* varasm.c (bss_initializer_p): Remove static.
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob4e565448d5b7c03be116ffaa043a5f889452d60a
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "function.h"
122 #include "gimple-pretty-print.h"
123 #include "tree-flow.h"
124 #include "tree-pass.h"
125 #include "tree-ssa-propagate.h"
126 #include "value-prof.h"
127 #include "langhooks.h"
128 #include "target.h"
129 #include "diagnostic-core.h"
130 #include "dbgcnt.h"
131 #include "gimple-fold.h"
132 #include "params.h"
133 #include "hash-table.h"
136 /* Possible lattice values. */
137 typedef enum
139 UNINITIALIZED,
140 UNDEFINED,
141 CONSTANT,
142 VARYING
143 } ccp_lattice_t;
145 struct prop_value_d {
146 /* Lattice value. */
147 ccp_lattice_t lattice_val;
149 /* Propagated value. */
150 tree value;
152 /* Mask that applies to the propagated value during CCP. For
153 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
154 double_int mask;
157 typedef struct prop_value_d prop_value_t;
159 /* Array of propagated constant values. After propagation,
160 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
161 the constant is held in an SSA name representing a memory store
162 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
163 memory reference used to store (i.e., the LHS of the assignment
164 doing the store). */
165 static prop_value_t *const_val;
167 static void canonicalize_float_value (prop_value_t *);
168 static bool ccp_fold_stmt (gimple_stmt_iterator *);
170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
172 static void
173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
175 switch (val.lattice_val)
177 case UNINITIALIZED:
178 fprintf (outf, "%sUNINITIALIZED", prefix);
179 break;
180 case UNDEFINED:
181 fprintf (outf, "%sUNDEFINED", prefix);
182 break;
183 case VARYING:
184 fprintf (outf, "%sVARYING", prefix);
185 break;
186 case CONSTANT:
187 if (TREE_CODE (val.value) != INTEGER_CST
188 || val.mask.is_zero ())
190 fprintf (outf, "%sCONSTANT ", prefix);
191 print_generic_expr (outf, val.value, dump_flags);
193 else
195 double_int cval = tree_to_double_int (val.value).and_not (val.mask);
196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
197 prefix, cval.high, cval.low);
198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
199 val.mask.high, val.mask.low);
201 break;
202 default:
203 gcc_unreachable ();
208 /* Print lattice value VAL to stderr. */
210 void debug_lattice_value (prop_value_t val);
212 DEBUG_FUNCTION void
213 debug_lattice_value (prop_value_t val)
215 dump_lattice_value (stderr, "", val);
216 fprintf (stderr, "\n");
220 /* Compute a default value for variable VAR and store it in the
221 CONST_VAL array. The following rules are used to get default
222 values:
224 1- Global and static variables that are declared constant are
225 considered CONSTANT.
227 2- Any other value is considered UNDEFINED. This is useful when
228 considering PHI nodes. PHI arguments that are undefined do not
229 change the constant value of the PHI node, which allows for more
230 constants to be propagated.
232 3- Variables defined by statements other than assignments and PHI
233 nodes are considered VARYING.
235 4- Initial values of variables that are not GIMPLE registers are
236 considered VARYING. */
238 static prop_value_t
239 get_default_value (tree var)
241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
242 gimple stmt;
244 stmt = SSA_NAME_DEF_STMT (var);
246 if (gimple_nop_p (stmt))
248 /* Variables defined by an empty statement are those used
249 before being initialized. If VAR is a local variable, we
250 can assume initially that it is UNDEFINED, otherwise we must
251 consider it VARYING. */
252 if (!virtual_operand_p (var)
253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
254 val.lattice_val = UNDEFINED;
255 else
257 val.lattice_val = VARYING;
258 val.mask = double_int_minus_one;
261 else if (is_gimple_assign (stmt)
262 /* Value-returning GIMPLE_CALL statements assign to
263 a variable, and are treated similarly to GIMPLE_ASSIGN. */
264 || (is_gimple_call (stmt)
265 && gimple_call_lhs (stmt) != NULL_TREE)
266 || gimple_code (stmt) == GIMPLE_PHI)
268 tree cst;
269 if (gimple_assign_single_p (stmt)
270 && DECL_P (gimple_assign_rhs1 (stmt))
271 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
273 val.lattice_val = CONSTANT;
274 val.value = cst;
276 else
277 /* Any other variable defined by an assignment or a PHI node
278 is considered UNDEFINED. */
279 val.lattice_val = UNDEFINED;
281 else
283 /* Otherwise, VAR will never take on a constant value. */
284 val.lattice_val = VARYING;
285 val.mask = double_int_minus_one;
288 return val;
292 /* Get the constant value associated with variable VAR. */
294 static inline prop_value_t *
295 get_value (tree var)
297 prop_value_t *val;
299 if (const_val == NULL)
300 return NULL;
302 val = &const_val[SSA_NAME_VERSION (var)];
303 if (val->lattice_val == UNINITIALIZED)
304 *val = get_default_value (var);
306 canonicalize_float_value (val);
308 return val;
311 /* Return the constant tree value associated with VAR. */
313 static inline tree
314 get_constant_value (tree var)
316 prop_value_t *val;
317 if (TREE_CODE (var) != SSA_NAME)
319 if (is_gimple_min_invariant (var))
320 return var;
321 return NULL_TREE;
323 val = get_value (var);
324 if (val
325 && val->lattice_val == CONSTANT
326 && (TREE_CODE (val->value) != INTEGER_CST
327 || val->mask.is_zero ()))
328 return val->value;
329 return NULL_TREE;
332 /* Sets the value associated with VAR to VARYING. */
334 static inline void
335 set_value_varying (tree var)
337 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
339 val->lattice_val = VARYING;
340 val->value = NULL_TREE;
341 val->mask = double_int_minus_one;
344 /* For float types, modify the value of VAL to make ccp work correctly
345 for non-standard values (-0, NaN):
347 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
348 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
349 This is to fix the following problem (see PR 29921): Suppose we have
351 x = 0.0 * y
353 and we set value of y to NaN. This causes value of x to be set to NaN.
354 When we later determine that y is in fact VARYING, fold uses the fact
355 that HONOR_NANS is false, and we try to change the value of x to 0,
356 causing an ICE. With HONOR_NANS being false, the real appearance of
357 NaN would cause undefined behavior, though, so claiming that y (and x)
358 are UNDEFINED initially is correct. */
360 static void
361 canonicalize_float_value (prop_value_t *val)
363 enum machine_mode mode;
364 tree type;
365 REAL_VALUE_TYPE d;
367 if (val->lattice_val != CONSTANT
368 || TREE_CODE (val->value) != REAL_CST)
369 return;
371 d = TREE_REAL_CST (val->value);
372 type = TREE_TYPE (val->value);
373 mode = TYPE_MODE (type);
375 if (!HONOR_SIGNED_ZEROS (mode)
376 && REAL_VALUE_MINUS_ZERO (d))
378 val->value = build_real (type, dconst0);
379 return;
382 if (!HONOR_NANS (mode)
383 && REAL_VALUE_ISNAN (d))
385 val->lattice_val = UNDEFINED;
386 val->value = NULL;
387 return;
391 /* Return whether the lattice transition is valid. */
393 static bool
394 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
396 /* Lattice transitions must always be monotonically increasing in
397 value. */
398 if (old_val.lattice_val < new_val.lattice_val)
399 return true;
401 if (old_val.lattice_val != new_val.lattice_val)
402 return false;
404 if (!old_val.value && !new_val.value)
405 return true;
407 /* Now both lattice values are CONSTANT. */
409 /* Allow transitioning from PHI <&x, not executable> == &x
410 to PHI <&x, &y> == common alignment. */
411 if (TREE_CODE (old_val.value) != INTEGER_CST
412 && TREE_CODE (new_val.value) == INTEGER_CST)
413 return true;
415 /* Bit-lattices have to agree in the still valid bits. */
416 if (TREE_CODE (old_val.value) == INTEGER_CST
417 && TREE_CODE (new_val.value) == INTEGER_CST)
418 return tree_to_double_int (old_val.value).and_not (new_val.mask)
419 == tree_to_double_int (new_val.value).and_not (new_val.mask);
421 /* Otherwise constant values have to agree. */
422 return operand_equal_p (old_val.value, new_val.value, 0);
425 /* Set the value for variable VAR to NEW_VAL. Return true if the new
426 value is different from VAR's previous value. */
428 static bool
429 set_lattice_value (tree var, prop_value_t new_val)
431 /* We can deal with old UNINITIALIZED values just fine here. */
432 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
434 canonicalize_float_value (&new_val);
436 /* We have to be careful to not go up the bitwise lattice
437 represented by the mask.
