PR c++/18747
[official-gcc.git] / gcc / sel-sched-ir.h
blobef884a56f1257d64f15e17640319af504a3c3c66
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_SEL_SCHED_IR_H
23 #define GCC_SEL_SCHED_IR_H
25 /* For state_t. */
26 #include "insn-attr.h"
27 #include "regset.h"
28 #include "basic-block.h"
29 /* For reg_note. */
30 #include "rtl.h"
31 #include "ggc.h"
32 #include "bitmap.h"
33 #include "vecprim.h"
34 #include "sched-int.h"
35 #include "cfgloop.h"
37 /* tc_t is a short for target context. This is a state of the target
38 backend. */
39 typedef void *tc_t;
41 /* List data types used for av sets, fences, paths, and boundaries. */
43 /* Forward declarations for types that are part of some list nodes. */
44 struct _list_node;
46 /* List backend. */
47 typedef struct _list_node *_list_t;
48 #define _LIST_NEXT(L) ((L)->next)
50 /* Instruction data that is part of vinsn type. */
51 struct idata_def;
52 typedef struct idata_def *idata_t;
54 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
55 struct vinsn_def;
56 typedef struct vinsn_def *vinsn_t;
58 /* RTX list.
59 This type is the backend for ilist. */
60 typedef _list_t _xlist_t;
61 #define _XLIST_X(L) ((L)->u.x)
62 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
64 /* Instruction. */
65 typedef rtx insn_t;
67 /* List of insns. */
68 typedef _xlist_t ilist_t;
69 #define ILIST_INSN(L) (_XLIST_X (L))
70 #define ILIST_NEXT(L) (_XLIST_NEXT (L))
72 /* This lists possible transformations that done locally, i.e. in
73 moveup_expr. */
74 enum local_trans_type
76 TRANS_SUBSTITUTION,
77 TRANS_SPECULATION
80 /* This struct is used to record the history of expression's
81 transformations. */
82 struct expr_history_def_1
84 /* UID of the insn. */
85 unsigned uid;
87 /* How the expression looked like. */
88 vinsn_t old_expr_vinsn;
90 /* How the expression looks after the transformation. */
91 vinsn_t new_expr_vinsn;
93 /* And its speculative status. */
94 ds_t spec_ds;
96 /* Type of the transformation. */
97 enum local_trans_type type;
100 typedef struct expr_history_def_1 expr_history_def;
102 DEF_VEC_O (expr_history_def);
103 DEF_VEC_ALLOC_O (expr_history_def, heap);
105 /* Expression information. */
106 struct _expr
108 /* Insn description. */
109 vinsn_t vinsn;
111 /* SPEC is the degree of speculativeness.
112 FIXME: now spec is increased when an rhs is moved through a
113 conditional, thus showing only control speculativeness. In the
114 future we'd like to count data spec separately to allow a better
115 control on scheduling. */
116 int spec;
118 /* Degree of speculativeness measured as probability of executing
119 instruction's original basic block given relative to
120 the current scheduling point. */
121 int usefulness;
123 /* A priority of this expression. */
124 int priority;
126 /* A priority adjustment of this expression. */
127 int priority_adj;
129 /* Number of times the insn was scheduled. */
130 int sched_times;
132 /* A basic block index this was originated from. Zero when there is
133 more than one originator. */
134 int orig_bb_index;
136 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
137 point. */
138 ds_t spec_done_ds;
140 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
141 (used only during move_op ()). */
142 ds_t spec_to_check_ds;
144 /* Cycle on which original insn was scheduled. Zero when it has not yet
145 been scheduled or more than one originator. */
146 int orig_sched_cycle;
148 /* This vector contains the history of insn's transformations. */
149 VEC(expr_history_def, heap) *history_of_changes;
151 /* True (1) when original target (register or memory) of this instruction
152 is available for scheduling, false otherwise. -1 means we're not sure;
153 please run find_used_regs to clarify. */
154 signed char target_available;
156 /* True when this expression needs a speculation check to be scheduled.
157 This is used during find_used_regs. */
158 BOOL_BITFIELD needs_spec_check_p : 1;
160 /* True when the expression was substituted. Used for statistical
161 purposes. */
162 BOOL_BITFIELD was_substituted : 1;
164 /* True when the expression was renamed. */
165 BOOL_BITFIELD was_renamed : 1;
167 /* True when expression can't be moved. */
168 BOOL_BITFIELD cant_move : 1;
171 typedef struct _expr expr_def;
172 typedef expr_def *expr_t;
174 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
175 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
176 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
177 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
178 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
179 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
180 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
182 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
183 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
184 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
185 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
186 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
187 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
188 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
189 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
190 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
191 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
192 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
193 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
194 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
195 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
196 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
198 #define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
199 EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
201 /* Insn definition for list of original insns in find_used_regs. */
202 struct _def
204 insn_t orig_insn;
206 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
207 rhs from two different places, but only one of the code motion paths
208 crosses a call, we can't use any of the call_used_regs, no matter which
209 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
210 to static params. */
211 bool crosses_call;
213 typedef struct _def *def_t;
216 /* Availability sets are sets of expressions we're scheduling. */
217 typedef _list_t av_set_t;
218 #define _AV_SET_EXPR(L) (&(L)->u.expr)
219 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
222 /* Boundary of the current fence group. */
223 struct _bnd
225 /* The actual boundary instruction. */
226 insn_t to;
228 /* Its path to the fence. */
229 ilist_t ptr;
231 /* Availability set at the boundary. */
232 av_set_t av;
234 /* This set moved to the fence. */
235 av_set_t av1;
237 /* Deps context at this boundary. As long as we have one boundary per fence,
238 this is just a pointer to the same deps context as in the corresponding
239 fence. */
240 deps_t dc;
242 typedef struct _bnd *bnd_t;
243 #define BND_TO(B) ((B)->to)
245 /* PTR stands not for pointer as you might think, but as a Path To Root of the
246 current instruction group from boundary B. */
247 #define BND_PTR(B) ((B)->ptr)
248 #define BND_AV(B) ((B)->av)
249 #define BND_AV1(B) ((B)->av1)
250 #define BND_DC(B) ((B)->dc)
252 /* List of boundaries. */
253 typedef _list_t blist_t;
254 #define BLIST_BND(L) (&(L)->u.bnd)
255 #define BLIST_NEXT(L) (_LIST_NEXT (L))
258 /* Fence information. A fence represents current scheduling point and also
259 blocks code motion through it when pipelining. */
260 struct _fence
262 /* Insn before which we gather an instruction group.*/
263 insn_t insn;
265 /* Modeled state of the processor pipeline. */
266 state_t state;
268 /* Current cycle that is being scheduled on this fence. */
269 int cycle;
271 /* Number of insns that were scheduled on the current cycle.
