1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
44 CONSTANT -> V_i has been found to hold a constant
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
115 #include "coretypes.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
129 #include "diagnostic-core.h"
131 #include "gimple-fold.h"
133 #include "hash-table.h"
136 /* Possible lattice values. */
145 struct prop_value_d
{
147 ccp_lattice_t lattice_val
;
149 /* Propagated value. */
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
157 typedef struct prop_value_d prop_value_t
;
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
165 static prop_value_t
*const_val
;
167 static void canonicalize_float_value (prop_value_t
*);
168 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
173 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
175 switch (val
.lattice_val
)
178 fprintf (outf
, "%sUNINITIALIZED", prefix
);
181 fprintf (outf
, "%sUNDEFINED", prefix
);
184 fprintf (outf
, "%sVARYING", prefix
);
187 if (TREE_CODE (val
.value
) != INTEGER_CST
188 || val
.mask
.is_zero ())
190 fprintf (outf
, "%sCONSTANT ", prefix
);
191 print_generic_expr (outf
, val
.value
, dump_flags
);
195 double_int cval
= tree_to_double_int (val
.value
).and_not (val
.mask
);
196 fprintf (outf
, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
197 prefix
, cval
.high
, cval
.low
);
198 fprintf (outf
, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX
")",
199 val
.mask
.high
, val
.mask
.low
);
208 /* Print lattice value VAL to stderr. */
210 void debug_lattice_value (prop_value_t val
);
213 debug_lattice_value (prop_value_t val
)
215 dump_lattice_value (stderr
, "", val
);
216 fprintf (stderr
, "\n");
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
224 1- Global and static variables that are declared constant are
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
239 get_default_value (tree var
)
241 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, { 0, 0 } };
244 stmt
= SSA_NAME_DEF_STMT (var
);
246 if (gimple_nop_p (stmt
))
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var
)
253 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
254 val
.lattice_val
= UNDEFINED
;
257 val
.lattice_val
= VARYING
;
258 val
.mask
= double_int_minus_one
;
261 else if (is_gimple_assign (stmt
)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt
)
265 && gimple_call_lhs (stmt
) != NULL_TREE
)
266 || gimple_code (stmt
) == GIMPLE_PHI
)
269 if (gimple_assign_single_p (stmt
)
270 && DECL_P (gimple_assign_rhs1 (stmt
))
271 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
273 val
.lattice_val
= CONSTANT
;
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val
.lattice_val
= UNDEFINED
;
283 /* Otherwise, VAR will never take on a constant value. */
284 val
.lattice_val
= VARYING
;
285 val
.mask
= double_int_minus_one
;
292 /* Get the constant value associated with variable VAR. */
294 static inline prop_value_t
*
299 if (const_val
== NULL
)
302 val
= &const_val
[SSA_NAME_VERSION (var
)];
303 if (val
->lattice_val
== UNINITIALIZED
)
304 *val
= get_default_value (var
);
306 canonicalize_float_value (val
);
311 /* Return the constant tree value associated with VAR. */
314 get_constant_value (tree var
)
317 if (TREE_CODE (var
) != SSA_NAME
)
319 if (is_gimple_min_invariant (var
))
323 val
= get_value (var
);
325 && val
->lattice_val
== CONSTANT
326 && (TREE_CODE (val
->value
) != INTEGER_CST
327 || val
->mask
.is_zero ()))
332 /* Sets the value associated with VAR to VARYING. */
335 set_value_varying (tree var
)
337 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
339 val
->lattice_val
= VARYING
;
340 val
->value
= NULL_TREE
;
341 val
->mask
= double_int_minus_one
;
344 /* For float types, modify the value of VAL to make ccp work correctly
345 for non-standard values (-0, NaN):
347 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
348 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
349 This is to fix the following problem (see PR 29921): Suppose we have
353 and we set value of y to NaN. This causes value of x to be set to NaN.
354 When we later determine that y is in fact VARYING, fold uses the fact
355 that HONOR_NANS is false, and we try to change the value of x to 0,
356 causing an ICE. With HONOR_NANS being false, the real appearance of
357 NaN would cause undefined behavior, though, so claiming that y (and x)
358 are UNDEFINED initially is correct. */
361 canonicalize_float_value (prop_value_t
*val
)
363 enum machine_mode mode
;
367 if (val
->lattice_val
!= CONSTANT
368 || TREE_CODE (val
->value
) != REAL_CST
)
371 d
= TREE_REAL_CST (val
->value
);
372 type
= TREE_TYPE (val
->value
);
373 mode
= TYPE_MODE (type
);
375 if (!HONOR_SIGNED_ZEROS (mode
)
376 && REAL_VALUE_MINUS_ZERO (d
))
378 val
->value
= build_real (type
, dconst0
);
382 if (!HONOR_NANS (mode
)
383 && REAL_VALUE_ISNAN (d
))
385 val
->lattice_val
= UNDEFINED
;
391 /* Return whether the lattice transition is valid. */
394 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
396 /* Lattice transitions must always be monotonically increasing in
398 if (old_val
.lattice_val
< new_val
.lattice_val
)
401 if (old_val
.lattice_val
!= new_val
.lattice_val
)
404 if (!old_val
.value
&& !new_val
.value
)
407 /* Now both lattice values are CONSTANT. */
409 /* Allow transitioning from PHI <&x, not executable> == &x
410 to PHI <&x, &y> == common alignment. */
411 if (TREE_CODE (old_val
.value
) != INTEGER_CST
412 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
415 /* Bit-lattices have to agree in the still valid bits. */
416 if (TREE_CODE (old_val
.value
) == INTEGER_CST
417 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
418 return tree_to_double_int (old_val
.value
).and_not (new_val
.mask
)
419 == tree_to_double_int (new_val
.value
).and_not (new_val
.mask
);
421 /* Otherwise constant values have to agree. */
422 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
425 /* Set the value for variable VAR to NEW_VAL. Return true if the new
426 value is different from VAR's previous value. */
429 set_lattice_value (tree var
, prop_value_t new_val
)
431 /* We can deal with old UNINITIALIZED values just fine here. */
432 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
434 canonicalize_float_value (&new_val
);
436 /* We have to be careful to not go up the bitwise lattice
437 represented by the mask.
