2011-10-19 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob2a47dc6b0a90b6221970a879244317869e3b2ee0
1 /* Tail merging for gimple.
2 Copyright (C) 2011 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 SWITCHES
181 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
183 #include "config.h"
184 #include "system.h"
185 #include "coretypes.h"
186 #include "tm.h"
187 #include "tree.h"
188 #include "tm_p.h"
189 #include "basic-block.h"
190 #include "output.h"
191 #include "flags.h"
192 #include "function.h"
193 #include "tree-flow.h"
194 #include "timevar.h"
195 #include "bitmap.h"
196 #include "tree-ssa-alias.h"
197 #include "params.h"
198 #include "tree-pretty-print.h"
199 #include "hashtab.h"
200 #include "gimple-pretty-print.h"
201 #include "tree-ssa-sccvn.h"
202 #include "tree-dump.h"
204 /* Describes a group of bbs with the same successors. The successor bbs are
205 cached in succs, and the successor edge flags are cached in succ_flags.
206 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
207 it's marked in inverse.
208 Additionally, the hash value for the struct is cached in hashval, and
209 in_worklist indicates whether it's currently part of worklist. */
211 struct same_succ_def
213 /* The bbs that have the same successor bbs. */
214 bitmap bbs;
215 /* The successor bbs. */
216 bitmap succs;
217 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
218 bb. */
219 bitmap inverse;
220 /* The edge flags for each of the successor bbs. */
221 VEC (int, heap) *succ_flags;
222 /* Indicates whether the struct is currently in the worklist. */
223 bool in_worklist;
224 /* The hash value of the struct. */
225 hashval_t hashval;
227 typedef struct same_succ_def *same_succ;
228 typedef const struct same_succ_def *const_same_succ;
230 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
232 struct bb_cluster_def
234 /* The bbs in the cluster. */
235 bitmap bbs;
236 /* The preds of the bbs in the cluster. */
237 bitmap preds;
238 /* Index in all_clusters vector. */
239 int index;
240 /* The bb to replace the cluster with. */
241 basic_block rep_bb;
243 typedef struct bb_cluster_def *bb_cluster;
244 typedef const struct bb_cluster_def *const_bb_cluster;
246 /* Per bb-info. */
248 struct aux_bb_info
250 /* The number of non-debug statements in the bb. */
251 int size;
252 /* The same_succ that this bb is a member of. */
253 same_succ bb_same_succ;
254 /* The cluster that this bb is a member of. */
255 bb_cluster cluster;
256 /* The vop state at the exit of a bb. This is shortlived data, used to
257 communicate data between update_block_by and update_vuses. */
258 tree vop_at_exit;
259 /* The bb that either contains or is dominated by the dependencies of the
260 bb. */
261 basic_block dep_bb;
264 /* Macros to access the fields of struct aux_bb_info. */
266 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
267 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
268 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
269 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
270 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
272 /* VAL1 and VAL2 are either:
273 - uses in BB1 and BB2, or
274 - phi alternatives for BB1 and BB2.
275 Return true if the uses have the same gvn value. */
277 static bool
278 gvn_uses_equal (tree val1, tree val2)
280 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
282 if (val1 == val2)
283 return true;
285 if (vn_valueize (val1) != vn_valueize (val2))
286 return false;
288 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
289 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
292 /* Prints E to FILE. */
294 static void
295 same_succ_print (FILE *file, const same_succ e)
297 unsigned int i;
298 bitmap_print (file, e->bbs, "bbs:", "\n");
299 bitmap_print (file, e->succs, "succs:", "\n");
300 bitmap_print (file, e->inverse, "inverse:", "\n");
301 fprintf (file, "flags:");
302 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
303 fprintf (file, " %x", VEC_index (int, e->succ_flags, i));
304 fprintf (file, "\n");
307 /* Prints same_succ VE to VFILE. */
309 static int
310 same_succ_print_traverse (void **ve, void *vfile)
312 const same_succ e = *((const same_succ *)ve);
313 FILE *file = ((FILE*)vfile);
314 same_succ_print (file, e);
315 return 1;
318 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
320 static void
321 update_dep_bb (basic_block use_bb, tree val)
323 basic_block dep_bb;
325 /* Not a dep. */
326 if (TREE_CODE (val) != SSA_NAME)
327 return;
329 /* Skip use of global def. */
330 if (SSA_NAME_IS_DEFAULT_DEF (val))
331 return;
333 /* Skip use of local def. */
334 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
335 if (dep_bb == use_bb)
336 return;
338 if (BB_DEP_BB (use_bb) == NULL
339 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