272 This information has to be local to a fence. */
273 int cycle_issued_insns;
275 /* At the end of fill_insns () this field holds the list of the instructions
276 that are inner boundaries of the scheduled parallel group. */
277 ilist_t bnds;
279 /* Deps context at this fence. It is used to model dependencies at the
280 fence so that insn ticks can be properly evaluated. */
281 deps_t dc;
283 /* Target context at this fence. Used to save and load any local target
284 scheduling information when changing fences. */
285 tc_t tc;
287 /* A vector of insns that are scheduled but not yet completed. */
288 VEC (rtx,gc) *executing_insns;
290 /* A vector indexed by UIDs that caches the earliest cycle on which
291 an insn can be scheduled on this fence. */
292 int *ready_ticks;
294 /* Its size. */
295 int ready_ticks_size;
297 /* Insn, which has been scheduled last on this fence. */
298 rtx last_scheduled_insn;
300 /* The last value of can_issue_more variable on this fence. */
301 int issue_more;
303 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
304 rtx sched_next;
306 /* True if fill_insns processed this fence. */
307 BOOL_BITFIELD processed_p : 1;
309 /* True if fill_insns actually scheduled something on this fence. */
310 BOOL_BITFIELD scheduled_p : 1;
312 /* True when the next insn scheduled here would start a cycle. */
313 BOOL_BITFIELD starts_cycle_p : 1;
315 /* True when the next insn scheduled here would be scheduled after a stall. */
316 BOOL_BITFIELD after_stall_p : 1;
318 typedef struct _fence *fence_t;
320 #define FENCE_INSN(F) ((F)->insn)
321 #define FENCE_STATE(F) ((F)->state)
322 #define FENCE_BNDS(F) ((F)->bnds)
323 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
324 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
325 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
326 #define FENCE_CYCLE(F) ((F)->cycle)
327 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
328 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
329 #define FENCE_DC(F) ((F)->dc)
330 #define FENCE_TC(F) ((F)->tc)
331 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
332 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
333 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
334 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
335 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
336 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
338 /* List of fences. */
339 typedef _list_t flist_t;
340 #define FLIST_FENCE(L) (&(L)->u.fence)
341 #define FLIST_NEXT(L) (_LIST_NEXT (L))
343 /* List of fences with pointer to the tail node. */
344 struct flist_tail_def
346 flist_t head;
347 flist_t *tailp;
350 typedef struct flist_tail_def *flist_tail_t;
351 #define FLIST_TAIL_HEAD(L) ((L)->head)
352 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
354 /* List node information. A list node can be any of the types above. */
355 struct _list_node
357 _list_t next;
359 union
361 rtx x;
362 struct _bnd bnd;
363 expr_def expr;
364 struct _fence fence;
365 struct _def def;
366 void *data;
367 } u;
371 /* _list_t functions.
372 All of _*list_* functions are used through accessor macros, thus
373 we can't move them in sel-sched-ir.c. */
374 extern alloc_pool sched_lists_pool;
376 static inline _list_t
377 _list_alloc (void)
379 return (_list_t) pool_alloc (sched_lists_pool);
382 static inline void
383 _list_add (_list_t *lp)
385 _list_t l = _list_alloc ();
387 _LIST_NEXT (l) = *lp;
388 *lp = l;
391 static inline void
392 _list_remove_nofree (_list_t *lp)
394 _list_t n = *lp;
396 *lp = _LIST_NEXT (n);
399 static inline void
400 _list_remove (_list_t *lp)
402 _list_t n = *lp;
404 *lp = _LIST_NEXT (n);
405 pool_free (sched_lists_pool, n);
408 static inline void
409 _list_clear (_list_t *l)
411 while (*l)
412 _list_remove (l);
416 /* List iterator backend. */
417 typedef struct
419 /* The list we're iterating. */
420 _list_t *lp;
422 /* True when this iterator supprts removing. */
423 bool can_remove_p;
425 /* True when we've actually removed something. */
426 bool removed_p;
427 } _list_iterator;
429 static inline void
430 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
432 ip->lp = lp;
433 ip->can_remove_p = can_remove_p;
434 ip->removed_p = false;
437 static inline void
438 _list_iter_next (_list_iterator *ip)
440 if (!ip->removed_p)
441 ip->lp = &_LIST_NEXT (*ip->lp);
442 else
443 ip->removed_p = false;
446 static inline void
447 _list_iter_remove (_list_iterator *ip)
449 gcc_assert (!ip->removed_p && ip->can_remove_p);
450 _list_remove (ip->lp);
451 ip->removed_p = true;
454 static inline void
455 _list_iter_remove_nofree (_list_iterator *ip)
457 gcc_assert (!ip->removed_p && ip->can_remove_p);