438 ??? This doesn't seem to be the best place to enforce this. */
439 if (new_val
.lattice_val
== CONSTANT
440 && old_val
->lattice_val
== CONSTANT
441 && TREE_CODE (new_val
.value
) == INTEGER_CST
442 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
445 diff
= tree_to_double_int (new_val
.value
)
446 ^ tree_to_double_int (old_val
->value
);
447 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
450 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
452 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
453 caller that this was a non-transition. */
454 if (old_val
->lattice_val
!= new_val
.lattice_val
455 || (new_val
.lattice_val
== CONSTANT
456 && TREE_CODE (new_val
.value
) == INTEGER_CST
457 && (TREE_CODE (old_val
->value
) != INTEGER_CST
458 || new_val
.mask
!= old_val
->mask
)))
460 /* ??? We would like to delay creation of INTEGER_CSTs from
461 partially constants here. */
463 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
465 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
466 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
471 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
478 static prop_value_t
get_value_for_expr (tree
, bool);
479 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
480 static void bit_value_binop_1 (enum tree_code
, tree
, double_int
*, double_int
*,
481 tree
, double_int
, double_int
,
482 tree
, double_int
, double_int
);
484 /* Return a double_int that can be used for bitwise simplifications
488 value_to_double_int (prop_value_t val
)
491 && TREE_CODE (val
.value
) == INTEGER_CST
)
492 return tree_to_double_int (val
.value
);
494 return double_int_zero
;
497 /* Return the value for the address expression EXPR based on alignment
501 get_value_from_alignment (tree expr
)
503 tree type
= TREE_TYPE (expr
);
505 unsigned HOST_WIDE_INT bitpos
;
508 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
510 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
511 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
512 ? double_int::mask (TYPE_PRECISION (type
))
513 : double_int_minus_one
)
514 .and_not (double_int::from_uhwi (align
/ BITS_PER_UNIT
- 1));
515 val
.lattice_val
= val
.mask
.is_minus_one () ? VARYING
: CONSTANT
;
516 if (val
.lattice_val
== CONSTANT
)
518 = double_int_to_tree (type
,
519 double_int::from_uhwi (bitpos
/ BITS_PER_UNIT
));
521 val
.value
= NULL_TREE
;
526 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
527 return constant bits extracted from alignment information for
528 invariant addresses. */
531 get_value_for_expr (tree expr
, bool for_bits_p
)
535 if (TREE_CODE (expr
) == SSA_NAME
)
537 val
= *get_value (expr
);
539 && val
.lattice_val
== CONSTANT
540 && TREE_CODE (val
.value
) == ADDR_EXPR
)
541 val
= get_value_from_alignment (val
.value
);
543 else if (is_gimple_min_invariant (expr
)
544 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
546 val
.lattice_val
= CONSTANT
;
548 val
.mask
= double_int_zero
;
549 canonicalize_float_value (&val
);
551 else if (TREE_CODE (expr
) == ADDR_EXPR
)
552 val
= get_value_from_alignment (expr
);
555 val
.lattice_val
= VARYING
;
556 val
.mask
= double_int_minus_one
;
557 val
.value
= NULL_TREE
;
562 /* Return the likely CCP lattice value for STMT.
564 If STMT has no operands, then return CONSTANT.
566 Else if undefinedness of operands of STMT cause its value to be
567 undefined, then return UNDEFINED.
569 Else if any operands of STMT are constants, then return CONSTANT.
571 Else return VARYING. */
574 likely_value (gimple stmt
)
576 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
581 enum gimple_code code
= gimple_code (stmt
);
583 /* This function appears to be called only for assignments, calls,
584 conditionals, and switches, due to the logic in visit_stmt. */
585 gcc_assert (code
== GIMPLE_ASSIGN
586 || code
== GIMPLE_CALL
587 || code
== GIMPLE_COND
588 || code
== GIMPLE_SWITCH
);
590 /* If the statement has volatile operands, it won't fold to a
592 if (gimple_has_volatile_ops (stmt
))
595 /* Arrive here for more complex cases. */
596 has_constant_operand
= false;
597 has_undefined_operand
= false;
598 all_undefined_operands
= true;
599 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
601 prop_value_t
*val
= get_value (use
);
603 if (val
->lattice_val
== UNDEFINED
)
604 has_undefined_operand
= true;
606 all_undefined_operands
= false;
608 if (val
->lattice_val
== CONSTANT
)
609 has_constant_operand
= true;
612 /* There may be constants in regular rhs operands. For calls we
613 have to ignore lhs, fndecl and static chain, otherwise only
615 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
616 i
< gimple_num_ops (stmt
); ++i
)
618 tree op
= gimple_op (stmt
, i
);
619 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
621 if (is_gimple_min_invariant (op
))
622 has_constant_operand
= true;
625 if (has_constant_operand
)
626 all_undefined_operands
= false;
628 /* If the operation combines operands like COMPLEX_EXPR make sure to
629 not mark the result UNDEFINED if only one part of the result is
631 if (has_undefined_operand
&& all_undefined_operands
)
633 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
635 switch (gimple_assign_rhs_code (stmt
))
637 /* Unary operators are handled with all_undefined_operands. */
640 case POINTER_PLUS_EXPR
:
641 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
642 Not bitwise operators, one VARYING operand may specify the
643 result completely. Not logical operators for the same reason.
644 Not COMPLEX_EXPR as one VARYING operand makes the result partly
645 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
646 the undefined operand may be promoted. */
650 /* If any part of an address is UNDEFINED, like the index
651 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
658 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
659 fall back to CONSTANT. During iteration UNDEFINED may still drop
661 if (has_undefined_operand
)
664 /* We do not consider virtual operands here -- load from read-only
665 memory may have only VARYING virtual operands, but still be
667 if (has_constant_operand
668 || gimple_references_memory_p (stmt
))
674 /* Returns true if STMT cannot be constant. */
677 surely_varying_stmt_p (gimple stmt
)
679 /* If the statement has operands that we cannot handle, it cannot be
681 if (gimple_has_volatile_ops (stmt
))
684 /* If it is a call and does not return a value or is not a
685 builtin and not an indirect call, it is varying. */
686 if (is_gimple_call (stmt
))
689 if (!gimple_call_lhs (stmt
)
690 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
691 && !DECL_BUILT_IN (fndecl
)))
695 /* Any other store operation is not interesting. */
696 else if (gimple_vdef (stmt
))
699 /* Anything other than assignments and conditional jumps are not
700 interesting for CCP. */
701 if (gimple_code (stmt
) != GIMPLE_ASSIGN
702 && gimple_code (stmt
) != GIMPLE_COND
703 && gimple_code (stmt
) != GIMPLE_SWITCH
704 && gimple_code (stmt
) != GIMPLE_CALL
)
710 /* Initialize local data structures for CCP. */
713 ccp_initialize (void)
717 const_val
= XCNEWVEC (prop_value_t
, num_ssa_names
);
719 /* Initialize simulation flags for PHI nodes and statements. */
722 gimple_stmt_iterator i
;
724 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
726 gimple stmt
= gsi_stmt (i
);
729 /* If the statement is a control insn, then we do not
730 want to avoid simulating the statement once. Failure
731 to do so means that those edges will never get added. */
732 if (stmt_ends_bb_p (stmt
))
735 is_varying
= surely_varying_stmt_p (stmt
);
742 /* If the statement will not produce a constant, mark
743 all its outputs VARYING. */
744 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
745 set_value_varying (def
);
747 prop_set_simulate_again (stmt
, !is_varying
);
751 /* Now process PHI nodes. We never clear the simulate_again flag on
752 phi nodes, since we do not know which edges are executable yet,
753 except for phi nodes for virtual operands when we do not do store ccp. */
756 gimple_stmt_iterator i
;
758 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
760 gimple phi
= gsi_stmt (i
);
762 if (virtual_operand_p (gimple_phi_result (phi
)))
763 prop_set_simulate_again (phi
, false);
765 prop_set_simulate_again (phi
, true);
770 /* Debug count support. Reset the values of ssa names
771 VARYING when the total number ssa names analyzed is
772 beyond the debug count specified. */
778 for (i
= 0; i
< num_ssa_names
; i
++)
782 const_val
[i
].lattice_val
= VARYING
;
783 const_val
[i
].mask
= double_int_minus_one
;
784 const_val
[i
].value
= NULL_TREE
;
790 /* Do final substitution of propagated values, cleanup the flowgraph and
791 free allocated storage.
