1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 2014-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
31 with Namet
; use Namet
;
32 with Nlists
; use Nlists
;
33 with Nmake
; use Nmake
;
35 with Output
; use Output
;
36 with Rtsfind
; use Rtsfind
;
38 with Sem_Aux
; use Sem_Aux
;
39 with Sem_Ch8
; use Sem_Ch8
;
40 with Sem_Mech
; use Sem_Mech
;
41 with Sem_Res
; use Sem_Res
;
42 with Sem_Util
; use Sem_Util
;
43 with Sinfo
; use Sinfo
;
44 with Sinput
; use Sinput
;
45 with Snames
; use Snames
;
46 with Stand
; use Stand
;
47 with Tbuild
; use Tbuild
;
48 with Uintp
; use Uintp
;
50 package body Exp_Unst
is
52 -----------------------
53 -- Local Subprograms --
54 -----------------------
56 procedure Unnest_Subprogram
(Subp
: Entity_Id
; Subp_Body
: Node_Id
);
57 -- Subp is a library-level subprogram which has nested subprograms, and
58 -- Subp_Body is the corresponding N_Subprogram_Body node. This procedure
59 -- declares the AREC types and objects, adds assignments to the AREC record
60 -- as required, defines the xxxPTR types for uplevel referenced objects,
61 -- adds the ARECP parameter to all nested subprograms which need it, and
62 -- modifies all uplevel references appropriately.
68 -- Table to record calls within the nest being analyzed. These are the
69 -- calls which may need to have an AREC actual added. This table is built
70 -- new for each subprogram nest and cleared at the end of processing each
73 type Call_Entry
is record
78 -- Entity of the subprogram containing the call (can be at any level)
81 -- Entity of the subprogram called (always at level 2 or higher). Note
82 -- that in accordance with the basic rules of nesting, the level of To
83 -- is either less than or equal to the level of From, or one greater.
86 package Calls
is new Table
.Table
(
87 Table_Component_Type
=> Call_Entry
,
88 Table_Index_Type
=> Nat
,
91 Table_Increment
=> 200,
92 Table_Name
=> "Unnest_Calls");
93 -- Records each call within the outer subprogram and all nested subprograms
94 -- that are to other subprograms nested within the outer subprogram. These
95 -- are the calls that may need an additional parameter.
97 procedure Append_Unique_Call
(Call
: Call_Entry
);
98 -- Append a call entry to the Calls table. A check is made to see if the
99 -- table already contains this entry and if so it has no effect.
101 ----------------------------------
102 -- Subprograms For Fat Pointers --
103 ----------------------------------
105 function Build_Access_Type_Decl
107 Scop
: Entity_Id
) return Node_Id
;
108 -- For an uplevel reference that involves an unconstrained array type,
109 -- build an access type declaration for the corresponding activation
110 -- record component. The relevant attributes of the access type are
111 -- set here to avoid a full analysis that would require a scope stack.
113 function Needs_Fat_Pointer
(E
: Entity_Id
) return Boolean;
114 -- A formal parameter of an unconstrained array type that appears in an
115 -- uplevel reference requires the construction of an access type, to be
116 -- used in the corresponding component declaration.
122 -- Table to record explicit uplevel references to objects (variables,
123 -- constants, formal parameters). These are the references that will
124 -- need rewriting to use the activation table (AREC) pointers. Also
125 -- included are implicit and explicit uplevel references to types, but
126 -- these do not get rewritten by the front end. This table is built new
127 -- for each subprogram nest and cleared at the end of processing each
130 type Uref_Entry
is record
132 -- The reference itself. For objects this is always an entity reference
133 -- and the referenced entity will have its Is_Uplevel_Referenced_Entity
134 -- flag set and will appear in the Uplevel_Referenced_Entities list of
135 -- the subprogram declaring this entity.
138 -- The Entity_Id of the uplevel referenced object or type
141 -- The entity for the subprogram immediately containing this entity
144 -- The entity for the subprogram containing the referenced entity. Note
145 -- that the level of Callee must be less than the level of Caller, since
146 -- this is an uplevel reference.
149 package Urefs
is new Table
.Table
(
150 Table_Component_Type
=> Uref_Entry
,
151 Table_Index_Type
=> Nat
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> 100,
154 Table_Increment
=> 200,
155 Table_Name
=> "Unnest_Urefs");
157 ------------------------
158 -- Append_Unique_Call --
159 ------------------------
161 procedure Append_Unique_Call
(Call
: Call_Entry
) is
163 for J
in Calls
.First
.. Calls
.Last
loop
164 if Calls
.Table
(J
) = Call
then
170 end Append_Unique_Call
;
172 -----------------------------
173 -- Build_Access_Type_Decl --
174 -----------------------------
176 function Build_Access_Type_Decl
178 Scop
: Entity_Id
) return Node_Id
180 Loc
: constant Source_Ptr
:= Sloc
(E
);
184 Typ
:= Make_Temporary
(Loc
, 'S');
185 Set_Ekind
(Typ
, E_General_Access_Type
);
186 Set_Etype
(Typ
, Typ
);
187 Set_Scope
(Typ
, Scop
);
188 Set_Directly_Designated_Type
(Typ
, Etype
(E
));
191 Make_Full_Type_Declaration
(Loc
,
192 Defining_Identifier
=> Typ
,
194 Make_Access_To_Object_Definition
(Loc
,
195 Subtype_Indication
=> New_Occurrence_Of
(Etype
(E
), Loc
)));
196 end Build_Access_Type_Decl
;
202 function Get_Level
(Subp
: Entity_Id
; Sub
: Entity_Id
) return Nat
is
214 S
:= Enclosing_Subprogram
(S
);
219 --------------------------
220 -- In_Synchronized_Unit --
221 --------------------------
223 function In_Synchronized_Unit
(Subp
: Entity_Id
) return Boolean is
224 S
: Entity_Id
:= Scope
(Subp
);
227 while Present
(S
) and then S
/= Standard_Standard
loop
228 if Is_Concurrent_Type
(S
) then
236 end In_Synchronized_Unit
;
238 -----------------------
239 -- Needs_Fat_Pointer --
240 -----------------------
242 function Needs_Fat_Pointer
(E
: Entity_Id
) return Boolean is
245 and then Is_Array_Type
(Etype
(E
))
246 and then not Is_Constrained
(Etype
(E
));
247 end Needs_Fat_Pointer
;
253 function Subp_Index
(Sub
: Entity_Id
) return SI_Type
is
254 E
: Entity_Id
:= Sub
;
257 pragma Assert
(Is_Subprogram
(E
));
259 if Subps_Index
(E
) = Uint_0
then
260 E
:= Ultimate_Alias
(E
);
262 -- The body of a protected operation has a different name and
263 -- has been scanned at this point, and thus has an entry in
264 -- the subprogram table.
267 and then Convention
(E
) = Convention_Protected
269 E
:= Protected_Body_Subprogram
(E
);
272 if Ekind
(E
) = E_Function
273 and then Rewritten_For_C
(E
)
274 and then Present
(Corresponding_Procedure
(E
))
276 E
:= Corresponding_Procedure
(E
);
280 pragma Assert
(Subps_Index
(E
) /= Uint_0
);
281 return SI_Type
(UI_To_Int
(Subps_Index
(E
)));
284 -----------------------
285 -- Unnest_Subprogram --
286 -----------------------
288 procedure Unnest_Subprogram
(Subp
: Entity_Id
; Subp_Body
: Node_Id
) is
289 function AREC_Name
(J
: Pos
; S
: String) return Name_Id
;
290 -- Returns name for string ARECjS, where j is the decimal value of j
292 function Enclosing_Subp
(Subp
: SI_Type
) return SI_Type
;
293 -- Subp is the index of a subprogram which has a Lev greater than 1.
294 -- This function returns the index of the enclosing subprogram which
295 -- will have a Lev value one less than this.
297 function Img_Pos
(N
: Pos
) return String;
298 -- Return image of N without leading blank
303 Clist
: List_Id
) return Name_Id
;
304 -- This function returns the name to be used in the activation record to
305 -- reference the variable uplevel. Clist is the list of components that
306 -- have been created in the activation record so far. Normally the name
307 -- is just a copy of the Chars field of the entity. The exception is
308 -- when the name has already been used, in which case we suffix the name
309 -- with the index value Index to avoid duplication. This happens with
310 -- declare blocks and generic parameters at least.
