2007-05-30 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / struct-equiv.c
blobc37378e457d3071e10dfafe0c017fb274804ad04
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Try to match two basic blocks - or their ends - for structural equivalence.
23 We scan the blocks from their ends backwards, and expect that insns are
24 identical, except for certain cases involving registers. A mismatch
25 We scan the blocks from their ends backwards, hoping to find a match, I.e.
26 insns are identical, except for certain cases involving registers. A
27 mismatch between register number RX (used in block X) and RY (used in the
28 same way in block Y) can be handled in one of the following cases:
29 1. RX and RY are local to their respective blocks; they are set there and
30 die there. If so, they can effectively be ignored.
31 2. RX and RY die in their blocks, but live at the start. If any path
32 gets redirected through X instead of Y, the caller must emit
33 compensation code to move RY to RX. If there are overlapping inputs,
34 the function resolve_input_conflict ensures that this can be done.
35 Information about these registers are tracked in the X_LOCAL, Y_LOCAL,
36 LOCAL_COUNT and LOCAL_RVALUE fields.
37 3. RX and RY live throughout their blocks, including the start and the end.
38 Either RX and RY must be identical, or we have to replace all uses in
39 block X with a new pseudo, which is stored in the INPUT_REG field. The
40 caller can then use block X instead of block Y by copying RY to the new
41 pseudo.
43 The main entry point to this file is struct_equiv_block_eq. This function
44 uses a struct equiv_info to accept some of its inputs, to keep track of its
45 internal state, to pass down to its helper functions, and to communicate
46 some of the results back to the caller.
48 Most scans will result in a failure to match a sufficient number of insns
49 to make any optimization worth while, therefore the process is geared more
50 to quick scanning rather than the ability to exactly backtrack when we
51 find a mismatch. The information gathered is still meaningful to make a
52 preliminary decision if we want to do an optimization, we might only
53 slightly overestimate the number of matchable insns, and underestimate
54 the number of inputs an miss an input conflict. Sufficient information
55 is gathered so that when we make another pass, we won't have to backtrack
56 at the same point.
57 Another issue is that information in memory attributes and/or REG_NOTES
58 might have to be merged or discarded to make a valid match. We don't want
59 to discard such information when we are not certain that we want to merge
60 the two (partial) blocks.
61 For these reasons, struct_equiv_block_eq has to be called first with the
62 STRUCT_EQUIV_START bit set in the mode parameter. This will calculate the
63 number of matched insns and the number and types of inputs. If the
64 need_rerun field is set, the results are only tentative, and the caller
65 has to call again with STRUCT_EQUIV_RERUN till need_rerun is false in
66 order to get a reliable match.
67 To install the changes necessary for the match, the function has to be
68 called again with STRUCT_EQUIV_FINAL.
70 While scanning an insn, we process first all the SET_DESTs, then the
71 SET_SRCes, then the REG_NOTES, in order to keep the register liveness
72 information consistent.
73 If we were to mix up the order for sources / destinations in an insn where
74 a source is also a destination, we'd end up being mistaken to think that
75 the register is not live in the preceding insn. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "regs.h"
83 #include "output.h"
84 #include "insn-config.h"
85 #include "flags.h"
86 #include "recog.h"
87 #include "tm_p.h"
88 #include "target.h"
89 #include "emit-rtl.h"
90 #include "reload.h"
92 static void merge_memattrs (rtx, rtx);
93 static bool set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info);
94 static bool set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info);
95 static void find_dying_inputs (struct equiv_info *info);
96 static bool resolve_input_conflict (struct equiv_info *info);
98 /* After reload, some moves, as indicated by SECONDARY_RELOAD_CLASS and
99 SECONDARY_MEMORY_NEEDED, cannot be done directly. For our purposes, we
100 consider them impossible to generate after reload (even though some
101 might be synthesized when you throw enough code at them).
102 Since we don't know while processing a cross-jump if a local register
103 that is currently live will eventually be live and thus be an input,
104 we keep track of potential inputs that would require an impossible move
105 by using a prohibitively high cost for them.
