(N
) then
4014 Diagnose_Misplaced_Aspects
(Spec_Id
);
4016 Analyze_Aspect_Specifications
(N
, Body_Id
);
4018 end Analyze_Aspects_On_Subprogram_Body_Or_Stub
;
4020 -----------------------
4021 -- Analyze_At_Clause --
4022 -----------------------
4024 -- An at clause is replaced by the corresponding Address attribute
4025 -- definition clause that is the preferred approach in Ada 95.
4027 procedure Analyze_At_Clause
(N
: Node_Id
) is
4028 CS
: constant Boolean := Comes_From_Source
(N
);
4031 -- This is an obsolescent feature
4033 Check_Restriction
(No_Obsolescent_Features
, N
);
4035 if Warn_On_Obsolescent_Feature
then
4037 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
4039 ("\?j?use address attribute definition clause instead", N
);
4042 -- Rewrite as address clause
4045 Make_Attribute_Definition_Clause
(Sloc
(N
),
4046 Name
=> Identifier
(N
),
4047 Chars
=> Name_Address
,
4048 Expression
=> Expression
(N
)));
4050 -- We preserve Comes_From_Source, since logically the clause still comes
4051 -- from the source program even though it is changed in form.
4053 Set_Comes_From_Source
(N
, CS
);
4055 -- Analyze rewritten clause
4057 Analyze_Attribute_Definition_Clause
(N
);
4058 end Analyze_At_Clause
;
4060 -----------------------------------------
4061 -- Analyze_Attribute_Definition_Clause --
4062 -----------------------------------------
4064 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
4065 Loc
: constant Source_Ptr
:= Sloc
(N
);
4066 Nam
: constant Node_Id
:= Name
(N
);
4067 Attr
: constant Name_Id
:= Chars
(N
);
4068 Expr
: constant Node_Id
:= Expression
(N
);
4069 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
4072 -- The entity of Nam after it is analyzed. In the case of an incomplete
4073 -- type, this is the underlying type.
4076 -- The underlying entity to which the attribute applies. Generally this
4077 -- is the Underlying_Type of Ent, except in the case where the clause
4078 -- applies to the full view of an incomplete or private type, in which
4079 -- case U_Ent is just a copy of Ent.
4081 FOnly
: Boolean := False;
4082 -- Reset to True for subtype specific attribute (Alignment, Size)
4083 -- and for stream attributes, i.e. those cases where in the call to
4084 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4085 -- are checked. Note that the case of stream attributes is not clear
4086 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4087 -- Storage_Size for derived task types, but that is also clearly
4090 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
4091 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4092 -- definition clauses.
4094 function Duplicate_Clause
return Boolean;
4095 -- This routine checks if the aspect for U_Ent being given by attribute
4096 -- definition clause N is for an aspect that has already been specified,
4097 -- and if so gives an error message. If there is a duplicate, True is
4098 -- returned, otherwise if there is no error, False is returned.
4100 procedure Check_Indexing_Functions
;
4101 -- Check that the function in Constant_Indexing or Variable_Indexing
4102 -- attribute has the proper type structure. If the name is overloaded,
4103 -- check that some interpretation is legal.
4105 procedure Check_Iterator_Functions
;
4106 -- Check that there is a single function in Default_Iterator attribute
4107 -- that has the proper type structure.
4109 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
4110 -- Common legality check for the previous two
4112 -----------------------------------
4113 -- Analyze_Stream_TSS_Definition --
4114 -----------------------------------
4116 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
4117 Subp
: Entity_Id
:= Empty
;
4122 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
4123 -- True for Read attribute, False for other attributes
4125 function Has_Good_Profile
4127 Report
: Boolean := False) return Boolean;
4128 -- Return true if the entity is a subprogram with an appropriate
4129 -- profile for the attribute being defined. If result is False and
4130 -- Report is True, function emits appropriate error.
4132 ----------------------
4133 -- Has_Good_Profile --
4134 ----------------------
4136 function Has_Good_Profile
4138 Report
: Boolean := False) return Boolean
4140 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
4141 (False => E_Procedure
, True => E_Function
);
4142 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
4147 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
4151 F
:= First_Formal
(Subp
);
4154 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
4155 or else Designated_Type
(Etype
(F
)) /=
4156 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
4161 if not Is_Function
then
4165 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
4166 (False => E_In_Parameter
,
4167 True => E_Out_Parameter
);
4169 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
4176 -- If the attribute specification comes from an aspect
4177 -- specification for a class-wide stream, the parameter must be
4178 -- a class-wide type of the entity to which the aspect applies.
4180 if From_Aspect_Specification
(N
)
4181 and then Class_Present
(Parent
(N
))
4182 and then Is_Class_Wide_Type
(Typ
)
4188 Typ
:= Etype
(Subp
);
4191 -- Verify that the prefix of the attribute and the local name for
4192 -- the type of the formal match, or one is the class-wide of the
4193 -- other, in the case of a class-wide stream operation.
4195 if Base_Type
(Typ
) = Base_Type
(Ent
)
4196 or else (Is_Class_Wide_Type
(Typ
)
4197 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
4198 or else (Is_Class_Wide_Type
(Ent
)
4199 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
4206 if Present
(Next_Formal
(F
)) then
4209 elsif not Is_Scalar_Type
(Typ
)
4210 and then not Is_First_Subtype
(Typ
)
4211 and then not Is_Class_Wide_Type
(Typ
)
4213 if Report
and not Is_First_Subtype
(Typ
) then
4215 ("subtype of formal in stream operation must be a first "
4216 & "subtype", Parameter_Type
(Parent
(F
)));
4224 end Has_Good_Profile
;
4226 -- Start of processing for Analyze_Stream_TSS_Definition
4231 if not Is_Type
(U_Ent
) then
4232 Error_Msg_N
("local name must be a subtype", Nam
);
4235 elsif not Is_First_Subtype
(U_Ent
) then
4236 Error_Msg_N
("local name must be a first subtype", Nam
);
4240 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
4242 -- If Pnam is present, it can be either inherited from an ancestor
4243 -- type (in which case it is legal to redefine it for this type), or
4244 -- be a previous definition of the attribute for the same type (in
4245 -- which case it is illegal).
4247 -- In the first case, it will have been analyzed already, and we
4248 -- can check that its profile does not match the expected profile
4249 -- for a stream attribute of U_Ent. In the second case, either Pnam
4250 -- has been analyzed (and has the expected profile), or it has not
4251 -- been analyzed yet (case of a type that has not been frozen yet
4252 -- and for which the stream attribute has been set using Set_TSS).
4255 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
4257 Error_Msg_Sloc
:= Sloc
(Pnam
);
4258 Error_Msg_Name_1
:= Attr
;
4259 Error_Msg_N
("% attribute already defined #", Nam
);
4265 if Is_Entity_Name
(Expr
) then
4266 if not Is_Overloaded
(Expr
) then
4267 if Has_Good_Profile
(Entity
(Expr
), Report
=> True) then
4268 Subp
:= Entity
(Expr
);
4272 Get_First_Interp
(Expr
, I
, It
);
4273 while Present
(It
.Nam
) loop
4274 if Has_Good_Profile
(It
.Nam
) then
4279 Get_Next_Interp
(I
, It
);
4284 if Present
(Subp
) then
4285 if Is_Abstract_Subprogram
(Subp
) then
4286 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
4289 -- A stream subprogram for an interface type must be a null
4290 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4291 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4293 elsif Is_Interface
(U_Ent
)
4294 and then not Is_Class_Wide_Type
(U_Ent
)
4295 and then not Inside_A_Generic
4297 (Ekind
(Subp
) = E_Function
4301 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
4304 ("stream subprogram for interface type must be null "
4305 & "procedure", Expr
);
4308 Set_Entity
(Expr
, Subp
);
4309 Set_Etype
(Expr
, Etype
(Subp
));
4311 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
4314 Error_Msg_Name_1
:= Attr
;
4315 Error_Msg_N
("incorrect expression for% attribute", Expr
);
4317 end Analyze_Stream_TSS_Definition
;
4319 ------------------------------
4320 -- Check_Indexing_Functions --
4321 ------------------------------
4323 procedure Check_Indexing_Functions
is
4324 Indexing_Found
: Boolean := False;
4326 procedure Check_Inherited_Indexing
;
4327 -- For a derived type, check that no indexing aspect is specified
4328 -- for the type if it is also inherited
4330 procedure Check_One_Function
(Subp
: Entity_Id
);
4331 -- Check one possible interpretation. Sets Indexing_Found True if a
4332 -- legal indexing function is found.
4334 procedure Illegal_Indexing
(Msg
: String);
4335 -- Diagnose illegal indexing function if not overloaded. In the
4336 -- overloaded case indicate that no legal interpretation exists.
4338 ------------------------------
4339 -- Check_Inherited_Indexing --
4340 ------------------------------
4342 procedure Check_Inherited_Indexing
is
4343 Inherited
: Node_Id
;
4346 if Attr
= Name_Constant_Indexing
then
4348 Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
);
4349 else pragma Assert
(Attr
= Name_Variable_Indexing
);
4351 Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
);
4354 if Present
(Inherited
) then
4355 if Debug_Flag_Dot_XX
then
4358 -- OK if current attribute_definition_clause is expansion of
4359 -- inherited aspect.
4361 elsif Aspect_Rep_Item
(Inherited
) = N
then
4364 -- Indicate the operation that must be overridden, rather than
4365 -- redefining the indexing aspect.
4369 ("indexing function already inherited from parent type");
4371 ("!override & instead",
4372 N
, Entity
(Expression
(Inherited
)));
4375 end Check_Inherited_Indexing
;
4377 ------------------------
4378 -- Check_One_Function --
4379 ------------------------
4381 procedure Check_One_Function
(Subp
: Entity_Id
) is
4382 Default_Element
: Node_Id
;
4383 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
4386 if not Is_Overloadable
(Subp
) then
4387 Illegal_Indexing
("illegal indexing function for type&");
4390 elsif Scope
(Subp
) /= Scope
(Ent
) then
4391 if Nkind
(Expr
) = N_Expanded_Name
then
4393 -- Indexing function can't be declared elsewhere
4396 ("indexing function must be declared in scope of type&");
4401 elsif No
(First_Formal
(Subp
)) then
4403 ("Indexing requires a function that applies to type&");
4406 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
4408 ("indexing function must have at least two parameters");
4411 elsif Is_Derived_Type
(Ent
) then
4412 Check_Inherited_Indexing
;
4415 if not Check_Primitive_Function
(Subp
) then
4417 ("Indexing aspect requires a function that applies to type&");
4421 -- If partial declaration exists, verify that it is not tagged.
4423 if Ekind
(Current_Scope
) = E_Package
4424 and then Has_Private_Declaration
(Ent
)
4425 and then From_Aspect_Specification
(N
)
4427 List_Containing
(Parent
(Ent
)) =
4428 Private_Declarations
4429 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
4430 and then Nkind
(N
) = N_Attribute_Definition_Clause
4437 First
(Visible_Declarations
4439 (Unit_Declaration_Node
(Current_Scope
))));
4441 while Present
(Decl
) loop
4442 if Nkind
(Decl
) = N_Private_Type_Declaration
4443 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
4444 and then Tagged_Present
(Decl
)
4445 and then No
(Aspect_Specifications
(Decl
))
4448 ("Indexing aspect cannot be specified on full view "
4449 & "if partial view is tagged");
4458 -- An indexing function must return either the default element of
4459 -- the container, or a reference type. For variable indexing it
4460 -- must be the latter.
4463 Find_Value_Of_Aspect
4464 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
4466 if Present
(Default_Element
) then
4467 Analyze
(Default_Element
);
4470 -- For variable_indexing the return type must be a reference type
4472 if Attr
= Name_Variable_Indexing
then
4473 if not Has_Implicit_Dereference
(Ret_Type
) then
4475 ("variable indexing must return a reference type");
4478 elsif Is_Access_Constant
4479 (Etype
(First_Discriminant
(Ret_Type
)))
4482 ("variable indexing must return an access to variable");
4487 if Has_Implicit_Dereference
(Ret_Type
)
4489 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
4492 ("constant indexing must return an access to constant");
4495 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
4496 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
4499 ("constant indexing must apply to an access to constant");
4504 -- All checks succeeded.
4506 Indexing_Found
:= True;
4507 end Check_One_Function
;
4509 -----------------------
4510 -- Illegal_Indexing --
4511 -----------------------
4513 procedure Illegal_Indexing
(Msg
: String) is
4515 Error_Msg_NE
(Msg
, N
, Ent
);
4516 end Illegal_Indexing
;
4518 -- Start of processing for Check_Indexing_Functions
4522 Check_Inherited_Indexing
;
4527 if not Is_Overloaded
(Expr
) then
4528 Check_One_Function
(Entity
(Expr
));
4536 Indexing_Found
:= False;
4537 Get_First_Interp
(Expr
, I
, It
);
4538 while Present
(It
.Nam
) loop
4540 -- Note that analysis will have added the interpretation
4541 -- that corresponds to the dereference. We only check the
4542 -- subprogram itself. Ignore homonyms that may come from
4543 -- derived types in the context.
4545 if Is_Overloadable
(It
.Nam
)
4546 and then Comes_From_Source
(It
.Nam
)
4548 Check_One_Function
(It
.Nam
);
4551 Get_Next_Interp
(I
, It
);
4556 if not Indexing_Found
and then not Error_Posted
(N
) then
4558 ("aspect Indexing requires a local function that applies to "
4559 & "type&", Expr
, Ent
);
4561 end Check_Indexing_Functions
;
4563 ------------------------------
4564 -- Check_Iterator_Functions --
4565 ------------------------------
4567 procedure Check_Iterator_Functions
is
4568 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
4569 -- Check one possible interpretation for validity
4571 ----------------------------
4572 -- Valid_Default_Iterator --
4573 ----------------------------
4575 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
4576 Root_T
: constant Entity_Id
:= Root_Type
(Etype
(Etype
(Subp
)));
4580 if not Check_Primitive_Function
(Subp
) then
4583 -- The return type must be derived from a type in an instance
4584 -- of Iterator.Interfaces, and thus its root type must have a
4587 elsif Chars
(Root_T
) /= Name_Forward_Iterator
4588 and then Chars
(Root_T
) /= Name_Reversible_Iterator
4593 Formal
:= First_Formal
(Subp
);
4596 -- False if any subsequent formal has no default expression
4598 Formal
:= Next_Formal
(Formal
);
4599 while Present
(Formal
) loop
4600 if No
(Expression
(Parent
(Formal
))) then
4604 Next_Formal
(Formal
);
4607 -- True if all subsequent formals have default expressions
4610 end Valid_Default_Iterator
;
4612 -- Start of processing for Check_Iterator_Functions
4617 if not Is_Entity_Name
(Expr
) then
4618 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
4621 if not Is_Overloaded
(Expr
) then
4622 if not Check_Primitive_Function
(Entity
(Expr
)) then
4624 ("aspect Indexing requires a function that applies to type&",
4625 Entity
(Expr
), Ent
);
4628 -- Flag the default_iterator as well as the denoted function.
4630 if not Valid_Default_Iterator
(Entity
(Expr
)) then
4631 Error_Msg_N
("improper function for default iterator!", Expr
);
4636 Default
: Entity_Id
:= Empty
;
4641 Get_First_Interp
(Expr
, I
, It
);
4642 while Present
(It
.Nam
) loop
4643 if not Check_Primitive_Function
(It
.Nam
)
4644 or else not Valid_Default_Iterator
(It
.Nam
)
4648 elsif Present
(Default
) then
4650 -- An explicit one should override an implicit one
4652 if Comes_From_Source
(Default
) =
4653 Comes_From_Source
(It
.Nam
)
4655 Error_Msg_N
("default iterator must be unique", Expr
);
4656 Error_Msg_Sloc
:= Sloc
(Default
);
4657 Error_Msg_N
("\\possible interpretation#", Expr
);
4658 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
4659 Error_Msg_N
("\\possible interpretation#", Expr
);
4661 elsif Comes_From_Source
(It
.Nam
) then
4668 Get_Next_Interp
(I
, It
);
4671 if Present
(Default
) then
4672 Set_Entity
(Expr
, Default
);
4673 Set_Is_Overloaded
(Expr
, False);
4676 ("no interpretation is a valid default iterator!", Expr
);
4680 end Check_Iterator_Functions
;
4682 -------------------------------
4683 -- Check_Primitive_Function --
4684 -------------------------------
4686 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4690 if Ekind
(Subp
) /= E_Function
then
4694 if No
(First_Formal
(Subp
)) then
4697 Ctrl
:= Etype
(First_Formal
(Subp
));
4700 -- To be a primitive operation subprogram has to be in same scope.
4702 if Scope
(Ctrl
) /= Scope
(Subp
) then
4706 -- Type of formal may be the class-wide type, an access to such,
4707 -- or an incomplete view.
4710 or else Ctrl
= Class_Wide_Type
(Ent
)
4712 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4713 and then (Designated_Type
(Ctrl
) = Ent
4715 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4717 (Ekind
(Ctrl
) = E_Incomplete_Type
4718 and then Full_View
(Ctrl
) = Ent
)
4726 end Check_Primitive_Function
;
4728 ----------------------
4729 -- Duplicate_Clause --
4730 ----------------------
4732 function Duplicate_Clause
return Boolean is
4736 -- Nothing to do if this attribute definition clause comes from
4737 -- an aspect specification, since we could not be duplicating an
4738 -- explicit clause, and we dealt with the case of duplicated aspects
4739 -- in Analyze_Aspect_Specifications.
4741 if From_Aspect_Specification
(N
) then
4745 -- Otherwise current clause may duplicate previous clause, or a
4746 -- previously given pragma or aspect specification for the same
4749 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4752 Error_Msg_Name_1
:= Chars
(N
);
4753 Error_Msg_Sloc
:= Sloc
(A
);
4755 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4760 end Duplicate_Clause
;
4762 -- Start of processing for Analyze_Attribute_Definition_Clause
4765 -- The following code is a defense against recursion. Not clear that
4766 -- this can happen legitimately, but perhaps some error situations can
4767 -- cause it, and we did see this recursion during testing.
4769 if Analyzed
(N
) then
4772 Set_Analyzed
(N
, True);
4775 Check_Restriction_No_Use_Of_Attribute
(N
);
4777 -- Ignore some selected attributes in CodePeer mode since they are not
4778 -- relevant in this context.
4780 if CodePeer_Mode
then
4783 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4784 -- internal representation of types by implicitly packing them.
4786 when Attribute_Component_Size
=>
4787 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4795 -- Process Ignore_Rep_Clauses option
4797 if Ignore_Rep_Clauses
then
4800 -- The following should be ignored. They do not affect legality
4801 -- and may be target dependent. The basic idea of -gnatI is to
4802 -- ignore any rep clauses that may be target dependent but do not
4803 -- affect legality (except possibly to be rejected because they
4804 -- are incompatible with the compilation target).
4806 when Attribute_Alignment
4807 | Attribute_Bit_Order
4808 | Attribute_Component_Size
4809 | Attribute_Default_Scalar_Storage_Order
4810 | Attribute_Machine_Radix
4811 | Attribute_Object_Size
4812 | Attribute_Scalar_Storage_Order
4815 | Attribute_Stream_Size
4816 | Attribute_Value_Size
4818 Kill_Rep_Clause
(N
);
4821 -- The following should not be ignored, because in the first place
4822 -- they are reasonably portable, and should not cause problems
4823 -- in compiling code from another target, and also they do affect
4824 -- legality, e.g. failing to provide a stream attribute for a type
4825 -- may make a program illegal.
4827 when Attribute_External_Tag
4831 | Attribute_Simple_Storage_Pool
4832 | Attribute_Storage_Pool
4833 | Attribute_Storage_Size
4838 -- We do not do anything here with address clauses, they will be
4839 -- removed by Freeze later on, but for now, it works better to
4840 -- keep them in the tree.
4842 when Attribute_Address
=>
4845 -- Other cases are errors ("attribute& cannot be set with
4846 -- definition clause"), which will be caught below.
4854 Ent
:= Entity
(Nam
);
4856 if Rep_Item_Too_Early
(Ent
, N
) then
4860 -- Rep clause applies to full view of incomplete type or private type if
4861 -- we have one (if not, this is a premature use of the type). However,
4862 -- certain semantic checks need to be done on the specified entity (i.e.
4863 -- the private view), so we save it in Ent.
4865 if Is_Private_Type
(Ent
)
4866 and then Is_Derived_Type
(Ent
)
4867 and then not Is_Tagged_Type
(Ent
)
4868 and then No
(Full_View
(Ent
))
4870 -- If this is a private type whose completion is a derivation from
4871 -- another private type, there is no full view, and the attribute
4872 -- belongs to the type itself, not its underlying parent.
4876 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4878 -- The attribute applies to the full view, set the entity of the
4879 -- attribute definition accordingly.
4881 Ent
:= Underlying_Type
(Ent
);
4883 Set_Entity
(Nam
, Ent
);
4886 U_Ent
:= Underlying_Type
(Ent
);
4889 -- Avoid cascaded error
4891 if Etype
(Nam
) = Any_Type
then
4894 -- Must be declared in current scope or in case of an aspect
4895 -- specification, must be visible in current scope.
4897 elsif Scope
(Ent
) /= Current_Scope
4899 not (From_Aspect_Specification
(N
)
4900 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4902 Error_Msg_N
("entity must be declared in this scope", Nam
);
4905 -- Must not be a source renaming (we do have some cases where the
4906 -- expander generates a renaming, and those cases are OK, in such
4907 -- cases any attribute applies to the renamed object as well).
4909 elsif Is_Object
(Ent
)
4910 and then Present
(Renamed_Object
(Ent
))
4912 -- Case of renamed object from source, this is an error
4914 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4915 Get_Name_String
(Chars
(N
));
4916 Error_Msg_Strlen
:= Name_Len
;
4917 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4919 ("~ clause not allowed for a renaming declaration "
4920 & "(RM 13.1(6))", Nam
);
4923 -- For the case of a compiler generated renaming, the attribute
4924 -- definition clause applies to the renamed object created by the
4925 -- expander. The easiest general way to handle this is to create a
4926 -- copy of the attribute definition clause for this object.
4928 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4930 Make_Attribute_Definition_Clause
(Loc
,
4932 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4934 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4936 -- If the renamed object is not an entity, it must be a dereference
4937 -- of an unconstrained function call, and we must introduce a new
4938 -- declaration to capture the expression. This is needed in the case
4939 -- of 'Alignment, where the original declaration must be rewritten.
4943 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4947 -- If no underlying entity, use entity itself, applies to some
4948 -- previously detected error cases ???
4950 elsif No
(U_Ent
) then
4953 -- Cannot specify for a subtype (exception Object/Value_Size)
4955 elsif Is_Type
(U_Ent
)
4956 and then not Is_First_Subtype
(U_Ent
)
4957 and then Id
/= Attribute_Object_Size
4958 and then Id
/= Attribute_Value_Size
4959 and then not From_At_Mod
(N
)
4961 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4965 Set_Entity
(N
, U_Ent
);
4967 -- Switch on particular attribute
4975 -- Address attribute definition clause
4977 when Attribute_Address
=> Address
: begin
4979 -- A little error check, catch for X'Address use X'Address;
4981 if Nkind
(Nam
) = N_Identifier
4982 and then Nkind
(Expr
) = N_Attribute_Reference
4983 and then Attribute_Name
(Expr
) = Name_Address
4984 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4985 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4988 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4992 -- Not that special case, carry on with analysis of expression
4994 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4996 -- Even when ignoring rep clauses we need to indicate that the
4997 -- entity has an address clause and thus it is legal to declare
4998 -- it imported. Freeze will get rid of the address clause later.
4999 -- Also call Set_Address_Taken to indicate that an address clause
5000 -- was present, even if we are about to remove it.
5002 if Ignore_Rep_Clauses
then
5003 Set_Address_Taken
(U_Ent
);
5005 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
5006 Record_Rep_Item
(U_Ent
, N
);
5012 if Duplicate_Clause
then
5015 -- Case of address clause for subprogram
5017 elsif Is_Subprogram
(U_Ent
) then
5018 if Has_Homonym
(U_Ent
) then
5020 ("address clause cannot be given for overloaded "
5021 & "subprogram", Nam
);
5025 -- For subprograms, all address clauses are permitted, and we
5026 -- mark the subprogram as having a deferred freeze so that Gigi
5027 -- will not elaborate it too soon.
5029 -- Above needs more comments, what is too soon about???
5031 Set_Has_Delayed_Freeze
(U_Ent
);
5033 -- Case of address clause for entry
5035 elsif Ekind
(U_Ent
) = E_Entry
then
5036 if Nkind
(Parent
(N
)) = N_Task_Body
then
5038 ("entry address must be specified in task spec", Nam
);
5042 -- For entries, we require a constant address
5044 Check_Constant_Address_Clause
(Expr
, U_Ent
);
5046 -- Special checks for task types
5048 if Is_Task_Type
(Scope
(U_Ent
))
5049 and then Comes_From_Source
(Scope
(U_Ent
))
5052 ("??entry address declared for entry in task type", N
);
5054 ("\??only one task can be declared of this type", N
);
5057 -- Entry address clauses are obsolescent
5059 Check_Restriction
(No_Obsolescent_Features
, N
);
5061 if Warn_On_Obsolescent_Feature
then
5063 ("?j?attaching interrupt to task entry is an obsolescent "
5064 & "feature (RM J.7.1)", N
);
5066 ("\?j?use interrupt procedure instead", N
);
5069 -- Case of an address clause for a class-wide object, which is
5070 -- considered erroneous.
5072 elsif Is_Class_Wide_Type
(Etype
(U_Ent
)) then
5074 ("??class-wide object & must not be overlaid", Nam
, U_Ent
);
5076 ("\??Program_Error will be raised at run time", Nam
);
5077 Insert_Action
(Declaration_Node
(U_Ent
),
5078 Make_Raise_Program_Error
(Loc
,
5079 Reason
=> PE_Overlaid_Controlled_Object
));
5082 -- Case of address clause for an object
5084 elsif Ekind_In
(U_Ent
, E_Constant
, E_Variable
) then
5086 Expr
: constant Node_Id
:= Expression
(N
);
5091 -- Exported variables cannot have an address clause, because
5092 -- this cancels the effect of the pragma Export.
5094 if Is_Exported
(U_Ent
) then
5096 ("cannot export object with address clause", Nam
);
5100 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
5102 if Present
(O_Ent
) then
5104 -- If the object overlays a constant object, mark it so
5106 if Is_Constant_Object
(O_Ent
) then
5107 Set_Overlays_Constant
(U_Ent
);
5110 -- If the address clause is of the form:
5112 -- for X'Address use Y'Address;
5116 -- C : constant Address := Y'Address;
5118 -- for X'Address use C;
5120 -- then we make an entry in the table to check the size
5121 -- and alignment of the overlaying variable. But we defer
5122 -- this check till after code generation to take full
5123 -- advantage of the annotation done by the back end.
5125 -- If the entity has a generic type, the check will be
5126 -- performed in the instance if the actual type justifies
5127 -- it, and we do not insert the clause in the table to
5128 -- prevent spurious warnings.
5130 -- Note: we used to test Comes_From_Source and only give
5131 -- this warning for source entities, but we have removed
5132 -- this test. It really seems bogus to generate overlays
5133 -- that would trigger this warning in generated code.
5134 -- Furthermore, by removing the test, we handle the
5135 -- aspect case properly.
5137 if Is_Object
(O_Ent
)
5138 and then not Is_Generic_Type
(Etype
(U_Ent
))
5139 and then Address_Clause_Overlay_Warnings
5141 Register_Address_Clause_Check
5142 (N
, U_Ent
, No_Uint
, O_Ent
, Off
);
5145 -- If the overlay changes the storage order, mark the
5146 -- entity as being volatile to block any optimization
5147 -- for it since the construct is not really supported
5150 if (Is_Record_Type
(Etype
(U_Ent
))
5151 or else Is_Array_Type
(Etype
(U_Ent
)))
5152 and then (Is_Record_Type
(Etype
(O_Ent
))
5153 or else Is_Array_Type
(Etype
(O_Ent
)))
5154 and then Reverse_Storage_Order
(Etype
(U_Ent
)) /=
5155 Reverse_Storage_Order
(Etype
(O_Ent
))
5157 Set_Treat_As_Volatile
(U_Ent
);
5161 -- If this is not an overlay, mark a variable as being
5162 -- volatile to prevent unwanted optimizations. It's a
5163 -- conservative interpretation of RM 13.3(19) for the
5164 -- cases where the compiler cannot detect potential
5165 -- aliasing issues easily and it also covers the case
5166 -- of an absolute address where the volatile aspect is
5167 -- kind of implicit.
5169 if Ekind
(U_Ent
) = E_Variable
then
5170 Set_Treat_As_Volatile
(U_Ent
);
5173 -- Make an entry in the table for an absolute address as
5174 -- above to check that the value is compatible with the
5175 -- alignment of the object.
5178 Addr
: constant Node_Id
:= Address_Value
(Expr
);
5180 if Compile_Time_Known_Value
(Addr
)
5181 and then Address_Clause_Overlay_Warnings
5183 Register_Address_Clause_Check
5184 (N
, U_Ent
, Expr_Value
(Addr
), Empty
, False);
5189 -- Issue an unconditional warning for a constant overlaying
5190 -- a variable. For the reverse case, we will issue it only
5191 -- if the variable is modified.
5193 if Ekind
(U_Ent
) = E_Constant
5194 and then Present
(O_Ent
)
5195 and then not Overlays_Constant
(U_Ent
)
5196 and then Address_Clause_Overlay_Warnings
5198 Error_Msg_N
("??constant overlays a variable", Expr
);
5200 -- Imported variables can have an address clause, but then
5201 -- the import is pretty meaningless except to suppress
5202 -- initializations, so we do not need such variables to
5203 -- be statically allocated (and in fact it causes trouble
5204 -- if the address clause is a local value).
5206 elsif Is_Imported
(U_Ent
) then
5207 Set_Is_Statically_Allocated
(U_Ent
, False);
5210 -- We mark a possible modification of a variable with an
5211 -- address clause, since it is likely aliasing is occurring.
5213 Note_Possible_Modification
(Nam
, Sure
=> False);
5215 -- Legality checks on the address clause for initialized
5216 -- objects is deferred until the freeze point, because
5217 -- a subsequent pragma might indicate that the object
5218 -- is imported and thus not initialized. Also, the address
5219 -- clause might involve entities that have yet to be
5222 Set_Has_Delayed_Freeze
(U_Ent
);
5224 -- If an initialization call has been generated for this
5225 -- object, it needs to be deferred to after the freeze node
5226 -- we have just now added, otherwise GIGI will see a
5227 -- reference to the variable (as actual to the IP call)
5228 -- before its definition.
5231 Init_Call
: constant Node_Id
:=
5232 Remove_Init_Call
(U_Ent
, N
);
5235 if Present
(Init_Call
) then
5236 Append_Freeze_Action
(U_Ent
, Init_Call
);
5238 -- Reset Initialization_Statements pointer so that
5239 -- if there is a pragma Import further down, it can
5240 -- clear any default initialization.
5242 Set_Initialization_Statements
(U_Ent
, Init_Call
);
5246 -- Entity has delayed freeze, so we will generate an
5247 -- alignment check at the freeze point unless suppressed.
5249 if not Range_Checks_Suppressed
(U_Ent
)
5250 and then not Alignment_Checks_Suppressed
(U_Ent
)
5252 Set_Check_Address_Alignment
(N
);
5255 -- Kill the size check code, since we are not allocating
5256 -- the variable, it is somewhere else.
