1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
30 #include "tree-flow.h"
34 #include "tree-chrec.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-data-ref.h"
39 #include "diagnostic-core.h"
40 #include "tree-inline.h"
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
47 #define MAX_DOMINATORS_TO_WALK 8
51 Analysis of number of iterations of an affine exit test.
55 /* Bounds on some value, BELOW <= X <= UP. */
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
66 split_to_var_and_offset (tree expr
, tree
*var
, mpz_t offset
)
68 tree type
= TREE_TYPE (expr
);
74 mpz_set_ui (offset
, 0);
76 switch (TREE_CODE (expr
))
83 case POINTER_PLUS_EXPR
:
84 op0
= TREE_OPERAND (expr
, 0);
85 op1
= TREE_OPERAND (expr
, 1);
87 if (TREE_CODE (op1
) != INTEGER_CST
)
91 /* Always sign extend the offset. */
92 off
= tree_to_double_int (op1
);
93 off
= off
.sext (TYPE_PRECISION (type
));
94 mpz_set_double_int (offset
, off
, false);
96 mpz_neg (offset
, offset
);
100 *var
= build_int_cst_type (type
, 0);
101 off
= tree_to_double_int (expr
);
102 mpz_set_double_int (offset
, off
, TYPE_UNSIGNED (type
));
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
114 determine_value_range (tree type
, tree var
, mpz_t off
,
115 mpz_t min
, mpz_t max
)
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var
))
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type
, min
, max
);
128 if (!nowrap_type_p (type
))
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off
) < 0)
134 mpz_add (max
, max
, off
);
136 mpz_add (min
, min
, off
);
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
143 bound_difference_of_offsetted_base (tree type
, mpz_t x
, mpz_t y
,
146 int rel
= mpz_cmp (x
, y
);
147 bool may_wrap
= !nowrap_type_p (type
);
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
166 mpz_set_ui (bnds
->below
, 0);
167 mpz_set_ui (bnds
->up
, 0);
172 mpz_set_double_int (m
, double_int::mask (TYPE_PRECISION (type
)), true);
173 mpz_add_ui (m
, m
, 1);
174 mpz_sub (bnds
->up
, x
, y
);
175 mpz_set (bnds
->below
, bnds
->up
);
180 mpz_sub (bnds
->below
, bnds
->below
, m
);
182 mpz_add (bnds
->up
, bnds
->up
, m
);
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
193 refine_bounds_using_guard (tree type
, tree varx
, mpz_t offx
,
194 tree vary
, mpz_t offy
,
195 tree c0
, enum tree_code cmp
, tree c1
,
198 tree varc0
, varc1
, tmp
, ctype
;
199 mpz_t offc0
, offc1
, loffx
, loffy
, bnd
;
201 bool no_wrap
= nowrap_type_p (type
);
210 STRIP_SIGN_NOPS (c0
);
211 STRIP_SIGN_NOPS (c1
);
212 ctype
= TREE_TYPE (c0
);
213 if (!useless_type_conversion_p (ctype
, type
))
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1
) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type
))
231 /* Ensure that the condition speaks about an expression in the same type
233 ctype
= TREE_TYPE (c0
);
234 if (TYPE_PRECISION (ctype
) != TYPE_PRECISION (type
))
236 c0
= fold_convert (type
, c0
);
237 c1
= fold_convert (type
, c1
);
239 if (TYPE_MIN_VALUE (type
)
240 && operand_equal_p (c1
, TYPE_MIN_VALUE (type
), 0))
245 if (TYPE_MAX_VALUE (type
)
246 && operand_equal_p (c1
, TYPE_MAX_VALUE (type
), 0))
259 split_to_var_and_offset (expand_simple_operations (c0
), &varc0
, offc0
);
260 split_to_var_and_offset (expand_simple_operations (c1
), &varc1
, offc1
);
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
266 if (operand_equal_p (varx
, varc1
, 0))
268 tmp
= varc0
; varc0
= varc1
; varc1
= tmp
;
269 mpz_swap (offc0
, offc1
);
270 cmp
= swap_tree_comparison (cmp
);
273 if (!operand_equal_p (varx
, varc0
, 0)
274 || !operand_equal_p (vary
, varc1
, 0))
277 mpz_init_set (loffx
, offx
);
278 mpz_init_set (loffy
, offy
);
280 if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
282 tmp
= varx
; varx
= vary
; vary
= tmp
;
283 mpz_swap (offc0
, offc1
);
284 mpz_swap (loffx
, loffy
);
285 cmp
= swap_tree_comparison (cmp
);
289 /* If there is no overflow, the condition implies that
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
312 x_ok
= (integer_zerop (varx
)
313 || mpz_cmp (loffx
, offc0
) >= 0);
314 y_ok
= (integer_zerop (vary
)
315 || mpz_cmp (loffy
, offc1
) <= 0);
321 mpz_sub (bnd
, loffx
, loffy
);
322 mpz_add (bnd
, bnd
, offc1
);
323 mpz_sub (bnd
, bnd
, offc0
);
326 mpz_sub_ui (bnd
, bnd
, 1);
331 if (mpz_cmp (bnds
->below
, bnd
) < 0)
332 mpz_set (bnds
->below
, bnd
);
336 if (mpz_cmp (bnd
, bnds
->up
) < 0)
337 mpz_set (bnds
->up
, bnd
);
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
359 bound_difference (struct loop
*loop
, tree x
, tree y
, bounds
*bnds
)
361 tree type
= TREE_TYPE (x
);
364 mpz_t minx
, maxx
, miny
, maxy
;
372 /* Get rid of unnecessary casts, but preserve the value of
377 mpz_init (bnds
->below
);
381 split_to_var_and_offset (x
, &varx
, offx
);
382 split_to_var_and_offset (y
, &vary
, offy
);
384 if (!integer_zerop (varx
)
385 && operand_equal_p (varx
, vary
, 0))
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type
, offx
, offy
, bnds
);
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
400 determine_value_range (type
, varx
, offx
, minx
, maxx
);
401 determine_value_range (type
, vary
, offy
, miny
, maxy
);
403 mpz_sub (bnds
->below
, minx
, maxy
);
404 mpz_sub (bnds
->up
, maxx
, miny
);
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx
) && integer_zerop (vary
))
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb
= loop
->header
;
418 bb
!= ENTRY_BLOCK_PTR
&& cnt
< MAX_DOMINATORS_TO_WALK
;
419 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
421 if (!single_pred_p (bb
))
423 e
= single_pred_edge (bb
);
425 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
428 cond
= last_stmt (e
->src
);
429 c0
= gimple_cond_lhs (cond
);
430 cmp
= gimple_cond_code (cond
);
431 c1
= gimple_cond_rhs (cond
);
433 if (e
->flags
& EDGE_FALSE_VALUE
)
434 cmp
= invert_tree_comparison (cmp
, false);
436 refine_bounds_using_guard (type
, varx
, offx
, vary
, offy
,
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
451 bounds_add (bounds
*bnds
, double_int delta
, tree type
)
456 mpz_set_double_int (mdelta
, delta
, false);
459 mpz_set_double_int (max
, double_int::mask (TYPE_PRECISION (type
)), true);
461 mpz_add (bnds
->up
, bnds
->up
, mdelta
);
462 mpz_add (bnds
->below
, bnds
->below
, mdelta
);
464 if (mpz_cmp (bnds
->up
, max
) > 0)
465 mpz_set (bnds
->up
, max
);
468 if (mpz_cmp (bnds
->below
, max
) < 0)
469 mpz_set (bnds
->below
, max
);
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
479 bounds_negate (bounds
*bnds
)
483 mpz_init_set (tmp
, bnds
->up
);
484 mpz_neg (bnds
->up
, bnds
->below
);
485 mpz_neg (bnds
->below
, tmp
);
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
492 inverse (tree x
, tree mask
)
494 tree type
= TREE_TYPE (x
);
496 unsigned ctr
= tree_floor_log2 (mask
);
498 if (TYPE_PRECISION (type
) <= HOST_BITS_PER_WIDE_INT
)
500 unsigned HOST_WIDE_INT ix
;
501 unsigned HOST_WIDE_INT imask
;
502 unsigned HOST_WIDE_INT irslt
= 1;
504 gcc_assert (cst_and_fits_in_hwi (x
));
505 gcc_assert (cst_and_fits_in_hwi (mask
));
507 ix
= int_cst_value (x
);
508 imask
= int_cst_value (mask
);
517 rslt
= build_int_cst_type (type
, irslt
);
521 rslt
= build_int_cst (type
, 1);
524 rslt
= int_const_binop (MULT_EXPR
, rslt
, x
);
525 x
= int_const_binop (MULT_EXPR
, x
, x
);
527 rslt
= int_const_binop (BIT_AND_EXPR
, rslt
, mask
);
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
550 number_of_iterations_ne_max (mpz_t bnd
, bool no_overflow
, tree c
, tree s
,
551 bounds
*bnds
, bool exit_must_be_taken
)
555 bool bnds_u_valid
= ((no_overflow
&& exit_must_be_taken
)
556 || mpz_sgn (bnds
->below
) >= 0);
558 if (multiple_of_p (TREE_TYPE (c
), c
, s
))
560 /* If C is an exact multiple of S, then its value will be reached before
561 the induction variable overflows (unless the loop is exited in some
562 other way before). Note that the actual induction variable in the
563 loop (which ranges from base to final instead of from 0 to C) may
564 overflow, in which case BNDS.up will not be giving a correct upper
565 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
567 exit_must_be_taken
= true;
570 /* If the induction variable can overflow, the number of iterations is at
571 most the period of the control variable (or infinite, but in that case
572 the whole # of iterations analysis will fail). */
575 max
= double_int::mask (TYPE_PRECISION (TREE_TYPE (c
))
576 - tree_low_cst (num_ending_zeros (s
), 1));
577 mpz_set_double_int (bnd
, max
, true);
581 /* Now we know that the induction variable does not overflow, so the loop
582 iterates at most (range of type / S) times. */
583 mpz_set_double_int (bnd
, double_int::mask (TYPE_PRECISION (TREE_TYPE (c
))),
586 /* If the induction variable is guaranteed to reach the value of C before
588 if (exit_must_be_taken
)
590 /* ... then we can strengthen this to C / S, and possibly we can use
591 the upper bound on C given by BNDS. */
592 if (TREE_CODE (c
) == INTEGER_CST
)
593 mpz_set_double_int (bnd
, tree_to_double_int (c
), true);
594 else if (bnds_u_valid
)
595 mpz_set (bnd
, bnds
->up
);
599 mpz_set_double_int (d
, tree_to_double_int (s
), true);
600 mpz_fdiv_q (bnd
, bnd
, d
);
604 /* Determines number of iterations of loop whose ending condition
605 is IV <> FINAL. TYPE is the type of the iv. The number of
606 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
607 we know that the exit must be taken eventually, i.e., that the IV
608 ever reaches the value FINAL (we derived this earlier, and possibly set
609 NITER->assumptions to make sure this is the case). BNDS contains the
610 bounds on the difference FINAL - IV->base. */
613 number_of_iterations_ne (tree type
, affine_iv
*iv
, tree final
,
614 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
617 tree niter_type
= unsigned_type_for (type
);
618 tree s
, c
, d
, bits
, assumption
, tmp
, bound
;
621 niter
->control
= *iv
;
622 niter
->bound
= final
;
623 niter
->cmp
= NE_EXPR
;
625 /* Rearrange the terms so that we get inequality S * i <> C, with S
626 positive. Also cast everything to the unsigned type. If IV does
627 not overflow, BNDS bounds the value of C. Also, this is the
628 case if the computation |FINAL - IV->base| does not overflow, i.e.,
629 if BNDS->below in the result is nonnegative. */
630 if (tree_int_cst_sign_bit (iv
->step
))
632 s
= fold_convert (niter_type
,
633 fold_build1 (NEGATE_EXPR
, type
, iv
->step
));
634 c
= fold_build2 (MINUS_EXPR
, niter_type
,
635 fold_convert (niter_type
, iv
->base
),
636 fold_convert (niter_type
, final
));
637 bounds_negate (bnds
);
641 s
= fold_convert (niter_type
, iv
->step
);
642 c
= fold_build2 (MINUS_EXPR
, niter_type
,
643 fold_convert (niter_type
, final
),
644 fold_convert (niter_type
, iv
->base
));
648 number_of_iterations_ne_max (max
, iv
->no_overflow
, c
, s
, bnds
,
650 niter
->max
= mpz_get_double_int (niter_type
, max
, false);
653 /* First the trivial cases -- when the step is 1. */
654 if (integer_onep (s
))
660 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
661 is infinite. Otherwise, the number of iterations is
662 (inverse(s/d) * (c/d)) mod (size of mode/d). */
663 bits
= num_ending_zeros (s
);
664 bound
= build_low_bits_mask (niter_type
,
665 (TYPE_PRECISION (niter_type
)
666 - tree_low_cst (bits
, 1)));
668 d
= fold_binary_to_constant (LSHIFT_EXPR
, niter_type
,
669 build_int_cst (niter_type
, 1), bits
);
670 s
= fold_binary_to_constant (RSHIFT_EXPR
, niter_type
, s
, bits
);
672 if (!exit_must_be_taken
)
674 /* If we cannot assume that the exit is taken eventually, record the
675 assumptions for divisibility of c. */
676 assumption
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, c
, d
);
677 assumption
= fold_build2 (EQ_EXPR
, boolean_type_node
,
678 assumption
, build_int_cst (niter_type
, 0));
679 if (!integer_nonzerop (assumption
))
680 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
681 niter
->assumptions
, assumption
);
684 c
= fold_build2 (EXACT_DIV_EXPR
, niter_type
, c
, d
);
685 tmp
= fold_build2 (MULT_EXPR
, niter_type
, c
, inverse (s
, bound
));
686 niter
->niter
= fold_build2 (BIT_AND_EXPR
, niter_type
, tmp
, bound
);
690 /* Checks whether we can determine the final value of the control variable
691 of the loop with ending condition IV0 < IV1 (computed in TYPE).