106 This number, multiplied with the larger of STRUCT_EQUIV_MAX_LOCAL and
107 FIRST_PSEUDO_REGISTER, must fit in the input_cost field of
108 struct equiv_info. */
109 #define IMPOSSIBLE_MOVE_FACTOR 20000
113 /* Removes the memory attributes of MEM expression
114 if they are not equal. */
116 void
117 merge_memattrs (rtx x, rtx y)
119 int i;
120 int j;
121 enum rtx_code code;
122 const char *fmt;
124 if (x == y)
125 return;
126 if (x == 0 || y == 0)
127 return;
129 code = GET_CODE (x);
131 if (code != GET_CODE (y))
132 return;
134 if (GET_MODE (x) != GET_MODE (y))
135 return;
137 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
139 if (! MEM_ATTRS (x))
140 MEM_ATTRS (y) = 0;
141 else if (! MEM_ATTRS (y))
142 MEM_ATTRS (x) = 0;
143 else
145 rtx mem_size;
147 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
149 set_mem_alias_set (x, 0);
150 set_mem_alias_set (y, 0);
153 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
155 set_mem_expr (x, 0);
156 set_mem_expr (y, 0);
157 set_mem_offset (x, 0);
158 set_mem_offset (y, 0);
160 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
162 set_mem_offset (x, 0);
163 set_mem_offset (y, 0);
166 if (!MEM_SIZE (x))
167 mem_size = NULL_RTX;
168 else if (!MEM_SIZE (y))
169 mem_size = NULL_RTX;
170 else
171 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
172 INTVAL (MEM_SIZE (y))));
173 set_mem_size (x, mem_size);
174 set_mem_size (y, mem_size);
176 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
177 set_mem_align (y, MEM_ALIGN (x));
181 fmt = GET_RTX_FORMAT (code);
182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
184 switch (fmt[i])
186 case 'E':
187 /* Two vectors must have the same length. */
188 if (XVECLEN (x, i) != XVECLEN (y, i))
189 return;
191 for (j = 0; j < XVECLEN (x, i); j++)
192 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
194 break;
196 case 'e':
197 merge_memattrs (XEXP (x, i), XEXP (y, i));
200 return;
203 /* In SET, assign the bit for the register number of REG the value VALUE.
204 If REG is a hard register, do so for all its constituent registers.
205 Return the number of registers that have become included (as a positive
206 number) or excluded (as a negative number). */
207 static int
208 assign_reg_reg_set (regset set, rtx reg, int value)
210 unsigned regno = REGNO (reg);
211 int nregs, i, old;
213 if (regno >= FIRST_PSEUDO_REGISTER)
215 gcc_assert (!reload_completed);
216 nregs = 1;
218 else
219 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
220 for (old = 0, i = nregs; --i >= 0; regno++)
222 if ((value != 0) == REGNO_REG_SET_P (set, regno))
223 continue;
224 if (value)
225 old++, SET_REGNO_REG_SET (set, regno);
226 else
227 old--, CLEAR_REGNO_REG_SET (set, regno);
229 return old;
232 /* Record state about current inputs / local registers / liveness
233 in *P. */
234 static inline void
235 struct_equiv_make_checkpoint (struct struct_equiv_checkpoint *p,
236 struct equiv_info *info)
238 *p = info->cur;
241 /* Call struct_equiv_make_checkpoint (P, INFO) if the current partial block
242 is suitable to split off - i.e. there is no dangling cc0 user - and
243 if the current cost of the common instructions, minus the cost for
244 setting up the inputs, is higher than what has been recorded before
245 in CHECKPOINT[N]. Also, if we do so, confirm or cancel any pending
246 changes. */
247 static void
248 struct_equiv_improve_checkpoint (struct struct_equiv_checkpoint *p,
249 struct equiv_info *info)
251 #ifdef HAVE_cc0
252 if (reg_mentioned_p (cc0_rtx, info->cur.x_start)
253 && !sets_cc0_p (info->cur.x_start))
254 return;
255 #endif