438 ??? This doesn't seem to be the best place to enforce this. */
439 if (new_val.lattice_val == CONSTANT
440 && old_val->lattice_val == CONSTANT
441 && TREE_CODE (new_val.value) == INTEGER_CST
442 && TREE_CODE (old_val->value) == INTEGER_CST)
444 double_int diff;
445 diff = tree_to_double_int (new_val.value)
446 ^ tree_to_double_int (old_val->value);
447 new_val.mask = new_val.mask | old_val->mask | diff;
450 gcc_assert (valid_lattice_transition (*old_val, new_val));
452 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
453 caller that this was a non-transition. */
454 if (old_val->lattice_val != new_val.lattice_val
455 || (new_val.lattice_val == CONSTANT
456 && TREE_CODE (new_val.value) == INTEGER_CST
457 && (TREE_CODE (old_val->value) != INTEGER_CST
458 || new_val.mask != old_val->mask)))
460 /* ??? We would like to delay creation of INTEGER_CSTs from
461 partially constants here. */
463 if (dump_file && (dump_flags & TDF_DETAILS))
465 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
466 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
469 *old_val = new_val;
471 gcc_assert (new_val.lattice_val != UNINITIALIZED);
472 return true;
475 return false;
478 static prop_value_t get_value_for_expr (tree, bool);
479 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
480 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
481 tree, double_int, double_int,
482 tree, double_int, double_int);
484 /* Return a double_int that can be used for bitwise simplifications
485 from VAL. */
487 static double_int
488 value_to_double_int (prop_value_t val)
490 if (val.value
491 && TREE_CODE (val.value) == INTEGER_CST)
492 return tree_to_double_int (val.value);
493 else
494 return double_int_zero;
497 /* Return the value for the address expression EXPR based on alignment
498 information. */
500 static prop_value_t
501 get_value_from_alignment (tree expr)
503 tree type = TREE_TYPE (expr);
504 prop_value_t val;
505 unsigned HOST_WIDE_INT bitpos;
506 unsigned int align;
508 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
510 get_pointer_alignment_1 (expr, &align, &bitpos);
511 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
512 ? double_int::mask (TYPE_PRECISION (type))
513 : double_int_minus_one)
514 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
515 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
516 if (val.lattice_val == CONSTANT)
517 val.value
518 = double_int_to_tree (type,
519 double_int::from_uhwi (bitpos / BITS_PER_UNIT));
520 else
521 val.value = NULL_TREE;
523 return val;
526 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
527 return constant bits extracted from alignment information for
528 invariant addresses. */
530 static prop_value_t
531 get_value_for_expr (tree expr, bool for_bits_p)
533 prop_value_t val;
535 if (TREE_CODE (expr) == SSA_NAME)
537 val = *get_value (expr);
538 if (for_bits_p
539 && val.lattice_val == CONSTANT
540 && TREE_CODE (val.value) == ADDR_EXPR)
541 val = get_value_from_alignment (val.value);
543 else if (is_gimple_min_invariant (expr)
544 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
546 val.lattice_val = CONSTANT;
547 val.value = expr;
548 val.mask = double_int_zero;
549 canonicalize_float_value (&val);
551 else if (TREE_CODE (expr) == ADDR_EXPR)
552 val = get_value_from_alignment (expr);
553 else
555 val.lattice_val = VARYING;
556 val.mask = double_int_minus_one;
557 val.value = NULL_TREE;
559 return val;
562 /* Return the likely CCP lattice value for STMT.
564 If STMT has no operands, then return CONSTANT.
566 Else if undefinedness of operands of STMT cause its value to be
567 undefined, then return UNDEFINED.
569 Else if any operands of STMT are constants, then return CONSTANT.
571 Else return VARYING. */
573 static ccp_lattice_t
574 likely_value (gimple stmt)
576 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
577 tree use;
578 ssa_op_iter iter;
579 unsigned i;
581 enum gimple_code code = gimple_code (stmt);
583 /* This function appears to be called only for assignments, calls,
584 conditionals, and switches, due to the logic in visit_stmt. */
585 gcc_assert (code == GIMPLE_ASSIGN
586 || code == GIMPLE_CALL
587 || code == GIMPLE_COND
588 || code == GIMPLE_SWITCH);
590 /* If the statement has volatile operands, it won't fold to a
591 constant value. */
592 if (gimple_has_volatile_ops (stmt))
593 return VARYING;
595 /* Arrive here for more complex cases. */
596 has_constant_operand = false;
597 has_undefined_operand = false;
598 all_undefined_operands = true;
599 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
601 prop_value_t *val = get_value (use);
603 if (val->lattice_val == UNDEFINED)
604 has_undefined_operand = true;
605 else
606 all_undefined_operands = false;
608 if (val->lattice_val == CONSTANT)
609 has_constant_operand = true;
612 /* There may be constants in regular rhs operands. For calls we
613 have to ignore lhs, fndecl and static chain, otherwise only
614 the lhs. */
615 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
616 i < gimple_num_ops (stmt); ++i)
618 tree op = gimple_op (stmt, i);
619 if (!op || TREE_CODE (op) == SSA_NAME)
620 continue;
621 if (is_gimple_min_invariant (op))
622 has_constant_operand = true;
625 if (has_constant_operand)
626 all_undefined_operands = false;
628 /* If the operation combines operands like COMPLEX_EXPR make sure to
629 not mark the result UNDEFINED if only one part of the result is
630 undefined. */
631 if (has_undefined_operand && all_undefined_operands)
632 return UNDEFINED;
633 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
635 switch (gimple_assign_rhs_code (stmt))
637 /* Unary operators are handled with all_undefined_operands. */
638 case PLUS_EXPR:
639 case MINUS_EXPR:
640 case POINTER_PLUS_EXPR:
641 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
642 Not bitwise operators, one VARYING operand may specify the
643 result completely. Not logical operators for the same reason.
644 Not COMPLEX_EXPR as one VARYING operand makes the result partly
645 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
646 the undefined operand may be promoted. */
647 return UNDEFINED;
649 case ADDR_EXPR:
650 /* If any part of an address is UNDEFINED, like the index
651 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
652 return UNDEFINED;
654 default:
658 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
659 fall back to CONSTANT. During iteration UNDEFINED may still drop
660 to CONSTANT. */
661 if (has_undefined_operand)
662 return CONSTANT;
664 /* We do not consider virtual operands here -- load from read-only
665 memory may have only VARYING virtual operands, but still be
666 constant. */
667 if (has_constant_operand
668 || gimple_references_memory_p (stmt))
669 return CONSTANT;
671 return VARYING;
674 /* Returns true if STMT cannot be constant. */
676 static bool
677 surely_varying_stmt_p (gimple stmt)
679 /* If the statement has operands that we cannot handle, it cannot be
680 constant. */
681 if (gimple_has_volatile_ops (stmt))
682 return true;
684 /* If it is a call and does not return a value or is not a
685 builtin and not an indirect call, it is varying. */
686 if (is_gimple_call (stmt))
688 tree fndecl;
689 if (!gimple_call_lhs (stmt)
690 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
691 && !DECL_BUILT_IN (fndecl)))
692 return true;
695 /* Any other store operation is not interesting. */
696 else if (gimple_vdef (stmt))
697 return true;
699 /* Anything other than assignments and conditional jumps are not
700 interesting for CCP. */
701 if (gimple_code (stmt) != GIMPLE_ASSIGN
702 && gimple_code (stmt) != GIMPLE_COND
703 && gimple_code (stmt) != GIMPLE_SWITCH
704 && gimple_code (stmt) != GIMPLE_CALL)
705 return true;
707 return false;
710 /* Initialize local data structures for CCP. */
712 static void
713 ccp_initialize (void)
715 basic_block bb;
717 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
719 /* Initialize simulation flags for PHI nodes and statements. */
720 FOR_EACH_BB (bb)
722 gimple_stmt_iterator i;
724 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
726 gimple stmt = gsi_stmt (i);
727 bool is_varying;
729 /* If the statement is a control insn, then we do not
730 want to avoid simulating the statement once. Failure
731 to do so means that those edges will never get added. */
732 if (stmt_ends_bb_p (stmt))
733 is_varying = false;
734 else
735 is_varying = surely_varying_stmt_p (stmt);
737 if (is_varying)
739 tree def;
740 ssa_op_iter iter;
742 /* If the statement will not produce a constant, mark
743 all its outputs VARYING. */
744 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
745 set_value_varying (def);
747 prop_set_simulate_again (stmt, !is_varying);
751 /* Now process PHI nodes. We never clear the simulate_again flag on
752 phi nodes, since we do not know which edges are executable yet,
753 except for phi nodes for virtual operands when we do not do store ccp. */
754 FOR_EACH_BB (bb)
756 gimple_stmt_iterator i;
758 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
760 gimple phi = gsi_stmt (i);
762 if (virtual_operand_p (gimple_phi_result (phi)))
763 prop_set_simulate_again (phi, false);
764 else
765 prop_set_simulate_again (phi, true);
770 /* Debug count support. Reset the values of ssa names
771 VARYING when the total number ssa names analyzed is
772 beyond the debug count specified. */
774 static void
775 do_dbg_cnt (void)
777 unsigned i;
778 for (i = 0; i < num_ssa_names; i++)
780 if (!dbg_cnt (ccp))
782 const_val[i].lattice_val = VARYING;
783 const_val[i].mask = double_int_minus_one;
784 const_val[i].value = NULL_TREE;
790 /* Do final substitution of propagated values, cleanup the flowgraph and
791 free allocated storage.