793 Return TRUE when something was optimized. */
798 bool something_changed
;
803 /* Derive alignment and misalignment information from partially
804 constant pointers in the lattice. */
805 for (i
= 1; i
< num_ssa_names
; ++i
)
807 tree name
= ssa_name (i
);
809 unsigned int tem
, align
;
812 || !POINTER_TYPE_P (TREE_TYPE (name
)))
815 val
= get_value (name
);
816 if (val
->lattice_val
!= CONSTANT
817 || TREE_CODE (val
->value
) != INTEGER_CST
)
820 /* Trailing constant bits specify the alignment, trailing value
821 bits the misalignment. */
823 align
= (tem
& -tem
);
825 set_ptr_info_alignment (get_ptr_info (name
), align
,
826 TREE_INT_CST_LOW (val
->value
) & (align
- 1));
829 /* Perform substitutions based on the known constant values. */
830 something_changed
= substitute_and_fold (get_constant_value
,
831 ccp_fold_stmt
, true);
835 return something_changed
;;
839 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
842 any M UNDEFINED = any
843 any M VARYING = VARYING
844 Ci M Cj = Ci if (i == j)
845 Ci M Cj = VARYING if (i != j)
849 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
851 if (val1
->lattice_val
== UNDEFINED
)
853 /* UNDEFINED M any = any */
856 else if (val2
->lattice_val
== UNDEFINED
)
858 /* any M UNDEFINED = any
859 Nothing to do. VAL1 already contains the value we want. */
862 else if (val1
->lattice_val
== VARYING
863 || val2
->lattice_val
== VARYING
)
865 /* any M VARYING = VARYING. */
866 val1
->lattice_val
= VARYING
;
867 val1
->mask
= double_int_minus_one
;
868 val1
->value
= NULL_TREE
;
870 else if (val1
->lattice_val
== CONSTANT
871 && val2
->lattice_val
== CONSTANT
872 && TREE_CODE (val1
->value
) == INTEGER_CST
873 && TREE_CODE (val2
->value
) == INTEGER_CST
)
875 /* Ci M Cj = Ci if (i == j)
876 Ci M Cj = VARYING if (i != j)
878 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
880 val1
->mask
= val1
->mask
| val2
->mask
881 | (tree_to_double_int (val1
->value
)
882 ^ tree_to_double_int (val2
->value
));
883 if (val1
->mask
.is_minus_one ())
885 val1
->lattice_val
= VARYING
;
886 val1
->value
= NULL_TREE
;
889 else if (val1
->lattice_val
== CONSTANT
890 && val2
->lattice_val
== CONSTANT
891 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
893 /* Ci M Cj = Ci if (i == j)
894 Ci M Cj = VARYING if (i != j)
896 VAL1 already contains the value we want for equivalent values. */
898 else if (val1
->lattice_val
== CONSTANT
899 && val2
->lattice_val
== CONSTANT
900 && (TREE_CODE (val1
->value
) == ADDR_EXPR
901 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
903 /* When not equal addresses are involved try meeting for
905 prop_value_t tem
= *val2
;
906 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
907 *val1
= get_value_for_expr (val1
->value
, true);
908 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
909 tem
= get_value_for_expr (val2
->value
, true);
910 ccp_lattice_meet (val1
, &tem
);
914 /* Any other combination is VARYING. */
915 val1
->lattice_val
= VARYING
;
916 val1
->mask
= double_int_minus_one
;
917 val1
->value
= NULL_TREE
;
922 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
923 lattice values to determine PHI_NODE's lattice value. The value of a
924 PHI node is determined calling ccp_lattice_meet with all the arguments
925 of the PHI node that are incoming via executable edges. */
927 static enum ssa_prop_result
928 ccp_visit_phi_node (gimple phi
)
931 prop_value_t
*old_val
, new_val
;
933 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
935 fprintf (dump_file
, "\nVisiting PHI node: ");
936 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
939 old_val
= get_value (gimple_phi_result (phi
));
940 switch (old_val
->lattice_val
)
943 return SSA_PROP_VARYING
;
950 new_val
.lattice_val
= UNDEFINED
;
951 new_val
.value
= NULL_TREE
;
958 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
960 /* Compute the meet operator over all the PHI arguments flowing
961 through executable edges. */
962 edge e
= gimple_phi_arg_edge (phi
, i
);
964 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
967 "\n Argument #%d (%d -> %d %sexecutable)\n",
968 i
, e
->src
->index
, e
->dest
->index
,
969 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
972 /* If the incoming edge is executable, Compute the meet operator for
973 the existing value of the PHI node and the current PHI argument. */
974 if (e
->flags
& EDGE_EXECUTABLE
)
976 tree arg
= gimple_phi_arg (phi
, i
)->def
;
977 prop_value_t arg_val
= get_value_for_expr (arg
, false);
979 ccp_lattice_meet (&new_val
, &arg_val
);
981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
983 fprintf (dump_file
, "\t");
984 print_generic_expr (dump_file
, arg
, dump_flags
);
985 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
986 fprintf (dump_file
, "\n");
989 if (new_val
.lattice_val
== VARYING
)
994 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
996 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
997 fprintf (dump_file
, "\n\n");
1000 /* Make the transition to the new value. */
1001 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1003 if (new_val
.lattice_val
== VARYING
)
1004 return SSA_PROP_VARYING
;
1006 return SSA_PROP_INTERESTING
;
1009 return SSA_PROP_NOT_INTERESTING
;
1012 /* Return the constant value for OP or OP otherwise. */
1015 valueize_op (tree op
)
1017 if (TREE_CODE (op
) == SSA_NAME
)
1019 tree tem
= get_constant_value (op
);
1026 /* CCP specific front-end to the non-destructive constant folding
1029 Attempt to simplify the RHS of STMT knowing that one or more
1030 operands are constants.