458 _list_remove_nofree (ip->lp);
459 ip->removed_p = true;
462 /* General macros to traverse a list. FOR_EACH_* interfaces are
463 implemented using these. */
464 #define _FOR_EACH(TYPE, ELEM, I, L) \
465 for (_list_iter_start (&(I), &(L), false); \
466 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
467 _list_iter_next (&(I)))
469 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
470 for (_list_iter_start (&(I), (LP), true); \
471 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
472 _list_iter_next (&(I)))
475 /* _xlist_t functions. */
477 static inline void
478 _xlist_add (_xlist_t *lp, rtx x)
480 _list_add (lp);
481 _XLIST_X (*lp) = x;
484 #define _xlist_remove(LP) (_list_remove (LP))
485 #define _xlist_clear(LP) (_list_clear (LP))
487 static inline bool
488 _xlist_is_in_p (_xlist_t l, rtx x)
490 while (l)
492 if (_XLIST_X (l) == x)
493 return true;
494 l = _XLIST_NEXT (l);
497 return false;
500 /* Used through _FOR_EACH. */
501 static inline bool
502 _list_iter_cond_x (_xlist_t l, rtx *xp)
504 if (l)
506 *xp = _XLIST_X (l);
507 return true;
510 return false;
513 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
515 typedef _list_iterator _xlist_iterator;
516 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
517 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
520 /* ilist_t functions. Instruction lists are simply RTX lists. */
522 #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
523 #define ilist_remove(LP) (_xlist_remove (LP))
524 #define ilist_clear(LP) (_xlist_clear (LP))
525 #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
526 #define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
528 typedef _xlist_iterator ilist_iterator;
529 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
530 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
533 /* Av set iterators. */
534 typedef _list_iterator av_set_iterator;
535 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
536 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
538 static bool
539 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
541 if (av)
543 *exprp = _AV_SET_EXPR (av);
544 return true;
547 return false;
551 /* Def list iterators. */
552 typedef _list_t def_list_t;
553 typedef _list_iterator def_list_iterator;
555 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
556 #define DEF_LIST_DEF(L) (&(L)->u.def)
558 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
560 static inline bool
561 _list_iter_cond_def (def_list_t def_list, def_t *def)
563 if (def_list)
565 *def = DEF_LIST_DEF (def_list);
566 return true;
569 return false;
573 /* InstructionData. Contains information about insn pattern. */
574 struct idata_def
576 /* Type of the insn.
577 o CALL_INSN - Call insn
578 o JUMP_INSN - Jump insn
579 o INSN - INSN that cannot be cloned
580 o USE - INSN that can be cloned
581 o SET - INSN that can be cloned and separable into lhs and rhs
582 o PC - simplejump. Insns that simply redirect control flow should not
583 have any dependencies. Sched-deps.c, though, might consider them as
584 producers or consumers of certain registers. To avoid that we handle
585 dependency for simple jumps ourselves. */
586 int type;
588 /* If insn is a SET, this is its left hand side. */
589 rtx lhs;
591 /* If insn is a SET, this is its right hand side. */
592 rtx rhs;
594 /* Registers that are set/used by this insn. This info is now gathered
595 via sched-deps.c. The downside of this is that we also use live info
596 from flow that is accumulated in the basic blocks. These two infos
597 can be slightly inconsistent, hence in the beginning we make a pass
598 through CFG and calculating the conservative solution for the info in
599 basic blocks. When this scheduler will be switched to use dataflow,
600 this can be unified as df gives us both per basic block and per
601 instruction info. Actually, we don't do that pass and just hope
602 for the best. */
603 regset reg_sets;
605 regset reg_clobbers;
607 regset reg_uses;
610 #define IDATA_TYPE(ID) ((ID)->type)
611 #define IDATA_LHS(ID) ((ID)->lhs)
612 #define IDATA_RHS(ID) ((ID)->rhs)
613 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
614 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
615 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
617 /* Type to represent all needed info to emit an insn.
618 This is a virtual equivalent of the insn.
619 Every insn in the stream has an associated vinsn. This is used
620 to reduce memory consumption basing on the fact that many insns
621 don't change through the scheduler.
623 vinsn can be either normal or unique.
624 * Normal vinsn is the one, that can be cloned multiple times and typically
625 corresponds to normal instruction.
