1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
30 #include "insn-config.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41 #include "addresses.h"
43 /* Forward declarations */
44 static void set_of_1 (rtx
, const_rtx
, void *);
45 static bool covers_regno_p (const_rtx
, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
47 static int rtx_referenced_p_1 (rtx
*, void *);
48 static int computed_jump_p_1 (const_rtx
);
49 static void parms_set (rtx
, const_rtx
, void *);
51 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
52 const_rtx
, enum machine_mode
,
53 unsigned HOST_WIDE_INT
);
54 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
55 const_rtx
, enum machine_mode
,
56 unsigned HOST_WIDE_INT
);
57 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
60 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
61 enum machine_mode
, unsigned int);
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
67 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
68 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
69 SIGN_EXTEND then while narrowing we also have to enforce the
70 representation and sign-extend the value to mode DESTINATION_REP.
72 If the value is already sign-extended to DESTINATION_REP mode we
73 can just switch to DESTINATION mode on it. For each pair of
74 integral modes SOURCE and DESTINATION, when truncating from SOURCE
75 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
76 contains the number of high-order bits in SOURCE that have to be
77 copies of the sign-bit so that we can do this mode-switch to
81 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
83 /* Return 1 if the value of X is unstable
84 (would be different at a different point in the program).
85 The frame pointer, arg pointer, etc. are considered stable
86 (within one function) and so is anything marked `unchanging'. */
89 rtx_unstable_p (const_rtx x
)
91 const RTX_CODE code
= GET_CODE (x
);
98 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
107 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
108 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
109 /* The arg pointer varies if it is not a fixed register. */
110 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
112 /* ??? When call-clobbered, the value is stable modulo the restore
113 that must happen after a call. This currently screws up local-alloc
114 into believing that the restore is not needed. */
115 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
120 if (MEM_VOLATILE_P (x
))
129 fmt
= GET_RTX_FORMAT (code
);
130 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
133 if (rtx_unstable_p (XEXP (x
, i
)))
136 else if (fmt
[i
] == 'E')
139 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
140 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
147 /* Return 1 if X has a value that can vary even between two
148 executions of the program. 0 means X can be compared reliably
149 against certain constants or near-constants.
150 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
151 zero, we are slightly more conservative.
152 The frame pointer and the arg pointer are considered constant. */
155 rtx_varies_p (const_rtx x
, bool for_alias
)
168 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
177 /* Note that we have to test for the actual rtx used for the frame
178 and arg pointers and not just the register number in case we have
179 eliminated the frame and/or arg pointer and are using it
181 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
182 /* The arg pointer varies if it is not a fixed register. */
183 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
185 if (x
== pic_offset_table_rtx
186 /* ??? When call-clobbered, the value is stable modulo the restore
187 that must happen after a call. This currently screws up
188 local-alloc into believing that the restore is not needed, so we
189 must return 0 only if we are called from alias analysis. */
190 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
195 /* The operand 0 of a LO_SUM is considered constant
196 (in fact it is related specifically to operand 1)
197 during alias analysis. */
198 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
199 || rtx_varies_p (XEXP (x
, 1), for_alias
);
202 if (MEM_VOLATILE_P (x
))
211 fmt
= GET_RTX_FORMAT (code
);
212 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
215 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
218 else if (fmt
[i
] == 'E')
221 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
222 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
229 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
230 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
231 whether nonzero is returned for unaligned memory accesses on strict
232 alignment machines. */
235 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
236 enum machine_mode mode
, bool unaligned_mems
)
238 enum rtx_code code
= GET_CODE (x
);
242 && GET_MODE_SIZE (mode
) != 0)
244 HOST_WIDE_INT actual_offset
= offset
;
245 #ifdef SPARC_STACK_BOUNDARY_HACK
246 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
247 the real alignment of %sp. However, when it does this, the
248 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
249 if (SPARC_STACK_BOUNDARY_HACK
250 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
251 actual_offset
-= STACK_POINTER_OFFSET
;
254 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
261 if (SYMBOL_REF_WEAK (x
))
263 if (!CONSTANT_POOL_ADDRESS_P (x
))
266 HOST_WIDE_INT decl_size
;
271 size
= GET_MODE_SIZE (mode
);
275 /* If the size of the access or of the symbol is unknown,
277 decl
= SYMBOL_REF_DECL (x
);
279 /* Else check that the access is in bounds. TODO: restructure
280 expr_size/tree_expr_size/int_expr_size and just use the latter. */
283 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
284 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
285 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
287 else if (TREE_CODE (decl
) == STRING_CST
)
288 decl_size
= TREE_STRING_LENGTH (decl
);
289 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
290 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
294 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
303 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
304 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
305 || x
== stack_pointer_rtx
306 /* The arg pointer varies if it is not a fixed register. */
307 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
309 /* All of the virtual frame registers are stack references. */
310 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
311 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
316 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
317 mode
, unaligned_mems
);
320 /* An address is assumed not to trap if:
321 - it is the pic register plus a constant. */
322 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
325 /* - or it is an address that can't trap plus a constant integer,
326 with the proper remainder modulo the mode size if we are
327 considering unaligned memory references. */
328 if (CONST_INT_P (XEXP (x
, 1))
329 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
330 size
, mode
, unaligned_mems
))
337 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
338 mode
, unaligned_mems
);
345 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
346 mode
, unaligned_mems
);
352 /* If it isn't one of the case above, it can cause a trap. */
356 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
359 rtx_addr_can_trap_p (const_rtx x
)
361 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
364 /* Return true if X is an address that is known to not be zero. */
367 nonzero_address_p (const_rtx x
)
369 const enum rtx_code code
= GET_CODE (x
);
374 return !SYMBOL_REF_WEAK (x
);
380 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
381 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
382 || x
== stack_pointer_rtx
383 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
385 /* All of the virtual frame registers are stack references. */
386 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
387 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
392 return nonzero_address_p (XEXP (x
, 0));
395 /* Handle PIC references. */
396 if (XEXP (x
, 0) == pic_offset_table_rtx
397 && CONSTANT_P (XEXP (x
, 1)))
402 /* Similar to the above; allow positive offsets. Further, since
403 auto-inc is only allowed in memories, the register must be a
405 if (CONST_INT_P (XEXP (x
, 1))
406 && INTVAL (XEXP (x
, 1)) > 0)
408 return nonzero_address_p (XEXP (x
, 0));
411 /* Similarly. Further, the offset is always positive. */
418 return nonzero_address_p (XEXP (x
, 0));
421 return nonzero_address_p (XEXP (x
, 1));
427 /* If it isn't one of the case above, might be zero. */
431 /* Return 1 if X refers to a memory location whose address
432 cannot be compared reliably with constant addresses,
433 or if X refers to a BLKmode memory object.
434 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
435 zero, we are slightly more conservative. */
438 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
449 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
451 fmt
= GET_RTX_FORMAT (code
);
452 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
455 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
458 else if (fmt
[i
] == 'E')
461 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
462 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
468 /* Return the CALL in X if there is one. */
471 get_call_rtx_from (rtx x
)
475 if (GET_CODE (x
) == PARALLEL
)
476 x
= XVECEXP (x
, 0, 0);
477 if (GET_CODE (x
) == SET
)
479 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
484 /* Return the value of the integer term in X, if one is apparent;
486 Only obvious integer terms are detected.
487 This is used in cse.c with the `related_value' field. */
490 get_integer_term (const_rtx x
)
492 if (GET_CODE (x
) == CONST
)
495 if (GET_CODE (x
) == MINUS
496 && CONST_INT_P (XEXP (x
, 1)))
497 return - INTVAL (XEXP (x
, 1));
498 if (GET_CODE (x
) == PLUS
499 && CONST_INT_P (XEXP (x
, 1)))
500 return INTVAL (XEXP (x
, 1));
504 /* If X is a constant, return the value sans apparent integer term;
506 Only obvious integer terms are detected. */
509 get_related_value (const_rtx x
)
511 if (GET_CODE (x
) != CONST
)
514 if (GET_CODE (x
) == PLUS
515 && CONST_INT_P (XEXP (x
, 1)))
517 else if (GET_CODE (x
) == MINUS
518 && CONST_INT_P (XEXP (x
, 1)))
523 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
524 to somewhere in the same object or object_block as SYMBOL. */
527 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
531 if (GET_CODE (symbol
) != SYMBOL_REF
)
539 if (CONSTANT_POOL_ADDRESS_P (symbol
)
540 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
543 decl
= SYMBOL_REF_DECL (symbol
);
544 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
548 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
549 && SYMBOL_REF_BLOCK (symbol
)
550 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
551 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
552 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
558 /* Split X into a base and a constant offset, storing them in *BASE_OUT
559 and *OFFSET_OUT respectively. */
562 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
564 if (GET_CODE (x
) == CONST
)
567 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
569 *base_out
= XEXP (x
, 0);
570 *offset_out
= XEXP (x
, 1);
575 *offset_out
= const0_rtx
;
578 /* Return the number of places FIND appears within X. If COUNT_DEST is
579 zero, we do not count occurrences inside the destination of a SET. */
582 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
586 const char *format_ptr
;
605 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
607 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
611 if (MEM_P (find
) && rtx_equal_p (x
, find
))
616 if (SET_DEST (x
) == find
&& ! count_dest
)
617 return count_occurrences (SET_SRC (x
), find
, count_dest
);
624 format_ptr
= GET_RTX_FORMAT (code
);
627 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
629 switch (*format_ptr
++)
632 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
636 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
637 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
645 /* Return TRUE if OP is a register or subreg of a register that
646 holds an unsigned quantity. Otherwise, return FALSE. */
649 unsigned_reg_p (rtx op
)
653 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
656 if (GET_CODE (op
) == SUBREG
657 && SUBREG_PROMOTED_UNSIGNED_P (op
))
664 /* Nonzero if register REG appears somewhere within IN.
665 Also works if REG is not a register; in this case it checks
666 for a subexpression of IN that is Lisp "equal" to REG. */
669 reg_mentioned_p (const_rtx reg
, const_rtx in
)
681 if (GET_CODE (in
) == LABEL_REF
)
682 return reg
== XEXP (in
, 0);
684 code
= GET_CODE (in
);
688 /* Compare registers by number. */
690 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
692 /* These codes have no constituent expressions
700 /* These are kept unique for a given value. */
707 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
710 fmt
= GET_RTX_FORMAT (code
);
712 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
717 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
718 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
721 else if (fmt
[i
] == 'e'
722 && reg_mentioned_p (reg
, XEXP (in
, i
)))
728 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
729 no CODE_LABEL insn. */
732 no_labels_between_p (const_rtx beg
, const_rtx end
)
737 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
743 /* Nonzero if register REG is used in an insn between
744 FROM_INSN and TO_INSN (exclusive of those two). */
747 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
751 if (from_insn
== to_insn
)
754 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
755 if (NONDEBUG_INSN_P (insn
)
756 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
757 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
762 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
763 is entirely replaced by a new value and the only use is as a SET_DEST,
764 we do not consider it a reference. */
767 reg_referenced_p (const_rtx x
, const_rtx body
)
771 switch (GET_CODE (body
))
774 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
777 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
778 of a REG that occupies all of the REG, the insn references X if
779 it is mentioned in the destination. */
780 if (GET_CODE (SET_DEST (body
)) != CC0
781 && GET_CODE (SET_DEST (body
)) != PC
782 && !REG_P (SET_DEST (body
))
783 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
784 && REG_P (SUBREG_REG (SET_DEST (body
)))
785 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
786 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
787 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
788 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
789 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
794 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
795 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
802 return reg_overlap_mentioned_p (x
, body
);
805 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
808 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
811 case UNSPEC_VOLATILE
:
812 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
813 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
818 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
819 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
824 if (MEM_P (XEXP (body
, 0)))
825 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
830 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
832 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
839 /* Nonzero if register REG is set or clobbered in an insn between
840 FROM_INSN and TO_INSN (exclusive of those two). */
843 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
847 if (from_insn
== to_insn
)
850 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
851 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
856 /* Internals of reg_set_between_p. */
858 reg_set_p (const_rtx reg
, const_rtx insn
)
860 /* We can be passed an insn or part of one. If we are passed an insn,
861 check if a side-effect of the insn clobbers REG. */
863 && (FIND_REG_INC_NOTE (insn
, reg
)
866 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
867 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
868 GET_MODE (reg
), REGNO (reg
)))
870 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
873 return set_of (reg
, insn
) != NULL_RTX
;
876 /* Similar to reg_set_between_p, but check all registers in X. Return 0
877 only if none of them are modified between START and END. Return 1 if
878 X contains a MEM; this routine does use memory aliasing. */
881 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
883 const enum rtx_code code
= GET_CODE (x
);
904 if (modified_between_p (XEXP (x
, 0), start
, end
))
906 if (MEM_READONLY_P (x
))
908 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
909 if (memory_modified_in_insn_p (x
, insn
))
915 return reg_set_between_p (x
, start
, end
);
921 fmt
= GET_RTX_FORMAT (code
);
922 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
924 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
927 else if (fmt
[i
] == 'E')
928 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
929 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
936 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
937 of them are modified in INSN. Return 1 if X contains a MEM; this routine
938 does use memory aliasing. */
941 modified_in_p (const_rtx x
, const_rtx insn
)
943 const enum rtx_code code
= GET_CODE (x
);
960 if (modified_in_p (XEXP (x
, 0), insn
))
962 if (MEM_READONLY_P (x
))
964 if (memory_modified_in_insn_p (x
, insn
))
970 return reg_set_p (x
, insn
);
976 fmt
= GET_RTX_FORMAT (code
);
977 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
979 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
982 else if (fmt
[i
] == 'E')
983 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
984 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
991 /* Helper function for set_of. */
999 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
1001 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1002 if (rtx_equal_p (x
, data
->pat
)
1003 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1007 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1008 (either directly or via STRICT_LOW_PART and similar modifiers). */
1010 set_of (const_rtx pat
, const_rtx insn
)
1012 struct set_of_data data
;
1013 data
.found
= NULL_RTX
;
1015 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1019 /* This function, called through note_stores, collects sets and
1020 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1023 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1025 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1026 if (REG_P (x
) && HARD_REGISTER_P (x
))
1027 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1030 /* Examine INSN, and compute the set of hard registers written by it.