1032 If simplification is possible, return the simplified RHS,
1033 otherwise return the original RHS or NULL_TREE. */
1036 ccp_fold (gimple stmt
)
1038 location_t loc
= gimple_location (stmt
);
1039 switch (gimple_code (stmt
))
1043 /* Handle comparison operators that can appear in GIMPLE form. */
1044 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1045 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1046 enum tree_code code
= gimple_cond_code (stmt
);
1047 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1052 /* Return the constant switch index. */
1053 return valueize_op (gimple_switch_index (stmt
));
1058 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1065 /* Apply the operation CODE in type TYPE to the value, mask pair
1066 RVAL and RMASK representing a value of type RTYPE and set
1067 the value, mask pair *VAL and *MASK to the result. */
1070 bit_value_unop_1 (enum tree_code code
, tree type
,
1071 double_int
*val
, double_int
*mask
,
1072 tree rtype
, double_int rval
, double_int rmask
)
1083 double_int temv
, temm
;
1084 /* Return ~rval + 1. */
1085 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1086 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1088 type
, double_int_one
, double_int_zero
);
1096 /* First extend mask and value according to the original type. */
1097 uns
= TYPE_UNSIGNED (rtype
);
1098 *mask
= rmask
.ext (TYPE_PRECISION (rtype
), uns
);
1099 *val
= rval
.ext (TYPE_PRECISION (rtype
), uns
);
1101 /* Then extend mask and value according to the target type. */
1102 uns
= TYPE_UNSIGNED (type
);
1103 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1104 *val
= (*val
).ext (TYPE_PRECISION (type
), uns
);
1109 *mask
= double_int_minus_one
;
1114 /* Apply the operation CODE in type TYPE to the value, mask pairs
1115 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1116 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1119 bit_value_binop_1 (enum tree_code code
, tree type
,
1120 double_int
*val
, double_int
*mask
,
1121 tree r1type
, double_int r1val
, double_int r1mask
,
1122 tree r2type
, double_int r2val
, double_int r2mask
)
1124 bool uns
= TYPE_UNSIGNED (type
);
1125 /* Assume we'll get a constant result. Use an initial varying value,
1126 we fall back to varying in the end if necessary. */
1127 *mask
= double_int_minus_one
;
1131 /* The mask is constant where there is a known not
1132 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1133 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1134 *val
= r1val
& r2val
;
1138 /* The mask is constant where there is a known
1139 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1140 *mask
= (r1mask
| r2mask
)
1141 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1142 *val
= r1val
| r2val
;
1147 *mask
= r1mask
| r2mask
;
1148 *val
= r1val
^ r2val
;
1153 if (r2mask
.is_zero ())
1155 HOST_WIDE_INT shift
= r2val
.low
;
1156 if (code
== RROTATE_EXPR
)
1158 *mask
= r1mask
.lrotate (shift
, TYPE_PRECISION (type
));
1159 *val
= r1val
.lrotate (shift
, TYPE_PRECISION (type
));
1165 /* ??? We can handle partially known shift counts if we know
1166 its sign. That way we can tell that (x << (y | 8)) & 255
1168 if (r2mask
.is_zero ())
1170 HOST_WIDE_INT shift
= r2val
.low
;
1171 if (code
== RSHIFT_EXPR
)
1173 /* We need to know if we are doing a left or a right shift
1174 to properly shift in zeros for left shift and unsigned
1175 right shifts and the sign bit for signed right shifts.
1176 For signed right shifts we shift in varying in case
1177 the sign bit was varying. */
1180 *mask
= r1mask
.llshift (shift
, TYPE_PRECISION (type
));
1181 *val
= r1val
.llshift (shift
, TYPE_PRECISION (type
));
1186 *mask
= r1mask
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1187 *val
= r1val
.rshift (shift
, TYPE_PRECISION (type
), !uns
);
1198 case POINTER_PLUS_EXPR
:
1201 /* Do the addition with unknown bits set to zero, to give carry-ins of
1202 zero wherever possible. */
1203 lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1204 lo
= lo
.ext (TYPE_PRECISION (type
), uns
);
1205 /* Do the addition with unknown bits set to one, to give carry-ins of
1206 one wherever possible. */
1207 hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1208 hi
= hi
.ext (TYPE_PRECISION (type
), uns
);
1209 /* Each bit in the result is known if (a) the corresponding bits in
1210 both inputs are known, and (b) the carry-in to that bit position
1211 is known. We can check condition (b) by seeing if we got the same
1212 result with minimised carries as with maximised carries. */
1213 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1214 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1215 /* It shouldn't matter whether we choose lo or hi here. */
1222 double_int temv
, temm
;
1223 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1224 r2type
, r2val
, r2mask
);
1225 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1226 r1type
, r1val
, r1mask
,
1227 r2type
, temv
, temm
);
1233 /* Just track trailing zeros in both operands and transfer
1234 them to the other. */
1235 int r1tz
= (r1val
| r1mask
).trailing_zeros ();
1236 int r2tz
= (r2val
| r2mask
).trailing_zeros ();
1237 if (r1tz
+ r2tz
>= HOST_BITS_PER_DOUBLE_INT
)
1239 *mask
= double_int_zero
;
1240 *val
= double_int_zero
;
1242 else if (r1tz
+ r2tz
> 0)
1244 *mask
= ~double_int::mask (r1tz
+ r2tz
);
1245 *mask
= (*mask
).ext (TYPE_PRECISION (type
), uns
);
1246 *val
= double_int_zero
;
1254 double_int m
= r1mask
| r2mask
;
1255 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1257 *mask
= double_int_zero
;
1258 *val
= ((code
== EQ_EXPR
) ? double_int_zero
: double_int_one
);
1262 /* We know the result of a comparison is always one or zero. */
1263 *mask
= double_int_one
;
1264 *val
= double_int_zero
;
1272 double_int tem
= r1val
;
1278 code
= swap_tree_comparison (code
);
1285 /* If the most significant bits are not known we know nothing. */
1286 if (r1mask
.is_negative () || r2mask
.is_negative ())
1289 /* For comparisons the signedness is in the comparison operands. */
1290 uns
= TYPE_UNSIGNED (r1type
);
1292 /* If we know the most significant bits we know the values
1293 value ranges by means of treating varying bits as zero
1294 or one. Do a cross comparison of the max/min pairs. */
1295 maxmin
= (r1val
| r1mask
).cmp (r2val
.and_not (r2mask
), uns
);
1296 minmax
= r1val
.and_not (r1mask
).cmp (r2val
| r2mask
, uns
);
1297 if (maxmin
< 0) /* r1 is less than r2. */
1299 *mask
= double_int_zero
;
1300 *val
= double_int_one
;
1302 else if (minmax
> 0) /* r1 is not less or equal to r2. */
1304 *mask
= double_int_zero
;
1305 *val
= double_int_zero
;
1307 else if (maxmin
== minmax
) /* r1 and r2 are equal. */
1309 /* This probably should never happen as we'd have
1310 folded the thing during fully constant value folding. */
1311 *mask
= double_int_zero
;
1312 *val
= (code
== LE_EXPR
? double_int_one
: double_int_zero
);
1316 /* We know the result of a comparison is always one or zero. */
1317 *mask
= double_int_one
;
1318 *val
= double_int_zero
;
1327 /* Return the propagation value when applying the operation CODE to
1328 the value RHS yielding type TYPE. */
1331 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1333 prop_value_t rval
= get_value_for_expr (rhs
, true);
1334 double_int value
, mask
;
1337 if (rval
.lattice_val
== UNDEFINED
)
1340 gcc_assert ((rval
.lattice_val
== CONSTANT
1341 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1342 || rval
.mask
.is_minus_one ());
1343 bit_value_unop_1 (code
, type
, &value
, &mask
,
1344 TREE_TYPE (rhs
), value_to_double_int (rval
), rval
.mask
);
1345 if (!mask
.is_minus_one ())
1347 val
.lattice_val
= CONSTANT
;
1349 /* ??? Delay building trees here. */
1350 val
.value
= double_int_to_tree (type
, value
);
1354 val
.lattice_val
= VARYING
;
1355 val
.value
= NULL_TREE
;
1356 val
.mask
= double_int_minus_one