692 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
693 of the step. The assumptions necessary to ensure that the computation
694 of the final value does not overflow are recorded in NITER. If we
695 find the final value, we adjust DELTA and return TRUE. Otherwise
696 we return false. BNDS bounds the value of IV1->base - IV0->base,
697 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
698 true if we know that the exit must be taken eventually. */
701 number_of_iterations_lt_to_ne (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
702 struct tree_niter_desc
*niter
,
703 tree
*delta
, tree step
,
704 bool exit_must_be_taken
, bounds
*bnds
)
706 tree niter_type
= TREE_TYPE (step
);
707 tree mod
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, *delta
, step
);
710 tree assumption
= boolean_true_node
, bound
, noloop
;
711 bool ret
= false, fv_comp_no_overflow
;
713 if (POINTER_TYPE_P (type
))
716 if (TREE_CODE (mod
) != INTEGER_CST
)
718 if (integer_nonzerop (mod
))
719 mod
= fold_build2 (MINUS_EXPR
, niter_type
, step
, mod
);
720 tmod
= fold_convert (type1
, mod
);
723 mpz_set_double_int (mmod
, tree_to_double_int (mod
), true);
724 mpz_neg (mmod
, mmod
);
726 /* If the induction variable does not overflow and the exit is taken,
727 then the computation of the final value does not overflow. This is
728 also obviously the case if the new final value is equal to the
729 current one. Finally, we postulate this for pointer type variables,
730 as the code cannot rely on the object to that the pointer points being
731 placed at the end of the address space (and more pragmatically,
732 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
733 if (integer_zerop (mod
) || POINTER_TYPE_P (type
))
734 fv_comp_no_overflow
= true;
735 else if (!exit_must_be_taken
)
736 fv_comp_no_overflow
= false;
738 fv_comp_no_overflow
=
739 (iv0
->no_overflow
&& integer_nonzerop (iv0
->step
))
740 || (iv1
->no_overflow
&& integer_nonzerop (iv1
->step
));
742 if (integer_nonzerop (iv0
->step
))
744 /* The final value of the iv is iv1->base + MOD, assuming that this
745 computation does not overflow, and that
746 iv0->base <= iv1->base + MOD. */
747 if (!fv_comp_no_overflow
)
749 bound
= fold_build2 (MINUS_EXPR
, type1
,
750 TYPE_MAX_VALUE (type1
), tmod
);
751 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
753 if (integer_zerop (assumption
))
756 if (mpz_cmp (mmod
, bnds
->below
) < 0)
757 noloop
= boolean_false_node
;
758 else if (POINTER_TYPE_P (type
))
759 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
761 fold_build_pointer_plus (iv1
->base
, tmod
));
763 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
765 fold_build2 (PLUS_EXPR
, type1
,
770 /* The final value of the iv is iv0->base - MOD, assuming that this
771 computation does not overflow, and that
772 iv0->base - MOD <= iv1->base. */
773 if (!fv_comp_no_overflow
)
775 bound
= fold_build2 (PLUS_EXPR
, type1
,
776 TYPE_MIN_VALUE (type1
), tmod
);
777 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
779 if (integer_zerop (assumption
))
782 if (mpz_cmp (mmod
, bnds
->below
) < 0)
783 noloop
= boolean_false_node
;
784 else if (POINTER_TYPE_P (type
))
785 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
786 fold_build_pointer_plus (iv0
->base
,
787 fold_build1 (NEGATE_EXPR
,
791 noloop
= fold_build2 (GT_EXPR
, boolean_type_node
,
792 fold_build2 (MINUS_EXPR
, type1
,
797 if (!integer_nonzerop (assumption
))
798 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
801 if (!integer_zerop (noloop
))
802 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
805 bounds_add (bnds
, tree_to_double_int (mod
), type
);
806 *delta
= fold_build2 (PLUS_EXPR
, niter_type
, *delta
, mod
);
814 /* Add assertions to NITER that ensure that the control variable of the loop
815 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
816 are TYPE. Returns false if we can prove that there is an overflow, true
817 otherwise. STEP is the absolute value of the step. */
820 assert_no_overflow_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
821 struct tree_niter_desc
*niter
, tree step
)
823 tree bound
, d
, assumption
, diff
;
824 tree niter_type
= TREE_TYPE (step
);
826 if (integer_nonzerop (iv0
->step
))
828 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
829 if (iv0
->no_overflow
)
832 /* If iv0->base is a constant, we can determine the last value before
833 overflow precisely; otherwise we conservatively assume
836 if (TREE_CODE (iv0
->base
) == INTEGER_CST
)
838 d
= fold_build2 (MINUS_EXPR
, niter_type
,
839 fold_convert (niter_type
, TYPE_MAX_VALUE (type
)),
840 fold_convert (niter_type
, iv0
->base
));
841 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
844 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
845 build_int_cst (niter_type
, 1));
846 bound
= fold_build2 (MINUS_EXPR
, type
,
847 TYPE_MAX_VALUE (type
), fold_convert (type
, diff
));
848 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
853 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
854 if (iv1
->no_overflow
)
857 if (TREE_CODE (iv1
->base
) == INTEGER_CST
)
859 d
= fold_build2 (MINUS_EXPR
, niter_type
,
860 fold_convert (niter_type
, iv1
->base
),
861 fold_convert (niter_type
, TYPE_MIN_VALUE (type
)));
862 diff
= fold_build2 (FLOOR_MOD_EXPR
, niter_type
, d
, step
);
865 diff
= fold_build2 (MINUS_EXPR
, niter_type
, step
,
866 build_int_cst (niter_type
, 1));
867 bound
= fold_build2 (PLUS_EXPR
, type
,
868 TYPE_MIN_VALUE (type
), fold_convert (type
, diff
));
869 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
873 if (integer_zerop (assumption
))
875 if (!integer_nonzerop (assumption
))
876 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
877 niter
->assumptions
, assumption
);
879 iv0
->no_overflow
= true;
880 iv1
->no_overflow
= true;
884 /* Add an assumption to NITER that a loop whose ending condition
885 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
886 bounds the value of IV1->base - IV0->base. */
889 assert_loop_rolls_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
890 struct tree_niter_desc
*niter
, bounds
*bnds
)
892 tree assumption
= boolean_true_node
, bound
, diff
;
893 tree mbz
, mbzl
, mbzr
, type1
;
894 bool rolls_p
, no_overflow_p
;
898 /* We are going to compute the number of iterations as
899 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
900 variant of TYPE. This formula only works if
902 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
904 (where MAX is the maximum value of the unsigned variant of TYPE, and
905 the computations in this formula are performed in full precision,
906 i.e., without overflows).
908 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
909 we have a condition of the form iv0->base - step < iv1->base before the loop,
910 and for loops iv0->base < iv1->base - step * i the condition
911 iv0->base < iv1->base + step, due to loop header copying, which enable us
912 to prove the lower bound.
914 The upper bound is more complicated. Unless the expressions for initial
915 and final value themselves contain enough information, we usually cannot
916 derive it from the context. */
918 /* First check whether the answer does not follow from the bounds we gathered
920 if (integer_nonzerop (iv0
->step
))
921 dstep
= tree_to_double_int (iv0
->step
);
924 dstep
= tree_to_double_int (iv1
->step
).sext (TYPE_PRECISION (type
));
929 mpz_set_double_int (mstep
, dstep
, true);
930 mpz_neg (mstep
, mstep
);
931 mpz_add_ui (mstep
, mstep
, 1);
933 rolls_p
= mpz_cmp (mstep
, bnds
->below
) <= 0;
936 mpz_set_double_int (max
, double_int::mask (TYPE_PRECISION (type
)), true);
937 mpz_add (max
, max
, mstep
);
938 no_overflow_p
= (mpz_cmp (bnds
->up
, max
) <= 0
939 /* For pointers, only values lying inside a single object
940 can be compared or manipulated by pointer arithmetics.
941 Gcc in general does not allow or handle objects larger
942 than half of the address space, hence the upper bound
943 is satisfied for pointers. */
944 || POINTER_TYPE_P (type
));
948 if (rolls_p
&& no_overflow_p
)
952 if (POINTER_TYPE_P (type
))
955 /* Now the hard part; we must formulate the assumption(s) as expressions, and
956 we must be careful not to introduce overflow. */
958 if (integer_nonzerop (iv0
->step
))
960 diff
= fold_build2 (MINUS_EXPR
, type1
,
961 iv0
->step
, build_int_cst (type1
, 1));
963 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
964 0 address never belongs to any object, we can assume this for
966 if (!POINTER_TYPE_P (type
))
968 bound
= fold_build2 (PLUS_EXPR
, type1
,
969 TYPE_MIN_VALUE (type
), diff
);
970 assumption
= fold_build2 (GE_EXPR
, boolean_type_node
,
974 /* And then we can compute iv0->base - diff, and compare it with
976 mbzl
= fold_build2 (MINUS_EXPR
, type1
,
977 fold_convert (type1
, iv0
->base
), diff
);
978 mbzr
= fold_convert (type1
, iv1
->base
);
982 diff
= fold_build2 (PLUS_EXPR
, type1
,
983 iv1
->step
, build_int_cst (type1
, 1));
985 if (!POINTER_TYPE_P (type
))
987 bound
= fold_build2 (PLUS_EXPR
, type1
,
988 TYPE_MAX_VALUE (type
), diff
);
989 assumption
= fold_build2 (LE_EXPR
, boolean_type_node
,
993 mbzl
= fold_convert (type1
, iv0
->base
);
994 mbzr
= fold_build2 (MINUS_EXPR
, type1
,
995 fold_convert (type1
, iv1
->base
), diff
);
998 if (!integer_nonzerop (assumption
))
999 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1000 niter
->assumptions
, assumption
);
1003 mbz
= fold_build2 (GT_EXPR
, boolean_type_node
, mbzl
, mbzr
);
1004 niter
->may_be_zero
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1005 niter
->may_be_zero
, mbz
);
1009 /* Determines number of iterations of loop whose ending condition
1010 is IV0 < IV1. TYPE is the type of the iv. The number of
1011 iterations is stored to NITER. BNDS bounds the difference
1012 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1013 that the exit must be taken eventually. */
1016 number_of_iterations_lt (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1017 struct tree_niter_desc
*niter
,
1018 bool exit_must_be_taken
, bounds
*bnds
)
1020 tree niter_type
= unsigned_type_for (type
);
1021 tree delta
, step
, s
;
1024 if (integer_nonzerop (iv0
->step
))
1026 niter
->control
= *iv0
;
1027 niter
->cmp
= LT_EXPR
;
1028 niter
->bound
= iv1
->base
;
1032 niter
->control
= *iv1
;
1033 niter
->cmp
= GT_EXPR
;
1034 niter
->bound
= iv0
->base
;
1037 delta
= fold_build2 (MINUS_EXPR
, niter_type
,
1038 fold_convert (niter_type
, iv1
->base
),
1039 fold_convert (niter_type
, iv0
->base
));
1041 /* First handle the special case that the step is +-1. */
1042 if ((integer_onep (iv0
->step
) && integer_zerop (iv1
->step
))
1043 || (integer_all_onesp (iv1
->step
) && integer_zerop (iv0
->step
)))
1045 /* for (i = iv0->base; i < iv1->base; i++)
1049 for (i = iv1->base; i > iv0->base; i--).