627 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
628 unusual stuff. Such a vinsn is described by its INSN field, which is a
629 reference to the original instruction. */
630 struct vinsn_def
632 /* Associated insn. */
633 rtx insn_rtx;
635 /* Its description. */
636 struct idata_def id;
638 /* Hash of vinsn. It is computed either from pattern or from rhs using
639 hash_rtx. It is not placed in ID for faster compares. */
640 unsigned hash;
642 /* Hash of the insn_rtx pattern. */
643 unsigned hash_rtx;
645 /* Smart pointer counter. */
646 int count;
648 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
649 int cost;
651 /* Mark insns that may trap so we don't move them through jumps. */
652 bool may_trap_p;
655 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
656 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
658 #define VINSN_ID(VI) (&((VI)->id))
659 #define VINSN_HASH(VI) ((VI)->hash)
660 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
661 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
662 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
663 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
664 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
665 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
666 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
667 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
668 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
669 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
670 #define VINSN_COUNT(VI) ((VI)->count)
671 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
674 /* An entry of the hashtable describing transformations happened when
675 moving up through an insn. */
676 struct transformed_insns
678 /* Previous vinsn. Used to find the proper element. */
679 vinsn_t vinsn_old;
681 /* A new vinsn. */
682 vinsn_t vinsn_new;
684 /* Speculative status. */
685 ds_t ds;
687 /* Type of transformation happened. */
688 enum local_trans_type type;
690 /* Whether a conflict on the target register happened. */
691 BOOL_BITFIELD was_target_conflict : 1;
693 /* Whether a check was needed. */
694 BOOL_BITFIELD needs_check : 1;
697 /* Indexed by INSN_LUID, the collection of all data associated with
698 a single instruction that is in the stream. */
699 struct _sel_insn_data
701 /* The expression that contains vinsn for this insn and some
702 flow-sensitive data like priority. */
703 expr_def expr;
705 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
706 int ws_level;
708 /* A number that helps in defining a traversing order for a region. */
709 int seqno;
711 /* A liveness data computed above this insn. */
712 regset live;
714 /* An INSN_UID bit is set when deps analysis result is already known. */
715 bitmap analyzed_deps;
717 /* An INSN_UID bit is set when a hard dep was found, not set when
718 no dependence is found. This is meaningful only when the analyzed_deps
719 bitmap has its bit set. */
720 bitmap found_deps;
722 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
723 a parent with this uid. If a parent is a bookkeeping copy, all its
724 originators are transitively included in this set. */
725 bitmap originators;
727 /* A hashtable caching the result of insn transformations through this one. */
728 htab_t transformed_insns;
730 /* A context incapsulating this insn. */
731 struct deps_desc deps_context;
733 /* This field is initialized at the beginning of scheduling and is used
734 to handle sched group instructions. If it is non-null, then it points
735 to the instruction, which should be forced to schedule next. Such
736 instructions are unique. */
737 insn_t sched_next;
739 /* Cycle at which insn was scheduled. It is greater than zero if insn was
740 scheduled. This is used for bundling. */
741 int sched_cycle;
743 /* Cycle at which insn's data will be fully ready. */
744 int ready_cycle;
746 /* Speculations that are being checked by this insn. */
747 ds_t spec_checked_ds;
749 /* Whether the live set valid or not. */
750 BOOL_BITFIELD live_valid_p : 1;
751 /* Insn is an ASM. */
752 BOOL_BITFIELD asm_p : 1;
754 /* True when an insn is scheduled after we've determined that a stall is
755 required.
756 This is used when emulating the Haifa scheduler for bundling. */
757 BOOL_BITFIELD after_stall_p : 1;
760 typedef struct _sel_insn_data sel_insn_data_def;
761 typedef sel_insn_data_def *sel_insn_data_t;
763 DEF_VEC_O (sel_insn_data_def);
764 DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
765 extern VEC (sel_insn_data_def, heap) *s_i_d;
767 /* Accessor macros for s_i_d. */
768 #define SID(INSN) (&VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
769 #define SID_BY_UID(UID) (&VEC_index (sel_insn_data_def, s_i_d, LUID_BY_UID (UID)))
771 extern sel_insn_data_def insn_sid (insn_t);
773 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
774 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
775 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
776 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
777 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
778 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
779 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
780 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
782 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
783 #define INSN_LIVE(INSN) (SID (INSN)->live)
784 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
785 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
786 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
787 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
788 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
789 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
790 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
791 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
792 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
793 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
794 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
795 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
796 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
797 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
798 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
800 /* A global level shows whether an insn is valid or not. */
801 extern int global_level;
803 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
805 extern av_set_t get_av_set (insn_t);
806 extern int get_av_level (insn_t);
808 #define AV_SET(INSN) (get_av_set (INSN))
809 #define AV_LEVEL(INSN) (get_av_level (INSN))
810 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
812 /* A list of fences currently in the works. */
813 extern flist_t fences;
815 /* A NOP pattern used as a placeholder for real insns. */
816 extern rtx nop_pattern;
818 /* An insn that 'contained' in EXIT block. */
819 extern rtx exit_insn;
821 /* Provide a separate luid for the insn. */
822 #define INSN_INIT_TODO_LUID (1)
824 /* Initialize s_s_i_d. */
825 #define INSN_INIT_TODO_SSID (2)
827 /* Initialize data for simplejump. */
828 #define INSN_INIT_TODO_SIMPLEJUMP (4)
830 /* Return true if INSN is a local NOP. The nop is local in the sense that
831 it was emitted by the scheduler as a temporary insn and will soon be
832 deleted. These nops are identified by their pattern. */
833 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
835 /* Return true if INSN is linked into instruction stream.
836 NB: It is impossible for INSN to have one field null and the other not
837 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
838 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
839 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
841 /* Return true if INSN is in current fence. */
842 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
844 /* Marks loop as being considered for pipelining. */
845 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
846 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
848 /* Saved loop preheader to transfer when scheduling the loop. */
849 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
850 ? NULL \
851 : ((VEC(basic_block, heap) *) (LOOP)->aux))
852 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
853 = (BLOCKS != NULL \
854 ? BLOCKS \
855 : (LOOP)->aux))
857 extern bitmap blocks_to_reschedule;
860 /* A variable to track which part of rtx we are scanning in
861 sched-deps.c: sched_analyze_insn (). */
862 enum deps_where_def
864 DEPS_IN_INSN,
865 DEPS_IN_LHS,
866 DEPS_IN_RHS,
867 DEPS_IN_NOWHERE
869 typedef enum deps_where_def deps_where_t;
872 /* Per basic block data for the whole CFG. */
873 typedef struct
875 /* For each bb header this field contains a set of live registers.
876 For all other insns this field has a NULL.
877 We also need to know LV sets for the instructions, that are immediately
878 after the border of the region. */
879 regset lv_set;
881 /* Status of LV_SET.
882 true - block has usable LV_SET.