340 BB_DEP_BB (use_bb) = dep_bb;
343 /* Update BB_DEP_BB, given the dependencies in STMT. */
345 static void
346 stmt_update_dep_bb (gimple stmt)
348 ssa_op_iter iter;
349 use_operand_p use;
351 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
352 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
355 /* Returns whether VAL is used in the same bb as in which it is defined, or
356 in the phi of a successor bb. */
358 static bool
359 local_def (tree val)
361 gimple stmt, def_stmt;
362 basic_block bb, def_bb;
363 imm_use_iterator iter;
364 bool res;
366 if (TREE_CODE (val) != SSA_NAME)
367 return false;
368 def_stmt = SSA_NAME_DEF_STMT (val);
369 def_bb = gimple_bb (def_stmt);
371 res = true;
372 FOR_EACH_IMM_USE_STMT (stmt, iter, val)
374 bb = gimple_bb (stmt);
375 if (bb == def_bb)
376 continue;
377 if (gimple_code (stmt) == GIMPLE_PHI
378 && find_edge (def_bb, bb))
379 continue;
380 res = false;
381 BREAK_FROM_IMM_USE_STMT (iter);
383 return res;
386 /* Calculates hash value for same_succ VE. */
388 static hashval_t
389 same_succ_hash (const void *ve)
391 const_same_succ e = (const_same_succ)ve;
392 hashval_t hashval = bitmap_hash (e->succs);
393 int flags;
394 unsigned int i;
395 unsigned int first = bitmap_first_set_bit (e->bbs);
396 basic_block bb = BASIC_BLOCK (first);
397 int size = 0;
398 gimple_stmt_iterator gsi;
399 gimple stmt;
400 tree arg;
401 unsigned int s;
402 bitmap_iterator bs;
404 for (gsi = gsi_start_nondebug_bb (bb);
405 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
407 stmt = gsi_stmt (gsi);
408 stmt_update_dep_bb (stmt);
409 if (is_gimple_assign (stmt) && local_def (gimple_get_lhs (stmt))
410 && !gimple_has_side_effects (stmt))
411 continue;
412 size++;
414 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
415 if (is_gimple_assign (stmt))
416 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
417 hashval);
418 if (!is_gimple_call (stmt))
419 continue;
420 if (gimple_call_internal_p (stmt))
421 hashval = iterative_hash_hashval_t
422 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
423 else
424 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
425 for (i = 0; i < gimple_call_num_args (stmt); i++)
427 arg = gimple_call_arg (stmt, i);
428 arg = vn_valueize (arg);
429 hashval = iterative_hash_expr (arg, hashval);
433 hashval = iterative_hash_hashval_t (size, hashval);
434 BB_SIZE (bb) = size;
436 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
438 flags = VEC_index (int, e->succ_flags, i);
439 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
440 hashval = iterative_hash_hashval_t (flags, hashval);
443 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
445 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
446 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
447 gsi_next (&gsi))
449 gimple phi = gsi_stmt (gsi);
450 tree lhs = gimple_phi_result (phi);
451 tree val = gimple_phi_arg_def (phi, n);
453 if (!is_gimple_reg (lhs))
454 continue;
455 update_dep_bb (bb, val);
459 return hashval;
462 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
463 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
464 the other edge flags. */
466 static bool
467 inverse_flags (const_same_succ e1, const_same_succ e2)
469 int f1a, f1b, f2a, f2b;
470 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
472 if (VEC_length (int, e1->succ_flags) != 2)
473 return false;
475 f1a = VEC_index (int, e1->succ_flags, 0);
476 f1b = VEC_index (int, e1->succ_flags, 1);
477 f2a = VEC_index (int, e2->succ_flags, 0);
478 f2b = VEC_index (int, e2->succ_flags, 1);
480 if (f1a == f2a && f1b == f2b)
481 return false;
483 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
486 /* Compares SAME_SUCCs VE1 and VE2. */
488 static int
489 same_succ_equal (const void *ve1, const void *ve2)
491 const_same_succ e1 = (const_same_succ)ve1;
492 const_same_succ e2 = (const_same_succ)ve2;
493 unsigned int i, first1, first2;
494 gimple_stmt_iterator gsi1, gsi2;
495 gimple s1, s2;
496 basic_block bb1, bb2;
498 if (e1->hashval != e2->hashval)
499 return 0;
501 if (VEC_length (int, e1->succ_flags) != VEC_length (int, e2->succ_flags))
502 return 0;
504 if (!bitmap_equal_p (e1->succs, e2->succs))
505 return 0;
507 if (!inverse_flags (e1, e2))
509 for (i = 0; i < VEC_length (int, e1->succ_flags); ++i)
510 if (VEC_index (int, e1->succ_flags, i)
511 != VEC_index (int, e1->succ_flags, i))
512 return 0;
515 first1 = bitmap_first_set_bit (e1->bbs);
516 first2 = bitmap_first_set_bit (e2->bbs);
518 bb1 = BASIC_BLOCK (first1);
519 bb2 = BASIC_BLOCK (first2);
521 if (BB_SIZE (bb1) != BB_SIZE (bb2))
522 return 0;
524 gsi1 = gsi_start_nondebug_bb (bb1);
525 gsi2 = gsi_start_nondebug_bb (bb2);
526 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
528 s1 = gsi_stmt (gsi1);
529 s2 = gsi_stmt (gsi2);
530 if (gimple_code (s1) != gimple_code (s2))