5258 Kill_Size_Check_Code
(U_Ent
);
5261 -- Not a valid entity for an address clause
5264 Error_Msg_N
("address cannot be given for &", Nam
);
5272 -- Alignment attribute definition clause
5274 when Attribute_Alignment
=> Alignment
: declare
5275 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
5276 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
5281 if not Is_Type
(U_Ent
)
5282 and then Ekind
(U_Ent
) /= E_Variable
5283 and then Ekind
(U_Ent
) /= E_Constant
5285 Error_Msg_N
("alignment cannot be given for &", Nam
);
5287 elsif Duplicate_Clause
then
5290 elsif Align
/= No_Uint
then
5291 Set_Has_Alignment_Clause
(U_Ent
);
5293 -- Tagged type case, check for attempt to set alignment to a
5294 -- value greater than Max_Align, and reset if so. This error
5295 -- is suppressed in ASIS mode to allow for different ASIS
5296 -- back ends or ASIS-based tools to query the illegal clause.
5298 if Is_Tagged_Type
(U_Ent
)
5299 and then Align
> Max_Align
5300 and then not ASIS_Mode
5303 ("alignment for & set to Maximum_Aligment??", Nam
);
5304 Set_Alignment
(U_Ent
, Max_Align
);
5309 Set_Alignment
(U_Ent
, Align
);
5312 -- For an array type, U_Ent is the first subtype. In that case,
5313 -- also set the alignment of the anonymous base type so that
5314 -- other subtypes (such as the itypes for aggregates of the
5315 -- type) also receive the expected alignment.
5317 if Is_Array_Type
(U_Ent
) then
5318 Set_Alignment
(Base_Type
(U_Ent
), Align
);
5327 -- Bit_Order attribute definition clause
5329 when Attribute_Bit_Order
=>
5330 if not Is_Record_Type
(U_Ent
) then
5332 ("Bit_Order can only be defined for record type", Nam
);
5334 elsif Is_Tagged_Type
(U_Ent
) and then Is_Derived_Type
(U_Ent
) then
5336 ("Bit_Order cannot be defined for record extensions", Nam
);
5338 elsif Duplicate_Clause
then
5342 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5344 if Etype
(Expr
) = Any_Type
then
5347 elsif not Is_OK_Static_Expression
(Expr
) then
5348 Flag_Non_Static_Expr
5349 ("Bit_Order requires static expression!", Expr
);
5351 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5352 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
5356 --------------------
5357 -- Component_Size --
5358 --------------------
5360 -- Component_Size attribute definition clause
5362 when Attribute_Component_Size
=> Component_Size_Case
: declare
5363 Csize
: constant Uint
:= Static_Integer
(Expr
);
5367 New_Ctyp
: Entity_Id
;
5371 if not Is_Array_Type
(U_Ent
) then
5372 Error_Msg_N
("component size requires array type", Nam
);
5376 Btype
:= Base_Type
(U_Ent
);
5377 Ctyp
:= Component_Type
(Btype
);
5379 if Duplicate_Clause
then
5382 elsif Rep_Item_Too_Early
(Btype
, N
) then
5385 elsif Csize
/= No_Uint
then
5386 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
5388 -- For the biased case, build a declaration for a subtype that
5389 -- will be used to represent the biased subtype that reflects
5390 -- the biased representation of components. We need the subtype
5391 -- to get proper conversions on referencing elements of the
5396 Make_Defining_Identifier
(Loc
,
5398 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
5401 Make_Subtype_Declaration
(Loc
,
5402 Defining_Identifier
=> New_Ctyp
,
5403 Subtype_Indication
=>
5404 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
5406 Set_Parent
(Decl
, N
);
5407 Analyze
(Decl
, Suppress
=> All_Checks
);
5409 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
5410 Set_Esize
(New_Ctyp
, Csize
);
5411 Set_RM_Size
(New_Ctyp
, Csize
);
5412 Init_Alignment
(New_Ctyp
);
5413 Set_Is_Itype
(New_Ctyp
, True);
5414 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
5416 Set_Component_Type
(Btype
, New_Ctyp
);
5417 Set_Biased
(New_Ctyp
, N
, "component size clause");
5420 Set_Component_Size
(Btype
, Csize
);
5422 -- Deal with warning on overridden size
5424 if Warn_On_Overridden_Size
5425 and then Has_Size_Clause
(Ctyp
)
5426 and then RM_Size
(Ctyp
) /= Csize
5429 ("component size overrides size clause for&?S?", N
, Ctyp
);
5432 Set_Has_Component_Size_Clause
(Btype
, True);
5433 Set_Has_Non_Standard_Rep
(Btype
, True);
5435 end Component_Size_Case
;
5437 -----------------------
5438 -- Constant_Indexing --
5439 -----------------------
5441 when Attribute_Constant_Indexing
=>
5442 Check_Indexing_Functions
;
5448 when Attribute_CPU
=>
5450 -- CPU attribute definition clause not allowed except from aspect
5453 if From_Aspect_Specification
(N
) then
5454 if not Is_Task_Type
(U_Ent
) then
5455 Error_Msg_N
("CPU can only be defined for task", Nam
);
5457 elsif Duplicate_Clause
then
5461 -- The expression must be analyzed in the special manner
5462 -- described in "Handling of Default and Per-Object
5463 -- Expressions" in sem.ads.
5465 -- The visibility to the discriminants must be restored
5467 Push_Scope_And_Install_Discriminants
(U_Ent
);
5468 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
5469 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5471 if not Is_OK_Static_Expression
(Expr
) then
5472 Check_Restriction
(Static_Priorities
, Expr
);
5478 ("attribute& cannot be set with definition clause", N
);
5481 ----------------------
5482 -- Default_Iterator --
5483 ----------------------
5485 when Attribute_Default_Iterator
=> Default_Iterator
: declare
5490 -- If target type is untagged, further checks are irrelevant
5492 if not Is_Tagged_Type
(U_Ent
) then
5494 ("aspect Default_Iterator applies to tagged type", Nam
);
5498 Check_Iterator_Functions
;
5502 if not Is_Entity_Name
(Expr
)
5503 or else Ekind
(Entity
(Expr
)) /= E_Function
5505 Error_Msg_N
("aspect Iterator must be a function", Expr
);
5508 Func
:= Entity
(Expr
);
5511 -- The type of the first parameter must be T, T'class, or a
5512 -- corresponding access type (5.5.1 (8/3). If function is
5513 -- parameterless label type accordingly.
5515 if No
(First_Formal
(Func
)) then
5518 Typ
:= Etype
(First_Formal
(Func
));
5522 or else Typ
= Class_Wide_Type
(U_Ent
)
5523 or else (Is_Access_Type
(Typ
)
5524 and then Designated_Type
(Typ
) = U_Ent
)
5525 or else (Is_Access_Type
(Typ
)
5526 and then Designated_Type
(Typ
) =
5527 Class_Wide_Type
(U_Ent
))
5533 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
5535 end Default_Iterator
;
5537 ------------------------
5538 -- Dispatching_Domain --
5539 ------------------------
5541 when Attribute_Dispatching_Domain
=>
5543 -- Dispatching_Domain attribute definition clause not allowed
5544 -- except from aspect specification.
5546 if From_Aspect_Specification
(N
) then
5547 if not Is_Task_Type
(U_Ent
) then
5549 ("Dispatching_Domain can only be defined for task", Nam
);
5551 elsif Duplicate_Clause
then
5555 -- The expression must be analyzed in the special manner
5556 -- described in "Handling of Default and Per-Object
5557 -- Expressions" in sem.ads.
5559 -- The visibility to the discriminants must be restored
5561 Push_Scope_And_Install_Discriminants
(U_Ent
);
5563 Preanalyze_Spec_Expression
5564 (Expr
, RTE
(RE_Dispatching_Domain
));
5566 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5571 ("attribute& cannot be set with definition clause", N
);
5578 when Attribute_External_Tag
=>
5579 if not Is_Tagged_Type
(U_Ent
) then
5580 Error_Msg_N
("should be a tagged type", Nam
);
5583 if Duplicate_Clause
then
5587 Analyze_And_Resolve
(Expr
, Standard_String
);
5589 if not Is_OK_Static_Expression
(Expr
) then
5590 Flag_Non_Static_Expr
5591 ("static string required for tag name!", Nam
);
5594 if not Is_Library_Level_Entity
(U_Ent
) then
5596 ("??non-unique external tag supplied for &", N
, U_Ent
);
5598 ("\??same external tag applies to all subprogram calls",
5601 ("\??corresponding internal tag cannot be obtained", N
);
5605 --------------------------
5606 -- Implicit_Dereference --
5607 --------------------------
5609 when Attribute_Implicit_Dereference
=>
5611 -- Legality checks already performed at the point of the type
5612 -- declaration, aspect is not delayed.
5620 when Attribute_Input
=>
5621 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
5622 Set_Has_Specified_Stream_Input
(Ent
);
5624 ------------------------
5625 -- Interrupt_Priority --
5626 ------------------------
5628 when Attribute_Interrupt_Priority
=>
5630 -- Interrupt_Priority attribute definition clause not allowed
5631 -- except from aspect specification.
5633 if From_Aspect_Specification
(N
) then
5634 if not Is_Concurrent_Type
(U_Ent
) then
5636 ("Interrupt_Priority can only be defined for task and "
5637 & "protected object", Nam
);
5639 elsif Duplicate_Clause
then
5643 -- The expression must be analyzed in the special manner
5644 -- described in "Handling of Default and Per-Object
5645 -- Expressions" in sem.ads.
5647 -- The visibility to the discriminants must be restored
5649 Push_Scope_And_Install_Discriminants
(U_Ent
);
5651 Preanalyze_Spec_Expression
5652 (Expr
, RTE
(RE_Interrupt_Priority
));
5654 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5656 -- Check the No_Task_At_Interrupt_Priority restriction
5658 if Is_Task_Type
(U_Ent
) then
5659 Check_Restriction
(No_Task_At_Interrupt_Priority
, N
);
5665 ("attribute& cannot be set with definition clause", N
);
5672 when Attribute_Iterable
=>
5675 if Nkind
(Expr
) /= N_Aggregate
then
5676 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5683 Assoc
:= First
(Component_Associations
(Expr
));
5684 while Present
(Assoc
) loop
5685 if not Is_Entity_Name
(Expression
(Assoc
)) then
5686 Error_Msg_N
("value must be a function", Assoc
);
5693 ----------------------
5694 -- Iterator_Element --
5695 ----------------------
5697 when Attribute_Iterator_Element
=>
5700 if not Is_Entity_Name
(Expr
)
5701 or else not Is_Type
(Entity
(Expr
))
5703 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5710 -- Machine radix attribute definition clause
5712 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5713 Radix
: constant Uint
:= Static_Integer
(Expr
);
5716 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5717 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5719 elsif Duplicate_Clause
then
5722 elsif Radix
/= No_Uint
then
5723 Set_Has_Machine_Radix_Clause
(U_Ent
);
5724 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5729 elsif Radix
= 10 then
5730 Set_Machine_Radix_10
(U_Ent
);
5732 -- The following error is suppressed in ASIS mode to allow for
5733 -- different ASIS back ends or ASIS-based tools to query the
5736 elsif not ASIS_Mode
then
5737 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5746 -- Object_Size attribute definition clause
5748 when Attribute_Object_Size
=> Object_Size
: declare
5749 Size
: constant Uint
:= Static_Integer
(Expr
);
5752 pragma Warnings
(Off
, Biased
);
5755 if not Is_Type
(U_Ent
) then
5756 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5758 elsif Duplicate_Clause
then
5762 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5764 -- The following errors are suppressed in ASIS mode to allow
5765 -- for different ASIS back ends or ASIS-based tools to query
5766 -- the illegal clause.
5771 elsif Is_Scalar_Type
(U_Ent
) then
5772 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5773 and then UI_Mod
(Size
, 64) /= 0
5776 ("Object_Size must be 8, 16, 32, or multiple of 64",
5780 elsif Size
mod 8 /= 0 then
5781 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5784 Set_Esize
(U_Ent
, Size
);
5785 Set_Has_Object_Size_Clause
(U_Ent
);
5786 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5794 when Attribute_Output
=>
5795 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5796 Set_Has_Specified_Stream_Output
(Ent
);
5802 when Attribute_Priority
=>
5804 -- Priority attribute definition clause not allowed except from
5805 -- aspect specification.
5807 if From_Aspect_Specification
(N
) then
5808 if not (Is_Concurrent_Type
(U_Ent
)
5809 or else Ekind
(U_Ent
) = E_Procedure
)
5812 ("Priority can only be defined for task and protected "
5815 elsif Duplicate_Clause
then
5819 -- The expression must be analyzed in the special manner
5820 -- described in "Handling of Default and Per-Object
5821 -- Expressions" in sem.ads.
5823 -- The visibility to the discriminants must be restored
5825 Push_Scope_And_Install_Discriminants
(U_Ent
);
5826 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5827 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5829 if not Is_OK_Static_Expression
(Expr
) then
5830 Check_Restriction
(Static_Priorities
, Expr
);
5836 ("attribute& cannot be set with definition clause", N
);
5843 when Attribute_Read
=>
5844 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5845 Set_Has_Specified_Stream_Read
(Ent
);
5847 --------------------------
5848 -- Scalar_Storage_Order --
5849 --------------------------
5851 -- Scalar_Storage_Order attribute definition clause
5853 when Attribute_Scalar_Storage_Order
=>
5854 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5856 ("Scalar_Storage_Order can only be defined for record or "
5857 & "array type", Nam
);
5859 elsif Duplicate_Clause
then
5863 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5865 if Etype
(Expr
) = Any_Type
then
5868 elsif not Is_OK_Static_Expression
(Expr
) then
5869 Flag_Non_Static_Expr
5870 ("Scalar_Storage_Order requires static expression!", Expr
);
5872 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5874 -- Here for the case of a non-default (i.e. non-confirming)
5875 -- Scalar_Storage_Order attribute definition.
5877 if Support_Nondefault_SSO_On_Target
then
5878 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5881 ("non-default Scalar_Storage_Order not supported on "
5886 -- Clear SSO default indications since explicit setting of the
5887 -- order overrides the defaults.
5889 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5890 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5897 -- Size attribute definition clause
5899 when Attribute_Size
=> Size
: declare
5900 Size
: constant Uint
:= Static_Integer
(Expr
);
5907 if Duplicate_Clause
then
5910 elsif not Is_Type
(U_Ent
)
5911 and then Ekind
(U_Ent
) /= E_Variable
5912 and then Ekind
(U_Ent
) /= E_Constant
5914 Error_Msg_N
("size cannot be given for &", Nam
);
5916 elsif Is_Array_Type
(U_Ent
)
5917 and then not Is_Constrained
(U_Ent
)
5920 ("size cannot be given for unconstrained array", Nam
);
5922 elsif Size
/= No_Uint
then
5923 if Is_Type
(U_Ent
) then
5926 Etyp
:= Etype
(U_Ent
);
5929 -- Check size, note that Gigi is in charge of checking that the
5930 -- size of an array or record type is OK. Also we do not check
5931 -- the size in the ordinary fixed-point case, since it is too
5932 -- early to do so (there may be subsequent small clause that
5933 -- affects the size). We can check the size if a small clause
5934 -- has already been given.
5936 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5937 or else Has_Small_Clause
(U_Ent
)
5939 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5940 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5943 -- For types set RM_Size and Esize if possible
5945 if Is_Type
(U_Ent
) then
5946 Set_RM_Size
(U_Ent
, Size
);
5948 -- For elementary types, increase Object_Size to power of 2,
5949 -- but not less than a storage unit in any case (normally
5950 -- this means it will be byte addressable).
5952 -- For all other types, nothing else to do, we leave Esize
5953 -- (object size) unset, the back end will set it from the
5954 -- size and alignment in an appropriate manner.
5956 -- In both cases, we check whether the alignment must be
5957 -- reset in the wake of the size change.
5959 if Is_Elementary_Type
(U_Ent
) then
5960 if Size
<= System_Storage_Unit
then
5961 Init_Esize
(U_Ent
, System_Storage_Unit
);
5962 elsif Size
<= 16 then
5963 Init_Esize
(U_Ent
, 16);
5964 elsif Size
<= 32 then
5965 Init_Esize
(U_Ent
, 32);
5967 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5970 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5972 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5975 -- For objects, set Esize only
5978 -- The following error is suppressed in ASIS mode to allow
5979 -- for different ASIS back ends or ASIS-based tools to query
5980 -- the illegal clause.
5982 if Is_Elementary_Type
(Etyp
)
5983 and then Size
/= System_Storage_Unit
5984 and then Size
/= System_Storage_Unit
* 2
5985 and then Size
/= System_Storage_Unit
* 4
5986 and then Size
/= System_Storage_Unit
* 8
5987 and then not ASIS_Mode
5989 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5990 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5992 ("size for primitive object must be a power of 2 in "
5993 & "the range ^-^", N
);
5996 Set_Esize
(U_Ent
, Size
);
5999 Set_Has_Size_Clause
(U_Ent
);
6007 -- Small attribute definition clause
6009 when Attribute_Small
=> Small
: declare
6010 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
6014 Analyze_And_Resolve
(Expr
, Any_Real
);
6016 if Etype
(Expr
) = Any_Type
then
6019 elsif not Is_OK_Static_Expression
(Expr
) then
6020 Flag_Non_Static_Expr
6021 ("small requires static expression!", Expr
);
6025 Small
:= Expr_Value_R
(Expr
);
6027 if Small
<= Ureal_0
then
6028 Error_Msg_N
("small value must be greater than zero", Expr
);
6034 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
6036 ("small requires an ordinary fixed point type", Nam
);
6038 elsif Has_Small_Clause
(U_Ent
) then
6039 Error_Msg_N
("small already given for &", Nam
);
6041 elsif Small
> Delta_Value
(U_Ent
) then
6043 ("small value must not be greater than delta value", Nam
);
6046 Set_Small_Value
(U_Ent
, Small
);
6047 Set_Small_Value
(Implicit_Base
, Small
);
6048 Set_Has_Small_Clause
(U_Ent
);
6049 Set_Has_Small_Clause
(Implicit_Base
);
6050 Set_Has_Non_Standard_Rep
(Implicit_Base
);
6058 -- Storage_Pool attribute definition clause
6060 when Attribute_Simple_Storage_Pool
6061 | Attribute_Storage_Pool
6063 Storage_Pool
: declare
6068 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
6070 ("storage pool cannot be given for access-to-subprogram type",
6074 elsif not Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
6077 ("storage pool can only be given for access types", Nam
);
6080 elsif Is_Derived_Type
(U_Ent
) then
6082 ("storage pool cannot be given for a derived access type",
6085 elsif Duplicate_Clause
then
6088 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
6089 Error_Msg_N
("storage pool already given for &", Nam
);
6093 -- Check for Storage_Size previously given
6096 SS
: constant Node_Id
:=
6097 Get_Attribute_Definition_Clause
6098 (U_Ent
, Attribute_Storage_Size
);
6100 if Present
(SS
) then
6101 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
6105 -- Storage_Pool case
6107 if Id
= Attribute_Storage_Pool
then
6109 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
6111 -- In the Simple_Storage_Pool case, we allow a variable of any
6112 -- simple storage pool type, so we Resolve without imposing an
6116 Analyze_And_Resolve
(Expr
);
6118 if not Present
(Get_Rep_Pragma
6119 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
6122 ("expression must be of a simple storage pool type", Expr
);
6126 if not Denotes_Variable
(Expr
) then
6127 Error_Msg_N
("storage pool must be a variable", Expr
);
6131 if Nkind
(Expr
) = N_Type_Conversion
then
6132 T
:= Etype
(Expression
(Expr
));
6137 -- The Stack_Bounded_Pool is used internally for implementing
6138 -- access types with a Storage_Size. Since it only work properly
6139 -- when used on one specific type, we need to check that it is not
6140 -- hijacked improperly:
6142 -- type T is access Integer;
6143 -- for T'Storage_Size use n;
6144 -- type Q is access Float;
6145 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6147 if RTE_Available
(RE_Stack_Bounded_Pool
)
6148 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
6150 Error_Msg_N
("non-shareable internal Pool", Expr
);
6154 -- If the argument is a name that is not an entity name, then
6155 -- we construct a renaming operation to define an entity of
6156 -- type storage pool.
6158 if not Is_Entity_Name
(Expr
)
6159 and then Is_Object_Reference
(Expr
)
6161 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
6164 Rnode
: constant Node_Id
:=
6165 Make_Object_Renaming_Declaration
(Loc
,
6166 Defining_Identifier
=> Pool
,
6168 New_Occurrence_Of
(Etype
(Expr
), Loc
),
6172 -- If the attribute definition clause comes from an aspect
6173 -- clause, then insert the renaming before the associated
6174 -- entity's declaration, since the attribute clause has
6175 -- not yet been appended to the declaration list.
6177 if From_Aspect_Specification
(N
) then
6178 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
6180 Insert_Before
(N
, Rnode
);
6184 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6187 elsif Is_Entity_Name
(Expr
) then
6188 Pool
:= Entity
(Expr
);
6190 -- If pool is a renamed object, get original one. This can
6191 -- happen with an explicit renaming, and within instances.
6193 while Present
(Renamed_Object
(Pool
))
6194 and then Is_Entity_Name
(Renamed_Object
(Pool
))
6196 Pool
:= Entity
(Renamed_Object
(Pool
));
6199 if Present
(Renamed_Object
(Pool
))
6200 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
6201 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
6203 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
6206 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6208 elsif Nkind
(Expr
) = N_Type_Conversion
6209 and then Is_Entity_Name
(Expression
(Expr
))
6210 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
6212 Pool
:= Entity
(Expression
(Expr
));
6213 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6216 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
6225 -- Storage_Size attribute definition clause
6227 when Attribute_Storage_Size
=> Storage_Size
: declare
6228 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
6231 if Is_Task_Type
(U_Ent
) then
6233 -- Check obsolescent (but never obsolescent if from aspect)
6235 if not From_Aspect_Specification
(N
) then
6236 Check_Restriction
(No_Obsolescent_Features
, N
);
6238 if Warn_On_Obsolescent_Feature
then
6240 ("?j?storage size clause for task is an obsolescent "
6241 & "feature (RM J.9)", N
);
6242 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
6249 if not Is_Access_Type
(U_Ent
)
6250 and then Ekind
(U_Ent
) /= E_Task_Type
6252 Error_Msg_N
("storage size cannot be given for &", Nam
);
6254 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
6256 ("storage size cannot be given for a derived access type",
6259 elsif Duplicate_Clause
then
6263 Analyze_And_Resolve
(Expr
, Any_Integer
);
6265 if Is_Access_Type
(U_Ent
) then
6267 -- Check for Storage_Pool previously given
6270 SP
: constant Node_Id
:=
6271 Get_Attribute_Definition_Clause
6272 (U_Ent
, Attribute_Storage_Pool
);
6275 if Present
(SP
) then
6276 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
6280 -- Special case of for x'Storage_Size use 0
6282 if Is_OK_Static_Expression
(Expr
)
6283 and then Expr_Value
(Expr
) = 0
6285 Set_No_Pool_Assigned
(Btype
);
6289 Set_Has_Storage_Size_Clause
(Btype
);
6297 when Attribute_Stream_Size
=> Stream_Size
: declare
6298 Size
: constant Uint
:= Static_Integer
(Expr
);
6301 if Ada_Version
<= Ada_95
then
6302 Check_Restriction
(No_Implementation_Attributes
, N
);
6305 if Duplicate_Clause
then
6308 elsif Is_Elementary_Type
(U_Ent
) then
6310 -- The following errors are suppressed in ASIS mode to allow
6311 -- for different ASIS back ends or ASIS-based tools to query
6312 -- the illegal clause.
6317 elsif Size
/= System_Storage_Unit
6318 and then Size
/= System_Storage_Unit
* 2
6319 and then Size
/= System_Storage_Unit
* 4
6320 and then Size
/= System_Storage_Unit
* 8
6322 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
6324 ("stream size for elementary type must be a power of 2 "
6325 & "and at least ^", N
);
6327 elsif RM_Size
(U_Ent
) > Size
then
6328 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
6330 ("stream size for elementary type must be a power of 2 "
6331 & "and at least ^", N
);
6334 Set_Has_Stream_Size_Clause
(U_Ent
);
6337 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
6345 -- Value_Size attribute definition clause
6347 when Attribute_Value_Size
=> Value_Size
: declare
6348 Size
: constant Uint
:= Static_Integer
(Expr
);
6352 if not Is_Type
(U_Ent
) then
6353 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
6355 elsif Duplicate_Clause
then
6358 elsif Is_Array_Type
(U_Ent
)
6359 and then not Is_Constrained
(U_Ent
)
6362 ("Value_Size cannot be given for unconstrained array", Nam
);
6365 if Is_Elementary_Type
(U_Ent
) then
6366 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
6367 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
6370 Set_RM_Size
(U_Ent
, Size
);
6374 -----------------------
6375 -- Variable_Indexing --
6376 -----------------------
6378 when Attribute_Variable_Indexing
=>
6379 Check_Indexing_Functions
;
6385 when Attribute_Write
=>
6386 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
6387 Set_Has_Specified_Stream_Write
(Ent
);
6389 -- All other attributes cannot be set
6393 ("attribute& cannot be set with definition clause", N
);
6396 -- The test for the type being frozen must be performed after any
6397 -- expression the clause has been analyzed since the expression itself
6398 -- might cause freezing that makes the clause illegal.
6400 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
6403 end Analyze_Attribute_Definition_Clause
;
6405 ----------------------------
6406 -- Analyze_Code_Statement --
6407 ----------------------------
6409 procedure Analyze_Code_Statement
(N
: Node_Id
) is
6410 HSS
: constant Node_Id
:= Parent
(N
);
6411 SBody
: constant Node_Id
:= Parent
(HSS
);
6412 Subp
: constant Entity_Id
:= Current_Scope
;
6419 -- Accept foreign code statements for CodePeer. The analysis is skipped
6420 -- to avoid rejecting unrecognized constructs.
6422 if CodePeer_Mode
then
6427 -- Analyze and check we get right type, note that this implements the
6428 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6429 -- the only way that Asm_Insn could possibly be visible.
6431 Analyze_And_Resolve
(Expression
(N
));
6433 if Etype
(Expression
(N
)) = Any_Type
then
6435 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
6436 Error_Msg_N
("incorrect type for code statement", N
);
6440 Check_Code_Statement
(N
);
6442 -- Make sure we appear in the handled statement sequence of a subprogram
6445 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
6446 or else Nkind
(SBody
) /= N_Subprogram_Body
6449 ("code statement can only appear in body of subprogram", N
);
6453 -- Do remaining checks (RM 13.8(3)) if not already done
6455 if not Is_Machine_Code_Subprogram
(Subp
) then
6456 Set_Is_Machine_Code_Subprogram
(Subp
);
6458 -- No exception handlers allowed
6460 if Present
(Exception_Handlers
(HSS
)) then
6462 ("exception handlers not permitted in machine code subprogram",
6463 First
(Exception_Handlers
(HSS
)));
6466 -- No declarations other than use clauses and pragmas (we allow
6467 -- certain internally generated declarations as well).
6469 Decl
:= First
(Declarations
(SBody
));
6470 while Present
(Decl
) loop
6471 DeclO
:= Original_Node
(Decl
);
6472 if Comes_From_Source
(DeclO
)
6473 and not Nkind_In
(DeclO
, N_Pragma
,
6474 N_Use_Package_Clause
,
6476 N_Implicit_Label_Declaration
)
6479 ("this declaration not allowed in machine code subprogram",
6486 -- No statements other than code statements, pragmas, and labels.
6487 -- Again we allow certain internally generated statements.
6489 -- In Ada 2012, qualified expressions are names, and the code
6490 -- statement is initially parsed as a procedure call.
6492 Stmt
:= First
(Statements
(HSS
));
6493 while Present
(Stmt
) loop
6494 StmtO
:= Original_Node
(Stmt
);
6496 -- A procedure call transformed into a code statement is OK
6498 if Ada_Version
>= Ada_2012
6499 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
6500 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
6504 elsif Comes_From_Source
(StmtO
)
6505 and then not Nkind_In
(StmtO
, N_Pragma
,
6510 ("this statement is not allowed in machine code subprogram",
6517 end Analyze_Code_Statement
;
6519 -----------------------------------------------
6520 -- Analyze_Enumeration_Representation_Clause --
6521 -----------------------------------------------
6523 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
6524 Ident
: constant Node_Id
:= Identifier
(N
);
6525 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
6526 Enumtype
: Entity_Id
;
6533 Err
: Boolean := False;
6534 -- Set True to avoid cascade errors and crashes on incorrect source code
6536 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
6537 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
6538 -- Allowed range of universal integer (= allowed range of enum lit vals)
6542 -- Minimum and maximum values of entries
6544 Max_Node
: Node_Id
:= Empty
; -- init to avoid warning
6545 -- Pointer to node for literal providing max value
6548 if Ignore_Rep_Clauses
then
6549 Kill_Rep_Clause
(N
);
6553 -- Ignore enumeration rep clauses by default in CodePeer mode,
6554 -- unless -gnatd.I is specified, as a work around for potential false
6555 -- positive messages.
6557 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
6561 -- First some basic error checks
6564 Enumtype
:= Entity
(Ident
);
6566 if Enumtype
= Any_Type
6567 or else Rep_Item_Too_Early
(Enumtype
, N
)
6571 Enumtype
:= Underlying_Type
(Enumtype
);
6574 if not Is_Enumeration_Type
(Enumtype
) then
6576 ("enumeration type required, found}",
6577 Ident
, First_Subtype
(Enumtype
));
6581 -- Ignore rep clause on generic actual type. This will already have
6582 -- been flagged on the template as an error, and this is the safest
6583 -- way to ensure we don't get a junk cascaded message in the instance.
6585 if Is_Generic_Actual_Type
(Enumtype
) then
6588 -- Type must be in current scope
6590 elsif Scope
(Enumtype
) /= Current_Scope
then
6591 Error_Msg_N
("type must be declared in this scope", Ident
);
6594 -- Type must be a first subtype
6596 elsif not Is_First_Subtype
(Enumtype
) then
6597 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
6600 -- Ignore duplicate rep clause
6602 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
6603 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
6606 -- Don't allow rep clause for standard [wide_[wide_]]character
6608 elsif Is_Standard_Character_Type
(Enumtype
) then
6609 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
6612 -- Check that the expression is a proper aggregate (no parentheses)
6614 elsif Paren_Count
(Aggr
) /= 0 then
6616 ("extra parentheses surrounding aggregate not allowed",
6620 -- All tests passed, so set rep clause in place
6623 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
6624 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
6627 -- Now we process the aggregate. Note that we don't use the normal
6628 -- aggregate code for this purpose, because we don't want any of the
6629 -- normal expansion activities, and a number of special semantic
6630 -- rules apply (including the component type being any integer type)
6632 Elit
:= First_Literal
(Enumtype
);
6634 -- First the positional entries if any
6636 if Present
(Expressions
(Aggr
)) then
6637 Expr
:= First
(Expressions
(Aggr
));
6638 while Present
(Expr
) loop
6640 Error_Msg_N
("too many entries in aggregate", Expr
);
6644 Val
:= Static_Integer
(Expr
);
6646 -- Err signals that we found some incorrect entries processing
6647 -- the list. The final checks for completeness and ordering are
6648 -- skipped in this case.