316 function AREC_Name
(J
: Pos
; S
: String) return Name_Id
is
318 return Name_Find
("AREC" & Img_Pos
(J
) & S
);
325 function Enclosing_Subp
(Subp
: SI_Type
) return SI_Type
is
326 STJ
: Subp_Entry
renames Subps
.Table
(Subp
);
327 Ret
: constant SI_Type
:= Subp_Index
(Enclosing_Subprogram
(STJ
.Ent
));
329 pragma Assert
(STJ
.Lev
> 1);
330 pragma Assert
(Subps
.Table
(Ret
).Lev
= STJ
.Lev
- 1);
338 function Img_Pos
(N
: Pos
) return String is
339 Buf
: String (1 .. 20);
347 Buf
(Ptr
) := Character'Val (48 + NV
mod 10);
352 return Buf
(Ptr
+ 1 .. Buf
'Last);
362 Clist
: List_Id
) return Name_Id
371 elsif Chars
(Defining_Identifier
(C
)) = Chars
(Ent
) then
373 Name_Find
(Get_Name_String
(Chars
(Ent
)) & Img_Pos
(Index
));
380 -- Start of processing for Unnest_Subprogram
383 -- Nothing to do inside a generic (all processing is for instance)
385 if Inside_A_Generic
then
389 -- If the main unit is a package body then we need to examine the spec
390 -- to determine whether the main unit is generic (the scope stack is not
391 -- present when this is called on the main unit).
393 if Ekind
(Cunit_Entity
(Main_Unit
)) = E_Package_Body
394 and then Is_Generic_Unit
(Spec_Entity
(Cunit_Entity
(Main_Unit
)))
399 -- Only unnest when generating code for the main source unit
401 if not In_Extended_Main_Code_Unit
(Subp_Body
) then
405 -- This routine is called late, after the scope stack is gone. The
406 -- following creates a suitable dummy scope stack to be used for the
407 -- analyze/expand calls made from this routine.
411 -- First step, we must mark all nested subprograms that require a static
412 -- link (activation record) because either they contain explicit uplevel
413 -- references (as indicated by Is_Uplevel_Referenced_Entity being set at
414 -- this point), or they make calls to other subprograms in the same nest
415 -- that require a static link (in which case we set this flag).
417 -- This is a recursive definition, and to implement this, we have to
418 -- build a call graph for the set of nested subprograms, and then go
419 -- over this graph to implement recursively the invariant that if a
420 -- subprogram has a call to a subprogram requiring a static link, then
421 -- the calling subprogram requires a static link.
423 -- First populate the above tables
425 Subps_First
:= Subps
.Last
+ 1;
429 Build_Tables
: declare
430 Current_Subprogram
: Entity_Id
;
431 -- When we scan a subprogram body, we set Current_Subprogram to the
432 -- corresponding entity. This gets recursively saved and restored.
434 function Visit_Node
(N
: Node_Id
) return Traverse_Result
;
435 -- Visit a single node in Subp
441 procedure Visit
is new Traverse_Proc
(Visit_Node
);
442 -- Used to traverse the body of Subp, populating the tables
448 function Visit_Node
(N
: Node_Id
) return Traverse_Result
is
453 procedure Check_Static_Type
454 (T
: Entity_Id
; N
: Node_Id
; DT
: in out Boolean);
455 -- Given a type T, checks if it is a static type defined as a type
456 -- with no dynamic bounds in sight. If so, the only action is to
457 -- set Is_Static_Type True for T. If T is not a static type, then
458 -- all types with dynamic bounds associated with T are detected,
459 -- and their bounds are marked as uplevel referenced if not at the
460 -- library level, and DT is set True. If N is specified, it's the
461 -- node that will need to be replaced. If not specified, it means
462 -- we can't do a replacement because the bound is implicit.
464 procedure Note_Uplevel_Ref
469 -- Called when we detect an explicit or implicit uplevel reference
470 -- from within Caller to entity E declared in Callee. E can be a
471 -- an object or a type.
473 procedure Register_Subprogram
(E
: Entity_Id
; Bod
: Node_Id
);
474 -- Enter a subprogram whose body is visible or which is a
475 -- subprogram instance into the subprogram table.
477 -----------------------
478 -- Check_Static_Type --
479 -----------------------
481 procedure Check_Static_Type
482 (T
: Entity_Id
; N
: Node_Id
; DT
: in out Boolean)
484 procedure Note_Uplevel_Bound
(N
: Node_Id
; Ref
: Node_Id
);
485 -- N is the bound of a dynamic type. This procedure notes that
486 -- this bound is uplevel referenced, it can handle references
487 -- to entities (typically _FIRST and _LAST entities), and also
488 -- attribute references of the form T'name (name is typically
489 -- FIRST or LAST) where T is the uplevel referenced bound.
490 -- Ref, if Present, is the location of the reference to
493 ------------------------
494 -- Note_Uplevel_Bound --
495 ------------------------
497 procedure Note_Uplevel_Bound
(N
: Node_Id
; Ref
: Node_Id
) is
499 -- Entity name case. Make sure that the entity is declared
500 -- in a subprogram. This may not be the case for for a type
501 -- in a loop appearing in a precondition.
502 -- Exclude explicitly discriminants (that can appear
503 -- in bounds of discriminated components).
505 if Is_Entity_Name
(N
) then
506 if Present
(Entity
(N
))
507 and then not Is_Type
(Entity
(N
))
508 and then Present
(Enclosing_Subprogram
(Entity
(N
)))
509 and then Ekind
(Entity
(N
)) /= E_Discriminant
514 Caller
=> Current_Subprogram
,
515 Callee
=> Enclosing_Subprogram
(Entity
(N
)));
518 -- Attribute or indexed component case
520 elsif Nkind_In
(N
, N_Attribute_Reference
,
523 Note_Uplevel_Bound
(Prefix
(N
), Ref
);
525 -- The indices of the indexed components, or the
526 -- associated expressions of an attribute reference,
527 -- may also involve uplevel references.
533 Expr
:= First
(Expressions
(N
));
534 while Present
(Expr
) loop
535 Note_Uplevel_Bound
(Expr
, Ref
);
540 -- Binary operator cases. These can apply to arrays for
541 -- which we may need bounds.
543 elsif Nkind
(N
) in N_Binary_Op
then
544 Note_Uplevel_Bound
(Left_Opnd
(N
), Ref
);
545 Note_Uplevel_Bound
(Right_Opnd
(N
), Ref
);
547 -- Unary operator case
549 elsif Nkind
(N
) in N_Unary_Op
then
550 Note_Uplevel_Bound
(Right_Opnd
(N
), Ref
);
552 -- Explicit dereference and selected component case
555 N_Explicit_Dereference
,
556 N_Selected_Component
)
558 Note_Uplevel_Bound
(Prefix
(N
), Ref
);
562 elsif Nkind
(N
) = N_Type_Conversion
then
563 Note_Uplevel_Bound
(Expression
(N
), Ref
);
565 end Note_Uplevel_Bound
;
567 -- Start of processing for Check_Static_Type
570 -- If already marked static, immediate return
572 if Is_Static_Type
(T
) then
576 -- If the type is at library level, always consider it static,
577 -- since such uplevel references are irrelevant.
579 if Is_Library_Level_Entity
(T
) then
580 Set_Is_Static_Type
(T
);
584 -- Otherwise figure out what the story is with this type
586 -- For a scalar type, check bounds
588 if Is_Scalar_Type
(T
) then
590 -- If both bounds static, then this is a static type
593 LB
: constant Node_Id
:= Type_Low_Bound
(T
);
594 UB
: constant Node_Id
:= Type_High_Bound
(T
);
597 if not Is_Static_Expression
(LB
) then
598 Note_Uplevel_Bound
(LB
, N
);
602 if not Is_Static_Expression
(UB
) then
603 Note_Uplevel_Bound
(UB
, N
);
608 -- For record type, check all components and discriminant
609 -- constraints if present.