793 Return TRUE when something was optimized. */
795 static bool
796 ccp_finalize (void)
798 bool something_changed;
799 unsigned i;
801 do_dbg_cnt ();
803 /* Derive alignment and misalignment information from partially
804 constant pointers in the lattice. */
805 for (i = 1; i < num_ssa_names; ++i)
807 tree name = ssa_name (i);
808 prop_value_t *val;
809 unsigned int tem, align;
811 if (!name
812 || !POINTER_TYPE_P (TREE_TYPE (name)))
813 continue;
815 val = get_value (name);
816 if (val->lattice_val != CONSTANT
817 || TREE_CODE (val->value) != INTEGER_CST)
818 continue;
820 /* Trailing constant bits specify the alignment, trailing value
821 bits the misalignment. */
822 tem = val->mask.low;
823 align = (tem & -tem);
824 if (align > 1)
825 set_ptr_info_alignment (get_ptr_info (name), align,
826 TREE_INT_CST_LOW (val->value) & (align - 1));
829 /* Perform substitutions based on the known constant values. */
830 something_changed = substitute_and_fold (get_constant_value,
831 ccp_fold_stmt, true);
833 free (const_val);
834 const_val = NULL;
835 return something_changed;;
839 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
840 in VAL1.
842 any M UNDEFINED = any
843 any M VARYING = VARYING
844 Ci M Cj = Ci if (i == j)
845 Ci M Cj = VARYING if (i != j)
848 static void
849 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
851 if (val1->lattice_val == UNDEFINED)
853 /* UNDEFINED M any = any */
854 *val1 = *val2;
856 else if (val2->lattice_val == UNDEFINED)
858 /* any M UNDEFINED = any
859 Nothing to do. VAL1 already contains the value we want. */
862 else if (val1->lattice_val == VARYING
863 || val2->lattice_val == VARYING)
865 /* any M VARYING = VARYING. */
866 val1->lattice_val = VARYING;
867 val1->mask = double_int_minus_one;
868 val1->value = NULL_TREE;
870 else if (val1->lattice_val == CONSTANT
871 && val2->lattice_val == CONSTANT
872 && TREE_CODE (val1->value) == INTEGER_CST
873 && TREE_CODE (val2->value) == INTEGER_CST)
875 /* Ci M Cj = Ci if (i == j)
876 Ci M Cj = VARYING if (i != j)
878 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
879 drop to varying. */
880 val1->mask = val1->mask | val2->mask
881 | (tree_to_double_int (val1->value)
882 ^ tree_to_double_int (val2->value));
883 if (val1->mask.is_minus_one ())
885 val1->lattice_val = VARYING;
886 val1->value = NULL_TREE;
889 else if (val1->lattice_val == CONSTANT
890 && val2->lattice_val == CONSTANT
891 && simple_cst_equal (val1->value, val2->value) == 1)
893 /* Ci M Cj = Ci if (i == j)
894 Ci M Cj = VARYING if (i != j)
896 VAL1 already contains the value we want for equivalent values. */
898 else if (val1->lattice_val == CONSTANT
899 && val2->lattice_val == CONSTANT
900 && (TREE_CODE (val1->value) == ADDR_EXPR
901 || TREE_CODE (val2->value) == ADDR_EXPR))
903 /* When not equal addresses are involved try meeting for
904 alignment. */
905 prop_value_t tem = *val2;
906 if (TREE_CODE (val1->value) == ADDR_EXPR)
907 *val1 = get_value_for_expr (val1->value, true);
908 if (TREE_CODE (val2->value) == ADDR_EXPR)
909 tem = get_value_for_expr (val2->value, true);
910 ccp_lattice_meet (val1, &tem);
912 else
914 /* Any other combination is VARYING. */
915 val1->lattice_val = VARYING;
916 val1->mask = double_int_minus_one;
917 val1->value = NULL_TREE;
922 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
923 lattice values to determine PHI_NODE's lattice value. The value of a
924 PHI node is determined calling ccp_lattice_meet with all the arguments
925 of the PHI node that are incoming via executable edges. */
927 static enum ssa_prop_result
928 ccp_visit_phi_node (gimple phi)
930 unsigned i;
931 prop_value_t *old_val, new_val;
933 if (dump_file && (dump_flags & TDF_DETAILS))
935 fprintf (dump_file, "\nVisiting PHI node: ");
936 print_gimple_stmt (dump_file, phi, 0, dump_flags);
939 old_val = get_value (gimple_phi_result (phi));
940 switch (old_val->lattice_val)
942 case VARYING:
943 return SSA_PROP_VARYING;
945 case CONSTANT:
946 new_val = *old_val;
947 break;
949 case UNDEFINED:
950 new_val.lattice_val = UNDEFINED;
951 new_val.value = NULL_TREE;
952 break;
954 default:
955 gcc_unreachable ();
958 for (i = 0; i < gimple_phi_num_args (phi); i++)
960 /* Compute the meet operator over all the PHI arguments flowing
961 through executable edges. */
962 edge e = gimple_phi_arg_edge (phi, i);
964 if (dump_file && (dump_flags & TDF_DETAILS))
966 fprintf (dump_file,
967 "\n Argument #%d (%d -> %d %sexecutable)\n",
968 i, e->src->index, e->dest->index,
969 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
972 /* If the incoming edge is executable, Compute the meet operator for
973 the existing value of the PHI node and the current PHI argument. */
974 if (e->flags & EDGE_EXECUTABLE)
976 tree arg = gimple_phi_arg (phi, i)->def;
977 prop_value_t arg_val = get_value_for_expr (arg, false);
979 ccp_lattice_meet (&new_val, &arg_val);
981 if (dump_file && (dump_flags & TDF_DETAILS))
983 fprintf (dump_file, "\t");
984 print_generic_expr (dump_file, arg, dump_flags);
985 dump_lattice_value (dump_file, "\tValue: ", arg_val);
986 fprintf (dump_file, "\n");
989 if (new_val.lattice_val == VARYING)
990 break;
994 if (dump_file && (dump_flags & TDF_DETAILS))
996 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
997 fprintf (dump_file, "\n\n");
1000 /* Make the transition to the new value. */
1001 if (set_lattice_value (gimple_phi_result (phi), new_val))
1003 if (new_val.lattice_val == VARYING)
1004 return SSA_PROP_VARYING;
1005 else
1006 return SSA_PROP_INTERESTING;
1008 else
1009 return SSA_PROP_NOT_INTERESTING;
1012 /* Return the constant value for OP or OP otherwise. */
1014 static tree
1015 valueize_op (tree op)
1017 if (TREE_CODE (op) == SSA_NAME)
1019 tree tem = get_constant_value (op);
1020 if (tem)
1021 return tem;
1023 return op;
1026 /* CCP specific front-end to the non-destructive constant folding
1027 routines.
1029 Attempt to simplify the RHS of STMT knowing that one or more
1030 operands are constants.