531 return 0;
532 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
533 return 0;
534 gsi_next_nondebug (&gsi1);
535 gsi_next_nondebug (&gsi2);
538 return 1;
541 /* Alloc and init a new SAME_SUCC. */
543 static same_succ
544 same_succ_alloc (void)
546 same_succ same = XNEW (struct same_succ_def);
548 same->bbs = BITMAP_ALLOC (NULL);
549 same->succs = BITMAP_ALLOC (NULL);
550 same->inverse = BITMAP_ALLOC (NULL);
551 same->succ_flags = VEC_alloc (int, heap, 10);
552 same->in_worklist = false;
554 return same;
557 /* Delete same_succ VE. */
559 static void
560 same_succ_delete (void *ve)
562 same_succ e = (same_succ)ve;
564 BITMAP_FREE (e->bbs);
565 BITMAP_FREE (e->succs);
566 BITMAP_FREE (e->inverse);
567 VEC_free (int, heap, e->succ_flags);
569 XDELETE (ve);
572 /* Reset same_succ SAME. */
574 static void
575 same_succ_reset (same_succ same)
577 bitmap_clear (same->bbs);
578 bitmap_clear (same->succs);
579 bitmap_clear (same->inverse);
580 VEC_truncate (int, same->succ_flags, 0);
583 /* Hash table with all same_succ entries. */
585 static htab_t same_succ_htab;
587 /* Array that is used to store the edge flags for a successor. */
589 static int *same_succ_edge_flags;
591 /* Bitmap that is used to mark bbs that are recently deleted. */
593 static bitmap deleted_bbs;
595 /* Bitmap that is used to mark predecessors of bbs that are
596 deleted. */
598 static bitmap deleted_bb_preds;
600 /* Prints same_succ_htab to stderr. */
602 extern void debug_same_succ (void);
603 DEBUG_FUNCTION void
604 debug_same_succ ( void)
606 htab_traverse (same_succ_htab, same_succ_print_traverse, stderr);
609 DEF_VEC_P (same_succ);
610 DEF_VEC_ALLOC_P (same_succ, heap);
612 /* Vector of bbs to process. */
614 static VEC (same_succ, heap) *worklist;
616 /* Prints worklist to FILE. */
618 static void
619 print_worklist (FILE *file)
621 unsigned int i;
622 for (i = 0; i < VEC_length (same_succ, worklist); ++i)
623 same_succ_print (file, VEC_index (same_succ, worklist, i));
626 /* Adds SAME to worklist. */
628 static void
629 add_to_worklist (same_succ same)
631 if (same->in_worklist)
632 return;
634 if (bitmap_count_bits (same->bbs) < 2)
635 return;
637 same->in_worklist = true;
638 VEC_safe_push (same_succ, heap, worklist, same);
641 /* Add BB to same_succ_htab. */
643 static void
644 find_same_succ_bb (basic_block bb, same_succ *same_p)
646 unsigned int j;
647 bitmap_iterator bj;
648 same_succ same = *same_p;
649 same_succ *slot;
650 edge_iterator ei;
651 edge e;
653 if (bb == NULL)
654 return;
655 bitmap_set_bit (same->bbs, bb->index);
656 FOR_EACH_EDGE (e, ei, bb->succs)
658 int index = e->dest->index;
659 bitmap_set_bit (same->succs, index);
660 same_succ_edge_flags[index] = e->flags;
662 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
663 VEC_safe_push (int, heap, same->succ_flags, same_succ_edge_flags[j]);
665 same->hashval = same_succ_hash (same);
667 slot = (same_succ *) htab_find_slot_with_hash (same_succ_htab, same,
668 same->hashval, INSERT);
669 if (*slot == NULL)
671 *slot = same;
672 BB_SAME_SUCC (bb) = same;
673 add_to_worklist (same);
674 *same_p = NULL;
676 else
678 bitmap_set_bit ((*slot)->bbs, bb->index);
679 BB_SAME_SUCC (bb) = *slot;
680 add_to_worklist (*slot);
681 if (inverse_flags (same, *slot))
682 bitmap_set_bit ((*slot)->inverse, bb->index);
683 same_succ_reset (same);
687 /* Find bbs with same successors. */
689 static void
690 find_same_succ (void)
692 same_succ same = same_succ_alloc ();
693 basic_block bb;
695 FOR_EACH_BB (bb)
697 find_same_succ_bb (bb, &same);
698 if (same == NULL)
699 same = same_succ_alloc ();
702 same_succ_delete (same);
705 /* Initializes worklist administration. */
707 static void
708 init_worklist (void)
710 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
711 same_succ_htab
712 = htab_create (n_basic_blocks, same_succ_hash, same_succ_equal,
713 same_succ_delete);
714 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
715 deleted_bbs = BITMAP_ALLOC (NULL);
716 deleted_bb_preds = BITMAP_ALLOC (NULL);
717 worklist = VEC_alloc (same_succ, heap, n_basic_blocks);
718 find_same_succ ();
720 if (dump_file && (dump_flags & TDF_DETAILS))
722 fprintf (dump_file, "initial worklist:\n");
723 print_worklist (dump_file);
727 /* Deletes worklist administration. */
729 static void
730 delete_worklist (void)
732 free_aux_for_blocks ();
733 htab_delete (same_succ_htab);
734 same_succ_htab = NULL;
735 XDELETEVEC (same_succ_edge_flags);
736 same_succ_edge_flags = NULL;
737 BITMAP_FREE (deleted_bbs);
738 BITMAP_FREE (deleted_bb_preds);
739 VEC_free (same_succ, heap, worklist);
742 /* Mark BB as deleted, and mark its predecessors. */
744 static void
745 delete_basic_block_same_succ (basic_block bb)
747 edge e;
748 edge_iterator ei;
750 bitmap_set_bit (deleted_bbs, bb->index);