611 elsif Is_Record_Type
(T
) then
617 C
:= First_Component_Or_Discriminant
(T
);
618 while Present
(C
) loop
619 Check_Static_Type
(Etype
(C
), N
, DT
);
620 Next_Component_Or_Discriminant
(C
);
623 if Has_Discriminants
(T
)
624 and then Present
(Discriminant_Constraint
(T
))
626 D
:= First_Elmt
(Discriminant_Constraint
(T
));
627 while Present
(D
) loop
628 if not Is_Static_Expression
(Node
(D
)) then
629 Note_Uplevel_Bound
(Node
(D
), N
);
638 -- For array type, check index types and component type
640 elsif Is_Array_Type
(T
) then
644 Check_Static_Type
(Component_Type
(T
), N
, DT
);
646 IX
:= First_Index
(T
);
647 while Present
(IX
) loop
648 Check_Static_Type
(Etype
(IX
), N
, DT
);
653 -- For private type, examine whether full view is static
655 elsif Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
656 Check_Static_Type
(Full_View
(T
), N
, DT
);
658 if Is_Static_Type
(Full_View
(T
)) then
659 Set_Is_Static_Type
(T
);
662 -- For now, ignore other types
669 Set_Is_Static_Type
(T
);
671 end Check_Static_Type
;
673 ----------------------
674 -- Note_Uplevel_Ref --
675 ----------------------
677 procedure Note_Uplevel_Ref
683 Full_E
: Entity_Id
:= E
;
685 -- Nothing to do for static type
687 if Is_Static_Type
(E
) then
691 -- Nothing to do if Caller and Callee are the same
693 if Caller
= Callee
then
696 -- Callee may be a function that returns an array, and that has
697 -- been rewritten as a procedure. If caller is that procedure,
698 -- nothing to do either.
700 elsif Ekind
(Callee
) = E_Function
701 and then Rewritten_For_C
(Callee
)
702 and then Corresponding_Procedure
(Callee
) = Caller
707 -- We have a new uplevel referenced entity
709 if Ekind
(E
) = E_Constant
and then Present
(Full_View
(E
)) then
710 Full_E
:= Full_View
(E
);
713 -- All we do at this stage is to add the uplevel reference to
714 -- the table. It's too early to do anything else, since this
715 -- uplevel reference may come from an unreachable subprogram
716 -- in which case the entry will be deleted.
718 Urefs
.Append
((N
, Full_E
, Caller
, Callee
));
719 end Note_Uplevel_Ref
;
721 -------------------------
722 -- Register_Subprogram --
723 -------------------------
725 procedure Register_Subprogram
(E
: Entity_Id
; Bod
: Node_Id
) is
726 L
: constant Nat
:= Get_Level
(Subp
, E
);
729 -- Subprograms declared in tasks and protected types cannot
730 -- be eliminated because calls to them may be in other units,
731 -- so they must be treated as reachable.
737 Reachable
=> In_Synchronized_Unit
(E
),
739 -- Subprograms declared in tasks and protected types are
740 -- reachable and cannot be eliminated.
743 Declares_AREC
=> False,
753 Set_Subps_Index
(E
, UI_From_Int
(Subps
.Last
));
754 end Register_Subprogram
;
756 -- Start of processing for Visit_Node
761 -- Record a subprogram call
764 | N_Procedure_Call_Statement
766 -- We are only interested in direct calls, not indirect
767 -- calls (where Name (N) is an explicit dereference) at
770 if Nkind
(Name
(N
)) in N_Has_Entity
then
771 Ent
:= Entity
(Name
(N
));
773 -- We are only interested in calls to subprograms nested
774 -- within Subp. Calls to Subp itself or to subprograms
775 -- outside the nested structure do not affect us.
777 if Scope_Within
(Ent
, Subp
)
778 and then Is_Subprogram
(Ent
)
779 and then not Is_Imported
(Ent
)
781 Append_Unique_Call
((N
, Current_Subprogram
, Ent
));
785 -- For all calls where the formal is an unconstrained array
786 -- and the actual is constrained we need to check the bounds
787 -- for uplevel references.
791 DT
: Boolean := False;
796 if Nkind
(Name
(N
)) = N_Explicit_Dereference
then
797 Subp
:= Etype
(Name
(N
));
799 Subp
:= Entity
(Name
(N
));
802 Actual
:= First_Actual
(N
);
803 Formal
:= First_Formal_With_Extras
(Subp
);
804 while Present
(Actual
) loop
805 if Is_Array_Type
(Etype
(Formal
))
806 and then not Is_Constrained
(Etype
(Formal
))
807 and then Is_Constrained
(Etype
(Actual
))
809 Check_Static_Type
(Etype
(Actual
), Empty
, DT
);
812 Next_Actual
(Actual
);
813 Next_Formal_With_Extras
(Formal
);
817 -- An At_End_Proc in a statement sequence indicates that there
818 -- is a call from the enclosing construct or block to that
819 -- subprogram. As above, the called entity must be local and
822 when N_Handled_Sequence_Of_Statements
=>
823 if Present
(At_End_Proc
(N
))
824 and then Scope_Within
(Entity
(At_End_Proc
(N
)), Subp
)
825 and then not Is_Imported
(Entity
(At_End_Proc
(N
)))
828 ((N
, Current_Subprogram
, Entity
(At_End_Proc
(N
))));
831 -- Similarly, the following constructs include a semantic
832 -- attribute Procedure_To_Call that must be handled like
833 -- other calls. Likewise for attribute Storage_Pool.
836 | N_Extended_Return_Statement
838 | N_Simple_Return_Statement
841 Pool
: constant Entity_Id
:= Storage_Pool
(N
);
842 Proc
: constant Entity_Id
:= Procedure_To_Call
(N
);
846 and then Scope_Within
(Proc
, Subp
)
847 and then not Is_Imported
(Proc
)
849 Append_Unique_Call
((N
, Current_Subprogram
, Proc
));
853 and then not Is_Library_Level_Entity
(Pool
)
854 and then Scope_Within_Or_Same
(Scope
(Pool
), Subp
)
856 Caller
:= Current_Subprogram
;
857 Callee
:= Enclosing_Subprogram
(Pool
);
859 if Callee
/= Caller
then
860 Note_Uplevel_Ref
(Pool
, Empty
, Caller
, Callee
);
865 -- For an allocator with a qualified expression, check type
866 -- of expression being qualified. The explicit type name is
867 -- handled as an entity reference.
869 if Nkind
(N
) = N_Allocator
870 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
873 DT
: Boolean := False;
876 (Etype
(Expression
(Expression
(N
))), Empty
, DT
);
879 -- For a Return or Free (all other nodes we handle here),
880 -- we usually need the size of the object, so we need to be
881 -- sure that any nonstatic bounds of the expression's type
882 -- that are uplevel are handled.
884 elsif Nkind
(N
) /= N_Allocator
885 and then Present
(Expression
(N
))
888 DT
: Boolean := False;
890 Check_Static_Type
(Etype
(Expression
(N
)), Empty
, DT
);
894 -- A 'Access reference is a (potential) call. So is 'Address,
895 -- in particular on imported subprograms. Other attributes
896 -- require special handling.
898 when N_Attribute_Reference
=>
900 Attr
: constant Attribute_Id
:=
901 Get_Attribute_Id
(Attribute_Name
(N
));
904 when Attribute_Access
905 | Attribute_Unchecked_Access
906 | Attribute_Unrestricted_Access
909 if Nkind
(Prefix
(N
)) in N_Has_Entity
then
910 Ent
:= Entity
(Prefix
(N
));
912 -- We only need to examine calls to subprograms
913 -- nested within current Subp.
915 if Scope_Within
(Ent
, Subp
) then
916 if Is_Imported
(Ent
) then
919 elsif Is_Subprogram
(Ent
) then
921 ((N
, Current_Subprogram
, Ent
));
926 -- References to bounds can be uplevel references if
927 -- the type isn't static.
933 -- Special-case attributes of objects whose bounds
934 -- may be uplevel references. More complex prefixes
935 -- handled during full traversal. Note that if the
936 -- nominal subtype of the prefix is unconstrained,
937 -- the bound must be obtained from the object, not
938 -- from the (possibly) uplevel reference.
940 if Is_Constrained
(Etype
(Prefix
(N
))) then
942 DT
: Boolean := False;
945 (Etype
(Prefix
(N
)), Empty
, DT
);
956 -- Component associations in aggregates are either static or
957 -- else the aggregate will be expanded into assignments, in
958 -- which case the expression is analyzed later and provides
959 -- no relevant code generation.
961 when N_Component_Association
=>
962 if No
(Expression
(N
))
963 or else No
(Etype
(Expression
(N
)))
968 -- Generic associations are not analyzed: the actuals are
969 -- transferred to renaming and subtype declarations that
970 -- are the ones that must be examined.