6650 if Val
= No_Uint
then
6653 elsif Val
< Lo
or else Hi
< Val
then
6654 Error_Msg_N
("value outside permitted range", Expr
);
6658 Set_Enumeration_Rep
(Elit
, Val
);
6659 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
6665 -- Now process the named entries if present
6667 if Present
(Component_Associations
(Aggr
)) then
6668 Assoc
:= First
(Component_Associations
(Aggr
));
6669 while Present
(Assoc
) loop
6670 Choice
:= First
(Choices
(Assoc
));
6672 if Present
(Next
(Choice
)) then
6674 ("multiple choice not allowed here", Next
(Choice
));
6678 if Nkind
(Choice
) = N_Others_Choice
then
6679 Error_Msg_N
("others choice not allowed here", Choice
);
6682 elsif Nkind
(Choice
) = N_Range
then
6684 -- ??? should allow zero/one element range here
6686 Error_Msg_N
("range not allowed here", Choice
);
6690 Analyze_And_Resolve
(Choice
, Enumtype
);
6692 if Error_Posted
(Choice
) then
6697 if Is_Entity_Name
(Choice
)
6698 and then Is_Type
(Entity
(Choice
))
6700 Error_Msg_N
("subtype name not allowed here", Choice
);
6703 -- ??? should allow static subtype with zero/one entry
6705 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6706 if not Is_OK_Static_Expression
(Choice
) then
6707 Flag_Non_Static_Expr
6708 ("non-static expression used for choice!", Choice
);
6712 Elit
:= Expr_Value_E
(Choice
);
6714 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6716 Sloc
(Enumeration_Rep_Expr
(Elit
));
6718 ("representation for& previously given#",
6723 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6725 Expr
:= Expression
(Assoc
);
6726 Val
:= Static_Integer
(Expr
);
6728 if Val
= No_Uint
then
6731 elsif Val
< Lo
or else Hi
< Val
then
6732 Error_Msg_N
("value outside permitted range", Expr
);
6736 Set_Enumeration_Rep
(Elit
, Val
);
6746 -- Aggregate is fully processed. Now we check that a full set of
6747 -- representations was given, and that they are in range and in order.
6748 -- These checks are only done if no other errors occurred.
6754 Elit
:= First_Literal
(Enumtype
);
6755 while Present
(Elit
) loop
6756 if No
(Enumeration_Rep_Expr
(Elit
)) then
6757 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6760 Val
:= Enumeration_Rep
(Elit
);
6762 if Min
= No_Uint
then
6766 if Val
/= No_Uint
then
6767 if Max
/= No_Uint
and then Val
<= Max
then
6769 ("enumeration value for& not ordered!",
6770 Enumeration_Rep_Expr
(Elit
), Elit
);
6773 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6777 -- If there is at least one literal whose representation is not
6778 -- equal to the Pos value, then note that this enumeration type
6779 -- has a non-standard representation.
6781 if Val
/= Enumeration_Pos
(Elit
) then
6782 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6789 -- Now set proper size information
6792 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6795 if Has_Size_Clause
(Enumtype
) then
6797 -- All OK, if size is OK now
6799 if RM_Size
(Enumtype
) >= Minsize
then
6803 -- Try if we can get by with biasing
6806 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6808 -- Error message if even biasing does not work
6810 if RM_Size
(Enumtype
) < Minsize
then
6811 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6812 Error_Msg_Uint_2
:= Max
;
6814 ("previously given size (^) is too small "
6815 & "for this value (^)", Max_Node
);
6817 -- If biasing worked, indicate that we now have biased rep
6821 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6826 Set_RM_Size
(Enumtype
, Minsize
);
6827 Set_Enum_Esize
(Enumtype
);
6830 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6831 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6832 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6836 -- We repeat the too late test in case it froze itself
6838 if Rep_Item_Too_Late
(Enumtype
, N
) then
6841 end Analyze_Enumeration_Representation_Clause
;
6843 ----------------------------
6844 -- Analyze_Free_Statement --
6845 ----------------------------
6847 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6849 Analyze
(Expression
(N
));
6850 end Analyze_Free_Statement
;
6852 ---------------------------
6853 -- Analyze_Freeze_Entity --
6854 ---------------------------
6856 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6858 Freeze_Entity_Checks
(N
);
6859 end Analyze_Freeze_Entity
;
6861 -----------------------------------
6862 -- Analyze_Freeze_Generic_Entity --
6863 -----------------------------------
6865 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6866 E
: constant Entity_Id
:= Entity
(N
);
6869 if not Is_Frozen
(E
) and then Has_Delayed_Aspects
(E
) then
6870 Analyze_Aspects_At_Freeze_Point
(E
);
6873 Freeze_Entity_Checks
(N
);
6874 end Analyze_Freeze_Generic_Entity
;
6876 ------------------------------------------
6877 -- Analyze_Record_Representation_Clause --
6878 ------------------------------------------
6880 -- Note: we check as much as we can here, but we can't do any checks
6881 -- based on the position values (e.g. overlap checks) until freeze time
6882 -- because especially in Ada 2005 (machine scalar mode), the processing
6883 -- for non-standard bit order can substantially change the positions.
6884 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6885 -- for the remainder of this processing.
6887 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6888 Ident
: constant Node_Id
:= Identifier
(N
);
6893 Hbit
: Uint
:= Uint_0
;
6897 Rectype
: Entity_Id
;
6900 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6901 -- True if Comp is an inherited component in a record extension
6907 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6908 Comp_Base
: Entity_Id
;
6911 if Ekind
(Rectype
) = E_Record_Subtype
then
6912 Comp_Base
:= Original_Record_Component
(Comp
);
6917 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6922 Is_Record_Extension
: Boolean;
6923 -- True if Rectype is a record extension
6925 CR_Pragma
: Node_Id
:= Empty
;
6926 -- Points to N_Pragma node if Complete_Representation pragma present
6928 -- Start of processing for Analyze_Record_Representation_Clause
6931 if Ignore_Rep_Clauses
then
6932 Kill_Rep_Clause
(N
);
6937 Rectype
:= Entity
(Ident
);
6939 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6942 Rectype
:= Underlying_Type
(Rectype
);
6945 -- First some basic error checks
6947 if not Is_Record_Type
(Rectype
) then
6949 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6952 elsif Scope
(Rectype
) /= Current_Scope
then
6953 Error_Msg_N
("type must be declared in this scope", N
);
6956 elsif not Is_First_Subtype
(Rectype
) then
6957 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6960 elsif Has_Record_Rep_Clause
(Rectype
) then
6961 Error_Msg_N
("duplicate record rep clause ignored", N
);
6964 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6968 -- We know we have a first subtype, now possibly go to the anonymous
6969 -- base type to determine whether Rectype is a record extension.
6971 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6972 Is_Record_Extension
:=
6973 Nkind
(Recdef
) = N_Derived_Type_Definition
6974 and then Present
(Record_Extension_Part
(Recdef
));
6976 if Present
(Mod_Clause
(N
)) then
6978 Loc
: constant Source_Ptr
:= Sloc
(N
);
6979 M
: constant Node_Id
:= Mod_Clause
(N
);
6980 P
: constant List_Id
:= Pragmas_Before
(M
);
6984 pragma Warnings
(Off
, Mod_Val
);
6987 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6989 if Warn_On_Obsolescent_Feature
then
6991 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6993 ("\?j?use alignment attribute definition clause instead", N
);
7000 -- In ASIS_Mode mode, expansion is disabled, but we must convert
7001 -- the Mod clause into an alignment clause anyway, so that the
7002 -- back end can compute and back-annotate properly the size and
7003 -- alignment of types that may include this record.
7005 -- This seems dubious, this destroys the source tree in a manner
7006 -- not detectable by ASIS ???
7008 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
7010 Make_Attribute_Definition_Clause
(Loc
,
7011 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
7012 Chars
=> Name_Alignment
,
7013 Expression
=> Relocate_Node
(Expression
(M
)));
7015 Set_From_At_Mod
(AtM_Nod
);
7016 Insert_After
(N
, AtM_Nod
);
7017 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
7018 Set_Mod_Clause
(N
, Empty
);
7021 -- Get the alignment value to perform error checking
7023 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
7028 -- For untagged types, clear any existing component clauses for the
7029 -- type. If the type is derived, this is what allows us to override
7030 -- a rep clause for the parent. For type extensions, the representation
7031 -- of the inherited components is inherited, so we want to keep previous
7032 -- component clauses for completeness.
7034 if not Is_Tagged_Type
(Rectype
) then
7035 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7036 while Present
(Comp
) loop
7037 Set_Component_Clause
(Comp
, Empty
);
7038 Next_Component_Or_Discriminant
(Comp
);
7042 -- All done if no component clauses
7044 CC
:= First
(Component_Clauses
(N
));
7050 -- A representation like this applies to the base type
7052 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
7053 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
7054 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
7056 -- Process the component clauses
7058 while Present
(CC
) loop
7062 if Nkind
(CC
) = N_Pragma
then
7065 -- The only pragma of interest is Complete_Representation
7067 if Pragma_Name
(CC
) = Name_Complete_Representation
then
7071 -- Processing for real component clause
7074 Posit
:= Static_Integer
(Position
(CC
));
7075 Fbit
:= Static_Integer
(First_Bit
(CC
));
7076 Lbit
:= Static_Integer
(Last_Bit
(CC
));
7079 and then Fbit
/= No_Uint
7080 and then Lbit
/= No_Uint
7083 Error_Msg_N
("position cannot be negative", Position
(CC
));
7086 Error_Msg_N
("first bit cannot be negative", First_Bit
(CC
));
7088 -- The Last_Bit specified in a component clause must not be
7089 -- less than the First_Bit minus one (RM-13.5.1(10)).
7091 elsif Lbit
< Fbit
- 1 then
7093 ("last bit cannot be less than first bit minus one",
7096 -- Values look OK, so find the corresponding record component
7097 -- Even though the syntax allows an attribute reference for
7098 -- implementation-defined components, GNAT does not allow the
7099 -- tag to get an explicit position.
7101 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
7102 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
7103 Error_Msg_N
("position of tag cannot be specified", CC
);
7105 Error_Msg_N
("illegal component name", CC
);
7109 Comp
:= First_Entity
(Rectype
);
7110 while Present
(Comp
) loop
7111 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7117 -- Maybe component of base type that is absent from
7118 -- statically constrained first subtype.
7120 Comp
:= First_Entity
(Base_Type
(Rectype
));
7121 while Present
(Comp
) loop
7122 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7129 ("component clause is for non-existent field", CC
);
7131 -- Ada 2012 (AI05-0026): Any name that denotes a
7132 -- discriminant of an object of an unchecked union type
7133 -- shall not occur within a record_representation_clause.
7135 -- The general restriction of using record rep clauses on
7136 -- Unchecked_Union types has now been lifted. Since it is
7137 -- possible to introduce a record rep clause which mentions
7138 -- the discriminant of an Unchecked_Union in non-Ada 2012
7139 -- code, this check is applied to all versions of the
7142 elsif Ekind
(Comp
) = E_Discriminant
7143 and then Is_Unchecked_Union
(Rectype
)
7146 ("cannot reference discriminant of unchecked union",
7147 Component_Name
(CC
));
7149 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
7151 ("component clause not allowed for inherited "
7152 & "component&", CC
, Comp
);
7154 elsif Present
(Component_Clause
(Comp
)) then
7156 -- Diagnose duplicate rep clause, or check consistency
7157 -- if this is an inherited component. In a double fault,
7158 -- there may be a duplicate inconsistent clause for an
7159 -- inherited component.
7161 if Scope
(Original_Record_Component
(Comp
)) = Rectype
7162 or else Parent
(Component_Clause
(Comp
)) = N
7164 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
7165 Error_Msg_N
("component clause previously given#", CC
);
7169 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
7171 if Intval
(Position
(Rep1
)) /=
7172 Intval
(Position
(CC
))
7173 or else Intval
(First_Bit
(Rep1
)) /=
7174 Intval
(First_Bit
(CC
))
7175 or else Intval
(Last_Bit
(Rep1
)) /=
7176 Intval
(Last_Bit
(CC
))
7179 ("component clause inconsistent with "
7180 & "representation of ancestor", CC
);
7182 elsif Warn_On_Redundant_Constructs
then
7184 ("?r?redundant confirming component clause "
7185 & "for component!", CC
);
7190 -- Normal case where this is the first component clause we
7191 -- have seen for this entity, so set it up properly.
7194 -- Make reference for field in record rep clause and set
7195 -- appropriate entity field in the field identifier.
7198 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
7199 Set_Entity
(Component_Name
(CC
), Comp
);
7201 -- Update Fbit and Lbit to the actual bit number
7203 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
7204 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
7206 if Has_Size_Clause
(Rectype
)
7207 and then RM_Size
(Rectype
) <= Lbit
7210 ("bit number out of range of specified size",
7213 Set_Component_Clause
(Comp
, CC
);
7214 Set_Component_Bit_Offset
(Comp
, Fbit
);
7215 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
7216 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
7217 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
7219 if Warn_On_Overridden_Size
7220 and then Has_Size_Clause
(Etype
(Comp
))
7221 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
7224 ("?S?component size overrides size clause for&",
7225 Component_Name
(CC
), Etype
(Comp
));
7228 -- This information is also set in the corresponding
7229 -- component of the base type, found by accessing the
7230 -- Original_Record_Component link if it is present.
7232 Ocomp
:= Original_Record_Component
(Comp
);
7239 (Component_Name
(CC
),
7245 (Comp
, First_Node
(CC
), "component clause", Biased
);
7247 if Present
(Ocomp
) then
7248 Set_Component_Clause
(Ocomp
, CC
);
7249 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
7250 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
7251 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
7252 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
7254 Set_Normalized_Position_Max
7255 (Ocomp
, Normalized_Position
(Ocomp
));
7257 -- Note: we don't use Set_Biased here, because we
7258 -- already gave a warning above if needed, and we
7259 -- would get a duplicate for the same name here.
7261 Set_Has_Biased_Representation
7262 (Ocomp
, Has_Biased_Representation
(Comp
));
7265 if Esize
(Comp
) < 0 then
7266 Error_Msg_N
("component size is negative", CC
);
7277 -- Check missing components if Complete_Representation pragma appeared
7279 if Present
(CR_Pragma
) then
7280 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7281 while Present
(Comp
) loop
7282 if No
(Component_Clause
(Comp
)) then
7284 ("missing component clause for &", CR_Pragma
, Comp
);
7287 Next_Component_Or_Discriminant
(Comp
);
7290 -- Give missing components warning if required
7292 elsif Warn_On_Unrepped_Components
then
7294 Num_Repped_Components
: Nat
:= 0;
7295 Num_Unrepped_Components
: Nat
:= 0;
7298 -- First count number of repped and unrepped components
7300 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7301 while Present
(Comp
) loop
7302 if Present
(Component_Clause
(Comp
)) then
7303 Num_Repped_Components
:= Num_Repped_Components
+ 1;
7305 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
7308 Next_Component_Or_Discriminant
(Comp
);
7311 -- We are only interested in the case where there is at least one
7312 -- unrepped component, and at least half the components have rep
7313 -- clauses. We figure that if less than half have them, then the
7314 -- partial rep clause is really intentional. If the component
7315 -- type has no underlying type set at this point (as for a generic
7316 -- formal type), we don't know enough to give a warning on the
7319 if Num_Unrepped_Components
> 0
7320 and then Num_Unrepped_Components
< Num_Repped_Components
7322 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7323 while Present
(Comp
) loop
7324 if No
(Component_Clause
(Comp
))
7325 and then Comes_From_Source
(Comp
)
7326 and then Present
(Underlying_Type
(Etype
(Comp
)))
7327 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
7328 or else Size_Known_At_Compile_Time
7329 (Underlying_Type
(Etype
(Comp
))))
7330 and then not Has_Warnings_Off
(Rectype
)
7332 -- Ignore discriminant in unchecked union, since it is
7333 -- not there, and cannot have a component clause.
7335 and then (not Is_Unchecked_Union
(Rectype
)
7336 or else Ekind
(Comp
) /= E_Discriminant
)
7338 Error_Msg_Sloc
:= Sloc
(Comp
);
7340 ("?C?no component clause given for & declared #",
7344 Next_Component_Or_Discriminant
(Comp
);
7349 end Analyze_Record_Representation_Clause
;
7351 -------------------------------------
7352 -- Build_Discrete_Static_Predicate --
7353 -------------------------------------
7355 procedure Build_Discrete_Static_Predicate
7360 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7362 Non_Static
: exception;
7363 -- Raised if something non-static is found
7365 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7367 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
7368 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
7369 -- Low bound and high bound value of base type of Typ
7373 -- Bounds for constructing the static predicate. We use the bound of the
7374 -- subtype if it is static, otherwise the corresponding base type bound.
7375 -- Note: a non-static subtype can have a static predicate.
7380 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7381 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7384 type RList
is array (Nat
range <>) of REnt
;
7385 -- A list of ranges. The ranges are sorted in increasing order, and are
7386 -- disjoint (there is a gap of at least one value between each range in
7387 -- the table). A value is in the set of ranges in Rlist if it lies
7388 -- within one of these ranges.
7390 False_Range
: constant RList
:=
7391 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
7392 -- An empty set of ranges represents a range list that can never be
7393 -- satisfied, since there are no ranges in which the value could lie,
7394 -- so it does not lie in any of them. False_Range is a canonical value
7395 -- for this empty set, but general processing should test for an Rlist
7396 -- with length zero (see Is_False predicate), since other null ranges
7397 -- may appear which must be treated as False.
7399 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
7400 -- Range representing True, value must be in the base range
7402 function "and" (Left
: RList
; Right
: RList
) return RList
;
7403 -- And's together two range lists, returning a range list. This is a set
7404 -- intersection operation.
7406 function "or" (Left
: RList
; Right
: RList
) return RList
;
7407 -- Or's together two range lists, returning a range list. This is a set
7410 function "not" (Right
: RList
) return RList
;
7411 -- Returns complement of a given range list, i.e. a range list
7412 -- representing all the values in TLo .. THi that are not in the input
7415 function Build_Val
(V
: Uint
) return Node_Id
;
7416 -- Return an analyzed N_Identifier node referencing this value, suitable
7417 -- for use as an entry in the Static_Discrte_Predicate list. This node
7418 -- is typed with the base type.
7420 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
7421 -- Return an analyzed N_Range node referencing this range, suitable for
7422 -- use as an entry in the Static_Discrete_Predicate list. This node is
7423 -- typed with the base type.
7425 function Get_RList
(Exp
: Node_Id
) return RList
;
7426 -- This is a recursive routine that converts the given expression into a
7427 -- list of ranges, suitable for use in building the static predicate.
7429 function Is_False
(R
: RList
) return Boolean;
7430 pragma Inline
(Is_False
);
7431 -- Returns True if the given range list is empty, and thus represents a
7432 -- False list of ranges that can never be satisfied.
7434 function Is_True
(R
: RList
) return Boolean;
7435 -- Returns True if R trivially represents the True predicate by having a
7436 -- single range from BLo to BHi.
7438 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
7439 pragma Inline
(Is_Type_Ref
);
7440 -- Returns if True if N is a reference to the type for the predicate in
7441 -- the expression (i.e. if it is an identifier whose Chars field matches
7442 -- the Nam given in the call). N must not be parenthesized, if the type
7443 -- name appears in parens, this routine will return False.
7445 function Lo_Val
(N
: Node_Id
) return Uint
;
7446 -- Given an entry from a Static_Discrete_Predicate list that is either
7447 -- a static expression or static range, gets either the expression value
7448 -- or the low bound of the range.
7450 function Hi_Val
(N
: Node_Id
) return Uint
;
7451 -- Given an entry from a Static_Discrete_Predicate list that is either
7452 -- a static expression or static range, gets either the expression value
7453 -- or the high bound of the range.
7455 function Membership_Entry
(N
: Node_Id
) return RList
;
7456 -- Given a single membership entry (range, value, or subtype), returns
7457 -- the corresponding range list. Raises Static_Error if not static.
7459 function Membership_Entries
(N
: Node_Id
) return RList
;
7460 -- Given an element on an alternatives list of a membership operation,
7461 -- returns the range list corresponding to this entry and all following
7462 -- entries (i.e. returns the "or" of this list of values).
7464 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
7465 -- Given a type, if it has a static predicate, then return the predicate
7466 -- as a range list, otherwise raise Non_Static.
7472 function "and" (Left
: RList
; Right
: RList
) return RList
is
7474 -- First range of result
7476 SLeft
: Nat
:= Left
'First;
7477 -- Start of rest of left entries
7479 SRight
: Nat
:= Right
'First;
7480 -- Start of rest of right entries
7483 -- If either range is True, return the other
7485 if Is_True
(Left
) then
7487 elsif Is_True
(Right
) then
7491 -- If either range is False, return False
7493 if Is_False
(Left
) or else Is_False
(Right
) then
7497 -- Loop to remove entries at start that are disjoint, and thus just
7498 -- get discarded from the result entirely.
7501 -- If no operands left in either operand, result is false
7503 if SLeft
> Left
'Last or else SRight
> Right
'Last then
7506 -- Discard first left operand entry if disjoint with right
7508 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
7511 -- Discard first right operand entry if disjoint with left
7513 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
7514 SRight
:= SRight
+ 1;
7516 -- Otherwise we have an overlapping entry
7523 -- Now we have two non-null operands, and first entries overlap. The
7524 -- first entry in the result will be the overlapping part of these
7527 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7528 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7530 -- Now we can remove the entry that ended at a lower value, since its
7531 -- contribution is entirely contained in Fent.
7533 if Left (SLeft).Hi <= Right (SRight).Hi then
7536 SRight := SRight + 1;
7539 -- Compute result by concatenating this first entry with the "and" of
7540 -- the remaining parts of the left and right operands. Note that if
7541 -- either of these is empty, "and" will yield empty, so that we will
7542 -- end up with just Fent, which is what we want in that case.
7545 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7552 function "not" (Right : RList) return RList is
7554 -- Return True if False range
7556 if Is_False (Right) then
7560 -- Return False if True range
7562 if Is_True (Right) then
7566 -- Here if not trivial case
7569 Result : RList (1 .. Right'Length + 1);
7570 -- May need one more entry for gap at beginning and end
7573 -- Number of entries stored in Result
7578 if Right (Right'First).Lo > TLo then
7580 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
7583 -- Gaps between ranges
7585 for J
in Right
'First .. Right
'Last - 1 loop
7587 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7592 if Right (Right'Last).Hi < THi then
7594 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
7597 return Result
(1 .. Count
);
7605 function "or" (Left
: RList
; Right
: RList
) return RList
is
7607 -- First range of result
7609 SLeft
: Nat
:= Left
'First;
7610 -- Start of rest of left entries
7612 SRight
: Nat
:= Right
'First;
7613 -- Start of rest of right entries
7616 -- If either range is True, return True
7618 if Is_True
(Left
) or else Is_True
(Right
) then
7622 -- If either range is False (empty), return the other
7624 if Is_False
(Left
) then
7626 elsif Is_False
(Right
) then
7630 -- Initialize result first entry from left or right operand depending
7631 -- on which starts with the lower range.
7633 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
7634 FEnt
:= Left
(SLeft
);
7637 FEnt
:= Right
(SRight
);
7638 SRight
:= SRight
+ 1;
7641 -- This loop eats ranges from left and right operands that are
7642 -- contiguous with the first range we are gathering.
7645 -- Eat first entry in left operand if contiguous or overlapped by
7646 -- gathered first operand of result.
7648 if SLeft
<= Left
'Last
7649 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
7651 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
7654 -- Eat first entry in right operand if contiguous or overlapped by
7655 -- gathered right operand of result.
7657 elsif SRight
<= Right
'Last
7658 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
7660 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
7661 SRight
:= SRight
+ 1;
7663 -- All done if no more entries to eat
7670 -- Obtain result as the first entry we just computed, concatenated
7671 -- to the "or" of the remaining results (if one operand is empty,
7672 -- this will just concatenate with the other
7675 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
7682 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
7687 Low_Bound
=> Build_Val
(Lo
),
7688 High_Bound
=> Build_Val
(Hi
));
7689 Set_Etype
(Result
, Btyp
);
7690 Set_Analyzed
(Result
);
7698 function Build_Val
(V
: Uint
) return Node_Id
is
7702 if Is_Enumeration_Type
(Typ
) then
7703 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7705 Result
:= Make_Integer_Literal
(Loc
, V
);
7708 Set_Etype
(Result
, Btyp
);
7709 Set_Is_Static_Expression
(Result
);
7710 Set_Analyzed
(Result
);
7718 function Get_RList
(Exp
: Node_Id
) return RList
is
7723 -- Static expression can only be true or false
7725 if Is_OK_Static_Expression
(Exp
) then
7726 if Expr_Value
(Exp
) = 0 then
7733 -- Otherwise test node type
7744 return Get_RList
(Left_Opnd
(Exp
))
7746 Get_RList
(Right_Opnd
(Exp
));
7753 return Get_RList
(Left_Opnd
(Exp
))
7755 Get_RList
(Right_Opnd
(Exp
));
7760 return not Get_RList
(Right_Opnd
(Exp
));
7762 -- Comparisons of type with static value
7764 when N_Op_Compare
=>
7766 -- Type is left operand
7768 if Is_Type_Ref
(Left_Opnd
(Exp
))
7769 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7771 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7773 -- Typ is right operand
7775 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7776 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7778 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7780 -- Invert sense of comparison
7783 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7784 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7785 when N_Op_Ge
=> Op
:= N_Op_Le
;
7786 when N_Op_Le
=> Op
:= N_Op_Ge
;
7787 when others => null;
7790 -- Other cases are non-static
7796 -- Construct range according to comparison operation
7800 return RList
'(1 => REnt'(Val
, Val
));
7803 return RList
'(1 => REnt'(Val
, BHi
));
7806 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7809 return RList
'(1 => REnt'(BLo
, Val
));
7812 return RList
'(1 => REnt'(BLo
, Val
- 1));
7815 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7818 raise Program_Error;
7824 if not Is_Type_Ref (Left_Opnd (Exp)) then
7828 if Present (Right_Opnd (Exp)) then
7829 return Membership_Entry (Right_Opnd (Exp));
7831 return Membership_Entries (First (Alternatives (Exp)));
7834 -- Negative membership (NOT IN)
7837 if not Is_Type_Ref (Left_Opnd (Exp)) then
7841 if Present (Right_Opnd (Exp)) then
7842 return not Membership_Entry (Right_Opnd (Exp));
7844 return not Membership_Entries (First (Alternatives (Exp)));
7847 -- Function call, may be call to static predicate
7849 when N_Function_Call =>
7850 if Is_Entity_Name (Name (Exp)) then
7852 Ent : constant Entity_Id := Entity (Name (Exp));
7854 if Is_Predicate_Function (Ent)
7856 Is_Predicate_Function_M (Ent)
7858 return Stat_Pred (Etype (First_Formal (Ent)));
7863 -- Other function call cases are non-static
7867 -- Qualified expression, dig out the expression
7869 when N_Qualified_Expression =>
7870 return Get_RList (Expression (Exp));
7872 when N_Case_Expression =>
7879 if not Is_Entity_Name (Expression (Expr))
7880 or else Etype (Expression (Expr)) /= Typ
7883 ("expression must denaote subtype", Expression (Expr));
7887 -- Collect discrete choices in all True alternatives
7889 Choices := New_List;
7890 Alt := First (Alternatives (Exp));
7891 while Present (Alt) loop
7892 Dep := Expression (Alt);
7894 if not Is_OK_Static_Expression (Dep) then
7897 elsif Is_True (Expr_Value (Dep)) then
7898 Append_List_To (Choices,
7899 New_Copy_List (Discrete_Choices (Alt)));
7905 return Membership_Entries (First (Choices));
7908 -- Expression with actions: if no actions, dig out expression
7910 when N_Expression_With_Actions =>
7911 if Is_Empty_List (Actions (Exp)) then
7912 return Get_RList (Expression (Exp));
7920 return (Get_RList (Left_Opnd (Exp))
7921 and not Get_RList (Right_Opnd (Exp)))
7922 or (Get_RList (Right_Opnd (Exp))
7923 and not Get_RList (Left_Opnd (Exp)));
7925 -- Any other node type is non-static
7936 function Hi_Val (N : Node_Id) return Uint is
7938 if Is_OK_Static_Expression (N) then
7939 return Expr_Value (N);
7941 pragma Assert (Nkind (N) = N_Range);
7942 return Expr_Value (High_Bound (N));
7950 function Is_False (R : RList) return Boolean is
7952 return R'Length = 0;
7959 function Is_True (R : RList) return Boolean is
7962 and then R (R'First).Lo = BLo
7963 and then R (R'First).Hi = BHi;
7970 function Is_Type_Ref (N : Node_Id) return Boolean is
7972 return Nkind (N) = N_Identifier
7973 and then Chars (N) = Nam
7974 and then Paren_Count (N) = 0;
7981 function Lo_Val (N : Node_Id) return Uint is
7983 if Is_OK_Static_Expression (N) then
7984 return Expr_Value (N);
7986 pragma Assert (Nkind (N) = N_Range);
7987 return Expr_Value (Low_Bound (N));
7991 ------------------------
7992 -- Membership_Entries --
7993 ------------------------
7995 function Membership_Entries (N : Node_Id) return RList is
7997 if No (Next (N)) then
7998 return Membership_Entry (N);
8000 return Membership_Entry (N) or Membership_Entries (Next (N));
8002 end Membership_Entries;
8004 ----------------------
8005 -- Membership_Entry --
8006 ----------------------
8008 function Membership_Entry (N : Node_Id) return RList is
8016 if Nkind (N) = N_Range then
8017 if not Is_OK_Static_Expression (Low_Bound (N))
8019 not Is_OK_Static_Expression (High_Bound (N))
8023 SLo := Expr_Value (Low_Bound (N));
8024 SHi := Expr_Value (High_Bound (N));
8025 return RList'(1 => REnt
'(SLo, SHi));
8028 -- Static expression case
8030 elsif Is_OK_Static_Expression (N) then
8031 Val := Expr_Value (N);
8032 return RList'(1 => REnt
'(Val, Val));
8034 -- Identifier (other than static expression) case
8036 else pragma Assert (Nkind (N) = N_Identifier);
8040 if Is_Type (Entity (N)) then
8042 -- If type has predicates, process them
8044 if Has_Predicates (Entity (N)) then
8045 return Stat_Pred (Entity (N));
8047 -- For static subtype without predicates, get range
8049 elsif Is_OK_Static_Subtype (Entity (N)) then
8050 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8051 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8052 return RList'(1 => REnt
'(SLo, SHi));
8054 -- Any other type makes us non-static
8060 -- Any other kind of identifier in predicate (e.g. a non-static
8061 -- expression value) means this is not a static predicate.
8067 end Membership_Entry;
8073 function Stat_Pred (Typ : Entity_Id) return RList is
8075 -- Not static if type does not have static predicates
8077 if not Has_Static_Predicate (Typ) then
8081 -- Otherwise we convert the predicate list to a range list
8084 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8085 Result : RList (1 .. List_Length (Spred));
8089 P := First (Static_Discrete_Predicate (Typ));
8090 for J in Result'Range loop
8091 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
8099 -- Start of processing for Build_Discrete_Static_Predicate
8102 -- Establish bounds for the predicate
8104 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
8105 TLo
:= Expr_Value
(Type_Low_Bound
(Typ
));
8110 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
8111 THi
:= Expr_Value
(Type_High_Bound
(Typ
));
8116 -- Analyze the expression to see if it is a static predicate
8119 Ranges
: constant RList
:= Get_RList
(Expr
);
8120 -- Range list from expression if it is static
8125 -- Convert range list into a form for the static predicate. In the
8126 -- Ranges array, we just have raw ranges, these must be converted
8127 -- to properly typed and analyzed static expressions or range nodes.
8129 -- Note: here we limit ranges to the ranges of the subtype, so that
8130 -- a predicate is always false for values outside the subtype. That
8131 -- seems fine, such values are invalid anyway, and considering them
8132 -- to fail the predicate seems allowed and friendly, and furthermore
8133 -- simplifies processing for case statements and loops.