1031 Store it in *PSET. Should only be called after reload. */
1033 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
)
1037 CLEAR_HARD_REG_SET (*pset
);
1038 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1040 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1041 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1042 if (REG_NOTE_KIND (link
) == REG_INC
)
1043 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1046 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1048 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1051 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1053 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1055 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1057 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1062 /* Like record_hard_reg_sets, but called through note_uses. */
1064 record_hard_reg_uses (rtx
*px
, void *data
)
1066 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1069 /* Given an INSN, return a SET expression if this insn has only a single SET.
1070 It may also have CLOBBERs, USEs, or SET whose output
1071 will not be used, which we ignore. */
1074 single_set_2 (const_rtx insn
, const_rtx pat
)
1077 int set_verified
= 1;
1080 if (GET_CODE (pat
) == PARALLEL
)
1082 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1084 rtx sub
= XVECEXP (pat
, 0, i
);
1085 switch (GET_CODE (sub
))
1092 /* We can consider insns having multiple sets, where all
1093 but one are dead as single set insns. In common case
1094 only single set is present in the pattern so we want
1095 to avoid checking for REG_UNUSED notes unless necessary.
1097 When we reach set first time, we just expect this is
1098 the single set we are looking for and only when more
1099 sets are found in the insn, we check them. */
1102 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1103 && !side_effects_p (set
))
1109 set
= sub
, set_verified
= 0;
1110 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1111 || side_effects_p (sub
))
1123 /* Given an INSN, return nonzero if it has more than one SET, else return
1127 multiple_sets (const_rtx insn
)
1132 /* INSN must be an insn. */
1133 if (! INSN_P (insn
))
1136 /* Only a PARALLEL can have multiple SETs. */
1137 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1139 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1140 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1142 /* If we have already found a SET, then return now. */
1150 /* Either zero or one SET. */
1154 /* Return nonzero if the destination of SET equals the source
1155 and there are no side effects. */
1158 set_noop_p (const_rtx set
)
1160 rtx src
= SET_SRC (set
);
1161 rtx dst
= SET_DEST (set
);
1163 if (dst
== pc_rtx
&& src
== pc_rtx
)
1166 if (MEM_P (dst
) && MEM_P (src
))
1167 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1169 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1170 return rtx_equal_p (XEXP (dst
, 0), src
)
1171 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1172 && !side_effects_p (src
);
1174 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1175 dst
= XEXP (dst
, 0);
1177 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1179 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1181 src
= SUBREG_REG (src
);
1182 dst
= SUBREG_REG (dst
);
1185 return (REG_P (src
) && REG_P (dst
)
1186 && REGNO (src
) == REGNO (dst
));
1189 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1193 noop_move_p (const_rtx insn
)
1195 rtx pat
= PATTERN (insn
);
1197 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1200 /* Insns carrying these notes are useful later on. */
1201 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1204 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1207 if (GET_CODE (pat
) == PARALLEL
)
1210 /* If nothing but SETs of registers to themselves,
1211 this insn can also be deleted. */
1212 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1214 rtx tem
= XVECEXP (pat
, 0, i
);
1216 if (GET_CODE (tem
) == USE
1217 || GET_CODE (tem
) == CLOBBER
)
1220 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1230 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1231 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1232 If the object was modified, if we hit a partial assignment to X, or hit a
1233 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1234 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1238 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1242 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1246 rtx set
= single_set (p
);
1247 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1249 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1251 rtx src
= SET_SRC (set
);
1253 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1254 src
= XEXP (note
, 0);
1256 if ((valid_to
== NULL_RTX
1257 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1258 /* Reject hard registers because we don't usually want
1259 to use them; we'd rather use a pseudo. */
1261 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1268 /* If set in non-simple way, we don't have a value. */
1269 if (reg_set_p (x
, p
))
1276 /* Return nonzero if register in range [REGNO, ENDREGNO)
1277 appears either explicitly or implicitly in X
1278 other than being stored into.
1280 References contained within the substructure at LOC do not count.
1281 LOC may be zero, meaning don't ignore anything. */
1284 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1288 unsigned int x_regno
;
1293 /* The contents of a REG_NONNEG note is always zero, so we must come here
1294 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1298 code
= GET_CODE (x
);
1303 x_regno
= REGNO (x
);
1305 /* If we modifying the stack, frame, or argument pointer, it will
1306 clobber a virtual register. In fact, we could be more precise,
1307 but it isn't worth it. */
1308 if ((x_regno
== STACK_POINTER_REGNUM
1309 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1310 || x_regno
== ARG_POINTER_REGNUM
1312 || x_regno
== FRAME_POINTER_REGNUM
)
1313 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1316 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1319 /* If this is a SUBREG of a hard reg, we can see exactly which
1320 registers are being modified. Otherwise, handle normally. */
1321 if (REG_P (SUBREG_REG (x
))
1322 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1324 unsigned int inner_regno
= subreg_regno (x
);
1325 unsigned int inner_endregno
1326 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1327 ? subreg_nregs (x
) : 1);
1329 return endregno
> inner_regno
&& regno
< inner_endregno
;
1335 if (&SET_DEST (x
) != loc
1336 /* Note setting a SUBREG counts as referring to the REG it is in for
1337 a pseudo but not for hard registers since we can
1338 treat each word individually. */
1339 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1340 && loc
!= &SUBREG_REG (SET_DEST (x
))
1341 && REG_P (SUBREG_REG (SET_DEST (x
)))
1342 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1343 && refers_to_regno_p (regno
, endregno
,
1344 SUBREG_REG (SET_DEST (x
)), loc
))
1345 || (!REG_P (SET_DEST (x
))
1346 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1349 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1358 /* X does not match, so try its subexpressions. */
1360 fmt
= GET_RTX_FORMAT (code
);
1361 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1363 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1371 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1374 else if (fmt
[i
] == 'E')
1377 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1378 if (loc
!= &XVECEXP (x
, i
, j
)
1379 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1386 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1387 we check if any register number in X conflicts with the relevant register
1388 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1389 contains a MEM (we don't bother checking for memory addresses that can't
1390 conflict because we expect this to be a rare case. */
1393 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1395 unsigned int regno
, endregno
;
1397 /* If either argument is a constant, then modifying X can not
1398 affect IN. Here we look at IN, we can profitably combine
1399 CONSTANT_P (x) with the switch statement below. */
1400 if (CONSTANT_P (in
))
1404 switch (GET_CODE (x
))
1406 case STRICT_LOW_PART
:
1409 /* Overly conservative. */
1414 regno
= REGNO (SUBREG_REG (x
));
1415 if (regno
< FIRST_PSEUDO_REGISTER
)
1416 regno
= subreg_regno (x
);
1417 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1418 ? subreg_nregs (x
) : 1);
1423 endregno
= END_REGNO (x
);
1425 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1435 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1436 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1439 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1442 else if (fmt
[i
] == 'E')
1445 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1446 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1456 return reg_mentioned_p (x
, in
);
1462 /* If any register in here refers to it we return true. */
1463 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1464 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1465 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1471 gcc_assert (CONSTANT_P (x
));
1476 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1477 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1478 ignored by note_stores, but passed to FUN.
1480 FUN receives three arguments:
1481 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1482 2. the SET or CLOBBER rtx that does the store,
1483 3. the pointer DATA provided to note_stores.
1485 If the item being stored in or clobbered is a SUBREG of a hard register,
1486 the SUBREG will be passed. */
1489 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1493 if (GET_CODE (x
) == COND_EXEC
)
1494 x
= COND_EXEC_CODE (x
);
1496 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1498 rtx dest
= SET_DEST (x
);
1500 while ((GET_CODE (dest
) == SUBREG
1501 && (!REG_P (SUBREG_REG (dest
))
1502 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1503 || GET_CODE (dest
) == ZERO_EXTRACT
1504 || GET_CODE (dest
) == STRICT_LOW_PART
)
1505 dest
= XEXP (dest
, 0);
1507 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1508 each of whose first operand is a register. */
1509 if (GET_CODE (dest
) == PARALLEL
)
1511 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1512 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1513 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1516 (*fun
) (dest
, x
, data
);
1519 else if (GET_CODE (x
) == PARALLEL
)
1520 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1521 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1524 /* Like notes_stores, but call FUN for each expression that is being
1525 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1526 FUN for each expression, not any interior subexpressions. FUN receives a
1527 pointer to the expression and the DATA passed to this function.
1529 Note that this is not quite the same test as that done in reg_referenced_p
1530 since that considers something as being referenced if it is being
1531 partially set, while we do not. */
1534 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1539 switch (GET_CODE (body
))
1542 (*fun
) (&COND_EXEC_TEST (body
), data
);
1543 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1547 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1548 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1552 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1553 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1557 (*fun
) (&XEXP (body
, 0), data
);
1561 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1562 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1566 (*fun
) (&TRAP_CONDITION (body
), data
);
1570 (*fun
) (&XEXP (body
, 0), data
);
1574 case UNSPEC_VOLATILE
:
1575 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1576 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1580 if (MEM_P (XEXP (body
, 0)))
1581 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1586 rtx dest
= SET_DEST (body
);
1588 /* For sets we replace everything in source plus registers in memory
1589 expression in store and operands of a ZERO_EXTRACT. */
1590 (*fun
) (&SET_SRC (body
), data
);
1592 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1594 (*fun
) (&XEXP (dest
, 1), data
);
1595 (*fun
) (&XEXP (dest
, 2), data
);
1598 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1599 dest
= XEXP (dest
, 0);
1602 (*fun
) (&XEXP (dest
, 0), data
);
1607 /* All the other possibilities never store. */
1608 (*fun
) (pbody
, data
);
1613 /* Return nonzero if X's old contents don't survive after INSN.
1614 This will be true if X is (cc0) or if X is a register and
1615 X dies in INSN or because INSN entirely sets X.
1617 "Entirely set" means set directly and not through a SUBREG, or
1618 ZERO_EXTRACT, so no trace of the old contents remains.
1619 Likewise, REG_INC does not count.
1621 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1622 but for this use that makes no difference, since regs don't overlap
1623 during their lifetimes. Therefore, this function may be used
1624 at any time after deaths have been computed.
1626 If REG is a hard reg that occupies multiple machine registers, this
1627 function will only return 1 if each of those registers will be replaced
1631 dead_or_set_p (const_rtx insn
, const_rtx x
)
1633 unsigned int regno
, end_regno
;
1636 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1637 if (GET_CODE (x
) == CC0
)
1640 gcc_assert (REG_P (x
));
1643 end_regno
= END_REGNO (x
);
1644 for (i
= regno
; i
< end_regno
; i
++)
1645 if (! dead_or_set_regno_p (insn
, i
))
1651 /* Return TRUE iff DEST is a register or subreg of a register and
1652 doesn't change the number of words of the inner register, and any
1653 part of the register is TEST_REGNO. */
1656 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1658 unsigned int regno
, endregno
;
1660 if (GET_CODE (dest
) == SUBREG
1661 && (((GET_MODE_SIZE (GET_MODE (dest
))
1662 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1663 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1664 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1665 dest
= SUBREG_REG (dest
);
1670 regno
= REGNO (dest
);
1671 endregno
= END_REGNO (dest
);
1672 return (test_regno
>= regno
&& test_regno
< endregno
);
1675 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1676 any member matches the covers_regno_no_parallel_p criteria. */
1679 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1681 if (GET_CODE (dest
) == PARALLEL
)
1683 /* Some targets place small structures in registers for return
1684 values of functions, and those registers are wrapped in
1685 PARALLELs that we may see as the destination of a SET. */
1688 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1690 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1691 if (inner
!= NULL_RTX
1692 && covers_regno_no_parallel_p (inner
, test_regno
))
1699 return covers_regno_no_parallel_p (dest
, test_regno
);
1702 /* Utility function for dead_or_set_p to check an individual register. */
1705 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1709 /* See if there is a death note for something that includes TEST_REGNO. */
1710 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1714 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1717 pattern
= PATTERN (insn
);
1719 /* If a COND_EXEC is not executed, the value survives. */
1720 if (GET_CODE (pattern
) == COND_EXEC
)
1723 if (GET_CODE (pattern
) == SET
)
1724 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1725 else if (GET_CODE (pattern
) == PARALLEL
)
1729 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1731 rtx body
= XVECEXP (pattern
, 0, i
);
1733 if (GET_CODE (body
) == COND_EXEC
)
1734 body
= COND_EXEC_CODE (body
);
1736 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1737 && covers_regno_p (SET_DEST (body
), test_regno
))
1745 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1746 If DATUM is nonzero, look for one whose datum is DATUM. */
1749 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1753 gcc_checking_assert (insn
);
1755 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1756 if (! INSN_P (insn
))
1760 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1761 if (REG_NOTE_KIND (link
) == kind
)
1766 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1767 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1772 /* Return the reg-note of kind KIND in insn INSN which applies to register
1773 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1774 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1775 it might be the case that the note overlaps REGNO. */
1778 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1782 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1783 if (! INSN_P (insn
))
1786 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1787 if (REG_NOTE_KIND (link
) == kind
1788 /* Verify that it is a register, so that scratch and MEM won't cause a
1790 && REG_P (XEXP (link
, 0))
1791 && REGNO (XEXP (link
, 0)) <= regno
1792 && END_REGNO (XEXP (link
, 0)) > regno
)
1797 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1801 find_reg_equal_equiv_note (const_rtx insn
)
1808 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1809 if (REG_NOTE_KIND (link
) == REG_EQUAL
1810 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1812 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1813 insns that have multiple sets. Checking single_set to
1814 make sure of this is not the proper check, as explained
1815 in the comment in set_unique_reg_note.