;
1361 /* Return the propagation value when applying the operation CODE to
1362 the values RHS1 and RHS2 yielding type TYPE. */
1365 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1367 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1368 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1369 double_int value
, mask
;
1372 if (r1val
.lattice_val
== UNDEFINED
1373 || r2val
.lattice_val
== UNDEFINED
)
1375 val
.lattice_val
= VARYING
;
1376 val
.value
= NULL_TREE
;
1377 val
.mask
= double_int_minus_one
;
1381 gcc_assert ((r1val
.lattice_val
== CONSTANT
1382 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1383 || r1val
.mask
.is_minus_one ());
1384 gcc_assert ((r2val
.lattice_val
== CONSTANT
1385 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1386 || r2val
.mask
.is_minus_one ());
1387 bit_value_binop_1 (code
, type
, &value
, &mask
,
1388 TREE_TYPE (rhs1
), value_to_double_int (r1val
), r1val
.mask
,
1389 TREE_TYPE (rhs2
), value_to_double_int (r2val
), r2val
.mask
);
1390 if (!mask
.is_minus_one ())
1392 val
.lattice_val
= CONSTANT
;
1394 /* ??? Delay building trees here. */
1395 val
.value
= double_int_to_tree (type
, value
);
1399 val
.lattice_val
= VARYING
;
1400 val
.value
= NULL_TREE
;
1401 val
.mask
= double_int_minus_one
;
1406 /* Return the propagation value when applying __builtin_assume_aligned to
1410 bit_value_assume_aligned (gimple stmt
)
1412 tree ptr
= gimple_call_arg (stmt
, 0), align
, misalign
= NULL_TREE
;
1413 tree type
= TREE_TYPE (ptr
);
1414 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1415 prop_value_t ptrval
= get_value_for_expr (ptr
, true);
1416 prop_value_t alignval
;
1417 double_int value
, mask
;
1419 if (ptrval
.lattice_val
== UNDEFINED
)
1421 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1422 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1423 || ptrval
.mask
.is_minus_one ());
1424 align
= gimple_call_arg (stmt
, 1);
1425 if (!host_integerp (align
, 1))
1427 aligni
= tree_low_cst (align
, 1);
1429 || (aligni
& (aligni
- 1)) != 0)
1431 if (gimple_call_num_args (stmt
) > 2)
1433 misalign
= gimple_call_arg (stmt
, 2);
1434 if (!host_integerp (misalign
, 1))
1436 misaligni
= tree_low_cst (misalign
, 1);
1437 if (misaligni
>= aligni
)
1440 align
= build_int_cst_type (type
, -aligni
);
1441 alignval
= get_value_for_expr (align
, true);
1442 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1443 type
, value_to_double_int (ptrval
), ptrval
.mask
,
1444 type
, value_to_double_int (alignval
), alignval
.mask
);
1445 if (!mask
.is_minus_one ())
1447 val
.lattice_val
= CONSTANT
;
1449 gcc_assert ((mask
.low
& (aligni
- 1)) == 0);
1450 gcc_assert ((value
.low
& (aligni
- 1)) == 0);
1451 value
.low
|= misaligni
;
1452 /* ??? Delay building trees here. */
1453 val
.value
= double_int_to_tree (type
, value
);
1457 val
.lattice_val
= VARYING
;
1458 val
.value
= NULL_TREE
;
1459 val
.mask
= double_int_minus_one
;
1464 /* Evaluate statement STMT.
1465 Valid only for assignments, calls, conditionals, and switches. */
1468 evaluate_stmt (gimple stmt
)
1471 tree simplified
= NULL_TREE
;
1472 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1473 bool is_constant
= false;
1476 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1478 fprintf (dump_file
, "which is likely ");
1479 switch (likelyvalue
)
1482 fprintf (dump_file
, "CONSTANT");
1485 fprintf (dump_file
, "UNDEFINED");
1488 fprintf (dump_file
, "VARYING");
1492 fprintf (dump_file
, "\n");
1495 /* If the statement is likely to have a CONSTANT result, then try
1496 to fold the statement to determine the constant value. */
1497 /* FIXME. This is the only place that we call ccp_fold.
1498 Since likely_value never returns CONSTANT for calls, we will
1499 not attempt to fold them, including builtins that may profit. */
1500 if (likelyvalue
== CONSTANT
)
1502 fold_defer_overflow_warnings ();
1503 simplified
= ccp_fold (stmt
);
1504 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1505 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1508 /* The statement produced a constant value. */
1509 val
.lattice_val
= CONSTANT
;
1510 val
.value
= simplified
;
1511 val
.mask
= double_int_zero
;
1514 /* If the statement is likely to have a VARYING result, then do not
1515 bother folding the statement. */
1516 else if (likelyvalue
== VARYING
)
1518 enum gimple_code code
= gimple_code (stmt
);
1519 if (code
== GIMPLE_ASSIGN
)
1521 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1523 /* Other cases cannot satisfy is_gimple_min_invariant
1525 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1526 simplified
= gimple_assign_rhs1 (stmt
);
1528 else if (code
== GIMPLE_SWITCH
)
1529 simplified
= gimple_switch_index (stmt
);
1531 /* These cannot satisfy is_gimple_min_invariant without folding. */
1532 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1533 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1536 /* The statement produced a constant value. */
1537 val
.lattice_val
= CONSTANT
;
1538 val
.value
= simplified
;
1539 val
.mask
= double_int_zero
;
1543 /* Resort to simplification for bitwise tracking. */
1544 if (flag_tree_bit_ccp
1545 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1548 enum gimple_code code
= gimple_code (stmt
);
1550 val
.lattice_val
= VARYING
;
1551 val
.value
= NULL_TREE
;
1552 val
.mask
= double_int_minus_one
;
1553 if (code
== GIMPLE_ASSIGN
)
1555 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1556 tree rhs1
= gimple_assign_rhs1 (stmt
);
1557 switch (get_gimple_rhs_class (subcode
))
1559 case GIMPLE_SINGLE_RHS
:
1560 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1561 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1562 val
= get_value_for_expr (rhs1
, true);
1565 case GIMPLE_UNARY_RHS
:
1566 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1567 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1568 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1569 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1570 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1573 case GIMPLE_BINARY_RHS
:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1577 tree lhs
= gimple_assign_lhs (stmt
);
1578 tree rhs2
= gimple_assign_rhs2 (stmt
);
1579 val
= bit_value_binop (subcode
,
1580 TREE_TYPE (lhs
), rhs1
, rhs2
);
1587 else if (code
== GIMPLE_COND
)
1589 enum tree_code code
= gimple_cond_code (stmt
);
1590 tree rhs1
= gimple_cond_lhs (stmt
);
1591 tree rhs2
= gimple_cond_rhs (stmt
);
1592 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1593 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1594 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1596 else if (code
== GIMPLE_CALL
1597 && (fndecl
= gimple_call_fndecl (stmt
))
1598 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1600 switch (DECL_FUNCTION_CODE (fndecl
))
1602 case BUILT_IN_MALLOC
:
1603 case BUILT_IN_REALLOC
:
1604 case BUILT_IN_CALLOC
:
1605 case BUILT_IN_STRDUP
:
1606 case BUILT_IN_STRNDUP
:
1607 val
.lattice_val
= CONSTANT
;
1608 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1609 val
.mask
= double_int::from_shwi
1610 (~(((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
)
1611 / BITS_PER_UNIT
- 1));
1614 case BUILT_IN_ALLOCA
:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1616 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1618 : BIGGEST_ALIGNMENT
);
1619 val
.lattice_val
= CONSTANT
;
1620 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1621 val
.mask
= double_int::from_shwi (~(((HOST_WIDE_INT
) align
)
1622 / BITS_PER_UNIT
- 1));
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY
:
1627 case BUILT_IN_MEMMOVE
:
1628 case BUILT_IN_MEMSET
:
1629 case BUILT_IN_STRCPY
:
1630 case BUILT_IN_STRNCPY
:
1631 case BUILT_IN_MEMCPY_CHK
:
1632 case BUILT_IN_MEMMOVE_CHK
:
1633 case BUILT_IN_MEMSET_CHK
:
1634 case BUILT_IN_STRCPY_CHK
:
1635 case BUILT_IN_STRNCPY_CHK
:
1636 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1639 case BUILT_IN_ASSUME_ALIGNED
:
1640 val
= bit_value_assume_aligned (stmt
);
1646 is_constant
= (val
.lattice_val
== CONSTANT
);
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue
== UNDEFINED
)
1656 val
.lattice_val
= likelyvalue
;
1657 val
.mask
= double_int_zero
;
1661 val
.lattice_val
= VARYING
;
1662 val
.mask
= double_int_minus_one
;
1665 val
.value
= NULL_TREE
;
1671 typedef hash_table
<pointer_hash
<gimple_statement_d
> > gimple_htab
;
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1677 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1678 gimple_htab
*visited
)
1680 gimple stmt
, clobber_stmt
;
1682 imm_use_iterator iter
;
1683 gimple_stmt_iterator i
;
1686 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1687 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1689 clobber
= build_constructor (TREE_TYPE (var
),
1691 TREE_THIS_VOLATILE (clobber
) = 1;
1692 clobber_stmt
= gimple_build_assign (var
, clobber
);
1694 i
= gsi_for_stmt (stmt
);
1695 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1697 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1699 if (!visited
->is_created ())
1700 visited
->create (10);
1702 slot
= visited
->find_slot (stmt
, INSERT
);
1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1711 gcc_assert (is_gimple_debug (stmt
));
1714 /* Advance the iterator to the previous non-debug gimple statement in the same
1715 or dominating basic block. */
1718 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1722 gsi_prev_nondebug (i
);
1723 while (gsi_end_p (*i
))
1725 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1726 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR
)
1729 *i
= gsi_last_bb (dom
);
1733 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1734 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1736 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1737 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1738 that case the function gives up without inserting the clobbers. */
1741 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1745 gimple_htab visited
;
1747 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1749 stmt
= gsi_stmt (i
);
1751 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1754 saved_val
= gimple_call_lhs (stmt
);
1755 if (saved_val
== NULL_TREE
)
1758 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1762 if (visited
.is_created ())
1766 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1767 fixed-size array and returns the address, if found, otherwise returns
1771 fold_builtin_alloca_with_align (gimple stmt
)
1773 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
1774 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
1777 lhs
= gimple_call_lhs (stmt
);
1778 if (lhs
== NULL_TREE
)
1781 /* Detect constant argument. */
1782 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
1783 if (arg
== NULL_TREE
1784 || TREE_CODE (arg
) != INTEGER_CST
1785 || !host_integerp (arg
, 1))
1788 size
= TREE_INT_CST_LOW (arg
);
1790 /* Heuristic: don't fold large allocas. */
1791 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
1792 /* In case the alloca is located at function entry, it has the same lifetime
1793 as a declared array, so we allow a larger size. */
1794 block
= gimple_block (stmt
);
1795 if (!(cfun
->after_inlining
1796 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
1798 if (size
> threshold
)
1801 /* Declare array. */
1802 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
1803 n_elem
= size
* 8 / BITS_PER_UNIT
;
1804 array_type
= build_array_type_nelts (elem_type
, n_elem
);
1805 var
= create_tmp_var (array_type
, NULL
);
1806 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
1808 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
1809 if (pi
!= NULL
&& !pi
->pt
.anything
)
1813 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
1814 gcc_assert (singleton_p
);
1815 SET_DECL_PT_UID (var
, uid
);
1819 /* Fold alloca to the address of the array. */
1820 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
1823 /* Fold the stmt at *GSI with CCP specific information that propagating
1824 and regular folding does not catch. */
1827 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
1829 gimple stmt
= gsi_stmt (*gsi
);
1831 switch (gimple_code (stmt
))
1836 /* Statement evaluation will handle type mismatches in constants
1837 more gracefully than the final propagation. This allows us to
1838 fold more conditionals here. */
1839 val
= evaluate_stmt (stmt
);
1840 if (val
.lattice_val
!= CONSTANT
1841 || !val
.mask
.is_zero ())
1846 fprintf (dump_file
, "Folding predicate ");
1847 print_gimple_expr (dump_file
, stmt
, 0, 0);
1848 fprintf (dump_file
, " to ");
1849 print_generic_expr (dump_file
, val
.value
, 0);
1850 fprintf (dump_file
, "\n");
1853 if (integer_zerop (val
.value
))
1854 gimple_cond_make_false (stmt
);
1856 gimple_cond_make_true (stmt
);
1863 tree lhs
= gimple_call_lhs (stmt
);
1864 int flags
= gimple_call_flags (stmt
);
1867 bool changed
= false;
1870 /* If the call was folded into a constant make sure it goes
1871 away even if we cannot propagate into all uses because of
1874 && TREE_CODE (lhs
) == SSA_NAME
1875 && (val
= get_constant_value (lhs
))
1876 /* Don't optimize away calls that have side-effects. */
1877 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
1878 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
1880 tree new_rhs
= unshare_expr (val
);
1882 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
1883 TREE_TYPE (new_rhs
)))
1884 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
1885 res
= update_call_from_tree (gsi
, new_rhs
);
1890 /* Internal calls provide no argument types, so the extra laxity
1891 for normal calls does not apply. */
1892 if (gimple_call_internal_p (stmt
))
1895 /* The heuristic of fold_builtin_alloca_with_align differs before and
1896 after inlining, so we don't require the arg to be changed into a
1897 constant for folding, but just to be constant. */
1898 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
1900 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
1903 bool res
= update_call_from_tree (gsi
, new_rhs
);
1904 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
1906 insert_clobbers_for_var (*gsi
, var
);
1911 /* Propagate into the call arguments. Compared to replace_uses_in
1912 this can use the argument slot types for type verification
1913 instead of the current argument type. We also can safely
1914 drop qualifiers here as we are dealing with constants anyway. */
1915 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
1916 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
1917 ++i
, argt
= TREE_CHAIN (argt
))
1919 tree arg
= gimple_call_arg (stmt
, i
);
1920 if (TREE_CODE (arg
) == SSA_NAME
1921 && (val
= get_constant_value (arg
))
1922 && useless_type_conversion_p
1923 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
1924 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
1926 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
1936 tree lhs
= gimple_assign_lhs (stmt
);
1939 /* If we have a load that turned out to be constant replace it
1940 as we cannot propagate into all uses in all cases. */
1941 if (gimple_assign_single_p (stmt
)
1942 && TREE_CODE (lhs
) == SSA_NAME
1943 && (val
= get_constant_value (lhs
)))
1945 tree rhs
= unshare_expr (val
);
1946 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
1947 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
1948 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1960 /* Visit the assignment statement STMT. Set the value of its LHS to the
1961 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1962 creates virtual definitions, set the value of each new name to that
1963 of the RHS (if we can derive a constant out of the RHS).