256 if (info->cur.input_count >= IMPOSSIBLE_MOVE_FACTOR)
257 return;
258 if (info->input_cost >= 0
259 ? (COSTS_N_INSNS(info->cur.ninsns - p->ninsns)
260 > info->input_cost * (info->cur.input_count - p->input_count))
261 : info->cur.ninsns > p->ninsns && !info->cur.input_count)
263 if (info->check_input_conflict && ! resolve_input_conflict (info))
264 return;
265 /* We have a profitable set of changes. If this is the final pass,
266 commit them now. Otherwise, we don't know yet if we can make any
267 change, so put the old code back for now. */
268 if (info->mode & STRUCT_EQUIV_FINAL)
269 confirm_change_group ();
270 else
271 cancel_changes (0);
272 struct_equiv_make_checkpoint (p, info);
276 /* Restore state about current inputs / local registers / liveness
277 from P. */
278 static void
279 struct_equiv_restore_checkpoint (struct struct_equiv_checkpoint *p,
280 struct equiv_info *info)
282 info->cur.ninsns = p->ninsns;
283 info->cur.x_start = p->x_start;
284 info->cur.y_start = p->y_start;
285 info->cur.input_count = p->input_count;
286 info->cur.input_valid = p->input_valid;
287 while (info->cur.local_count > p->local_count)
289 info->cur.local_count--;
290 info->cur.version--;
291 if (REGNO_REG_SET_P (info->x_local_live,
292 REGNO (info->x_local[info->cur.local_count])))
294 assign_reg_reg_set (info->x_local_live,
295 info->x_local[info->cur.local_count], 0);
296 assign_reg_reg_set (info->y_local_live,
297 info->y_local[info->cur.local_count], 0);
298 info->cur.version--;
301 if (info->cur.version != p->version)
302 info->need_rerun = true;
306 /* Update register liveness to reflect that X is now life (if rvalue is
307 nonzero) or dead (if rvalue is zero) in INFO->x_block, and likewise Y
308 in INFO->y_block. Return the number of registers the liveness of which
309 changed in each block (as a negative number if registers became dead). */
310 static int
311 note_local_live (struct equiv_info *info, rtx x, rtx y, int rvalue)
313 unsigned x_regno = REGNO (x);
314 unsigned y_regno = REGNO (y);
315 int x_nominal_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
316 ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
317 int y_nominal_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
318 ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
319 int x_change = assign_reg_reg_set (info->x_local_live, x, rvalue);
320 int y_change = assign_reg_reg_set (info->y_local_live, y, rvalue);
322 gcc_assert (x_nominal_nregs && y_nominal_nregs);
323 gcc_assert (x_change * y_nominal_nregs == y_change * x_nominal_nregs);
324 if (y_change)
326 if (reload_completed)
328 unsigned x_regno ATTRIBUTE_UNUSED = REGNO (x);
329 unsigned y_regno = REGNO (y);
330 enum machine_mode x_mode = GET_MODE (x);
332 if (secondary_reload_class (0, REGNO_REG_CLASS (y_regno), x_mode, x)
333 != NO_REGS
334 #ifdef SECONDARY_MEMORY_NEEDED
335 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (y_regno),
336 REGNO_REG_CLASS (x_regno), x_mode)
337 #endif
339 y_change *= IMPOSSIBLE_MOVE_FACTOR;
341 info->cur.input_count += y_change;
342 info->cur.version++;
344 return x_change;
347 /* Check if *XP is equivalent to Y. Until an unreconcilable difference is
348 found, use in-group changes with validate_change on *XP to make register
349 assignments agree. It is the (not necessarily direct) callers
350 responsibility to verify / confirm / cancel these changes, as appropriate.
351 RVALUE indicates if the processed piece of rtl is used as a destination, in
352 which case we can't have different registers being an input. Returns
353 nonzero if the two blocks have been identified as equivalent, zero otherwise.
