1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the datastructure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
47 #include "hard-reg-set.h"
48 #include "basic-block.h"
58 /* The obstack on which the flow graph components are allocated. */
60 struct obstack flow_obstack
;
61 static char *flow_firstobj
;
63 /* Number of basic blocks in the current function. */
67 /* Number of edges in the current function. */
71 /* First edge in the deleted edges chain. */
73 edge first_deleted_edge
;
74 static basic_block first_deleted_block
;
76 /* The basic block array. */
78 varray_type basic_block_info
;
80 /* The special entry and exit blocks. */
82 struct basic_block_def entry_exit_blocks
[2]
90 NULL
, /* cond_local_set */
91 NULL
, /* global_live_at_start */
92 NULL
, /* global_live_at_end */
94 ENTRY_BLOCK
, /* index */
103 NULL
, /* head_tree */
107 NULL
, /* local_set */
108 NULL
, /* cond_local_set */
109 NULL
, /* global_live_at_start */
110 NULL
, /* global_live_at_end */
112 EXIT_BLOCK
, /* index */
120 void debug_flow_info
PARAMS ((void));
121 static void free_edge
PARAMS ((edge
));
123 /* Called once at initialization time. */
128 static int initialized
;
130 first_deleted_edge
= 0;
131 first_deleted_block
= 0;
136 gcc_obstack_init (&flow_obstack
);
137 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
142 obstack_free (&flow_obstack
, flow_firstobj
);
143 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
147 /* Helper function for remove_edge and clear_edges. Frees edge structure
148 without actually unlinking it from the pred/succ lists. */
155 memset (e
, 0, sizeof *e
);
156 e
->succ_next
= first_deleted_edge
;
157 first_deleted_edge
= e
;
160 /* Free the memory associated with the edge structures. */
168 for (i
= 0; i
< n_basic_blocks
; ++i
)
170 basic_block bb
= BASIC_BLOCK (i
);
175 edge next
= e
->succ_next
;
185 e
= ENTRY_BLOCK_PTR
->succ
;
188 edge next
= e
->succ_next
;
194 EXIT_BLOCK_PTR
->pred
= NULL
;
195 ENTRY_BLOCK_PTR
->succ
= NULL
;
201 /* Allocate memory for basic_block. */
208 if (first_deleted_block
)
210 bb
= first_deleted_block
;
211 first_deleted_block
= (basic_block
) bb
->succ
;
216 bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof *bb
);
217 memset (bb
, 0, sizeof *bb
);
222 /* Remove block B from the basic block array and compact behind it. */
225 expunge_block_nocompact (b
)
228 /* Invalidate data to make bughunting easier. */
229 memset (b
, 0, sizeof *b
);
231 b
->succ
= (edge
) first_deleted_block
;
232 first_deleted_block
= (basic_block
) b
;
239 int i
, n
= n_basic_blocks
;
241 for (i
= b
->index
; i
+ 1 < n
; ++i
)
243 basic_block x
= BASIC_BLOCK (i
+ 1);
249 basic_block_info
->num_elements
--;
251 expunge_block_nocompact (b
);
254 /* Create an edge connecting SRC and DST with FLAGS optionally using
255 edge cache CACHE. Return the new edge, NULL if already exist. */
258 cached_make_edge (edge_cache
, src
, dst
, flags
)
260 basic_block src
, dst
;
266 /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
267 many edges to them, or we didn't allocate memory for it. */
268 use_edge_cache
= (edge_cache
269 && src
!= ENTRY_BLOCK_PTR
&& dst
!= EXIT_BLOCK_PTR
);
271 /* Make sure we don't add duplicate edges. */
272 switch (use_edge_cache
)
275 /* Quick test for non-existence of the edge. */
276 if (! TEST_BIT (edge_cache
[src
->index
], dst
->index
))
279 /* The edge exists; early exit if no work to do. */
285 for (e
= src
->succ
; e
; e
= e
->succ_next
)
294 if (first_deleted_edge
)
296 e
= first_deleted_edge
;
297 first_deleted_edge
= e
->succ_next
;
301 e
= (edge
) obstack_alloc (&flow_obstack
, sizeof *e
);
302 memset (e
, 0, sizeof *e
);
306 e
->succ_next
= src
->succ
;
307 e
->pred_next
= dst
->pred
;
316 SET_BIT (edge_cache
[src
->index
], dst
->index
);
321 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
322 created edge or NULL if already exist. */
325 make_edge (src
, dest
, flags
)
326 basic_block src
, dest
;
329 return cached_make_edge (NULL
, src
, dest
, flags
);
332 /* Create an edge connecting SRC to DEST and set probability by knowing