752 FOR_EACH_EDGE (e, ei, bb->preds)
753 bitmap_set_bit (deleted_bb_preds, e->src->index);
756 /* Removes all bbs in BBS from their corresponding same_succ. */
758 static void
759 same_succ_flush_bbs (bitmap bbs)
761 unsigned int i;
762 bitmap_iterator bi;
764 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
766 basic_block bb = BASIC_BLOCK (i);
767 same_succ same = BB_SAME_SUCC (bb);
768 BB_SAME_SUCC (bb) = NULL;
769 if (bitmap_single_bit_set_p (same->bbs))
770 htab_remove_elt_with_hash (same_succ_htab, same, same->hashval);
771 else
772 bitmap_clear_bit (same->bbs, i);
776 /* Release the last vdef in BB, either normal or phi result. */
778 static void
779 release_last_vdef (basic_block bb)
781 gimple_stmt_iterator i;
783 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
785 gimple stmt = gsi_stmt (i);
786 if (gimple_vdef (stmt) == NULL_TREE)
787 continue;
789 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
790 return;
793 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
795 gimple phi = gsi_stmt (i);
796 tree res = gimple_phi_result (phi);
798 if (is_gimple_reg (res))
799 continue;
801 mark_virtual_phi_result_for_renaming (phi);
802 return;
807 /* Delete all deleted_bbs. */
809 static void
810 purge_bbs (bool update_vops)
812 unsigned int i;
813 bitmap_iterator bi;
814 basic_block bb;
816 same_succ_flush_bbs (deleted_bbs);
818 EXECUTE_IF_SET_IN_BITMAP (deleted_bbs, 0, i, bi)
820 bb = BASIC_BLOCK (i);
821 if (!update_vops)
822 release_last_vdef (bb);
824 delete_basic_block (bb);
827 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
828 bitmap_clear (deleted_bbs);
831 /* For deleted_bb_preds, find bbs with same successors. */
833 static void
834 update_worklist (void)
836 unsigned int i;
837 bitmap_iterator bi;
838 basic_block bb;
839 same_succ same;
841 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
842 same_succ_flush_bbs (deleted_bb_preds);
844 same = same_succ_alloc ();
845 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
847 bb = BASIC_BLOCK (i);
848 gcc_assert (bb != NULL);
849 find_same_succ_bb (bb, &same);
850 if (same == NULL)
851 same = same_succ_alloc ();
853 same_succ_delete (same);
854 bitmap_clear (deleted_bb_preds);
857 /* Prints cluster C to FILE. */
859 static void
860 print_cluster (FILE *file, bb_cluster c)
862 if (c == NULL)
863 return;
864 bitmap_print (file, c->bbs, "bbs:", "\n");
865 bitmap_print (file, c->preds, "preds:", "\n");
868 /* Prints cluster C to stderr. */
870 extern void debug_cluster (bb_cluster);
871 DEBUG_FUNCTION void
872 debug_cluster (bb_cluster c)
874 print_cluster (stderr, c);
877 /* Update C->rep_bb, given that BB is added to the cluster. */
879 static void
880 update_rep_bb (bb_cluster c, basic_block bb)
882 /* Initial. */
883 if (c->rep_bb == NULL)
885 c->rep_bb = bb;
886 return;
889 /* Current needs no deps, keep it. */
890 if (BB_DEP_BB (c->rep_bb) == NULL)
891 return;
893 /* Bb needs no deps, change rep_bb. */
894 if (BB_DEP_BB (bb) == NULL)
896 c->rep_bb = bb;
897 return;
900 /* Bb needs last deps earlier than current, change rep_bb. A potential
901 problem with this, is that the first deps might also be earlier, which
902 would mean we prefer longer lifetimes for the deps. To be able to check
903 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
904 BB_DEP_BB, which is really BB_LAST_DEP_BB.
905 The benefit of choosing the bb with last deps earlier, is that it can
906 potentially be used as replacement for more bbs. */
907 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
908 c->rep_bb = bb;
911 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
913 static void
914 add_bb_to_cluster (bb_cluster c, basic_block bb)
916 edge e;
917 edge_iterator ei;
919 bitmap_set_bit (c->bbs, bb->index);
921 FOR_EACH_EDGE (e, ei, bb->preds)
922 bitmap_set_bit (c->preds, e->src->index);
924 update_rep_bb (c, bb);
927 /* Allocate and init new cluster. */
929 static bb_cluster
930 new_cluster (void)
932 bb_cluster c;
933 c = XCNEW (struct bb_cluster_def);
934 c->bbs = BITMAP_ALLOC (NULL);
935 c->preds = BITMAP_ALLOC (NULL);
936 c->rep_bb = NULL;
937 return c;
940 /* Delete clusters. */
942 static void
943 delete_cluster (bb_cluster c)
945 if (c == NULL)
946 return;
947 BITMAP_FREE (c->bbs);
948 BITMAP_FREE (c->preds);
949 XDELETE (c);
952 DEF_VEC_P (bb_cluster);
953 DEF_VEC_ALLOC_P (bb_cluster, heap);
955 /* Array that contains all clusters. */
957 static VEC (bb_cluster, heap) *all_clusters;
959 /* Allocate all cluster vectors. */
961 static void
962 alloc_cluster_vectors (void)
964 all_clusters = VEC_alloc (bb_cluster, heap, n_basic_blocks);
967 /* Reset all cluster vectors. */
969 static void
970 reset_cluster_vectors (void)
972 unsigned int i;
973 basic_block bb;
974 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