1051 In both cases # of iterations is iv1->base - iv0->base, assuming that
1052 iv1->base >= iv0->base.
1054 First try to derive a lower bound on the value of
1055 iv1->base - iv0->base, computed in full precision. If the difference
1056 is nonnegative, we are done, otherwise we must record the
1059 if (mpz_sgn (bnds
->below
) < 0)
1060 niter
->may_be_zero
= fold_build2 (LT_EXPR
, boolean_type_node
,
1061 iv1
->base
, iv0
->base
);
1062 niter
->niter
= delta
;
1063 niter
->max
= mpz_get_double_int (niter_type
, bnds
->up
, false);
1067 if (integer_nonzerop (iv0
->step
))
1068 step
= fold_convert (niter_type
, iv0
->step
);
1070 step
= fold_convert (niter_type
,
1071 fold_build1 (NEGATE_EXPR
, type
, iv1
->step
));
1073 /* If we can determine the final value of the control iv exactly, we can
1074 transform the condition to != comparison. In particular, this will be
1075 the case if DELTA is constant. */
1076 if (number_of_iterations_lt_to_ne (type
, iv0
, iv1
, niter
, &delta
, step
,
1077 exit_must_be_taken
, bnds
))
1081 zps
.base
= build_int_cst (niter_type
, 0);
1083 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1084 zps does not overflow. */
1085 zps
.no_overflow
= true;
1087 return number_of_iterations_ne (type
, &zps
, delta
, niter
, true, bnds
);
1090 /* Make sure that the control iv does not overflow. */
1091 if (!assert_no_overflow_lt (type
, iv0
, iv1
, niter
, step
))
1094 /* We determine the number of iterations as (delta + step - 1) / step. For
1095 this to work, we must know that iv1->base >= iv0->base - step + 1,
1096 otherwise the loop does not roll. */
1097 assert_loop_rolls_lt (type
, iv0
, iv1
, niter
, bnds
);
1099 s
= fold_build2 (MINUS_EXPR
, niter_type
,
1100 step
, build_int_cst (niter_type
, 1));
1101 delta
= fold_build2 (PLUS_EXPR
, niter_type
, delta
, s
);
1102 niter
->niter
= fold_build2 (FLOOR_DIV_EXPR
, niter_type
, delta
, step
);
1106 mpz_set_double_int (mstep
, tree_to_double_int (step
), true);
1107 mpz_add (tmp
, bnds
->up
, mstep
);
1108 mpz_sub_ui (tmp
, tmp
, 1);
1109 mpz_fdiv_q (tmp
, tmp
, mstep
);
1110 niter
->max
= mpz_get_double_int (niter_type
, tmp
, false);
1117 /* Determines number of iterations of loop whose ending condition
1118 is IV0 <= IV1. TYPE is the type of the iv. The number of
1119 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1120 we know that this condition must eventually become false (we derived this
1121 earlier, and possibly set NITER->assumptions to make sure this
1122 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1125 number_of_iterations_le (tree type
, affine_iv
*iv0
, affine_iv
*iv1
,
1126 struct tree_niter_desc
*niter
, bool exit_must_be_taken
,
1131 if (POINTER_TYPE_P (type
))
1134 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1135 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1136 value of the type. This we must know anyway, since if it is
1137 equal to this value, the loop rolls forever. We do not check
1138 this condition for pointer type ivs, as the code cannot rely on
1139 the object to that the pointer points being placed at the end of
1140 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1141 not defined for pointers). */
1143 if (!exit_must_be_taken
&& !POINTER_TYPE_P (type
))
1145 if (integer_nonzerop (iv0
->step
))
1146 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1147 iv1
->base
, TYPE_MAX_VALUE (type
));
1149 assumption
= fold_build2 (NE_EXPR
, boolean_type_node
,
1150 iv0
->base
, TYPE_MIN_VALUE (type
));
1152 if (integer_zerop (assumption
))
1154 if (!integer_nonzerop (assumption
))
1155 niter
->assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
1156 niter
->assumptions
, assumption
);
1159 if (integer_nonzerop (iv0
->step
))
1161 if (POINTER_TYPE_P (type
))
1162 iv1
->base
= fold_build_pointer_plus_hwi (iv1
->base
, 1);
1164 iv1
->base
= fold_build2 (PLUS_EXPR
, type1
, iv1
->base
,
1165 build_int_cst (type1
, 1));
1167 else if (POINTER_TYPE_P (type
))
1168 iv0
->base
= fold_build_pointer_plus_hwi (iv0
->base
, -1);
1170 iv0
->base
= fold_build2 (MINUS_EXPR
, type1
,
1171 iv0
->base
, build_int_cst (type1
, 1));
1173 bounds_add (bnds
, double_int_one
, type1
);
1175 return number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1179 /* Dumps description of affine induction variable IV to FILE. */
1182 dump_affine_iv (FILE *file
, affine_iv
*iv
)
1184 if (!integer_zerop (iv
->step
))
1185 fprintf (file
, "[");
1187 print_generic_expr (dump_file
, iv
->base
, TDF_SLIM
);
1189 if (!integer_zerop (iv
->step
))
1191 fprintf (file
, ", + , ");
1192 print_generic_expr (dump_file
, iv
->step
, TDF_SLIM
);
1193 fprintf (file
, "]%s", iv
->no_overflow
? "(no_overflow)" : "");
1197 /* Determine the number of iterations according to condition (for staying
1198 inside loop) which compares two induction variables using comparison
1199 operator CODE. The induction variable on left side of the comparison
1200 is IV0, the right-hand side is IV1. Both induction variables must have
1201 type TYPE, which must be an integer or pointer type. The steps of the
1202 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1204 LOOP is the loop whose number of iterations we are determining.
1206 ONLY_EXIT is true if we are sure this is the only way the loop could be
1207 exited (including possibly non-returning function calls, exceptions, etc.)
1208 -- in this case we can use the information whether the control induction
1209 variables can overflow or not in a more efficient way.
1211 The results (number of iterations and assumptions as described in
1212 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1213 Returns false if it fails to determine number of iterations, true if it
1214 was determined (possibly with some assumptions). */
1217 number_of_iterations_cond (struct loop
*loop
,
1218 tree type
, affine_iv
*iv0
, enum tree_code code
,
1219 affine_iv
*iv1
, struct tree_niter_desc
*niter
,
1222 bool exit_must_be_taken
= false, ret
;
1225 /* The meaning of these assumptions is this:
1227 then the rest of information does not have to be valid
1228 if may_be_zero then the loop does not roll, even if
1230 niter
->assumptions
= boolean_true_node
;
1231 niter
->may_be_zero
= boolean_false_node
;
1232 niter
->niter
= NULL_TREE
;
1233 niter
->max
= double_int_zero
;
1235 niter
->bound
= NULL_TREE
;
1236 niter
->cmp
= ERROR_MARK
;
1238 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1239 the control variable is on lhs. */
1240 if (code
== GE_EXPR
|| code
== GT_EXPR
1241 || (code
== NE_EXPR
&& integer_zerop (iv0
->step
)))
1244 code
= swap_tree_comparison (code
);
1247 if (POINTER_TYPE_P (type
))
1249 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1250 to the same object. If they do, the control variable cannot wrap
1251 (as wrap around the bounds of memory will never return a pointer
1252 that would be guaranteed to point to the same object, even if we
1253 avoid undefined behavior by casting to size_t and back). */
1254 iv0
->no_overflow
= true;
1255 iv1
->no_overflow
= true;
1258 /* If the control induction variable does not overflow and the only exit
1259 from the loop is the one that we analyze, we know it must be taken
1263 if (!integer_zerop (iv0
->step
) && iv0
->no_overflow
)
1264 exit_must_be_taken
= true;
1265 else if (!integer_zerop (iv1
->step
) && iv1
->no_overflow
)
1266 exit_must_be_taken
= true;
1269 /* We can handle the case when neither of the sides of the comparison is
1270 invariant, provided that the test is NE_EXPR. This rarely occurs in
1271 practice, but it is simple enough to manage. */
1272 if (!integer_zerop (iv0
->step
) && !integer_zerop (iv1
->step
))
1274 tree step_type
= POINTER_TYPE_P (type
) ? sizetype
: type
;
1275 if (code
!= NE_EXPR
)
1278 iv0
->step
= fold_binary_to_constant (MINUS_EXPR
, step_type
,
1279 iv0
->step
, iv1
->step
);
1280 iv0
->no_overflow
= false;
1281 iv1
->step
= build_int_cst (step_type
, 0);
1282 iv1
->no_overflow
= true;
1285 /* If the result of the comparison is a constant, the loop is weird. More
1286 precise handling would be possible, but the situation is not common enough
1287 to waste time on it. */
1288 if (integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
))
1291 /* Ignore loops of while (i-- < 10) type. */
1292 if (code
!= NE_EXPR
)
1294 if (iv0
->step
&& tree_int_cst_sign_bit (iv0
->step
))
1297 if (!integer_zerop (iv1
->step
) && !tree_int_cst_sign_bit (iv1
->step
))
1301 /* If the loop exits immediately, there is nothing to do. */
1302 if (integer_zerop (fold_build2 (code
, boolean_type_node
, iv0
->base
, iv1
->base
)))
1304 niter
->niter
= build_int_cst (unsigned_type_for (type
), 0);
1305 niter
->max
= double_int_zero
;
1309 /* OK, now we know we have a senseful loop. Handle several cases, depending
1310 on what comparison operator is used. */
1311 bound_difference (loop
, iv1
->base
, iv0
->base
, &bnds
);
1313 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1316 "Analyzing # of iterations of loop %d\n", loop
->num
);
1318 fprintf (dump_file
, " exit condition ");
1319 dump_affine_iv (dump_file
, iv0
);
1320 fprintf (dump_file
, " %s ",
1321 code
== NE_EXPR
? "!="
1322 : code
== LT_EXPR
? "<"
1324 dump_affine_iv (dump_file
, iv1
);
1325 fprintf (dump_file
, "\n");
1327 fprintf (dump_file
, " bounds on difference of bases: ");
1328 mpz_out_str (dump_file
, 10, bnds
.below
);
1329 fprintf (dump_file
, " ... ");
1330 mpz_out_str (dump_file
, 10, bnds
.up
);
1331 fprintf (dump_file
, "\n");
1337 gcc_assert (integer_zerop (iv1
->step
));
1338 ret
= number_of_iterations_ne (type
, iv0
, iv1
->base
, niter
,
1339 exit_must_be_taken
, &bnds
);
1343 ret
= number_of_iterations_lt (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1348 ret
= number_of_iterations_le (type
, iv0
, iv1
, niter
, exit_must_be_taken
,
1356 mpz_clear (bnds
.up
);
1357 mpz_clear (bnds
.below
);
1359 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1363 fprintf (dump_file
, " result:\n");
1364 if (!integer_nonzerop (niter
->assumptions
))
1366 fprintf (dump_file
, " under assumptions ");
1367 print_generic_expr (dump_file
, niter
->assumptions
, TDF_SLIM
);
1368 fprintf (dump_file
, "\n");
1371 if (!integer_zerop (niter
->may_be_zero
))
1373 fprintf (dump_file
, " zero if ");
1374 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1375 fprintf (dump_file
, "\n");
1378 fprintf (dump_file
, " # of iterations ");
1379 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1380 fprintf (dump_file
, ", bounded by ");
1381 dump_double_int (dump_file
, niter
->max
, true);
1382 fprintf (dump_file
, "\n");
1385 fprintf (dump_file
, " failed\n\n");
1390 /* Substitute NEW for OLD in EXPR and fold the result. */
1393 simplify_replace_tree (tree expr
, tree old
, tree new_tree
)
1396 tree ret
= NULL_TREE
, e
, se
;
1401 /* Do not bother to replace constants. */
1402 if (CONSTANT_CLASS_P (old
))
1406 || operand_equal_p (expr
, old
, 0))
1407 return unshare_expr (new_tree
);
1412 n
= TREE_OPERAND_LENGTH (expr
);
1413 for (i
= 0; i
< n
; i
++)
1415 e
= TREE_OPERAND (expr
, i
);
1416 se
= simplify_replace_tree (e
, old
, new_tree
);
1421 ret
= copy_node (expr
);
1423 TREE_OPERAND (ret
, i
) = se
;
1426 return (ret
? fold (ret
) : expr
);
1429 /* Expand definitions of ssa names in EXPR as long as they are simple
1430 enough, and return the new expression. */
1433 expand_simple_operations (tree expr
)
1436 tree ret
= NULL_TREE
, e
, ee
, e1
;
1437 enum tree_code code
;
1440 if (expr
== NULL_TREE
)
1443 if (is_gimple_min_invariant (expr
))
1446 code
= TREE_CODE (expr
);
1447 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1449 n