1817 This should be changed into an assert. */
1818 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1825 /* Check whether INSN is a single_set whose source is known to be
1826 equivalent to a constant. Return that constant if so, otherwise
1830 find_constant_src (const_rtx insn
)
1834 set
= single_set (insn
);
1837 x
= avoid_constant_pool_reference (SET_SRC (set
));
1842 note
= find_reg_equal_equiv_note (insn
);
1843 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1844 return XEXP (note
, 0);
1849 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1850 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1853 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1855 /* If it's not a CALL_INSN, it can't possibly have a
1856 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1866 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1868 link
= XEXP (link
, 1))
1869 if (GET_CODE (XEXP (link
, 0)) == code
1870 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1875 unsigned int regno
= REGNO (datum
);
1877 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1878 to pseudo registers, so don't bother checking. */
1880 if (regno
< FIRST_PSEUDO_REGISTER
)
1882 unsigned int end_regno
= END_HARD_REGNO (datum
);
1885 for (i
= regno
; i
< end_regno
; i
++)
1886 if (find_regno_fusage (insn
, code
, i
))
1894 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1895 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1898 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1902 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1903 to pseudo registers, so don't bother checking. */
1905 if (regno
>= FIRST_PSEUDO_REGISTER
1909 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1913 if (GET_CODE (op
= XEXP (link
, 0)) == code
1914 && REG_P (reg
= XEXP (op
, 0))
1915 && REGNO (reg
) <= regno
1916 && END_HARD_REGNO (reg
) > regno
)
1924 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1925 stored as the pointer to the next register note. */
1928 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1936 case REG_LABEL_TARGET
:
1937 case REG_LABEL_OPERAND
:
1939 /* These types of register notes use an INSN_LIST rather than an
1940 EXPR_LIST, so that copying is done right and dumps look
1942 note
= alloc_INSN_LIST (datum
, list
);
1943 PUT_REG_NOTE_KIND (note
, kind
);
1947 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1954 /* Add register note with kind KIND and datum DATUM to INSN. */
1957 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1959 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1962 /* Remove register note NOTE from the REG_NOTES of INSN. */
1965 remove_note (rtx insn
, const_rtx note
)
1969 if (note
== NULL_RTX
)
1972 if (REG_NOTES (insn
) == note
)
1973 REG_NOTES (insn
) = XEXP (note
, 1);
1975 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1976 if (XEXP (link
, 1) == note
)
1978 XEXP (link
, 1) = XEXP (note
, 1);
1982 switch (REG_NOTE_KIND (note
))
1986 df_notes_rescan (insn
);
1993 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1996 remove_reg_equal_equiv_notes (rtx insn
)
2000 loc
= ®_NOTES (insn
);
2003 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2004 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2005 *loc
= XEXP (*loc
, 1);
2007 loc
= &XEXP (*loc
, 1);
2011 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2014 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2021 /* This loop is a little tricky. We cannot just go down the chain because
2022 it is being modified by some actions in the loop. So we just iterate
2023 over the head. We plan to drain the list anyway. */
2024 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2026 rtx insn
= DF_REF_INSN (eq_use
);
2027 rtx note
= find_reg_equal_equiv_note (insn
);
2029 /* This assert is generally triggered when someone deletes a REG_EQUAL
2030 or REG_EQUIV note by hacking the list manually rather than calling
2034 remove_note (insn
, note
);
2038 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2039 return 1 if it is found. A simple equality test is used to determine if
2043 in_expr_list_p (const_rtx listp
, const_rtx node
)
2047 for (x
= listp
; x
; x
= XEXP (x
, 1))
2048 if (node
== XEXP (x
, 0))
2054 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2055 remove that entry from the list if it is found.
2057 A simple equality test is used to determine if NODE matches. */
2060 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2063 rtx prev
= NULL_RTX
;
2067 if (node
== XEXP (temp
, 0))
2069 /* Splice the node out of the list. */
2071 XEXP (prev
, 1) = XEXP (temp
, 1);
2073 *listp
= XEXP (temp
, 1);
2079 temp
= XEXP (temp
, 1);
2083 /* Nonzero if X contains any volatile instructions. These are instructions
2084 which may cause unpredictable machine state instructions, and thus no
2085 instructions or register uses should be moved or combined across them.
2086 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2089 volatile_insn_p (const_rtx x
)
2091 const RTX_CODE code
= GET_CODE (x
);
2109 case UNSPEC_VOLATILE
:
2110 /* case TRAP_IF: This isn't clear yet. */
2115 if (MEM_VOLATILE_P (x
))
2122 /* Recursively scan the operands of this expression. */
2125 const char *const fmt
= GET_RTX_FORMAT (code
);
2128 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2132 if (volatile_insn_p (XEXP (x
, i
)))
2135 else if (fmt
[i
] == 'E')
2138 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2139 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2147 /* Nonzero if X contains any volatile memory references
2148 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2151 volatile_refs_p (const_rtx x
)
2153 const RTX_CODE code
= GET_CODE (x
);
2169 case UNSPEC_VOLATILE
:
2175 if (MEM_VOLATILE_P (x
))
2182 /* Recursively scan the operands of this expression. */
2185 const char *const fmt
= GET_RTX_FORMAT (code
);
2188 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2192 if (volatile_refs_p (XEXP (x
, i
)))
2195 else if (fmt
[i
] == 'E')
2198 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2199 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2207 /* Similar to above, except that it also rejects register pre- and post-
2211 side_effects_p (const_rtx x
)
2213 const RTX_CODE code
= GET_CODE (x
);
2230 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2231 when some combination can't be done. If we see one, don't think
2232 that we can simplify the expression. */
2233 return (GET_MODE (x
) != VOIDmode
);
2242 case UNSPEC_VOLATILE
:
2243 /* case TRAP_IF: This isn't clear yet. */
2249 if (MEM_VOLATILE_P (x
))
2256 /* Recursively scan the operands of this expression. */
2259 const char *fmt
= GET_RTX_FORMAT (code
);
2262 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2266 if (side_effects_p (XEXP (x
, i
)))
2269 else if (fmt
[i
] == 'E')
2272 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2273 if (side_effects_p (XVECEXP (x
, i
, j
)))
2281 /* Return nonzero if evaluating rtx X might cause a trap.
2282 FLAGS controls how to consider MEMs. A nonzero means the context
2283 of the access may have changed from the original, such that the
2284 address may have become invalid. */
2287 may_trap_p_1 (const_rtx x
, unsigned flags
)
2293 /* We make no distinction currently, but this function is part of
2294 the internal target-hooks ABI so we keep the parameter as
2295 "unsigned flags". */
2296 bool code_changed
= flags
!= 0;
2300 code
= GET_CODE (x
);
2303 /* Handle these cases quickly. */
2315 case UNSPEC_VOLATILE
:
2316 return targetm
.unspec_may_trap_p (x
, flags
);
2323 return MEM_VOLATILE_P (x
);
2325 /* Memory ref can trap unless it's a static var or a stack slot. */
2327 /* Recognize specific pattern of stack checking probes. */
2328 if (flag_stack_check
2329 && MEM_VOLATILE_P (x
)
2330 && XEXP (x
, 0) == stack_pointer_rtx
)
2332 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2333 reference; moving it out of context such as when moving code
2334 when optimizing, might cause its address to become invalid. */
2336 || !MEM_NOTRAP_P (x
))
2338 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2339 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2340 GET_MODE (x
), code_changed
);
2345 /* Division by a non-constant might trap. */
2350 if (HONOR_SNANS (GET_MODE (x
)))
2352 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2353 return flag_trapping_math
;
2354 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2359 /* An EXPR_LIST is used to represent a function call. This
2360 certainly may trap. */
2369 /* Some floating point comparisons may trap. */
2370 if (!flag_trapping_math
)
2372 /* ??? There is no machine independent way to check for tests that trap
2373 when COMPARE is used, though many targets do make this distinction.
2374 For instance, sparc uses CCFPE for compares which generate exceptions
2375 and CCFP for compares which do not generate exceptions. */
2376 if (HONOR_NANS (GET_MODE (x
)))
2378 /* But often the compare has some CC mode, so check operand
2380 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2381 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2387 if (HONOR_SNANS (GET_MODE (x
)))
2389 /* Often comparison is CC mode, so check operand modes. */
2390 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2391 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2396 /* Conversion of floating point might trap. */
2397 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2404 /* These operations don't trap even with floating point. */
2408 /* Any floating arithmetic may trap. */
2409 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2410 && flag_trapping_math
)
2414 fmt
= GET_RTX_FORMAT (code
);
2415 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2419 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2422 else if (fmt
[i
] == 'E')
2425 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2426 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2433 /* Return nonzero if evaluating rtx X might cause a trap. */
2436 may_trap_p (const_rtx x
)
2438 return may_trap_p_1 (x
, 0);
2441 /* Same as above, but additionally return nonzero if evaluating rtx X might
2442 cause a fault. We define a fault for the purpose of this function as a
2443 erroneous execution condition that cannot be encountered during the normal
2444 execution of a valid program; the typical example is an unaligned memory
2445 access on a strict alignment machine. The compiler guarantees that it
2446 doesn't generate code that will fault from a valid program, but this
2447 guarantee doesn't mean anything for individual instructions. Consider
2448 the following example:
2450 struct S { int d; union { char *cp; int *ip; }; };
2452 int foo(struct S *s)
2460 on a strict alignment machine. In a valid program, foo will never be
2461 invoked on a structure for which d is equal to 1 and the underlying
2462 unique field of the union not aligned on a 4-byte boundary, but the
2463 expression *s->ip might cause a fault if considered individually.
2465 At the RTL level, potentially problematic expressions will almost always
2466 verify may_trap_p; for example, the above dereference can be emitted as
2467 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2468 However, suppose that foo is inlined in a caller that causes s->cp to
2469 point to a local character variable and guarantees that s->d is not set
2470 to 1; foo may have been effectively translated into pseudo-RTL as:
2473 (set (reg:SI) (mem:SI (%fp - 7)))
2475 (set (reg:QI) (mem:QI (%fp - 7)))
2477 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2478 memory reference to a stack slot, but it will certainly cause a fault
2479 on a strict alignment machine. */
2482 may_trap_or_fault_p (const_rtx x
)
2484 return may_trap_p_1 (x
, 1);
2487 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2488 i.e., an inequality. */
2491 inequality_comparisons_p (const_rtx x
)
2495 const enum rtx_code code
= GET_CODE (x
);
2523 len
= GET_RTX_LENGTH (code
);
2524 fmt
= GET_RTX_FORMAT (code
);
2526 for (i
= 0; i
< len
; i
++)
2530 if (inequality_comparisons_p (XEXP (x
, i
)))
2533 else if (fmt
[i
] == 'E')
2536 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2537 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2545 /* Replace any occurrence of FROM in X with TO. The function does
2546 not enter into CONST_DOUBLE for the replace.
2548 Note that copying is not done so X must not be shared unless all copies
2549 are to be modified. */
2552 replace_rtx (rtx x
, rtx from
, rtx to
)
2560 /* Allow this function to make replacements in EXPR_LISTs. */
2564 if (GET_CODE (x
) == SUBREG
)
2566 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2568 if (CONST_INT_P (new_rtx
))
2570 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2571 GET_MODE (SUBREG_REG (x
)),
2576 SUBREG_REG (x
) = new_rtx
;
2580 else if (GET_CODE (x
) == ZERO_EXTEND
)
2582 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2584 if (CONST_INT_P (new_rtx
))
2586 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2587 new_rtx
, GET_MODE (XEXP (x
, 0)));
2591 XEXP (x
, 0) = new_rtx
;
2596 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2597 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2600 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2601 else if (fmt
[i
] == 'E')
2602 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2603 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2609 /* Replace occurrences of the old label in *X with the new one.