975 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
976 VEC_truncate (bb_cluster, all_clusters, 0);
977 FOR_EACH_BB (bb)
978 BB_CLUSTER (bb) = NULL;
981 /* Delete all cluster vectors. */
983 static void
984 delete_cluster_vectors (void)
986 unsigned int i;
987 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
988 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
989 VEC_free (bb_cluster, heap, all_clusters);
992 /* Merge cluster C2 into C1. */
994 static void
995 merge_clusters (bb_cluster c1, bb_cluster c2)
997 bitmap_ior_into (c1->bbs, c2->bbs);
998 bitmap_ior_into (c1->preds, c2->preds);
1001 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1002 all_clusters, or merge c with existing cluster. */
1004 static void
1005 set_cluster (basic_block bb1, basic_block bb2)
1007 basic_block merge_bb, other_bb;
1008 bb_cluster merge, old, c;
1010 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1012 c = new_cluster ();
1013 add_bb_to_cluster (c, bb1);
1014 add_bb_to_cluster (c, bb2);
1015 BB_CLUSTER (bb1) = c;
1016 BB_CLUSTER (bb2) = c;
1017 c->index = VEC_length (bb_cluster, all_clusters);
1018 VEC_safe_push (bb_cluster, heap, all_clusters, c);
1020 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1022 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1023 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1024 merge = BB_CLUSTER (merge_bb);
1025 add_bb_to_cluster (merge, other_bb);
1026 BB_CLUSTER (other_bb) = merge;
1028 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1030 unsigned int i;
1031 bitmap_iterator bi;
1033 old = BB_CLUSTER (bb2);
1034 merge = BB_CLUSTER (bb1);
1035 merge_clusters (merge, old);
1036 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1037 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1038 VEC_replace (bb_cluster, all_clusters, old->index, NULL);
1039 update_rep_bb (merge, old->rep_bb);
1040 delete_cluster (old);
1042 else
1043 gcc_unreachable ();
1046 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1047 gimple_bb (s2) are members of SAME_SUCC. */
1049 static bool
1050 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1052 unsigned int i;
1053 tree lhs1, lhs2;
1054 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1055 tree t1, t2;
1056 bool equal, inv_cond;
1057 enum tree_code code1, code2;
1059 if (gimple_code (s1) != gimple_code (s2))
1060 return false;
1062 switch (gimple_code (s1))
1064 case GIMPLE_CALL:
1065 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1066 return false;
1067 if (!gimple_call_same_target_p (s1, s2))
1068 return false;
1070 equal = true;
1071 for (i = 0; i < gimple_call_num_args (s1); ++i)
1073 t1 = gimple_call_arg (s1, i);
1074 t2 = gimple_call_arg (s2, i);
1075 if (operand_equal_p (t1, t2, 0))
1076 continue;
1077 if (gvn_uses_equal (t1, t2))
1078 continue;
1079 equal = false;
1080 break;
1082 if (equal)
1083 return true;
1085 lhs1 = gimple_get_lhs (s1);
1086 lhs2 = gimple_get_lhs (s2);
1087 return (lhs1 != NULL_TREE && lhs2 != NULL_TREE
1088 && TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME
1089 && vn_valueize (lhs1) == vn_valueize (lhs2));
1091 case GIMPLE_ASSIGN:
1092 lhs1 = gimple_get_lhs (s1);
1093 lhs2 = gimple_get_lhs (s2);
1094 return (TREE_CODE (lhs1) == SSA_NAME
1095 && TREE_CODE (lhs2) == SSA_NAME
1096 && vn_valueize (lhs1) == vn_valueize (lhs2));
1098 case GIMPLE_COND:
1099 t1 = gimple_cond_lhs (s1);
1100 t2 = gimple_cond_lhs (s2);
1101 if (!operand_equal_p (t1, t2, 0)
1102 && !gvn_uses_equal (t1, t2))
1103 return false;
1105 t1 = gimple_cond_rhs (s1);
1106 t2 = gimple_cond_rhs (s2);
1107 if (!operand_equal_p (t1, t2, 0)
1108 && !gvn_uses_equal (t1, t2))
1109 return false;
1111 code1 = gimple_expr_code (s1);
1112 code2 = gimple_expr_code (s2);
1113 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1114 != bitmap_bit_p (same_succ->inverse, bb2->index));
1115 if (inv_cond)
1117 bool honor_nans
1118 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1119 code2 = invert_tree_comparison (code2, honor_nans);
1121 return code1 == code2;
1123 default:
1124 return false;
1128 /* Let GSI skip backwards over local defs. */
1130 static void
1131 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
1133 gimple stmt;
1135 while (true)
1137 if (gsi_end_p (*gsi))
1138 return;
1139 stmt = gsi_stmt (*gsi);
1140 if (!(is_gimple_assign (stmt) && local_def (gimple_get_lhs (stmt))
1141 && !gimple_has_side_effects (stmt)))
1142 return;
1143 gsi_prev_nondebug (gsi);
1147 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1148 clusters them. */
1150 static void
1151 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1153 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1154 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1156 gsi_advance_bw_nondebug_nonlocal (&gsi1);
1157 gsi_advance_bw_nondebug_nonlocal (&gsi2);