8137 for J
in Ranges
'Range loop
8139 Lo
: Uint
:= Ranges
(J
).Lo
;
8140 Hi
: Uint
:= Ranges
(J
).Hi
;
8143 -- Ignore completely out of range entry
8145 if Hi
< TLo
or else Lo
> THi
then
8148 -- Otherwise process entry
8151 -- Adjust out of range value to subtype range
8161 -- Convert range into required form
8163 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
8168 -- Processing was successful and all entries were static, so now we
8169 -- can store the result as the predicate list.
8171 Set_Static_Discrete_Predicate
(Typ
, Plist
);
8173 -- The processing for static predicates put the expression into
8174 -- canonical form as a series of ranges. It also eliminated
8175 -- duplicates and collapsed and combined ranges. We might as well
8176 -- replace the alternatives list of the right operand of the
8177 -- membership test with the static predicate list, which will
8178 -- usually be more efficient.
8181 New_Alts
: constant List_Id
:= New_List
;
8186 Old_Node
:= First
(Plist
);
8187 while Present
(Old_Node
) loop
8188 New_Node
:= New_Copy
(Old_Node
);
8190 if Nkind
(New_Node
) = N_Range
then
8191 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
8192 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
8195 Append_To
(New_Alts
, New_Node
);
8199 -- If empty list, replace by False
8201 if Is_Empty_List
(New_Alts
) then
8202 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
8204 -- Else replace by set membership test
8209 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
8210 Right_Opnd
=> Empty
,
8211 Alternatives
=> New_Alts
));
8213 -- Resolve new expression in function context
8215 Install_Formals
(Predicate_Function
(Typ
));
8216 Push_Scope
(Predicate_Function
(Typ
));
8217 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
8223 -- If non-static, return doing nothing
8228 end Build_Discrete_Static_Predicate
;
8230 --------------------------------
8231 -- Build_Export_Import_Pragma --
8232 --------------------------------
8234 function Build_Export_Import_Pragma
8236 Id
: Entity_Id
) return Node_Id
8238 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
8239 Expr
: constant Node_Id
:= Expression
(Asp
);
8240 Loc
: constant Source_Ptr
:= Sloc
(Asp
);
8251 Create_Pragma
: Boolean := False;
8252 -- This flag is set when the aspect form is such that it warrants the
8253 -- creation of a corresponding pragma.
8256 if Present
(Expr
) then
8257 if Error_Posted
(Expr
) then
8260 elsif Is_True
(Expr_Value
(Expr
)) then
8261 Create_Pragma
:= True;
8264 -- Otherwise the aspect defaults to True
8267 Create_Pragma
:= True;
8270 -- Nothing to do when the expression is False or is erroneous
8272 if not Create_Pragma
then
8276 -- Obtain all interfacing aspects that apply to the related entity
8278 Get_Interfacing_Aspects
8282 Expo_Asp
=> Dummy_1
,
8288 -- Handle the convention argument
8290 if Present
(Conv
) then
8291 Conv_Arg
:= New_Copy_Tree
(Expression
(Conv
));
8293 -- Assume convention "Ada' when aspect Convention is missing
8296 Conv_Arg
:= Make_Identifier
(Loc
, Name_Ada
);
8300 Make_Pragma_Argument_Association
(Loc
,
8301 Chars
=> Name_Convention
,
8302 Expression
=> Conv_Arg
));
8304 -- Handle the entity argument
8307 Make_Pragma_Argument_Association
(Loc
,
8308 Chars
=> Name_Entity
,
8309 Expression
=> New_Occurrence_Of
(Id
, Loc
)));
8311 -- Handle the External_Name argument
8313 if Present
(EN
) then
8315 Make_Pragma_Argument_Association
(Loc
,
8316 Chars
=> Name_External_Name
,
8317 Expression
=> New_Copy_Tree
(Expression
(EN
))));
8320 -- Handle the Link_Name argument
8322 if Present
(LN
) then
8324 Make_Pragma_Argument_Association
(Loc
,
8325 Chars
=> Name_Link_Name
,
8326 Expression
=> New_Copy_Tree
(Expression
(LN
))));
8330 -- pragma Export/Import
8331 -- (Convention => <Conv>/Ada,
8333 -- [External_Name => <EN>,]
8334 -- [Link_Name => <LN>]);
8338 Pragma_Identifier
=>
8339 Make_Identifier
(Loc
, Chars
(Identifier
(Asp
))),
8340 Pragma_Argument_Associations
=> Args
);
8342 -- Decorate the relevant aspect and the pragma
8344 Set_Aspect_Rep_Item
(Asp
, Prag
);
8346 Set_Corresponding_Aspect
(Prag
, Asp
);
8347 Set_From_Aspect_Specification
(Prag
);
8348 Set_Parent
(Prag
, Asp
);
8350 if Asp_Id
= Aspect_Import
and then Is_Subprogram
(Id
) then
8351 Set_Import_Pragma
(Id
, Prag
);
8355 end Build_Export_Import_Pragma
;
8357 -------------------------------
8358 -- Build_Predicate_Functions --
8359 -------------------------------
8361 -- The functions that are constructed here have the form:
8363 -- function typPredicate (Ixxx : typ) return Boolean is
8366 -- typ1Predicate (typ1 (Ixxx))
8367 -- and then typ2Predicate (typ2 (Ixxx))
8369 -- and then exp1 and then exp2 and then ...;
8370 -- end typPredicate;
8372 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8373 -- this is the point at which these expressions get analyzed, providing the
8374 -- required delay, and typ1, typ2, are entities from which predicates are
8375 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8376 -- use this function even if checks are off, e.g. for membership tests.
8378 -- Note that the inherited predicates are evaluated first, as required by
8381 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8382 -- the form of this return expression.
8384 -- If the expression has at least one Raise_Expression, then we also build
8385 -- the typPredicateM version of the function, in which any occurrence of a
8386 -- Raise_Expression is converted to "return False".
8388 -- WARNING: This routine manages Ghost regions. Return statements must be
8389 -- replaced by gotos which jump to the end of the routine and restore the
8392 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8393 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8396 -- This is the expression for the result of the function. It is
8397 -- is build by connecting the component predicates with AND THEN.
8399 Expr_M
: Node_Id
:= Empty
; -- init to avoid warning
8400 -- This is the corresponding return expression for the Predicate_M
8401 -- function. It differs in that raise expressions are marked for
8402 -- special expansion (see Process_REs).
8404 Object_Name
: Name_Id
;
8405 -- Name for argument of Predicate procedure. Note that we use the same
8406 -- name for both predicate functions. That way the reference within the
8407 -- predicate expression is the same in both functions.
8409 Object_Entity
: Entity_Id
;
8410 -- Entity for argument of Predicate procedure
8412 Object_Entity_M
: Entity_Id
;
8413 -- Entity for argument of separate Predicate procedure when exceptions
8414 -- are present in expression.
8417 -- The function declaration
8422 Raise_Expression_Present
: Boolean := False;
8423 -- Set True if Expr has at least one Raise_Expression
8425 procedure Add_Condition
(Cond
: Node_Id
);
8426 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8429 procedure Add_Predicates
;
8430 -- Appends expressions for any Predicate pragmas in the rep item chain
8431 -- Typ to Expr. Note that we look only at items for this exact entity.
8432 -- Inheritance of predicates for the parent type is done by calling the
8433 -- Predicate_Function of the parent type, using Add_Call above.
8435 procedure Add_Call
(T
: Entity_Id
);
8436 -- Includes a call to the predicate function for type T in Expr if T
8437 -- has predicates and Predicate_Function (T) is non-empty.
8439 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8440 -- Used in Process REs, tests if node N is a raise expression, and if
8441 -- so, marks it to be converted to return False.
8443 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8444 -- Marks any raise expressions in Expr_M to return False
8446 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8447 -- Used in Test_REs, tests one node for being a raise expression, and if
8448 -- so sets Raise_Expression_Present True.
8450 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8451 -- Tests to see if Expr contains any raise expressions
8457 procedure Add_Call
(T
: Entity_Id
) is
8461 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8462 Set_Has_Predicates
(Typ
);
8464 -- Build the call to the predicate function of T. The type may be
8465 -- derived, so use an unchecked conversion for the actual.
8471 Unchecked_Convert_To
(T
,
8472 Make_Identifier
(Loc
, Object_Name
)));
8474 -- "and"-in the call to evolving expression
8476 Add_Condition
(Exp
);
8478 -- Output info message on inheritance if required. Note we do not
8479 -- give this information for generic actual types, since it is
8480 -- unwelcome noise in that case in instantiations. We also
8481 -- generally suppress the message in instantiations, and also
8482 -- if it involves internal names.
8484 if Opt
.List_Inherited_Aspects
8485 and then not Is_Generic_Actual_Type
(Typ
)
8486 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8487 and then not Is_Internal_Name
(Chars
(T
))
8488 and then not Is_Internal_Name
(Chars
(Typ
))
8490 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8491 Error_Msg_Node_2
:= T
;
8492 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8501 procedure Add_Condition
(Cond
: Node_Id
) is
8503 -- This is the first predicate expression
8508 -- Otherwise concatenate to the existing predicate expressions by
8509 -- using "and then".
8514 Left_Opnd
=> Relocate_Node
(Expr
),
8515 Right_Opnd
=> Cond
);
8519 --------------------
8520 -- Add_Predicates --
8521 --------------------
8523 procedure Add_Predicates
is
8524 procedure Add_Predicate
(Prag
: Node_Id
);
8525 -- Concatenate the expression of predicate pragma Prag to Expr by
8526 -- using a short circuit "and then" operator.
8532 procedure Add_Predicate
(Prag
: Node_Id
) is
8533 procedure Replace_Type_Reference
(N
: Node_Id
);
8534 -- Replace a single occurrence N of the subtype name with a
8535 -- reference to the formal of the predicate function. N can be an
8536 -- identifier referencing the subtype, or a selected component,
8537 -- representing an appropriately qualified occurrence of the
8540 procedure Replace_Type_References
is
8541 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8542 -- Traverse an expression changing every occurrence of an
8543 -- identifier whose name matches the name of the subtype with a
8544 -- reference to the formal parameter of the predicate function.
8546 ----------------------------
8547 -- Replace_Type_Reference --
8548 ----------------------------
8550 procedure Replace_Type_Reference
(N
: Node_Id
) is
8552 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8553 -- Use the Sloc of the usage name, not the defining name
8556 Set_Entity
(N
, Object_Entity
);
8558 -- We want to treat the node as if it comes from source, so
8559 -- that ASIS will not ignore it.
8561 Set_Comes_From_Source
(N
, True);
8562 end Replace_Type_Reference
;
8566 Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
8570 -- Start of processing for Add_Predicate
8573 -- Mark corresponding SCO as enabled
8575 Set_SCO_Pragma_Enabled
(Sloc
(Prag
));
8577 -- Extract the arguments of the pragma. The expression itself
8578 -- is copied for use in the predicate function, to preserve the
8579 -- original version for ASIS use.
8581 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
8582 Arg2
:= Next
(Arg1
);
8584 Arg1
:= Get_Pragma_Arg
(Arg1
);
8585 Arg2
:= New_Copy_Tree
(Get_Pragma_Arg
(Arg2
));
8587 -- When the predicate pragma applies to the current type or its
8588 -- full view, replace all occurrences of the subtype name with
8589 -- references to the formal parameter of the predicate function.
8591 if Entity
(Arg1
) = Typ
8592 or else Full_View
(Entity
(Arg1
)) = Typ
8594 Replace_Type_References
(Arg2
, Typ
);
8596 -- If the predicate pragma comes from an aspect, replace the
8597 -- saved expression because we need the subtype references
8598 -- replaced for the calls to Preanalyze_Spec_Expression in
8599 -- Check_Aspect_At_xxx routines.
8601 if Present
(Asp
) then
8602 Set_Entity
(Identifier
(Asp
), New_Copy_Tree
(Arg2
));
8605 -- "and"-in the Arg2 condition to evolving expression
8607 Add_Condition
(Relocate_Node
(Arg2
));
8615 -- Start of processing for Add_Predicates
8618 Ritem
:= First_Rep_Item
(Typ
);
8620 -- If the type is private, check whether full view has inherited
8623 if Is_Private_Type
(Typ
) and then No
(Ritem
) then
8624 Ritem
:= First_Rep_Item
(Full_View
(Typ
));
8627 while Present
(Ritem
) loop
8628 if Nkind
(Ritem
) = N_Pragma
8629 and then Pragma_Name
(Ritem
) = Name_Predicate
8631 Add_Predicate
(Ritem
);
8633 -- If the type is declared in an inner package it may be frozen
8634 -- outside of the package, and the generated pragma has not been
8635 -- analyzed yet, so capture the expression for the predicate
8636 -- function at this point.
8638 elsif Nkind
(Ritem
) = N_Aspect_Specification
8639 and then Present
(Aspect_Rep_Item
(Ritem
))
8640 and then Scope
(Typ
) /= Current_Scope
8643 Prag
: constant Node_Id
:= Aspect_Rep_Item
(Ritem
);
8646 if Nkind
(Prag
) = N_Pragma
8647 and then Pragma_Name
(Prag
) = Name_Predicate
8649 Add_Predicate
(Prag
);
8654 Next_Rep_Item
(Ritem
);
8662 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8664 if Nkind
(N
) = N_Raise_Expression
then
8665 Set_Convert_To_Return_False
(N
);
8676 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8678 if Nkind
(N
) = N_Raise_Expression
then
8679 Raise_Expression_Present
:= True;
8688 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
8689 Saved_IGR
: constant Node_Id
:= Ignored_Ghost_Region
;
8690 -- Save the Ghost-related attributes to restore on exit
8692 -- Start of processing for Build_Predicate_Functions
8695 -- Return if already built or if type does not have predicates
8697 SId
:= Predicate_Function
(Typ
);
8698 if not Has_Predicates
(Typ
)
8699 or else (Present
(SId
) and then Has_Completion
(SId
))
8704 -- The related type may be subject to pragma Ghost. Set the mode now to
8705 -- ensure that the predicate functions are properly marked as Ghost.
8707 Set_Ghost_Mode
(Typ
);
8709 -- Prepare to construct predicate expression
8713 if Present
(SId
) then
8714 FDecl
:= Unit_Declaration_Node
(SId
);
8717 FDecl
:= Build_Predicate_Function_Declaration
(Typ
);
8718 SId
:= Defining_Entity
(FDecl
);
8721 -- Recover name of formal parameter of function that replaces references
8722 -- to the type in predicate expressions.
8726 (First
(Parameter_Specifications
(Specification
(FDecl
))));
8728 Object_Name
:= Chars
(Object_Entity
);
8729 Object_Entity_M
:= Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8731 -- Add predicates for ancestor if present. These must come before the
8732 -- ones for the current type, as required by AI12-0071-1.
8737 Atyp
:= Nearest_Ancestor
(Typ
);
8739 -- The type may be private but the full view may inherit predicates
8741 if No
(Atyp
) and then Is_Private_Type
(Typ
) then
8742 Atyp
:= Nearest_Ancestor
(Full_View
(Typ
));
8745 if Present
(Atyp
) then
8750 -- Add Predicates for the current type
8754 -- Case where predicates are present
8756 if Present
(Expr
) then
8758 -- Test for raise expression present
8762 -- If raise expression is present, capture a copy of Expr for use
8763 -- in building the predicateM function version later on. For this
8764 -- copy we replace references to Object_Entity by Object_Entity_M.
8766 if Raise_Expression_Present
then
8768 Map
: constant Elist_Id
:= New_Elmt_List
;
8769 New_V
: Entity_Id
:= Empty
;
8771 -- The unanalyzed expression will be copied and appear in
8772 -- both functions. Normally expressions do not declare new
8773 -- entities, but quantified expressions do, so we need to
8774 -- create new entities for their bound variables, to prevent
8775 -- multiple definitions in gigi.
8777 function Reset_Loop_Variable
(N
: Node_Id
)
8778 return Traverse_Result
;
8780 procedure Collect_Loop_Variables
is
8781 new Traverse_Proc
(Reset_Loop_Variable
);
8783 ------------------------
8784 -- Reset_Loop_Variable --
8785 ------------------------
8787 function Reset_Loop_Variable
(N
: Node_Id
)
8788 return Traverse_Result
8791 if Nkind
(N
) = N_Iterator_Specification
then
8792 New_V
:= Make_Defining_Identifier
8793 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8795 Set_Defining_Identifier
(N
, New_V
);
8799 end Reset_Loop_Variable
;
8802 Append_Elmt
(Object_Entity
, Map
);
8803 Append_Elmt
(Object_Entity_M
, Map
);
8804 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8805 Collect_Loop_Variables
(Expr_M
);
8809 -- Build the main predicate function
8812 SIdB
: constant Entity_Id
:=
8813 Make_Defining_Identifier
(Loc
,
8814 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8815 -- The entity for the function body
8821 Set_Ekind
(SIdB
, E_Function
);
8822 Set_Is_Predicate_Function
(SIdB
);
8824 -- The predicate function is shared between views of a type
8826 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8827 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8830 -- Build function body
8833 Make_Function_Specification
(Loc
,
8834 Defining_Unit_Name
=> SIdB
,
8835 Parameter_Specifications
=> New_List
(
8836 Make_Parameter_Specification
(Loc
,
8837 Defining_Identifier
=>
8838 Make_Defining_Identifier
(Loc
, Object_Name
),
8840 New_Occurrence_Of
(Typ
, Loc
))),
8841 Result_Definition
=>
8842 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8845 Make_Subprogram_Body
(Loc
,
8846 Specification
=> Spec
,
8847 Declarations
=> Empty_List
,
8848 Handled_Statement_Sequence
=>
8849 Make_Handled_Sequence_Of_Statements
(Loc
,
8850 Statements
=> New_List
(
8851 Make_Simple_Return_Statement
(Loc
,
8852 Expression
=> Expr
))));
8854 -- The declaration has been analyzed when created, and placed
8855 -- after type declaration. Insert body itself after freeze node.
8857 Insert_After_And_Analyze
(N
, FBody
);
8859 -- within a generic unit, prevent a double analysis of the body
8860 -- which will not be marked analyzed yet. This will happen when
8861 -- the freeze node is created during the preanalysis of an
8862 -- expression function.
8864 if Inside_A_Generic
then
8865 Set_Analyzed
(FBody
);
8868 -- Static predicate functions are always side-effect free, and
8869 -- in most cases dynamic predicate functions are as well. Mark
8870 -- them as such whenever possible, so redundant predicate checks
8871 -- can be optimized. If there is a variable reference within the
8872 -- expression, the function is not pure.
8874 if Expander_Active
then
8876 Side_Effect_Free
(Expr
, Variable_Ref
=> True));
8877 Set_Is_Inlined
(SId
);
8881 -- Test for raise expressions present and if so build M version
8883 if Raise_Expression_Present
then
8885 SId
: constant Entity_Id
:=
8886 Make_Defining_Identifier
(Loc
,
8887 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8888 -- The entity for the function spec
8890 SIdB
: constant Entity_Id
:=
8891 Make_Defining_Identifier
(Loc
,
8892 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8893 -- The entity for the function body
8901 -- Mark any raise expressions for special expansion
8903 Process_REs
(Expr_M
);
8905 -- Build function declaration
8907 Set_Ekind
(SId
, E_Function
);
8908 Set_Is_Predicate_Function_M
(SId
);
8909 Set_Predicate_Function_M
(Typ
, SId
);
8911 -- The predicate function is shared between views of a type
8913 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8914 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8918 Make_Function_Specification
(Loc
,
8919 Defining_Unit_Name
=> SId
,
8920 Parameter_Specifications
=> New_List
(
8921 Make_Parameter_Specification
(Loc
,
8922 Defining_Identifier
=> Object_Entity_M
,
8923 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8924 Result_Definition
=>
8925 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8928 Make_Subprogram_Declaration
(Loc
,
8929 Specification
=> Spec
);
8931 -- Build function body
8934 Make_Function_Specification
(Loc
,
8935 Defining_Unit_Name
=> SIdB
,
8936 Parameter_Specifications
=> New_List
(
8937 Make_Parameter_Specification
(Loc
,
8938 Defining_Identifier
=>
8939 Make_Defining_Identifier
(Loc
, Object_Name
),
8941 New_Occurrence_Of
(Typ
, Loc
))),
8942 Result_Definition
=>
8943 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8945 -- Build the body, we declare the boolean expression before
8946 -- doing the return, because we are not really confident of
8947 -- what happens if a return appears within a return.
8950 Make_Defining_Identifier
(Loc
,
8951 Chars
=> New_Internal_Name
('B'));
8954 Make_Subprogram_Body
(Loc
,
8955 Specification
=> Spec
,
8957 Declarations
=> New_List
(
8958 Make_Object_Declaration
(Loc
,
8959 Defining_Identifier
=> BTemp
,
8960 Constant_Present
=> True,
8961 Object_Definition
=>
8962 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8963 Expression
=> Expr_M
)),
8965 Handled_Statement_Sequence
=>
8966 Make_Handled_Sequence_Of_Statements
(Loc
,
8967 Statements
=> New_List
(
8968 Make_Simple_Return_Statement
(Loc
,
8969 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8971 -- Insert declaration before freeze node and body after
8973 Insert_Before_And_Analyze
(N
, FDecl
);
8974 Insert_After_And_Analyze
(N
, FBody
);
8978 -- See if we have a static predicate. Note that the answer may be
8979 -- yes even if we have an explicit Dynamic_Predicate present.
8986 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8989 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8992 -- Case where we have a predicate-static aspect
8996 -- We don't set Has_Static_Predicate_Aspect, since we can have
8997 -- any of the three cases (Predicate, Dynamic_Predicate, or
8998 -- Static_Predicate) generating a predicate with an expression
8999 -- that is predicate-static. We just indicate that we have a
9000 -- predicate that can be treated as static.
9002 Set_Has_Static_Predicate
(Typ
);
9004 -- For discrete subtype, build the static predicate list
9006 if Is_Discrete_Type
(Typ
) then
9007 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
9009 -- If we don't get a static predicate list, it means that we
9010 -- have a case where this is not possible, most typically in
9011 -- the case where we inherit a dynamic predicate. We do not
9012 -- consider this an error, we just leave the predicate as
9013 -- dynamic. But if we do succeed in building the list, then
9014 -- we mark the predicate as static.
9016 if No
(Static_Discrete_Predicate
(Typ
)) then
9017 Set_Has_Static_Predicate
(Typ
, False);
9020 -- For real or string subtype, save predicate expression
9022 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
9023 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
9026 -- Case of dynamic predicate (expression is not predicate-static)
9029 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9030 -- is only set if we have an explicit Dynamic_Predicate aspect
9031 -- given. Here we may simply have a Predicate aspect where the
9032 -- expression happens not to be predicate-static.
9034 -- Emit an error when the predicate is categorized as static
9035 -- but its expression is not predicate-static.
9037 -- First a little fiddling to get a nice location for the
9038 -- message. If the expression is of the form (A and then B),
9039 -- where A is an inherited predicate, then use the right
9040 -- operand for the Sloc. This avoids getting confused by a call
9041 -- to an inherited predicate with a less convenient source
9045 while Nkind
(EN
) = N_And_Then
9046 and then Nkind
(Left_Opnd
(EN
)) = N_Function_Call
9047 and then Is_Predicate_Function
9048 (Entity
(Name
(Left_Opnd
(EN
))))
9050 EN
:= Right_Opnd
(EN
);
9053 -- Now post appropriate message
9055 if Has_Static_Predicate_Aspect
(Typ
) then
9056 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
9058 ("expression is not predicate-static (RM 3.2.4(16-22))",
9062 ("static predicate requires scalar or string type", EN
);
9069 Restore_Ghost_Region
(Saved_GM
, Saved_IGR
);
9070 end Build_Predicate_Functions
;
9072 ------------------------------------------
9073 -- Build_Predicate_Function_Declaration --
9074 ------------------------------------------
9076 -- WARNING: This routine manages Ghost regions. Return statements must be
9077 -- replaced by gotos which jump to the end of the routine and restore the
9080 function Build_Predicate_Function_Declaration
9081 (Typ
: Entity_Id
) return Node_Id
9083 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
9085 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9086 Saved_IGR
: constant Node_Id
:= Ignored_Ghost_Region
;
9087 -- Save the Ghost-related attributes to restore on exit
9089 Func_Decl
: Node_Id
;
9090 Func_Id
: Entity_Id
;
9094 -- The related type may be subject to pragma Ghost. Set the mode now to
9095 -- ensure that the predicate functions are properly marked as Ghost.
9097 Set_Ghost_Mode
(Typ
);
9100 Make_Defining_Identifier
(Loc
,
9101 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
9103 -- The predicate function requires debug info when the predicates are
9104 -- subject to Source Coverage Obligations.
9106 if Opt
.Generate_SCO
then
9107 Set_Debug_Info_Needed
(Func_Id
);
9111 Make_Function_Specification
(Loc
,
9112 Defining_Unit_Name
=> Func_Id
,
9113 Parameter_Specifications
=> New_List
(
9114 Make_Parameter_Specification
(Loc
,
9115 Defining_Identifier
=> Make_Temporary
(Loc
, 'I'),
9116 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9117 Result_Definition
=>
9118 New_Occurrence_Of
(Standard_Boolean
, Loc
));
9120 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
9122 Set_Ekind
(Func_Id
, E_Function
);
9123 Set_Etype
(Func_Id
, Standard_Boolean
);
9124 Set_Is_Internal
(Func_Id
);
9125 Set_Is_Predicate_Function
(Func_Id
);
9126 Set_Predicate_Function
(Typ
, Func_Id
);
9128 Insert_After
(Parent
(Typ
), Func_Decl
);
9129 Analyze
(Func_Decl
);
9131 Restore_Ghost_Region
(Saved_GM
, Saved_IGR
);
9134 end Build_Predicate_Function_Declaration
;
9136 -----------------------------------------
9137 -- Check_Aspect_At_End_Of_Declarations --
9138 -----------------------------------------
9140 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
9141 Ent
: constant Entity_Id
:= Entity
(ASN
);
9142 Ident
: constant Node_Id
:= Identifier
(ASN
);
9143 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9145 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
9146 -- Expression to be analyzed at end of declarations
9148 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
9149 -- Expression from call to Check_Aspect_At_Freeze_Point.
9151 T
: constant Entity_Id
:= Etype
(Original_Node
(Freeze_Expr
));
9152 -- Type required for preanalyze call. We use the original expression to
9153 -- get the proper type, to prevent cascaded errors when the expression
9154 -- is constant-folded.
9157 -- Set False if error
9159 -- On entry to this procedure, Entity (Ident) contains a copy of the
9160 -- original expression from the aspect, saved for this purpose, and
9161 -- but Expression (Ident) is a preanalyzed copy of the expression,
9162 -- preanalyzed just after the freeze point.
9164 procedure Check_Overloaded_Name
;
9165 -- For aspects whose expression is simply a name, this routine checks if
9166 -- the name is overloaded or not. If so, it verifies there is an
9167 -- interpretation that matches the entity obtained at the freeze point,
9168 -- otherwise the compiler complains.
9170 ---------------------------
9171 -- Check_Overloaded_Name --
9172 ---------------------------
9174 procedure Check_Overloaded_Name
is
9176 if not Is_Overloaded
(End_Decl_Expr
) then
9177 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
9178 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
9184 Index
: Interp_Index
;
9188 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
9189 while Present
(It
.Typ
) loop
9190 if It
.Nam
= Entity
(Freeze_Expr
) then
9195 Get_Next_Interp
(Index
, It
);
9199 end Check_Overloaded_Name
;
9201 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9204 -- In an instance we do not perform the consistency check between freeze
9205 -- point and end of declarations, because it was done already in the
9206 -- analysis of the generic. Furthermore, the delayed analysis of an
9207 -- aspect of the instance may produce spurious errors when the generic
9208 -- is a child unit that references entities in the parent (which might
9209 -- not be in scope at the freeze point of the instance).
9214 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9215 -- task body is rewritten as a procedure) after this conformance check
9216 -- has been performed, so do not perform it again (it may not easily be
9217 -- done if full visibility of local entities is not available).
9219 elsif not Comes_From_Source
(Current_Scope
) then
9222 -- Case of aspects Dimension, Dimension_System and Synchronization
9224 elsif A_Id
= Aspect_Synchronization
then
9227 -- Case of stream attributes, just have to compare entities. However,
9228 -- the expression is just a name (possibly overloaded), and there may
9229 -- be stream operations declared for unrelated types, so we just need
9230 -- to verify that one of these interpretations is the one available at
9231 -- at the freeze point.
9233 elsif A_Id
= Aspect_Input
or else
9234 A_Id
= Aspect_Output
or else
9235 A_Id
= Aspect_Read
or else
9238 Analyze
(End_Decl_Expr
);
9239 Check_Overloaded_Name
;
9241 elsif A_Id
= Aspect_Variable_Indexing
or else
9242 A_Id
= Aspect_Constant_Indexing
or else
9243 A_Id
= Aspect_Default_Iterator
or else
9244 A_Id
= Aspect_Iterator_Element
9246 -- Make type unfrozen before analysis, to prevent spurious errors
9247 -- about late attributes.
9249 Set_Is_Frozen
(Ent
, False);
9250 Analyze
(End_Decl_Expr
);
9251 Set_Is_Frozen
(Ent
, True);
9253 -- If the end of declarations comes before any other freeze
9254 -- point, the Freeze_Expr is not analyzed: no check needed.
9256 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
9257 Check_Overloaded_Name
;
9265 -- Indicate that the expression comes from an aspect specification,
9266 -- which is used in subsequent analysis even if expansion is off.
9268 Set_Parent
(End_Decl_Expr
, ASN
);
9270 -- In a generic context the aspect expressions have not been
9271 -- preanalyzed, so do it now. There are no conformance checks
9272 -- to perform in this case.
9275 Check_Aspect_At_Freeze_Point
(ASN
);
9278 -- The default values attributes may be defined in the private part,
9279 -- and the analysis of the expression may take place when only the
9280 -- partial view is visible. The expression must be scalar, so use
9281 -- the full view to resolve.
9283 elsif (A_Id
= Aspect_Default_Value
9285 A_Id
= Aspect_Default_Component_Value
)
9286 and then Is_Private_Type
(T
)
9288 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
9291 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
9294 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
9297 -- Output error message if error. Force error on aspect specification
9298 -- even if there is an error on the expression itself.
9302 ("!visibility of aspect for& changes after freeze point",
9305 ("info: & is frozen here, aspects evaluated at this point??",
9306 Freeze_Node
(Ent
), Ent
);
9308 end Check_Aspect_At_End_Of_Declarations
;
9310 ----------------------------------
9311 -- Check_Aspect_At_Freeze_Point --
9312 ----------------------------------
9314 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
9315 Ident
: constant Node_Id
:= Identifier
(ASN
);
9316 -- Identifier (use Entity field to save expression)
9318 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9320 T
: Entity_Id
:= Empty
;
9321 -- Type required for preanalyze call
9324 -- On entry to this procedure, Entity (Ident) contains a copy of the
9325 -- original expression from the aspect, saved for this purpose.
9327 -- On exit from this procedure Entity (Ident) is unchanged, still
9328 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9329 -- of the expression, preanalyzed just after the freeze point.