2610 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2613 replace_label (rtx
*x
, void *data
)
2616 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2617 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2618 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2623 if (GET_CODE (l
) == SYMBOL_REF
2624 && CONSTANT_POOL_ADDRESS_P (l
))
2626 rtx c
= get_pool_constant (l
);
2627 if (rtx_referenced_p (old_label
, c
))
2630 replace_label_data
*d
= (replace_label_data
*) data
;
2632 /* Create a copy of constant C; replace the label inside
2633 but do not update LABEL_NUSES because uses in constant pool
2635 new_c
= copy_rtx (c
);
2636 d
->update_label_nuses
= false;
2637 for_each_rtx (&new_c
, replace_label
, data
);
2638 d
->update_label_nuses
= update_label_nuses
;
2640 /* Add the new constant NEW_C to constant pool and replace
2641 the old reference to constant by new reference. */
2642 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2643 *x
= replace_rtx (l
, l
, new_l
);
2648 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2649 field. This is not handled by for_each_rtx because it doesn't
2650 handle unprinted ('0') fields. */
2651 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2652 JUMP_LABEL (l
) = new_label
;
2654 if ((GET_CODE (l
) == LABEL_REF
2655 || GET_CODE (l
) == INSN_LIST
)
2656 && XEXP (l
, 0) == old_label
)
2658 XEXP (l
, 0) = new_label
;
2659 if (update_label_nuses
)
2661 ++LABEL_NUSES (new_label
);
2662 --LABEL_NUSES (old_label
);
2670 /* When *BODY is equal to X or X is directly referenced by *BODY
2671 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2672 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2675 rtx_referenced_p_1 (rtx
*body
, void *x
)
2679 if (*body
== NULL_RTX
)
2680 return y
== NULL_RTX
;
2682 /* Return true if a label_ref *BODY refers to label Y. */
2683 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2684 return XEXP (*body
, 0) == y
;
2686 /* If *BODY is a reference to pool constant traverse the constant. */
2687 if (GET_CODE (*body
) == SYMBOL_REF
2688 && CONSTANT_POOL_ADDRESS_P (*body
))
2689 return rtx_referenced_p (y
, get_pool_constant (*body
));
2691 /* By default, compare the RTL expressions. */
2692 return rtx_equal_p (*body
, y
);
2695 /* Return true if X is referenced in BODY. */
2698 rtx_referenced_p (rtx x
, rtx body
)
2700 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2703 /* If INSN is a tablejump return true and store the label (before jump table) to
2704 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2707 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2714 label
= JUMP_LABEL (insn
);
2715 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2716 && (table
= next_active_insn (label
)) != NULL_RTX
2717 && JUMP_TABLE_DATA_P (table
))
2728 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2729 constant that is not in the constant pool and not in the condition
2730 of an IF_THEN_ELSE. */
2733 computed_jump_p_1 (const_rtx x
)
2735 const enum rtx_code code
= GET_CODE (x
);
2752 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2753 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2756 return (computed_jump_p_1 (XEXP (x
, 1))
2757 || computed_jump_p_1 (XEXP (x
, 2)));
2763 fmt
= GET_RTX_FORMAT (code
);
2764 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2767 && computed_jump_p_1 (XEXP (x
, i
)))
2770 else if (fmt
[i
] == 'E')
2771 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2772 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2779 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2781 Tablejumps and casesi insns are not considered indirect jumps;
2782 we can recognize them by a (use (label_ref)). */
2785 computed_jump_p (const_rtx insn
)
2790 rtx pat
= PATTERN (insn
);
2792 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2793 if (JUMP_LABEL (insn
) != NULL
)
2796 if (GET_CODE (pat
) == PARALLEL
)
2798 int len
= XVECLEN (pat
, 0);
2799 int has_use_labelref
= 0;
2801 for (i
= len
- 1; i
>= 0; i
--)
2802 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2803 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2805 has_use_labelref
= 1;
2807 if (! has_use_labelref
)
2808 for (i
= len
- 1; i
>= 0; i
--)
2809 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2810 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2811 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2814 else if (GET_CODE (pat
) == SET
2815 && SET_DEST (pat
) == pc_rtx
2816 && computed_jump_p_1 (SET_SRC (pat
)))
2822 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2823 calls. Processes the subexpressions of EXP and passes them to F. */
2825 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2828 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2831 for (; format
[n
] != '\0'; n
++)
2838 result
= (*f
) (x
, data
);
2840 /* Do not traverse sub-expressions. */
2842 else if (result
!= 0)
2843 /* Stop the traversal. */
2847 /* There are no sub-expressions. */
2850 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2853 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2861 if (XVEC (exp
, n
) == 0)
2863 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2866 x
= &XVECEXP (exp
, n
, j
);
2867 result
= (*f
) (x
, data
);
2869 /* Do not traverse sub-expressions. */
2871 else if (result
!= 0)
2872 /* Stop the traversal. */
2876 /* There are no sub-expressions. */
2879 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2882 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2890 /* Nothing to do. */
2898 /* Traverse X via depth-first search, calling F for each
2899 sub-expression (including X itself). F is also passed the DATA.
2900 If F returns -1, do not traverse sub-expressions, but continue
2901 traversing the rest of the tree. If F ever returns any other
2902 nonzero value, stop the traversal, and return the value returned
2903 by F. Otherwise, return 0. This function does not traverse inside
2904 tree structure that contains RTX_EXPRs, or into sub-expressions
2905 whose format code is `0' since it is not known whether or not those
2906 codes are actually RTL.
2908 This routine is very general, and could (should?) be used to
2909 implement many of the other routines in this file. */
2912 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2918 result
= (*f
) (x
, data
);
2920 /* Do not traverse sub-expressions. */
2922 else if (result
!= 0)
2923 /* Stop the traversal. */
2927 /* There are no sub-expressions. */
2930 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2934 return for_each_rtx_1 (*x
, i
, f
, data
);
2939 /* Data structure that holds the internal state communicated between
2940 for_each_inc_dec, for_each_inc_dec_find_mem and
2941 for_each_inc_dec_find_inc_dec. */
2943 struct for_each_inc_dec_ops
{
2944 /* The function to be called for each autoinc operation found. */
2945 for_each_inc_dec_fn fn
;
2946 /* The opaque argument to be passed to it. */
2948 /* The MEM we're visiting, if any. */
2952 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
2954 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2955 operands of the equivalent add insn and pass the result to the
2956 operator specified by *D. */
2959 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
2962 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
2964 switch (GET_CODE (x
))
2969 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2970 rtx r1
= XEXP (x
, 0);
2971 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
2972 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2978 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2979 rtx r1
= XEXP (x
, 0);
2980 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
2981 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2987 rtx r1
= XEXP (x
, 0);
2988 rtx add
= XEXP (x
, 1);
2989 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
2994 rtx save
= data
->mem
;
2995 int ret
= for_each_inc_dec_find_mem (r
, d
);
3005 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3006 address, extract the operands of the equivalent add insn and pass
3007 the result to the operator specified by *D. */
3010 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3013 if (x
!= NULL_RTX
&& MEM_P (x
))
3015 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3020 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3030 /* Traverse *X looking for MEMs, and for autoinc operations within
3031 them. For each such autoinc operation found, call FN, passing it
3032 the innermost enclosing MEM, the operation itself, the RTX modified
3033 by the operation, two RTXs (the second may be NULL) that, once
3034 added, represent the value to be held by the modified RTX
3035 afterwards, and ARG. FN is to return -1 to skip looking for other
3036 autoinc operations within the visited operation, 0 to continue the
3037 traversal, or any other value to have it returned to the caller of
3038 for_each_inc_dec. */
3041 for_each_inc_dec (rtx
*x
,
3042 for_each_inc_dec_fn fn
,
3045 struct for_each_inc_dec_ops data
;
3051 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3055 /* Searches X for any reference to REGNO, returning the rtx of the
3056 reference found if any. Otherwise, returns NULL_RTX. */
3059 regno_use_in (unsigned int regno
, rtx x
)
3065 if (REG_P (x
) && REGNO (x
) == regno
)
3068 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3069 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3073 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3076 else if (fmt
[i
] == 'E')
3077 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3078 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3085 /* Return a value indicating whether OP, an operand of a commutative
3086 operation, is preferred as the first or second operand. The higher
3087 the value, the stronger the preference for being the first operand.
3088 We use negative values to indicate a preference for the first operand
3089 and positive values for the second operand. */
3092 commutative_operand_precedence (rtx op
)
3094 enum rtx_code code
= GET_CODE (op
);
3096 /* Constants always come the second operand. Prefer "nice" constants. */
3097 if (code
== CONST_INT
)
3099 if (code
== CONST_DOUBLE
)
3101 if (code
== CONST_FIXED
)
3103 op
= avoid_constant_pool_reference (op
);
3104 code
= GET_CODE (op
);
3106 switch (GET_RTX_CLASS (code
))
3109 if (code
== CONST_INT
)
3111 if (code
== CONST_DOUBLE
)
3113 if (code
== CONST_FIXED
)
3118 /* SUBREGs of objects should come second. */
3119 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3124 /* Complex expressions should be the first, so decrease priority
3125 of objects. Prefer pointer objects over non pointer objects. */
3126 if ((REG_P (op
) && REG_POINTER (op
))
3127 || (MEM_P (op
) && MEM_POINTER (op
)))
3131 case RTX_COMM_ARITH
:
3132 /* Prefer operands that are themselves commutative to be first.
3133 This helps to make things linear. In particular,
3134 (and (and (reg) (reg)) (not (reg))) is canonical. */
3138 /* If only one operand is a binary expression, it will be the first
3139 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3140 is canonical, although it will usually be further simplified. */
3144 /* Then prefer NEG and NOT. */
3145 if (code
== NEG
|| code
== NOT
)
3153 /* Return 1 iff it is necessary to swap operands of commutative operation
3154 in order to canonicalize expression. */
3157 swap_commutative_operands_p (rtx x
, rtx y
)
3159 return (commutative_operand_precedence (x
)
3160 < commutative_operand_precedence (y
));
3163 /* Return 1 if X is an autoincrement side effect and the register is
3164 not the stack pointer. */
3166 auto_inc_p (const_rtx x
)
3168 switch (GET_CODE (x
))
3176 /* There are no REG_INC notes for SP. */
3177 if (XEXP (x
, 0) != stack_pointer_rtx
)
3185 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3187 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3196 code
= GET_CODE (in
);
3197 fmt
= GET_RTX_FORMAT (code
);
3198 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3202 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3205 else if (fmt
[i
] == 'E')
3206 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3207 if (loc
== &XVECEXP (in
, i
, j
)
3208 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3214 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3215 and SUBREG_BYTE, return the bit offset where the subreg begins
3216 (counting from the least significant bit of the operand). */
3219 subreg_lsb_1 (enum machine_mode outer_mode
,
3220 enum machine_mode inner_mode
,
3221 unsigned int subreg_byte
)
3223 unsigned int bitpos
;
3227 /* A paradoxical subreg begins at bit position 0. */
3228 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3231 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3232 /* If the subreg crosses a word boundary ensure that
3233 it also begins and ends on a word boundary. */
3234 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3235 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3236 && (subreg_byte
% UNITS_PER_WORD
3237 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3239 if (WORDS_BIG_ENDIAN
)
3240 word
= (GET_MODE_SIZE (inner_mode
)
3241 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3243 word
= subreg_byte
/ UNITS_PER_WORD
;
3244 bitpos
= word
* BITS_PER_WORD
;
3246 if (BYTES_BIG_ENDIAN
)
3247 byte
= (GET_MODE_SIZE (inner_mode
)
3248 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3250 byte
= subreg_byte
% UNITS_PER_WORD
;
3251 bitpos
+= byte
* BITS_PER_UNIT
;
3256 /* Given a subreg X, return the bit offset where the subreg begins
3257 (counting from the least significant bit of the reg). */
3260 subreg_lsb (const_rtx x
)
3262 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3266 /* Fill in information about a subreg of a hard register.
3267 xregno - A regno of an inner hard subreg_reg (or what will become one).
3268 xmode - The mode of xregno.
3269 offset - The byte offset.
3270 ymode - The mode of a top level SUBREG (or what may become one).
3271 info - Pointer to structure to fill in. */
3273 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3274 unsigned int offset
, enum machine_mode ymode
,
3275 struct subreg_info
*info
)
3277 int nregs_xmode
, nregs_ymode
;
3278 int mode_multiple
, nregs_multiple
;
3279 int offset_adj
, y_offset
, y_offset_adj
;
3280 int regsize_xmode
, regsize_ymode
;
3283 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3287 /* If there are holes in a non-scalar mode in registers, we expect
3288 that it is made up of its units concatenated together. */
3289 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3291 enum machine_mode xmode_unit
;
3293 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3294 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3297 xmode_unit
= GET_MODE_INNER (xmode
);
3298 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3299 gcc_assert (nregs_xmode
3300 == (GET_MODE_NUNITS (xmode
)
3301 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3302 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3303 == (hard_regno_nregs
[xregno
][xmode_unit
]
3304 * GET_MODE_NUNITS (xmode
)));
3306 /* You can only ask for a SUBREG of a value with holes in the middle
3307 if you don't cross the holes. (Such a SUBREG should be done by
3308 picking a different register class, or doing it in memory if
3309 necessary.) An example of a value with holes is XCmode on 32-bit
3310 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3311 3 for each part, but in memory it's two 128-bit parts.
3312 Padding is assumed to be at the end (not necessarily the 'high part')
3314 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3315 < GET_MODE_NUNITS (xmode
))
3316 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3317 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3318 / GET_MODE_SIZE (xmode_unit
))))
3320 info
->representable_p
= false;
3325 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3327 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3329 /* Paradoxical subregs are otherwise valid. */
3332 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3334 info
->representable_p
= true;
3335 /* If this is a big endian paradoxical subreg, which uses more
3336 actual hard registers than the original register, we must
3337 return a negative offset so that we find the proper highpart
3339 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3340 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3341 info
->offset
= nregs_xmode
- nregs_ymode
;
3344 info
->nregs
= nregs_ymode
;
3348 /* If registers store different numbers of bits in the different
3349 modes, we cannot generally form this subreg. */
3350 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3351 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3352 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3353 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3355 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3356 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3357 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3359 info
->representable_p
= false;
3361 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3362 info
->offset
= offset
/ regsize_xmode
;
3365 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3367 info
->representable_p
= false;
3369 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3370 info
->offset
= offset
/ regsize_xmode
;
3375 /* Lowpart subregs are otherwise valid. */
3376 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3378 info
->representable_p
= true;
3381 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3384 info
->nregs
= nregs_ymode
;
3389 /* This should always pass, otherwise we don't know how to verify
3390 the constraint. These conditions may be relaxed but
3391 subreg_regno_offset would need to be redesigned. */
3392 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3393 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3395 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3396 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3398 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3399 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3400 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3401 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3402 offset
= (xsize
- ysize
- off_high
) | off_low
;
3404 /* The XMODE value can be seen as a vector of NREGS_XMODE
3405 values. The subreg must represent a lowpart of given field.