1159 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1161 if (!gimple_equal_p (same_succ, gsi_stmt (gsi1), gsi_stmt (gsi2)))
1162 return;
1164 gsi_prev_nondebug (&gsi1);
1165 gsi_prev_nondebug (&gsi2);
1166 gsi_advance_bw_nondebug_nonlocal (&gsi1);
1167 gsi_advance_bw_nondebug_nonlocal (&gsi2);
1170 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1171 return;
1173 if (dump_file)
1174 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1175 bb1->index, bb2->index);
1177 set_cluster (bb1, bb2);
1180 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1181 E2 are equal. */
1183 static bool
1184 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1186 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1187 gimple_stmt_iterator gsi;
1189 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1191 gimple phi = gsi_stmt (gsi);
1192 tree lhs = gimple_phi_result (phi);
1193 tree val1 = gimple_phi_arg_def (phi, n1);
1194 tree val2 = gimple_phi_arg_def (phi, n2);
1196 if (!is_gimple_reg (lhs))
1197 continue;
1199 if (operand_equal_for_phi_arg_p (val1, val2))
1200 continue;
1201 if (gvn_uses_equal (val1, val2))
1202 continue;
1204 return false;
1207 return true;
1210 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1211 phi alternatives for BB1 and BB2 are equal. */
1213 static bool
1214 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1216 unsigned int s;
1217 bitmap_iterator bs;
1218 edge e1, e2;
1219 basic_block succ;
1221 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1223 succ = BASIC_BLOCK (s);
1224 e1 = find_edge (bb1, succ);
1225 e2 = find_edge (bb2, succ);
1226 if (e1->flags & EDGE_COMPLEX
1227 || e2->flags & EDGE_COMPLEX)
1228 return false;
1230 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1231 the same value. */
1232 if (!same_phi_alternatives_1 (succ, e1, e2))
1233 return false;
1236 return true;
1239 /* Return true if BB has non-vop phis. */
1241 static bool
1242 bb_has_non_vop_phi (basic_block bb)
1244 gimple_seq phis = phi_nodes (bb);
1245 gimple phi;
1247 if (phis == NULL)
1248 return false;
1250 if (!gimple_seq_singleton_p (phis))
1251 return true;
1253 phi = gimple_seq_first_stmt (phis);
1254 return is_gimple_reg (gimple_phi_result (phi));
1257 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1258 invariant that uses in FROM are dominates by their defs. */
1260 static bool
1261 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1263 basic_block cd, dep_bb = BB_DEP_BB (to);
1264 edge_iterator ei;
1265 edge e;
1266 bitmap from_preds = BITMAP_ALLOC (NULL);
1268 if (dep_bb == NULL)
1269 return true;
1271 FOR_EACH_EDGE (e, ei, from->preds)
1272 bitmap_set_bit (from_preds, e->src->index);
1273 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1274 BITMAP_FREE (from_preds);
1276 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1279 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1280 replacement bb) and vice versa maintains the invariant that uses in the
1281 replacement are dominates by their defs. */
1283 static bool
1284 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1286 if (BB_CLUSTER (bb1) != NULL)
1287 bb1 = BB_CLUSTER (bb1)->rep_bb;
1289 if (BB_CLUSTER (bb2) != NULL)
1290 bb2 = BB_CLUSTER (bb2)->rep_bb;
1292 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1293 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1296 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1298 static void
1299 find_clusters_1 (same_succ same_succ)
1301 basic_block bb1, bb2;
1302 unsigned int i, j;
1303 bitmap_iterator bi, bj;
1304 int nr_comparisons;
1305 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1307 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1309 bb1 = BASIC_BLOCK (i);
1311 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1312 phi-nodes in bb1 and bb2, with the same alternatives for the same
1313 preds. */
1314 if (bb_has_non_vop_phi (bb1))
1315 continue;
1317 nr_comparisons = 0;
1318 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1320 bb2 = BASIC_BLOCK (j);
1322 if (bb_has_non_vop_phi (bb2))
1323 continue;
1325 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1326 continue;
1328 /* Limit quadratic behaviour. */
1329 nr_comparisons++;
1330 if (nr_comparisons > max_comparisons)
1331 break;
1333 /* This is a conservative dependency check. We could test more
1334 precise for allowed replacement direction. */
1335 if (!deps_ok_for_redirect (bb1, bb2))
1336 continue;
1338 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1339 continue;
1341 find_duplicate (same_succ, bb1, bb2);
1346 /* Find clusters of bbs which can be merged. */
1348 static void
1349 find_clusters (void)
1351 same_succ same;
1353 while (!VEC_empty (same_succ, worklist))
1355 same = VEC_pop (same_succ, worklist);
1356 same->in_worklist = false;
1357 if (dump_file && (dump_flags & TDF_DETAILS))