= TREE_OPERAND_LENGTH (expr
);
1450 for (i
= 0; i
< n
; i
++)
1452 e
= TREE_OPERAND (expr
, i
);
1453 ee
= expand_simple_operations (e
);
1458 ret
= copy_node (expr
);
1460 TREE_OPERAND (ret
, i
) = ee
;
1466 fold_defer_overflow_warnings ();
1468 fold_undefer_and_ignore_overflow_warnings ();
1472 if (TREE_CODE (expr
) != SSA_NAME
)
1475 stmt
= SSA_NAME_DEF_STMT (expr
);
1476 if (gimple_code (stmt
) == GIMPLE_PHI
)
1478 basic_block src
, dest
;
1480 if (gimple_phi_num_args (stmt
) != 1)
1482 e
= PHI_ARG_DEF (stmt
, 0);
1484 /* Avoid propagating through loop exit phi nodes, which
1485 could break loop-closed SSA form restrictions. */
1486 dest
= gimple_bb (stmt
);
1487 src
= single_pred (dest
);
1488 if (TREE_CODE (e
) == SSA_NAME
1489 && src
->loop_father
!= dest
->loop_father
)
1492 return expand_simple_operations (e
);
1494 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1497 e
= gimple_assign_rhs1 (stmt
);
1498 code
= gimple_assign_rhs_code (stmt
);
1499 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1501 if (is_gimple_min_invariant (e
))
1504 if (code
== SSA_NAME
)
1505 return expand_simple_operations (e
);
1513 /* Casts are simple. */
1514 ee
= expand_simple_operations (e
);
1515 return fold_build1 (code
, TREE_TYPE (expr
), ee
);
1519 case POINTER_PLUS_EXPR
:
1520 /* And increments and decrements by a constant are simple. */
1521 e1
= gimple_assign_rhs2 (stmt
);
1522 if (!is_gimple_min_invariant (e1
))
1525 ee
= expand_simple_operations (e
);
1526 return fold_build2 (code
, TREE_TYPE (expr
), ee
, e1
);
1533 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1534 expression (or EXPR unchanged, if no simplification was possible). */
1537 tree_simplify_using_condition_1 (tree cond
, tree expr
)
1540 tree e
, te
, e0
, e1
, e2
, notcond
;
1541 enum tree_code code
= TREE_CODE (expr
);
1543 if (code
== INTEGER_CST
)
1546 if (code
== TRUTH_OR_EXPR
1547 || code
== TRUTH_AND_EXPR
1548 || code
== COND_EXPR
)
1552 e0
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 0));
1553 if (TREE_OPERAND (expr
, 0) != e0
)
1556 e1
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 1));
1557 if (TREE_OPERAND (expr
, 1) != e1
)
1560 if (code
== COND_EXPR
)
1562 e2
= tree_simplify_using_condition_1 (cond
, TREE_OPERAND (expr
, 2));
1563 if (TREE_OPERAND (expr
, 2) != e2
)
1571 if (code
== COND_EXPR
)
1572 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1574 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1580 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1581 propagation, and vice versa. Fold does not handle this, since it is
1582 considered too expensive. */
1583 if (TREE_CODE (cond
) == EQ_EXPR
)
1585 e0
= TREE_OPERAND (cond
, 0);
1586 e1
= TREE_OPERAND (cond
, 1);
1588 /* We know that e0 == e1. Check whether we cannot simplify expr
1590 e
= simplify_replace_tree (expr
, e0
, e1
);
1591 if (integer_zerop (e
) || integer_nonzerop (e
))
1594 e
= simplify_replace_tree (expr
, e1
, e0
);
1595 if (integer_zerop (e
) || integer_nonzerop (e
))
1598 if (TREE_CODE (expr
) == EQ_EXPR
)
1600 e0
= TREE_OPERAND (expr
, 0);
1601 e1
= TREE_OPERAND (expr
, 1);
1603 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1604 e
= simplify_replace_tree (cond
, e0
, e1
);
1605 if (integer_zerop (e
))
1607 e
= simplify_replace_tree (cond
, e1
, e0
);
1608 if (integer_zerop (e
))
1611 if (TREE_CODE (expr
) == NE_EXPR
)
1613 e0
= TREE_OPERAND (expr
, 0);
1614 e1
= TREE_OPERAND (expr
, 1);
1616 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1617 e
= simplify_replace_tree (cond
, e0
, e1
);
1618 if (integer_zerop (e
))
1619 return boolean_true_node
;
1620 e
= simplify_replace_tree (cond
, e1
, e0
);
1621 if (integer_zerop (e
))
1622 return boolean_true_node
;
1625 te
= expand_simple_operations (expr
);
1627 /* Check whether COND ==> EXPR. */
1628 notcond
= invert_truthvalue (cond
);
1629 e
= fold_binary (TRUTH_OR_EXPR
, boolean_type_node
, notcond
, te
);
1630 if (e
&& integer_nonzerop (e
))
1633 /* Check whether COND ==> not EXPR. */
1634 e
= fold_binary (TRUTH_AND_EXPR
, boolean_type_node
, cond
, te
);
1635 if (e
&& integer_zerop (e
))
1641 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1642 expression (or EXPR unchanged, if no simplification was possible).
1643 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1644 of simple operations in definitions of ssa names in COND are expanded,
1645 so that things like casts or incrementing the value of the bound before
1646 the loop do not cause us to fail. */
1649 tree_simplify_using_condition (tree cond
, tree expr
)
1651 cond
= expand_simple_operations (cond
);
1653 return tree_simplify_using_condition_1 (cond
, expr
);
1656 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1657 Returns the simplified expression (or EXPR unchanged, if no
1658 simplification was possible).*/
1661 simplify_using_initial_conditions (struct loop
*loop
, tree expr
)
1669 if (TREE_CODE (expr
) == INTEGER_CST
)
1672 /* Limit walking the dominators to avoid quadraticness in
1673 the number of BBs times the number of loops in degenerate
1675 for (bb
= loop
->header
;
1676 bb
!= ENTRY_BLOCK_PTR
&& cnt
< MAX_DOMINATORS_TO_WALK
;
1677 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
))
1679 if (!single_pred_p (bb
))
1681 e
= single_pred_edge (bb
);
1683 if (!(e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
1686 stmt
= last_stmt (e
->src
);
1687 cond
= fold_build2 (gimple_cond_code (stmt
),
1689 gimple_cond_lhs (stmt
),
1690 gimple_cond_rhs (stmt
));
1691 if (e
->flags
& EDGE_FALSE_VALUE
)
1692 cond
= invert_truthvalue (cond
);
1693 expr
= tree_simplify_using_condition (cond
, expr
);
1700 /* Tries to simplify EXPR using the evolutions of the loop invariants
1701 in the superloops of LOOP. Returns the simplified expression
1702 (or EXPR unchanged, if no simplification was possible). */
1705 simplify_using_outer_evolutions (struct loop
*loop
, tree expr
)
1707 enum tree_code code
= TREE_CODE (expr
);
1711 if (is_gimple_min_invariant (expr
))
1714 if (code
== TRUTH_OR_EXPR
1715 || code
== TRUTH_AND_EXPR
1716 || code
== COND_EXPR
)
1720 e0
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 0));
1721 if (TREE_OPERAND (expr
, 0) != e0
)
1724 e1
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 1));
1725 if (TREE_OPERAND (expr
, 1) != e1
)
1728 if (code
== COND_EXPR
)
1730 e2
= simplify_using_outer_evolutions (loop
, TREE_OPERAND (expr
, 2));
1731 if (TREE_OPERAND (expr
, 2) != e2
)
1739 if (code
== COND_EXPR
)
1740 expr
= fold_build3 (code
, boolean_type_node
, e0
, e1
, e2
);
1742 expr
= fold_build2 (code
, boolean_type_node
, e0
, e1
);
1748 e
= instantiate_parameters (loop
, expr
);
1749 if (is_gimple_min_invariant (e
))
1755 /* Returns true if EXIT is the only possible exit from LOOP. */
1758 loop_only_exit_p (const struct loop
*loop
, const_edge exit
)
1761 gimple_stmt_iterator bsi
;
1765 if (exit
!= single_exit (loop
))
1768 body
= get_loop_body (loop
);
1769 for (i
= 0; i
< loop
->num_nodes
; i
++)
1771 for (bsi
= gsi_start_bb (body
[i
]); !gsi_end_p (bsi
); gsi_next (&bsi
))
1773 call
= gsi_stmt (bsi
);
1774 if (gimple_code (call
) != GIMPLE_CALL
)
1777 if (gimple_has_side_effects (call
))
1789 /* Stores description of number of iterations of LOOP derived from
1790 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1791 useful information could be derived (and fields of NITER has
1792 meaning described in comments at struct tree_niter_desc
1793 declaration), false otherwise. If WARN is true and
1794 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1795 potentially unsafe assumptions.
1796 When EVERY_ITERATION is true, only tests that are known to be executed
1797 every iteration are considered (i.e. only test that alone bounds the loop).
1801 number_of_iterations_exit (struct loop
*loop
, edge exit
,
1802 struct tree_niter_desc
*niter
,
1803 bool warn
, bool every_iteration
)
1808 enum tree_code code
;
1812 && !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
1815 niter
->assumptions
= boolean_false_node
;
1816 stmt
= last_stmt (exit
->src
);
1817 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1820 /* We want the condition for staying inside loop. */
1821 code
= gimple_cond_code (stmt
);
1822 if (exit
->flags
& EDGE_TRUE_VALUE
)
1823 code
= invert_tree_comparison (code
, false);
1838 op0
= gimple_cond_lhs (stmt
);
1839 op1
= gimple_cond_rhs (stmt
);
1840 type
= TREE_TYPE (op0
);
1842 if (TREE_CODE (type
) != INTEGER_TYPE
1843 && !POINTER_TYPE_P (type
))
1846 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, false))
1848 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, false))
1851 /* We don't want to see undefined signed overflow warnings while
1852 computing the number of iterations. */
1853 fold_defer_overflow_warnings ();
1855 iv0
.base
= expand_simple_operations (iv0
.base
);
1856 iv1
.base
= expand_simple_operations (iv1
.base
);
1857 if (!number_of_iterations_cond (loop
, type
, &iv0
, code
, &iv1
, niter
,
1858 loop_only_exit_p (loop
, exit
)))
1860 fold_undefer_and_ignore_overflow_warnings ();
1866 niter
->assumptions
= simplify_using_outer_evolutions (loop
,
1867 niter
->assumptions
);
1868 niter
->may_be_zero
= simplify_using_outer_evolutions (loop
,
1869 niter
->may_be_zero
);
1870 niter
->niter
= simplify_using_outer_evolutions (loop
, niter
->niter
);
1874 = simplify_using_initial_conditions (loop
,
1875 niter
->assumptions
);
1877 = simplify_using_initial_conditions (loop
,
1878 niter
->may_be_zero
);
1880 fold_undefer_and_ignore_overflow_warnings ();
1882 /* If NITER has simplified into a constant, update MAX. */
1883 if (TREE_CODE (niter
->niter
) == INTEGER_CST
)
1884 niter
->max
= tree_to_double_int (niter
->niter
);
1886 if (integer_onep (niter
->assumptions
))
1889 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1890 But if we can prove that there is overflow or some other source of weird
1891 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1892 if (integer_zerop (niter
->assumptions
) || !single_exit (loop
))
1895 if (flag_unsafe_loop_optimizations
)
1896 niter
->assumptions
= boolean_true_node
;
1900 const char *wording
;
1901 location_t loc
= gimple_location (stmt
);
1903 /* We can provide a more specific warning if one of the operator is
1904 constant and the other advances by +1 or -1. */
1905 if (!integer_zerop (iv1
.step
)
1906 ? (integer_zerop (iv0
.step
)
1907 && (integer_onep (iv1
.step
) || integer_all_onesp (iv1
.step
)))
1908 : (integer_onep (iv0
.step
) || integer_all_onesp (iv0
.step
)))
1910 flag_unsafe_loop_optimizations
1911 ? N_("assuming that the loop is not infinite")
1912 : N_("cannot optimize possibly infinite loops");
1915 flag_unsafe_loop_optimizations
1916 ? N_("assuming that the loop counter does not overflow")
1917 : N_("cannot optimize loop, the loop counter may overflow");
1919 warning_at ((LOCATION_LINE (loc
) > 0) ? loc
: input_location
,
1920 OPT_Wunsafe_loop_optimizations
, "%s", gettext (wording
));
1923 return flag_unsafe_loop_optimizations
;
1926 /* Try to determine the number of iterations of LOOP. If we succeed,
1927 expression giving number of iterations is returned and *EXIT is
1928 set to the edge from that the information is obtained. Otherwise
1929 chrec_dont_know is returned. */
1932 find_loop_niter (struct loop
*loop
, edge
*exit
)
1935 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1937 tree niter
= NULL_TREE
, aniter
;
1938 struct tree_niter_desc desc
;
1941 FOR_EACH_VEC_ELT (exits
, i
, ex
)
1943 if (!number_of_iterations_exit (loop
, ex
, &desc
, false))
1946 if (integer_nonzerop (desc
.may_be_zero
))
1948 /* We exit in the first iteration through this exit.