9331 -- Make a copy of the expression to be preanalyzed
9333 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
9335 -- Find type for preanalyze call
9339 -- No_Aspect should be impossible
9342 raise Program_Error
;
9344 -- Aspects taking an optional boolean argument
9346 when Boolean_Aspects
9347 | Library_Unit_Aspects
9349 T
:= Standard_Boolean
;
9351 -- Aspects corresponding to attribute definition clauses
9353 when Aspect_Address
=>
9354 T
:= RTE
(RE_Address
);
9356 when Aspect_Attach_Handler
=>
9357 T
:= RTE
(RE_Interrupt_ID
);
9359 when Aspect_Bit_Order
9360 | Aspect_Scalar_Storage_Order
9362 T
:= RTE
(RE_Bit_Order
);
9364 when Aspect_Convention
=>
9368 T
:= RTE
(RE_CPU_Range
);
9370 -- Default_Component_Value is resolved with the component type
9372 when Aspect_Default_Component_Value
=>
9373 T
:= Component_Type
(Entity
(ASN
));
9375 when Aspect_Default_Storage_Pool
=>
9376 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9378 -- Default_Value is resolved with the type entity in question
9380 when Aspect_Default_Value
=>
9383 when Aspect_Dispatching_Domain
=>
9384 T
:= RTE
(RE_Dispatching_Domain
);
9386 when Aspect_External_Tag
=>
9387 T
:= Standard_String
;
9389 when Aspect_External_Name
=>
9390 T
:= Standard_String
;
9392 when Aspect_Link_Name
=>
9393 T
:= Standard_String
;
9395 when Aspect_Interrupt_Priority
9398 T
:= Standard_Integer
;
9400 when Aspect_Relative_Deadline
=>
9401 T
:= RTE
(RE_Time_Span
);
9403 when Aspect_Secondary_Stack_Size
=>
9404 T
:= Standard_Integer
;
9406 when Aspect_Small
=>
9408 -- Note that the expression can be of any real type (not just a
9409 -- real universal literal) as long as it is a static constant.
9413 -- For a simple storage pool, we have to retrieve the type of the
9414 -- pool object associated with the aspect's corresponding attribute
9415 -- definition clause.
9417 when Aspect_Simple_Storage_Pool
=>
9418 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
9420 when Aspect_Storage_Pool
=>
9421 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9423 when Aspect_Alignment
9424 | Aspect_Component_Size
9425 | Aspect_Machine_Radix
9426 | Aspect_Object_Size
9428 | Aspect_Storage_Size
9429 | Aspect_Stream_Size
9434 when Aspect_Linker_Section
=>
9435 T
:= Standard_String
;
9437 when Aspect_Synchronization
=>
9440 -- Special case, the expression of these aspects is just an entity
9441 -- that does not need any resolution, so just analyze.
9451 Analyze
(Expression
(ASN
));
9454 -- Same for Iterator aspects, where the expression is a function
9455 -- name. Legality rules are checked separately.
9457 when Aspect_Constant_Indexing
9458 | Aspect_Default_Iterator
9459 | Aspect_Iterator_Element
9460 | Aspect_Variable_Indexing
9462 Analyze
(Expression
(ASN
));
9465 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9467 when Aspect_Iterable
=>
9471 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
9476 if Cursor
= Any_Type
then
9480 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
9481 while Present
(Assoc
) loop
9482 Expr
:= Expression
(Assoc
);
9485 if not Error_Posted
(Expr
) then
9486 Resolve_Iterable_Operation
9487 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
9496 -- Invariant/Predicate take boolean expressions
9498 when Aspect_Dynamic_Predicate
9501 | Aspect_Static_Predicate
9502 | Aspect_Type_Invariant
9504 T
:= Standard_Boolean
;
9506 when Aspect_Predicate_Failure
=>
9507 T
:= Standard_String
;
9509 -- Here is the list of aspects that don't require delay analysis
9511 when Aspect_Abstract_State
9513 | Aspect_Async_Readers
9514 | Aspect_Async_Writers
9515 | Aspect_Constant_After_Elaboration
9516 | Aspect_Contract_Cases
9517 | Aspect_Default_Initial_Condition
9520 | Aspect_Dimension_System
9521 | Aspect_Effective_Reads
9522 | Aspect_Effective_Writes
9523 | Aspect_Extensions_Visible
9526 | Aspect_Implicit_Dereference
9527 | Aspect_Initial_Condition
9528 | Aspect_Initializes
9529 | Aspect_Max_Entry_Queue_Depth
9530 | Aspect_Max_Queue_Length
9531 | Aspect_Obsolescent
9534 | Aspect_Postcondition
9536 | Aspect_Precondition
9537 | Aspect_Refined_Depends
9538 | Aspect_Refined_Global
9539 | Aspect_Refined_Post
9540 | Aspect_Refined_State
9543 | Aspect_Unimplemented
9544 | Aspect_Volatile_Function
9546 raise Program_Error
;
9550 -- Do the preanalyze call
9552 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
9553 end Check_Aspect_At_Freeze_Point
;
9555 -----------------------------------
9556 -- Check_Constant_Address_Clause --
9557 -----------------------------------
9559 procedure Check_Constant_Address_Clause
9563 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9564 -- Checks that the given node N represents a name whose 'Address is
9565 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9566 -- address value is the same at the point of declaration of U_Ent and at
9567 -- the time of elaboration of the address clause.
9569 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9570 -- Checks that Nod meets the requirements for a constant address clause
9571 -- in the sense of the enclosing procedure.
9573 procedure Check_List_Constants
(Lst
: List_Id
);
9574 -- Check that all elements of list Lst meet the requirements for a
9575 -- constant address clause in the sense of the enclosing procedure.
9577 -------------------------------
9578 -- Check_At_Constant_Address --
9579 -------------------------------
9581 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9583 if Is_Entity_Name
(Nod
) then
9584 if Present
(Address_Clause
(Entity
((Nod
)))) then
9586 ("invalid address clause for initialized object &!",
9589 ("address for& cannot depend on another address clause! "
9590 & "(RM 13.1(22))!", Nod
, U_Ent
);
9592 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9593 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9596 ("invalid address clause for initialized object &!",
9598 Error_Msg_Node_2
:= U_Ent
;
9600 ("\& must be defined before & (RM 13.1(22))!",
9604 elsif Nkind
(Nod
) = N_Selected_Component
then
9606 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9609 if (Is_Record_Type
(T
)
9610 and then Has_Discriminants
(T
))
9613 and then Is_Record_Type
(Designated_Type
(T
))
9614 and then Has_Discriminants
(Designated_Type
(T
)))
9617 ("invalid address clause for initialized object &!",
9620 ("\address cannot depend on component of discriminated "
9621 & "record (RM 13.1(22))!", Nod
);
9623 Check_At_Constant_Address
(Prefix
(Nod
));
9627 elsif Nkind
(Nod
) = N_Indexed_Component
then
9628 Check_At_Constant_Address
(Prefix
(Nod
));
9629 Check_List_Constants
(Expressions
(Nod
));
9632 Check_Expr_Constants
(Nod
);
9634 end Check_At_Constant_Address
;
9636 --------------------------
9637 -- Check_Expr_Constants --
9638 --------------------------
9640 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9641 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9642 Ent
: Entity_Id
:= Empty
;
9645 if Nkind
(Nod
) in N_Has_Etype
9646 and then Etype
(Nod
) = Any_Type
9657 when N_Expanded_Name
9660 Ent
:= Entity
(Nod
);
9662 -- We need to look at the original node if it is different
9663 -- from the node, since we may have rewritten things and
9664 -- substituted an identifier representing the rewrite.
9666 if Is_Rewrite_Substitution
(Nod
) then
9667 Check_Expr_Constants
(Original_Node
(Nod
));
9669 -- If the node is an object declaration without initial
9670 -- value, some code has been expanded, and the expression
9671 -- is not constant, even if the constituents might be
9672 -- acceptable, as in A'Address + offset.
9674 if Ekind
(Ent
) = E_Variable
9676 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9678 No
(Expression
(Declaration_Node
(Ent
)))
9681 ("invalid address clause for initialized object &!",
9684 -- If entity is constant, it may be the result of expanding
9685 -- a check. We must verify that its declaration appears
9686 -- before the object in question, else we also reject the
9689 elsif Ekind
(Ent
) = E_Constant
9690 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9691 and then Sloc
(Ent
) > Loc_U_Ent
9694 ("invalid address clause for initialized object &!",
9701 -- Otherwise look at the identifier and see if it is OK
9703 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9704 or else Is_Type
(Ent
)
9708 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9710 -- This is the case where we must have Ent defined before
9711 -- U_Ent. Clearly if they are in different units this
9712 -- requirement is met since the unit containing Ent is
9713 -- already processed.
9715 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9718 -- Otherwise location of Ent must be before the location
9719 -- of U_Ent, that's what prior defined means.
9721 elsif Sloc
(Ent
) < Loc_U_Ent
then
9726 ("invalid address clause for initialized object &!",
9728 Error_Msg_Node_2
:= U_Ent
;
9730 ("\& must be defined before & (RM 13.1(22))!",
9734 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9735 Check_Expr_Constants
(Original_Node
(Nod
));
9739 ("invalid address clause for initialized object &!",
9742 if Comes_From_Source
(Ent
) then
9744 ("\reference to variable& not allowed"
9745 & " (RM 13.1(22))!", Nod
, Ent
);
9748 ("non-static expression not allowed"
9749 & " (RM 13.1(22))!", Nod
);
9753 when N_Integer_Literal
=>
9755 -- If this is a rewritten unchecked conversion, in a system
9756 -- where Address is an integer type, always use the base type
9757 -- for a literal value. This is user-friendly and prevents
9758 -- order-of-elaboration issues with instances of unchecked
9761 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9762 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9765 when N_Character_Literal
9772 Check_Expr_Constants
(Low_Bound
(Nod
));
9773 Check_Expr_Constants
(High_Bound
(Nod
));
9775 when N_Explicit_Dereference
=>
9776 Check_Expr_Constants
(Prefix
(Nod
));
9778 when N_Indexed_Component
=>
9779 Check_Expr_Constants
(Prefix
(Nod
));
9780 Check_List_Constants
(Expressions
(Nod
));
9783 Check_Expr_Constants
(Prefix
(Nod
));
9784 Check_Expr_Constants
(Discrete_Range
(Nod
));
9786 when N_Selected_Component
=>
9787 Check_Expr_Constants
(Prefix
(Nod
));
9789 when N_Attribute_Reference
=>
9790 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9792 Name_Unchecked_Access
,
9793 Name_Unrestricted_Access
)
9795 Check_At_Constant_Address
(Prefix
(Nod
));
9797 -- Normally, System'To_Address will have been transformed into
9798 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9799 -- and we don't want to give an error, because the whole point
9800 -- of 'To_Address is that it is static.
9802 elsif Attribute_Name
(Nod
) = Name_To_Address
then
9803 pragma Assert
(Operating_Mode
= Check_Semantics
);
9807 Check_Expr_Constants
(Prefix
(Nod
));
9808 Check_List_Constants
(Expressions
(Nod
));
9812 Check_List_Constants
(Component_Associations
(Nod
));
9813 Check_List_Constants
(Expressions
(Nod
));
9815 when N_Component_Association
=>
9816 Check_Expr_Constants
(Expression
(Nod
));
9818 when N_Extension_Aggregate
=>
9819 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9820 Check_List_Constants
(Component_Associations
(Nod
));
9821 Check_List_Constants
(Expressions
(Nod
));
9830 Check_Expr_Constants
(Left_Opnd
(Nod
));
9831 Check_Expr_Constants
(Right_Opnd
(Nod
));
9834 Check_Expr_Constants
(Right_Opnd
(Nod
));
9837 | N_Qualified_Expression
9839 | N_Unchecked_Type_Conversion
9841 Check_Expr_Constants
(Expression
(Nod
));
9843 when N_Function_Call
=>
9844 if not Is_Pure
(Entity
(Name
(Nod
))) then
9846 ("invalid address clause for initialized object &!",
9850 ("\function & is not pure (RM 13.1(22))!",
9851 Nod
, Entity
(Name
(Nod
)));
9854 Check_List_Constants
(Parameter_Associations
(Nod
));
9857 when N_Parameter_Association
=>
9858 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9862 ("invalid address clause for initialized object &!",
9865 ("\must be constant defined before& (RM 13.1(22))!",
9868 end Check_Expr_Constants
;
9870 --------------------------
9871 -- Check_List_Constants --
9872 --------------------------
9874 procedure Check_List_Constants
(Lst
: List_Id
) is
9878 if Present
(Lst
) then
9879 Nod1
:= First
(Lst
);
9880 while Present
(Nod1
) loop
9881 Check_Expr_Constants
(Nod1
);
9885 end Check_List_Constants
;
9887 -- Start of processing for Check_Constant_Address_Clause
9890 -- If rep_clauses are to be ignored, no need for legality checks. In
9891 -- particular, no need to pester user about rep clauses that violate the
9892 -- rule on constant addresses, given that these clauses will be removed
9893 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9894 -- we want to relax these checks.
9896 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9897 Check_Expr_Constants
(Expr
);
9899 end Check_Constant_Address_Clause
;
9901 ---------------------------
9902 -- Check_Pool_Size_Clash --
9903 ---------------------------
9905 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9909 -- We need to find out which one came first. Note that in the case of
9910 -- aspects mixed with pragmas there are cases where the processing order
9911 -- is reversed, which is why we do the check here.
9913 if Sloc
(SP
) < Sloc
(SS
) then
9914 Error_Msg_Sloc
:= Sloc
(SP
);
9916 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9919 Error_Msg_Sloc
:= Sloc
(SS
);
9921 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9925 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9926 end Check_Pool_Size_Clash
;
9928 ----------------------------------------
9929 -- Check_Record_Representation_Clause --
9930 ----------------------------------------
9932 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9933 Loc
: constant Source_Ptr
:= Sloc
(N
);
9934 Ident
: constant Node_Id
:= Identifier
(N
);
9935 Rectype
: Entity_Id
;
9940 Hbit
: Uint
:= Uint_0
;
9944 Max_Bit_So_Far
: Uint
;
9945 -- Records the maximum bit position so far. If all field positions
9946 -- are monotonically increasing, then we can skip the circuit for
9947 -- checking for overlap, since no overlap is possible.
9949 Tagged_Parent
: Entity_Id
:= Empty
;
9950 -- This is set in the case of an extension for which we have either a
9951 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9952 -- components are positioned by record representation clauses) on the
9953 -- parent type. In this case we check for overlap between components of
9954 -- this tagged type and the parent component. Tagged_Parent will point
9955 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9957 Parent_Last_Bit
: Uint
:= No_Uint
; -- init to avoid warning
9958 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9959 -- last bit position for any field in the parent type. We only need to
9960 -- check overlap for fields starting below this point.
9962 Overlap_Check_Required
: Boolean;
9963 -- Used to keep track of whether or not an overlap check is required
9965 Overlap_Detected
: Boolean := False;
9966 -- Set True if an overlap is detected
9968 Ccount
: Natural := 0;
9969 -- Number of component clauses in record rep clause
9971 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9972 -- Given two entities for record components or discriminants, checks
9973 -- if they have overlapping component clauses and issues errors if so.
9975 procedure Find_Component
;
9976 -- Finds component entity corresponding to current component clause (in
9977 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9978 -- start/stop bits for the field. If there is no matching component or
9979 -- if the matching component does not have a component clause, then
9980 -- that's an error and Comp is set to Empty, but no error message is
9981 -- issued, since the message was already given. Comp is also set to
9982 -- Empty if the current "component clause" is in fact a pragma.
9984 -----------------------------
9985 -- Check_Component_Overlap --
9986 -----------------------------
9988 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9989 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9990 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9993 if Present
(CC1
) and then Present
(CC2
) then
9995 -- Exclude odd case where we have two tag components in the same
9996 -- record, both at location zero. This seems a bit strange, but
9997 -- it seems to happen in some circumstances, perhaps on an error.
9999 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
10003 -- Here we check if the two fields overlap
10006 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
10007 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
10008 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
10009 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
10012 if E2
<= S1
or else E1
<= S2
then
10015 Error_Msg_Node_2
:= Component_Name
(CC2
);
10016 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
10017 Error_Msg_Node_1
:= Component_Name
(CC1
);
10019 ("component& overlaps & #", Component_Name
(CC1
));
10020 Overlap_Detected
:= True;
10024 end Check_Component_Overlap
;
10026 --------------------
10027 -- Find_Component --
10028 --------------------
10030 procedure Find_Component
is
10032 procedure Search_Component
(R
: Entity_Id
);
10033 -- Search components of R for a match. If found, Comp is set
10035 ----------------------
10036 -- Search_Component --
10037 ----------------------
10039 procedure Search_Component
(R
: Entity_Id
) is
10041 Comp
:= First_Component_Or_Discriminant
(R
);
10042 while Present
(Comp
) loop
10044 -- Ignore error of attribute name for component name (we
10045 -- already gave an error message for this, so no need to
10048 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
10051 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
10054 Next_Component_Or_Discriminant
(Comp
);
10056 end Search_Component
;
10058 -- Start of processing for Find_Component
10061 -- Return with Comp set to Empty if we have a pragma
10063 if Nkind
(CC
) = N_Pragma
then
10068 -- Search current record for matching component
10070 Search_Component
(Rectype
);
10072 -- If not found, maybe component of base type discriminant that is
10073 -- absent from statically constrained first subtype.
10076 Search_Component
(Base_Type
(Rectype
));
10079 -- If no component, or the component does not reference the component
10080 -- clause in question, then there was some previous error for which
10081 -- we already gave a message, so just return with Comp Empty.
10083 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
10084 Check_Error_Detected
;
10087 -- Normal case where we have a component clause
10090 Fbit
:= Component_Bit_Offset
(Comp
);
10091 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
10093 end Find_Component
;
10095 -- Start of processing for Check_Record_Representation_Clause
10099 Rectype
:= Entity
(Ident
);
10101 if Rectype
= Any_Type
then
10105 Rectype
:= Underlying_Type
(Rectype
);
10107 -- See if we have a fully repped derived tagged type
10110 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
10113 if Present
(PS
) and then Known_Static_RM_Size
(PS
) then
10114 Tagged_Parent
:= PS
;
10115 Parent_Last_Bit
:= RM_Size
(PS
) - 1;
10117 elsif Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
10118 Tagged_Parent
:= PS
;
10120 -- Find maximum bit of any component of the parent type
10122 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
10123 Pcomp
:= First_Entity
(Tagged_Parent
);
10124 while Present
(Pcomp
) loop
10125 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
10126 if Component_Bit_Offset
(Pcomp
) /= No_Uint
10127 and then Known_Static_Esize
(Pcomp
)
10132 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
10136 -- Skip anonymous types generated for constrained array
10137 -- or record components.
10142 Next_Entity
(Pcomp
);
10147 -- All done if no component clauses
10149 CC
:= First
(Component_Clauses
(N
));
10155 -- If a tag is present, then create a component clause that places it
10156 -- at the start of the record (otherwise gigi may place it after other
10157 -- fields that have rep clauses).
10159 Fent
:= First_Entity
(Rectype
);
10161 if Nkind
(Fent
) = N_Defining_Identifier
10162 and then Chars
(Fent
) = Name_uTag
10164 Set_Component_Bit_Offset
(Fent
, Uint_0
);
10165 Set_Normalized_Position
(Fent
, Uint_0
);
10166 Set_Normalized_First_Bit
(Fent
, Uint_0
);
10167 Set_Normalized_Position_Max
(Fent
, Uint_0
);
10168 Init_Esize
(Fent
, System_Address_Size
);
10170 Set_Component_Clause
(Fent
,
10171 Make_Component_Clause
(Loc
,
10172 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
10174 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
10175 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
10177 Make_Integer_Literal
(Loc
,
10178 UI_From_Int
(System_Address_Size
))));
10180 Ccount
:= Ccount
+ 1;
10183 Max_Bit_So_Far
:= Uint_Minus_1
;
10184 Overlap_Check_Required
:= False;
10186 -- Process the component clauses
10188 while Present
(CC
) loop
10191 if Present
(Comp
) then
10192 Ccount
:= Ccount
+ 1;
10194 -- We need a full overlap check if record positions non-monotonic
10196 if Fbit
<= Max_Bit_So_Far
then
10197 Overlap_Check_Required
:= True;
10200 Max_Bit_So_Far
:= Lbit
;
10202 -- Check bit position out of range of specified size
10204 if Has_Size_Clause
(Rectype
)
10205 and then RM_Size
(Rectype
) <= Lbit
10208 ("bit number out of range of specified size",
10211 -- Check for overlap with tag or parent component
10214 if Is_Tagged_Type
(Rectype
)
10215 and then Fbit
< System_Address_Size
10218 ("component overlaps tag field of&",
10219 Component_Name
(CC
), Rectype
);
10220 Overlap_Detected
:= True;
10222 elsif Present
(Tagged_Parent
)
10223 and then Fbit
<= Parent_Last_Bit
10226 ("component overlaps parent field of&",
10227 Component_Name
(CC
), Rectype
);
10228 Overlap_Detected
:= True;
10231 if Hbit
< Lbit
then
10240 -- Now that we have processed all the component clauses, check for
10241 -- overlap. We have to leave this till last, since the components can
10242 -- appear in any arbitrary order in the representation clause.
10244 -- We do not need this check if all specified ranges were monotonic,
10245 -- as recorded by Overlap_Check_Required being False at this stage.
10247 -- This first section checks if there are any overlapping entries at
10248 -- all. It does this by sorting all entries and then seeing if there are
10249 -- any overlaps. If there are none, then that is decisive, but if there
10250 -- are overlaps, they may still be OK (they may result from fields in
10251 -- different variants).
10253 if Overlap_Check_Required
then
10254 Overlap_Check1
: declare
10256 OC_Fbit
: array (0 .. Ccount
) of Uint
;
10257 -- First-bit values for component clauses, the value is the offset
10258 -- of the first bit of the field from start of record. The zero
10259 -- entry is for use in sorting.
10261 OC_Lbit
: array (0 .. Ccount
) of Uint
;
10262 -- Last-bit values for component clauses, the value is the offset
10263 -- of the last bit of the field from start of record. The zero
10264 -- entry is for use in sorting.
10266 OC_Count
: Natural := 0;
10267 -- Count of entries in OC_Fbit and OC_Lbit
10269 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
10270 -- Compare routine for Sort
10272 procedure OC_Move
(From
: Natural; To
: Natural);
10273 -- Move routine for Sort
10275 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
10281 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
10283 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
10290 procedure OC_Move
(From
: Natural; To
: Natural) is
10292 OC_Fbit
(To
) := OC_Fbit
(From
);
10293 OC_Lbit
(To
) := OC_Lbit
(From
);
10296 -- Start of processing for Overlap_Check
10299 CC
:= First
(Component_Clauses
(N
));
10300 while Present
(CC
) loop
10302 -- Exclude component clause already marked in error
10304 if not Error_Posted
(CC
) then
10307 if Present
(Comp
) then
10308 OC_Count
:= OC_Count
+ 1;
10309 OC_Fbit
(OC_Count
) := Fbit
;
10310 OC_Lbit
(OC_Count
) := Lbit
;
10317 Sorting
.Sort
(OC_Count
);
10319 Overlap_Check_Required
:= False;
10320 for J
in 1 .. OC_Count
- 1 loop
10321 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
10322 Overlap_Check_Required
:= True;
10326 end Overlap_Check1
;
10329 -- If Overlap_Check_Required is still True, then we have to do the full
10330 -- scale overlap check, since we have at least two fields that do
10331 -- overlap, and we need to know if that is OK since they are in
10332 -- different variant, or whether we have a definite problem.
10334 if Overlap_Check_Required
then
10335 Overlap_Check2
: declare
10336 C1_Ent
, C2_Ent
: Entity_Id
;
10337 -- Entities of components being checked for overlap
10340 -- Component_List node whose Component_Items are being checked
10343 -- Component declaration for component being checked
10346 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
10348 -- Loop through all components in record. For each component check
10349 -- for overlap with any of the preceding elements on the component
10350 -- list containing the component and also, if the component is in
10351 -- a variant, check against components outside the case structure.
10352 -- This latter test is repeated recursively up the variant tree.
10354 Main_Component_Loop
: while Present
(C1_Ent
) loop
10355 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
10356 goto Continue_Main_Component_Loop
;
10359 -- Skip overlap check if entity has no declaration node. This
10360 -- happens with discriminants in constrained derived types.
10361 -- Possibly we are missing some checks as a result, but that
10362 -- does not seem terribly serious.
10364 if No
(Declaration_Node
(C1_Ent
)) then
10365 goto Continue_Main_Component_Loop
;
10368 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
10370 -- Loop through component lists that need checking. Check the
10371 -- current component list and all lists in variants above us.
10373 Component_List_Loop
: loop
10375 -- If derived type definition, go to full declaration
10376 -- If at outer level, check discriminants if there are any.
10378 if Nkind
(Clist
) = N_Derived_Type_Definition
then
10379 Clist
:= Parent
(Clist
);
10382 -- Outer level of record definition, check discriminants
10384 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
10385 N_Private_Type_Declaration
)
10387 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
10389 First_Discriminant
(Defining_Identifier
(Clist
));
10390 while Present
(C2_Ent
) loop
10391 exit when C1_Ent
= C2_Ent
;
10392 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10393 Next_Discriminant
(C2_Ent
);
10397 -- Record extension case
10399 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
10402 -- Otherwise check one component list
10405 Citem
:= First
(Component_Items
(Clist
));
10406 while Present
(Citem
) loop
10407 if Nkind
(Citem
) = N_Component_Declaration
then
10408 C2_Ent
:= Defining_Identifier
(Citem
);
10409 exit when C1_Ent
= C2_Ent
;
10410 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10417 -- Check for variants above us (the parent of the Clist can
10418 -- be a variant, in which case its parent is a variant part,
10419 -- and the parent of the variant part is a component list
10420 -- whose components must all be checked against the current
10421 -- component for overlap).
10423 if Nkind
(Parent
(Clist
)) = N_Variant
then
10424 Clist
:= Parent
(Parent
(Parent
(Clist
)));
10426 -- Check for possible discriminant part in record, this
10427 -- is treated essentially as another level in the
10428 -- recursion. For this case the parent of the component
10429 -- list is the record definition, and its parent is the
10430 -- full type declaration containing the discriminant
10433 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
10434 Clist
:= Parent
(Parent
((Clist
)));
10436 -- If neither of these two cases, we are at the top of
10440 exit Component_List_Loop
;
10442 end loop Component_List_Loop
;
10444 <<Continue_Main_Component_Loop
>>
10445 Next_Entity
(C1_Ent
);
10447 end loop Main_Component_Loop
;
10448 end Overlap_Check2
;
10451 -- The following circuit deals with warning on record holes (gaps). We
10452 -- skip this check if overlap was detected, since it makes sense for the
10453 -- programmer to fix this illegality before worrying about warnings.
10455 if not Overlap_Detected
and Warn_On_Record_Holes
then
10456 Record_Hole_Check
: declare
10457 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
10458 -- Full declaration of record type
10460 procedure Check_Component_List
10464 -- Check component list CL for holes. The starting bit should be
10465 -- Sbit. which is zero for the main record component list and set
10466 -- appropriately for recursive calls for variants. DS is set to
10467 -- a list of discriminant specifications to be included in the
10468 -- consideration of components. It is No_List if none to consider.
10470 --------------------------
10471 -- Check_Component_List --
10472 --------------------------
10474 procedure Check_Component_List
10482 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
10484 if DS
/= No_List
then
10485 Compl
:= Compl
+ Integer (List_Length
(DS
));
10489 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
10490 -- Gather components (zero entry is for sort routine)
10492 Ncomps
: Natural := 0;
10493 -- Number of entries stored in Comps (starting at Comps (1))
10496 -- One component item or discriminant specification
10499 -- Starting bit for next component
10502 -- Component entity
10507 function Lt
(Op1
, Op2
: Natural) return Boolean;
10508 -- Compare routine for Sort
10510 procedure Move
(From
: Natural; To
: Natural);
10511 -- Move routine for Sort
10513 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
10519 function Lt
(Op1
, Op2
: Natural) return Boolean is
10521 return Component_Bit_Offset
(Comps
(Op1
))
10523 Component_Bit_Offset
(Comps
(Op2
));
10530 procedure Move
(From
: Natural; To
: Natural) is
10532 Comps
(To
) := Comps
(From
);
10536 -- Gather discriminants into Comp
10538 if DS
/= No_List
then
10539 Citem
:= First
(DS
);
10540 while Present
(Citem
) loop
10541 if Nkind
(Citem
) = N_Discriminant_Specification
then
10543 Ent
: constant Entity_Id
:=
10544 Defining_Identifier
(Citem
);
10546 if Ekind
(Ent
) = E_Discriminant
then
10547 Ncomps
:= Ncomps
+ 1;
10548 Comps
(Ncomps
) := Ent
;
10557 -- Gather component entities into Comp
10559 Citem
:= First
(Component_Items
(CL
));
10560 while Present
(Citem
) loop
10561 if Nkind
(Citem
) = N_Component_Declaration
then
10562 Ncomps
:= Ncomps
+ 1;
10563 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
10569 -- Now sort the component entities based on the first bit.
10570 -- Note we already know there are no overlapping components.
10572 Sorting
.Sort
(Ncomps
);
10574 -- Loop through entries checking for holes
10577 for J
in 1 .. Ncomps
loop
10581 CBO
: constant Uint
:= Component_Bit_Offset
(CEnt
);
10584 -- Skip components with unknown offsets
10586 if CBO
/= No_Uint
and then CBO
>= 0 then
10587 Error_Msg_Uint_1
:= CBO
- Nbit
;
10589 if Error_Msg_Uint_1
> 0 then
10591 ("?H?^-bit gap before component&",
10592 Component_Name
(Component_Clause
(CEnt
)),
10596 Nbit
:= CBO
+ Esize
(CEnt
);
10601 -- Process variant parts recursively if present
10603 if Present
(Variant_Part
(CL
)) then
10604 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10605 while Present
(Variant
) loop
10606 Check_Component_List
10607 (Component_List
(Variant
), Nbit
, No_List
);
10612 end Check_Component_List
;
10614 -- Start of processing for Record_Hole_Check
10621 if Is_Tagged_Type
(Rectype
) then
10622 Sbit
:= UI_From_Int
(System_Address_Size
);
10627 if Nkind
(Decl
) = N_Full_Type_Declaration
10628 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10630 Check_Component_List
10631 (Component_List
(Type_Definition
(Decl
)),
10633 Discriminant_Specifications
(Decl
));
10636 end Record_Hole_Check
;
10639 -- For records that have component clauses for all components, and whose
10640 -- size is less than or equal to 32, we need to know the size in the
10641 -- front end to activate possible packed array processing where the
10642 -- component type is a record.
10644 -- At this stage Hbit + 1 represents the first unused bit from all the
10645 -- component clauses processed, so if the component clauses are
10646 -- complete, then this is the length of the record.
10648 -- For records longer than System.Storage_Unit, and for those where not
10649 -- all components have component clauses, the back end determines the
10650 -- length (it may for example be appropriate to round up the size
10651 -- to some convenient boundary, based on alignment considerations, etc).
10653 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10655 -- Nothing to do if at least one component has no component clause
10657 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10658 while Present
(Comp
) loop
10659 exit when No
(Component_Clause
(Comp
));
10660 Next_Component_Or_Discriminant
(Comp
);
10663 -- If we fall out of loop, all components have component clauses
10664 -- and so we can set the size to the maximum value.
10667 Set_RM_Size
(Rectype
, Hbit
+ 1);
10670 end Check_Record_Representation_Clause
;
10676 procedure Check_Size
10680 Biased
: out Boolean)
10682 procedure Size_Too_Small_Error
(Min_Siz
: Uint
);
10683 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10686 --------------------------
10687 -- Size_Too_Small_Error --
10688 --------------------------
10690 procedure Size_Too_Small_Error
(Min_Siz
: Uint
) is
10692 -- This error is suppressed in ASIS mode to allow for different ASIS
10693 -- back ends or ASIS-based tools to query the illegal clause.