972 when N_Generic_Association
=>
975 -- Indexed references can be uplevel if the type isn't static
976 -- and if the lower bound (or an inner bound for a multi-
977 -- dimensional array) is uplevel.
979 when N_Indexed_Component
982 if Is_Constrained
(Etype
(Prefix
(N
))) then
984 DT
: Boolean := False;
986 Check_Static_Type
(Etype
(Prefix
(N
)), Empty
, DT
);
990 -- A selected component can have an implicit up-level
991 -- reference due to the bounds of previous fields in the
992 -- record. We simplify the processing here by examining
993 -- all components of the record.
995 -- Selected components appear as unit names and end labels
996 -- for child units. Prefixes of these nodes denote parent
997 -- units and carry no type information so they are skipped.
999 when N_Selected_Component
=>
1000 if Present
(Etype
(Prefix
(N
))) then
1002 DT
: Boolean := False;
1004 Check_Static_Type
(Etype
(Prefix
(N
)), Empty
, DT
);
1008 -- For EQ/NE comparisons, we need the type of the operands
1009 -- in order to do the comparison, which means we need the
1016 DT
: Boolean := False;
1018 Check_Static_Type
(Etype
(Left_Opnd
(N
)), Empty
, DT
);
1019 Check_Static_Type
(Etype
(Right_Opnd
(N
)), Empty
, DT
);
1022 -- Likewise we need the sizes to compute how much to move in
1025 when N_Assignment_Statement
=>
1027 DT
: Boolean := False;
1029 Check_Static_Type
(Etype
(Name
(N
)), Empty
, DT
);
1030 Check_Static_Type
(Etype
(Expression
(N
)), Empty
, DT
);
1033 -- Record a subprogram. We record a subprogram body that acts
1034 -- as a spec. Otherwise we record a subprogram declaration,
1035 -- providing that it has a corresponding body we can get hold
1036 -- of. The case of no corresponding body being available is
1039 when N_Subprogram_Body
=>
1040 Ent
:= Unique_Defining_Entity
(N
);
1042 -- Ignore generic subprogram
1044 if Is_Generic_Subprogram
(Ent
) then
1048 -- Make new entry in subprogram table if not already made
1050 Register_Subprogram
(Ent
, N
);
1052 -- We make a recursive call to scan the subprogram body, so
1053 -- that we can save and restore Current_Subprogram.
1056 Save_CS
: constant Entity_Id
:= Current_Subprogram
;
1060 Current_Subprogram
:= Ent
;
1062 -- Scan declarations
1064 Decl
:= First
(Declarations
(N
));
1065 while Present
(Decl
) loop
1072 Visit
(Handled_Statement_Sequence
(N
));
1074 -- Restore current subprogram setting
1076 Current_Subprogram
:= Save_CS
;
1079 -- Now at this level, return skipping the subprogram body
1080 -- descendants, since we already took care of them!
1084 -- If we have a body stub, visit the associated subunit, which
1085 -- is a semantic descendant of the stub.
1088 Visit
(Library_Unit
(N
));
1090 -- A declaration of a wrapper package indicates a subprogram
1091 -- instance for which there is no explicit body. Enter the
1092 -- subprogram instance in the table.
1094 when N_Package_Declaration
=>
1095 if Is_Wrapper_Package
(Defining_Entity
(N
)) then
1097 (Related_Instance
(Defining_Entity
(N
)), Empty
);
1100 -- Skip generic declarations
1102 when N_Generic_Declaration
=>
1105 -- Skip generic package body
1107 when N_Package_Body
=>
1108 if Present
(Corresponding_Spec
(N
))
1109 and then Ekind
(Corresponding_Spec
(N
)) = E_Generic_Package
1114 -- Pragmas and component declarations can be ignored
1116 when N_Component_Declaration
1121 -- Otherwise record an uplevel reference in a local identifier
1124 if Nkind
(N
) in N_Has_Entity
1125 and then Present
(Entity
(N
))
1129 -- Only interested in entities declared within our nest
1131 if not Is_Library_Level_Entity
(Ent
)
1132 and then Scope_Within_Or_Same
(Scope
(Ent
), Subp
)
1134 -- Skip entities defined in inlined subprograms
1137 Chars
(Enclosing_Subprogram
(Ent
)) /= Name_uParent
1139 -- Constants and variables are potentially uplevel
1140 -- references to global declarations.
1143 (Ekind_In
(Ent
, E_Constant
,
1147 -- Formals are interesting, but not if being used
1148 -- as mere names of parameters for name notation
1154 (Nkind
(Parent
(N
)) = N_Parameter_Association
1155 and then Selector_Name
(Parent
(N
)) = N
))
1157 -- Types other than known Is_Static types are
1158 -- potentially interesting.
1161 (Is_Type
(Ent
) and then not Is_Static_Type
(Ent
)))
1163 -- Here we have a potentially interesting uplevel
1164 -- reference to examine.
1166 if Is_Type
(Ent
) then
1168 DT
: Boolean := False;
1171 Check_Static_Type
(Ent
, N
, DT
);
1176 Caller
:= Current_Subprogram
;
1177 Callee
:= Enclosing_Subprogram
(Ent
);
1180 and then (not Is_Static_Type
(Ent
)
1181 or else Needs_Fat_Pointer
(Ent
))
1183 Note_Uplevel_Ref
(Ent
, N
, Caller
, Callee
);
1185 -- Check the type of a formal parameter of the current
1186 -- subprogram, whose formal type may be an uplevel
1189 elsif Is_Formal
(Ent
)
1190 and then Scope
(Ent
) = Current_Subprogram
1193 DT
: Boolean := False;
1196 Check_Static_Type
(Etype
(Ent
), Empty
, DT
);
1203 -- Fall through to continue scanning children of this node
1208 -- Start of processing for Build_Tables
1211 -- Traverse the body to get subprograms, calls and uplevel references
1216 -- Now do the first transitive closure which determines which
1217 -- subprograms in the nest are actually reachable.
1219 Reachable_Closure
: declare
1223 Subps
.Table
(Subps_First
).Reachable
:= True;
1225 -- We use a simple minded algorithm as follows (obviously this can
1226 -- be done more efficiently, using one of the standard algorithms
1227 -- for efficient transitive closure computation, but this is simple
1228 -- and most likely fast enough that its speed does not matter).
1230 -- Repeatedly scan the list of calls. Any time we find a call from
1231 -- A to B, where A is reachable, but B is not, then B is reachable,
1232 -- and note that we have made a change by setting Modified True. We
1233 -- repeat this until we make a pass with no modifications.
1237 Inner
: for J
in Calls
.First
.. Calls
.Last
loop
1239 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1241 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1242 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1244 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1245 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1248 if SUBF
.Reachable
and then not SUBT
.Reachable
then
1249 SUBT
.Reachable
:= True;
1255 exit Outer
when not Modified
;
1257 end Reachable_Closure
;
1259 -- Remove calls from unreachable subprograms
1266 for J
in Calls
.First
.. Calls
.Last
loop
1268 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1270 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1271 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1273 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1274 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1277 if SUBF
.Reachable
then
1278 pragma Assert
(SUBT
.Reachable
);
1279 New_Index
:= New_Index
+ 1;
1280 Calls
.Table
(New_Index
) := Calls
.Table
(J
);
1285 Calls
.Set_Last
(New_Index
);
1288 -- Remove uplevel references from unreachable subprograms
1295 for J
in Urefs
.First
.. Urefs
.Last
loop
1297 URJ
: Uref_Entry
renames Urefs
.Table
(J
);
1299 SINF
: constant SI_Type
:= Subp_Index
(URJ
.Caller
);
1300 SINT
: constant SI_Type
:= Subp_Index
(URJ
.Callee
);
1302 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1303 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1308 -- Keep reachable reference
1310 if SUBF
.Reachable
then
1311 New_Index
:= New_Index
+ 1;
1312 Urefs
.Table
(New_Index
) := Urefs
.Table
(J
);
1314 -- And since we know we are keeping this one, this is a good
1315 -- place to fill in information for a good reference.
1317 -- Mark all enclosing subprograms need to declare AREC
1321 S
:= Enclosing_Subprogram
(S
);
1323 -- If we are at the top level, as can happen with
1324 -- references to formals in aspects of nested subprogram
1325 -- declarations, there are no further subprograms to mark
1326 -- as requiring activation records.