1032 If simplification is possible, return the simplified RHS,
1033 otherwise return the original RHS or NULL_TREE. */
1035 static tree
1036 ccp_fold (gimple stmt)
1038 location_t loc = gimple_location (stmt);
1039 switch (gimple_code (stmt))
1041 case GIMPLE_COND:
1043 /* Handle comparison operators that can appear in GIMPLE form. */
1044 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1045 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1046 enum tree_code code = gimple_cond_code (stmt);
1047 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1050 case GIMPLE_SWITCH:
1052 /* Return the constant switch index. */
1053 return valueize_op (gimple_switch_index (stmt));
1056 case GIMPLE_ASSIGN:
1057 case GIMPLE_CALL:
1058 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1060 default:
1061 gcc_unreachable ();
1065 /* Apply the operation CODE in type TYPE to the value, mask pair
1066 RVAL and RMASK representing a value of type RTYPE and set
1067 the value, mask pair *VAL and *MASK to the result. */
1069 static void
1070 bit_value_unop_1 (enum tree_code code, tree type,
1071 double_int *val, double_int *mask,
1072 tree rtype, double_int rval, double_int rmask)
1074 switch (code)
1076 case BIT_NOT_EXPR:
1077 *mask = rmask;
1078 *val = ~rval;
1079 break;
1081 case NEGATE_EXPR:
1083 double_int temv, temm;
1084 /* Return ~rval + 1. */
1085 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1086 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1087 type, temv, temm,
1088 type, double_int_one, double_int_zero);
1089 break;
1092 CASE_CONVERT:
1094 bool uns;
1096 /* First extend mask and value according to the original type. */
1097 uns = TYPE_UNSIGNED (rtype);
1098 *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
1099 *val = rval.ext (TYPE_PRECISION (rtype), uns);
1101 /* Then extend mask and value according to the target type. */
1102 uns = TYPE_UNSIGNED (type);
1103 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1104 *val = (*val).ext (TYPE_PRECISION (type), uns);
1105 break;
1108 default:
1109 *mask = double_int_minus_one;
1110 break;
1114 /* Apply the operation CODE in type TYPE to the value, mask pairs
1115 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1116 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1118 static void
1119 bit_value_binop_1 (enum tree_code code, tree type,
1120 double_int *val, double_int *mask,
1121 tree r1type, double_int r1val, double_int r1mask,
1122 tree r2type, double_int r2val, double_int r2mask)
1124 bool uns = TYPE_UNSIGNED (type);
1125 /* Assume we'll get a constant result. Use an initial varying value,
1126 we fall back to varying in the end if necessary. */
1127 *mask = double_int_minus_one;
1128 switch (code)
1130 case BIT_AND_EXPR:
1131 /* The mask is constant where there is a known not
1132 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1133 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1134 *val = r1val & r2val;
1135 break;
1137 case BIT_IOR_EXPR:
1138 /* The mask is constant where there is a known
1139 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1140 *mask = (r1mask | r2mask)
1141 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1142 *val = r1val | r2val;
1143 break;
1145 case BIT_XOR_EXPR:
1146 /* m1 | m2 */
1147 *mask = r1mask | r2mask;
1148 *val = r1val ^ r2val;
1149 break;
1151 case LROTATE_EXPR:
1152 case RROTATE_EXPR:
1153 if (r2mask.is_zero ())
1155 HOST_WIDE_INT shift = r2val.low;
1156 if (code == RROTATE_EXPR)
1157 shift = -shift;
1158 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
1159 *val = r1val.lrotate (shift, TYPE_PRECISION (type));
1161 break;
1163 case LSHIFT_EXPR:
1164 case RSHIFT_EXPR:
1165 /* ??? We can handle partially known shift counts if we know
1166 its sign. That way we can tell that (x << (y | 8)) & 255
1167 is zero. */
1168 if (r2mask.is_zero ())
1170 HOST_WIDE_INT shift = r2val.low;
1171 if (code == RSHIFT_EXPR)
1172 shift = -shift;
1173 /* We need to know if we are doing a left or a right shift
1174 to properly shift in zeros for left shift and unsigned
1175 right shifts and the sign bit for signed right shifts.
1176 For signed right shifts we shift in varying in case
1177 the sign bit was varying. */
1178 if (shift > 0)
1180 *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
1181 *val = r1val.llshift (shift, TYPE_PRECISION (type));
1183 else if (shift < 0)
1185 shift = -shift;
1186 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
1187 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
1189 else
1191 *mask = r1mask;
1192 *val = r1val;
1195 break;
1197 case PLUS_EXPR:
1198 case POINTER_PLUS_EXPR:
1200 double_int lo, hi;
1201 /* Do the addition with unknown bits set to zero, to give carry-ins of
1202 zero wherever possible. */
1203 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1204 lo = lo.ext (TYPE_PRECISION (type), uns);
1205 /* Do the addition with unknown bits set to one, to give carry-ins of
1206 one wherever possible. */
1207 hi = (r1val | r1mask) + (r2val | r2mask);
1208 hi = hi.ext (TYPE_PRECISION (type), uns);
1209 /* Each bit in the result is known if (a) the corresponding bits in
1210 both inputs are known, and (b) the carry-in to that bit position
1211 is known. We can check condition (b) by seeing if we got the same
1212 result with minimised carries as with maximised carries. */
1213 *mask = r1mask | r2mask | (lo ^ hi);
1214 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1215 /* It shouldn't matter whether we choose lo or hi here. */
1216 *val = lo;
1217 break;
1220 case MINUS_EXPR:
1222 double_int temv, temm;
1223 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1224 r2type, r2val, r2mask);
1225 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1226 r1type, r1val, r1mask,
1227 r2type, temv, temm);
1228 break;
1231 case MULT_EXPR:
1233 /* Just track trailing zeros in both operands and transfer
1234 them to the other. */
1235 int r1tz = (r1val | r1mask).trailing_zeros ();
1236 int r2tz = (r2val | r2mask).trailing_zeros ();
1237 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1239 *mask = double_int_zero;
1240 *val = double_int_zero;
1242 else if (r1tz + r2tz > 0)
1244 *mask = ~double_int::mask (r1tz + r2tz);
1245 *mask = (*mask).ext (TYPE_PRECISION (type), uns);
1246 *val = double_int_zero;
1248 break;
1251 case EQ_EXPR:
1252 case NE_EXPR:
1254 double_int m = r1mask | r2mask;
1255 if (r1val.and_not (m) != r2val.and_not (m))
1257 *mask = double_int_zero;
1258 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1260 else
1262 /* We know the result of a comparison is always one or zero. */
1263 *mask = double_int_one;
1264 *val = double_int_zero;
1266 break;
1269 case GE_EXPR:
1270 case GT_EXPR:
1272 double_int tem = r1val;
1273 r1val = r2val;
1274 r2val = tem;
1275 tem = r1mask;
1276 r1mask = r2mask;
1277 r2mask = tem;
1278 code = swap_tree_comparison (code);
1280 /* Fallthru. */
1281 case LT_EXPR:
1282 case LE_EXPR:
1284 int minmax, maxmin;
1285 /* If the most significant bits are not known we know nothing. */
1286 if (r1mask.is_negative () || r2mask.is_negative ())
1287 break;
1289 /* For comparisons the signedness is in the comparison operands. */
1290 uns = TYPE_UNSIGNED (r1type);
1292 /* If we know the most significant bits we know the values
1293 value ranges by means of treating varying bits as zero
1294 or one. Do a cross comparison of the max/min pairs. */
1295 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
1296 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
1297 if (maxmin < 0) /* r1 is less than r2. */
1299 *mask = double_int_zero;
1300 *val = double_int_one;
1302 else if (minmax > 0) /* r1 is not less or equal to r2. */
1304 *mask = double_int_zero;
1305 *val = double_int_zero;
1307 else if (maxmin == minmax) /* r1 and r2 are equal. */
1309 /* This probably should never happen as we'd have
1310 folded the thing during fully constant value folding. */
1311 *mask = double_int_zero;
1312 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1314 else
1316 /* We know the result of a comparison is always one or zero. */
1317 *mask = double_int_one;
1318 *val = double_int_zero;
1320 break;
1323 default:;
1327 /* Return the propagation value when applying the operation CODE to
1328 the value RHS yielding type TYPE. */
1330 static prop_value_t
1331 bit_value_unop (enum tree_code code, tree type, tree rhs)
1333 prop_value_t rval = get_value_for_expr (rhs, true);
1334 double_int value, mask;
1335 prop_value_t val;
1337 if (rval.lattice_val == UNDEFINED)
1338 return rval;
1340 gcc_assert ((rval.lattice_val == CONSTANT
1341 && TREE_CODE (rval.value) == INTEGER_CST)
1342 || rval.mask.is_minus_one ());
1343 bit_value_unop_1 (code, type, &value, &mask,
1344 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1345 if (!mask.is_minus_one ())