354 RVALUE == 0: destination
355 RVALUE == 1: source
356 RVALUE == -1: source, ignore SET_DEST of SET / clobber. */
357 bool
358 rtx_equiv_p (rtx *xp, rtx y, int rvalue, struct equiv_info *info)
360 rtx x = *xp;
361 enum rtx_code code;
362 int length;
363 const char *format;
364 int i;
366 if (!y || !x)
367 return x == y;
368 code = GET_CODE (y);
369 if (code != REG && x == y)
370 return true;
371 if (GET_CODE (x) != code
372 || GET_MODE (x) != GET_MODE (y))
373 return false;
375 /* ??? could extend to allow CONST_INT inputs. */
376 switch (code)
378 case REG:
380 unsigned x_regno = REGNO (x);
381 unsigned y_regno = REGNO (y);
382 int x_common_live, y_common_live;
384 if (reload_completed
385 && (x_regno >= FIRST_PSEUDO_REGISTER
386 || y_regno >= FIRST_PSEUDO_REGISTER))
388 /* We should only see this in REG_NOTEs. */
389 gcc_assert (!info->live_update);
390 /* Returning false will cause us to remove the notes. */
391 return false;
393 #ifdef STACK_REGS
394 /* After reg-stack, can only accept literal matches of stack regs. */
395 if (info->mode & CLEANUP_POST_REGSTACK
396 && (IN_RANGE (x_regno, FIRST_STACK_REG, LAST_STACK_REG)
397 || IN_RANGE (y_regno, FIRST_STACK_REG, LAST_STACK_REG)))
398 return x_regno == y_regno;
399 #endif
401 /* If the register is a locally live one in one block, the
402 corresponding one must be locally live in the other, too, and
403 match of identical regnos doesn't apply. */
404 if (REGNO_REG_SET_P (info->x_local_live, x_regno))
406 if (!REGNO_REG_SET_P (info->y_local_live, y_regno))
407 return false;
409 else if (REGNO_REG_SET_P (info->y_local_live, y_regno))
410 return false;
411 else if (x_regno == y_regno)
413 if (!rvalue && info->cur.input_valid
414 && (reg_overlap_mentioned_p (x, info->x_input)
415 || reg_overlap_mentioned_p (x, info->y_input)))
416 return false;
418 /* Update liveness information. */
419 if (info->live_update
420 && assign_reg_reg_set (info->common_live, x, rvalue))
421 info->cur.version++;
423 return true;
426 x_common_live = REGNO_REG_SET_P (info->common_live, x_regno);
427 y_common_live = REGNO_REG_SET_P (info->common_live, y_regno);
428 if (x_common_live != y_common_live)
429 return false;
430 else if (x_common_live)
432 if (! rvalue || info->input_cost < 0 || no_new_pseudos)
433 return false;
434 /* If info->live_update is not set, we are processing notes.
435 We then allow a match with x_input / y_input found in a
436 previous pass. */
437 if (info->live_update && !info->cur.input_valid)
439 info->cur.input_valid = true;
440 info->x_input = x;
441 info->y_input = y;
442 info->cur.input_count += optimize_size ? 2 : 1;
443 if (info->input_reg
444 && GET_MODE (info->input_reg) != GET_MODE (info->x_input))
445 info->input_reg = NULL_RTX;
446 if (!info->input_reg)
447 info->input_reg = gen_reg_rtx (GET_MODE (info->x_input));
449 else if ((info->live_update
450 ? ! info->cur.input_valid : ! info->x_input)
451 || ! rtx_equal_p (x, info->x_input)
452 || ! rtx_equal_p (y, info->y_input))
453 return false;
454 validate_change (info->cur.x_start, xp, info->input_reg, 1);
456 else
458 int x_nregs = (x_regno >= FIRST_PSEUDO_REGISTER
459 ? 1 : hard_regno_nregs[x_regno][GET_MODE (x)]);
460 int y_nregs = (y_regno >= FIRST_PSEUDO_REGISTER
461 ? 1 : hard_regno_nregs[y_regno][GET_MODE (y)]);
462 int size = GET_MODE_SIZE (GET_MODE (x));
463 enum machine_mode x_mode = GET_MODE (x);
464 unsigned x_regno_i, y_regno_i;
465 int x_nregs_i, y_nregs_i, size_i;
466 int local_count = info->cur.local_count;
468 /* This might be a register local to each block. See if we have
469 it already registered. */
470 for (i = local_count - 1; i >= 0; i--)
472 x_regno_i = REGNO (info->x_local[i]);
473 x_nregs_i = (x_regno_i >= FIRST_PSEUDO_REGISTER
474 ? 1 : hard_regno_nregs[x_regno_i][GET_MODE (x)]);
475 y_regno_i = REGNO (info->y_local[i]);
476 y_nregs_i = (y_regno_i >= FIRST_PSEUDO_REGISTER
477 ? 1 : hard_regno_nregs[y_regno_i][GET_MODE (y)]);
478 size_i = GET_MODE_SIZE (GET_MODE (info->x_local[i]));
480 /* If we have a new pair of registers that is wider than an
481 old pair and enclosing it with matching offsets,
482 remove the old pair. If we find a matching, wider, old
483 pair, use the old one. If the width is the same, use the
484 old one if the modes match, but the new if they don't.