1331 SUBI
: Subp_Entry
renames Subps
.Table
(Subp_Index
(S
));
1333 SUBI
.Declares_AREC
:= True;
1335 -- If this entity was marked reachable because it is
1336 -- in a task or protected type, there may not appear
1337 -- to be any calls to it, which would normally adjust
1338 -- the levels of the parent subprograms. So we need to
1339 -- be sure that the uplevel reference of that entity
1340 -- takes into account possible calls.
1342 if In_Synchronized_Unit
(SUBF
.Ent
)
1343 and then SUBT
.Lev
< SUBI
.Uplevel_Ref
1345 SUBI
.Uplevel_Ref
:= SUBT
.Lev
;
1349 exit when S
= URJ
.Callee
;
1352 -- Add to list of uplevel referenced entities for Callee.
1353 -- We do not add types to this list, only actual references
1354 -- to objects that will be referenced uplevel, and we use
1355 -- the flag Is_Uplevel_Referenced_Entity to avoid making
1356 -- duplicate entries in the list.
1357 -- Discriminants are also excluded, only the enclosing
1358 -- object can appear in the list.
1360 if not Is_Uplevel_Referenced_Entity
(URJ
.Ent
)
1361 and then Ekind
(URJ
.Ent
) /= E_Discriminant
1363 Set_Is_Uplevel_Referenced_Entity
(URJ
.Ent
);
1364 Append_New_Elmt
(URJ
.Ent
, SUBT
.Uents
);
1367 -- And set uplevel indication for caller
1369 if SUBT
.Lev
< SUBF
.Uplevel_Ref
then
1370 SUBF
.Uplevel_Ref
:= SUBT
.Lev
;
1376 Urefs
.Set_Last
(New_Index
);
1379 -- Remove unreachable subprograms from Subps table. Note that we do
1380 -- this after eliminating entries from the other two tables, since
1381 -- those elimination steps depend on referencing the Subps table.
1387 New_SI
:= Subps_First
- 1;
1388 for J
in Subps_First
.. Subps
.Last
loop
1390 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1395 -- Subprogram is reachable, copy and reset index
1397 if STJ
.Reachable
then
1398 New_SI
:= New_SI
+ 1;
1399 Subps
.Table
(New_SI
) := STJ
;
1400 Set_Subps_Index
(STJ
.Ent
, UI_From_Int
(New_SI
));
1402 -- Subprogram is not reachable
1405 -- Clear index, since no longer active
1407 Set_Subps_Index
(Subps
.Table
(J
).Ent
, Uint_0
);
1409 -- Output debug information if -gnatd.3 set
1411 if Debug_Flag_Dot_3
then
1412 Write_Str
("Eliminate ");
1413 Write_Name
(Chars
(Subps
.Table
(J
).Ent
));
1415 Write_Location
(Sloc
(Subps
.Table
(J
).Ent
));
1416 Write_Str
(" (not referenced)");
1420 -- Rewrite declaration, body, and corresponding freeze node
1421 -- to null statements.
1423 -- A subprogram instantiation does not have an explicit
1424 -- body. If unused, we could remove the corresponding
1425 -- wrapper package and its body (TBD).
1427 if Present
(STJ
.Bod
) then
1428 Spec
:= Corresponding_Spec
(STJ
.Bod
);
1430 if Present
(Spec
) then
1431 Decl
:= Parent
(Declaration_Node
(Spec
));
1432 Rewrite
(Decl
, Make_Null_Statement
(Sloc
(Decl
)));
1434 if Present
(Freeze_Node
(Spec
)) then
1435 Rewrite
(Freeze_Node
(Spec
),
1436 Make_Null_Statement
(Sloc
(Decl
)));
1440 Rewrite
(STJ
.Bod
, Make_Null_Statement
(Sloc
(STJ
.Bod
)));
1446 Subps
.Set_Last
(New_SI
);
1449 -- Now it is time for the second transitive closure, which follows calls
1450 -- and makes sure that A calls B, and B has uplevel references, then A
1451 -- is also marked as having uplevel references.
1453 Closure_Uplevel
: declare
1457 -- We use a simple minded algorithm as follows (obviously this can
1458 -- be done more efficiently, using one of the standard algorithms
1459 -- for efficient transitive closure computation, but this is simple
1460 -- and most likely fast enough that its speed does not matter).
1462 -- Repeatedly scan the list of calls. Any time we find a call from
1463 -- A to B, where B has uplevel references, make sure that A is marked
1464 -- as having at least the same level of uplevel referencing.
1468 Inner2
: for J
in Calls
.First
.. Calls
.Last
loop
1470 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1471 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1472 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1473 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1474 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1476 if SUBT
.Lev
> SUBT
.Uplevel_Ref
1477 and then SUBF
.Uplevel_Ref
> SUBT
.Uplevel_Ref
1479 SUBF
.Uplevel_Ref
:= SUBT
.Uplevel_Ref
;
1485 exit Outer2
when not Modified
;
1487 end Closure_Uplevel
;
1489 -- We have one more step before the tables are complete. An uplevel
1490 -- call from subprogram A to subprogram B where subprogram B has uplevel
1491 -- references is in effect an uplevel reference, and must arrange for
1492 -- the proper activation link to be passed.
1494 for J
in Calls
.First
.. Calls
.Last
loop
1496 CTJ
: Call_Entry
renames Calls
.Table
(J
);
1498 SINF
: constant SI_Type
:= Subp_Index
(CTJ
.Caller
);
1499 SINT
: constant SI_Type
:= Subp_Index
(CTJ
.Callee
);
1501 SUBF
: Subp_Entry
renames Subps
.Table
(SINF
);
1502 SUBT
: Subp_Entry
renames Subps
.Table
(SINT
);
1507 -- If callee has uplevel references
1509 if SUBT
.Uplevel_Ref
< SUBT
.Lev
1511 -- And this is an uplevel call
1513 and then SUBT
.Lev
< SUBF
.Lev
1515 -- We need to arrange for finding the uplink
1519 A
:= Enclosing_Subprogram
(A
);
1520 Subps
.Table
(Subp_Index
(A
)).Declares_AREC
:= True;
1521 exit when A
= CTJ
.Callee
;
1523 -- In any case exit when we get to the outer level. This
1524 -- happens in some odd cases with generics (in particular
1525 -- sem_ch3.adb does not compile without this kludge ???).
1533 -- The tables are now complete, so we can record the last index in the
1534 -- Subps table for later reference in Cprint.
1536 Subps
.Table
(Subps_First
).Last
:= Subps
.Last
;
1538 -- Next step, create the entities for code we will insert. We do this
1539 -- at the start so that all the entities are defined, regardless of the
1540 -- order in which we do the code insertions.
1542 Create_Entities
: for J
in Subps_First
.. Subps
.Last
loop
1544 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1545 Loc
: constant Source_Ptr
:= Sloc
(STJ
.Bod
);
1548 -- First we create the ARECnF entity for the additional formal for
1549 -- all subprograms which need an activation record passed.
1551 if STJ
.Uplevel_Ref
< STJ
.Lev
then
1553 Make_Defining_Identifier
(Loc
, Chars
=> AREC_Name
(J
, "F"));
1556 -- Define the AREC entities for the activation record if needed
1558 if STJ
.Declares_AREC
then
1560 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, ""));
1562 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "T"));
1564 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "PT"));
1566 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "P"));
1568 -- Define uplink component entity if inner nesting case
1570 if Present
(STJ
.ARECnF
) then
1572 Make_Defining_Identifier
(Loc
, AREC_Name
(J
, "U"));
1576 end loop Create_Entities
;
1578 -- Loop through subprograms
1581 Addr
: constant Entity_Id
:= RTE
(RE_Address
);
1584 for J
in Subps_First
.. Subps
.Last
loop
1586 STJ
: Subp_Entry
renames Subps
.Table
(J
);
1589 -- First add the extra formal if needed. This applies to all
1590 -- nested subprograms that require an activation record to be
1591 -- passed, as indicated by ARECnF being defined.
1593 if Present
(STJ
.ARECnF
) then
1595 -- Here we need the extra formal. We do the expansion and
1596 -- analysis of this manually, since it is fairly simple,
1597 -- and it is not obvious how we can get what we want if we
1598 -- try to use the normal Analyze circuit.