3406 Compute what field it is. */
3407 offset_adj
= offset
;
3408 offset_adj
-= subreg_lowpart_offset (ymode
,
3409 mode_for_size (GET_MODE_BITSIZE (xmode
)
3413 /* Size of ymode must not be greater than the size of xmode. */
3414 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3415 gcc_assert (mode_multiple
!= 0);
3417 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3418 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3419 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3421 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3422 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3426 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3429 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3430 info
->nregs
= nregs_ymode
;
3433 /* This function returns the regno offset of a subreg expression.
3434 xregno - A regno of an inner hard subreg_reg (or what will become one).
3435 xmode - The mode of xregno.
3436 offset - The byte offset.
3437 ymode - The mode of a top level SUBREG (or what may become one).
3438 RETURN - The regno offset which would be used. */
3440 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3441 unsigned int offset
, enum machine_mode ymode
)
3443 struct subreg_info info
;
3444 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3448 /* This function returns true when the offset is representable via
3449 subreg_offset in the given regno.
3450 xregno - A regno of an inner hard subreg_reg (or what will become one).
3451 xmode - The mode of xregno.
3452 offset - The byte offset.
3453 ymode - The mode of a top level SUBREG (or what may become one).
3454 RETURN - Whether the offset is representable. */
3456 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3457 unsigned int offset
, enum machine_mode ymode
)
3459 struct subreg_info info
;
3460 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3461 return info
.representable_p
;
3464 /* Return the number of a YMODE register to which
3466 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3468 can be simplified. Return -1 if the subreg can't be simplified.
3470 XREGNO is a hard register number. */
3473 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3474 unsigned int offset
, enum machine_mode ymode
)
3476 struct subreg_info info
;
3477 unsigned int yregno
;
3479 #ifdef CANNOT_CHANGE_MODE_CLASS
3480 /* Give the backend a chance to disallow the mode change. */
3481 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3482 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3483 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3484 /* We can use mode change in LRA for some transformations. */
3485 && ! lra_in_progress
)
3489 /* We shouldn't simplify stack-related registers. */
3490 if ((!reload_completed
|| frame_pointer_needed
)
3491 && xregno
== FRAME_POINTER_REGNUM
)
3494 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3495 && xregno
== ARG_POINTER_REGNUM
)
3498 if (xregno
== STACK_POINTER_REGNUM
3499 /* We should convert hard stack register in LRA if it is
3501 && ! lra_in_progress
)
3504 /* Try to get the register offset. */
3505 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3506 if (!info
.representable_p
)
3509 /* Make sure that the offsetted register value is in range. */
3510 yregno
= xregno
+ info
.offset
;
3511 if (!HARD_REGISTER_NUM_P (yregno
))
3514 /* See whether (reg:YMODE YREGNO) is valid.
3516 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3517 This is a kludge to work around how complex FP arguments are passed
3518 on IA-64 and should be fixed. See PR target/49226. */
3519 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3520 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3523 return (int) yregno
;
3526 /* Return the final regno that a subreg expression refers to. */
3528 subreg_regno (const_rtx x
)
3531 rtx subreg
= SUBREG_REG (x
);
3532 int regno
= REGNO (subreg
);
3534 ret
= regno
+ subreg_regno_offset (regno
,
3542 /* Return the number of registers that a subreg expression refers
3545 subreg_nregs (const_rtx x
)
3547 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3550 /* Return the number of registers that a subreg REG with REGNO
3551 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3552 changed so that the regno can be passed in. */
3555 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3557 struct subreg_info info
;
3558 rtx subreg
= SUBREG_REG (x
);
3560 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3566 struct parms_set_data
3572 /* Helper function for noticing stores to parameter registers. */
3574 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3576 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3577 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3578 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3580 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3585 /* Look backward for first parameter to be loaded.
3586 Note that loads of all parameters will not necessarily be
3587 found if CSE has eliminated some of them (e.g., an argument
3588 to the outer function is passed down as a parameter).
3589 Do not skip BOUNDARY. */
3591 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3593 struct parms_set_data parm
;
3594 rtx p
, before
, first_set
;
3596 /* Since different machines initialize their parameter registers
3597 in different orders, assume nothing. Collect the set of all
3598 parameter registers. */
3599 CLEAR_HARD_REG_SET (parm
.regs
);
3601 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3602 if (GET_CODE (XEXP (p
, 0)) == USE
3603 && REG_P (XEXP (XEXP (p
, 0), 0)))
3605 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3607 /* We only care about registers which can hold function
3609 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3612 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3616 first_set
= call_insn
;
3618 /* Search backward for the first set of a register in this set. */
3619 while (parm
.nregs
&& before
!= boundary
)
3621 before
= PREV_INSN (before
);
3623 /* It is possible that some loads got CSEed from one call to
3624 another. Stop in that case. */
3625 if (CALL_P (before
))
3628 /* Our caller needs either ensure that we will find all sets
3629 (in case code has not been optimized yet), or take care
3630 for possible labels in a way by setting boundary to preceding
3632 if (LABEL_P (before
))
3634 gcc_assert (before
== boundary
);
3638 if (INSN_P (before
))
3640 int nregs_old
= parm
.nregs
;
3641 note_stores (PATTERN (before
), parms_set
, &parm
);
3642 /* If we found something that did not set a parameter reg,
3643 we're done. Do not keep going, as that might result
3644 in hoisting an insn before the setting of a pseudo
3645 that is used by the hoisted insn. */
3646 if (nregs_old
!= parm
.nregs
)
3655 /* Return true if we should avoid inserting code between INSN and preceding
3656 call instruction. */
3659 keep_with_call_p (const_rtx insn
)
3663 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3665 if (REG_P (SET_DEST (set
))
3666 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3667 && fixed_regs
[REGNO (SET_DEST (set
))]
3668 && general_operand (SET_SRC (set
), VOIDmode
))
3670 if (REG_P (SET_SRC (set
))
3671 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3672 && REG_P (SET_DEST (set
))
3673 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3675 /* There may be a stack pop just after the call and before the store
3676 of the return register. Search for the actual store when deciding
3677 if we can break or not. */
3678 if (SET_DEST (set
) == stack_pointer_rtx
)
3680 /* This CONST_CAST is okay because next_nonnote_insn just
3681 returns its argument and we assign it to a const_rtx
3683 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3684 if (i2
&& keep_with_call_p (i2
))
3691 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3692 to non-complex jumps. That is, direct unconditional, conditional,
3693 and tablejumps, but not computed jumps or returns. It also does
3694 not apply to the fallthru case of a conditional jump. */
3697 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3699 rtx tmp
= JUMP_LABEL (jump_insn
);
3704 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3706 rtvec vec
= XVEC (PATTERN (tmp
),
3707 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3708 int i
, veclen
= GET_NUM_ELEM (vec
);
3710 for (i
= 0; i
< veclen
; ++i
)
3711 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3715 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3722 /* Return an estimate of the cost of computing rtx X.
3723 One use is in cse, to decide which expression to keep in the hash table.
3724 Another is in rtl generation, to pick the cheapest way to multiply.
3725 Other uses like the latter are expected in the future.
3727 X appears as operand OPNO in an expression with code OUTER_CODE.
3728 SPEED specifies whether costs optimized for speed or size should
3732 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3743 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3744 many insns, taking N times as long. */
3745 factor
= GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
;
3749 /* Compute the default costs of certain things.
3750 Note that targetm.rtx_costs can override the defaults. */
3752 code
= GET_CODE (x
);
3756 /* Multiplication has time-complexity O(N*N), where N is the
3757 number of units (translated from digits) when using
3758 schoolbook long multiplication. */
3759 total
= factor
* factor
* COSTS_N_INSNS (5);
3765 /* Similarly, complexity for schoolbook long division. */
3766 total
= factor
* factor
* COSTS_N_INSNS (7);
3769 /* Used in combine.c as a marker. */
3773 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3774 the mode for the factor. */
3775 factor
= GET_MODE_SIZE (GET_MODE (SET_DEST (x
))) / UNITS_PER_WORD
;
3780 total
= factor
* COSTS_N_INSNS (1);
3790 /* If we can't tie these modes, make this expensive. The larger
3791 the mode, the more expensive it is. */
3792 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3793 return COSTS_N_INSNS (2 + factor
);
3797 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3802 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3803 which is already in total. */
3805 fmt
= GET_RTX_FORMAT (code
);
3806 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3808 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3809 else if (fmt
[i
] == 'E')
3810 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3811 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3816 /* Fill in the structure C with information about both speed and size rtx
3817 costs for X, which is operand OPNO in an expression with code OUTER. */
3820 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3821 struct full_rtx_costs
*c
)
3823 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3824 c
->size
= rtx_cost (x
, outer
, opno
, false);
3828 /* Return cost of address expression X.
3829 Expect that X is properly formed address reference.
3831 SPEED parameter specify whether costs optimized for speed or size should
3835 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3837 /* We may be asked for cost of various unusual addresses, such as operands
3838 of push instruction. It is not worthwhile to complicate writing
3839 of the target hook by such cases. */
3841 if (!memory_address_addr_space_p (mode
, x
, as
))
3844 return targetm
.address_cost (x
, mode
, as
, speed
);
3847 /* If the target doesn't override, compute the cost as with arithmetic. */
3850 default_address_cost (rtx x
, enum machine_mode
, addr_space_t
, bool speed
)
3852 return rtx_cost (x
, MEM
, 0, speed
);
3856 unsigned HOST_WIDE_INT
3857 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3859 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3863 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3865 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3868 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3869 It avoids exponential behavior in nonzero_bits1 when X has
3870 identical subexpressions on the first or the second level. */
3872 static unsigned HOST_WIDE_INT
3873 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3874 enum machine_mode known_mode
,
3875 unsigned HOST_WIDE_INT known_ret
)
3877 if (x
== known_x
&& mode
== known_mode
)
3880 /* Try to find identical subexpressions. If found call
3881 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3882 precomputed value for the subexpression as KNOWN_RET. */
3884 if (ARITHMETIC_P (x
))
3886 rtx x0
= XEXP (x
, 0);
3887 rtx x1
= XEXP (x
, 1);
3889 /* Check the first level. */
3891 return nonzero_bits1 (x
, mode
, x0
, mode
,
3892 cached_nonzero_bits (x0
, mode
, known_x
,
3893 known_mode
, known_ret
));
3895 /* Check the second level. */
3896 if (ARITHMETIC_P (x0
)
3897 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3898 return nonzero_bits1 (x
, mode
, x1
, mode
,
3899 cached_nonzero_bits (x1
, mode
, known_x
,
3900 known_mode
, known_ret
));
3902 if (ARITHMETIC_P (x1
)
3903 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3904 return nonzero_bits1 (x
, mode
, x0
, mode
,
3905 cached_nonzero_bits (x0
, mode
, known_x
,
3906 known_mode
, known_ret
));
3909 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3912 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3913 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3914 is less useful. We can't allow both, because that results in exponential
3915 run time recursion. There is a nullstone testcase that triggered
3916 this. This macro avoids accidental uses of num_sign_bit_copies. */
3917 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3919 /* Given an expression, X, compute which bits in X can be nonzero.
3920 We don't care about bits outside of those defined in MODE.
3922 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3923 an arithmetic operation, we can do better. */
3925 static unsigned HOST_WIDE_INT
3926 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3927 enum machine_mode known_mode
,
3928 unsigned HOST_WIDE_INT known_ret
)
3930 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3931 unsigned HOST_WIDE_INT inner_nz
;
3933 enum machine_mode inner_mode
;
3934 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
3936 /* For floating-point and vector values, assume all bits are needed. */
3937 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3938 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3941 /* If X is wider than MODE, use its mode instead. */
3942 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
3944 mode
= GET_MODE (x
);
3945 nonzero
= GET_MODE_MASK (mode
);
3946 mode_width
= GET_MODE_PRECISION (mode
);
3949 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3950 /* Our only callers in this case look for single bit values. So
3951 just return the mode mask. Those tests will then be false. */
3954 #ifndef WORD_REGISTER_OPERATIONS
3955 /* If MODE is wider than X, but both are a single word for both the host
3956 and target machines, we can compute this from which bits of the
3957 object might be nonzero in its own mode, taking into account the fact
3958 that on many CISC machines, accessing an object in a wider mode
3959 causes the high-order bits to become undefined. So they are
3960 not known to be zero. */
3962 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3963 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
3964 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3965 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
3967 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3968 known_x
, known_mode
, known_ret
);
3969 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3974 code
= GET_CODE (x
);
3978 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3979 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3980 all the bits above ptr_mode are known to be zero. */
3981 /* As we do not know which address space the pointer is referring to,
3982 we can do this only if the target does not support different pointer
3983 or address modes depending on the address space. */
3984 if (target_default_pointer_address_modes_p ()
3985 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3987 nonzero
&= GET_MODE_MASK (ptr_mode
);
3990 /* Include declared information about alignment of pointers. */
3991 /* ??? We don't properly preserve REG_POINTER changes across
3992 pointer-to-integer casts, so we can't trust it except for
3993 things that we know must be pointers. See execute/960116-1.c. */
3994 if ((x
== stack_pointer_rtx
3995 || x
== frame_pointer_rtx
3996 || x
== arg_pointer_rtx
)
3997 && REGNO_POINTER_ALIGN (REGNO (x
)))
3999 unsigned HOST_WIDE_INT alignment
4000 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4002 #ifdef PUSH_ROUNDING
4003 /* If PUSH_ROUNDING is defined, it is possible for the
4004 stack to be momentarily aligned only to that amount,
4005 so we pick the least alignment. */
4006 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4007 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4011 nonzero
&= ~(alignment
- 1);
4015 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4016 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4017 known_mode
, known_ret
,
4021 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4022 known_mode
, known_ret
);
4024 return nonzero_for_hook
;
4028 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4029 /* If X is negative in MODE, sign-extend the value. */
4031 && mode_width
< BITS_PER_WORD
4032 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4034 return UINTVAL (x
) | ((unsigned HOST_WIDE_INT
) (-1) << mode_width
);
4040 #ifdef LOAD_EXTEND_OP
4041 /* In many, if not most, RISC machines, reading a byte from memory
4042 zeros the rest of the register. Noticing that fact saves a lot
4043 of extra zero-extends. */
4044 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4045 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4050 case UNEQ
: case LTGT
:
4051 case GT
: case GTU
: case UNGT
:
4052 case LT
: case LTU
: case UNLT
:
4053 case GE
: case GEU
: case UNGE
:
4054 case LE
: case LEU
: case UNLE
:
4055 case UNORDERED
: case ORDERED
:
4056 /* If this produces an integer result, we know which bits are set.