883 false - block's LV_SET should be recomputed. */
884 bool lv_set_valid_p;
885 } sel_global_bb_info_def;
887 typedef sel_global_bb_info_def *sel_global_bb_info_t;
889 DEF_VEC_O (sel_global_bb_info_def);
890 DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
892 /* Per basic block data. This array is indexed by basic block index. */
893 extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
895 extern void sel_extend_global_bb_info (void);
896 extern void sel_finish_global_bb_info (void);
898 /* Get data for BB. */
899 #define SEL_GLOBAL_BB_INFO(BB) \
900 (&VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
902 /* Access macros. */
903 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
904 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
906 /* Per basic block data for the region. */
907 typedef struct
909 /* This insn stream is constructed in such a way that it should be
910 traversed by PREV_INSN field - (*not* NEXT_INSN). */
911 rtx note_list;
913 /* Cached availability set at the beginning of a block.
914 See also AV_LEVEL () for conditions when this av_set can be used. */
915 av_set_t av_set;
917 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
918 int av_level;
919 } sel_region_bb_info_def;
921 typedef sel_region_bb_info_def *sel_region_bb_info_t;
923 DEF_VEC_O (sel_region_bb_info_def);
924 DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
926 /* Per basic block data. This array is indexed by basic block index. */
927 extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
929 /* Get data for BB. */
930 #define SEL_REGION_BB_INFO(BB) (&VEC_index (sel_region_bb_info_def, \
931 sel_region_bb_info, (BB)->index))
933 /* Get BB's note_list.
934 A note_list is a list of various notes that was scattered across BB
935 before scheduling, and will be appended at the beginning of BB after
936 scheduling is finished. */
937 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
939 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
940 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
941 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
943 /* Used in bb_in_ebb_p. */
944 extern bitmap_head *forced_ebb_heads;
946 /* The loop nest being pipelined. */
947 extern struct loop *current_loop_nest;
949 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
950 extern sbitmap bbs_pipelined;
952 /* Various flags. */
953 extern bool enable_moveup_set_path_p;
954 extern bool pipelining_p;
955 extern bool bookkeeping_p;
956 extern int max_insns_to_rename;
957 extern bool preheader_removed;
959 /* Software lookahead window size.
960 According to the results in Nakatani and Ebcioglu [1993], window size of 16
961 is enough to extract most ILP in integer code. */
962 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
964 extern regset sel_all_regs;
967 /* Successor iterator backend. */
968 typedef struct
970 /* True if we're at BB end. */
971 bool bb_end;
973 /* An edge on which we're iterating. */
974 edge e1;
976 /* The previous edge saved after skipping empty blocks. */
977 edge e2;
979 /* Edge iterator used when there are successors in other basic blocks. */
980 edge_iterator ei;
982 /* Successor block we're traversing. */
983 basic_block bb;
985 /* Flags that are passed to the iterator. We return only successors
986 that comply to these flags. */
987 short flags;
989 /* When flags include SUCCS_ALL, this will be set to the exact type
990 of the successor we're traversing now. */
991 short current_flags;
993 /* If skip to loop exits, save here information about loop exits. */
994 int current_exit;
995 VEC (edge, heap) *loop_exits;
996 } succ_iterator;
998 /* A structure returning all successor's information. */
999 struct succs_info
1001 /* Flags that these succcessors were computed with. */
1002 short flags;
1004 /* Successors that correspond to the flags. */
1005 insn_vec_t succs_ok;
1007 /* Their probabilities. As of now, we don't need this for other
1008 successors. */
1009 VEC(int,heap) *probs_ok;
1011 /* Other successors. */
1012 insn_vec_t succs_other;
1014 /* Probability of all successors. */
1015 int all_prob;
1017 /* The number of all successors. */
1018 int all_succs_n;
1020 /* The number of good successors. */
1021 int succs_ok_n;
1024 /* Some needed definitions. */
1025 extern basic_block after_recovery;
1027 extern insn_t sel_bb_head (basic_block);
1028 extern insn_t sel_bb_end (basic_block);
1029 extern bool sel_bb_empty_p (basic_block);
1030 extern bool in_current_region_p (basic_block);
1032 /* True when BB is a header of the inner loop. */
1033 static inline bool
1034 inner_loop_header_p (basic_block bb)
1036 struct loop *inner_loop;
1038 if (!current_loop_nest)
1039 return false;
1041 if (bb == EXIT_BLOCK_PTR)
1042 return false;
1044 inner_loop = bb->loop_father;
1045 if (inner_loop == current_loop_nest)
1046 return false;
1048 /* If successor belongs to another loop. */
1049 if (bb == inner_loop->header
1050 && flow_bb_inside_loop_p (current_loop_nest, bb))
1052 /* Could be '=' here because of wrong loop depths. */
1053 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1054 return true;
1057 return false;
1060 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1061 static inline VEC (edge, heap) *
1062 get_loop_exit_edges_unique_dests (const struct loop *loop)
1064 VEC (edge, heap) *edges = NULL;
1065 struct loop_exit *exit;
1067 gcc_assert (loop->latch != EXIT_BLOCK_PTR
1068 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1070 for (exit = loop->exits->next; exit->e; exit = exit->next)
1072 int i;
1073 edge e;
1074 bool was_dest = false;
1076 for (i = 0; VEC_iterate (edge, edges, i, e); i++)
1077 if (e->dest == exit->e->dest)
1079 was_dest = true;
1080 break;
1083 if (!was_dest)
1084 VEC_safe_push (edge, heap, edges, exit->e);
1086 return edges;
1089 static bool
1090 sel_bb_empty_or_nop_p (basic_block bb)
1092 insn_t first = sel_bb_head (bb), last;
1094 if (first == NULL_RTX)
1095 return true;
1097 if (!INSN_NOP_P (first))
1098 return false;
1100 if (bb == EXIT_BLOCK_PTR)
1101 return false;
1103 last = sel_bb_end (bb);
1104 if (first != last)
1105 return false;
1107 return true;
1110 /* Collect all loop exits recursively, skipping empty BBs between them.