333 that it is the single edge leaving SRC. */
336 make_single_succ_edge (src
, dest
, flags
)
337 basic_block src
, dest
;
340 edge e
= make_edge (src
, dest
, flags
);
342 e
->probability
= REG_BR_PROB_BASE
;
343 e
->count
= src
->count
;
347 /* This function will remove an edge from the flow graph. */
353 edge last_pred
= NULL
;
354 edge last_succ
= NULL
;
356 basic_block src
, dest
;
360 for (tmp
= src
->succ
; tmp
&& tmp
!= e
; tmp
= tmp
->succ_next
)
366 last_succ
->succ_next
= e
->succ_next
;
368 src
->succ
= e
->succ_next
;
370 for (tmp
= dest
->pred
; tmp
&& tmp
!= e
; tmp
= tmp
->pred_next
)
376 last_pred
->pred_next
= e
->pred_next
;
378 dest
->pred
= e
->pred_next
;
383 /* Redirect an edge's successor from one block to another. */
386 redirect_edge_succ (e
, new_succ
)
388 basic_block new_succ
;
392 /* Disconnect the edge from the old successor block. */
393 for (pe
= &e
->dest
->pred
; *pe
!= e
; pe
= &(*pe
)->pred_next
)
395 *pe
= (*pe
)->pred_next
;
397 /* Reconnect the edge to the new successor block. */
398 e
->pred_next
= new_succ
->pred
;
403 /* Like previous but avoid possible duplicate edge. */
406 redirect_edge_succ_nodup (e
, new_succ
)
408 basic_block new_succ
;
412 /* Check whether the edge is already present. */
413 for (s
= e
->src
->succ
; s
; s
= s
->succ_next
)
414 if (s
->dest
== new_succ
&& s
!= e
)
419 s
->flags
|= e
->flags
;
420 s
->probability
+= e
->probability
;
421 s
->count
+= e
->count
;
426 redirect_edge_succ (e
, new_succ
);
431 /* Redirect an edge's predecessor from one block to another. */
434 redirect_edge_pred (e
, new_pred
)
436 basic_block new_pred
;
440 /* Disconnect the edge from the old predecessor block. */
441 for (pe
= &e
->src
->succ
; *pe
!= e
; pe
= &(*pe
)->succ_next
)
444 *pe
= (*pe
)->succ_next
;
446 /* Reconnect the edge to the new predecessor block. */
447 e
->succ_next
= new_pred
->succ
;
453 dump_flow_info (file
)
457 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
459 fprintf (file
, "%d registers.\n", max_regno
);
460 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
463 enum reg_class
class, altclass
;
465 fprintf (file
, "\nRegister %d used %d times across %d insns",
466 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
467 if (REG_BASIC_BLOCK (i
) >= 0)
468 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
470 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
471 (REG_N_SETS (i
) == 1) ? "" : "s");
472 if (REG_USERVAR_P (regno_reg_rtx
[i
]))
473 fprintf (file
, "; user var");
474 if (REG_N_DEATHS (i
) != 1)
475 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
476 if (REG_N_CALLS_CROSSED (i
) == 1)
477 fprintf (file
, "; crosses 1 call");
478 else if (REG_N_CALLS_CROSSED (i
))
479 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
480 if (PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
481 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
483 class = reg_preferred_class (i
);
484 altclass
= reg_alternate_class (i
);
485 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
487 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
488 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
489 else if (altclass
== NO_REGS
)
490 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
492 fprintf (file
, "; pref %s, else %s",
493 reg_class_names
[(int) class],
494 reg_class_names
[(int) altclass
]);
497 if (REG_POINTER (regno_reg_rtx
[i
]))
498 fprintf (file
, "; pointer");
499 fprintf (file
, ".\n");
502 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
503 for (i
= 0; i
< n_basic_blocks
; i
++)
505 basic_block bb
= BASIC_BLOCK (i
);
508 fprintf (file
, "\nBasic block %d: first insn %d, last %d, ",
509 i
, INSN_UID (bb
->head
), INSN_UID (bb
->end
));
510 fprintf (file
, "loop_depth %d, count ", bb
->loop_depth
);
511 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
512 fprintf (file
, ", freq %i.\n", bb
->frequency
);
514 fprintf (file
, "Predecessors: ");
515 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
516 dump_edge_info (file
, e
, 0);