4057 Code here used to clear bits outside the mode of X, but that is
4059 /* Mind that MODE is the mode the caller wants to look at this
4060 operation in, and not the actual operation mode. We can wind
4061 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4062 that describes the results of a vector compare. */
4063 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4064 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4065 nonzero
= STORE_FLAG_VALUE
;
4070 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4071 and num_sign_bit_copies. */
4072 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4073 == GET_MODE_PRECISION (GET_MODE (x
)))
4077 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4078 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4083 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4084 and num_sign_bit_copies. */
4085 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4086 == GET_MODE_PRECISION (GET_MODE (x
)))
4092 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4093 known_x
, known_mode
, known_ret
)
4094 & GET_MODE_MASK (mode
));
4098 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4099 known_x
, known_mode
, known_ret
);
4100 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4101 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4105 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4106 Otherwise, show all the bits in the outer mode but not the inner
4108 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4109 known_x
, known_mode
, known_ret
);
4110 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4112 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4113 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4114 inner_nz
|= (GET_MODE_MASK (mode
)
4115 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4118 nonzero
&= inner_nz
;
4122 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4123 known_x
, known_mode
, known_ret
)
4124 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4125 known_x
, known_mode
, known_ret
);
4129 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4131 unsigned HOST_WIDE_INT nonzero0
4132 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4133 known_x
, known_mode
, known_ret
);
4135 /* Don't call nonzero_bits for the second time if it cannot change
4137 if ((nonzero
& nonzero0
) != nonzero
)
4139 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4140 known_x
, known_mode
, known_ret
);
4144 case PLUS
: case MINUS
:
4146 case DIV
: case UDIV
:
4147 case MOD
: case UMOD
:
4148 /* We can apply the rules of arithmetic to compute the number of
4149 high- and low-order zero bits of these operations. We start by
4150 computing the width (position of the highest-order nonzero bit)
4151 and the number of low-order zero bits for each value. */
4153 unsigned HOST_WIDE_INT nz0
4154 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4155 known_x
, known_mode
, known_ret
);
4156 unsigned HOST_WIDE_INT nz1
4157 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4158 known_x
, known_mode
, known_ret
);
4159 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4160 int width0
= floor_log2 (nz0
) + 1;
4161 int width1
= floor_log2 (nz1
) + 1;
4162 int low0
= floor_log2 (nz0
& -nz0
);
4163 int low1
= floor_log2 (nz1
& -nz1
);
4164 unsigned HOST_WIDE_INT op0_maybe_minusp
4165 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4166 unsigned HOST_WIDE_INT op1_maybe_minusp
4167 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4168 unsigned int result_width
= mode_width
;
4174 result_width
= MAX (width0
, width1
) + 1;
4175 result_low
= MIN (low0
, low1
);
4178 result_low
= MIN (low0
, low1
);
4181 result_width
= width0
+ width1
;
4182 result_low
= low0
+ low1
;
4187 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4188 result_width
= width0
;
4193 result_width
= width0
;
4198 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4199 result_width
= MIN (width0
, width1
);
4200 result_low
= MIN (low0
, low1
);
4205 result_width
= MIN (width0
, width1
);
4206 result_low
= MIN (low0
, low1
);
4212 if (result_width
< mode_width
)
4213 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4216 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4221 if (CONST_INT_P (XEXP (x
, 1))
4222 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4223 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4227 /* If this is a SUBREG formed for a promoted variable that has
4228 been zero-extended, we know that at least the high-order bits
4229 are zero, though others might be too. */
4231 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4232 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4233 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4234 known_x
, known_mode
, known_ret
);
4236 inner_mode
= GET_MODE (SUBREG_REG (x
));
4237 /* If the inner mode is a single word for both the host and target
4238 machines, we can compute this from which bits of the inner
4239 object might be nonzero. */
4240 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4241 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4243 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4244 known_x
, known_mode
, known_ret
);
4246 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4247 /* If this is a typical RISC machine, we only have to worry
4248 about the way loads are extended. */
4249 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4250 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4251 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4252 || !MEM_P (SUBREG_REG (x
)))
4255 /* On many CISC machines, accessing an object in a wider mode
4256 causes the high-order bits to become undefined. So they are
4257 not known to be zero. */
4258 if (GET_MODE_PRECISION (GET_MODE (x
))
4259 > GET_MODE_PRECISION (inner_mode
))
4260 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4261 & ~GET_MODE_MASK (inner_mode
));
4270 /* The nonzero bits are in two classes: any bits within MODE
4271 that aren't in GET_MODE (x) are always significant. The rest of the
4272 nonzero bits are those that are significant in the operand of
4273 the shift when shifted the appropriate number of bits. This
4274 shows that high-order bits are cleared by the right shift and
4275 low-order bits by left shifts. */
4276 if (CONST_INT_P (XEXP (x
, 1))
4277 && INTVAL (XEXP (x
, 1)) >= 0
4278 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4279 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4281 enum machine_mode inner_mode
= GET_MODE (x
);
4282 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4283 int count
= INTVAL (XEXP (x
, 1));
4284 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4285 unsigned HOST_WIDE_INT op_nonzero
4286 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4287 known_x
, known_mode
, known_ret
);
4288 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4289 unsigned HOST_WIDE_INT outer
= 0;
4291 if (mode_width
> width
)
4292 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4294 if (code
== LSHIFTRT
)
4296 else if (code
== ASHIFTRT
)
4300 /* If the sign bit may have been nonzero before the shift, we
4301 need to mark all the places it could have been copied to
4302 by the shift as possibly nonzero. */
4303 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4304 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4307 else if (code
== ASHIFT
)
4310 inner
= ((inner
<< (count
% width
)
4311 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4313 nonzero
&= (outer
| inner
);
4319 /* This is at most the number of bits in the mode. */
4320 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4324 /* If CLZ has a known value at zero, then the nonzero bits are
4325 that value, plus the number of bits in the mode minus one. */
4326 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4328 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4334 /* If CTZ has a known value at zero, then the nonzero bits are
4335 that value, plus the number of bits in the mode minus one. */
4336 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4338 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4344 /* This is at most the number of bits in the mode minus 1. */
4345 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4354 unsigned HOST_WIDE_INT nonzero_true
4355 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4356 known_x
, known_mode
, known_ret
);
4358 /* Don't call nonzero_bits for the second time if it cannot change
4360 if ((nonzero
& nonzero_true
) != nonzero
)
4361 nonzero
&= nonzero_true
4362 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4363 known_x
, known_mode
, known_ret
);
4374 /* See the macro definition above. */
4375 #undef cached_num_sign_bit_copies
4378 /* The function cached_num_sign_bit_copies is a wrapper around
4379 num_sign_bit_copies1. It avoids exponential behavior in
4380 num_sign_bit_copies1 when X has identical subexpressions on the
4381 first or the second level. */
4384 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4385 enum machine_mode known_mode
,
4386 unsigned int known_ret
)
4388 if (x
== known_x
&& mode
== known_mode
)
4391 /* Try to find identical subexpressions. If found call
4392 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4393 the precomputed value for the subexpression as KNOWN_RET. */
4395 if (ARITHMETIC_P (x
))
4397 rtx x0
= XEXP (x
, 0);
4398 rtx x1
= XEXP (x
, 1);
4400 /* Check the first level. */
4403 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4404 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4408 /* Check the second level. */
4409 if (ARITHMETIC_P (x0
)
4410 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4412 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4413 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4417 if (ARITHMETIC_P (x1
)
4418 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4420 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4421 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4426 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4429 /* Return the number of bits at the high-order end of X that are known to
4430 be equal to the sign bit. X will be used in mode MODE; if MODE is
4431 VOIDmode, X will be used in its own mode. The returned value will always
4432 be between 1 and the number of bits in MODE. */
4435 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4436 enum machine_mode known_mode
,
4437 unsigned int known_ret
)
4439 enum rtx_code code
= GET_CODE (x
);
4440 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4441 int num0
, num1
, result
;
4442 unsigned HOST_WIDE_INT nonzero
;
4444 /* If we weren't given a mode, use the mode of X. If the mode is still
4445 VOIDmode, we don't know anything. Likewise if one of the modes is
4448 if (mode
== VOIDmode
)
4449 mode
= GET_MODE (x
);
4451 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4452 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4455 /* For a smaller object, just ignore the high bits. */
4456 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4458 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4459 known_x
, known_mode
, known_ret
);
4461 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4464 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4466 #ifndef WORD_REGISTER_OPERATIONS
4467 /* If this machine does not do all register operations on the entire
4468 register and MODE is wider than the mode of X, we can say nothing
4469 at all about the high-order bits. */
4472 /* Likewise on machines that do, if the mode of the object is smaller
4473 than a word and loads of that size don't sign extend, we can say
4474 nothing about the high order bits. */
4475 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4476 #ifdef LOAD_EXTEND_OP
4477 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4488 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4489 /* If pointers extend signed and this is a pointer in Pmode, say that
4490 all the bits above ptr_mode are known to be sign bit copies. */
4491 /* As we do not know which address space the pointer is referring to,
4492 we can do this only if the target does not support different pointer
4493 or address modes depending on the address space. */
4494 if (target_default_pointer_address_modes_p ()
4495 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4496 && mode
== Pmode
&& REG_POINTER (x
))
4497 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4501 unsigned int copies_for_hook
= 1, copies
= 1;
4502 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4503 known_mode
, known_ret
,
4507 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4508 known_mode
, known_ret
);
4510 if (copies
> 1 || copies_for_hook
> 1)
4511 return MAX (copies
, copies_for_hook
);
4513 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4518 #ifdef LOAD_EXTEND_OP
4519 /* Some RISC machines sign-extend all loads of smaller than a word. */
4520 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4521 return MAX (1, ((int) bitwidth
4522 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4527 /* If the constant is negative, take its 1's complement and remask.
4528 Then see how many zero bits we have. */
4529 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4530 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4531 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4532 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4534 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4537 /* If this is a SUBREG for a promoted object that is sign-extended
4538 and we are looking at it in a wider mode, we know that at least the
4539 high-order bits are known to be sign bit copies. */
4541 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4543 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4544 known_x
, known_mode
, known_ret
);
4545 return MAX ((int) bitwidth
4546 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4550 /* For a smaller object, just ignore the high bits. */
4551 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4553 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4554 known_x
, known_mode
, known_ret
);
4555 return MAX (1, (num0
4556 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4560 #ifdef WORD_REGISTER_OPERATIONS
4561 #ifdef LOAD_EXTEND_OP
4562 /* For paradoxical SUBREGs on machines where all register operations
4563 affect the entire register, just look inside. Note that we are
4564 passing MODE to the recursive call, so the number of sign bit copies
4565 will remain relative to that mode, not the inner mode. */
4567 /* This works only if loads sign extend. Otherwise, if we get a
4568 reload for the inner part, it may be loaded from the stack, and
4569 then we lose all sign bit copies that existed before the store
4572 if (paradoxical_subreg_p (x
)
4573 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4574 && MEM_P (SUBREG_REG (x
)))
4575 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4576 known_x
, known_mode
, known_ret
);
4582 if (CONST_INT_P (XEXP (x
, 1)))
4583 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4587 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4588 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4589 known_x
, known_mode
, known_ret
));
4592 /* For a smaller object, just ignore the high bits. */
4593 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4594 known_x
, known_mode
, known_ret
);
4595 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4599 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4600 known_x
, known_mode
, known_ret
);
4602 case ROTATE
: case ROTATERT
:
4603 /* If we are rotating left by a number of bits less than the number
4604 of sign bit copies, we can just subtract that amount from the
4606 if (CONST_INT_P (XEXP (x
, 1))
4607 && INTVAL (XEXP (x
, 1)) >= 0
4608 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4610 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4611 known_x
, known_mode
, known_ret
);
4612 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4613 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4618 /* In general, this subtracts one sign bit copy. But if the value
4619 is known to be positive, the number of sign bit copies is the
4620 same as that of the input. Finally, if the input has just one bit
4621 that might be nonzero, all the bits are copies of the sign bit. */
4622 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4623 known_x
, known_mode
, known_ret
);
4624 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4625 return num0
> 1 ? num0
- 1 : 1;
4627 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4632 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4637 case IOR
: case AND
: case XOR
:
4638 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4639 /* Logical operations will preserve the number of sign-bit copies.