485 We don't want to get too fancy with subreg_regno_offset
486 here, so we just test two straightforward cases each. */
487 if (info->live_update
488 && (x_mode != GET_MODE (info->x_local[i])
489 ? size >= size_i : size > size_i))
491 /* If the new pair is fully enclosing a matching
492 existing pair, remove the old one. N.B. because
493 we are removing one entry here, the check below
494 if we have space for a new entry will succeed. */
495 if ((x_regno <= x_regno_i
496 && x_regno + x_nregs >= x_regno_i + x_nregs_i
497 && x_nregs == y_nregs && x_nregs_i == y_nregs_i
498 && x_regno - x_regno_i == y_regno - y_regno_i)
499 || (x_regno == x_regno_i && y_regno == y_regno_i
500 && x_nregs >= x_nregs_i && y_nregs >= y_nregs_i))
502 info->cur.local_count = --local_count;
503 info->x_local[i] = info->x_local[local_count];
504 info->y_local[i] = info->y_local[local_count];
505 continue;
508 else
511 /* If the new pair is fully enclosed within a matching
512 existing pair, succeed. */
513 if (x_regno >= x_regno_i
514 && x_regno + x_nregs <= x_regno_i + x_nregs_i
515 && x_nregs == y_nregs && x_nregs_i == y_nregs_i
516 && x_regno - x_regno_i == y_regno - y_regno_i)
517 break;
518 if (x_regno == x_regno_i && y_regno == y_regno_i
519 && x_nregs <= x_nregs_i && y_nregs <= y_nregs_i)
520 break;
523 /* Any other overlap causes a match failure. */
524 if (x_regno + x_nregs > x_regno_i
525 && x_regno_i + x_nregs_i > x_regno)
526 return false;
527 if (y_regno + y_nregs > y_regno_i
528 && y_regno_i + y_nregs_i > y_regno)
529 return false;
531 if (i < 0)
533 /* Not found. Create a new entry if possible. */
534 if (!info->live_update
535 || info->cur.local_count >= STRUCT_EQUIV_MAX_LOCAL)
536 return false;
537 info->x_local[info->cur.local_count] = x;
538 info->y_local[info->cur.local_count] = y;
539 info->cur.local_count++;
540 info->cur.version++;
542 note_local_live (info, x, y, rvalue);
544 return true;
546 case SET:
547 gcc_assert (rvalue < 0);
548 /* Ignore the destinations role as a destination. Still, we have
549 to consider input registers embedded in the addresses of a MEM.
550 N.B., we process the rvalue aspect of STRICT_LOW_PART /
551 ZERO_EXTEND / SIGN_EXTEND along with their lvalue aspect. */
552 if(!set_dest_addr_equiv_p (SET_DEST (x), SET_DEST (y), info))
553 return false;
554 /* Process source. */
555 return rtx_equiv_p (&SET_SRC (x), SET_SRC (y), 1, info);
556 case PRE_MODIFY:
557 /* Process destination. */
558 if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
559 return false;
560 /* Process source. */
561 return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
562 case POST_MODIFY:
564 rtx x_dest0, x_dest1;
566 /* Process destination. */
567 x_dest0 = XEXP (x, 0);
568 gcc_assert (REG_P (x_dest0));
569 if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info))
570 return false;
571 x_dest1 = XEXP (x, 0);
572 /* validate_change might have changed the destination. Put it back
573 so that we can do a proper match for its role as an input. */
574 XEXP (x, 0) = x_dest0;
575 if (!rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info))
576 return false;
577 gcc_assert (x_dest1 == XEXP (x, 0));
578 /* Process source. */
579 return rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), 1, info);
581 case CLOBBER:
582 gcc_assert (rvalue < 0);
583 return true;
584 /* Some special forms are also rvalues when they appear in lvalue
585 positions. However, we must ont try to match a register after we
586 have already altered it with validate_change, consider the rvalue
587 aspect while we process the lvalue. */
588 case STRICT_LOW_PART:
589 case ZERO_EXTEND:
590 case SIGN_EXTEND:
592 rtx x_inner, y_inner;
593 enum rtx_code code;
594 int change;
596 if (rvalue)
597 break;
598 x_inner = XEXP (x, 0);
599 y_inner = XEXP (y, 0);
600 if (GET_MODE (x_inner) != GET_MODE (y_inner))
601 return false;
602 code = GET_CODE (x_inner);
603 if (code != GET_CODE (y_inner))
604 return false;
605 /* The address of a MEM is an input that will be processed during