1964 Value-returning call statements also perform an assignment, and
1965 are handled here. */
1967 static enum ssa_prop_result
1968 visit_assignment (gimple stmt
, tree
*output_p
)
1971 enum ssa_prop_result retval
;
1973 tree lhs
= gimple_get_lhs (stmt
);
1975 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
1976 || gimple_call_lhs (stmt
) != NULL_TREE
);
1978 if (gimple_assign_single_p (stmt
)
1979 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
1980 /* For a simple copy operation, we copy the lattice values. */
1981 val
= *get_value (gimple_assign_rhs1 (stmt
));
1983 /* Evaluate the statement, which could be
1984 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1985 val
= evaluate_stmt (stmt
);
1987 retval
= SSA_PROP_NOT_INTERESTING
;
1989 /* Set the lattice value of the statement's output. */
1990 if (TREE_CODE (lhs
) == SSA_NAME
)
1992 /* If STMT is an assignment to an SSA_NAME, we only have one
1994 if (set_lattice_value (lhs
, val
))
1997 if (val
.lattice_val
== VARYING
)
1998 retval
= SSA_PROP_VARYING
;
2000 retval
= SSA_PROP_INTERESTING
;
2008 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2009 if it can determine which edge will be taken. Otherwise, return
2010 SSA_PROP_VARYING. */
2012 static enum ssa_prop_result
2013 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2018 block
= gimple_bb (stmt
);
2019 val
= evaluate_stmt (stmt
);
2020 if (val
.lattice_val
!= CONSTANT
2021 || !val
.mask
.is_zero ())
2022 return SSA_PROP_VARYING
;
2024 /* Find which edge out of the conditional block will be taken and add it
2025 to the worklist. If no single edge can be determined statically,
2026 return SSA_PROP_VARYING to feed all the outgoing edges to the
2027 propagation engine. */
2028 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2030 return SSA_PROP_INTERESTING
;
2032 return SSA_PROP_VARYING
;
2036 /* Evaluate statement STMT. If the statement produces an output value and
2037 its evaluation changes the lattice value of its output, return
2038 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2041 If STMT is a conditional branch and we can determine its truth
2042 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2043 value, return SSA_PROP_VARYING. */
2045 static enum ssa_prop_result
2046 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2051 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2053 fprintf (dump_file
, "\nVisiting statement:\n");
2054 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2057 switch (gimple_code (stmt
))
2060 /* If the statement is an assignment that produces a single
2061 output value, evaluate its RHS to see if the lattice value of
2062 its output has changed. */
2063 return visit_assignment (stmt
, output_p
);
2066 /* A value-returning call also performs an assignment. */
2067 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2068 return visit_assignment (stmt
, output_p
);
2073 /* If STMT is a conditional branch, see if we can determine
2074 which branch will be taken. */
2075 /* FIXME. It appears that we should be able to optimize
2076 computed GOTOs here as well. */
2077 return visit_cond_stmt (stmt
, taken_edge_p
);
2083 /* Any other kind of statement is not interesting for constant
2084 propagation and, therefore, not worth simulating. */
2085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2086 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2088 /* Definitions made by statements other than assignments to
2089 SSA_NAMEs represent unknown modifications to their outputs.
2090 Mark them VARYING. */
2091 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2093 prop_value_t v
= { VARYING
, NULL_TREE
, { -1, (HOST_WIDE_INT
) -1 } };
2094 set_lattice_value (def
, v
);
2097 return SSA_PROP_VARYING
;
2101 /* Main entry point for SSA Conditional Constant Propagation. */
2106 unsigned int todo
= 0;
2107 calculate_dominance_info (CDI_DOMINATORS
);
2109 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2110 if (ccp_finalize ())
2111 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
| TODO_remove_unused_locals
);
2112 free_dominance_info (CDI_DOMINATORS
);
2120 return flag_tree_ccp
!= 0;
2124 struct gimple_opt_pass pass_ccp
=
2129 OPTGROUP_NONE
, /* optinfo_flags */
2130 gate_ccp
, /* gate */
2131 do_ssa_ccp
, /* execute */
2134 0, /* static_pass_number */
2135 TV_TREE_CCP
, /* tv_id */
2136 PROP_cfg
| PROP_ssa
, /* properties_required */
2137 0, /* properties_provided */
2138 0, /* properties_destroyed */
2139 0, /* todo_flags_start */
2141 | TODO_update_address_taken
2142 | TODO_verify_stmts
| TODO_ggc_collect
/* todo_flags_finish */
2148 /* Try to optimize out __builtin_stack_restore. Optimize it out
2149 if there is another __builtin_stack_restore in the same basic
2150 block and no calls or ASM_EXPRs are in between, or if this block's
2151 only outgoing edge is to EXIT_BLOCK and there are no calls or
2152 ASM_EXPRs after this __builtin_stack_restore. */
2155 optimize_stack_restore (gimple_stmt_iterator i
)
2160 basic_block bb
= gsi_bb (i
);
2161 gimple call
= gsi_stmt (i
);
2163 if (gimple_code (call
) != GIMPLE_CALL
2164 || gimple_call_num_args (call
) != 1
2165 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2166 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2169 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2171 stmt
= gsi_stmt (i
);
2172 if (gimple_code (stmt
) == GIMPLE_ASM
)
2174 if (gimple_code (stmt
) != GIMPLE_CALL
)
2177 callee
= gimple_call_fndecl (stmt
);
2179 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2180 /* All regular builtins are ok, just obviously not alloca. */
2181 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2182 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2185 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2186 goto second_stack_restore
;
2192 /* Allow one successor of the exit block, or zero successors. */
2193 switch (EDGE_COUNT (bb
->succs
))
2198 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR
)
2204 second_stack_restore
:
2206 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2207 If there are multiple uses, then the last one should remove the call.