1111 E.g. if BB is a loop header which has several loop exits,
1112 traverse all of them and if any of them turns out to be another loop header
1113 (after skipping empty BBs), add its loop exits to the resulting vector
1114 as well. */
1115 static inline VEC(edge, heap) *
1116 get_all_loop_exits (basic_block bb)
1118 VEC(edge, heap) *exits = NULL;
1120 /* If bb is empty, and we're skipping to loop exits, then
1121 consider bb as a possible gate to the inner loop now. */
1122 while (sel_bb_empty_or_nop_p (bb)
1123 && in_current_region_p (bb)
1124 && EDGE_COUNT (bb->succs) > 0)
1126 bb = single_succ (bb);
1128 /* This empty block could only lead outside the region. */
1129 gcc_assert (! in_current_region_p (bb));
1132 /* And now check whether we should skip over inner loop. */
1133 if (inner_loop_header_p (bb))
1135 struct loop *this_loop;
1136 struct loop *pred_loop = NULL;
1137 int i;
1138 edge e;
1140 for (this_loop = bb->loop_father;
1141 this_loop && this_loop != current_loop_nest;
1142 this_loop = loop_outer (this_loop))
1143 pred_loop = this_loop;
1145 this_loop = pred_loop;
1146 gcc_assert (this_loop != NULL);
1148 exits = get_loop_exit_edges_unique_dests (this_loop);
1150 /* Traverse all loop headers. */
1151 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
1152 if (in_current_region_p (e->dest)
1153 || inner_loop_header_p (e->dest))
1155 VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
1157 if (next_exits)
1159 int j;
1160 edge ne;
1162 /* Add all loop exits for the current edge into the
1163 resulting vector. */
1164 for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
1165 VEC_safe_push (edge, heap, exits, ne);
1167 /* Remove the original edge. */
1168 VEC_ordered_remove (edge, exits, i);
1170 /* Decrease the loop counter so we won't skip anything. */
1171 i--;
1172 continue;
1177 return exits;
1180 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1181 Any successor will fall into exactly one category. */
1183 /* Include normal successors. */
1184 #define SUCCS_NORMAL (1)
1186 /* Include back-edge successors. */
1187 #define SUCCS_BACK (2)
1189 /* Include successors that are outside of the current region. */
1190 #define SUCCS_OUT (4)
1192 /* When pipelining of the outer loops is enabled, skip innermost loops
1193 to their exits. */
1194 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1196 /* Include all successors. */
1197 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1199 /* We need to return a succ_iterator to avoid 'unitialized' warning
1200 during bootstrap. */
1201 static inline succ_iterator
1202 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1204 succ_iterator i;
1206 basic_block bb = BLOCK_FOR_INSN (insn);
1208 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1210 i.flags = flags;
1212 /* Avoid 'uninitialized' warning. */
1213 *succp = NULL;
1214 i.e1 = NULL;
1215 i.e2 = NULL;
1216 i.bb = bb;
1217 i.current_flags = 0;
1218 i.current_exit = -1;
1219 i.loop_exits = NULL;
1221 if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
1223 i.bb_end = false;
1225 /* Avoid 'uninitialized' warning. */
1226 i.ei.index = 0;
1227 i.ei.container = NULL;
1229 else
1231 i.ei = ei_start (bb->succs);
1232 i.bb_end = true;
1235 return i;
1238 static inline bool
1239 _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1240 bool check (edge, succ_iterator *))
1242 if (!ip->bb_end)
1244 /* When we're in a middle of a basic block, return
1245 the next insn immediately, but only when SUCCS_NORMAL is set. */
1246 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1247 return false;
1249 *succp = NEXT_INSN (insn);
1250 ip->current_flags = SUCCS_NORMAL;
1251 return true;
1253 else
1255 while (1)
1257 edge e_tmp = NULL;
1259 /* First, try loop exits, if we have them. */
1260 if (ip->loop_exits)
1264 VEC_iterate (edge, ip->loop_exits,
1265 ip->current_exit, e_tmp);
1266 ip->current_exit++;
1268 while (e_tmp && !check (e_tmp, ip));
1270 if (!e_tmp)
1271 VEC_free (edge, heap, ip->loop_exits);
1274 /* If we have found a successor, then great. */
1275 if (e_tmp)
1277 ip->e1 = e_tmp;
1278 break;
1281 /* If not, then try the next edge. */
1282 while (ei_cond (ip->ei, &(ip->e1)))
1284 basic_block bb = ip->e1->dest;
1286 /* Consider bb as a possible loop header. */
1287 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1288 && flag_sel_sched_pipelining_outer_loops
1289 && (!in_current_region_p (bb)
1290 || BLOCK_TO_BB (ip->bb->index)
1291 < BLOCK_TO_BB (bb->index)))
1293 /* Get all loop exits recursively. */
1294 ip->loop_exits = get_all_loop_exits (bb);
1296 if (ip->loop_exits)
1298 ip->current_exit = 0;
1299 /* Move the iterator now, because we won't do
1300 succ_iter_next until loop exits will end. */
1301 ei_next (&(ip->ei));
1302 break;
1306 /* bb is not a loop header, check as usual. */
1307 if (check (ip->e1, ip))
1308 break;
1310 ei_next (&(ip->ei));
1313 /* If loop_exits are non null, we have found an inner loop;
1314 do one more iteration to fetch an edge from these exits. */
1315 if (ip->loop_exits)
1316 continue;
1318 /* Otherwise, we've found an edge in a usual way. Break now. */
1319 break;
1322 if (ip->e1)
1324 basic_block bb = ip->e2->dest;
1326 if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
1327 *succp = exit_insn;
1328 else
1330 *succp = sel_bb_head (bb);
1332 gcc_assert (ip->flags != SUCCS_NORMAL
1333 || *succp == NEXT_INSN (bb_note (bb)));
1334 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1337 return true;
1339 else
1340 return false;
1344 static inline void
1345 _succ_iter_next (succ_iterator *ip)
1347 gcc_assert (!ip->e2 || ip->e1);
1349 if (ip->bb_end && ip->e1 && !ip->loop_exits)
1350 ei_next (&(ip->ei));
1353 /* Returns true when E1 is an eligible successor edge, possibly skipping
1354 empty blocks. When E2P is not null, the resulting edge is written there.