4640 MIN and MAX operations always return one of the operands. */
4641 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4642 known_x
, known_mode
, known_ret
);
4643 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4644 known_x
, known_mode
, known_ret
);
4646 /* If num1 is clearing some of the top bits then regardless of
4647 the other term, we are guaranteed to have at least that many
4648 high-order zero bits. */
4651 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4652 && CONST_INT_P (XEXP (x
, 1))
4653 && (UINTVAL (XEXP (x
, 1))
4654 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4657 /* Similarly for IOR when setting high-order bits. */
4660 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4661 && CONST_INT_P (XEXP (x
, 1))
4662 && (UINTVAL (XEXP (x
, 1))
4663 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4666 return MIN (num0
, num1
);
4668 case PLUS
: case MINUS
:
4669 /* For addition and subtraction, we can have a 1-bit carry. However,
4670 if we are subtracting 1 from a positive number, there will not
4671 be such a carry. Furthermore, if the positive number is known to
4672 be 0 or 1, we know the result is either -1 or 0. */
4674 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4675 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4677 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4678 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4679 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4680 : bitwidth
- floor_log2 (nonzero
) - 1);
4683 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4684 known_x
, known_mode
, known_ret
);
4685 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4686 known_x
, known_mode
, known_ret
);
4687 result
= MAX (1, MIN (num0
, num1
) - 1);
4692 /* The number of bits of the product is the sum of the number of
4693 bits of both terms. However, unless one of the terms if known
4694 to be positive, we must allow for an additional bit since negating
4695 a negative number can remove one sign bit copy. */
4697 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4698 known_x
, known_mode
, known_ret
);
4699 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4700 known_x
, known_mode
, known_ret
);
4702 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4704 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4705 || (((nonzero_bits (XEXP (x
, 0), mode
)
4706 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4707 && ((nonzero_bits (XEXP (x
, 1), mode
)
4708 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4712 return MAX (1, result
);
4715 /* The result must be <= the first operand. If the first operand
4716 has the high bit set, we know nothing about the number of sign
4718 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4720 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4721 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4724 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4725 known_x
, known_mode
, known_ret
);
4728 /* The result must be <= the second operand. If the second operand
4729 has (or just might have) the high bit set, we know nothing about
4730 the number of sign bit copies. */
4731 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4733 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4734 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4737 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4738 known_x
, known_mode
, known_ret
);
4741 /* Similar to unsigned division, except that we have to worry about
4742 the case where the divisor is negative, in which case we have
4744 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4745 known_x
, known_mode
, known_ret
);
4747 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4748 || (nonzero_bits (XEXP (x
, 1), mode
)
4749 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4755 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4756 known_x
, known_mode
, known_ret
);
4758 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4759 || (nonzero_bits (XEXP (x
, 1), mode
)
4760 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4766 /* Shifts by a constant add to the number of bits equal to the
4768 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4769 known_x
, known_mode
, known_ret
);
4770 if (CONST_INT_P (XEXP (x
, 1))
4771 && INTVAL (XEXP (x
, 1)) > 0
4772 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4773 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4778 /* Left shifts destroy copies. */
4779 if (!CONST_INT_P (XEXP (x
, 1))
4780 || INTVAL (XEXP (x
, 1)) < 0
4781 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4782 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4785 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4786 known_x
, known_mode
, known_ret
);
4787 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4790 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4791 known_x
, known_mode
, known_ret
);
4792 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4793 known_x
, known_mode
, known_ret
);
4794 return MIN (num0
, num1
);
4796 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4797 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4798 case GEU
: case GTU
: case LEU
: case LTU
:
4799 case UNORDERED
: case ORDERED
:
4800 /* If the constant is negative, take its 1's complement and remask.
4801 Then see how many zero bits we have. */
4802 nonzero
= STORE_FLAG_VALUE
;
4803 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4804 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4805 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4807 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4813 /* If we haven't been able to figure it out by one of the above rules,
4814 see if some of the high-order bits are known to be zero. If so,
4815 count those bits and return one less than that amount. If we can't
4816 safely compute the mask for this mode, always return BITWIDTH. */
4818 bitwidth
= GET_MODE_PRECISION (mode
);
4819 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4822 nonzero
= nonzero_bits (x
, mode
);
4823 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4824 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4827 /* Calculate the rtx_cost of a single instruction. A return value of
4828 zero indicates an instruction pattern without a known cost. */
4831 insn_rtx_cost (rtx pat
, bool speed
)
4836 /* Extract the single set rtx from the instruction pattern.
4837 We can't use single_set since we only have the pattern. */
4838 if (GET_CODE (pat
) == SET
)
4840 else if (GET_CODE (pat
) == PARALLEL
)
4843 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4845 rtx x
= XVECEXP (pat
, 0, i
);
4846 if (GET_CODE (x
) == SET
)
4859 cost
= set_src_cost (SET_SRC (set
), speed
);
4860 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4863 /* Given an insn INSN and condition COND, return the condition in a
4864 canonical form to simplify testing by callers. Specifically:
4866 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4867 (2) Both operands will be machine operands; (cc0) will have been replaced.
4868 (3) If an operand is a constant, it will be the second operand.
4869 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4870 for GE, GEU, and LEU.
4872 If the condition cannot be understood, or is an inequality floating-point
4873 comparison which needs to be reversed, 0 will be returned.
4875 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4877 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4878 insn used in locating the condition was found. If a replacement test
4879 of the condition is desired, it should be placed in front of that
4880 insn and we will be sure that the inputs are still valid.
4882 If WANT_REG is nonzero, we wish the condition to be relative to that
4883 register, if possible. Therefore, do not canonicalize the condition
4884 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4885 to be a compare to a CC mode register.
4887 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4891 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4892 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4899 int reverse_code
= 0;
4900 enum machine_mode mode
;
4901 basic_block bb
= BLOCK_FOR_INSN (insn
);
4903 code
= GET_CODE (cond
);
4904 mode
= GET_MODE (cond
);
4905 op0
= XEXP (cond
, 0);
4906 op1
= XEXP (cond
, 1);
4909 code
= reversed_comparison_code (cond
, insn
);
4910 if (code
== UNKNOWN
)
4916 /* If we are comparing a register with zero, see if the register is set
4917 in the previous insn to a COMPARE or a comparison operation. Perform
4918 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4921 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4922 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4923 && op1
== CONST0_RTX (GET_MODE (op0
))
4926 /* Set nonzero when we find something of interest. */
4930 /* If comparison with cc0, import actual comparison from compare
4934 if ((prev
= prev_nonnote_insn (prev
)) == 0
4935 || !NONJUMP_INSN_P (prev
)
4936 || (set
= single_set (prev
)) == 0
4937 || SET_DEST (set
) != cc0_rtx
)
4940 op0
= SET_SRC (set
);
4941 op1
= CONST0_RTX (GET_MODE (op0
));
4947 /* If this is a COMPARE, pick up the two things being compared. */
4948 if (GET_CODE (op0
) == COMPARE
)
4950 op1
= XEXP (op0
, 1);
4951 op0
= XEXP (op0
, 0);
4954 else if (!REG_P (op0
))
4957 /* Go back to the previous insn. Stop if it is not an INSN. We also
4958 stop if it isn't a single set or if it has a REG_INC note because
4959 we don't want to bother dealing with it. */
4961 prev
= prev_nonnote_nondebug_insn (prev
);
4964 || !NONJUMP_INSN_P (prev
)
4965 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4966 /* In cfglayout mode, there do not have to be labels at the
4967 beginning of a block, or jumps at the end, so the previous
4968 conditions would not stop us when we reach bb boundary. */
4969 || BLOCK_FOR_INSN (prev
) != bb
)
4972 set
= set_of (op0
, prev
);
4975 && (GET_CODE (set
) != SET
4976 || !rtx_equal_p (SET_DEST (set
), op0
)))
4979 /* If this is setting OP0, get what it sets it to if it looks
4983 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4984 #ifdef FLOAT_STORE_FLAG_VALUE
4985 REAL_VALUE_TYPE fsfv
;
4988 /* ??? We may not combine comparisons done in a CCmode with
4989 comparisons not done in a CCmode. This is to aid targets
4990 like Alpha that have an IEEE compliant EQ instruction, and
4991 a non-IEEE compliant BEQ instruction. The use of CCmode is
4992 actually artificial, simply to prevent the combination, but
4993 should not affect other platforms.
4995 However, we must allow VOIDmode comparisons to match either
4996 CCmode or non-CCmode comparison, because some ports have
4997 modeless comparisons inside branch patterns.
4999 ??? This mode check should perhaps look more like the mode check
5000 in simplify_comparison in combine. */
5002 if ((GET_CODE (SET_SRC (set
)) == COMPARE
5005 && val_signbit_known_set_p (inner_mode
,
5007 #ifdef FLOAT_STORE_FLAG_VALUE
5009 && SCALAR_FLOAT_MODE_P (inner_mode
)
5010 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5011 REAL_VALUE_NEGATIVE (fsfv
)))
5014 && COMPARISON_P (SET_SRC (set
))))
5015 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5016 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5017 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5019 else if (((code
== EQ
5021 && val_signbit_known_set_p (inner_mode
,
5023 #ifdef FLOAT_STORE_FLAG_VALUE
5025 && SCALAR_FLOAT_MODE_P (inner_mode
)
5026 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5027 REAL_VALUE_NEGATIVE (fsfv
)))
5030 && COMPARISON_P (SET_SRC (set
))
5031 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5032 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5033 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5043 else if (reg_set_p (op0
, prev
))
5044 /* If this sets OP0, but not directly, we have to give up. */
5049 /* If the caller is expecting the condition to be valid at INSN,
5050 make sure X doesn't change before INSN. */
5051 if (valid_at_insn_p
)
5052 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5054 if (COMPARISON_P (x
))
5055 code
= GET_CODE (x
);
5058 code
= reversed_comparison_code (x
, prev
);
5059 if (code
== UNKNOWN
)
5064 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5070 /* If constant is first, put it last. */
5071 if (CONSTANT_P (op0
))
5072 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5074 /* If OP0 is the result of a comparison, we weren't able to find what
5075 was really being compared, so fail. */
5077 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5080 /* Canonicalize any ordered comparison with integers involving equality
5081 if we can do computations in the relevant mode and we do not
5084 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5085 && CONST_INT_P (op1
)
5086 && GET_MODE (op0
) != VOIDmode
5087 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5089 HOST_WIDE_INT const_val
= INTVAL (op1
);
5090 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5091 unsigned HOST_WIDE_INT max_val
5092 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5097 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5098 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5101 /* When cross-compiling, const_val might be sign-extended from
5102 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5104 if ((const_val
& max_val
)
5105 != ((unsigned HOST_WIDE_INT
) 1
5106 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5107 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5111 if (uconst_val
< max_val
)
5112 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5116 if (uconst_val
!= 0)
5117 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5125 /* Never return CC0; return zero instead. */
5129 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5132 /* Given a jump insn JUMP, return the condition that will cause it to branch
5133 to its JUMP_LABEL. If the condition cannot be understood, or is an
5134 inequality floating-point comparison which needs to be reversed, 0 will
5137 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5138 insn used in locating the condition was found. If a replacement test
5139 of the condition is desired, it should be placed in front of that
5140 insn and we will be sure that the inputs are still valid. If EARLIEST
5141 is null, the returned condition will be valid at INSN.
5143 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5144 compare CC mode register.
5146 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5149 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5155 /* If this is not a standard conditional jump, we can't parse it. */
5157 || ! any_condjump_p (jump
))
5159 set
= pc_set (jump
);
5161 cond
= XEXP (SET_SRC (set
), 0);
5163 /* If this branches to JUMP_LABEL when the condition is false, reverse
5166 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5167 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5169 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5170 allow_cc_mode
, valid_at_insn_p
);
5173 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5174 TARGET_MODE_REP_EXTENDED.
5176 Note that we assume that the property of
5177 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5178 narrower than mode B. I.e., if A is a mode narrower than B then in
5179 order to be able to operate on it in mode B, mode A needs to
5180 satisfy the requirements set by the representation of mode B. */
5183 init_num_sign_bit_copies_in_rep (void)
5185 enum machine_mode mode
, in_mode
;
5187 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5188 in_mode
= GET_MODE_WIDER_MODE (mode
))
5189 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5190 mode
= GET_MODE_WIDER_MODE (mode
))
5192 enum machine_mode i
;
5194 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5195 extends to the next widest mode. */
5196 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5197 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5199 /* We are in in_mode. Count how many bits outside of mode
5200 have to be copies of the sign-bit. */
5201 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5203 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5205 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5206 /* We can only check sign-bit copies starting from the
5207 top-bit. In order to be able to check the bits we
5208 have already seen we pretend that subsequent bits
5209 have to be sign-bit copies too. */
5210 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5211 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5212 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5217 /* Suppose that truncation from the machine mode of X to MODE is not a
5218 no-op. See if there is anything special about X so that we can
5219 assume it already contains a truncated value of MODE. */
5222 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5224 /* This register has already been used in MODE without explicit
5226 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5229 /* See if we already satisfy the requirements of MODE. If yes we
5230 can just switch to MODE. */
5231 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5232 && (num_sign_bit_copies (x
, GET_MODE (x
))
5233 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5239 /* Initialize non_rtx_starting_operands, which is used to speed up
5245 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5247 const char *format
= GET_RTX_FORMAT (i
);
5248 const char *first
= strpbrk (format
, "eEV");
5249 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5252 init_num_sign_bit_copies_in_rep ();
5255 /* Check whether this is a constant pool constant. */
5257 constant_pool_constant_p (rtx x
)
5259 x
= avoid_constant_pool_reference (x
);
5260 return CONST_DOUBLE_P (x
);
5263 /* If M is a bitmask that selects a field of low-order bits within an item but
5264 not the entire word, return the length of the field. Return -1 otherwise.