1600 Add_Extra_Formal
: declare
1601 Encl
: constant SI_Type
:= Enclosing_Subp
(J
);
1602 STJE
: Subp_Entry
renames Subps
.Table
(Encl
);
1603 -- Index and Subp_Entry for enclosing routine
1605 Form
: constant Entity_Id
:= STJ
.ARECnF
;
1606 -- The formal to be added. Note that n here is one less
1607 -- than the level of the subprogram itself (STJ.Ent).
1609 procedure Add_Form_To_Spec
(F
: Entity_Id
; S
: Node_Id
);
1610 -- S is an N_Function/Procedure_Specification node, and F
1611 -- is the new entity to add to this subprogramn spec as
1612 -- the last Extra_Formal.
1614 ----------------------
1615 -- Add_Form_To_Spec --
1616 ----------------------
1618 procedure Add_Form_To_Spec
(F
: Entity_Id
; S
: Node_Id
) is
1619 Sub
: constant Entity_Id
:= Defining_Entity
(S
);
1623 -- Case of at least one Extra_Formal is present, set
1624 -- ARECnF as the new last entry in the list.
1626 if Present
(Extra_Formals
(Sub
)) then
1627 Ent
:= Extra_Formals
(Sub
);
1628 while Present
(Extra_Formal
(Ent
)) loop
1629 Ent
:= Extra_Formal
(Ent
);
1632 Set_Extra_Formal
(Ent
, F
);
1634 -- No Extra formals present
1637 Set_Extra_Formals
(Sub
, F
);
1638 Ent
:= Last_Formal
(Sub
);
1640 if Present
(Ent
) then
1641 Set_Extra_Formal
(Ent
, F
);
1644 end Add_Form_To_Spec
;
1646 -- Start of processing for Add_Extra_Formal
1649 -- Decorate the new formal entity
1651 Set_Scope
(Form
, STJ
.Ent
);
1652 Set_Ekind
(Form
, E_In_Parameter
);
1653 Set_Etype
(Form
, STJE
.ARECnPT
);
1654 Set_Mechanism
(Form
, By_Copy
);
1655 Set_Never_Set_In_Source
(Form
, True);
1656 Set_Analyzed
(Form
, True);
1657 Set_Comes_From_Source
(Form
, False);
1658 Set_Is_Activation_Record
(Form
, True);
1660 -- Case of only body present
1662 if Acts_As_Spec
(STJ
.Bod
) then
1663 Add_Form_To_Spec
(Form
, Specification
(STJ
.Bod
));
1665 -- Case of separate spec
1668 Add_Form_To_Spec
(Form
, Parent
(STJ
.Ent
));
1670 end Add_Extra_Formal
;
1673 -- Processing for subprograms that declare an activation record
1675 if Present
(STJ
.ARECn
) then
1677 -- Local declarations for one such subprogram
1680 Loc
: constant Source_Ptr
:= Sloc
(STJ
.Bod
);
1682 Decls
: constant List_Id
:= New_List
;
1683 -- List of new declarations we create
1688 Decl_Assign
: Node_Id
;
1689 -- Assigment to set uplink, Empty if none
1691 Decl_ARECnT
: Node_Id
;
1692 Decl_ARECnPT
: Node_Id
;
1693 Decl_ARECn
: Node_Id
;
1694 Decl_ARECnP
: Node_Id
;
1695 -- Declaration nodes for the AREC entities we build
1698 -- Build list of component declarations for ARECnT
1700 Clist
:= Empty_List
;
1702 -- If we are in a subprogram that has a static link that
1703 -- is passed in (as indicated by ARECnF being defined),
1704 -- then include ARECnU : ARECmPT where ARECmPT comes from
1705 -- the level one higher than the current level, and the
1706 -- entity ARECnPT comes from the enclosing subprogram.
1708 if Present
(STJ
.ARECnF
) then
1711 renames Subps
.Table
(Enclosing_Subp
(J
));
1714 Make_Component_Declaration
(Loc
,
1715 Defining_Identifier
=> STJ
.ARECnU
,
1716 Component_Definition
=>
1717 Make_Component_Definition
(Loc
,
1718 Subtype_Indication
=>
1719 New_Occurrence_Of
(STJE
.ARECnPT
, Loc
))));
1723 -- Add components for uplevel referenced entities
1725 if Present
(STJ
.Uents
) then
1732 -- 1's origin of index in list of elements. This is
1733 -- used to uniquify names if needed in Upref_Name.
1736 Elmt
:= First_Elmt
(STJ
.Uents
);
1738 while Present
(Elmt
) loop
1739 Uent
:= Node
(Elmt
);
1743 Make_Defining_Identifier
(Loc
,
1744 Chars
=> Upref_Name
(Uent
, Indx
, Clist
));
1746 Set_Activation_Record_Component
1749 if Needs_Fat_Pointer
(Uent
) then
1751 -- Build corresponding access type
1754 Build_Access_Type_Decl
1755 (Etype
(Uent
), STJ
.Ent
);
1756 Append_To
(Decls
, Ptr_Decl
);
1758 -- And use its type in the corresponding
1762 Make_Component_Declaration
(Loc
,
1763 Defining_Identifier
=> Comp
,
1764 Component_Definition
=>
1765 Make_Component_Definition
(Loc
,
1766 Subtype_Indication
=>
1768 (Defining_Identifier
(Ptr_Decl
),
1772 Make_Component_Declaration
(Loc
,
1773 Defining_Identifier
=> Comp
,
1774 Component_Definition
=>
1775 Make_Component_Definition
(Loc
,
1776 Subtype_Indication
=>
1777 New_Occurrence_Of
(Addr
, Loc
))));
1784 -- Now we can insert the AREC declarations into the body
1785 -- type ARECnT is record .. end record;
1786 -- pragma Suppress_Initialization (ARECnT);
1788 -- Note that we need to set the Suppress_Initialization
1789 -- flag after Decl_ARECnT has been analyzed.
1792 Make_Full_Type_Declaration
(Loc
,
1793 Defining_Identifier
=> STJ
.ARECnT
,
1795 Make_Record_Definition
(Loc
,
1797 Make_Component_List
(Loc
,
1798 Component_Items
=> Clist
)));
1799 Append_To
(Decls
, Decl_ARECnT
);
1801 -- type ARECnPT is access all ARECnT;
1804 Make_Full_Type_Declaration
(Loc
,
1805 Defining_Identifier
=> STJ
.ARECnPT
,
1807 Make_Access_To_Object_Definition
(Loc
,
1808 All_Present
=> True,
1809 Subtype_Indication
=>
1810 New_Occurrence_Of
(STJ
.ARECnT
, Loc
)));
1811 Append_To
(Decls
, Decl_ARECnPT
);
1813 -- ARECn : aliased ARECnT;
1816 Make_Object_Declaration
(Loc
,
1817 Defining_Identifier
=> STJ
.ARECn
,
1818 Aliased_Present
=> True,
1819 Object_Definition
=>
1820 New_Occurrence_Of
(STJ
.ARECnT
, Loc
));
1821 Append_To
(Decls
, Decl_ARECn
);
1823 -- ARECnP : constant ARECnPT := ARECn'Access;
1826 Make_Object_Declaration
(Loc
,
1827 Defining_Identifier
=> STJ
.ARECnP
,
1828 Constant_Present
=> True,
1829 Object_Definition
=>
1830 New_Occurrence_Of
(STJ
.ARECnPT
, Loc
),
1832 Make_Attribute_Reference
(Loc
,
1834 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1835 Attribute_Name
=> Name_Access
));
1836 Append_To
(Decls
, Decl_ARECnP
);
1838 -- If we are in a subprogram that has a static link that
1839 -- is passed in (as indicated by ARECnF being defined),
1840 -- then generate ARECn.ARECmU := ARECmF where m is
1841 -- one less than the current level to set the uplink.
1843 if Present
(STJ
.ARECnF
) then
1845 Make_Assignment_Statement
(Loc
,
1847 Make_Selected_Component
(Loc
,
1849 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1851 New_Occurrence_Of
(STJ
.ARECnU
, Loc
)),
1853 New_Occurrence_Of
(STJ
.ARECnF
, Loc
));
1854 Append_To
(Decls
, Decl_Assign
);
1857 Decl_Assign
:= Empty
;
1860 if No
(Declarations
(STJ
.Bod
)) then
1861 Set_Declarations
(STJ
.Bod
, Decls
);
1863 Prepend_List_To
(Declarations
(STJ
.Bod
), Decls
);
1866 -- Analyze the newly inserted declarations. Note that we
1867 -- do not need to establish the whole scope stack, since
1868 -- we have already set all entity fields (so there will
1869 -- be no searching of upper scopes to resolve names). But
1870 -- we do set the scope of the current subprogram, so that
1871 -- newly created entities go in the right entity chain.