1949 We won't find anything better. */
1950 niter
= build_int_cst (unsigned_type_node
, 0);
1955 if (!integer_zerop (desc
.may_be_zero
))
1958 aniter
= desc
.niter
;
1962 /* Nothing recorded yet. */
1968 /* Prefer constants, the lower the better. */
1969 if (TREE_CODE (aniter
) != INTEGER_CST
)
1972 if (TREE_CODE (niter
) != INTEGER_CST
)
1979 if (tree_int_cst_lt (aniter
, niter
))
1988 return niter
? niter
: chrec_dont_know
;
1991 /* Return true if loop is known to have bounded number of iterations. */
1994 finite_loop_p (struct loop
*loop
)
1999 if (flag_unsafe_loop_optimizations
)
2001 flags
= flags_from_decl_or_type (current_function_decl
);
2002 if ((flags
& (ECF_CONST
|ECF_PURE
)) && !(flags
& ECF_LOOPING_CONST_OR_PURE
))
2004 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2005 fprintf (dump_file
, "Found loop %i to be finite: it is within pure or const function.\n",
2010 if (loop
->any_upper_bound
2011 || max_loop_iterations (loop
, &nit
))
2013 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2014 fprintf (dump_file
, "Found loop %i to be finite: upper bound found.\n",
2023 Analysis of a number of iterations of a loop by a brute-force evaluation.
2027 /* Bound on the number of iterations we try to evaluate. */
2029 #define MAX_ITERATIONS_TO_TRACK \
2030 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2032 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2033 result by a chain of operations such that all but exactly one of their
2034 operands are constants. */
2037 chain_of_csts_start (struct loop
*loop
, tree x
)
2039 gimple stmt
= SSA_NAME_DEF_STMT (x
);
2041 basic_block bb
= gimple_bb (stmt
);
2042 enum tree_code code
;
2045 || !flow_bb_inside_loop_p (loop
, bb
))
2048 if (gimple_code (stmt
) == GIMPLE_PHI
)
2050 if (bb
== loop
->header
)
2056 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2059 code
= gimple_assign_rhs_code (stmt
);
2060 if (gimple_references_memory_p (stmt
)
2061 || TREE_CODE_CLASS (code
) == tcc_reference
2062 || (code
== ADDR_EXPR
2063 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
2066 use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
2067 if (use
== NULL_TREE
)
2070 return chain_of_csts_start (loop
, use
);
2073 /* Determines whether the expression X is derived from a result of a phi node
2074 in header of LOOP such that
2076 * the derivation of X consists only from operations with constants
2077 * the initial value of the phi node is constant
2078 * the value of the phi node in the next iteration can be derived from the
2079 value in the current iteration by a chain of operations with constants.
2081 If such phi node exists, it is returned, otherwise NULL is returned. */
2084 get_base_for (struct loop
*loop
, tree x
)
2089 if (is_gimple_min_invariant (x
))
2092 phi
= chain_of_csts_start (loop
, x
);
2096 init
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2097 next
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2099 if (TREE_CODE (next
) != SSA_NAME
)
2102 if (!is_gimple_min_invariant (init
))
2105 if (chain_of_csts_start (loop
, next
) != phi
)
2111 /* Given an expression X, then
2113 * if X is NULL_TREE, we return the constant BASE.
2114 * otherwise X is a SSA name, whose value in the considered loop is derived
2115 by a chain of operations with constant from a result of a phi node in
2116 the header of the loop. Then we return value of X when the value of the
2117 result of this phi node is given by the constant BASE. */
2120 get_val_for (tree x
, tree base
)
2124 gcc_assert (is_gimple_min_invariant (base
));
2129 stmt
= SSA_NAME_DEF_STMT (x
);
2130 if (gimple_code (stmt
) == GIMPLE_PHI
)
2133 gcc_assert (is_gimple_assign (stmt
));
2135 /* STMT must be either an assignment of a single SSA name or an
2136 expression involving an SSA name and a constant. Try to fold that
2137 expression using the value for the SSA name. */
2138 if (gimple_assign_ssa_name_copy_p (stmt
))
2139 return get_val_for (gimple_assign_rhs1 (stmt
), base
);
2140 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_UNARY_RHS
2141 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
)
2143 return fold_build1 (gimple_assign_rhs_code (stmt
),
2144 gimple_expr_type (stmt
),
2145 get_val_for (gimple_assign_rhs1 (stmt
), base
));
2147 else if (gimple_assign_rhs_class (stmt
) == GIMPLE_BINARY_RHS
)
2149 tree rhs1
= gimple_assign_rhs1 (stmt
);
2150 tree rhs2
= gimple_assign_rhs2 (stmt
);
2151 if (TREE_CODE (rhs1
) == SSA_NAME
)
2152 rhs1
= get_val_for (rhs1
, base
);
2153 else if (TREE_CODE (rhs2
) == SSA_NAME
)
2154 rhs2
= get_val_for (rhs2
, base
);
2157 return fold_build2 (gimple_assign_rhs_code (stmt
),
2158 gimple_expr_type (stmt
), rhs1
, rhs2
);
2165 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2166 by brute force -- i.e. by determining the value of the operands of the
2167 condition at EXIT in first few iterations of the loop (assuming that
2168 these values are constant) and determining the first one in that the
2169 condition is not satisfied. Returns the constant giving the number
2170 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2173 loop_niter_by_eval (struct loop
*loop
, edge exit
)
2176 tree op
[2], val
[2], next
[2], aval
[2];
2181 cond
= last_stmt (exit
->src
);
2182 if (!cond
|| gimple_code (cond
) != GIMPLE_COND
)
2183 return chrec_dont_know
;
2185 cmp
= gimple_cond_code (cond
);
2186 if (exit
->flags
& EDGE_TRUE_VALUE
)
2187 cmp
= invert_tree_comparison (cmp
, false);
2197 op
[0] = gimple_cond_lhs (cond
);
2198 op
[1] = gimple_cond_rhs (cond
);
2202 return chrec_dont_know
;
2205 for (j
= 0; j
< 2; j
++)
2207 if (is_gimple_min_invariant (op
[j
]))
2210 next
[j
] = NULL_TREE
;
2215 phi
= get_base_for (loop
, op
[j
]);
2217 return chrec_dont_know
;
2218 val
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
2219 next
[j
] = PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
2223 /* Don't issue signed overflow warnings. */
2224 fold_defer_overflow_warnings ();
2226 for (i
= 0; i
< MAX_ITERATIONS_TO_TRACK
; i
++)
2228 for (j
= 0; j
< 2; j
++)
2229 aval
[j
] = get_val_for (op
[j
], val
[j
]);
2231 acnd
= fold_binary (cmp
, boolean_type_node
, aval
[0], aval
[1]);
2232 if (acnd
&& integer_zerop (acnd
))
2234 fold_undefer_and_ignore_overflow_warnings ();
2235 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2237 "Proved that loop %d iterates %d times using brute force.\n",
2239 return build_int_cst (unsigned_type_node
, i
);
2242 for (j
= 0; j
< 2; j
++)
2244 val
[j
] = get_val_for (next
[j
], val
[j
]);
2245 if (!is_gimple_min_invariant (val
[j
]))
2247 fold_undefer_and_ignore_overflow_warnings ();
2248 return chrec_dont_know
;
2253 fold_undefer_and_ignore_overflow_warnings ();
2255 return chrec_dont_know
;
2258 /* Finds the exit of the LOOP by that the loop exits after a constant
2259 number of iterations and stores the exit edge to *EXIT. The constant
2260 giving the number of iterations of LOOP is returned. The number of
2261 iterations is determined using loop_niter_by_eval (i.e. by brute force
2262 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2263 determines the number of iterations, chrec_dont_know is returned. */
2266 find_loop_niter_by_eval (struct loop
*loop
, edge
*exit
)
2269 vec
<edge
> exits
= get_loop_exit_edges (loop
);
2271 tree niter
= NULL_TREE
, aniter
;
2275 /* Loops with multiple exits are expensive to handle and less important. */
2276 if (!flag_expensive_optimizations
2277 && exits
.length () > 1)
2280 return chrec_dont_know
;
2283 FOR_EACH_VEC_ELT (exits
, i
, ex
)
2285 if (!just_once_each_iteration_p (loop
, ex
->src
))
2288 aniter
= loop_niter_by_eval (loop
, ex
);
2289 if (chrec_contains_undetermined (aniter
))
2293 && !tree_int_cst_lt (aniter
, niter
))
2301 return niter
? niter
: chrec_dont_know
;
2306 Analysis of upper bounds on number of iterations of a loop.
2310 static double_int
derive_constant_upper_bound_ops (tree
, tree
,
2311 enum tree_code
, tree
);
2313 /* Returns a constant upper bound on the value of the right-hand side of
2314 an assignment statement STMT. */
2317 derive_constant_upper_bound_assign (gimple stmt
)
2319 enum tree_code code
= gimple_assign_rhs_code (stmt
);
2320 tree op0
= gimple_assign_rhs1 (stmt
);
2321 tree op1
= gimple_assign_rhs2 (stmt
);
2323 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt
)),
2327 /* Returns a constant upper bound on the value of expression VAL. VAL
2328 is considered to be unsigned. If its type is signed, its value must
2332 derive_constant_upper_bound (tree val
)
2334 enum tree_code code
;
2337 extract_ops_from_tree (val
, &code
, &op0
, &op1
);
2338 return derive_constant_upper_bound_ops (TREE_TYPE (val
), op0
, code
, op1
);
2341 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2342 whose type is TYPE. The expression is considered to be unsigned. If
2343 its type is signed, its value must be nonnegative. */
2346 derive_constant_upper_bound_ops (tree type
, tree op0
,
2347 enum tree_code code
, tree op1
)
2350 double_int bnd
, max
, mmax
, cst
;
2353 if (INTEGRAL_TYPE_P (type
))
2354 maxt
= TYPE_MAX_VALUE (type
);
2356 maxt
= upper_bound_in_type (type
, type
);
2358 max
= tree_to_double_int (maxt
);
2363 return tree_to_double_int (op0
);
2366 subtype
= TREE_TYPE (op0
);
2367 if (!TYPE_UNSIGNED (subtype
)
2368 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2369 that OP0 is nonnegative. */
2370 && TYPE_UNSIGNED (type
)
2371 && !tree_expr_nonnegative_p (op0
))
2373 /* If we cannot prove that the casted expression is nonnegative,
2374 we cannot establish more useful upper bound than the precision
2375 of the type gives us. */
2379 /* We now know that op0 is an nonnegative value. Try deriving an upper
2381 bnd
= derive_constant_upper_bound (op0
);
2383 /* If the bound does not fit in TYPE, max. value of TYPE could be
2391 case POINTER_PLUS_EXPR
:
2393 if (TREE_CODE (op1
) != INTEGER_CST
2394 || !tree_expr_nonnegative_p (op0
))
2397 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2398 choose the most logical way how to treat this constant regardless
2399 of the signedness of the type. */
2400 cst
= tree_to_double_int (op1
);
2401 cst
= cst
.sext (TYPE_PRECISION (type
));
2402 if (code
!= MINUS_EXPR
)
2405 bnd
= derive_constant_upper_bound (op0
);
2407 if (cst
.is_negative ())
2410 /* Avoid CST == 0x80000... */
2411 if (cst
.is_negative ())
2414 /* OP0 + CST. We need to check that
2415 BND <= MAX (type) - CST. */
2425 /* OP0 - CST, where CST >= 0.
2427 If TYPE is signed, we have already verified that OP0 >= 0, and we
2428 know that the result is nonnegative. This implies that
2431 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2432 otherwise the operation underflows.