606 rvalue == -1 processing. */
607 if (code == SUBREG)
609 if (SUBREG_BYTE (x_inner) != SUBREG_BYTE (y_inner))
610 return false;
611 x = x_inner;
612 x_inner = SUBREG_REG (x_inner);
613 y_inner = SUBREG_REG (y_inner);
614 if (GET_MODE (x_inner) != GET_MODE (y_inner))
615 return false;
616 code = GET_CODE (x_inner);
617 if (code != GET_CODE (y_inner))
618 return false;
620 if (code == MEM)
621 return true;
622 gcc_assert (code == REG);
623 if (! rtx_equiv_p (&XEXP (x, 0), y_inner, rvalue, info))
624 return false;
625 if (REGNO (x_inner) == REGNO (y_inner))
627 change = assign_reg_reg_set (info->common_live, x_inner, 1);
628 info->cur.version++;
630 else
631 change = note_local_live (info, x_inner, y_inner, 1);
632 gcc_assert (change);
633 return true;
635 /* The AUTO_INC / POST_MODIFY / PRE_MODIFY sets are modelled to take
636 place during input processing, however, that is benign, since they
637 are paired with reads. */
638 case MEM:
639 return !rvalue || rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info);
640 case POST_INC: case POST_DEC: case PRE_INC: case PRE_DEC:
641 return (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info)
642 && rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info));
643 case PARALLEL:
644 /* If this is a top-level PATTERN PARALLEL, we expect the caller to
645 have handled the SET_DESTs. A complex or vector PARALLEL can be
646 identified by having a mode. */
647 gcc_assert (rvalue < 0 || GET_MODE (x) != VOIDmode);
648 break;
649 case LABEL_REF:
650 /* Check special tablejump match case. */
651 if (XEXP (y, 0) == info->y_label)
652 return (XEXP (x, 0) == info->x_label);
653 /* We can't assume nonlocal labels have their following insns yet. */
654 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
655 return XEXP (x, 0) == XEXP (y, 0);
657 /* Two label-refs are equivalent if they point at labels
658 in the same position in the instruction stream. */
659 return (next_real_insn (XEXP (x, 0))
660 == next_real_insn (XEXP (y, 0)));
661 case SYMBOL_REF:
662 return XSTR (x, 0) == XSTR (y, 0);
663 /* Some rtl is guaranteed to be shared, or unique; If we didn't match
664 EQ equality above, they aren't the same. */
665 case CONST_INT:
666 case CODE_LABEL:
667 return false;
668 default:
669 break;
672 /* For commutative operations, the RTX match if the operands match in any
673 order. */
674 if (targetm.commutative_p (x, UNKNOWN))
675 return ((rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), rvalue, info)
676 && rtx_equiv_p (&XEXP (x, 1), XEXP (y, 1), rvalue, info))
677 || (rtx_equiv_p (&XEXP (x, 0), XEXP (y, 1), rvalue, info)
678 && rtx_equiv_p (&XEXP (x, 1), XEXP (y, 0), rvalue, info)));
680 /* Process subexpressions - this is similar to rtx_equal_p. */
681 length = GET_RTX_LENGTH (code);
682 format = GET_RTX_FORMAT (code);
684 for (i = 0; i < length; ++i)
686 switch (format[i])
688 case 'w':
689 if (XWINT (x, i) != XWINT (y, i))
690 return false;
691 break;
692 case 'n':
693 case 'i':
694 if (XINT (x, i) != XINT (y, i))
695 return false;
696 break;
697 case 'V':
698 case 'E':
699 if (XVECLEN (x, i) != XVECLEN (y, i))
700 return false;
701 if (XVEC (x, i) != 0)
703 int j;
704 for (j = 0; j < XVECLEN (x, i); ++j)
706 if (! rtx_equiv_p (&XVECEXP (x, i, j), XVECEXP (y, i, j),
707 rvalue, info))
708 return false;
711 break;
712 case 'e':
713 if (! rtx_equiv_p (&XEXP (x, i), XEXP (y, i), rvalue, info))
714 return false;
715 break;
716 case 'S':
717 case 's':
718 if ((XSTR (x, i) || XSTR (y, i))
719 && (! XSTR (x, i) || ! XSTR (y, i)
720 || strcmp (XSTR (x, i), XSTR (y, i))))
721 return false;
722 break;
723 case 'u':
724 /* These are just backpointers, so they don't matter. */
725 break;
726 case '0':
727 case 't':
728 break;
729 /* It is believed that rtx's at this level will never
730 contain anything but integers and other rtx's,
731 except for within LABEL_REFs and SYMBOL_REFs. */
732 default:
733 gcc_unreachable ();
736 return true;
739 /* Do only the rtx_equiv_p SET_DEST processing for SETs and CLOBBERs.