1873 -- We analyze with all checks suppressed (since we do
1874 -- not expect any exceptions).
1876 Push_Scope
(STJ
.Ent
);
1877 Analyze
(Decl_ARECnT
, Suppress
=> All_Checks
);
1879 -- Note that we need to call Set_Suppress_Initialization
1880 -- after Decl_ARECnT has been analyzed, but before
1881 -- analyzing Decl_ARECnP so that the flag is properly
1882 -- taking into account.
1884 Set_Suppress_Initialization
(STJ
.ARECnT
);
1886 Analyze
(Decl_ARECnPT
, Suppress
=> All_Checks
);
1887 Analyze
(Decl_ARECn
, Suppress
=> All_Checks
);
1888 Analyze
(Decl_ARECnP
, Suppress
=> All_Checks
);
1890 if Present
(Decl_Assign
) then
1891 Analyze
(Decl_Assign
, Suppress
=> All_Checks
);
1896 -- Next step, for each uplevel referenced entity, add
1897 -- assignment operations to set the component in the
1898 -- activation record.
1900 if Present
(STJ
.Uents
) then
1905 Elmt
:= First_Elmt
(STJ
.Uents
);
1906 while Present
(Elmt
) loop
1908 Ent
: constant Entity_Id
:= Node
(Elmt
);
1909 Loc
: constant Source_Ptr
:= Sloc
(Ent
);
1910 Dec
: constant Node_Id
:=
1911 Declaration_Node
(Ent
);
1918 -- For parameters, we insert the assignment
1919 -- right after the declaration of ARECnP.
1920 -- For all other entities, we insert the
1921 -- assignment immediately after the
1922 -- declaration of the entity or after the
1923 -- freeze node if present.
1925 -- Note: we don't need to mark the entity
1926 -- as being aliased, because the address
1927 -- attribute will mark it as Address_Taken,
1928 -- and that is good enough.
1930 if Is_Formal
(Ent
) then
1933 elsif Has_Delayed_Freeze
(Ent
) then
1934 Ins
:= Freeze_Node
(Ent
);
1940 -- Build and insert the assignment:
1941 -- ARECn.nam := nam'Address
1942 -- or else 'Access for unconstrained array
1944 if Needs_Fat_Pointer
(Ent
) then
1945 Attr
:= Name_Access
;
1947 Attr
:= Name_Address
;
1951 Make_Assignment_Statement
(Loc
,
1953 Make_Selected_Component
(Loc
,
1955 New_Occurrence_Of
(STJ
.ARECn
, Loc
),
1958 (Activation_Record_Component
1963 Make_Attribute_Reference
(Loc
,
1965 New_Occurrence_Of
(Ent
, Loc
),
1966 Attribute_Name
=> Attr
));
1968 -- If we have a loop parameter, we have
1969 -- to insert before the first statement
1970 -- of the loop. Ins points to the
1971 -- N_Loop_Parameter_Specification.
1973 if Ekind
(Ent
) = E_Loop_Parameter
then
1976 (Statements
(Parent
(Parent
(Ins
))));
1977 Insert_Before
(Ins
, Asn
);
1980 Insert_After
(Ins
, Asn
);
1983 -- Analyze the assignment statement. We do
1984 -- not need to establish the relevant scope
1985 -- stack entries here, because we have
1986 -- already set the correct entity references,
1987 -- so no name resolution is required, and no
1988 -- new entities are created, so we don't even
1989 -- need to set the current scope.
1991 -- We analyze with all checks suppressed
1992 -- (since we do not expect any exceptions).
1994 Analyze
(Asn
, Suppress
=> All_Checks
);
2007 -- Next step, process uplevel references. This has to be done in a
2008 -- separate pass, after completing the processing in Sub_Loop because we
2009 -- need all the AREC declarations generated, inserted, and analyzed so
2010 -- that the uplevel references can be successfully analyzed.
2012 Uplev_Refs
: for J
in Urefs
.First
.. Urefs
.Last
loop
2014 UPJ
: Uref_Entry
renames Urefs
.Table
(J
);
2017 -- Ignore type references, these are implicit references that do
2018 -- not need rewriting (e.g. the appearence in a conversion).
2019 -- Also ignore if no reference was specified or if the rewriting
2020 -- has already been done (this can happen if the N_Identifier
2021 -- occurs more than one time in the tree).
2024 or else not Is_Entity_Name
(UPJ
.Ref
)
2025 or else not Present
(Entity
(UPJ
.Ref
))
2030 -- Rewrite one reference
2032 Rewrite_One_Ref
: declare
2033 Loc
: constant Source_Ptr
:= Sloc
(UPJ
.Ref
);
2034 -- Source location for the reference
2036 Typ
: constant Entity_Id
:= Etype
(UPJ
.Ent
);
2037 -- The type of the referenced entity
2040 -- The actual subtype of the reference
2042 RS_Caller
: constant SI_Type
:= Subp_Index
(UPJ
.Caller
);
2043 -- Subp_Index for caller containing reference
2045 STJR
: Subp_Entry
renames Subps
.Table
(RS_Caller
);
2046 -- Subp_Entry for subprogram containing reference
2048 RS_Callee
: constant SI_Type
:= Subp_Index
(UPJ
.Callee
);
2049 -- Subp_Index for subprogram containing referenced entity
2051 STJE
: Subp_Entry
renames Subps
.Table
(RS_Callee
);
2052 -- Subp_Entry for subprogram containing referenced entity
2059 Atyp
:= Etype
(UPJ
.Ref
);
2061 if Ekind
(Atyp
) /= E_Record_Subtype
then
2062 Atyp
:= Get_Actual_Subtype
(UPJ
.Ref
);
2065 -- Ignore if no ARECnF entity for enclosing subprogram which
2066 -- probably happens as a result of not properly treating
2067 -- instance bodies. To be examined ???
2069 -- If this test is omitted, then the compilation of freeze.adb
2070 -- and inline.adb fail in unnesting mode.
2072 if No
(STJR
.ARECnF
) then
2076 -- Push the current scope, so that the pointer type Tnn, and
2077 -- any subsidiary entities resulting from the analysis of the
2078 -- rewritten reference, go in the right entity chain.
2080 Push_Scope
(STJR
.Ent
);
2082 -- Now we need to rewrite the reference. We have a reference
2083 -- from level STJR.Lev to level STJE.Lev. The general form of
2084 -- the rewritten reference for entity X is:
2086 -- Typ'Deref (ARECaF.ARECbU.ARECcU.ARECdU....ARECmU.X)
2088 -- where a,b,c,d .. m =
2089 -- STJR.Lev - 1, STJR.Lev - 2, .. STJE.Lev
2091 pragma Assert
(STJR
.Lev
> STJE
.Lev
);
2093 -- Compute the prefix of X. Here are examples to make things
2094 -- clear (with parens to show groupings, the prefix is
2095 -- everything except the .X at the end).
2097 -- level 2 to level 1
2101 -- level 3 to level 1
2103 -- (AREC2F.AREC1U).X
2105 -- level 4 to level 1
2107 -- ((AREC3F.AREC2U).AREC1U).X
2109 -- level 6 to level 2
2111 -- (((AREC5F.AREC4U).AREC3U).AREC2U).X
2113 -- In the above, ARECnF and ARECnU are pointers, so there are
2114 -- explicit dereferences required for these occurrences.
2117 Make_Explicit_Dereference
(Loc
,
2118 Prefix
=> New_Occurrence_Of
(STJR
.ARECnF
, Loc
));
2120 for L
in STJE
.Lev
.. STJR
.Lev
- 2 loop
2121 SI
:= Enclosing_Subp
(SI
);
2123 Make_Explicit_Dereference
(Loc
,
2125 Make_Selected_Component
(Loc
,
2128 New_Occurrence_Of
(Subps
.Table
(SI
).ARECnU
, Loc
)));
2131 -- Get activation record component (must exist)
2133 Comp
:= Activation_Record_Component
(UPJ
.Ent
);
2134 pragma Assert
(Present
(Comp
));
2136 -- Do the replacement. If the component type is an access type,
2137 -- this is an uplevel reference for an entity that requires a
2138 -- fat pointer, so dereference the component.