1359 fprintf (dump_file, "processing worklist entry\n");
1360 same_succ_print (dump_file, same);
1362 find_clusters_1 (same);
1366 /* Create or update a vop phi in BB2. Use VUSE1 arguments for all the
1367 REDIRECTED_EDGES, or if VUSE1 is NULL_TREE, use BB_VOP_AT_EXIT. If a new
1368 phis is created, use the phi instead of VUSE2 in BB2. */
1370 static void
1371 update_vuses (tree vuse1, tree vuse2, basic_block bb2,
1372 VEC (edge,heap) *redirected_edges)
1374 gimple stmt, phi = NULL;
1375 tree lhs = NULL_TREE, arg;
1376 unsigned int i;
1377 gimple def_stmt2;
1378 imm_use_iterator iter;
1379 use_operand_p use_p;
1380 edge_iterator ei;
1381 edge e;
1383 def_stmt2 = SSA_NAME_DEF_STMT (vuse2);
1385 if (gimple_bb (def_stmt2) == bb2)
1386 /* Update existing phi. */
1387 phi = def_stmt2;
1388 else
1390 /* No need to create a phi with 2 equal arguments. */
1391 if (vuse1 == vuse2)
1392 return;
1394 /* Create a phi. */
1395 lhs = make_ssa_name (SSA_NAME_VAR (vuse2), NULL);
1396 VN_INFO_GET (lhs);
1397 phi = create_phi_node (lhs, bb2);
1398 SSA_NAME_DEF_STMT (lhs) = phi;
1400 /* Set default argument vuse2 for all preds. */
1401 FOR_EACH_EDGE (e, ei, bb2->preds)
1402 add_phi_arg (phi, vuse2, e, UNKNOWN_LOCATION);
1405 /* Update phi. */
1406 for (i = 0; i < EDGE_COUNT (redirected_edges); ++i)
1408 e = VEC_index (edge, redirected_edges, i);
1409 if (vuse1 != NULL_TREE)
1410 arg = vuse1;
1411 else
1412 arg = BB_VOP_AT_EXIT (e->src);
1413 add_phi_arg (phi, arg, e, UNKNOWN_LOCATION);
1416 /* Return if we updated an existing phi. */
1417 if (gimple_bb (def_stmt2) == bb2)
1418 return;
1420 /* Replace relevant uses of vuse2 with the newly created phi. */
1421 FOR_EACH_IMM_USE_STMT (stmt, iter, vuse2)
1423 if (stmt == phi)
1424 continue;
1425 if (gimple_code (stmt) != GIMPLE_PHI)
1426 if (gimple_bb (stmt) != bb2)
1427 continue;
1429 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1431 if (gimple_code (stmt) == GIMPLE_PHI)
1433 unsigned int pred_index = PHI_ARG_INDEX_FROM_USE (use_p);
1434 basic_block pred = EDGE_PRED (gimple_bb (stmt), pred_index)->src;
1435 if (pred != bb2)
1436 continue;
1438 SET_USE (use_p, lhs);
1439 update_stmt (stmt);
1444 /* Returns the vop phi of BB, if any. */
1446 static gimple
1447 vop_phi (basic_block bb)
1449 gimple stmt;
1450 gimple_stmt_iterator gsi;
1451 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1453 stmt = gsi_stmt (gsi);
1454 if (is_gimple_reg (gimple_phi_result (stmt)))
1455 continue;
1456 return stmt;
1458 return NULL;
1461 /* Returns the vop state at the entry of BB, if found in BB or a successor
1462 bb. */
1464 static tree
1465 vop_at_entry (basic_block bb)
1467 gimple bb_phi, succ_phi;
1468 gimple_stmt_iterator gsi;
1469 gimple stmt;
1470 tree vuse, vdef;
1471 basic_block succ;
1473 bb_phi = vop_phi (bb);
1474 if (bb_phi != NULL)
1475 return gimple_phi_result (bb_phi);
1477 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1479 stmt = gsi_stmt (gsi);
1480 vuse = gimple_vuse (stmt);
1481 vdef = gimple_vdef (stmt);
1482 if (vuse != NULL_TREE)
1483 return vuse;
1484 if (vdef != NULL_TREE)
1485 return NULL_TREE;
1488 if (EDGE_COUNT (bb->succs) == 0)
1489 return NULL_TREE;
1491 succ = EDGE_SUCC (bb, 0)->dest;
1492 succ_phi = vop_phi (succ);
1493 return (succ_phi != NULL
1494 ? PHI_ARG_DEF_FROM_EDGE (succ_phi, find_edge (bb, succ))
1495 : NULL_TREE);
1498 /* Redirect all edges from BB1 to BB2, marks BB1 for removal, and if
1499 UPDATE_VOPS, inserts vop phis. */
1501 static void
1502 replace_block_by (basic_block bb1, basic_block bb2, bool update_vops)
1504 edge pred_edge;
1505 unsigned int i;
1506 tree phi_vuse1 = NULL_TREE, phi_vuse2 = NULL_TREE, arg;
1507 VEC (edge,heap) *redirected_edges = NULL;
1508 edge e;
1509 edge_iterator ei;
1511 phi_vuse2 = vop_at_entry (bb2);
1512 if (phi_vuse2 != NULL_TREE && TREE_CODE (phi_vuse2) != SSA_NAME)
1513 phi_vuse2 = NULL_TREE;
1515 if (update_vops)
1517 /* Find the vops at entry of bb1 and bb2. */
1518 phi_vuse1 = vop_at_entry (bb1);
1520 /* If one of the 2 not found, it means there's no need to update. */
1521 update_vops = phi_vuse1 != NULL_TREE && phi_vuse2 != NULL_TREE;
1524 if (update_vops && gimple_bb (SSA_NAME_DEF_STMT (phi_vuse1)) == bb1)
1526 /* If the vop at entry of bb1 is a phi, save the phi alternatives in
1527 BB_VOP_AT_EXIT, before we lose that information by redirecting the
1528 edges. */
1529 FOR_EACH_EDGE (e, ei, bb1->preds)
1531 arg = PHI_ARG_DEF_FROM_EDGE (SSA_NAME_DEF_STMT (phi_vuse1), e);
1532 BB_VOP_AT_EXIT (e->src) = arg;
1534 phi_vuse1 = NULL;
1537 /* Mark the basic block for later deletion. */
1538 delete_basic_block_same_succ (bb1);
1540 if (update_vops)
1541 redirected_edges = VEC_alloc (edge, heap, 10);
1543 /* Redirect the incoming edges of bb1 to bb2. */