1355 FLAGS are used to specify whether back edges and out-of-region edges
1356 should be considered. */
1357 static inline bool
1358 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1360 edge e2 = e1;
1361 basic_block bb;
1362 int flags = ip->flags;
1363 bool src_outside_rgn = !in_current_region_p (e1->src);
1365 gcc_assert (flags != 0);
1367 if (src_outside_rgn)
1369 /* Any successor of the block that is outside current region is
1370 ineligible, except when we're skipping to loop exits. */
1371 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1373 if (flags & SUCCS_OUT)
1374 return false;
1377 bb = e2->dest;
1379 /* Skip empty blocks, but be careful not to leave the region. */
1380 while (1)
1382 if (!sel_bb_empty_p (bb))
1384 edge ne;
1385 basic_block nbb;
1387 if (!sel_bb_empty_or_nop_p (bb))
1388 break;
1390 ne = EDGE_SUCC (bb, 0);
1391 nbb = ne->dest;
1393 if (!in_current_region_p (nbb)
1394 && !(flags & SUCCS_OUT))
1395 break;
1397 e2 = ne;
1398 bb = nbb;
1399 continue;
1402 if (!in_current_region_p (bb)
1403 && !(flags & SUCCS_OUT))
1404 return false;
1406 if (EDGE_COUNT (bb->succs) == 0)
1407 return false;
1409 e2 = EDGE_SUCC (bb, 0);
1410 bb = e2->dest;
1413 /* Save the second edge for later checks. */
1414 ip->e2 = e2;
1416 if (in_current_region_p (bb))
1418 /* BLOCK_TO_BB sets topological order of the region here.
1419 It is important to use real predecessor here, which is ip->bb,
1420 as we may well have e1->src outside current region,
1421 when skipping to loop exits. */
1422 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1423 < BLOCK_TO_BB (bb->index));
1425 /* This is true for the all cases except the last one. */
1426 ip->current_flags = SUCCS_NORMAL;
1428 /* We are advancing forward in the region, as usual. */
1429 if (succeeds_in_top_order)
1431 /* We are skipping to loop exits here. */
1432 gcc_assert (!src_outside_rgn
1433 || flag_sel_sched_pipelining_outer_loops);
1434 return !!(flags & SUCCS_NORMAL);
1437 /* This is a back edge. During pipelining we ignore back edges,
1438 but only when it leads to the same loop. It can lead to the header
1439 of the outer loop, which will also be the preheader of
1440 the current loop. */
1441 if (pipelining_p
1442 && e1->src->loop_father == bb->loop_father)
1443 return !!(flags & SUCCS_NORMAL);
1445 /* A back edge should be requested explicitly. */
1446 ip->current_flags = SUCCS_BACK;
1447 return !!(flags & SUCCS_BACK);
1450 ip->current_flags = SUCCS_OUT;
1451 return !!(flags & SUCCS_OUT);
1454 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1455 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1456 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1457 _succ_iter_next (&(ITER)))
1459 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1460 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1462 /* Return the current edge along which a successor was built. */
1463 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1465 /* Return the next block of BB not running into inconsistencies. */
1466 static inline basic_block
1467 bb_next_bb (basic_block bb)
1469 switch (EDGE_COUNT (bb->succs))
1471 case 0:
1472 return bb->next_bb;
1474 case 1:
1475 return single_succ (bb);
1477 case 2:
1478 return FALLTHRU_EDGE (bb)->dest;
1480 default:
1481 return bb->next_bb;
1484 gcc_unreachable ();
1489 /* Functions that are used in sel-sched.c. */
1491 /* List functions. */
1492 extern ilist_t ilist_copy (ilist_t);
1493 extern ilist_t ilist_invert (ilist_t);
1494 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1495 extern void blist_remove (blist_t *);
1496 extern void flist_tail_init (flist_tail_t);
1498 extern fence_t flist_lookup (flist_t, insn_t);
1499 extern void flist_clear (flist_t *);
1500 extern void def_list_add (def_list_t *, insn_t, bool);
1502 /* Target context functions. */
1503 extern tc_t create_target_context (bool);
1504 extern void set_target_context (tc_t);
1505 extern void reset_target_context (tc_t, bool);
1507 /* Deps context functions. */
1508 extern void advance_deps_context (deps_t, insn_t);
1510 /* Fences functions. */
1511 extern void init_fences (insn_t);
1512 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1513 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1514 extern void move_fence_to_fences (flist_t, flist_tail_t);
1516 /* Pool functions. */
1517 extern regset get_regset_from_pool (void);
1518 extern regset get_clear_regset_from_pool (void);
1519 extern void return_regset_to_pool (regset);
1520 extern void free_regset_pool (void);
1522 extern insn_t get_nop_from_pool (insn_t);
1523 extern void return_nop_to_pool (insn_t, bool);
1524 extern void free_nop_pool (void);
1526 /* Vinsns functions. */
1527 extern bool vinsn_separable_p (vinsn_t);
1528 extern bool vinsn_cond_branch_p (vinsn_t);
1529 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1530 extern int sel_vinsn_cost (vinsn_t);
1531 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1532 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1533 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1534 extern insn_t sel_move_insn (expr_t, int, insn_t);
1535 extern void vinsn_attach (vinsn_t);
1536 extern void vinsn_detach (vinsn_t);
1537 extern vinsn_t vinsn_copy (vinsn_t, bool);