2435 /* This should only happen if the type is unsigned; however, for
2436 buggy programs that use overflowing signed arithmetics even with
2437 -fno-wrapv, this condition may also be true for signed values. */
2441 if (TYPE_UNSIGNED (type
))
2443 tree tem
= fold_binary (GE_EXPR
, boolean_type_node
, op0
,
2444 double_int_to_tree (type
, cst
));
2445 if (!tem
|| integer_nonzerop (tem
))
2454 case FLOOR_DIV_EXPR
:
2455 case EXACT_DIV_EXPR
:
2456 if (TREE_CODE (op1
) != INTEGER_CST
2457 || tree_int_cst_sign_bit (op1
))
2460 bnd
= derive_constant_upper_bound (op0
);
2461 return bnd
.udiv (tree_to_double_int (op1
), FLOOR_DIV_EXPR
);
2464 if (TREE_CODE (op1
) != INTEGER_CST
2465 || tree_int_cst_sign_bit (op1
))
2467 return tree_to_double_int (op1
);
2470 stmt
= SSA_NAME_DEF_STMT (op0
);
2471 if (gimple_code (stmt
) != GIMPLE_ASSIGN
2472 || gimple_assign_lhs (stmt
) != op0
)
2474 return derive_constant_upper_bound_assign (stmt
);
2481 /* Records that every statement in LOOP is executed I_BOUND times.
2482 REALISTIC is true if I_BOUND is expected to be close to the real number
2483 of iterations. UPPER is true if we are sure the loop iterates at most
2487 record_niter_bound (struct loop
*loop
, double_int i_bound
, bool realistic
,
2490 /* Update the bounds only when there is no previous estimation, or when the
2491 current estimation is smaller. */
2493 && (!loop
->any_upper_bound
2494 || i_bound
.ult (loop
->nb_iterations_upper_bound
)))
2496 loop
->any_upper_bound
= true;
2497 loop
->nb_iterations_upper_bound
= i_bound
;
2500 && (!loop
->any_estimate
2501 || i_bound
.ult (loop
->nb_iterations_estimate
)))
2503 loop
->any_estimate
= true;
2504 loop
->nb_iterations_estimate
= i_bound
;
2507 /* If an upper bound is smaller than the realistic estimate of the
2508 number of iterations, use the upper bound instead. */
2509 if (loop
->any_upper_bound
2510 && loop
->any_estimate
2511 && loop
->nb_iterations_upper_bound
.ult (loop
->nb_iterations_estimate
))
2512 loop
->nb_iterations_estimate
= loop
->nb_iterations_upper_bound
;
2515 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2516 is true if the loop is exited immediately after STMT, and this exit
2517 is taken at last when the STMT is executed BOUND + 1 times.
2518 REALISTIC is true if BOUND is expected to be close to the real number
2519 of iterations. UPPER is true if we are sure the loop iterates at most
2520 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2523 record_estimate (struct loop
*loop
, tree bound
, double_int i_bound
,
2524 gimple at_stmt
, bool is_exit
, bool realistic
, bool upper
)
2528 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2530 fprintf (dump_file
, "Statement %s", is_exit
? "(exit)" : "");
2531 print_gimple_stmt (dump_file
, at_stmt
, 0, TDF_SLIM
);
2532 fprintf (dump_file
, " is %sexecuted at most ",
2533 upper
? "" : "probably ");
2534 print_generic_expr (dump_file
, bound
, TDF_SLIM
);
2535 fprintf (dump_file
, " (bounded by ");
2536 dump_double_int (dump_file
, i_bound
, true);
2537 fprintf (dump_file
, ") + 1 times in loop %d.\n", loop
->num
);
2540 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2541 real number of iterations. */
2542 if (TREE_CODE (bound
) != INTEGER_CST
)
2545 gcc_checking_assert (i_bound
== tree_to_double_int (bound
));
2546 if (!upper
&& !realistic
)
2549 /* If we have a guaranteed upper bound, record it in the appropriate
2553 struct nb_iter_bound
*elt
= ggc_alloc_nb_iter_bound ();
2555 elt
->bound
= i_bound
;
2556 elt
->stmt
= at_stmt
;
2557 elt
->is_exit
= is_exit
;
2558 elt
->next
= loop
->bounds
;
2562 /* If statement is executed on every path to the loop latch, we can directly
2563 infer the upper bound on the # of iterations of the loop. */
2564 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, gimple_bb (at_stmt
)))
2567 /* Update the number of iteration estimates according to the bound.
2568 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2569 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2570 later if such statement must be executed on last iteration */
2572 delta
= double_int_zero
;
2574 delta
= double_int_one
;
2577 /* If an overflow occurred, ignore the result. */
2578 if (i_bound
.ult (delta
))
2581 record_niter_bound (loop
, i_bound
, realistic
, upper
);
2584 /* Record the estimate on number of iterations of LOOP based on the fact that
2585 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2586 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2587 estimated number of iterations is expected to be close to the real one.
2588 UPPER is true if we are sure the induction variable does not wrap. */
2591 record_nonwrapping_iv (struct loop
*loop
, tree base
, tree step
, gimple stmt
,
2592 tree low
, tree high
, bool realistic
, bool upper
)
2594 tree niter_bound
, extreme
, delta
;
2595 tree type
= TREE_TYPE (base
), unsigned_type
;
2598 if (TREE_CODE (step
) != INTEGER_CST
|| integer_zerop (step
))
2601 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2603 fprintf (dump_file
, "Induction variable (");
2604 print_generic_expr (dump_file
, TREE_TYPE (base
), TDF_SLIM
);
2605 fprintf (dump_file
, ") ");
2606 print_generic_expr (dump_file
, base
, TDF_SLIM
);
2607 fprintf (dump_file
, " + ");
2608 print_generic_expr (dump_file
, step
, TDF_SLIM
);
2609 fprintf (dump_file
, " * iteration does not wrap in statement ");
2610 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
2611 fprintf (dump_file
, " in loop %d.\n", loop
->num
);
2614 unsigned_type
= unsigned_type_for (type
);
2615 base
= fold_convert (unsigned_type
, base
);
2616 step
= fold_convert (unsigned_type
, step
);
2618 if (tree_int_cst_sign_bit (step
))
2620 extreme
= fold_convert (unsigned_type
, low
);
2621 if (TREE_CODE (base
) != INTEGER_CST
)
2622 base
= fold_convert (unsigned_type
, high
);
2623 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
2624 step
= fold_build1 (NEGATE_EXPR
, unsigned_type
, step
);
2628 extreme
= fold_convert (unsigned_type
, high
);
2629 if (TREE_CODE (base
) != INTEGER_CST
)
2630 base
= fold_convert (unsigned_type
, low
);
2631 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
2634 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2635 would get out of the range. */
2636 niter_bound
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step
);
2637 max
= derive_constant_upper_bound (niter_bound
);
2638 record_estimate (loop
, niter_bound
, max
, stmt
, false, realistic
, upper
);
2641 /* Determine information about number of iterations a LOOP from the index
2642 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2643 guaranteed to be executed in every iteration of LOOP. Callback for
2653 idx_infer_loop_bounds (tree base
, tree
*idx
, void *dta
)
2655 struct ilb_data
*data
= (struct ilb_data
*) dta
;
2656 tree ev
, init
, step
;
2657 tree low
, high
, type
, next
;
2658 bool sign
, upper
= true, at_end
= false;
2659 struct loop
*loop
= data
->loop
;
2661 if (TREE_CODE (base
) != ARRAY_REF
)
2664 /* For arrays at the end of the structure, we are not guaranteed that they
2665 do not really extend over their declared size. However, for arrays of
2666 size greater than one, this is unlikely to be intended. */
2667 if (array_at_struct_end_p (base
))
2673 struct loop
*dloop
= loop_containing_stmt (data
->stmt
);
2677 ev
= analyze_scalar_evolution (dloop
, *idx
);
2678 ev
= instantiate_parameters (loop
, ev
);
2679 init
= initial_condition (ev
);
2680 step
= evolution_part_in_loop_num (ev
, loop
->num
);
2684 || TREE_CODE (step
) != INTEGER_CST
2685 || integer_zerop (step
)
2686 || tree_contains_chrecs (init
, NULL
)
2687 || chrec_contains_symbols_defined_in_loop (init
, loop
->num
))
2690 low
= array_ref_low_bound (base
);
2691 high
= array_ref_up_bound (base
);
2693 /* The case of nonconstant bounds could be handled, but it would be
2695 if (TREE_CODE (low
) != INTEGER_CST
2697 || TREE_CODE (high
) != INTEGER_CST
)
2699 sign
= tree_int_cst_sign_bit (step
);
2700 type
= TREE_TYPE (step
);
2702 /* The array of length 1 at the end of a structure most likely extends
2703 beyond its bounds. */
2705 && operand_equal_p (low
, high
, 0))
2708 /* In case the relevant bound of the array does not fit in type, or
2709 it does, but bound + step (in type) still belongs into the range of the
2710 array, the index may wrap and still stay within the range of the array
2711 (consider e.g. if the array is indexed by the full range of
2714 To make things simpler, we require both bounds to fit into type, although
2715 there are cases where this would not be strictly necessary. */
2716 if (!int_fits_type_p (high
, type
)
2717 || !int_fits_type_p (low
, type
))
2719 low
= fold_convert (type
, low
);
2720 high
= fold_convert (type
, high
);
2723 next
= fold_binary (PLUS_EXPR
, type
, low
, step
);
2725 next
= fold_binary (PLUS_EXPR
, type
, high
, step
);
2727 if (tree_int_cst_compare (low
, next
) <= 0
2728 && tree_int_cst_compare (next
, high
) <= 0)
2731 record_nonwrapping_iv (loop
, init
, step
, data
->stmt
, low
, high
, true, upper
);
2735 /* Determine information about number of iterations a LOOP from the bounds
2736 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2737 STMT is guaranteed to be executed in every iteration of LOOP.*/
2740 infer_loop_bounds_from_ref (struct loop
*loop
, gimple stmt
, tree ref
)
2742 struct ilb_data data
;
2746 for_each_index (&ref
, idx_infer_loop_bounds
, &data
);
2749 /* Determine information about number of iterations of a LOOP from the way
2750 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2751 executed in every iteration of LOOP. */
2754 infer_loop_bounds_from_array (struct loop
*loop
, gimple stmt
)
2756 if (is_gimple_assign (stmt
))
2758 tree op0
= gimple_assign_lhs (stmt
);
2759 tree op1
= gimple_assign_rhs1 (stmt
);
2761 /* For each memory access, analyze its access function
2762 and record a bound on the loop iteration domain. */
2763 if (REFERENCE_CLASS_P (op0
))
2764 infer_loop_bounds_from_ref (loop
, stmt
, op0
);
2766 if (REFERENCE_CLASS_P (op1
))
2767 infer_loop_bounds_from_ref (loop
, stmt
, op1
);
2769 else if (is_gimple_call (stmt
))
2772 unsigned i
, n
= gimple_call_num_args (stmt
);
2774 lhs
= gimple_call_lhs (stmt
);
2775 if (lhs
&& REFERENCE_CLASS_P (lhs
))
2776 infer_loop_bounds_from_ref (loop
, stmt
, lhs
);
2778 for (i
= 0; i
< n
; i
++)
2780 arg
= gimple_call_arg (stmt
, i
);
2781 if (REFERENCE_CLASS_P (arg
))
2782 infer_loop_bounds_from_ref (loop
, stmt
, arg
);
2787 /* Determine information about number of iterations of a LOOP from the fact
2788 that pointer arithmetics in STMT does not overflow. */
2791 infer_loop_bounds_from_pointer_arith (struct loop
*loop
, gimple stmt
)
2793 tree def
, base
, step
, scev
, type
, low
, high
;
2796 if (!is_gimple_assign (stmt
)
2797 || gimple_assign_rhs_code (stmt
) != POINTER_PLUS_EXPR
)
2800 def
= gimple_assign_lhs (stmt
);
2801 if (TREE_CODE (def
) != SSA_NAME
)
2804 type
= TREE_TYPE (def
);
2805 if (!nowrap_type_p (type
))
2808 ptr
= gimple_assign_rhs1 (stmt
);
2809 if (!expr_invariant_in_loop_p (loop
, ptr
))
2812 var
= gimple_assign_rhs2 (stmt
);
2813 if (TYPE_PRECISION (type
) != TYPE_PRECISION (TREE_TYPE (var
)))
2816 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
2817 if (chrec_contains_undetermined (scev
))
2820 base
= initial_condition_in_loop_num (scev
, loop
->num
);
2821 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2824 || TREE_CODE (step
) != INTEGER_CST
2825 || tree_contains_chrecs (base
, NULL
)
2826 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
2829 low
= lower_bound_in_type (type
, type
);
2830 high
= upper_bound_in_type (type
, type
);
2832 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2833 produce a NULL pointer. The contrary would mean NULL points to an object,
2834 while NULL is supposed to compare unequal with the address of all objects.