518 fprintf (file
, "\nSuccessors: ");
519 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
520 dump_edge_info (file
, e
, 1);
522 fprintf (file
, "\nRegisters live at start:");
523 dump_regset (bb
->global_live_at_start
, file
);
525 fprintf (file
, "\nRegisters live at end:");
526 dump_regset (bb
->global_live_at_end
, file
);
537 dump_flow_info (stderr
);
541 dump_edge_info (file
, e
, do_succ
)
546 basic_block side
= (do_succ
? e
->dest
: e
->src
);
548 if (side
== ENTRY_BLOCK_PTR
)
549 fputs (" ENTRY", file
);
550 else if (side
== EXIT_BLOCK_PTR
)
551 fputs (" EXIT", file
);
553 fprintf (file
, " %d", side
->index
);
556 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
560 fprintf (file
, " count:");
561 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
566 static const char * const bitnames
[]
567 = {"fallthru", "ab", "abcall", "eh", "fake", "dfs_back"};
569 int i
, flags
= e
->flags
;
572 for (i
= 0; flags
; i
++)
573 if (flags
& (1 << i
))
579 if (i
< (int) ARRAY_SIZE (bitnames
))
580 fputs (bitnames
[i
], file
);
582 fprintf (file
, "%d", i
);
590 /* Simple routines to easily allocate AUX fields of basic blocks. */
592 static struct obstack block_aux_obstack
;
593 static void *first_block_aux_obj
= 0;
594 static struct obstack edge_aux_obstack
;
595 static void *first_edge_aux_obj
= 0;
597 /* Allocate an memory block of SIZE as BB->aux. The obstack must
598 be first initialized by alloc_aux_for_blocks. */
601 alloc_aux_for_block (bb
, size
)
605 /* Verify that aux field is clear. */
606 if (bb
->aux
|| !first_block_aux_obj
)
608 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
609 memset (bb
->aux
, 0, size
);
612 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
613 alloc_aux_for_block for each basic block. */
616 alloc_aux_for_blocks (size
)
619 static int initialized
;
623 gcc_obstack_init (&block_aux_obstack
);
627 /* Check whether AUX data are still allocated. */
628 else if (first_block_aux_obj
)
630 first_block_aux_obj
= (char *) obstack_alloc (&block_aux_obstack
, 0);
635 for (i
= 0; i
< n_basic_blocks
; i
++)
636 alloc_aux_for_block (BASIC_BLOCK (i
), size
);
638 alloc_aux_for_block (ENTRY_BLOCK_PTR
, size
);
639 alloc_aux_for_block (EXIT_BLOCK_PTR
, size
);
643 /* Clear AUX pointers of all blocks. */
646 clear_aux_for_blocks ()
650 for (i
= 0; i
< n_basic_blocks
; i
++)
651 BASIC_BLOCK (i
)->aux
= NULL
;
653 ENTRY_BLOCK_PTR
->aux
= NULL
;
654 EXIT_BLOCK_PTR
->aux
= NULL
;
657 /* Free data allocated in block_aux_obstack and clear AUX pointers
661 free_aux_for_blocks ()
663 if (!first_block_aux_obj
)
665 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
666 first_block_aux_obj
= NULL
;
668 clear_aux_for_blocks ();
671 /* Allocate an memory edge of SIZE as BB->aux. The obstack must
672 be first initialized by alloc_aux_for_edges. */
675 alloc_aux_for_edge (e
, size
)
679 /* Verify that aux field is clear. */
680 if (e
->aux
|| !first_edge_aux_obj
)
682 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
683 memset (e
->aux
, 0, size
);
686 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
687 alloc_aux_for_edge for each basic edge. */
690 alloc_aux_for_edges (size
)
693 static int initialized
;
697 gcc_obstack_init (&edge_aux_obstack
);
701 /* Check whether AUX data are still allocated. */
702 else if (first_edge_aux_obj
)
705 first_edge_aux_obj
= (char *) obstack_alloc (&edge_aux_obstack
, 0);
709 for (i
= -1; i
< n_basic_blocks
; i
++)
715 bb
= BASIC_BLOCK (i
);
717 bb
= ENTRY_BLOCK_PTR
;
719 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
720 alloc_aux_for_edge (e
, size
);
725 /* Clear AUX pointers of all edges. */
728 clear_aux_for_edges ()
732 for (i
= -1; i
< n_basic_blocks
; i
++)
738 bb
= BASIC_BLOCK (i
);
740 bb
= ENTRY_BLOCK_PTR
;
742 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
747 /* Free data allocated in edge_aux_obstack and clear AUX pointers
751 free_aux_for_edges ()
753 if (!first_edge_aux_obj
)
755 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
756 first_edge_aux_obj
= NULL
;
758 clear_aux_for_edges ();