1538 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1540 /* EXPR functions. */
1541 extern void copy_expr (expr_t, expr_t);
1542 extern void copy_expr_onside (expr_t, expr_t);
1543 extern void merge_expr_data (expr_t, expr_t, insn_t);
1544 extern void merge_expr (expr_t, expr_t, insn_t);
1545 extern void clear_expr (expr_t);
1546 extern unsigned expr_dest_regno (expr_t);
1547 extern rtx expr_dest_reg (expr_t);
1548 extern int find_in_history_vect (VEC(expr_history_def, heap) *,
1549 rtx, vinsn_t, bool);
1550 extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
1551 unsigned, enum local_trans_type,
1552 vinsn_t, vinsn_t, ds_t);
1553 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1554 extern int speculate_expr (expr_t, ds_t);
1556 /* Av set functions. */
1557 extern void av_set_add (av_set_t *, expr_t);
1558 extern void av_set_iter_remove (av_set_iterator *);
1559 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1560 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1561 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1562 extern av_set_t av_set_copy (av_set_t);
1563 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1564 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1565 extern void av_set_clear (av_set_t *);
1566 extern void av_set_leave_one_nonspec (av_set_t *);
1567 extern expr_t av_set_element (av_set_t, int);
1568 extern void av_set_substract_cond_branches (av_set_t *);
1569 extern void av_set_split_usefulness (av_set_t, int, int);
1570 extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1572 extern void sel_save_haifa_priorities (void);
1574 extern void sel_init_global_and_expr (bb_vec_t);
1575 extern void sel_finish_global_and_expr (void);
1577 extern regset compute_live (insn_t);
1578 extern bool register_unavailable_p (regset, rtx);
1580 /* Dependence analysis functions. */
1581 extern void sel_clear_has_dependence (void);
1582 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1584 extern int tick_check_p (expr_t, deps_t, fence_t);
1586 /* Functions to work with insns. */
1587 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1588 extern bool insn_eligible_for_subst_p (insn_t);
1589 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1591 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1592 extern bool sel_remove_insn (insn_t, bool, bool);
1593 extern bool bb_header_p (insn_t);
1594 extern void sel_init_invalid_data_sets (insn_t);
1595 extern bool insn_at_boundary_p (insn_t);
1597 /* Basic block and CFG functions. */
1599 extern insn_t sel_bb_head (basic_block);
1600 extern bool sel_bb_head_p (insn_t);
1601 extern insn_t sel_bb_end (basic_block);
1602 extern bool sel_bb_end_p (insn_t);
1603 extern bool sel_bb_empty_p (basic_block);
1605 extern bool in_current_region_p (basic_block);
1606 extern basic_block fallthru_bb_of_jump (rtx);
1608 extern void sel_init_bbs (bb_vec_t);
1609 extern void sel_finish_bbs (void);
1611 extern struct succs_info * compute_succs_info (insn_t, short);
1612 extern void free_succs_info (struct succs_info *);
1613 extern bool sel_insn_has_single_succ_p (insn_t, int);
1614 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1615 extern int get_seqno_by_preds (rtx);
1617 extern bool bb_ends_ebb_p (basic_block);
1618 extern bool in_same_ebb_p (insn_t, insn_t);
1620 extern bool tidy_control_flow (basic_block, bool);
1621 extern void free_bb_note_pool (void);
1623 extern void purge_empty_blocks (void);
1624 extern basic_block sel_split_edge (edge);
1625 extern basic_block sel_create_recovery_block (insn_t);
1626 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1627 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1628 extern void sel_init_pipelining (void);
1629 extern void sel_finish_pipelining (void);
1630 extern void sel_sched_region (int);
1631 extern loop_p get_loop_nest_for_rgn (unsigned int);
1632 extern bool considered_for_pipelining_p (struct loop *);
1633 extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
1634 extern void sel_add_loop_preheaders (bb_vec_t *);
1635 extern bool sel_is_loop_preheader_p (basic_block);
1636 extern void clear_outdated_rtx_info (basic_block);
1637 extern void free_data_sets (basic_block);
1638 extern void exchange_data_sets (basic_block, basic_block);
1639 extern void copy_data_sets (basic_block, basic_block);
1641 extern void sel_register_cfg_hooks (void);
1642 extern void sel_unregister_cfg_hooks (void);
1644 /* Expression transformation routines. */
1645 extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1646 extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1647 extern rtx create_copy_of_insn_rtx (rtx);
1648 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1650 /* Various initialization functions. */
1651 extern void init_lv_sets (void);
1652 extern void free_lv_sets (void);
1653 extern void setup_nop_and_exit_insns (void);
1654 extern void free_nop_and_exit_insns (void);
1655 extern void free_data_for_scheduled_insn (insn_t);
1656 extern void setup_nop_vinsn (void);
1657 extern void free_nop_vinsn (void);
1658 extern void sel_set_sched_flags (void);
1659 extern void sel_setup_sched_infos (void);
1660 extern void alloc_sched_pools (void);
1661 extern void free_sched_pools (void);
1663 #endif /* GCC_SEL_SCHED_IR_H */