10695 if not ASIS_Mode
then
10696 Error_Msg_Uint_1
:= Min_Siz
;
10697 Error_Msg_NE
("size for& too small, minimum allowed is ^", N
, T
);
10699 end Size_Too_Small_Error
;
10703 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10706 -- Start of processing for Check_Size
10711 -- Reject patently improper size values
10713 if Is_Elementary_Type
(T
)
10714 and then Siz
> UI_From_Int
(Int
'Last)
10716 Error_Msg_N
("Size value too large for elementary type", N
);
10718 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10720 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10724 -- Dismiss generic types
10726 if Is_Generic_Type
(T
)
10728 Is_Generic_Type
(UT
)
10730 Is_Generic_Type
(Root_Type
(UT
))
10734 -- Guard against previous errors
10736 elsif No
(UT
) or else UT
= Any_Type
then
10737 Check_Error_Detected
;
10740 -- Check case of bit packed array
10742 elsif Is_Array_Type
(UT
)
10743 and then Known_Static_Component_Size
(UT
)
10744 and then Is_Bit_Packed_Array
(UT
)
10752 Asiz
:= Component_Size
(UT
);
10753 Indx
:= First_Index
(UT
);
10755 Ityp
:= Etype
(Indx
);
10757 -- If non-static bound, then we are not in the business of
10758 -- trying to check the length, and indeed an error will be
10759 -- issued elsewhere, since sizes of non-static array types
10760 -- cannot be set implicitly or explicitly.
10762 if not Is_OK_Static_Subtype
(Ityp
) then
10766 -- Otherwise accumulate next dimension
10768 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10769 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10773 exit when No
(Indx
);
10776 if Asiz
<= Siz
then
10780 Size_Too_Small_Error
(Asiz
);
10781 Set_Esize
(T
, Asiz
);
10782 Set_RM_Size
(T
, Asiz
);
10786 -- All other composite types are ignored
10788 elsif Is_Composite_Type
(UT
) then
10791 -- For fixed-point types, don't check minimum if type is not frozen,
10792 -- since we don't know all the characteristics of the type that can
10793 -- affect the size (e.g. a specified small) till freeze time.
10795 elsif Is_Fixed_Point_Type
(UT
) and then not Is_Frozen
(UT
) then
10798 -- Cases for which a minimum check is required
10801 -- Ignore if specified size is correct for the type
10803 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10807 -- Otherwise get minimum size
10809 M
:= UI_From_Int
(Minimum_Size
(UT
));
10813 -- Size is less than minimum size, but one possibility remains
10814 -- that we can manage with the new size if we bias the type.
10816 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10819 Size_Too_Small_Error
(M
);
10821 Set_RM_Size
(T
, M
);
10829 --------------------------
10830 -- Freeze_Entity_Checks --
10831 --------------------------
10833 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10834 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10835 -- Inspect the primitive operations of type Typ and hide all pairs of
10836 -- implicitly declared non-overridden non-fully conformant homographs
10837 -- (Ada RM 8.3 12.3/2).
10839 -------------------------------------
10840 -- Hide_Non_Overridden_Subprograms --
10841 -------------------------------------
10843 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10844 procedure Hide_Matching_Homographs
10845 (Subp_Id
: Entity_Id
;
10846 Start_Elmt
: Elmt_Id
);
10847 -- Inspect a list of primitive operations starting with Start_Elmt
10848 -- and find matching implicitly declared non-overridden non-fully
10849 -- conformant homographs of Subp_Id. If found, all matches along
10850 -- with Subp_Id are hidden from all visibility.
10852 function Is_Non_Overridden_Or_Null_Procedure
10853 (Subp_Id
: Entity_Id
) return Boolean;
10854 -- Determine whether subprogram Subp_Id is implicitly declared non-
10855 -- overridden subprogram or an implicitly declared null procedure.
10857 ------------------------------
10858 -- Hide_Matching_Homographs --
10859 ------------------------------
10861 procedure Hide_Matching_Homographs
10862 (Subp_Id
: Entity_Id
;
10863 Start_Elmt
: Elmt_Id
)
10866 Prim_Elmt
: Elmt_Id
;
10869 Prim_Elmt
:= Start_Elmt
;
10870 while Present
(Prim_Elmt
) loop
10871 Prim
:= Node
(Prim_Elmt
);
10873 -- The current primitive is implicitly declared non-overridden
10874 -- non-fully conformant homograph of Subp_Id. Both subprograms
10875 -- must be hidden from visibility.
10877 if Chars
(Prim
) = Chars
(Subp_Id
)
10878 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10879 and then not Fully_Conformant
(Prim
, Subp_Id
)
10881 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10882 Set_Is_Immediately_Visible
(Prim
, False);
10883 Set_Is_Potentially_Use_Visible
(Prim
, False);
10885 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10886 Set_Is_Immediately_Visible
(Subp_Id
, False);
10887 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10890 Next_Elmt
(Prim_Elmt
);
10892 end Hide_Matching_Homographs
;
10894 -----------------------------------------
10895 -- Is_Non_Overridden_Or_Null_Procedure --
10896 -----------------------------------------
10898 function Is_Non_Overridden_Or_Null_Procedure
10899 (Subp_Id
: Entity_Id
) return Boolean
10901 Alias_Id
: Entity_Id
;
10904 -- The subprogram is inherited (implicitly declared), it does not
10905 -- override and does not cover a primitive of an interface.
10907 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10908 and then Present
(Alias
(Subp_Id
))
10909 and then No
(Interface_Alias
(Subp_Id
))
10910 and then No
(Overridden_Operation
(Subp_Id
))
10912 Alias_Id
:= Alias
(Subp_Id
);
10914 if Requires_Overriding
(Alias_Id
) then
10917 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10918 and then Null_Present
(Parent
(Alias_Id
))
10925 end Is_Non_Overridden_Or_Null_Procedure
;
10929 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10931 Prim_Elmt
: Elmt_Id
;
10933 -- Start of processing for Hide_Non_Overridden_Subprograms
10936 -- Inspect the list of primitives looking for non-overridden
10939 if Present
(Prim_Ops
) then
10940 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10941 while Present
(Prim_Elmt
) loop
10942 Prim
:= Node
(Prim_Elmt
);
10943 Next_Elmt
(Prim_Elmt
);
10945 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10946 Hide_Matching_Homographs
10948 Start_Elmt
=> Prim_Elmt
);
10952 end Hide_Non_Overridden_Subprograms
;
10956 E
: constant Entity_Id
:= Entity
(N
);
10958 Nongeneric_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10959 -- True in nongeneric case. Some of the processing here is skipped
10960 -- for the generic case since it is not needed. Basically in the
10961 -- generic case, we only need to do stuff that might generate error
10962 -- messages or warnings.
10964 -- Start of processing for Freeze_Entity_Checks
10967 -- Remember that we are processing a freezing entity. Required to
10968 -- ensure correct decoration of internal entities associated with
10969 -- interfaces (see New_Overloaded_Entity).
10971 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10973 -- For tagged types covering interfaces add internal entities that link
10974 -- the primitives of the interfaces with the primitives that cover them.
10975 -- Note: These entities were originally generated only when generating
10976 -- code because their main purpose was to provide support to initialize
10977 -- the secondary dispatch tables. They are now generated also when
10978 -- compiling with no code generation to provide ASIS the relationship
10979 -- between interface primitives and tagged type primitives. They are
10980 -- also used to locate primitives covering interfaces when processing
10981 -- generics (see Derive_Subprograms).
10983 -- This is not needed in the generic case
10985 if Ada_Version
>= Ada_2005
10986 and then Nongeneric_Case
10987 and then Ekind
(E
) = E_Record_Type
10988 and then Is_Tagged_Type
(E
)
10989 and then not Is_Interface
(E
)
10990 and then Has_Interfaces
(E
)
10992 -- This would be a good common place to call the routine that checks
10993 -- overriding of interface primitives (and thus factorize calls to
10994 -- Check_Abstract_Overriding located at different contexts in the
10995 -- compiler). However, this is not possible because it causes
10996 -- spurious errors in case of late overriding.
10998 Add_Internal_Interface_Entities
(E
);
11001 -- After all forms of overriding have been resolved, a tagged type may
11002 -- be left with a set of implicitly declared and possibly erroneous
11003 -- abstract subprograms, null procedures and subprograms that require
11004 -- overriding. If this set contains fully conformant homographs, then
11005 -- one is chosen arbitrarily (already done during resolution), otherwise
11006 -- all remaining non-fully conformant homographs are hidden from
11007 -- visibility (Ada RM 8.3 12.3/2).
11009 if Is_Tagged_Type
(E
) then
11010 Hide_Non_Overridden_Subprograms
(E
);
11015 if Ekind
(E
) = E_Record_Type
11016 and then Is_CPP_Class
(E
)
11017 and then Is_Tagged_Type
(E
)
11018 and then Tagged_Type_Expansion
11020 if CPP_Num_Prims
(E
) = 0 then
11022 -- If the CPP type has user defined components then it must import
11023 -- primitives from C++. This is required because if the C++ class
11024 -- has no primitives then the C++ compiler does not added the _tag
11025 -- component to the type.
11027 if First_Entity
(E
) /= Last_Entity
(E
) then
11029 ("'C'P'P type must import at least one primitive from C++??",
11034 -- Check that all its primitives are abstract or imported from C++.
11035 -- Check also availability of the C++ constructor.
11038 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
11040 Error_Reported
: Boolean := False;
11044 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11045 while Present
(Elmt
) loop
11046 Prim
:= Node
(Elmt
);
11048 if Comes_From_Source
(Prim
) then
11049 if Is_Abstract_Subprogram
(Prim
) then
11052 elsif not Is_Imported
(Prim
)
11053 or else Convention
(Prim
) /= Convention_CPP
11056 ("primitives of 'C'P'P types must be imported from C++ "
11057 & "or abstract??", Prim
);
11059 elsif not Has_Constructors
11060 and then not Error_Reported
11062 Error_Msg_Name_1
:= Chars
(E
);
11064 ("??'C'P'P constructor required for type %", Prim
);
11065 Error_Reported
:= True;
11074 -- Check Ada derivation of CPP type
11076 if Expander_Active
-- why? losing errors in -gnatc mode???
11077 and then Present
(Etype
(E
)) -- defend against errors
11078 and then Tagged_Type_Expansion
11079 and then Ekind
(E
) = E_Record_Type
11080 and then Etype
(E
) /= E
11081 and then Is_CPP_Class
(Etype
(E
))
11082 and then CPP_Num_Prims
(Etype
(E
)) > 0
11083 and then not Is_CPP_Class
(E
)
11084 and then not Has_CPP_Constructors
(Etype
(E
))
11086 -- If the parent has C++ primitives but it has no constructor then
11087 -- check that all the primitives are overridden in this derivation;
11088 -- otherwise the constructor of the parent is needed to build the
11096 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11097 while Present
(Elmt
) loop
11098 Prim
:= Node
(Elmt
);
11100 if not Is_Abstract_Subprogram
(Prim
)
11101 and then No
(Interface_Alias
(Prim
))
11102 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
11104 Error_Msg_Name_1
:= Chars
(Etype
(E
));
11106 ("'C'P'P constructor required for parent type %", E
);
11115 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
11117 -- If we have a type with predicates, build predicate function. This is
11118 -- not needed in the generic case, nor within TSS subprograms and other
11119 -- predefined primitives. For a derived type, ensure that the parent
11120 -- type is already frozen so that its predicate function has been
11121 -- constructed already. This is necessary if the parent is declared
11122 -- in a nested package and its own freeze point has not been reached.
11125 and then Nongeneric_Case
11126 and then not Within_Internal_Subprogram
11127 and then Has_Predicates
(E
)
11130 Atyp
: constant Entity_Id
:= Nearest_Ancestor
(E
);
11133 and then Has_Predicates
(Atyp
)
11134 and then not Is_Frozen
(Atyp
)
11136 Freeze_Before
(N
, Atyp
);
11140 Build_Predicate_Functions
(E
, N
);
11143 -- If type has delayed aspects, this is where we do the preanalysis at
11144 -- the freeze point, as part of the consistent visibility check. Note
11145 -- that this must be done after calling Build_Predicate_Functions or
11146 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11147 -- the subtype name in the saved expression so that they will not cause
11148 -- trouble in the preanalysis.
11150 -- This is also not needed in the generic case
11153 and then Has_Delayed_Aspects
(E
)
11154 and then Scope
(E
) = Current_Scope
11156 -- Retrieve the visibility to the discriminants in order to properly
11157 -- analyze the aspects.
11159 Push_Scope_And_Install_Discriminants
(E
);
11165 -- Look for aspect specification entries for this entity
11167 Ritem
:= First_Rep_Item
(E
);
11168 while Present
(Ritem
) loop
11169 if Nkind
(Ritem
) = N_Aspect_Specification
11170 and then Entity
(Ritem
) = E
11171 and then Is_Delayed_Aspect
(Ritem
)
11173 Check_Aspect_At_Freeze_Point
(Ritem
);
11176 Next_Rep_Item
(Ritem
);
11180 Uninstall_Discriminants_And_Pop_Scope
(E
);
11183 -- For a record type, deal with variant parts. This has to be delayed
11184 -- to this point, because of the issue of statically predicated
11185 -- subtypes, which we have to ensure are frozen before checking
11186 -- choices, since we need to have the static choice list set.
11188 if Is_Record_Type
(E
) then
11189 Check_Variant_Part
: declare
11190 D
: constant Node_Id
:= Declaration_Node
(E
);
11195 Others_Present
: Boolean;
11196 pragma Warnings
(Off
, Others_Present
);
11197 -- Indicates others present, not used in this case
11199 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
11200 -- Error routine invoked by the generic instantiation below when
11201 -- the variant part has a non static choice.
11203 procedure Process_Declarations
(Variant
: Node_Id
);
11204 -- Processes declarations associated with a variant. We analyzed
11205 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11206 -- but we still need the recursive call to Check_Choices for any
11207 -- nested variant to get its choices properly processed. This is
11208 -- also where we expand out the choices if expansion is active.
11210 package Variant_Choices_Processing
is new
11211 Generic_Check_Choices
11212 (Process_Empty_Choice
=> No_OP
,
11213 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
11214 Process_Associated_Node
=> Process_Declarations
);
11215 use Variant_Choices_Processing
;
11217 -----------------------------
11218 -- Non_Static_Choice_Error --
11219 -----------------------------
11221 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
11223 Flag_Non_Static_Expr
11224 ("choice given in variant part is not static!", Choice
);
11225 end Non_Static_Choice_Error
;
11227 --------------------------
11228 -- Process_Declarations --
11229 --------------------------
11231 procedure Process_Declarations
(Variant
: Node_Id
) is
11232 CL
: constant Node_Id
:= Component_List
(Variant
);
11236 -- Check for static predicate present in this variant
11238 if Has_SP_Choice
(Variant
) then
11240 -- Here we expand. You might expect to find this call in
11241 -- Expand_N_Variant_Part, but that is called when we first
11242 -- see the variant part, and we cannot do this expansion
11243 -- earlier than the freeze point, since for statically
11244 -- predicated subtypes, the predicate is not known till
11245 -- the freeze point.
11247 -- Furthermore, we do this expansion even if the expander
11248 -- is not active, because other semantic processing, e.g.
11249 -- for aggregates, requires the expanded list of choices.
11251 -- If the expander is not active, then we can't just clobber
11252 -- the list since it would invalidate the ASIS -gnatct tree.
11253 -- So we have to rewrite the variant part with a Rewrite
11254 -- call that replaces it with a copy and clobber the copy.
11256 if not Expander_Active
then
11258 NewV
: constant Node_Id
:= New_Copy
(Variant
);
11260 Set_Discrete_Choices
11261 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
11262 Rewrite
(Variant
, NewV
);
11266 Expand_Static_Predicates_In_Choices
(Variant
);
11269 -- We don't need to worry about the declarations in the variant
11270 -- (since they were analyzed by Analyze_Choices when we first
11271 -- encountered the variant), but we do need to take care of
11272 -- expansion of any nested variants.
11274 if not Null_Present
(CL
) then
11275 VP
:= Variant_Part
(CL
);
11277 if Present
(VP
) then
11279 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11282 end Process_Declarations
;
11284 -- Start of processing for Check_Variant_Part
11287 -- Find component list
11291 if Nkind
(D
) = N_Full_Type_Declaration
then
11292 T
:= Type_Definition
(D
);
11294 if Nkind
(T
) = N_Record_Definition
then
11295 C
:= Component_List
(T
);
11297 elsif Nkind
(T
) = N_Derived_Type_Definition
11298 and then Present
(Record_Extension_Part
(T
))
11300 C
:= Component_List
(Record_Extension_Part
(T
));
11304 -- Case of variant part present
11306 if Present
(C
) and then Present
(Variant_Part
(C
)) then
11307 VP
:= Variant_Part
(C
);
11312 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11314 -- If the last variant does not contain the Others choice,
11315 -- replace it with an N_Others_Choice node since Gigi always
11316 -- wants an Others. Note that we do not bother to call Analyze
11317 -- on the modified variant part, since its only effect would be
11318 -- to compute the Others_Discrete_Choices node laboriously, and
11319 -- of course we already know the list of choices corresponding
11320 -- to the others choice (it's the list we're replacing).
11322 -- We only want to do this if the expander is active, since
11323 -- we do not want to clobber the ASIS tree.
11325 if Expander_Active
then
11327 Last_Var
: constant Node_Id
:=
11328 Last_Non_Pragma
(Variants
(VP
));
11330 Others_Node
: Node_Id
;
11333 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
11336 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
11337 Set_Others_Discrete_Choices
11338 (Others_Node
, Discrete_Choices
(Last_Var
));
11339 Set_Discrete_Choices
11340 (Last_Var
, New_List
(Others_Node
));
11345 end Check_Variant_Part
;
11347 end Freeze_Entity_Checks
;
11349 -------------------------
11350 -- Get_Alignment_Value --
11351 -------------------------
11353 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
11354 Align
: constant Uint
:= Static_Integer
(Expr
);
11357 if Align
= No_Uint
then
11360 elsif Align
<= 0 then
11362 -- This error is suppressed in ASIS mode to allow for different ASIS
11363 -- back ends or ASIS-based tools to query the illegal clause.
11365 if not ASIS_Mode
then
11366 Error_Msg_N
("alignment value must be positive", Expr
);
11372 for J
in Int
range 0 .. 64 loop
11374 M
: constant Uint
:= Uint_2
** J
;
11377 exit when M
= Align
;
11381 -- This error is suppressed in ASIS mode to allow for
11382 -- different ASIS back ends or ASIS-based tools to query the
11385 if not ASIS_Mode
then
11386 Error_Msg_N
("alignment value must be power of 2", Expr
);
11396 end Get_Alignment_Value
;
11398 -------------------------------------
11399 -- Inherit_Aspects_At_Freeze_Point --
11400 -------------------------------------
11402 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
11403 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11404 (Rep_Item
: Node_Id
) return Boolean;
11405 -- This routine checks if Rep_Item is either a pragma or an aspect
11406 -- specification node whose correponding pragma (if any) is present in
11407 -- the Rep Item chain of the entity it has been specified to.
11409 --------------------------------------------------
11410 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11411 --------------------------------------------------
11413 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11414 (Rep_Item
: Node_Id
) return Boolean
11418 Nkind
(Rep_Item
) = N_Pragma
11419 or else Present_In_Rep_Item
11420 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
11421 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
11423 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11426 -- A representation item is either subtype-specific (Size and Alignment
11427 -- clauses) or type-related (all others). Subtype-specific aspects may
11428 -- differ for different subtypes of the same type (RM 13.1.8).
11430 -- A derived type inherits each type-related representation aspect of
11431 -- its parent type that was directly specified before the declaration of
11432 -- the derived type (RM 13.1.15).
11434 -- A derived subtype inherits each subtype-specific representation
11435 -- aspect of its parent subtype that was directly specified before the
11436 -- declaration of the derived type (RM 13.1.15).
11438 -- The general processing involves inheriting a representation aspect
11439 -- from a parent type whenever the first rep item (aspect specification,
11440 -- attribute definition clause, pragma) corresponding to the given
11441 -- representation aspect in the rep item chain of Typ, if any, isn't
11442 -- directly specified to Typ but to one of its parents.
11444 -- ??? Note that, for now, just a limited number of representation
11445 -- aspects have been inherited here so far. Many of them are
11446 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11447 -- a non- exhaustive list of aspects that likely also need to
11448 -- be moved to this routine: Alignment, Component_Alignment,
11449 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11450 -- Preelaborable_Initialization, RM_Size and Small.
11452 -- In addition, Convention must be propagated from base type to subtype,
11453 -- because the subtype may have been declared on an incomplete view.
11455 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
11461 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
11462 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
11463 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11464 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
11466 Set_Is_Ada_2005_Only
(Typ
);
11471 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
11472 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
11473 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11474 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
11476 Set_Is_Ada_2012_Only
(Typ
);
11481 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
11482 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
11483 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11484 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
11486 Set_Is_Atomic
(Typ
);
11487 Set_Is_Volatile
(Typ
);
11488 Set_Treat_As_Volatile
(Typ
);
11493 if Is_Record_Type
(Typ
)
11494 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
11496 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
11499 -- Default_Component_Value
11501 -- Verify that there is no rep_item declared for the type, and there
11502 -- is one coming from an ancestor.
11504 if Is_Array_Type
(Typ
)
11505 and then Is_Base_Type
(Typ
)
11506 and then not Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
11507 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
11509 Set_Default_Aspect_Component_Value
(Typ
,
11510 Default_Aspect_Component_Value
11511 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
11516 if Is_Scalar_Type
(Typ
)
11517 and then Is_Base_Type
(Typ
)
11518 and then not Has_Rep_Item
(Typ
, Name_Default_Value
, False)
11519 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
11521 Set_Has_Default_Aspect
(Typ
);
11522 Set_Default_Aspect_Value
(Typ
,
11523 Default_Aspect_Value
11524 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
11529 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
11530 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
11531 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11532 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
11534 Set_Discard_Names
(Typ
);
11539 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
11540 and then Has_Rep_Item
(Typ
, Name_Volatile
)
11541 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11542 (Get_Rep_Item
(Typ
, Name_Volatile
))
11544 Set_Is_Volatile
(Typ
);
11545 Set_Treat_As_Volatile
(Typ
);
11548 -- Volatile_Full_Access
11550 if not Has_Rep_Item
(Typ
, Name_Volatile_Full_Access
, False)
11551 and then Has_Rep_Pragma
(Typ
, Name_Volatile_Full_Access
)
11552 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11553 (Get_Rep_Item
(Typ
, Name_Volatile_Full_Access
))
11555 Set_Is_Volatile_Full_Access
(Typ
);
11556 Set_Is_Volatile
(Typ
);
11557 Set_Treat_As_Volatile
(Typ
);
11560 -- Inheritance for derived types only
11562 if Is_Derived_Type
(Typ
) then
11564 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11565 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11568 -- Atomic_Components
11570 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
11571 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
11572 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11573 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
11575 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
11578 -- Volatile_Components
11580 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
11581 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
11582 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11583 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
11585 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
11588 -- Finalize_Storage_Only
11590 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
11591 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
11593 Set_Finalize_Storage_Only
(Bas_Typ
);
11596 -- Universal_Aliasing
11598 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
11599 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
11600 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11601 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
11603 Set_Universal_Aliasing
(Imp_Bas_Typ
);
11608 if Is_Record_Type
(Typ
) then
11609 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
11610 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
11612 Set_Reverse_Bit_Order
(Bas_Typ
,
11613 Reverse_Bit_Order
(Entity
(Name
11614 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
11618 -- Scalar_Storage_Order
11620 -- Note: the aspect is specified on a first subtype, but recorded
11621 -- in a flag of the base type!
11623 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11624 and then Typ
= Bas_Typ
11626 -- For a type extension, always inherit from parent; otherwise
11627 -- inherit if no default applies. Note: we do not check for
11628 -- an explicit rep item on the parent type when inheriting,
11629 -- because the parent SSO may itself have been set by default.
11631 if not Has_Rep_Item
(First_Subtype
(Typ
),
11632 Name_Scalar_Storage_Order
, False)
11633 and then (Is_Tagged_Type
(Bas_Typ
)
11634 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11636 SSO_Set_High_By_Default
(Bas_Typ
)))
11638 Set_Reverse_Storage_Order
(Bas_Typ
,
11639 Reverse_Storage_Order
11640 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11642 -- Clear default SSO indications, since the inherited aspect
11643 -- which was set explicitly overrides the default.
11645 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11646 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11651 end Inherit_Aspects_At_Freeze_Point
;
11657 procedure Initialize
is
11659 Address_Clause_Checks
.Init
;
11660 Compile_Time_Warnings_Errors
.Init
;
11661 Unchecked_Conversions
.Init
;
11663 -- ??? Might be needed in the future for some non GCC back-ends
11664 -- if AAMP_On_Target then
11665 -- Independence_Checks.Init;
11669 ---------------------------
11670 -- Install_Discriminants --
11671 ---------------------------
11673 procedure Install_Discriminants
(E
: Entity_Id
) is
11677 Disc
:= First_Discriminant
(E
);
11678 while Present
(Disc
) loop
11679 Prev
:= Current_Entity
(Disc
);
11680 Set_Current_Entity
(Disc
);
11681 Set_Is_Immediately_Visible
(Disc
);
11682 Set_Homonym
(Disc
, Prev
);
11683 Next_Discriminant
(Disc
);
11685 end Install_Discriminants
;
11687 -------------------------
11688 -- Is_Operational_Item --
11689 -------------------------
11691 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11693 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11698 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11701 -- List of operational items is given in AARM 13.1(8.mm/1).
11702 -- It is clearly incomplete, as it does not include iterator
11703 -- aspects, among others.
11705 return Id
= Attribute_Constant_Indexing
11706 or else Id
= Attribute_Default_Iterator
11707 or else Id
= Attribute_Implicit_Dereference
11708 or else Id
= Attribute_Input
11709 or else Id
= Attribute_Iterator_Element
11710 or else Id
= Attribute_Iterable
11711 or else Id
= Attribute_Output
11712 or else Id
= Attribute_Read
11713 or else Id
= Attribute_Variable_Indexing
11714 or else Id
= Attribute_Write
11715 or else Id
= Attribute_External_Tag
;
11718 end Is_Operational_Item
;
11720 -------------------------
11721 -- Is_Predicate_Static --
11722 -------------------------
11724 -- Note: the basic legality of the expression has already been checked, so
11725 -- we don't need to worry about cases or ranges on strings for example.
11727 function Is_Predicate_Static
11729 Nam
: Name_Id
) return Boolean
11731 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11732 -- Given a list of case expression alternatives, returns True if all
11733 -- the alternatives are static (have all static choices, and a static
11736 function All_Static_Choices
(L
: List_Id
) return Boolean;
11737 -- Returns true if all elements of the list are OK static choices
11738 -- as defined below for Is_Static_Choice. Used for case expression
11739 -- alternatives and for the right operand of a membership test. An
11740 -- others_choice is static if the corresponding expression is static.
11741 -- The staticness of the bounds is checked separately.
11743 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11744 -- Returns True if N represents a static choice (static subtype, or
11745 -- static subtype indication, or static expression, or static range).
11747 -- Note that this is a bit more inclusive than we actually need
11748 -- (in particular membership tests do not allow the use of subtype
11749 -- indications). But that doesn't matter, we have already checked
11750 -- that the construct is legal to get this far.
11752 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11753 pragma Inline
(Is_Type_Ref
);
11754 -- Returns True if N is a reference to the type for the predicate in the
11755 -- expression (i.e. if it is an identifier whose Chars field matches the
11756 -- Nam given in the call). N must not be parenthesized, if the type name
11757 -- appears in parens, this routine will return False.
11759 -- The routine also returns True for function calls generated during the
11760 -- expansion of comparison operators on strings, which are intended to
11761 -- be legal in static predicates, and are converted into calls to array
11762 -- comparison routines in the body of the corresponding predicate
11765 ----------------------------------
11766 -- All_Static_Case_Alternatives --
11767 ----------------------------------
11769 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11774 while Present
(N
) loop
11775 if not (All_Static_Choices
(Discrete_Choices
(N
))
11776 and then Is_OK_Static_Expression
(Expression
(N
)))
11785 end All_Static_Case_Alternatives
;
11787 ------------------------
11788 -- All_Static_Choices --
11789 ------------------------
11791 function All_Static_Choices
(L
: List_Id
) return Boolean is
11796 while Present
(N
) loop
11797 if not Is_Static_Choice
(N
) then
11805 end All_Static_Choices
;
11807 ----------------------
11808 -- Is_Static_Choice --
11809 ----------------------
11811 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11813 return Nkind
(N
) = N_Others_Choice
11814 or else Is_OK_Static_Expression
(N
)
11815 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11816 and then Is_OK_Static_Subtype
(Entity
(N
)))
11817 or else (Nkind
(N
) = N_Subtype_Indication
11818 and then Is_OK_Static_Subtype
(Entity
(N
)))
11819 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11820 end Is_Static_Choice
;
11826 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11828 return (Nkind
(N
) = N_Identifier
11829 and then Chars
(N
) = Nam
11830 and then Paren_Count
(N
) = 0)
11831 or else Nkind
(N
) = N_Function_Call
;
11834 -- Start of processing for Is_Predicate_Static
11837 -- Predicate_Static means one of the following holds. Numbers are the
11838 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11840 -- 16: A static expression
11842 if Is_OK_Static_Expression
(Expr
) then
11845 -- 17: A membership test whose simple_expression is the current
11846 -- instance, and whose membership_choice_list meets the requirements
11847 -- for a static membership test.
11849 elsif Nkind
(Expr
) in N_Membership_Test
11850 and then ((Present
(Right_Opnd
(Expr
))
11851 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11853 (Present
(Alternatives
(Expr
))
11854 and then All_Static_Choices
(Alternatives
(Expr
))))
11858 -- 18. A case_expression whose selecting_expression is the current
11859 -- instance, and whose dependent expressions are static expressions.
11861 elsif Nkind
(Expr
) = N_Case_Expression
11862 and then Is_Type_Ref
(Expression
(Expr
))
11863 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11867 -- 19. A call to a predefined equality or ordering operator, where one
11868 -- operand is the current instance, and the other is a static
11871 -- Note: the RM is clearly wrong here in not excluding string types.
11872 -- Without this exclusion, we would allow expressions like X > "ABC"
11873 -- to be considered as predicate-static, which is clearly not intended,
11874 -- since the idea is for predicate-static to be a subset of normal
11875 -- static expressions (and "DEF" > "ABC" is not a static expression).
11877 -- However, we do allow internally generated (not from source) equality
11878 -- and inequality operations to be valid on strings (this helps deal
11879 -- with cases where we transform A in "ABC" to A = "ABC).
11881 -- In fact, it appears that the intent of the ARG is to extend static
11882 -- predicates to strings, and that the extension should probably apply
11883 -- to static expressions themselves. The code below accepts comparison
11884 -- operators that apply to static strings.
11886 elsif Nkind
(Expr
) in N_Op_Compare
11887 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11888 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11890 (Is_Type_Ref
(Right_Opnd
(Expr
))
11891 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11895 -- 20. A call to a predefined boolean logical operator, where each
11896 -- operand is predicate-static.
11898 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11899 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11900 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11902 (Nkind
(Expr
) = N_Op_Not
11903 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11907 -- 21. A short-circuit control form where both operands are
11908 -- predicate-static.
11910 elsif Nkind
(Expr
) in N_Short_Circuit
11911 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11912 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11916 -- 22. A parenthesized predicate-static expression. This does not
11917 -- require any special test, since we just ignore paren levels in
11918 -- all the cases above.