2208 In any case, whether the call to __builtin_stack_save can be removed
2209 or not is irrelevant to removing the call to __builtin_stack_restore. */
2210 if (has_single_use (gimple_call_arg (call
, 0)))
2212 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2213 if (is_gimple_call (stack_save
))
2215 callee
= gimple_call_fndecl (stack_save
);
2217 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2218 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2220 gimple_stmt_iterator stack_save_gsi
;
2223 stack_save_gsi
= gsi_for_stmt (stack_save
);
2224 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2225 update_call_from_tree (&stack_save_gsi
, rhs
);
2230 /* No effect, so the statement will be deleted. */
2231 return integer_zero_node
;
2234 /* If va_list type is a simple pointer and nothing special is needed,
2235 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2236 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2237 pointer assignment. */
2240 optimize_stdarg_builtin (gimple call
)
2242 tree callee
, lhs
, rhs
, cfun_va_list
;
2243 bool va_list_simple_ptr
;
2244 location_t loc
= gimple_location (call
);
2246 if (gimple_code (call
) != GIMPLE_CALL
)
2249 callee
= gimple_call_fndecl (call
);
2251 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2252 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2253 && (TREE_TYPE (cfun_va_list
) == void_type_node
2254 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2256 switch (DECL_FUNCTION_CODE (callee
))
2258 case BUILT_IN_VA_START
:
2259 if (!va_list_simple_ptr
2260 || targetm
.expand_builtin_va_start
!= NULL
2261 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2264 if (gimple_call_num_args (call
) != 2)
2267 lhs
= gimple_call_arg (call
, 0);
2268 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2269 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2270 != TYPE_MAIN_VARIANT (cfun_va_list
))
2273 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2274 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2275 1, integer_zero_node
);
2276 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2277 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2279 case BUILT_IN_VA_COPY
:
2280 if (!va_list_simple_ptr
)
2283 if (gimple_call_num_args (call
) != 2)
2286 lhs
= gimple_call_arg (call
, 0);
2287 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2288 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2289 != TYPE_MAIN_VARIANT (cfun_va_list
))
2292 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2293 rhs
= gimple_call_arg (call
, 1);
2294 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2295 != TYPE_MAIN_VARIANT (cfun_va_list
))
2298 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2299 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2301 case BUILT_IN_VA_END
:
2302 /* No effect, so the statement will be deleted. */
2303 return integer_zero_node
;
2310 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2311 the incoming jumps. Return true if at least one jump was changed. */
2314 optimize_unreachable (gimple_stmt_iterator i
)
2316 basic_block bb
= gsi_bb (i
);
2317 gimple_stmt_iterator gsi
;
2323 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2325 stmt
= gsi_stmt (gsi
);
2327 if (is_gimple_debug (stmt
))
2330 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2332 /* Verify we do not need to preserve the label. */
2333 if (FORCED_LABEL (gimple_label_label (stmt
)))
2339 /* Only handle the case that __builtin_unreachable is the first statement
2340 in the block. We rely on DCE to remove stmts without side-effects
2341 before __builtin_unreachable. */
2342 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2347 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2349 gsi
= gsi_last_bb (e
->src
);
2350 if (gsi_end_p (gsi
))
2353 stmt
= gsi_stmt (gsi
);
2354 if (gimple_code (stmt
) == GIMPLE_COND
)
2356 if (e
->flags
& EDGE_TRUE_VALUE
)
2357 gimple_cond_make_false (stmt
);
2358 else if (e
->flags
& EDGE_FALSE_VALUE
)
2359 gimple_cond_make_true (stmt
);
2366 /* Todo: handle other cases, f.i. switch statement. */
2376 /* A simple pass that attempts to fold all builtin functions. This pass
2377 is run after we've propagated as many constants as we can. */
2380 execute_fold_all_builtins (void)
2382 bool cfg_changed
= false;
2384 unsigned int todoflags
= 0;
2388 gimple_stmt_iterator i
;
2389 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2391 gimple stmt
, old_stmt
;
2392 tree callee
, result
;
2393 enum built_in_function fcode
;
2395 stmt
= gsi_stmt (i
);
2397 if (gimple_code (stmt
) != GIMPLE_CALL
)
2402 callee
= gimple_call_fndecl (stmt
);
2403 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2408 fcode
= DECL_FUNCTION_CODE (callee
);
2410 result
= gimple_fold_builtin (stmt
);
2413 gimple_remove_stmt_histograms (cfun
, stmt
);
2416 switch (DECL_FUNCTION_CODE (callee
))
2418 case BUILT_IN_CONSTANT_P
:
2419 /* Resolve __builtin_constant_p. If it hasn't been
2420 folded to integer_one_node by now, it's fairly
2421 certain that the value simply isn't constant. */
2422 result
= integer_zero_node
;
2425 case BUILT_IN_ASSUME_ALIGNED
:
2426 /* Remove __builtin_assume_aligned. */
2427 result
= gimple_call_arg (stmt
, 0);
2430 case BUILT_IN_STACK_RESTORE
:
2431 result
= optimize_stack_restore (i
);
2437 case BUILT_IN_UNREACHABLE
:
2438 if (optimize_unreachable (i
))
2442 case BUILT_IN_VA_START
:
2443 case BUILT_IN_VA_END
:
2444 case BUILT_IN_VA_COPY
:
2445 /* These shouldn't be folded before pass_stdarg. */
2446 result
= optimize_stdarg_builtin (stmt
);
2456 if (result
== NULL_TREE
)
2459 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2461 fprintf (dump_file
, "Simplified\n ");
2462 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2466 if (!update_call_from_tree (&i
, result
))
2468 gimplify_and_update_call_from_tree (&i
, result
);
2469 todoflags
|= TODO_update_address_taken
;
2472 stmt
= gsi_stmt (i
);
2475 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2476 && gimple_purge_dead_eh_edges (bb
))
2479 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2481 fprintf (dump_file
, "to\n ");
2482 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2483 fprintf (dump_file
, "\n");
2486 /* Retry the same statement if it changed into another
2487 builtin, there might be new opportunities now. */
2488 if (gimple_code (stmt
) != GIMPLE_CALL
)
2493 callee
= gimple_call_fndecl (stmt
);
2495 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2496 || DECL_FUNCTION_CODE (callee
) == fcode
)
2501 /* Delete unreachable blocks. */
2503 todoflags
|= TODO_cleanup_cfg
;
2509 struct gimple_opt_pass pass_fold_builtins
=
2514 OPTGROUP_NONE
, /* optinfo_flags */
2516 execute_fold_all_builtins
, /* execute */
2519 0, /* static_pass_number */
2520 TV_NONE
, /* tv_id */
2521 PROP_cfg
| PROP_ssa
, /* properties_required */
2522 0, /* properties_provided */
2523 0, /* properties_destroyed */
2524 0, /* todo_flags_start */
2526 | TODO_update_ssa
/* todo_flags_finish */