5265 M is used in machine mode MODE. */
5268 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5270 if (mode
!= VOIDmode
)
5272 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5274 m
&= GET_MODE_MASK (mode
);
5277 return exact_log2 (m
+ 1);
5280 /* Return the mode of MEM's address. */
5283 get_address_mode (rtx mem
)
5285 enum machine_mode mode
;
5287 gcc_assert (MEM_P (mem
));
5288 mode
= GET_MODE (XEXP (mem
, 0));
5289 if (mode
!= VOIDmode
)
5291 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5294 /* Split up a CONST_DOUBLE or integer constant rtx
5295 into two rtx's for single words,
5296 storing in *FIRST the word that comes first in memory in the target
5297 and in *SECOND the other. */
5300 split_double (rtx value
, rtx
*first
, rtx
*second
)
5302 if (CONST_INT_P (value
))
5304 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5306 /* In this case the CONST_INT holds both target words.
5307 Extract the bits from it into two word-sized pieces.
5308 Sign extend each half to HOST_WIDE_INT. */
5309 unsigned HOST_WIDE_INT low
, high
;
5310 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5311 unsigned bits_per_word
= BITS_PER_WORD
;
5313 /* Set sign_bit to the most significant bit of a word. */
5315 sign_bit
<<= bits_per_word
- 1;
5317 /* Set mask so that all bits of the word are set. We could
5318 have used 1 << BITS_PER_WORD instead of basing the
5319 calculation on sign_bit. However, on machines where
5320 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5321 compiler warning, even though the code would never be
5323 mask
= sign_bit
<< 1;
5326 /* Set sign_extend as any remaining bits. */
5327 sign_extend
= ~mask
;
5329 /* Pick the lower word and sign-extend it. */
5330 low
= INTVAL (value
);
5335 /* Pick the higher word, shifted to the least significant
5336 bits, and sign-extend it. */
5337 high
= INTVAL (value
);
5338 high
>>= bits_per_word
- 1;
5341 if (high
& sign_bit
)
5342 high
|= sign_extend
;
5344 /* Store the words in the target machine order. */
5345 if (WORDS_BIG_ENDIAN
)
5347 *first
= GEN_INT (high
);
5348 *second
= GEN_INT (low
);
5352 *first
= GEN_INT (low
);
5353 *second
= GEN_INT (high
);
5358 /* The rule for using CONST_INT for a wider mode
5359 is that we regard the value as signed.
5360 So sign-extend it. */
5361 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5362 if (WORDS_BIG_ENDIAN
)
5374 else if (!CONST_DOUBLE_P (value
))
5376 if (WORDS_BIG_ENDIAN
)
5378 *first
= const0_rtx
;
5384 *second
= const0_rtx
;
5387 else if (GET_MODE (value
) == VOIDmode
5388 /* This is the old way we did CONST_DOUBLE integers. */
5389 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5391 /* In an integer, the words are defined as most and least significant.
5392 So order them by the target's convention. */
5393 if (WORDS_BIG_ENDIAN
)
5395 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5396 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5400 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5401 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5408 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
5410 /* Note, this converts the REAL_VALUE_TYPE to the target's
5411 format, splits up the floating point double and outputs
5412 exactly 32 bits of it into each of l[0] and l[1] --
5413 not necessarily BITS_PER_WORD bits. */
5414 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
5416 /* If 32 bits is an entire word for the target, but not for the host,
5417 then sign-extend on the host so that the number will look the same
5418 way on the host that it would on the target. See for instance
5419 simplify_unary_operation. The #if is needed to avoid compiler
5422 #if HOST_BITS_PER_LONG > 32
5423 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5425 if (l
[0] & ((long) 1 << 31))
5426 l
[0] |= ((long) (-1) << 32);
5427 if (l
[1] & ((long) 1 << 31))
5428 l
[1] |= ((long) (-1) << 32);
5432 *first
= GEN_INT (l
[0]);
5433 *second
= GEN_INT (l
[1]);
5437 /* Strip outer address "mutations" from LOC and return a pointer to the
5438 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5439 stripped expression there.
5441 "Mutations" either convert between modes or apply some kind of
5445 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
5449 enum rtx_code code
= GET_CODE (*loc
);
5450 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
5451 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5452 used to convert between pointer sizes. */
5453 loc
= &XEXP (*loc
, 0);
5454 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
5455 /* (and ... (const_int -X)) is used to align to X bytes. */
5456 loc
= &XEXP (*loc
, 0);
5457 else if (code
== SUBREG
5458 && !OBJECT_P (SUBREG_REG (*loc
))
5459 && subreg_lowpart_p (*loc
))
5460 /* (subreg (operator ...) ...) inside and is used for mode
5462 loc
= &SUBREG_REG (*loc
);
5470 /* Return true if X must be a base rather than an index. */
5473 must_be_base_p (rtx x
)
5475 return GET_CODE (x
) == LO_SUM
;
5478 /* Return true if X must be an index rather than a base. */
5481 must_be_index_p (rtx x
)
5483 return GET_CODE (x
) == MULT
|| GET_CODE (x
) == ASHIFT
;
5486 /* Set the segment part of address INFO to LOC, given that INNER is the
5490 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5492 gcc_checking_assert (GET_CODE (*inner
) == UNSPEC
);
5494 gcc_assert (!info
->segment
);
5495 info
->segment
= loc
;
5496 info
->segment_term
= inner
;
5499 /* Set the base part of address INFO to LOC, given that INNER is the
5503 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5505 if (GET_CODE (*inner
) == LO_SUM
)
5506 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5507 gcc_checking_assert (REG_P (*inner
)
5509 || GET_CODE (*inner
) == SUBREG
);
5511 gcc_assert (!info
->base
);
5513 info
->base_term
= inner
;
5516 /* Set the index part of address INFO to LOC, given that INNER is the
5520 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5522 if ((GET_CODE (*inner
) == MULT
|| GET_CODE (*inner
) == ASHIFT
)
5523 && CONSTANT_P (XEXP (*inner
, 1)))
5524 inner
= strip_address_mutations (&XEXP (*inner
, 0));
5525 gcc_checking_assert (REG_P (*inner
)
5527 || GET_CODE (*inner
) == SUBREG
);
5529 gcc_assert (!info
->index
);
5531 info
->index_term
= inner
;
5534 /* Set the displacement part of address INFO to LOC, given that INNER
5535 is the constant term. */
5538 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
5540 gcc_checking_assert (CONSTANT_P (*inner
));
5542 gcc_assert (!info
->disp
);
5544 info
->disp_term
= inner
;
5547 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5548 rest of INFO accordingly. */
5551 decompose_incdec_address (struct address_info
*info
)
5553 info
->autoinc_p
= true;
5555 rtx
*base
= &XEXP (*info
->inner
, 0);
5556 set_address_base (info
, base
, base
);
5557 gcc_checking_assert (info
->base
== info
->base_term
);
5559 /* These addresses are only valid when the size of the addressed
5561 gcc_checking_assert (info
->mode
!= VOIDmode
);
5564 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5565 of INFO accordingly. */
5568 decompose_automod_address (struct address_info
*info
)
5570 info
->autoinc_p
= true;
5572 rtx
*base
= &XEXP (*info
->inner
, 0);
5573 set_address_base (info
, base
, base
);
5574 gcc_checking_assert (info
->base
== info
->base_term
);
5576 rtx plus
= XEXP (*info
->inner
, 1);
5577 gcc_assert (GET_CODE (plus
) == PLUS
);
5579 info
->base_term2
= &XEXP (plus
, 0);
5580 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
5582 rtx
*step
= &XEXP (plus
, 1);
5583 rtx
*inner_step
= strip_address_mutations (step
);
5584 if (CONSTANT_P (*inner_step
))
5585 set_address_disp (info
, step
, inner_step
);
5587 set_address_index (info
, step
, inner_step
);
5590 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5591 values in [PTR, END). Return a pointer to the end of the used array. */
5594 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
5597 if (GET_CODE (x
) == PLUS
)
5599 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
5600 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
5604 gcc_assert (ptr
!= end
);
5610 /* Evaluate the likelihood of X being a base or index value, returning
5611 positive if it is likely to be a base, negative if it is likely to be
5612 an index, and 0 if we can't tell. Make the magnitude of the return
5613 value reflect the amount of confidence we have in the answer.
5615 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5618 baseness (rtx x
, enum machine_mode mode
, addr_space_t as
,
5619 enum rtx_code outer_code
, enum rtx_code index_code
)
5621 /* See whether we can be certain. */
5622 if (must_be_base_p (x
))
5624 if (must_be_index_p (x
))
5627 /* Believe *_POINTER unless the address shape requires otherwise. */
5628 if (REG_P (x
) && REG_POINTER (x
))
5630 if (MEM_P (x
) && MEM_POINTER (x
))
5633 if (REG_P (x
) && HARD_REGISTER_P (x
))
5635 /* X is a hard register. If it only fits one of the base
5636 or index classes, choose that interpretation. */
5637 int regno
= REGNO (x
);
5638 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
5639 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
5640 if (base_p
!= index_p
)
5641 return base_p
? 1 : -1;
5646 /* INFO->INNER describes a normal, non-automodified address.
5647 Fill in the rest of INFO accordingly. */
5650 decompose_normal_address (struct address_info
*info
)
5652 /* Treat the address as the sum of up to four values. */
5654 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
5655 ops
+ ARRAY_SIZE (ops
)) - ops
;
5657 /* If there is more than one component, any base component is in a PLUS. */
5659 info
->base_outer_code
= PLUS
;
5661 /* Separate the parts that contain a REG or MEM from those that don't.
5662 Record the latter in INFO and leave the former in OPS. */
5665 for (size_t in
= 0; in
< n_ops
; ++in
)
5668 rtx
*inner
= strip_address_mutations (loc
);
5669 if (CONSTANT_P (*inner
))
5670 set_address_disp (info
, loc
, inner
);
5671 else if (GET_CODE (*inner
) == UNSPEC
)
5672 set_address_segment (info
, loc
, inner
);
5676 inner_ops
[out
] = inner
;
5681 /* Classify the remaining OPS members as bases and indexes. */
5684 /* Assume that the remaining value is a base unless the shape
5685 requires otherwise. */
5686 if (!must_be_index_p (*inner_ops
[0]))
5687 set_address_base (info
, ops
[0], inner_ops
[0]);
5689 set_address_index (info
, ops
[0], inner_ops
[0]);
5693 /* In the event of a tie, assume the base comes first. */
5694 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
5696 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
5697 GET_CODE (*ops
[0])))
5699 set_address_base (info
, ops
[0], inner_ops
[0]);
5700 set_address_index (info
, ops
[1], inner_ops
[1]);
5704 set_address_base (info
, ops
[1], inner_ops
[1]);
5705 set_address_index (info
, ops
[0], inner_ops
[0]);
5709 gcc_assert (out
== 0);
5712 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5713 or VOIDmode if not known. AS is the address space associated with LOC.
5714 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5717 decompose_address (struct address_info
*info
, rtx
*loc
, enum machine_mode mode
,
5718 addr_space_t as
, enum rtx_code outer_code
)
5720 memset (info
, 0, sizeof (*info
));
5723 info
->addr_outer_code
= outer_code
;
5725 info
->inner
= strip_address_mutations (loc
, &outer_code
);
5726 info
->base_outer_code
= outer_code
;
5727 switch (GET_CODE (*info
->inner
))
5733 decompose_incdec_address (info
);
5738 decompose_automod_address (info
);
5742 decompose_normal_address (info
);
5747 /* Describe address operand LOC in INFO. */
5750 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
5752 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
5755 /* Describe the address of MEM X in INFO. */
5758 decompose_mem_address (struct address_info
*info
, rtx x
)
5760 gcc_assert (MEM_P (x
));
5761 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
5762 MEM_ADDR_SPACE (x
), MEM
);
5765 /* Update INFO after a change to the address it describes. */
5768 update_address (struct address_info
*info
)
5770 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
5771 info
->addr_outer_code
);
5774 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5775 more complicated than that. */
5778 get_index_scale (const struct address_info
*info
)
5780 rtx index
= *info
->index
;
5781 if (GET_CODE (index
) == MULT
5782 && CONST_INT_P (XEXP (index
, 1))
5783 && info
->index_term
== &XEXP (index
, 0))
5784 return INTVAL (XEXP (index
, 1));
5786 if (GET_CODE (index
) == ASHIFT
5787 && CONST_INT_P (XEXP (index
, 1))
5788 && info
->index_term
== &XEXP (index
, 0))
5789 return (HOST_WIDE_INT
) 1 << INTVAL (XEXP (index
, 1));
5791 if (info
->index
== info
->index_term
)
5797 /* Return the "index code" of INFO, in the form required by
5801 get_index_code (const struct address_info
*info
)
5804 return GET_CODE (*info
->index
);
5807 return GET_CODE (*info
->disp
);