1544 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1546 pred_edge = EDGE_PRED (bb1, i - 1);
1547 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1548 gcc_assert (pred_edge != NULL);
1549 if (update_vops)
1550 VEC_safe_push (edge, heap, redirected_edges, pred_edge);
1551 else if (phi_vuse2 && gimple_bb (SSA_NAME_DEF_STMT (phi_vuse2)) == bb2)
1552 add_phi_arg (SSA_NAME_DEF_STMT (phi_vuse2), SSA_NAME_VAR (phi_vuse2),
1553 pred_edge, UNKNOWN_LOCATION);
1556 /* Update the vops. */
1557 if (update_vops)
1559 update_vuses (phi_vuse1, phi_vuse2, bb2, redirected_edges);
1560 VEC_free (edge, heap, redirected_edges);
1564 /* Bbs for which update_debug_stmt need to be called. */
1566 static bitmap update_bbs;
1568 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1569 number of bbs removed. Insert vop phis if UPDATE_VOPS. */
1571 static int
1572 apply_clusters (bool update_vops)
1574 basic_block bb1, bb2;
1575 bb_cluster c;
1576 unsigned int i, j;
1577 bitmap_iterator bj;
1578 int nr_bbs_removed = 0;
1580 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
1582 c = VEC_index (bb_cluster, all_clusters, i);
1583 if (c == NULL)
1584 continue;
1586 bb2 = c->rep_bb;
1587 bitmap_set_bit (update_bbs, bb2->index);
1589 bitmap_clear_bit (c->bbs, bb2->index);
1590 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1592 bb1 = BASIC_BLOCK (j);
1593 bitmap_clear_bit (update_bbs, bb1->index);
1595 replace_block_by (bb1, bb2, update_vops);
1596 nr_bbs_removed++;
1600 return nr_bbs_removed;
1603 /* Resets debug statement STMT if it has uses that are not dominated by their
1604 defs. */
1606 static void
1607 update_debug_stmt (gimple stmt)
1609 use_operand_p use_p;
1610 ssa_op_iter oi;
1611 basic_block bbdef, bbuse;
1612 gimple def_stmt;
1613 tree name;
1615 if (!gimple_debug_bind_p (stmt))
1616 return;
1618 bbuse = gimple_bb (stmt);
1619 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1621 name = USE_FROM_PTR (use_p);
1622 gcc_assert (TREE_CODE (name) == SSA_NAME);
1624 def_stmt = SSA_NAME_DEF_STMT (name);
1625 gcc_assert (def_stmt != NULL);
1627 bbdef = gimple_bb (def_stmt);
1628 if (bbdef == NULL || bbuse == bbdef
1629 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1630 continue;
1632 gimple_debug_bind_reset_value (stmt);
1633 update_stmt (stmt);
1637 /* Resets all debug statements that have uses that are not
1638 dominated by their defs. */
1640 static void
1641 update_debug_stmts (void)
1643 basic_block bb;
1644 bitmap_iterator bi;
1645 unsigned int i;
1647 if (!MAY_HAVE_DEBUG_STMTS)
1648 return;
1650 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1652 gimple stmt;
1653 gimple_stmt_iterator gsi;
1655 bb = BASIC_BLOCK (i);
1656 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1658 stmt = gsi_stmt (gsi);
1659 if (!is_gimple_debug (stmt))
1660 continue;
1661 update_debug_stmt (stmt);
1666 /* Runs tail merge optimization. */
1668 unsigned int
1669 tail_merge_optimize (unsigned int todo)
1671 int nr_bbs_removed_total = 0;
1672 int nr_bbs_removed;
1673 bool loop_entered = false;
1674 int iteration_nr = 0;
1675 bool update_vops = !symbol_marked_for_renaming (gimple_vop (cfun));
1676 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1678 if (!flag_tree_tail_merge || max_iterations == 0)
1679 return 0;
1681 timevar_push (TV_TREE_TAIL_MERGE);
1683 calculate_dominance_info (CDI_DOMINATORS);
1684 init_worklist ();
1686 while (!VEC_empty (same_succ, worklist))
1688 if (!loop_entered)
1690 loop_entered = true;
1691 alloc_cluster_vectors ();
1692 update_bbs = BITMAP_ALLOC (NULL);
1694 else
1695 reset_cluster_vectors ();
1697 iteration_nr++;
1698 if (dump_file && (dump_flags & TDF_DETAILS))
1699 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1701 find_clusters ();
1702 gcc_assert (VEC_empty (same_succ, worklist));
1703 if (VEC_empty (bb_cluster, all_clusters))
1704 break;
1706 nr_bbs_removed = apply_clusters (update_vops);
1707 nr_bbs_removed_total += nr_bbs_removed;
1708 if (nr_bbs_removed == 0)
1709 break;
1711 free_dominance_info (CDI_DOMINATORS);
1712 purge_bbs (update_vops);
1714 if (iteration_nr == max_iterations)
1715 break;
1717 calculate_dominance_info (CDI_DOMINATORS);
1718 update_worklist ();
1721 if (dump_file && (dump_flags & TDF_DETAILS))
1722 fprintf (dump_file, "htab collision / search: %f\n",
1723 htab_collisions (same_succ_htab));
1725 if (nr_bbs_removed_total > 0)
1727 calculate_dominance_info (CDI_DOMINATORS);
1728 update_debug_stmts ();
1730 if (dump_file && (dump_flags & TDF_DETAILS))
1732 fprintf (dump_file, "Before TODOs.\n");
1733 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1736 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow
1737 | TODO_dump_func);
1740 delete_worklist ();
1741 if (loop_entered)
1743 delete_cluster_vectors ();
1744 BITMAP_FREE (update_bbs);
1747 timevar_pop (TV_TREE_TAIL_MERGE);
1749 return todo;