1347 val.lattice_val = CONSTANT;
1348 val.mask = mask;
1349 /* ??? Delay building trees here. */
1350 val.value = double_int_to_tree (type, value);
1352 else
1354 val.lattice_val = VARYING;
1355 val.value = NULL_TREE;
1356 val.mask = double_int_minus_one;
1358 return val;
1361 /* Return the propagation value when applying the operation CODE to
1362 the values RHS1 and RHS2 yielding type TYPE. */
1364 static prop_value_t
1365 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1367 prop_value_t r1val = get_value_for_expr (rhs1, true);
1368 prop_value_t r2val = get_value_for_expr (rhs2, true);
1369 double_int value, mask;
1370 prop_value_t val;
1372 if (r1val.lattice_val == UNDEFINED
1373 || r2val.lattice_val == UNDEFINED)
1375 val.lattice_val = VARYING;
1376 val.value = NULL_TREE;
1377 val.mask = double_int_minus_one;
1378 return val;
1381 gcc_assert ((r1val.lattice_val == CONSTANT
1382 && TREE_CODE (r1val.value) == INTEGER_CST)
1383 || r1val.mask.is_minus_one ());
1384 gcc_assert ((r2val.lattice_val == CONSTANT
1385 && TREE_CODE (r2val.value) == INTEGER_CST)
1386 || r2val.mask.is_minus_one ());
1387 bit_value_binop_1 (code, type, &value, &mask,
1388 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1389 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1390 if (!mask.is_minus_one ())
1392 val.lattice_val = CONSTANT;
1393 val.mask = mask;
1394 /* ??? Delay building trees here. */
1395 val.value = double_int_to_tree (type, value);
1397 else
1399 val.lattice_val = VARYING;
1400 val.value = NULL_TREE;
1401 val.mask = double_int_minus_one;
1403 return val;
1406 /* Return the propagation value when applying __builtin_assume_aligned to
1407 its arguments. */
1409 static prop_value_t
1410 bit_value_assume_aligned (gimple stmt)
1412 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
1413 tree type = TREE_TYPE (ptr);
1414 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1415 prop_value_t ptrval = get_value_for_expr (ptr, true);
1416 prop_value_t alignval;
1417 double_int value, mask;
1418 prop_value_t val;
1419 if (ptrval.lattice_val == UNDEFINED)
1420 return ptrval;
1421 gcc_assert ((ptrval.lattice_val == CONSTANT
1422 && TREE_CODE (ptrval.value) == INTEGER_CST)
1423 || ptrval.mask.is_minus_one ());
1424 align = gimple_call_arg (stmt, 1);
1425 if (!host_integerp (align, 1))
1426 return ptrval;
1427 aligni = tree_low_cst (align, 1);
1428 if (aligni <= 1
1429 || (aligni & (aligni - 1)) != 0)
1430 return ptrval;
1431 if (gimple_call_num_args (stmt) > 2)
1433 misalign = gimple_call_arg (stmt, 2);
1434 if (!host_integerp (misalign, 1))
1435 return ptrval;
1436 misaligni = tree_low_cst (misalign, 1);
1437 if (misaligni >= aligni)
1438 return ptrval;
1440 align = build_int_cst_type (type, -aligni);
1441 alignval = get_value_for_expr (align, true);
1442 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
1443 type, value_to_double_int (ptrval), ptrval.mask,
1444 type, value_to_double_int (alignval), alignval.mask);
1445 if (!mask.is_minus_one ())
1447 val.lattice_val = CONSTANT;
1448 val.mask = mask;
1449 gcc_assert ((mask.low & (aligni - 1)) == 0);
1450 gcc_assert ((value.low & (aligni - 1)) == 0);
1451 value.low |= misaligni;
1452 /* ??? Delay building trees here. */
1453 val.value = double_int_to_tree (type, value);
1455 else
1457 val.lattice_val = VARYING;
1458 val.value = NULL_TREE;
1459 val.mask = double_int_minus_one;
1461 return val;
1464 /* Evaluate statement STMT.
1465 Valid only for assignments, calls, conditionals, and switches. */
1467 static prop_value_t
1468 evaluate_stmt (gimple stmt)
1470 prop_value_t val;
1471 tree simplified = NULL_TREE;
1472 ccp_lattice_t likelyvalue = likely_value (stmt);
1473 bool is_constant = false;
1474 unsigned int align;
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1478 fprintf (dump_file, "which is likely ");
1479 switch (likelyvalue)
1481 case CONSTANT:
1482 fprintf (dump_file, "CONSTANT");
1483 break;
1484 case UNDEFINED:
1485 fprintf (dump_file, "UNDEFINED");
1486 break;
1487 case VARYING:
1488 fprintf (dump_file, "VARYING");
1489 break;
1490 default:;
1492 fprintf (dump_file, "\n");
1495 /* If the statement is likely to have a CONSTANT result, then try
1496 to fold the statement to determine the constant value. */
1497 /* FIXME. This is the only place that we call ccp_fold.
1498 Since likely_value never returns CONSTANT for calls, we will
1499 not attempt to fold them, including builtins that may profit. */
1500 if (likelyvalue == CONSTANT)
1502 fold_defer_overflow_warnings ();
1503 simplified = ccp_fold (stmt);
1504 is_constant = simplified && is_gimple_min_invariant (simplified);
1505 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1506 if (is_constant)
1508 /* The statement produced a constant value. */
1509 val.lattice_val = CONSTANT;
1510 val.value = simplified;
1511 val.mask = double_int_zero;
1514 /* If the statement is likely to have a VARYING result, then do not
1515 bother folding the statement. */
1516 else if (likelyvalue == VARYING)
1518 enum gimple_code code = gimple_code (stmt);
1519 if (code == GIMPLE_ASSIGN)
1521 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1523 /* Other cases cannot satisfy is_gimple_min_invariant
1524 without folding. */
1525 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1526 simplified = gimple_assign_rhs1 (stmt);
1528 else if (code == GIMPLE_SWITCH)
1529 simplified = gimple_switch_index (stmt);
1530 else
1531 /* These cannot satisfy is_gimple_min_invariant without folding. */
1532 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1533 is_constant = simplified && is_gimple_min_invariant (simplified);
1534 if (is_constant)
1536 /* The statement produced a constant value. */
1537 val.lattice_val = CONSTANT;
1538 val.value = simplified;
1539 val.mask = double_int_zero;
1543 /* Resort to simplification for bitwise tracking. */
1544 if (flag_tree_bit_ccp
1545 && (likelyvalue == CONSTANT || is_gimple_call (stmt))
1546 && !is_constant)
1548 enum gimple_code code = gimple_code (stmt);
1549 tree fndecl;
1550 val.lattice_val = VARYING;
1551 val.value = NULL_TREE;
1552 val.mask = double_int_minus_one;
1553 if (code == GIMPLE_ASSIGN)
1555 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1556 tree rhs1 = gimple_assign_rhs1 (stmt);
1557 switch (get_gimple_rhs_class (subcode))
1559 case GIMPLE_SINGLE_RHS:
1560 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1561 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1562 val = get_value_for_expr (rhs1, true);
1563 break;
1565 case GIMPLE_UNARY_RHS:
1566 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1567 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1568 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1569 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1570 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1571 break;
1573 case GIMPLE_BINARY_RHS:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1577 tree lhs = gimple_assign_lhs (stmt);
1578 tree rhs2 = gimple_assign_rhs2 (stmt);
1579 val = bit_value_binop (subcode,
1580 TREE_TYPE (lhs), rhs1, rhs2);
1582 break;
1584 default:;
1587 else if (code == GIMPLE_COND)
1589 enum tree_code code = gimple_cond_code (stmt);
1590 tree rhs1 = gimple_cond_lhs (stmt);
1591 tree rhs2 = gimple_cond_rhs (stmt);
1592 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1593 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1594 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1596 else if (code == GIMPLE_CALL
1597 && (fndecl = gimple_call_fndecl (stmt))
1598 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1600 switch (DECL_FUNCTION_CODE (fndecl))
1602 case BUILT_IN_MALLOC:
1603 case BUILT_IN_REALLOC:
1604 case BUILT_IN_CALLOC:
1605 case BUILT_IN_STRDUP:
1606 case BUILT_IN_STRNDUP:
1607 val.lattice_val = CONSTANT;
1608 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1609 val.mask = double_int::from_shwi
1610 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1611 / BITS_PER_UNIT - 1));
1612 break;
1614 case BUILT_IN_ALLOCA:
1615 case BUILT_IN_ALLOCA_WITH_ALIGN:
1616 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1618 : BIGGEST_ALIGNMENT);
1619 val.lattice_val = CONSTANT;
1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1621 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
1622 / BITS_PER_UNIT - 1));
1623 break;
1625 /* These builtins return their first argument, unmodified. */
1626 case BUILT_IN_MEMCPY:
1627 case BUILT_IN_MEMMOVE:
1628 case BUILT_IN_MEMSET:
1629 case BUILT_IN_STRCPY:
1630 case BUILT_IN_STRNCPY:
1631 case BUILT_IN_MEMCPY_CHK:
1632 case BUILT_IN_MEMMOVE_CHK:
1633 case BUILT_IN_MEMSET_CHK:
1634 case BUILT_IN_STRCPY_CHK:
1635 case BUILT_IN_STRNCPY_CHK:
1636 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1637 break;
1639 case BUILT_IN_ASSUME_ALIGNED:
1640 val = bit_value_assume_aligned (stmt);
1641 break;
1643 default:;
1646 is_constant = (val.lattice_val == CONSTANT);
1649 if (!is_constant)
1651 /* The statement produced a nonconstant value. If the statement
1652 had UNDEFINED operands, then the result of the statement
1653 should be UNDEFINED. Otherwise, the statement is VARYING. */
1654 if (likelyvalue == UNDEFINED)
1656 val.lattice_val = likelyvalue;
1657 val.mask = double_int_zero;
1659 else
1661 val.lattice_val = VARYING;
1662 val.mask = double_int_minus_one;
1665 val.value = NULL_TREE;
1668 return val;
1671 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1676 static void
1677 insert_clobber_before_stack_restore (tree saved_val, tree var,
1678 gimple_htab *visited)
1680 gimple stmt, clobber_stmt;
1681 tree clobber;
1682 imm_use_iterator iter;
1683 gimple_stmt_iterator i;
1684 gimple *slot;
1686 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1687 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1689 clobber = build_constructor (TREE_TYPE (var),
1690 NULL);
1691 TREE_THIS_VOLATILE (clobber) = 1;
1692 clobber_stmt = gimple_build_assign (var, clobber);
1694 i = gsi_for_stmt (stmt);
1695 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
1697 else if (gimple_code (stmt) == GIMPLE_PHI)
1699 if (!visited->is_created ())
1700 visited->create (10);
1702 slot = visited->find_slot (stmt, INSERT);
1703 if (*slot != NULL)
1704 continue;
1706 *slot = stmt;
1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
1708 visited);
1710 else
1711 gcc_assert (is_gimple_debug (stmt));
1714 /* Advance the iterator to the previous non-debug gimple statement in the same
1715 or dominating basic block. */
1717 static inline void
1718 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
1720 basic_block dom;
1722 gsi_prev_nondebug (i);
1723 while (gsi_end_p (*i))
1725 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
1726 if (dom == NULL || dom == ENTRY_BLOCK_PTR)
1727 return;
1729 *i = gsi_last_bb (dom);
1733 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1734 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1736 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1737 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1738 that case the function gives up without inserting the clobbers. */
1740 static void
1741 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
1743 gimple stmt;
1744 tree saved_val;
1745 gimple_htab visited;
1747 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
1749 stmt = gsi_stmt (i);
1751 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
1752 continue;
1754 saved_val = gimple_call_lhs (stmt);
1755 if (saved_val == NULL_TREE)
1756 continue;
1758 insert_clobber_before_stack_restore (saved_val, var, &visited);
1759 break;
1762 if (visited.is_created ())
1763 visited.dispose ();
1766 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1767 fixed-size array and returns the address, if found, otherwise returns
1768 NULL_TREE. */
1770 static tree
1771 fold_builtin_alloca_with_align (gimple stmt)
1773 unsigned HOST_WIDE_INT size, threshold, n_elem;
1774 tree lhs, arg, block, var, elem_type, array_type;
1776 /* Get lhs. */
1777 lhs = gimple_call_lhs (stmt);
1778 if (lhs == NULL_TREE)
1779 return NULL_TREE;
1781 /* Detect constant argument. */
1782 arg = get_constant_value (gimple_call_arg (stmt, 0));
1783 if (arg == NULL_TREE
1784 || TREE_CODE (arg) != INTEGER_CST
1785 || !host_integerp (arg, 1))
1786 return NULL_TREE;
1788 size = TREE_INT_CST_LOW (arg);
1790 /* Heuristic: don't fold large allocas. */
1791 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
1792 /* In case the alloca is located at function entry, it has the same lifetime
1793 as a declared array, so we allow a larger size. */
1794 block = gimple_block (stmt);
1795 if (!(cfun->after_inlining
1796 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
1797 threshold /= 10;
1798 if (size > threshold)
1799 return NULL_TREE;
1801 /* Declare array. */
1802 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
1803 n_elem = size * 8 / BITS_PER_UNIT;
1804 array_type = build_array_type_nelts (elem_type, n_elem);
1805 var = create_tmp_var (array_type, NULL);
1806 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
1808 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
1809 if (pi != NULL && !pi->pt.anything)
1811 bool singleton_p;
1812 unsigned uid;
1813 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
1814 gcc_assert (singleton_p);
1815 SET_DECL_PT_UID (var, uid);
1819 /* Fold alloca to the address of the array. */
1820 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
1823 /* Fold the stmt at *GSI with CCP specific information that propagating
1824 and regular folding does not catch. */
1826 static bool
1827 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1829 gimple stmt = gsi_stmt (*gsi);
1831 switch (gimple_code (stmt))
1833 case GIMPLE_COND:
1835 prop_value_t val;
1836 /* Statement evaluation will handle type mismatches in constants
1837 more gracefully than the final propagation. This allows us to
1838 fold more conditionals here. */
1839 val = evaluate_stmt (stmt);
1840 if (val.lattice_val != CONSTANT
1841 || !val.mask.is_zero ())
1842 return false;
1844 if (dump_file)
1846 fprintf (dump_file, "Folding predicate ");
1847 print_gimple_expr (dump_file, stmt, 0, 0);
1848 fprintf (dump_file, " to ");
1849 print_generic_expr (dump_file, val.value, 0);
1850 fprintf (dump_file, "\n");
1853 if (integer_zerop (val.value))
1854 gimple_cond_make_false (stmt);
1855 else
1856 gimple_cond_make_true (stmt);
1858 return true;
1861 case GIMPLE_CALL:
1863 tree lhs = gimple_call_lhs (stmt);
1864 int flags = gimple_call_flags (stmt);
1865 tree val;
1866 tree argt;
1867 bool changed = false;
1868 unsigned i;
1870 /* If the call was folded into a constant make sure it goes
1871 away even if we cannot propagate into all uses because of
1872 type issues. */
1873 if (lhs
1874 && TREE_CODE (lhs) == SSA_NAME
1875 && (val = get_constant_value (lhs))
1876 /* Don't optimize away calls that have side-effects. */
1877 && (flags & (ECF_CONST|ECF_PURE)) != 0
1878 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
1880 tree new_rhs = unshare_expr (val);
1881 bool res;
1882 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1883 TREE_TYPE (new_rhs)))
1884 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1885 res = update_call_from_tree (gsi, new_rhs);
1886 gcc_assert (res);
1887 return true;
1890 /* Internal calls provide no argument types, so the extra laxity
1891 for normal calls does not apply. */
1892 if (gimple_call_internal_p (stmt))
1893 return false;
1895 /* The heuristic of fold_builtin_alloca_with_align differs before and
1896 after inlining, so we don't require the arg to be changed into a
1897 constant for folding, but just to be constant. */
1898 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
1900 tree new_rhs = fold_builtin_alloca_with_align (stmt);
1901 if (new_rhs)
1903 bool res = update_call_from_tree (gsi, new_rhs);
1904 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
1905 gcc_assert (res);
1906 insert_clobbers_for_var (*gsi, var);
1907 return true;
1911 /* Propagate into the call arguments. Compared to replace_uses_in
1912 this can use the argument slot types for type verification
1913 instead of the current argument type. We also can safely
1914 drop qualifiers here as we are dealing with constants anyway. */
1915 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
1916 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1917 ++i, argt = TREE_CHAIN (argt))
1919 tree arg = gimple_call_arg (stmt, i);
1920 if (TREE_CODE (arg) == SSA_NAME
1921 && (val = get_constant_value (arg))
1922 && useless_type_conversion_p
1923 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1924 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1926 gimple_call_set_arg (stmt, i, unshare_expr (val));
1927 changed = true;
1931 return changed;
1934 case GIMPLE_ASSIGN:
1936 tree lhs = gimple_assign_lhs (stmt);
1937 tree val;
1939 /* If we have a load that turned out to be constant replace it
1940 as we cannot propagate into all uses in all cases. */
1941 if (gimple_assign_single_p (stmt)
1942 && TREE_CODE (lhs) == SSA_NAME
1943 && (val = get_constant_value (lhs)))
1945 tree rhs = unshare_expr (val);
1946 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1947 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1948 gimple_assign_set_rhs_from_tree (gsi, rhs);
1949 return true;
1952 return false;
1955 default:
1956 return false;
1960 /* Visit the assignment statement STMT. Set the value of its LHS to the
1961 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1962 creates virtual definitions, set the value of each new name to that
1963 of the RHS (if we can derive a constant out of the RHS).