11920 -- One more test that is an implementation artifact caused by the fact
11921 -- that we are analyzing not the original expression, but the generated
11922 -- expression in the body of the predicate function. This can include
11923 -- references to inherited predicates, so that the expression we are
11924 -- processing looks like:
11926 -- xxPredicate (typ (Inns)) and then expression
11928 -- Where the call is to a Predicate function for an inherited predicate.
11929 -- We simply ignore such a call, which could be to either a dynamic or
11930 -- a static predicate. Note that if the parent predicate is dynamic then
11931 -- eventually this type will be marked as dynamic, but you are allowed
11932 -- to specify a static predicate for a subtype which is inheriting a
11933 -- dynamic predicate, so the static predicate validation here ignores
11934 -- the inherited predicate even if it is dynamic.
11935 -- In all cases, a static predicate can only apply to a scalar type.
11937 elsif Nkind
(Expr
) = N_Function_Call
11938 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11939 and then Is_Scalar_Type
(Etype
(First_Entity
(Entity
(Name
(Expr
)))))
11943 elsif Is_Entity_Name
(Expr
)
11944 and then Entity
(Expr
) = Standard_True
11946 Error_Msg_N
("predicate is redundant (always True)?", Expr
);
11949 -- That's an exhaustive list of tests, all other cases are not
11950 -- predicate-static, so we return False.
11955 end Is_Predicate_Static
;
11957 ---------------------
11958 -- Kill_Rep_Clause --
11959 ---------------------
11961 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11963 pragma Assert
(Ignore_Rep_Clauses
);
11965 -- Note: we use Replace rather than Rewrite, because we don't want
11966 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11967 -- rep clause that is being replaced.
11969 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11971 -- The null statement must be marked as not coming from source. This is
11972 -- so that ASIS ignores it, and also the back end does not expect bogus
11973 -- "from source" null statements in weird places (e.g. in declarative
11974 -- regions where such null statements are not allowed).
11976 Set_Comes_From_Source
(N
, False);
11977 end Kill_Rep_Clause
;
11983 function Minimum_Size
11985 Biased
: Boolean := False) return Nat
11987 Lo
: Uint
:= No_Uint
;
11988 Hi
: Uint
:= No_Uint
;
11989 LoR
: Ureal
:= No_Ureal
;
11990 HiR
: Ureal
:= No_Ureal
;
11991 LoSet
: Boolean := False;
11992 HiSet
: Boolean := False;
11995 Ancest
: Entity_Id
;
11996 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11999 -- If bad type, return 0
12001 if T
= Any_Type
then
12004 -- For generic types, just return zero. There cannot be any legitimate
12005 -- need to know such a size, but this routine may be called with a
12006 -- generic type as part of normal processing.
12008 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
12011 -- Access types (cannot have size smaller than System.Address)
12013 elsif Is_Access_Type
(T
) then
12014 return System_Address_Size
;
12016 -- Floating-point types
12018 elsif Is_Floating_Point_Type
(T
) then
12019 return UI_To_Int
(Esize
(R_Typ
));
12023 elsif Is_Discrete_Type
(T
) then
12025 -- The following loop is looking for the nearest compile time known
12026 -- bounds following the ancestor subtype chain. The idea is to find
12027 -- the most restrictive known bounds information.
12031 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
12036 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
12037 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
12044 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
12045 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
12051 Ancest
:= Ancestor_Subtype
(Ancest
);
12053 if No
(Ancest
) then
12054 Ancest
:= Base_Type
(T
);
12056 if Is_Generic_Type
(Ancest
) then
12062 -- Fixed-point types. We can't simply use Expr_Value to get the
12063 -- Corresponding_Integer_Value values of the bounds, since these do not
12064 -- get set till the type is frozen, and this routine can be called
12065 -- before the type is frozen. Similarly the test for bounds being static
12066 -- needs to include the case where we have unanalyzed real literals for
12067 -- the same reason.
12069 elsif Is_Fixed_Point_Type
(T
) then
12071 -- The following loop is looking for the nearest compile time known
12072 -- bounds following the ancestor subtype chain. The idea is to find
12073 -- the most restrictive known bounds information.
12077 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
12081 -- Note: In the following two tests for LoSet and HiSet, it may
12082 -- seem redundant to test for N_Real_Literal here since normally
12083 -- one would assume that the test for the value being known at
12084 -- compile time includes this case. However, there is a glitch.
12085 -- If the real literal comes from folding a non-static expression,
12086 -- then we don't consider any non- static expression to be known
12087 -- at compile time if we are in configurable run time mode (needed
12088 -- in some cases to give a clearer definition of what is and what
12089 -- is not accepted). So the test is indeed needed. Without it, we
12090 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12093 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
12094 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
12096 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
12103 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
12104 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
12106 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
12112 Ancest
:= Ancestor_Subtype
(Ancest
);
12114 if No
(Ancest
) then
12115 Ancest
:= Base_Type
(T
);
12117 if Is_Generic_Type
(Ancest
) then
12123 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
12124 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
12126 -- No other types allowed
12129 raise Program_Error
;
12132 -- Fall through with Hi and Lo set. Deal with biased case
12135 and then not Is_Fixed_Point_Type
(T
)
12136 and then not (Is_Enumeration_Type
(T
)
12137 and then Has_Non_Standard_Rep
(T
)))
12138 or else Has_Biased_Representation
(T
)
12144 -- Null range case, size is always zero. We only do this in the discrete
12145 -- type case, since that's the odd case that came up. Probably we should
12146 -- also do this in the fixed-point case, but doing so causes peculiar
12147 -- gigi failures, and it is not worth worrying about this incredibly
12148 -- marginal case (explicit null-range fixed-point type declarations)???
12150 if Lo
> Hi
and then Is_Discrete_Type
(T
) then
12153 -- Signed case. Note that we consider types like range 1 .. -1 to be
12154 -- signed for the purpose of computing the size, since the bounds have
12155 -- to be accommodated in the base type.
12157 elsif Lo
< 0 or else Hi
< 0 then
12161 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12162 -- Note that we accommodate the case where the bounds cross. This
12163 -- can happen either because of the way the bounds are declared
12164 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12178 -- If both bounds are positive, make sure that both are represen-
12179 -- table in the case where the bounds are crossed. This can happen
12180 -- either because of the way the bounds are declared, or because of
12181 -- the algorithm in Freeze_Fixed_Point_Type.
12187 -- S = size, (can accommodate 0 .. (2**size - 1))
12190 while Hi
>= Uint_2
** S
loop
12198 ---------------------------
12199 -- New_Stream_Subprogram --
12200 ---------------------------
12202 procedure New_Stream_Subprogram
12206 Nam
: TSS_Name_Type
)
12208 Loc
: constant Source_Ptr
:= Sloc
(N
);
12209 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
12210 Subp_Id
: Entity_Id
;
12211 Subp_Decl
: Node_Id
;
12215 Defer_Declaration
: constant Boolean :=
12216 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
12217 -- For a tagged type, there is a declaration for each stream attribute
12218 -- at the freeze point, and we must generate only a completion of this
12219 -- declaration. We do the same for private types, because the full view
12220 -- might be tagged. Otherwise we generate a declaration at the point of
12221 -- the attribute definition clause. If the attribute definition comes
12222 -- from an aspect specification the declaration is part of the freeze
12223 -- actions of the type.
12225 function Build_Spec
return Node_Id
;
12226 -- Used for declaration and renaming declaration, so that this is
12227 -- treated as a renaming_as_body.
12233 function Build_Spec
return Node_Id
is
12234 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
12237 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
12240 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
12242 -- S : access Root_Stream_Type'Class
12244 Formals
:= New_List
(
12245 Make_Parameter_Specification
(Loc
,
12246 Defining_Identifier
=>
12247 Make_Defining_Identifier
(Loc
, Name_S
),
12249 Make_Access_Definition
(Loc
,
12251 New_Occurrence_Of
(
12252 Designated_Type
(Etype
(F
)), Loc
))));
12254 if Nam
= TSS_Stream_Input
then
12256 Make_Function_Specification
(Loc
,
12257 Defining_Unit_Name
=> Subp_Id
,
12258 Parameter_Specifications
=> Formals
,
12259 Result_Definition
=> T_Ref
);
12263 Append_To
(Formals
,
12264 Make_Parameter_Specification
(Loc
,
12265 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
12266 Out_Present
=> Out_P
,
12267 Parameter_Type
=> T_Ref
));
12270 Make_Procedure_Specification
(Loc
,
12271 Defining_Unit_Name
=> Subp_Id
,
12272 Parameter_Specifications
=> Formals
);
12278 -- Start of processing for New_Stream_Subprogram
12281 F
:= First_Formal
(Subp
);
12283 if Ekind
(Subp
) = E_Procedure
then
12284 Etyp
:= Etype
(Next_Formal
(F
));
12286 Etyp
:= Etype
(Subp
);
12289 -- Prepare subprogram declaration and insert it as an action on the
12290 -- clause node. The visibility for this entity is used to test for
12291 -- visibility of the attribute definition clause (in the sense of
12292 -- 8.3(23) as amended by AI-195).
12294 if not Defer_Declaration
then
12296 Make_Subprogram_Declaration
(Loc
,
12297 Specification
=> Build_Spec
);
12299 -- For a tagged type, there is always a visible declaration for each
12300 -- stream TSS (it is a predefined primitive operation), and the
12301 -- completion of this declaration occurs at the freeze point, which is
12302 -- not always visible at places where the attribute definition clause is
12303 -- visible. So, we create a dummy entity here for the purpose of
12304 -- tracking the visibility of the attribute definition clause itself.
12308 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
12310 Make_Object_Declaration
(Loc
,
12311 Defining_Identifier
=> Subp_Id
,
12312 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
12315 if not Defer_Declaration
12316 and then From_Aspect_Specification
(N
)
12317 and then Has_Delayed_Freeze
(Ent
)
12319 Append_Freeze_Action
(Ent
, Subp_Decl
);
12322 Insert_Action
(N
, Subp_Decl
);
12323 Set_Entity
(N
, Subp_Id
);
12327 Make_Subprogram_Renaming_Declaration
(Loc
,
12328 Specification
=> Build_Spec
,
12329 Name
=> New_Occurrence_Of
(Subp
, Loc
));
12331 if Defer_Declaration
then
12332 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
12335 if From_Aspect_Specification
(N
) then
12336 Append_Freeze_Action
(Ent
, Subp_Decl
);
12338 Insert_Action
(N
, Subp_Decl
);
12341 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
12343 end New_Stream_Subprogram
;
12345 ------------------------------------------
12346 -- Push_Scope_And_Install_Discriminants --
12347 ------------------------------------------
12349 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
12351 if Is_Type
(E
) and then Has_Discriminants
(E
) then
12354 -- Make the discriminants visible for type declarations and protected
12355 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12357 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12358 Install_Discriminants
(E
);
12361 end Push_Scope_And_Install_Discriminants
;
12363 -----------------------------------
12364 -- Register_Address_Clause_Check --
12365 -----------------------------------
12367 procedure Register_Address_Clause_Check
12374 ACS
: constant Boolean := Scope_Suppress
.Suppress
(Alignment_Check
);
12376 Address_Clause_Checks
.Append
((N
, X
, A
, Y
, Off
, ACS
));
12377 end Register_Address_Clause_Check
;
12379 ------------------------
12380 -- Rep_Item_Too_Early --
12381 ------------------------
12383 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
12385 -- Cannot apply non-operational rep items to generic types
12387 if Is_Operational_Item
(N
) then
12391 and then Is_Generic_Type
(Root_Type
(T
))
12392 and then (Nkind
(N
) /= N_Pragma
12393 or else Get_Pragma_Id
(N
) /= Pragma_Convention
)
12395 Error_Msg_N
("representation item not allowed for generic type", N
);
12399 -- Otherwise check for incomplete type
12401 if Is_Incomplete_Or_Private_Type
(T
)
12402 and then No
(Underlying_Type
(T
))
12404 (Nkind
(N
) /= N_Pragma
12405 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
12408 ("representation item must be after full type declaration", N
);
12411 -- If the type has incomplete components, a representation clause is
12412 -- illegal but stream attributes and Convention pragmas are correct.
12414 elsif Has_Private_Component
(T
) then
12415 if Nkind
(N
) = N_Pragma
then
12420 ("representation item must appear after type is fully defined",
12427 end Rep_Item_Too_Early
;
12429 -----------------------
12430 -- Rep_Item_Too_Late --
12431 -----------------------
12433 function Rep_Item_Too_Late
12436 FOnly
: Boolean := False) return Boolean
12439 Parent_Type
: Entity_Id
;
12441 procedure No_Type_Rep_Item
;
12442 -- Output message indicating that no type-related aspects can be
12443 -- specified due to some property of the parent type.
12445 procedure Too_Late
;
12446 -- Output message for an aspect being specified too late
12448 -- Note that neither of the above errors is considered a serious one,
12449 -- since the effect is simply that we ignore the representation clause
12451 -- Is this really true? In any case if we make this change we must
12452 -- document the requirement in the spec of Rep_Item_Too_Late that
12453 -- if True is returned, then the rep item must be completely ignored???
12455 ----------------------
12456 -- No_Type_Rep_Item --
12457 ----------------------
12459 procedure No_Type_Rep_Item
is
12461 Error_Msg_N
("|type-related representation item not permitted!", N
);
12462 end No_Type_Rep_Item
;
12468 procedure Too_Late
is
12470 -- Other compilers seem more relaxed about rep items appearing too
12471 -- late. Since analysis tools typically don't care about rep items
12472 -- anyway, no reason to be too strict about this.
12474 if not Relaxed_RM_Semantics
then
12475 Error_Msg_N
("|representation item appears too late!", N
);
12479 -- Start of processing for Rep_Item_Too_Late
12482 -- First make sure entity is not frozen (RM 13.1(9))
12486 -- Exclude imported types, which may be frozen if they appear in a
12487 -- representation clause for a local type.
12489 and then not From_Limited_With
(T
)
12491 -- Exclude generated entities (not coming from source). The common
12492 -- case is when we generate a renaming which prematurely freezes the
12493 -- renamed internal entity, but we still want to be able to set copies
12494 -- of attribute values such as Size/Alignment.
12496 and then Comes_From_Source
(T
)
12498 -- A self-referential aspect is illegal if it forces freezing the
12499 -- entity before the corresponding pragma has been analyzed.
12501 if Nkind_In
(N
, N_Attribute_Definition_Clause
, N_Pragma
)
12502 and then From_Aspect_Specification
(N
)
12505 ("aspect specification causes premature freezing of&", N
, T
);
12506 Set_Has_Delayed_Freeze
(T
, False);
12511 S
:= First_Subtype
(T
);
12513 if Present
(Freeze_Node
(S
)) then
12514 if not Relaxed_RM_Semantics
then
12516 ("??no more representation items for }", Freeze_Node
(S
), S
);
12522 -- Check for case of untagged derived type whose parent either has
12523 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12524 -- this case we do not output a Too_Late message, since there is no
12525 -- earlier point where the rep item could be placed to make it legal.
12529 and then Is_Derived_Type
(T
)
12530 and then not Is_Tagged_Type
(T
)
12532 Parent_Type
:= Etype
(Base_Type
(T
));
12534 if Has_Primitive_Operations
(Parent_Type
) then
12537 if not Relaxed_RM_Semantics
then
12539 ("\parent type & has primitive operations!", N
, Parent_Type
);
12544 elsif Is_By_Reference_Type
(Parent_Type
) then
12547 if not Relaxed_RM_Semantics
then
12549 ("\parent type & is a by reference type!", N
, Parent_Type
);
12556 -- No error, but one more warning to consider. The RM (surprisingly)
12557 -- allows this pattern:
12560 -- primitive operations for S
12561 -- type R is new S;
12562 -- rep clause for S
12564 -- Meaning that calls on the primitive operations of S for values of
12565 -- type R may require possibly expensive implicit conversion operations.
12566 -- This is not an error, but is worth a warning.
12568 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
12570 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
12574 and then Has_Primitive_Operations
(Base_Type
(T
))
12576 -- For now, do not generate this warning for the case of aspect
12577 -- specification using Ada 2012 syntax, since we get wrong
12578 -- messages we do not understand. The whole business of derived
12579 -- types and rep items seems a bit confused when aspects are
12580 -- used, since the aspects are not evaluated till freeze time.
12582 and then not From_Aspect_Specification
(N
)
12584 Error_Msg_Sloc
:= Sloc
(DTL
);
12586 ("representation item for& appears after derived type "
12587 & "declaration#??", N
);
12589 ("\may result in implicit conversions for primitive "
12590 & "operations of&??", N
, T
);
12592 ("\to change representations when called with arguments "
12593 & "of type&??", N
, DTL
);
12598 -- No error, link item into head of chain of rep items for the entity,
12599 -- but avoid chaining if we have an overloadable entity, and the pragma
12600 -- is one that can apply to multiple overloaded entities.
12602 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
12604 Pname
: constant Name_Id
:= Pragma_Name
(N
);
12606 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
12607 Name_External
, Name_Interface
)
12614 Record_Rep_Item
(T
, N
);
12616 end Rep_Item_Too_Late
;
12618 -------------------------------------
12619 -- Replace_Type_References_Generic --
12620 -------------------------------------
12622 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
12623 TName
: constant Name_Id
:= Chars
(T
);
12625 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
;
12626 -- Processes a single node in the traversal procedure below, checking
12627 -- if node N should be replaced, and if so, doing the replacement.
12629 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
;
12630 -- Given an identifier in the expression, check whether there is a
12631 -- discriminant or component of the type that is directy visible, and
12632 -- rewrite it as the corresponding selected component of the formal of
12633 -- the subprogram. The entity is located by a sequential search, which
12634 -- seems acceptable given the typical size of component lists and check
12635 -- expressions. Possible optimization ???
12637 ----------------------
12638 -- Replace_Type_Ref --
12639 ----------------------
12641 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
is
12642 Loc
: constant Source_Ptr
:= Sloc
(N
);
12644 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
);
12645 -- Add the proper prefix to a reference to a component of the type
12646 -- when it is not already a selected component.
12652 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
) is
12655 Make_Selected_Component
(Loc
,
12656 Prefix
=> New_Occurrence_Of
(T
, Loc
),
12657 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
)));
12658 Replace_Type_Reference
(Prefix
(Ref
));
12667 -- Start of processing for Replace_Type_Ref
12670 if Nkind
(N
) = N_Identifier
then
12672 -- If not the type name, check whether it is a reference to some
12673 -- other type, which must be frozen before the predicate function
12674 -- is analyzed, i.e. before the freeze node of the type to which
12675 -- the predicate applies.
12677 if Chars
(N
) /= TName
then
12678 if Present
(Current_Entity
(N
))
12679 and then Is_Type
(Current_Entity
(N
))
12681 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
12684 -- The components of the type are directly visible and can
12685 -- be referenced without a prefix.
12687 if Nkind
(Parent
(N
)) = N_Selected_Component
then
12690 -- In expression C (I), C may be a directly visible function
12691 -- or a visible component that has an array type. Disambiguate
12692 -- by examining the component type.
12694 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
12695 and then N
= Prefix
(Parent
(N
))
12697 Comp
:= Visible_Component
(Chars
(N
));
12699 if Present
(Comp
) and then Is_Array_Type
(Etype
(Comp
)) then
12700 Add_Prefix
(N
, Comp
);
12704 Comp
:= Visible_Component
(Chars
(N
));
12706 if Present
(Comp
) then
12707 Add_Prefix
(N
, Comp
);
12713 -- Otherwise do the replacement if this is not a qualified
12714 -- reference to a homograph of the type itself. Note that the
12715 -- current instance could not appear in such a context, e.g.
12716 -- the prefix of a type conversion.
12719 if Nkind
(Parent
(N
)) /= N_Selected_Component
12720 or else N
/= Selector_Name
(Parent
(N
))
12722 Replace_Type_Reference
(N
);
12728 -- Case of selected component, which may be a subcomponent of the
12729 -- current instance, or an expanded name which is still unanalyzed.
12731 elsif Nkind
(N
) = N_Selected_Component
then
12733 -- If selector name is not our type, keep going (we might still
12734 -- have an occurrence of the type in the prefix). If it is a
12735 -- subcomponent of the current entity, add prefix.
12737 if Nkind
(Selector_Name
(N
)) /= N_Identifier
12738 or else Chars
(Selector_Name
(N
)) /= TName
12740 if Nkind
(Prefix
(N
)) = N_Identifier
then
12741 Comp
:= Visible_Component
(Chars
(Prefix
(N
)));
12743 if Present
(Comp
) then
12744 Add_Prefix
(Prefix
(N
), Comp
);
12750 -- Selector name is our type, check qualification
12753 -- Loop through scopes and prefixes, doing comparison
12755 Scop
:= Current_Scope
;
12756 Pref
:= Prefix
(N
);
12758 -- Continue if no more scopes or scope with no name
12760 if No
(Scop
) or else Nkind
(Scop
) not in N_Has_Chars
then
12764 -- Do replace if prefix is an identifier matching the scope
12765 -- that we are currently looking at.
12767 if Nkind
(Pref
) = N_Identifier
12768 and then Chars
(Pref
) = Chars
(Scop
)
12770 Replace_Type_Reference
(N
);
12774 -- Go check scope above us if prefix is itself of the form
12775 -- of a selected component, whose selector matches the scope
12776 -- we are currently looking at.
12778 if Nkind
(Pref
) = N_Selected_Component
12779 and then Nkind
(Selector_Name
(Pref
)) = N_Identifier
12780 and then Chars
(Selector_Name
(Pref
)) = Chars
(Scop
)
12782 Scop
:= Scope
(Scop
);
12783 Pref
:= Prefix
(Pref
);
12785 -- For anything else, we don't have a match, so keep on
12786 -- going, there are still some weird cases where we may
12787 -- still have a replacement within the prefix.
12795 -- Continue for any other node kind
12800 end Replace_Type_Ref
;
12802 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Type_Ref
);
12804 -----------------------
12805 -- Visible_Component --
12806 -----------------------
12808 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
is
12812 -- Types with nameable components are records and discriminated
12815 if Ekind
(T
) = E_Record_Type
12816 or else (Is_Private_Type
(T
) and then Has_Discriminants
(T
))
12818 E
:= First_Entity
(T
);
12819 while Present
(E
) loop
12820 if Comes_From_Source
(E
) and then Chars
(E
) = Comp
then
12828 -- Nothing by that name, or the type has no components
12831 end Visible_Component
;
12833 -- Start of processing for Replace_Type_References_Generic
12836 Replace_Type_Refs
(N
);
12837 end Replace_Type_References_Generic
;
12839 --------------------------------
12840 -- Resolve_Aspect_Expressions --
12841 --------------------------------
12843 procedure Resolve_Aspect_Expressions
(E
: Entity_Id
) is
12844 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
;
12845 -- Verify that all identifiers in the expression, with the exception
12846 -- of references to the current entity, denote visible entities. This
12847 -- is done only to detect visibility errors, as the expression will be
12848 -- properly analyzed/expanded during analysis of the predicate function
12849 -- body. We omit quantified expressions from this test, given that they
12850 -- introduce a local identifier that would require proper expansion to
12851 -- handle properly.
12853 -- In ASIS_Mode we preserve the entity in the source because there is
12854 -- no subsequent expansion to decorate the tree.
12860 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
is
12861 Dummy
: Traverse_Result
;
12864 if Nkind
(N
) = N_Selected_Component
then
12865 if Nkind
(Prefix
(N
)) = N_Identifier
12866 and then Chars
(Prefix
(N
)) /= Chars
(E
)
12868 Find_Selected_Component
(N
);
12873 -- Resolve identifiers that are not selectors in parameter
12874 -- associations (these are never resolved by visibility).
12876 elsif Nkind
(N
) = N_Identifier
12877 and then Chars
(N
) /= Chars
(E
)
12878 and then (Nkind
(Parent
(N
)) /= N_Parameter_Association
12879 or else N
/= Selector_Name
(Parent
(N
)))
12881 Find_Direct_Name
(N
);
12883 -- In ASIS mode we must analyze overloaded identifiers to ensure
12884 -- their correct decoration because expansion is disabled (and
12885 -- the expansion of freeze nodes takes care of resolving aspect
12889 if Is_Overloaded
(N
) then
12890 Analyze
(Parent
(N
));
12893 Set_Entity
(N
, Empty
);
12896 -- The name is component association needs no resolution.
12898 elsif Nkind
(N
) = N_Component_Association
then
12899 Dummy
:= Resolve_Name
(Expression
(N
));
12902 elsif Nkind
(N
) = N_Quantified_Expression
then
12909 procedure Resolve_Aspect_Expression
is new Traverse_Proc
(Resolve_Name
);
12913 ASN
: Node_Id
:= First_Rep_Item
(E
);
12915 -- Start of processing for Resolve_Aspect_Expressions
12918 -- Need to make sure discriminants, if any, are directly visible
12920 Push_Scope_And_Install_Discriminants
(E
);
12922 while Present
(ASN
) loop
12923 if Nkind
(ASN
) = N_Aspect_Specification
and then Entity
(ASN
) = E
then
12925 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
12926 Expr
: constant Node_Id
:= Expression
(ASN
);
12931 -- For now we only deal with aspects that do not generate
12932 -- subprograms, or that may mention current instances of
12933 -- types. These will require special handling (???TBD).
12935 when Aspect_Invariant
12937 | Aspect_Predicate_Failure
12941 when Aspect_Dynamic_Predicate
12942 | Aspect_Static_Predicate
12944 -- Build predicate function specification and preanalyze
12945 -- expression after type replacement. The function
12946 -- declaration must be analyzed in the scope of the
12947 -- type, but the expression must see components.
12949 if No
(Predicate_Function
(E
)) then
12950 Uninstall_Discriminants_And_Pop_Scope
(E
);
12952 FDecl
: constant Node_Id
:=
12953 Build_Predicate_Function_Declaration
(E
);
12954 pragma Unreferenced
(FDecl
);
12957 Push_Scope_And_Install_Discriminants
(E
);
12958 Resolve_Aspect_Expression
(Expr
);
12962 when Pre_Post_Aspects
=>
12965 when Aspect_Iterable
=>
12966 if Nkind
(Expr
) = N_Aggregate
then
12971 Assoc
:= First
(Component_Associations
(Expr
));
12972 while Present
(Assoc
) loop
12973 Find_Direct_Name
(Expression
(Assoc
));
12979 -- The expression for Default_Value is a static expression
12980 -- of the type, but this expression does not freeze the
12981 -- type, so it can still appear in a representation clause
12982 -- before the actual freeze point.
12984 when Aspect_Default_Value
=>
12985 Set_Must_Not_Freeze
(Expr
);
12986 Preanalyze_Spec_Expression
(Expr
, E
);
12988 -- Ditto for Storage_Size. Any other aspects that carry
12989 -- expressions that should not freeze ??? This is only
12990 -- relevant to the misuse of deferred constants.
12992 when Aspect_Storage_Size
=>
12993 Set_Must_Not_Freeze
(Expr
);
12994 Preanalyze_Spec_Expression
(Expr
, Any_Integer
);
12997 if Present
(Expr
) then
12998 case Aspect_Argument
(A_Id
) is
13000 | Optional_Expression
13002 Analyze_And_Resolve
(Expr
);
13007 if Nkind
(Expr
) = N_Identifier
then
13008 Find_Direct_Name
(Expr
);
13010 elsif Nkind
(Expr
) = N_Selected_Component
then
13011 Find_Selected_Component
(Expr
);
13019 ASN
:= Next_Rep_Item
(ASN
);
13022 Uninstall_Discriminants_And_Pop_Scope
(E
);
13023 end Resolve_Aspect_Expressions
;
13025 -------------------------
13026 -- Same_Representation --
13027 -------------------------
13029 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
13030 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
13031 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
13034 -- A quick check, if base types are the same, then we definitely have
13035 -- the same representation, because the subtype specific representation
13036 -- attributes (Size and Alignment) do not affect representation from
13037 -- the point of view of this test.
13039 if Base_Type
(T1
) = Base_Type
(T2
) then
13042 elsif Is_Private_Type
(Base_Type
(T2
))
13043 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
13048 -- Tagged types always have the same representation, because it is not
13049 -- possible to specify different representations for common fields.
13051 if Is_Tagged_Type
(T1
) then
13055 -- Representations are definitely different if conventions differ
13057 if Convention
(T1
) /= Convention
(T2
) then
13061 -- Representations are different if component alignments or scalar
13062 -- storage orders differ.
13064 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
13066 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
13068 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
13069 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
13074 -- For arrays, the only real issue is component size. If we know the
13075 -- component size for both arrays, and it is the same, then that's
13076 -- good enough to know we don't have a change of representation.
13078 if Is_Array_Type
(T1
) then
13079 if Known_Component_Size
(T1
)
13080 and then Known_Component_Size
(T2
)
13081 and then Component_Size
(T1
) = Component_Size
(T2
)
13087 -- For records, representations are different if reorderings differ
13089 if Is_Record_Type
(T1
)
13090 and then Is_Record_Type
(T2
)
13091 and then No_Reordering
(T1
) /= No_Reordering
(T2
)
13096 -- Types definitely have same representation if neither has non-standard
13097 -- representation since default representations are always consistent.
13098 -- If only one has non-standard representation, and the other does not,
13099 -- then we consider that they do not have the same representation. They
13100 -- might, but there is no way of telling early enough.
13102 if Has_Non_Standard_Rep
(T1
) then
13103 if not Has_Non_Standard_Rep
(T2
) then
13107 return not Has_Non_Standard_Rep
(T2
);
13110 -- Here the two types both have non-standard representation, and we need
13111 -- to determine if they have the same non-standard representation.
13113 -- For arrays, we simply need to test if the component sizes are the
13114 -- same. Pragma Pack is reflected in modified component sizes, so this
13115 -- check also deals with pragma Pack.
13117 if Is_Array_Type
(T1
) then
13118 return Component_Size
(T1
) = Component_Size
(T2
);
13120 -- Case of record types
13122 elsif Is_Record_Type
(T1
) then
13124 -- Packed status must conform
13126 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
13129 -- Otherwise we must check components. Typ2 maybe a constrained
13130 -- subtype with fewer components, so we compare the components
13131 -- of the base types.
13134 Record_Case
: declare
13135 CD1
, CD2
: Entity_Id
;
13137 function Same_Rep
return Boolean;
13138 -- CD1 and CD2 are either components or discriminants. This
13139 -- function tests whether they have the same representation.
13145 function Same_Rep
return Boolean is
13147 if No
(Component_Clause
(CD1
)) then
13148 return No
(Component_Clause
(CD2
));
13150 -- Note: at this point, component clauses have been
13151 -- normalized to the default bit order, so that the
13152 -- comparison of Component_Bit_Offsets is meaningful.
13155 Present
(Component_Clause
(CD2
))
13157 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
13159 Esize
(CD1
) = Esize
(CD2
);
13163 -- Start of processing for Record_Case
13166 if Has_Discriminants
(T1
) then
13168 -- The number of discriminants may be different if the
13169 -- derived type has fewer (constrained by values). The
13170 -- invisible discriminants retain the representation of
13171 -- the original, so the discrepancy does not per se
13172 -- indicate a different representation.
13174 CD1
:= First_Discriminant
(T1
);
13175 CD2
:= First_Discriminant
(T2
);
13176 while Present
(CD1
) and then Present
(CD2
) loop
13177 if not Same_Rep
then
13180 Next_Discriminant
(CD1
);
13181 Next_Discriminant
(CD2
);
13186 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
13187 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
13188 while Present
(CD1
) loop
13189 if not Same_Rep
then
13192 Next_Component
(CD1
);
13193 Next_Component
(CD2
);
13201 -- For enumeration types, we must check each literal to see if the
13202 -- representation is the same. Note that we do not permit enumeration
13203 -- representation clauses for Character and Wide_Character, so these
13204 -- cases were already dealt with.