2835 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2836 NULL pointer since that would mean wrapping, which we assume here not to
2837 happen. So, we can exclude NULL from the valid range of pointer
2839 if (flag_delete_null_pointer_checks
&& int_cst_value (low
) == 0)
2840 low
= build_int_cstu (TREE_TYPE (low
), TYPE_ALIGN_UNIT (TREE_TYPE (type
)));
2842 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
2845 /* Determine information about number of iterations of a LOOP from the fact
2846 that signed arithmetics in STMT does not overflow. */
2849 infer_loop_bounds_from_signedness (struct loop
*loop
, gimple stmt
)
2851 tree def
, base
, step
, scev
, type
, low
, high
;
2853 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
2856 def
= gimple_assign_lhs (stmt
);
2858 if (TREE_CODE (def
) != SSA_NAME
)
2861 type
= TREE_TYPE (def
);
2862 if (!INTEGRAL_TYPE_P (type
)
2863 || !TYPE_OVERFLOW_UNDEFINED (type
))
2866 scev
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, def
));
2867 if (chrec_contains_undetermined (scev
))
2870 base
= initial_condition_in_loop_num (scev
, loop
->num
);
2871 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2874 || TREE_CODE (step
) != INTEGER_CST
2875 || tree_contains_chrecs (base
, NULL
)
2876 || chrec_contains_symbols_defined_in_loop (base
, loop
->num
))
2879 low
= lower_bound_in_type (type
, type
);
2880 high
= upper_bound_in_type (type
, type
);
2882 record_nonwrapping_iv (loop
, base
, step
, stmt
, low
, high
, false, true);
2885 /* The following analyzers are extracting informations on the bounds
2886 of LOOP from the following undefined behaviors:
2888 - data references should not access elements over the statically
2891 - signed variables should not overflow when flag_wrapv is not set.
2895 infer_loop_bounds_from_undefined (struct loop
*loop
)
2899 gimple_stmt_iterator bsi
;
2903 bbs
= get_loop_body (loop
);
2905 for (i
= 0; i
< loop
->num_nodes
; i
++)
2909 /* If BB is not executed in each iteration of the loop, we cannot
2910 use the operations in it to infer reliable upper bound on the
2911 # of iterations of the loop. However, we can use it as a guess.
2912 Reliable guesses come only from array bounds. */
2913 reliable
= dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
);
2915 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2917 gimple stmt
= gsi_stmt (bsi
);
2919 infer_loop_bounds_from_array (loop
, stmt
);
2923 infer_loop_bounds_from_signedness (loop
, stmt
);
2924 infer_loop_bounds_from_pointer_arith (loop
, stmt
);
2933 /* Converts VAL to double_int. */
2936 gcov_type_to_double_int (gcov_type val
)
2940 ret
.low
= (unsigned HOST_WIDE_INT
) val
;
2941 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2942 the size of type. */
2943 val
>>= HOST_BITS_PER_WIDE_INT
- 1;
2945 ret
.high
= (unsigned HOST_WIDE_INT
) val
;
2950 /* Compare double ints, callback for qsort. */
2953 double_int_cmp (const void *p1
, const void *p2
)
2955 const double_int
*d1
= (const double_int
*)p1
;
2956 const double_int
*d2
= (const double_int
*)p2
;
2964 /* Return index of BOUND in BOUNDS array sorted in increasing order.
2965 Lookup by binary search. */
2968 bound_index (vec
<double_int
> bounds
, double_int bound
)
2970 unsigned int end
= bounds
.length ();
2971 unsigned int begin
= 0;
2973 /* Find a matching index by means of a binary search. */
2974 while (begin
!= end
)
2976 unsigned int middle
= (begin
+ end
) / 2;
2977 double_int index
= bounds
[middle
];
2981 else if (index
.ult (bound
))
2989 /* Used to hold vector of queues of basic blocks bellow. */
2990 typedef vec
<basic_block
> bb_queue
;
2992 /* We recorded loop bounds only for statements dominating loop latch (and thus
2993 executed each loop iteration). If there are any bounds on statements not
2994 dominating the loop latch we can improve the estimate by walking the loop
2995 body and seeing if every path from loop header to loop latch contains
2996 some bounded statement. */
2999 discover_iteration_bound_by_body_walk (struct loop
*loop
)
3001 pointer_map_t
*bb_bounds
;
3002 struct nb_iter_bound
*elt
;
3003 vec
<double_int
> bounds
= vNULL
;
3004 vec
<bb_queue
> queues
= vNULL
;
3005 bb_queue queue
= bb_queue();
3006 ptrdiff_t queue_index
;
3007 ptrdiff_t latch_index
= 0;
3008 pointer_map_t
*block_priority
;
3010 /* Discover what bounds may interest us. */
3011 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3013 double_int bound
= elt
->bound
;
3015 /* Exit terminates loop at given iteration, while non-exits produce undefined
3016 effect on the next iteration. */
3019 bound
+= double_int_one
;
3020 /* If an overflow occurred, ignore the result. */
3021 if (bound
.is_zero ())
3025 if (!loop
->any_upper_bound
3026 || bound
.ult (loop
->nb_iterations_upper_bound
))
3027 bounds
.safe_push (bound
);
3030 /* Exit early if there is nothing to do. */
3031 if (!bounds
.exists ())
3034 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3035 fprintf (dump_file
, " Trying to walk loop body to reduce the bound.\n");
3037 /* Sort the bounds in decreasing order. */
3038 qsort (bounds
.address (), bounds
.length (),
3039 sizeof (double_int
), double_int_cmp
);
3041 /* For every basic block record the lowest bound that is guaranteed to
3042 terminate the loop. */
3044 bb_bounds
= pointer_map_create ();
3045 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3047 double_int bound
= elt
->bound
;
3050 bound
+= double_int_one
;
3051 /* If an overflow occurred, ignore the result. */
3052 if (bound
.is_zero ())
3056 if (!loop
->any_upper_bound
3057 || bound
.ult (loop
->nb_iterations_upper_bound
))
3059 ptrdiff_t index
= bound_index (bounds
, bound
);
3060 void **entry
= pointer_map_contains (bb_bounds
,
3061 gimple_bb (elt
->stmt
));
3063 *pointer_map_insert (bb_bounds
,
3064 gimple_bb (elt
->stmt
)) = (void *)index
;
3065 else if ((ptrdiff_t)*entry
> index
)
3066 *entry
= (void *)index
;
3070 block_priority
= pointer_map_create ();
3072 /* Perform shortest path discovery loop->header ... loop->latch.
3074 The "distance" is given by the smallest loop bound of basic block
3075 present in the path and we look for path with largest smallest bound
3078 To avoid the need for fibonaci heap on double ints we simply compress
3079 double ints into indexes to BOUNDS array and then represent the queue
3080 as arrays of queues for every index.
3081 Index of BOUNDS.length() means that the execution of given BB has
3082 no bounds determined.
3084 VISITED is a pointer map translating basic block into smallest index
3085 it was inserted into the priority queue with. */
3088 /* Start walk in loop header with index set to infinite bound. */
3089 queue_index
= bounds
.length ();
3090 queues
.safe_grow_cleared (queue_index
+ 1);
3091 queue
.safe_push (loop
->header
);
3092 queues
[queue_index
] = queue
;
3093 *pointer_map_insert (block_priority
, loop
->header
) = (void *)queue_index
;
3095 for (; queue_index
>= 0; queue_index
--)
3097 if (latch_index
< queue_index
)
3099 while (queues
[queue_index
].length ())
3102 ptrdiff_t bound_index
= queue_index
;
3107 queue
= queues
[queue_index
];
3110 /* OK, we later inserted the BB with lower priority, skip it. */
3111 if ((ptrdiff_t)*pointer_map_contains (block_priority
, bb
) > queue_index
)
3114 /* See if we can improve the bound. */
3115 entry
= pointer_map_contains (bb_bounds
, bb
);
3116 if (entry
&& (ptrdiff_t)*entry
< bound_index
)
3117 bound_index
= (ptrdiff_t)*entry
;
3119 /* Insert succesors into the queue, watch for latch edge
3120 and record greatest index we saw. */
3121 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3123 bool insert
= false;
3126 if (loop_exit_edge_p (loop
, e
))
3129 if (e
== loop_latch_edge (loop
)
3130 && latch_index
< bound_index
)
3131 latch_index
= bound_index
;
3132 else if (!(entry
= pointer_map_contains (block_priority
, e
->dest
)))
3135 *pointer_map_insert (block_priority
, e
->dest
) = (void *)bound_index
;
3137 else if ((ptrdiff_t)*entry
< bound_index
)
3140 *entry
= (void *)bound_index
;
3145 bb_queue queue2
= queues
[bound_index
];
3146 queue2
.safe_push (e
->dest
);
3147 queues
[bound_index
] = queue2
;
3153 queues
[queue_index
].release ();
3156 gcc_assert (latch_index
>= 0);
3157 if ((unsigned)latch_index
< bounds
.length ())
3159 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3161 fprintf (dump_file
, "Found better loop bound ");
3162 dump_double_int (dump_file
, bounds
[latch_index
], true);
3163 fprintf (dump_file
, "\n");
3165 record_niter_bound (loop
, bounds
[latch_index
], false, true);
3169 pointer_map_destroy (bb_bounds
);
3170 pointer_map_destroy (block_priority
);
3173 /* See if every path cross the loop goes through a statement that is known
3174 to not execute at the last iteration. In that case we can decrese iteration
3178 maybe_lower_iteration_bound (struct loop
*loop
)
3180 pointer_set_t
*not_executed_last_iteration
= NULL
;
3181 struct nb_iter_bound
*elt
;
3182 bool found_exit
= false;
3183 vec
<basic_block
> queue
= vNULL
;
3186 /* Collect all statements with interesting (i.e. lower than
3187 nb_iterations_upper_bound) bound on them.