1964 Value-returning call statements also perform an assignment, and
1965 are handled here. */
1967 static enum ssa_prop_result
1968 visit_assignment (gimple stmt, tree *output_p)
1970 prop_value_t val;
1971 enum ssa_prop_result retval;
1973 tree lhs = gimple_get_lhs (stmt);
1975 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1976 || gimple_call_lhs (stmt) != NULL_TREE);
1978 if (gimple_assign_single_p (stmt)
1979 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1980 /* For a simple copy operation, we copy the lattice values. */
1981 val = *get_value (gimple_assign_rhs1 (stmt));
1982 else
1983 /* Evaluate the statement, which could be
1984 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1985 val = evaluate_stmt (stmt);
1987 retval = SSA_PROP_NOT_INTERESTING;
1989 /* Set the lattice value of the statement's output. */
1990 if (TREE_CODE (lhs) == SSA_NAME)
1992 /* If STMT is an assignment to an SSA_NAME, we only have one
1993 value to set. */
1994 if (set_lattice_value (lhs, val))
1996 *output_p = lhs;
1997 if (val.lattice_val == VARYING)
1998 retval = SSA_PROP_VARYING;
1999 else
2000 retval = SSA_PROP_INTERESTING;
2004 return retval;
2008 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2009 if it can determine which edge will be taken. Otherwise, return
2010 SSA_PROP_VARYING. */
2012 static enum ssa_prop_result
2013 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
2015 prop_value_t val;
2016 basic_block block;
2018 block = gimple_bb (stmt);
2019 val = evaluate_stmt (stmt);
2020 if (val.lattice_val != CONSTANT
2021 || !val.mask.is_zero ())
2022 return SSA_PROP_VARYING;
2024 /* Find which edge out of the conditional block will be taken and add it
2025 to the worklist. If no single edge can be determined statically,
2026 return SSA_PROP_VARYING to feed all the outgoing edges to the
2027 propagation engine. */
2028 *taken_edge_p = find_taken_edge (block, val.value);
2029 if (*taken_edge_p)
2030 return SSA_PROP_INTERESTING;
2031 else
2032 return SSA_PROP_VARYING;
2036 /* Evaluate statement STMT. If the statement produces an output value and
2037 its evaluation changes the lattice value of its output, return
2038 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2039 output value.
2041 If STMT is a conditional branch and we can determine its truth
2042 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2043 value, return SSA_PROP_VARYING. */
2045 static enum ssa_prop_result
2046 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
2048 tree def;
2049 ssa_op_iter iter;
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2053 fprintf (dump_file, "\nVisiting statement:\n");
2054 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2057 switch (gimple_code (stmt))
2059 case GIMPLE_ASSIGN:
2060 /* If the statement is an assignment that produces a single
2061 output value, evaluate its RHS to see if the lattice value of
2062 its output has changed. */
2063 return visit_assignment (stmt, output_p);
2065 case GIMPLE_CALL:
2066 /* A value-returning call also performs an assignment. */
2067 if (gimple_call_lhs (stmt) != NULL_TREE)
2068 return visit_assignment (stmt, output_p);
2069 break;
2071 case GIMPLE_COND:
2072 case GIMPLE_SWITCH:
2073 /* If STMT is a conditional branch, see if we can determine
2074 which branch will be taken. */
2075 /* FIXME. It appears that we should be able to optimize
2076 computed GOTOs here as well. */
2077 return visit_cond_stmt (stmt, taken_edge_p);
2079 default:
2080 break;
2083 /* Any other kind of statement is not interesting for constant
2084 propagation and, therefore, not worth simulating. */
2085 if (dump_file && (dump_flags & TDF_DETAILS))
2086 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2088 /* Definitions made by statements other than assignments to
2089 SSA_NAMEs represent unknown modifications to their outputs.
2090 Mark them VARYING. */
2091 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2093 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
2094 set_lattice_value (def, v);
2097 return SSA_PROP_VARYING;
2101 /* Main entry point for SSA Conditional Constant Propagation. */
2103 static unsigned int
2104 do_ssa_ccp (void)
2106 unsigned int todo = 0;
2107 calculate_dominance_info (CDI_DOMINATORS);
2108 ccp_initialize ();
2109 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2110 if (ccp_finalize ())
2111 todo = (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
2112 free_dominance_info (CDI_DOMINATORS);
2113 return todo;
2117 static bool
2118 gate_ccp (void)
2120 return flag_tree_ccp != 0;
2124 struct gimple_opt_pass pass_ccp =
2127 GIMPLE_PASS,
2128 "ccp", /* name */
2129 OPTGROUP_NONE, /* optinfo_flags */
2130 gate_ccp, /* gate */
2131 do_ssa_ccp, /* execute */
2132 NULL, /* sub */
2133 NULL, /* next */
2134 0, /* static_pass_number */
2135 TV_TREE_CCP, /* tv_id */
2136 PROP_cfg | PROP_ssa, /* properties_required */
2137 0, /* properties_provided */
2138 0, /* properties_destroyed */
2139 0, /* todo_flags_start */
2140 TODO_verify_ssa
2141 | TODO_update_address_taken
2142 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
2148 /* Try to optimize out __builtin_stack_restore. Optimize it out
2149 if there is another __builtin_stack_restore in the same basic
2150 block and no calls or ASM_EXPRs are in between, or if this block's
2151 only outgoing edge is to EXIT_BLOCK and there are no calls or
2152 ASM_EXPRs after this __builtin_stack_restore. */
2154 static tree
2155 optimize_stack_restore (gimple_stmt_iterator i)
2157 tree callee;
2158 gimple stmt;
2160 basic_block bb = gsi_bb (i);
2161 gimple call = gsi_stmt (i);
2163 if (gimple_code (call) != GIMPLE_CALL
2164 || gimple_call_num_args (call) != 1
2165 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2166 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2167 return NULL_TREE;
2169 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2171 stmt = gsi_stmt (i);
2172 if (gimple_code (stmt) == GIMPLE_ASM)
2173 return NULL_TREE;
2174 if (gimple_code (stmt) != GIMPLE_CALL)
2175 continue;
2177 callee = gimple_call_fndecl (stmt);
2178 if (!callee
2179 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2180 /* All regular builtins are ok, just obviously not alloca. */
2181 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2182 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2183 return NULL_TREE;
2185 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2186 goto second_stack_restore;
2189 if (!gsi_end_p (i))
2190 return NULL_TREE;
2192 /* Allow one successor of the exit block, or zero successors. */
2193 switch (EDGE_COUNT (bb->succs))
2195 case 0:
2196 break;
2197 case 1:
2198 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2199 return NULL_TREE;
2200 break;
2201 default:
2202 return NULL_TREE;
2204 second_stack_restore:
2206 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2207 If there are multiple uses, then the last one should remove the call.