2140 if Is_Access_Type
(Etype
(Comp
)) then
2142 Make_Explicit_Dereference
(Loc
,
2144 Make_Selected_Component
(Loc
,
2147 New_Occurrence_Of
(Comp
, Loc
))));
2151 Make_Attribute_Reference
(Loc
,
2152 Prefix
=> New_Occurrence_Of
(Atyp
, Loc
),
2153 Attribute_Name
=> Name_Deref
,
2154 Expressions
=> New_List
(
2155 Make_Selected_Component
(Loc
,
2158 New_Occurrence_Of
(Comp
, Loc
)))));
2161 -- Analyze and resolve the new expression. We do not need to
2162 -- establish the relevant scope stack entries here, because we
2163 -- have already set all the correct entity references, so no
2164 -- name resolution is needed. We have already set the current
2165 -- scope, so that any new entities created will be in the right
2168 -- We analyze with all checks suppressed (since we do not
2169 -- expect any exceptions)
2171 Analyze_And_Resolve
(UPJ
.Ref
, Typ
, Suppress
=> All_Checks
);
2173 end Rewrite_One_Ref
;
2178 end loop Uplev_Refs
;
2180 -- Finally, loop through all calls adding extra actual for the
2181 -- activation record where it is required.
2183 Adjust_Calls
: for J
in Calls
.First
.. Calls
.Last
loop
2185 -- Process a single call, we are only interested in a call to a
2186 -- subprogram that actually needs a pointer to an activation record,
2187 -- as indicated by the ARECnF entity being set. This excludes the
2188 -- top level subprogram, and any subprogram not having uplevel refs.
2190 Adjust_One_Call
: declare
2191 CTJ
: Call_Entry
renames Calls
.Table
(J
);
2192 STF
: Subp_Entry
renames Subps
.Table
(Subp_Index
(CTJ
.Caller
));
2193 STT
: Subp_Entry
renames Subps
.Table
(Subp_Index
(CTJ
.Callee
));
2195 Loc
: constant Source_Ptr
:= Sloc
(CTJ
.N
);
2203 if Present
(STT
.ARECnF
)
2204 and then Nkind
(CTJ
.N
) in N_Subprogram_Call
2206 -- CTJ.N is a call to a subprogram which may require a pointer
2207 -- to an activation record. The subprogram containing the call
2208 -- is CTJ.From and the subprogram being called is CTJ.To, so we
2209 -- have a call from level STF.Lev to level STT.Lev.
2211 -- There are three possibilities:
2213 -- For a call to the same level, we just pass the activation
2214 -- record passed to the calling subprogram.
2216 if STF
.Lev
= STT
.Lev
then
2217 Extra
:= New_Occurrence_Of
(STF
.ARECnF
, Loc
);
2219 -- For a call that goes down a level, we pass a pointer to the
2220 -- activation record constructed within the caller (which may
2221 -- be the outer-level subprogram, but also may be a more deeply
2224 elsif STT
.Lev
= STF
.Lev
+ 1 then
2225 Extra
:= New_Occurrence_Of
(STF
.ARECnP
, Loc
);
2227 -- Otherwise we must have an upcall (STT.Lev < STF.LEV),
2228 -- since it is not possible to do a downcall of more than
2231 -- For a call from level STF.Lev to level STT.Lev, we
2232 -- have to find the activation record needed by the
2233 -- callee. This is as follows:
2235 -- ARECaF.ARECbU.ARECcU....ARECmU
2237 -- where a,b,c .. m =
2238 -- STF.Lev - 1, STF.Lev - 2, STF.Lev - 3 .. STT.Lev
2241 pragma Assert
(STT
.Lev
< STF
.Lev
);
2243 Extra
:= New_Occurrence_Of
(STF
.ARECnF
, Loc
);
2244 SubX
:= Subp_Index
(CTJ
.Caller
);
2245 for K
in reverse STT
.Lev
.. STF
.Lev
- 1 loop
2246 SubX
:= Enclosing_Subp
(SubX
);
2248 Make_Selected_Component
(Loc
,
2252 (Subps
.Table
(SubX
).ARECnU
, Loc
));
2256 -- Extra is the additional parameter to be added. Build a
2257 -- parameter association that we can append to the actuals.
2260 Make_Parameter_Association
(Loc
,
2262 New_Occurrence_Of
(STT
.ARECnF
, Loc
),
2263 Explicit_Actual_Parameter
=> Extra
);
2265 if No
(Parameter_Associations
(CTJ
.N
)) then
2266 Set_Parameter_Associations
(CTJ
.N
, Empty_List
);
2269 Append
(ExtraP
, Parameter_Associations
(CTJ
.N
));
2271 -- We need to deal with the actual parameter chain as well. The
2272 -- newly added parameter is always the last actual.
2274 Act
:= First_Named_Actual
(CTJ
.N
);
2277 Set_First_Named_Actual
(CTJ
.N
, Extra
);
2279 -- If call has been relocated (as with an expression in
2280 -- an aggregate), set First_Named pointer in original node
2281 -- as well, because that's the parent of the parameter list.
2283 Set_First_Named_Actual
2284 (Parent
(List_Containing
(ExtraP
)), Extra
);
2286 -- Here we must follow the chain and append the new entry
2295 PAN
:= Parent
(Act
);
2296 pragma Assert
(Nkind
(PAN
) = N_Parameter_Association
);
2297 NNA
:= Next_Named_Actual
(PAN
);
2300 Set_Next_Named_Actual
(PAN
, Extra
);
2309 -- Analyze and resolve the new actual. We do not need to
2310 -- establish the relevant scope stack entries here, because
2311 -- we have already set all the correct entity references, so
2312 -- no name resolution is needed.
2314 -- We analyze with all checks suppressed (since we do not
2315 -- expect any exceptions, and also we temporarily turn off
2316 -- Unested_Subprogram_Mode to avoid trying to mark uplevel
2317 -- references (not needed at this stage, and in fact causes
2318 -- a bit of recursive chaos).
2320 Opt
.Unnest_Subprogram_Mode
:= False;
2322 (Extra
, Etype
(STT
.ARECnF
), Suppress
=> All_Checks
);
2323 Opt
.Unnest_Subprogram_Mode
:= True;
2325 end Adjust_One_Call
;
2326 end loop Adjust_Calls
;
2329 end Unnest_Subprogram
;
2331 ------------------------
2332 -- Unnest_Subprograms --
2333 ------------------------
2335 procedure Unnest_Subprograms
(N
: Node_Id
) is
2336 function Search_Subprograms
(N
: Node_Id
) return Traverse_Result
;
2337 -- Tree visitor that search for outer level procedures with nested
2338 -- subprograms and invokes Unnest_Subprogram()
2344 procedure Do_Search
is new Traverse_Proc
(Search_Subprograms
);
2345 -- Subtree visitor instantiation
2347 ------------------------
2348 -- Search_Subprograms --
2349 ------------------------
2351 function Search_Subprograms
(N
: Node_Id
) return Traverse_Result
is
2353 if Nkind_In
(N
, N_Subprogram_Body
, N_Subprogram_Body_Stub
) then
2355 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
2358 -- We are only interested in subprograms (not generic
2359 -- subprograms), that have nested subprograms.
2361 if Is_Subprogram
(Spec_Id
)
2362 and then Has_Nested_Subprogram
(Spec_Id
)
2363 and then Is_Library_Level_Entity
(Spec_Id
)
2365 Unnest_Subprogram
(Spec_Id
, N
);
2369 -- The proper body of a stub may contain nested subprograms, and
2370 -- therefore must be visited explicitly. Nested stubs are examined
2371 -- recursively in Visit_Node.
2373 elsif Nkind
(N
) in N_Body_Stub
then
2374 Do_Search
(Library_Unit
(N
));
2378 end Search_Subprograms
;
2380 -- Start of processing for Unnest_Subprograms
2383 if not Opt
.Unnest_Subprogram_Mode
or not Opt
.Expander_Active
then
2387 -- A specification will contain bodies if it contains instantiations so
2388 -- examine package or subprogram declaration of the main unit, when it
2391 if Nkind
(Unit
(N
)) = N_Package_Body
2392 or else (Nkind
(Unit
(N
)) = N_Subprogram_Body
2393 and then not Acts_As_Spec
(N
))
2395 Do_Search
(Library_Unit
(N
));
2399 end Unnest_Subprograms
;