13206 elsif Is_Enumeration_Type
(T1
) then
13207 Enumeration_Case
: declare
13208 L1
, L2
: Entity_Id
;
13211 L1
:= First_Literal
(T1
);
13212 L2
:= First_Literal
(T2
);
13213 while Present
(L1
) loop
13214 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
13223 end Enumeration_Case
;
13225 -- Any other types have the same representation for these purposes
13230 end Same_Representation
;
13232 --------------------------------
13233 -- Resolve_Iterable_Operation --
13234 --------------------------------
13236 procedure Resolve_Iterable_Operation
13238 Cursor
: Entity_Id
;
13247 if not Is_Overloaded
(N
) then
13248 if not Is_Entity_Name
(N
)
13249 or else Ekind
(Entity
(N
)) /= E_Function
13250 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
13251 or else No
(First_Formal
(Entity
(N
)))
13252 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
13255 ("iterable primitive must be local function name whose first "
13256 & "formal is an iterable type", N
);
13261 F1
:= First_Formal
(Ent
);
13263 if Nam
= Name_First
or else Nam
= Name_Last
then
13265 -- First or Last (Container) => Cursor
13267 if Etype
(Ent
) /= Cursor
then
13268 Error_Msg_N
("primitive for First must yield a curosr", N
);
13271 elsif Nam
= Name_Next
then
13273 -- Next (Container, Cursor) => Cursor
13275 F2
:= Next_Formal
(F1
);
13277 if Etype
(F2
) /= Cursor
13278 or else Etype
(Ent
) /= Cursor
13279 or else Present
(Next_Formal
(F2
))
13281 Error_Msg_N
("no match for Next iterable primitive", N
);
13284 elsif Nam
= Name_Previous
then
13286 -- Previous (Container, Cursor) => Cursor
13288 F2
:= Next_Formal
(F1
);
13290 if Etype
(F2
) /= Cursor
13291 or else Etype
(Ent
) /= Cursor
13292 or else Present
(Next_Formal
(F2
))
13294 Error_Msg_N
("no match for Previous iterable primitive", N
);
13297 elsif Nam
= Name_Has_Element
then
13299 -- Has_Element (Container, Cursor) => Boolean
13301 F2
:= Next_Formal
(F1
);
13303 if Etype
(F2
) /= Cursor
13304 or else Etype
(Ent
) /= Standard_Boolean
13305 or else Present
(Next_Formal
(F2
))
13307 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
13310 elsif Nam
= Name_Element
then
13311 F2
:= Next_Formal
(F1
);
13314 or else Etype
(F2
) /= Cursor
13315 or else Present
(Next_Formal
(F2
))
13317 Error_Msg_N
("no match for Element iterable primitive", N
);
13321 raise Program_Error
;
13325 -- Overloaded case: find subprogram with proper signature. Caller
13326 -- will report error if no match is found.
13333 Get_First_Interp
(N
, I
, It
);
13334 while Present
(It
.Typ
) loop
13335 if Ekind
(It
.Nam
) = E_Function
13336 and then Scope
(It
.Nam
) = Scope
(Typ
)
13337 and then Etype
(First_Formal
(It
.Nam
)) = Typ
13339 F1
:= First_Formal
(It
.Nam
);
13341 if Nam
= Name_First
then
13342 if Etype
(It
.Nam
) = Cursor
13343 and then No
(Next_Formal
(F1
))
13345 Set_Entity
(N
, It
.Nam
);
13349 elsif Nam
= Name_Next
then
13350 F2
:= Next_Formal
(F1
);
13353 and then No
(Next_Formal
(F2
))
13354 and then Etype
(F2
) = Cursor
13355 and then Etype
(It
.Nam
) = Cursor
13357 Set_Entity
(N
, It
.Nam
);
13361 elsif Nam
= Name_Has_Element
then
13362 F2
:= Next_Formal
(F1
);
13365 and then No
(Next_Formal
(F2
))
13366 and then Etype
(F2
) = Cursor
13367 and then Etype
(It
.Nam
) = Standard_Boolean
13369 Set_Entity
(N
, It
.Nam
);
13370 F2
:= Next_Formal
(F1
);
13374 elsif Nam
= Name_Element
then
13375 F2
:= Next_Formal
(F1
);
13378 and then No
(Next_Formal
(F2
))
13379 and then Etype
(F2
) = Cursor
13381 Set_Entity
(N
, It
.Nam
);
13387 Get_Next_Interp
(I
, It
);
13391 end Resolve_Iterable_Operation
;
13397 procedure Set_Biased
13401 Biased
: Boolean := True)
13405 Set_Has_Biased_Representation
(E
);
13407 if Warn_On_Biased_Representation
then
13409 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
13414 --------------------
13415 -- Set_Enum_Esize --
13416 --------------------
13418 procedure Set_Enum_Esize
(T
: Entity_Id
) is
13424 Init_Alignment
(T
);
13426 -- Find the minimum standard size (8,16,32,64) that fits
13428 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
13429 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
13432 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
13433 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13435 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
13438 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
13441 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
13446 if Hi
< Uint_2
**08 then
13447 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13449 elsif Hi
< Uint_2
**16 then
13452 elsif Hi
< Uint_2
**32 then
13455 else pragma Assert
(Hi
< Uint_2
**63);
13460 -- That minimum is the proper size unless we have a foreign convention
13461 -- and the size required is 32 or less, in which case we bump the size
13462 -- up to 32. This is required for C and C++ and seems reasonable for
13463 -- all other foreign conventions.
13465 if Has_Foreign_Convention
(T
)
13466 and then Esize
(T
) < Standard_Integer_Size
13468 -- Don't do this if Short_Enums on target
13470 and then not Target_Short_Enums
13472 Init_Esize
(T
, Standard_Integer_Size
);
13474 Init_Esize
(T
, Sz
);
13476 end Set_Enum_Esize
;
13478 -----------------------------
13479 -- Uninstall_Discriminants --
13480 -----------------------------
13482 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
13488 -- Discriminants have been made visible for type declarations and
13489 -- protected type declarations, not for subtype declarations.
13491 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
13492 Disc
:= First_Discriminant
(E
);
13493 while Present
(Disc
) loop
13494 if Disc
/= Current_Entity
(Disc
) then
13495 Prev
:= Current_Entity
(Disc
);
13496 while Present
(Prev
)
13497 and then Present
(Homonym
(Prev
))
13498 and then Homonym
(Prev
) /= Disc
13500 Prev
:= Homonym
(Prev
);
13506 Set_Is_Immediately_Visible
(Disc
, False);
13508 Outer
:= Homonym
(Disc
);
13509 while Present
(Outer
) and then Scope
(Outer
) = E
loop
13510 Outer
:= Homonym
(Outer
);
13513 -- Reset homonym link of other entities, but do not modify link
13514 -- between entities in current scope, so that the back end can
13515 -- have a proper count of local overloadings.
13518 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
13520 elsif Scope
(Prev
) /= Scope
(Disc
) then
13521 Set_Homonym
(Prev
, Outer
);
13524 Next_Discriminant
(Disc
);
13527 end Uninstall_Discriminants
;
13529 -------------------------------------------
13530 -- Uninstall_Discriminants_And_Pop_Scope --
13531 -------------------------------------------
13533 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
13535 if Is_Type
(E
) and then Has_Discriminants
(E
) then
13536 Uninstall_Discriminants
(E
);
13539 end Uninstall_Discriminants_And_Pop_Scope
;
13541 ------------------------------
13542 -- Validate_Address_Clauses --
13543 ------------------------------
13545 procedure Validate_Address_Clauses
is
13546 function Offset_Value
(Expr
: Node_Id
) return Uint
;
13547 -- Given an Address attribute reference, return the value in bits of its
13548 -- offset from the first bit of the underlying entity, or 0 if it is not
13549 -- known at compile time.
13555 function Offset_Value
(Expr
: Node_Id
) return Uint
is
13556 N
: Node_Id
:= Prefix
(Expr
);
13558 Val
: Uint
:= Uint_0
;
13561 -- Climb the prefix chain and compute the cumulative offset
13564 if Is_Entity_Name
(N
) then
13567 elsif Nkind
(N
) = N_Selected_Component
then
13568 Off
:= Component_Bit_Offset
(Entity
(Selector_Name
(N
)));
13569 if Off
/= No_Uint
and then Off
>= Uint_0
then
13576 elsif Nkind
(N
) = N_Indexed_Component
then
13577 Off
:= Indexed_Component_Bit_Offset
(N
);
13578 if Off
/= No_Uint
then
13591 -- Start of processing for Validate_Address_Clauses
13594 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
13596 ACCR
: Address_Clause_Check_Record
13597 renames Address_Clause_Checks
.Table
(J
);
13601 X_Alignment
: Uint
;
13602 Y_Alignment
: Uint
:= Uint_0
;
13605 Y_Size
: Uint
:= Uint_0
;
13610 -- Skip processing of this entry if warning already posted
13612 if not Address_Warning_Posted
(ACCR
.N
) then
13613 Expr
:= Original_Node
(Expression
(ACCR
.N
));
13615 -- Get alignments, sizes and offset, if any
13617 X_Alignment
:= Alignment
(ACCR
.X
);
13618 X_Size
:= Esize
(ACCR
.X
);
13620 if Present
(ACCR
.Y
) then
13621 Y_Alignment
:= Alignment
(ACCR
.Y
);
13622 Y_Size
:= Esize
(ACCR
.Y
);
13626 and then Nkind
(Expr
) = N_Attribute_Reference
13627 and then Attribute_Name
(Expr
) = Name_Address
13629 X_Offs
:= Offset_Value
(Expr
);
13634 -- Check for known value not multiple of alignment
13636 if No
(ACCR
.Y
) then
13637 if not Alignment_Checks_Suppressed
(ACCR
)
13638 and then X_Alignment
/= 0
13639 and then ACCR
.A
mod X_Alignment
/= 0
13642 ("??specified address for& is inconsistent with "
13643 & "alignment", ACCR
.N
, ACCR
.X
);
13645 ("\??program execution may be erroneous (RM 13.3(27))",
13648 Error_Msg_Uint_1
:= X_Alignment
;
13649 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13652 -- Check for large object overlaying smaller one
13654 elsif Y_Size
> Uint_0
13655 and then X_Size
> Uint_0
13656 and then X_Offs
+ X_Size
> Y_Size
13658 Error_Msg_NE
("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
13660 ("\??program execution may be erroneous", ACCR
.N
);
13662 Error_Msg_Uint_1
:= X_Size
;
13663 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.X
);
13665 Error_Msg_Uint_1
:= Y_Size
;
13666 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
13668 if Y_Size
>= X_Size
then
13669 Error_Msg_Uint_1
:= X_Offs
;
13670 Error_Msg_NE
("\??but offset of & is ^", ACCR
.N
, ACCR
.X
);
13673 -- Check for inadequate alignment, both of the base object
13674 -- and of the offset, if any. We only do this check if the
13675 -- run-time Alignment_Check is active. No point in warning
13676 -- if this check has been suppressed (or is suppressed by
13677 -- default in the non-strict alignment machine case).
13679 -- Note: we do not check the alignment if we gave a size
13680 -- warning, since it would likely be redundant.
13682 elsif not Alignment_Checks_Suppressed
(ACCR
)
13683 and then Y_Alignment
/= Uint_0
13685 (Y_Alignment
< X_Alignment
13688 and then Nkind
(Expr
) = N_Attribute_Reference
13689 and then Attribute_Name
(Expr
) = Name_Address
13690 and then Has_Compatible_Alignment
13691 (ACCR
.X
, Prefix
(Expr
), True) /=
13695 ("??specified address for& may be inconsistent with "
13696 & "alignment", ACCR
.N
, ACCR
.X
);
13698 ("\??program execution may be erroneous (RM 13.3(27))",
13701 Error_Msg_Uint_1
:= X_Alignment
;
13702 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13704 Error_Msg_Uint_1
:= Y_Alignment
;
13705 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
13707 if Y_Alignment
>= X_Alignment
then
13709 ("\??but offset is not multiple of alignment", ACCR
.N
);
13715 end Validate_Address_Clauses
;
13717 -----------------------------------------
13718 -- Validate_Compile_Time_Warning_Error --
13719 -----------------------------------------
13721 procedure Validate_Compile_Time_Warning_Error
(N
: Node_Id
) is
13723 Compile_Time_Warnings_Errors
.Append
13724 (New_Val
=> CTWE_Entry
'(Eloc => Sloc (N),
13725 Scope => Current_Scope,
13727 end Validate_Compile_Time_Warning_Error;
13729 ------------------------------------------
13730 -- Validate_Compile_Time_Warning_Errors --
13731 ------------------------------------------
13733 procedure Validate_Compile_Time_Warning_Errors is
13734 procedure Set_Scope (S : Entity_Id);
13735 -- Install all enclosing scopes of S along with S itself
13737 procedure Unset_Scope (S : Entity_Id);
13738 -- Uninstall all enclosing scopes of S along with S itself
13744 procedure Set_Scope (S : Entity_Id) is
13746 if S /= Standard_Standard then
13747 Set_Scope (Scope (S));
13757 procedure Unset_Scope (S : Entity_Id) is
13759 if S /= Standard_Standard then
13760 Unset_Scope (Scope (S));
13766 -- Start of processing for Validate_Compile_Time_Warning_Errors
13769 Expander_Mode_Save_And_Set (False);
13770 In_Compile_Time_Warning_Or_Error := True;
13772 for N in Compile_Time_Warnings_Errors.First ..
13773 Compile_Time_Warnings_Errors.Last
13776 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13779 Set_Scope (T.Scope);
13780 Reset_Analyzed_Flags (T.Prag);
13781 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13782 Unset_Scope (T.Scope);
13786 In_Compile_Time_Warning_Or_Error := False;
13787 Expander_Mode_Restore;
13788 end Validate_Compile_Time_Warning_Errors;
13790 ---------------------------
13791 -- Validate_Independence --
13792 ---------------------------
13794 procedure Validate_Independence is
13795 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13803 procedure Check_Array_Type (Atyp : Entity_Id);
13804 -- Checks if the array type Atyp has independent components, and
13805 -- if not, outputs an appropriate set of error messages.
13807 procedure No_Independence;
13808 -- Output message that independence cannot be guaranteed
13810 function OK_Component (C : Entity_Id) return Boolean;
13811 -- Checks one component to see if it is independently accessible, and
13812 -- if so yields True, otherwise yields False if independent access
13813 -- cannot be guaranteed. This is a conservative routine, it only
13814 -- returns True if it knows for sure, it returns False if it knows
13815 -- there is a problem, or it cannot be sure there is no problem.
13817 procedure Reason_Bad_Component (C : Entity_Id);
13818 -- Outputs continuation message if a reason can be determined for
13819 -- the component C being bad.
13821 ----------------------
13822 -- Check_Array_Type --
13823 ----------------------
13825 procedure Check_Array_Type (Atyp : Entity_Id) is
13826 Ctyp : constant Entity_Id := Component_Type (Atyp);
13829 -- OK if no alignment clause, no pack, and no component size
13831 if not Has_Component_Size_Clause (Atyp)
13832 and then not Has_Alignment_Clause (Atyp)
13833 and then not Is_Packed (Atyp)
13838 -- Case of component size is greater than or equal to 64 and the
13839 -- alignment of the array is at least as large as the alignment
13840 -- of the component. We are definitely OK in this situation.
13842 if Known_Component_Size (Atyp)
13843 and then Component_Size (Atyp) >= 64
13844 and then Known_Alignment (Atyp)
13845 and then Known_Alignment (Ctyp)
13846 and then Alignment (Atyp) >= Alignment (Ctyp)
13851 -- Check actual component size
13853 if not Known_Component_Size (Atyp)
13854 or else not (Addressable (Component_Size (Atyp))
13855 and then Component_Size (Atyp) < 64)
13856 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13860 -- Bad component size, check reason
13862 if Has_Component_Size_Clause (Atyp) then
13863 P := Get_Attribute_Definition_Clause
13864 (Atyp, Attribute_Component_Size);
13866 if Present (P) then
13867 Error_Msg_Sloc := Sloc (P);
13868 Error_Msg_N ("\because of Component_Size clause#", N);
13873 if Is_Packed (Atyp) then
13874 P := Get_Rep_Pragma (Atyp, Name_Pack);
13876 if Present (P) then
13877 Error_Msg_Sloc := Sloc (P);
13878 Error_Msg_N ("\because of pragma Pack#", N);
13883 -- No reason found, just return
13888 -- Array type is OK independence-wise
13891 end Check_Array_Type;
13893 ---------------------
13894 -- No_Independence --
13895 ---------------------
13897 procedure No_Independence is
13899 if Pragma_Name (N) = Name_Independent then
13900 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13903 ("independent components cannot be guaranteed for&", N, E);
13905 end No_Independence;
13911 function OK_Component (C : Entity_Id) return Boolean is
13912 Rec : constant Entity_Id := Scope (C);
13913 Ctyp : constant Entity_Id := Etype (C);
13916 -- OK if no component clause, no Pack, and no alignment clause
13918 if No (Component_Clause (C))
13919 and then not Is_Packed (Rec)
13920 and then not Has_Alignment_Clause (Rec)
13925 -- Here we look at the actual component layout. A component is
13926 -- addressable if its size is a multiple of the Esize of the
13927 -- component type, and its starting position in the record has
13928 -- appropriate alignment, and the record itself has appropriate
13929 -- alignment to guarantee the component alignment.
13931 -- Make sure sizes are static, always assume the worst for any
13932 -- cases where we cannot check static values.
13934 if not (Known_Static_Esize (C)
13936 Known_Static_Esize (Ctyp))
13941 -- Size of component must be addressable or greater than 64 bits
13942 -- and a multiple of bytes.
13944 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13948 -- Check size is proper multiple
13950 if Esize (C) mod Esize (Ctyp) /= 0 then
13954 -- Check alignment of component is OK
13956 if not Known_Component_Bit_Offset (C)
13957 or else Component_Bit_Offset (C) < Uint_0
13958 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13963 -- Check alignment of record type is OK
13965 if not Known_Alignment (Rec)
13966 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13971 -- All tests passed, component is addressable
13976 --------------------------
13977 -- Reason_Bad_Component --
13978 --------------------------
13980 procedure Reason_Bad_Component (C : Entity_Id) is
13981 Rec : constant Entity_Id := Scope (C);
13982 Ctyp : constant Entity_Id := Etype (C);
13985 -- If component clause present assume that's the problem
13987 if Present (Component_Clause (C)) then
13988 Error_Msg_Sloc := Sloc (Component_Clause (C));
13989 Error_Msg_N ("\because of Component_Clause#", N);
13993 -- If pragma Pack clause present, assume that's the problem
13995 if Is_Packed (Rec) then
13996 P := Get_Rep_Pragma (Rec, Name_Pack);
13998 if Present (P) then
13999 Error_Msg_Sloc := Sloc (P);
14000 Error_Msg_N ("\because of pragma Pack#", N);
14005 -- See if record has bad alignment clause
14007 if Has_Alignment_Clause (Rec)
14008 and then Known_Alignment (Rec)
14009 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
14011 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
14013 if Present (P) then
14014 Error_Msg_Sloc := Sloc (P);
14015 Error_Msg_N ("\because of Alignment clause#", N);
14019 -- Couldn't find a reason, so return without a message
14022 end Reason_Bad_Component;
14024 -- Start of processing for Validate_Independence
14027 for J in Independence_Checks.First .. Independence_Checks.Last loop
14028 N := Independence_Checks.Table (J).N;
14029 E := Independence_Checks.Table (J).E;
14030 IC := Pragma_Name (N) = Name_Independent_Components;
14032 -- Deal with component case
14034 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
14035 if not OK_Component (E) then
14037 Reason_Bad_Component (E);
14042 -- Deal with record with Independent_Components
14044 if IC and then Is_Record_Type (E) then
14045 Comp := First_Component_Or_Discriminant (E);
14046 while Present (Comp) loop
14047 if not OK_Component (Comp) then
14049 Reason_Bad_Component (Comp);
14053 Next_Component_Or_Discriminant (Comp);
14057 -- Deal with address clause case
14059 if Is_Object (E) then
14060 Addr := Address_Clause (E);
14062 if Present (Addr) then
14064 Error_Msg_Sloc := Sloc (Addr);
14065 Error_Msg_N ("\because of Address clause#", N);
14070 -- Deal with independent components for array type
14072 if IC and then Is_Array_Type (E) then
14073 Check_Array_Type (E);
14076 -- Deal with independent components for array object
14078 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14079 Check_Array_Type (Etype (E));
14084 end Validate_Independence;
14086 ------------------------------
14087 -- Validate_Iterable_Aspect --
14088 ------------------------------
14090 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14095 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14097 First_Id : Entity_Id;
14098 Last_Id : Entity_Id;
14099 Next_Id : Entity_Id;
14100 Has_Element_Id : Entity_Id;
14101 Element_Id : Entity_Id;
14104 -- If previous error aspect is unusable
14106 if Cursor = Any_Type then
14113 Has_Element_Id := Empty;
14114 Element_Id := Empty;
14116 -- Each expression must resolve to a function with the proper signature
14118 Assoc := First (Component_Associations (Expression (ASN)));
14119 while Present (Assoc) loop
14120 Expr := Expression (Assoc);
14123 Prim := First (Choices (Assoc));
14125 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14126 Error_Msg_N ("illegal name in association", Prim);
14128 elsif Chars (Prim) = Name_First then
14129 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14130 First_Id := Entity (Expr);
14132 elsif Chars (Prim) = Name_Last then
14133 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14134 Last_Id := Entity (Expr);
14136 elsif Chars (Prim) = Name_Previous then
14137 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14138 Last_Id := Entity (Expr);
14140 elsif Chars (Prim) = Name_Next then
14141 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14142 Next_Id := Entity (Expr);
14144 elsif Chars (Prim) = Name_Has_Element then
14145 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14146 Has_Element_Id := Entity (Expr);
14148 elsif Chars (Prim) = Name_Element then
14149 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14150 Element_Id := Entity (Expr);
14153 Error_Msg_N ("invalid name for iterable function", Prim);
14159 if No (First_Id) then
14160 Error_Msg_N ("match for First primitive not found", ASN);
14162 elsif No (Next_Id) then
14163 Error_Msg_N ("match for Next primitive not found", ASN);
14165 elsif No (Has_Element_Id) then
14166 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14168 elsif No (Element_Id) or else No (Last_Id) then
14171 end Validate_Iterable_Aspect;
14173 -----------------------------------
14174 -- Validate_Unchecked_Conversion --
14175 -----------------------------------
14177 procedure Validate_Unchecked_Conversion
14179 Act_Unit : Entity_Id)
14181 Source : Entity_Id;
14182 Target : Entity_Id;
14186 -- Obtain source and target types. Note that we call Ancestor_Subtype
14187 -- here because the processing for generic instantiation always makes
14188 -- subtypes, and we want the original frozen actual types.
14190 -- If we are dealing with private types, then do the check on their
14191 -- fully declared counterparts if the full declarations have been
14192 -- encountered (they don't have to be visible, but they must exist).
14194 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14196 if Is_Private_Type (Source)
14197 and then Present (Underlying_Type (Source))
14199 Source := Underlying_Type (Source);
14202 Target := Ancestor_Subtype (Etype (Act_Unit));
14204 -- If either type is generic, the instantiation happens within a generic
14205 -- unit, and there is nothing to check. The proper check will happen
14206 -- when the enclosing generic is instantiated.
14208 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14212 if Is_Private_Type (Target)
14213 and then Present (Underlying_Type (Target))
14215 Target := Underlying_Type (Target);
14218 -- Source may be unconstrained array, but not target, except in relaxed
14221 if Is_Array_Type (Target)
14222 and then not Is_Constrained (Target)
14223 and then not Relaxed_RM_Semantics
14226 ("unchecked conversion to unconstrained array not allowed", N);
14230 -- Warn if conversion between two different convention pointers
14232 if Is_Access_Type (Target)
14233 and then Is_Access_Type (Source)
14234 and then Convention (Target) /= Convention (Source)
14235 and then Warn_On_Unchecked_Conversion
14237 -- Give warnings for subprogram pointers only on most targets
14239 if Is_Access_Subprogram_Type (Target)
14240 or else Is_Access_Subprogram_Type (Source)
14243 ("?z?conversion between pointers with different conventions!",
14248 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14249 -- warning when compiling GNAT-related sources.
14251 if Warn_On_Unchecked_Conversion
14252 and then not In_Predefined_Unit (N)
14253 and then RTU_Loaded (Ada_Calendar)
14254 and then (Chars (Source) = Name_Time
14256 Chars (Target) = Name_Time)
14258 -- If Ada.Calendar is loaded and the name of one of the operands is
14259 -- Time, there is a good chance that this is Ada.Calendar.Time.
14262 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14264 pragma Assert (Present (Calendar_Time));
14266 if Source = Calendar_Time or else Target = Calendar_Time then
14268 ("?z?representation of 'Time values may change between
"
14269 & "'G'N'A
'T versions
", N);
14274 -- Make entry in unchecked conversion table for later processing by
14275 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14276 -- (using values set by the back end where possible). This is only done
14277 -- if the appropriate warning is active.
14279 if Warn_On_Unchecked_Conversion then
14280 Unchecked_Conversions.Append
14281 (New_Val => UC_Entry'(Eloc => Sloc (N),
14284 Act_Unit => Act_Unit));
14286 -- If both sizes are known statically now, then back-end annotation
14287 -- is not required to do a proper check but if either size is not
14288 -- known statically, then we need the annotation.
14290 if Known_Static_RM_Size (Source)
14292 Known_Static_RM_Size (Target)
14296 Back_Annotate_Rep_Info := True;
14300 -- If unchecked conversion to access type, and access type is declared
14301 -- in the same unit as the unchecked conversion, then set the flag
14302 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14304 if Is_Access_Type (Target) and then
14305 In_Same_Source_Unit (Target, N)
14307 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14310 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14311 -- the back end needs to perform special validation checks.
14313 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14314 -- have full expansion and the back end is called ???
14317 Make_Validate_Unchecked_Conversion (Sloc (N));
14318 Set_Source_Type (Vnode, Source);
14319 Set_Target_Type (Vnode, Target);
14321 -- If the unchecked conversion node is in a list, just insert before it.
14322 -- If not we have some strange case, not worth bothering about.
14324 if Is_List_Member (N) then
14325 Insert_After (N, Vnode);
14327 end Validate_Unchecked_Conversion;
14329 ------------------------------------
14330 -- Validate_Unchecked_Conversions --
14331 ------------------------------------
14333 procedure Validate_Unchecked_Conversions is
14335 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14337 T : UC_Entry renames Unchecked_Conversions.Table (N);
14339 Act_Unit : constant Entity_Id := T.Act_Unit;
14340 Eloc : constant Source_Ptr := T.Eloc;
14341 Source : constant Entity_Id := T.Source;
14342 Target : constant Entity_Id := T.Target;
14348 -- Skip if function marked as warnings off
14350 if Warnings_Off (Act_Unit) then
14354 -- This validation check, which warns if we have unequal sizes for
14355 -- unchecked conversion, and thus potentially implementation
14356 -- dependent semantics, is one of the few occasions on which we
14357 -- use the official RM size instead of Esize. See description in
14358 -- Einfo "Handling
of Type'Size Values
" for details.
14360 if Serious_Errors_Detected = 0
14361 and then Known_Static_RM_Size (Source)
14362 and then Known_Static_RM_Size (Target)
14364 -- Don't do the check if warnings off for either type, note the
14365 -- deliberate use of OR here instead of OR ELSE to get the flag
14366 -- Warnings_Off_Used set for both types if appropriate.
14368 and then not (Has_Warnings_Off (Source)
14370 Has_Warnings_Off (Target))
14372 Source_Siz := RM_Size (Source);
14373 Target_Siz := RM_Size (Target);
14375 if Source_Siz /= Target_Siz then
14377 ("?z?types
for unchecked conversion have different sizes
!",
14380 if All_Errors_Mode then
14381 Error_Msg_Name_1 := Chars (Source);
14382 Error_Msg_Uint_1 := Source_Siz;
14383 Error_Msg_Name_2 := Chars (Target);
14384 Error_Msg_Uint_2 := Target_Siz;
14385 Error_Msg ("\size
of % is ^
, size
of % is ^?z?
", Eloc);
14387 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14389 if Is_Discrete_Type (Source)
14391 Is_Discrete_Type (Target)
14393 if Source_Siz > Target_Siz then
14395 ("\?z?^ high order bits
of source will
"
14396 & "be ignored
!", Eloc);
14398 elsif Is_Unsigned_Type (Source) then
14400 ("\?z?source will be extended
with ^ high order
"
14401 & "zero bits
!", Eloc);
14405 ("\?z?source will be extended
with ^ high order
"
14406 & "sign bits
!", Eloc);
14409 elsif Source_Siz < Target_Siz then
14410 if Is_Discrete_Type (Target) then
14411 if Bytes_Big_Endian then
14413 ("\?z?target value will include ^ undefined
"
14414 & "low order bits
!", Eloc, Act_Unit);
14417 ("\?z?target value will include ^ undefined
"
14418 & "high order bits
!", Eloc, Act_Unit);
14423 ("\?z?^ trailing bits
of target value will be
"
14424 & "undefined
!", Eloc, Act_Unit);
14427 else pragma Assert (Source_Siz > Target_Siz);
14428 if Is_Discrete_Type (Source) then
14429 if Bytes_Big_Endian then
14431 ("\?z?^ low order bits
of source will be
"
14432 & "ignored
!", Eloc, Act_Unit);
14435 ("\?z?^ high order bits
of source will be
"
14436 & "ignored
!", Eloc, Act_Unit);
14441 ("\?z?^ trailing bits
of source will be
"
14442 & "ignored
!", Eloc, Act_Unit);
14449 -- If both types are access types, we need to check the alignment.
14450 -- If the alignment of both is specified, we can do it here.
14452 if Serious_Errors_Detected = 0
14453 and then Is_Access_Type (Source)
14454 and then Is_Access_Type (Target)
14455 and then Target_Strict_Alignment
14456 and then Present (Designated_Type (Source))
14457 and then Present (Designated_Type (Target))
14460 D_Source : constant Entity_Id := Designated_Type (Source);
14461 D_Target : constant Entity_Id := Designated_Type (Target);
14464 if Known_Alignment (D_Source)
14466 Known_Alignment (D_Target)
14469 Source_Align : constant Uint := Alignment (D_Source);
14470 Target_Align : constant Uint := Alignment (D_Target);
14473 if Source_Align < Target_Align
14474 and then not Is_Tagged_Type (D_Source)
14476 -- Suppress warning if warnings suppressed on either
14477 -- type or either designated type. Note the use of
14478 -- OR here instead of OR ELSE. That is intentional,
14479 -- we would like to set flag Warnings_Off_Used in
14480 -- all types for which warnings are suppressed.
14482 and then not (Has_Warnings_Off (D_Source)
14484 Has_Warnings_Off (D_Target)
14486 Has_Warnings_Off (Source)
14488 Has_Warnings_Off (Target))
14490 Error_Msg_Uint_1 := Target_Align;
14491 Error_Msg_Uint_2 := Source_Align;
14492 Error_Msg_Node_1 := D_Target;
14493 Error_Msg_Node_2 := D_Source;
14495 ("?z?alignment
of & (^
) is stricter than
"
14496 & "alignment
of & (^
)!", Eloc, Act_Unit);
14498 ("\?z?resulting
access value may have invalid
"
14499 & "alignment
!", Eloc, Act_Unit);
14510 end Validate_Unchecked_Conversions;