2208 In any case, whether the call to __builtin_stack_save can be removed
2209 or not is irrelevant to removing the call to __builtin_stack_restore. */
2210 if (has_single_use (gimple_call_arg (call, 0)))
2212 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2213 if (is_gimple_call (stack_save))
2215 callee = gimple_call_fndecl (stack_save);
2216 if (callee
2217 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2218 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2220 gimple_stmt_iterator stack_save_gsi;
2221 tree rhs;
2223 stack_save_gsi = gsi_for_stmt (stack_save);
2224 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2225 update_call_from_tree (&stack_save_gsi, rhs);
2230 /* No effect, so the statement will be deleted. */
2231 return integer_zero_node;
2234 /* If va_list type is a simple pointer and nothing special is needed,
2235 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2236 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2237 pointer assignment. */
2239 static tree
2240 optimize_stdarg_builtin (gimple call)
2242 tree callee, lhs, rhs, cfun_va_list;
2243 bool va_list_simple_ptr;
2244 location_t loc = gimple_location (call);
2246 if (gimple_code (call) != GIMPLE_CALL)
2247 return NULL_TREE;
2249 callee = gimple_call_fndecl (call);
2251 cfun_va_list = targetm.fn_abi_va_list (callee);
2252 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2253 && (TREE_TYPE (cfun_va_list) == void_type_node
2254 || TREE_TYPE (cfun_va_list) == char_type_node);
2256 switch (DECL_FUNCTION_CODE (callee))
2258 case BUILT_IN_VA_START:
2259 if (!va_list_simple_ptr
2260 || targetm.expand_builtin_va_start != NULL
2261 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2262 return NULL_TREE;
2264 if (gimple_call_num_args (call) != 2)
2265 return NULL_TREE;
2267 lhs = gimple_call_arg (call, 0);
2268 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2269 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2270 != TYPE_MAIN_VARIANT (cfun_va_list))
2271 return NULL_TREE;
2273 lhs = build_fold_indirect_ref_loc (loc, lhs);
2274 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2275 1, integer_zero_node);
2276 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2277 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2279 case BUILT_IN_VA_COPY:
2280 if (!va_list_simple_ptr)
2281 return NULL_TREE;
2283 if (gimple_call_num_args (call) != 2)
2284 return NULL_TREE;
2286 lhs = gimple_call_arg (call, 0);
2287 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2288 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2289 != TYPE_MAIN_VARIANT (cfun_va_list))
2290 return NULL_TREE;
2292 lhs = build_fold_indirect_ref_loc (loc, lhs);
2293 rhs = gimple_call_arg (call, 1);
2294 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2295 != TYPE_MAIN_VARIANT (cfun_va_list))
2296 return NULL_TREE;
2298 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2299 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2301 case BUILT_IN_VA_END:
2302 /* No effect, so the statement will be deleted. */
2303 return integer_zero_node;
2305 default:
2306 gcc_unreachable ();
2310 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2311 the incoming jumps. Return true if at least one jump was changed. */
2313 static bool
2314 optimize_unreachable (gimple_stmt_iterator i)
2316 basic_block bb = gsi_bb (i);
2317 gimple_stmt_iterator gsi;
2318 gimple stmt;
2319 edge_iterator ei;
2320 edge e;
2321 bool ret;
2323 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2325 stmt = gsi_stmt (gsi);
2327 if (is_gimple_debug (stmt))
2328 continue;
2330 if (gimple_code (stmt) == GIMPLE_LABEL)
2332 /* Verify we do not need to preserve the label. */
2333 if (FORCED_LABEL (gimple_label_label (stmt)))
2334 return false;
2336 continue;
2339 /* Only handle the case that __builtin_unreachable is the first statement
2340 in the block. We rely on DCE to remove stmts without side-effects
2341 before __builtin_unreachable. */
2342 if (gsi_stmt (gsi) != gsi_stmt (i))
2343 return false;
2346 ret = false;
2347 FOR_EACH_EDGE (e, ei, bb->preds)
2349 gsi = gsi_last_bb (e->src);
2350 if (gsi_end_p (gsi))
2351 continue;
2353 stmt = gsi_stmt (gsi);
2354 if (gimple_code (stmt) == GIMPLE_COND)
2356 if (e->flags & EDGE_TRUE_VALUE)
2357 gimple_cond_make_false (stmt);
2358 else if (e->flags & EDGE_FALSE_VALUE)
2359 gimple_cond_make_true (stmt);
2360 else
2361 gcc_unreachable ();
2362 update_stmt (stmt);
2364 else
2366 /* Todo: handle other cases, f.i. switch statement. */
2367 continue;
2370 ret = true;
2373 return ret;
2376 /* A simple pass that attempts to fold all builtin functions. This pass
2377 is run after we've propagated as many constants as we can. */
2379 static unsigned int
2380 execute_fold_all_builtins (void)
2382 bool cfg_changed = false;
2383 basic_block bb;
2384 unsigned int todoflags = 0;
2386 FOR_EACH_BB (bb)
2388 gimple_stmt_iterator i;
2389 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2391 gimple stmt, old_stmt;
2392 tree callee, result;
2393 enum built_in_function fcode;
2395 stmt = gsi_stmt (i);
2397 if (gimple_code (stmt) != GIMPLE_CALL)
2399 gsi_next (&i);
2400 continue;
2402 callee = gimple_call_fndecl (stmt);
2403 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2405 gsi_next (&i);
2406 continue;
2408 fcode = DECL_FUNCTION_CODE (callee);
2410 result = gimple_fold_builtin (stmt);
2412 if (result)
2413 gimple_remove_stmt_histograms (cfun, stmt);
2415 if (!result)
2416 switch (DECL_FUNCTION_CODE (callee))
2418 case BUILT_IN_CONSTANT_P:
2419 /* Resolve __builtin_constant_p. If it hasn't been
2420 folded to integer_one_node by now, it's fairly
2421 certain that the value simply isn't constant. */
2422 result = integer_zero_node;
2423 break;
2425 case BUILT_IN_ASSUME_ALIGNED:
2426 /* Remove __builtin_assume_aligned. */
2427 result = gimple_call_arg (stmt, 0);
2428 break;
2430 case BUILT_IN_STACK_RESTORE:
2431 result = optimize_stack_restore (i);
2432 if (result)
2433 break;
2434 gsi_next (&i);
2435 continue;
2437 case BUILT_IN_UNREACHABLE:
2438 if (optimize_unreachable (i))
2439 cfg_changed = true;
2440 break;
2442 case BUILT_IN_VA_START:
2443 case BUILT_IN_VA_END:
2444 case BUILT_IN_VA_COPY:
2445 /* These shouldn't be folded before pass_stdarg. */
2446 result = optimize_stdarg_builtin (stmt);
2447 if (result)
2448 break;
2449 /* FALLTHRU */
2451 default:
2452 gsi_next (&i);
2453 continue;
2456 if (result == NULL_TREE)
2457 break;
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2461 fprintf (dump_file, "Simplified\n ");
2462 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2465 old_stmt = stmt;
2466 if (!update_call_from_tree (&i, result))
2468 gimplify_and_update_call_from_tree (&i, result);
2469 todoflags |= TODO_update_address_taken;
2472 stmt = gsi_stmt (i);
2473 update_stmt (stmt);
2475 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2476 && gimple_purge_dead_eh_edges (bb))
2477 cfg_changed = true;
2479 if (dump_file && (dump_flags & TDF_DETAILS))
2481 fprintf (dump_file, "to\n ");
2482 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2483 fprintf (dump_file, "\n");
2486 /* Retry the same statement if it changed into another
2487 builtin, there might be new opportunities now. */
2488 if (gimple_code (stmt) != GIMPLE_CALL)
2490 gsi_next (&i);
2491 continue;
2493 callee = gimple_call_fndecl (stmt);
2494 if (!callee
2495 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2496 || DECL_FUNCTION_CODE (callee) == fcode)
2497 gsi_next (&i);
2501 /* Delete unreachable blocks. */
2502 if (cfg_changed)
2503 todoflags |= TODO_cleanup_cfg;
2505 return todoflags;
2509 struct gimple_opt_pass pass_fold_builtins =
2512 GIMPLE_PASS,
2513 "fab", /* name */
2514 OPTGROUP_NONE, /* optinfo_flags */
2515 NULL, /* gate */
2516 execute_fold_all_builtins, /* execute */
2517 NULL, /* sub */
2518 NULL, /* next */
2519 0, /* static_pass_number */
2520 TV_NONE, /* tv_id */
2521 PROP_cfg | PROP_ssa, /* properties_required */
2522 0, /* properties_provided */
2523 0, /* properties_destroyed */
2524 0, /* todo_flags_start */
2525 TODO_verify_ssa
2526 | TODO_update_ssa /* todo_flags_finish */