740 Since we are scanning backwards, this the first step in processing each
741 insn. Return true for success. */
742 static bool
743 set_dest_equiv_p (rtx x, rtx y, struct equiv_info *info)
745 if (!x || !y)
746 return x == y;
747 if (GET_CODE (x) != GET_CODE (y))
748 return false;
749 else if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
750 return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 0, info);
751 else if (GET_CODE (x) == PARALLEL)
753 int j;
755 if (XVECLEN (x, 0) != XVECLEN (y, 0))
756 return false;
757 for (j = 0; j < XVECLEN (x, 0); ++j)
759 rtx xe = XVECEXP (x, 0, j);
760 rtx ye = XVECEXP (y, 0, j);
762 if (GET_CODE (xe) != GET_CODE (ye))
763 return false;
764 if ((GET_CODE (xe) == SET || GET_CODE (xe) == CLOBBER)
765 && ! rtx_equiv_p (&XEXP (xe, 0), XEXP (ye, 0), 0, info))
766 return false;
769 return true;
772 /* Process MEMs in SET_DEST destinations. We must not process this together
773 with REG SET_DESTs, but must do it separately, lest when we see
774 [(set (reg:SI foo) (bar))
775 (set (mem:SI (reg:SI foo) (baz)))]
776 struct_equiv_block_eq could get confused to assume that (reg:SI foo)
777 is not live before this instruction. */
778 static bool
779 set_dest_addr_equiv_p (rtx x, rtx y, struct equiv_info *info)
781 enum rtx_code code = GET_CODE (x);
782 int length;
783 const char *format;
784 int i;
786 if (code != GET_CODE (y))
787 return false;
788 if (code == MEM)
789 return rtx_equiv_p (&XEXP (x, 0), XEXP (y, 0), 1, info);
791 /* Process subexpressions. */
792 length = GET_RTX_LENGTH (code);
793 format = GET_RTX_FORMAT (code);
795 for (i = 0; i < length; ++i)
797 switch (format[i])
799 case 'V':
800 case 'E':
801 if (XVECLEN (x, i) != XVECLEN (y, i))
802 return false;
803 if (XVEC (x, i) != 0)
805 int j;
806 for (j = 0; j < XVECLEN (x, i); ++j)
808 if (! set_dest_addr_equiv_p (XVECEXP (x, i, j),
809 XVECEXP (y, i, j), info))
810 return false;
813 break;
814 case 'e':
815 if (! set_dest_addr_equiv_p (XEXP (x, i), XEXP (y, i), info))
816 return false;
817 break;
818 default:
819 break;
822 return true;
825 /* Check if the set of REG_DEAD notes attached to I1 and I2 allows us to
826 go ahead with merging I1 and I2, which otherwise look fine.