3189 TODO: Due to the way record_estimate choose estimates to store, the bounds
3190 will be always nb_iterations_upper_bound-1. We can change this to record
3191 also statements not dominating the loop latch and update the walk bellow
3192 to the shortest path algorthm. */
3193 for (elt
= loop
->bounds
; elt
; elt
= elt
->next
)
3196 && elt
->bound
.ult (loop
->nb_iterations_upper_bound
))
3198 if (!not_executed_last_iteration
)
3199 not_executed_last_iteration
= pointer_set_create ();
3200 pointer_set_insert (not_executed_last_iteration
, elt
->stmt
);
3203 if (!not_executed_last_iteration
)
3206 /* Start DFS walk in the loop header and see if we can reach the
3207 loop latch or any of the exits (including statements with side
3208 effects that may terminate the loop otherwise) without visiting
3209 any of the statements known to have undefined effect on the last
3211 queue
.safe_push (loop
->header
);
3212 visited
= BITMAP_ALLOC (NULL
);
3213 bitmap_set_bit (visited
, loop
->header
->index
);
3218 basic_block bb
= queue
.pop ();
3219 gimple_stmt_iterator gsi
;
3220 bool stmt_found
= false;
3222 /* Loop for possible exits and statements bounding the execution. */
3223 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3225 gimple stmt
= gsi_stmt (gsi
);
3226 if (pointer_set_contains (not_executed_last_iteration
, stmt
))
3231 if (gimple_has_side_effects (stmt
))
3240 /* If no bounding statement is found, continue the walk. */
3246 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3248 if (loop_exit_edge_p (loop
, e
)
3249 || e
== loop_latch_edge (loop
))
3254 if (bitmap_set_bit (visited
, e
->dest
->index
))
3255 queue
.safe_push (e
->dest
);
3259 while (queue
.length () && !found_exit
);
3261 /* If every path through the loop reach bounding statement before exit,
3262 then we know the last iteration of the loop will have undefined effect
3263 and we can decrease number of iterations. */
3267 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3268 fprintf (dump_file
, "Reducing loop iteration estimate by 1; "
3269 "undefined statement must be executed at the last iteration.\n");
3270 record_niter_bound (loop
, loop
->nb_iterations_upper_bound
- double_int_one
,
3273 BITMAP_FREE (visited
);
3277 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3278 is true also use estimates derived from undefined behavior. */
3281 estimate_numbers_of_iterations_loop (struct loop
*loop
)
3286 struct tree_niter_desc niter_desc
;
3291 /* Give up if we already have tried to compute an estimation. */
3292 if (loop
->estimate_state
!= EST_NOT_COMPUTED
)
3295 loop
->estimate_state
= EST_AVAILABLE
;
3296 /* Force estimate compuation but leave any existing upper bound in place. */
3297 loop
->any_estimate
= false;
3299 exits
= get_loop_exit_edges (loop
);
3300 likely_exit
= single_likely_exit (loop
);
3301 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3303 if (!number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
3306 niter
= niter_desc
.niter
;
3307 type
= TREE_TYPE (niter
);
3308 if (TREE_CODE (niter_desc
.may_be_zero
) != INTEGER_CST
)
3309 niter
= build3 (COND_EXPR
, type
, niter_desc
.may_be_zero
,
3310 build_int_cst (type
, 0),
3312 record_estimate (loop
, niter
, niter_desc
.max
,
3313 last_stmt (ex
->src
),
3314 true, ex
== likely_exit
, true);
3318 infer_loop_bounds_from_undefined (loop
);
3320 discover_iteration_bound_by_body_walk (loop
);
3322 maybe_lower_iteration_bound (loop
);
3324 /* If we have a measured profile, use it to estimate the number of
3326 if (loop
->header
->count
!= 0)
3328 gcov_type nit
= expected_loop_iterations_unbounded (loop
) + 1;
3329 bound
= gcov_type_to_double_int (nit
);
3330 record_niter_bound (loop
, bound
, true, false);
3334 /* Sets NIT to the estimated number of executions of the latch of the
3335 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3336 large as the number of iterations. If we have no reliable estimate,
3337 the function returns false, otherwise returns true. */
3340 estimated_loop_iterations (struct loop
*loop
, double_int
*nit
)
3342 /* When SCEV information is available, try to update loop iterations
3343 estimate. Otherwise just return whatever we recorded earlier. */
3344 if (scev_initialized_p ())
3345 estimate_numbers_of_iterations_loop (loop
);
3347 /* Even if the bound is not recorded, possibly we can derrive one from
3349 if (!loop
->any_estimate
)
3351 if (loop
->header
->count
)
3353 *nit
= gcov_type_to_double_int
3354 (expected_loop_iterations_unbounded (loop
) + 1);
3360 *nit
= loop
->nb_iterations_estimate
;
3364 /* Sets NIT to an upper bound for the maximum number of executions of the
3365 latch of the LOOP. If we have no reliable estimate, the function returns
3366 false, otherwise returns true. */
3369 max_loop_iterations (struct loop
*loop
, double_int
*nit
)
3371 /* When SCEV information is available, try to update loop iterations
3372 estimate. Otherwise just return whatever we recorded earlier. */
3373 if (scev_initialized_p ())
3374 estimate_numbers_of_iterations_loop (loop
);
3375 if (!loop
->any_upper_bound
)
3378 *nit
= loop
->nb_iterations_upper_bound
;
3382 /* Similar to estimated_loop_iterations, but returns the estimate only
3383 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3384 on the number of iterations of LOOP could not be derived, returns -1. */
3387 estimated_loop_iterations_int (struct loop
*loop
)
3390 HOST_WIDE_INT hwi_nit
;
3392 if (!estimated_loop_iterations (loop
, &nit
))
3395 if (!nit
.fits_shwi ())
3397 hwi_nit
= nit
.to_shwi ();
3399 return hwi_nit
< 0 ? -1 : hwi_nit
;
3402 /* Similar to max_loop_iterations, but returns the estimate only
3403 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3404 on the number of iterations of LOOP could not be derived, returns -1. */
3407 max_loop_iterations_int (struct loop
*loop
)
3410 HOST_WIDE_INT hwi_nit
;
3412 if (!max_loop_iterations (loop
, &nit
))
3415 if (!nit
.fits_shwi ())
3417 hwi_nit
= nit
.to_shwi ();
3419 return hwi_nit
< 0 ? -1 : hwi_nit
;
3422 /* Returns an upper bound on the number of executions of statements
3423 in the LOOP. For statements before the loop exit, this exceeds
3424 the number of execution of the latch by one. */
3427 max_stmt_executions_int (struct loop
*loop
)
3429 HOST_WIDE_INT nit
= max_loop_iterations_int (loop
);
3435 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
3437 /* If the computation overflows, return -1. */
3438 return snit
< 0 ? -1 : snit
;
3441 /* Returns an estimate for the number of executions of statements
3442 in the LOOP. For statements before the loop exit, this exceeds
3443 the number of execution of the latch by one. */
3446 estimated_stmt_executions_int (struct loop
*loop
)
3448 HOST_WIDE_INT nit
= estimated_loop_iterations_int (loop
);
3454 snit
= (HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) nit
+ 1);
3456 /* If the computation overflows, return -1. */
3457 return snit
< 0 ? -1 : snit
;
3460 /* Sets NIT to the estimated maximum number of executions of the latch of the
3461 LOOP, plus one. If we have no reliable estimate, the function returns
3462 false, otherwise returns true. */
3465 max_stmt_executions (struct loop
*loop
, double_int
*nit
)
3467 double_int nit_minus_one
;
3469 if (!max_loop_iterations (loop
, nit
))
3472 nit_minus_one
= *nit
;
3474 *nit
+= double_int_one
;
3476 return (*nit
).ugt (nit_minus_one
);
3479 /* Sets NIT to the estimated number of executions of the latch of the
3480 LOOP, plus one. If we have no reliable estimate, the function returns
3481 false, otherwise returns true. */
3484 estimated_stmt_executions (struct loop
*loop
, double_int
*nit
)
3486 double_int nit_minus_one
;
3488 if (!estimated_loop_iterations (loop
, nit
))
3491 nit_minus_one
= *nit
;
3493 *nit
+= double_int_one
;
3495 return (*nit
).ugt (nit_minus_one
);
3498 /* Records estimates on numbers of iterations of loops. */
3501 estimate_numbers_of_iterations (void)
3506 /* We don't want to issue signed overflow warnings while getting
3507 loop iteration estimates. */
3508 fold_defer_overflow_warnings ();
3510 FOR_EACH_LOOP (li
, loop
, 0)
3512 estimate_numbers_of_iterations_loop (loop
);
3515 fold_undefer_and_ignore_overflow_warnings ();
3518 /* Returns true if statement S1 dominates statement S2. */
3521 stmt_dominates_stmt_p (gimple s1
, gimple s2
)
3523 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
3531 gimple_stmt_iterator bsi
;
3533 if (gimple_code (s2
) == GIMPLE_PHI
)
3536 if (gimple_code (s1
) == GIMPLE_PHI
)
3539 for (bsi
= gsi_start_bb (bb1
); gsi_stmt (bsi
) != s2
; gsi_next (&bsi
))
3540 if (gsi_stmt (bsi
) == s1
)
3546 return dominated_by_p (CDI_DOMINATORS
, bb2
, bb1
);
3549 /* Returns true when we can prove that the number of executions of
3550 STMT in the loop is at most NITER, according to the bound on
3551 the number of executions of the statement NITER_BOUND->stmt recorded in
3552 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3553 statements in the loop. */
3556 n_of_executions_at_most (gimple stmt
,
3557 struct nb_iter_bound
*niter_bound
,
3560 double_int bound
= niter_bound
->bound
;
3561 tree nit_type
= TREE_TYPE (niter
), e
;
3564 gcc_assert (TYPE_UNSIGNED (nit_type
));
3566 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3567 the number of iterations is small. */
3568 if (!double_int_fits_to_tree_p (nit_type
, bound
))
3571 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3572 times. This means that:
3574 -- if NITER_BOUND->is_exit is true, then everything before
3575 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3576 times, and everything after it at most NITER_BOUND->bound times.
3578 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3579 is executed, then NITER_BOUND->stmt is executed as well in the same
3580 iteration (we conclude that if both statements belong to the same
3581 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3582 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3583 executed at most NITER_BOUND->bound + 2 times. */
3585 if (niter_bound
->is_exit
)
3588 && stmt
!= niter_bound
->stmt
3589 && stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
))
3597 || (gimple_bb (stmt
) != gimple_bb (niter_bound
->stmt
)
3598 && !stmt_dominates_stmt_p (niter_bound
->stmt
, stmt
)))
3600 bound
+= double_int_one
;
3601 if (bound
.is_zero ()
3602 || !double_int_fits_to_tree_p (nit_type
, bound
))
3608 e
= fold_binary (cmp
, boolean_type_node
,
3609 niter
, double_int_to_tree (nit_type
, bound
));
3610 return e
&& integer_nonzerop (e
);
3613 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3616 nowrap_type_p (tree type
)
3618 if (INTEGRAL_TYPE_P (type
)
3619 && TYPE_OVERFLOW_UNDEFINED (type
))
3622 if (POINTER_TYPE_P (type
))
3628 /* Return false only when the induction variable BASE + STEP * I is
3629 known to not overflow: i.e. when the number of iterations is small
3630 enough with respect to the step and initial condition in order to
3631 keep the evolution confined in TYPEs bounds. Return true when the
3632 iv is known to overflow or when the property is not computable.
3634 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3635 the rules for overflow of the given language apply (e.g., that signed
3636 arithmetics in C does not overflow). */
3639 scev_probably_wraps_p (tree base
, tree step
,
3640 gimple at_stmt
, struct loop
*loop
,
3641 bool use_overflow_semantics
)
3643 struct nb_iter_bound
*bound
;
3644 tree delta
, step_abs
;
3645 tree unsigned_type
, valid_niter
;
3646 tree type
= TREE_TYPE (step
);
3648 /* FIXME: We really need something like
3649 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3651 We used to test for the following situation that frequently appears
3652 during address arithmetics:
3654 D.1621_13 = (long unsigned intD.4) D.1620_12;
3655 D.1622_14 = D.1621_13 * 8;
3656 D.1623_15 = (doubleD.29 *) D.1622_14;
3658 And derived that the sequence corresponding to D_14
3659 can be proved to not wrap because it is used for computing a
3660 memory access; however, this is not really the case -- for example,
3661 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3662 2032, 2040, 0, 8, ..., but the code is still legal. */
3664 if (chrec_contains_undetermined (base
)
3665 || chrec_contains_undetermined (step
))
3668 if (integer_zerop (step
))
3671 /* If we can use the fact that signed and pointer arithmetics does not
3672 wrap, we are done. */
3673 if (use_overflow_semantics
&& nowrap_type_p (TREE_TYPE (base
)))
3676 /* To be able to use estimates on number of iterations of the loop,
3677 we must have an upper bound on the absolute value of the step. */
3678 if (TREE_CODE (step
) != INTEGER_CST
)
3681 /* Don't issue signed overflow warnings. */
3682 fold_defer_overflow_warnings ();
3684 /* Otherwise, compute the number of iterations before we reach the
3685 bound of the type, and verify that the loop is exited before this
3687 unsigned_type
= unsigned_type_for (type
);
3688 base
= fold_convert (unsigned_type
, base
);
3690 if (tree_int_cst_sign_bit (step
))
3692 tree extreme
= fold_convert (unsigned_type
,
3693 lower_bound_in_type (type
, type
));
3694 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, base
, extreme
);
3695 step_abs
= fold_build1 (NEGATE_EXPR
, unsigned_type
,
3696 fold_convert (unsigned_type
, step
));
3700 tree extreme
= fold_convert (unsigned_type
,
3701 upper_bound_in_type (type
, type
));
3702 delta
= fold_build2 (MINUS_EXPR
, unsigned_type
, extreme
, base
);
3703 step_abs
= fold_convert (unsigned_type
, step
);
3706 valid_niter
= fold_build2 (FLOOR_DIV_EXPR
, unsigned_type
, delta
, step_abs
);
3708 estimate_numbers_of_iterations_loop (loop
);
3709 for (bound
= loop
->bounds
; bound
; bound
= bound
->next
)
3711 if (n_of_executions_at_most (at_stmt
, bound
, valid_niter
))
3713 fold_undefer_and_ignore_overflow_warnings ();
3718 fold_undefer_and_ignore_overflow_warnings ();
3720 /* At this point we still don't have a proof that the iv does not
3721 overflow: give up. */
3725 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3728 free_numbers_of_iterations_estimates_loop (struct loop
*loop
)
3730 struct nb_iter_bound
*bound
, *next
;
3732 loop
->nb_iterations
= NULL
;
3733 loop
->estimate_state
= EST_NOT_COMPUTED
;
3734 for (bound
= loop
->bounds
; bound
; bound
= next
)
3740 loop
->bounds
= NULL
;
3743 /* Frees the information on upper bounds on numbers of iterations of loops. */
3746 free_numbers_of_iterations_estimates (void)
3751 FOR_EACH_LOOP (li
, loop
, 0)
3753 free_numbers_of_iterations_estimates_loop (loop
);
3757 /* Substitute value VAL for ssa name NAME inside expressions held
3761 substitute_in_loop_info (struct loop
*loop
, tree name
, tree val
)
3763 loop
->nb_iterations
= simplify_replace_tree (loop
->nb_iterations
, name
, val
);