827 Inputs / local registers for the inputs of I1 and I2 have already been
828 set up. */
829 static bool
830 death_notes_match_p (rtx i1 ATTRIBUTE_UNUSED, rtx i2 ATTRIBUTE_UNUSED,
831 struct equiv_info *info ATTRIBUTE_UNUSED)
833 #ifdef STACK_REGS
834 /* If cross_jump_death_matters is not 0, the insn's mode
835 indicates whether or not the insn contains any stack-like regs. */
837 if ((info->mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
839 /* If register stack conversion has already been done, then
840 death notes must also be compared before it is certain that
841 the two instruction streams match. */
843 rtx note;
844 HARD_REG_SET i1_regset, i2_regset;
846 CLEAR_HARD_REG_SET (i1_regset);
847 CLEAR_HARD_REG_SET (i2_regset);
849 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
850 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
851 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
853 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
854 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
856 unsigned regno = REGNO (XEXP (note, 0));
857 int i;
859 for (i = info->cur.local_count - 1; i >= 0; i--)
860 if (regno == REGNO (info->y_local[i]))
862 regno = REGNO (info->x_local[i]);
863 break;
865 SET_HARD_REG_BIT (i2_regset, regno);
868 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
869 return false;
871 #endif
872 return true;
875 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
877 bool
878 insns_match_p (rtx i1, rtx i2, struct equiv_info *info)
880 int rvalue_change_start;
881 struct struct_equiv_checkpoint before_rvalue_change;
883 /* Verify that I1 and I2 are equivalent. */
884 if (GET_CODE (i1) != GET_CODE (i2))
885 return false;
887 info->cur.x_start = i1;
888 info->cur.y_start = i2;
890 /* If this is a CALL_INSN, compare register usage information.
891 If we don't check this on stack register machines, the two
892 CALL_INSNs might be merged leaving reg-stack.c with mismatching
893 numbers of stack registers in the same basic block.
894 If we don't check this on machines with delay slots, a delay slot may
895 be filled that clobbers a parameter expected by the subroutine.
897 ??? We take the simple route for now and assume that if they're
898 equal, they were constructed identically. */
900 if (CALL_P (i1))
902 if (SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)
903 || ! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info)
904 || ! set_dest_equiv_p (CALL_INSN_FUNCTION_USAGE (i1),
905 CALL_INSN_FUNCTION_USAGE (i2), info)
906 || ! rtx_equiv_p (&CALL_INSN_FUNCTION_USAGE (i1),
907 CALL_INSN_FUNCTION_USAGE (i2), -1, info))
909 cancel_changes (0);
910 return false;
913 else if (INSN_P (i1))
915 if (! set_dest_equiv_p (PATTERN (i1), PATTERN (i2), info))
917 cancel_changes (0);
918 return false;
921 rvalue_change_start = num_validated_changes ();
922 struct_equiv_make_checkpoint (&before_rvalue_change, info);
923 /* Check death_notes_match_p *after* the inputs have been processed,
924 so that local inputs will already have been set up. */
925 if (! INSN_P (i1)
926 || (!bitmap_bit_p (info->equiv_used, info->cur.ninsns)
927 && rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
928 && death_notes_match_p (i1, i2, info)
929 && verify_changes (0)))
930 return true;
932 /* Do not do EQUIV substitution after reload. First, we're undoing the
933 work of reload_cse. Second, we may be undoing the work of the post-
934 reload splitting pass. */
935 /* ??? Possibly add a new phase switch variable that can be used by
936 targets to disallow the troublesome insns after splitting. */
937 if (!reload_completed)
939 rtx equiv1, equiv2;
941 cancel_changes (rvalue_change_start);
942 struct_equiv_restore_checkpoint (&before_rvalue_change, info);
944 /* The following code helps take care of G++ cleanups. */
945 equiv1 = find_reg_equal_equiv_note (i1);
946 equiv2 = find_reg_equal_equiv_note (i2);
947 if (equiv1 && equiv2
948 /* If the equivalences are not to a constant, they may
949 reference pseudos that no longer exist, so we can't
950 use them. */
951 && (! reload_completed
952 || (CONSTANT_P (XEXP (equiv1, 0))
953 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
955 rtx s1 = single_set (i1);
956 rtx s2 = single_set (i2);
958 if (s1 != 0 && s2 != 0)
960 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
961 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
962 /* Only inspecting the new SET_SRC is not good enough,
963 because there may also be bare USEs in a single_set
964 PARALLEL. */
965 if (rtx_equiv_p (&PATTERN (i1), PATTERN (i2), -1, info)
966 && death_notes_match_p (i1, i2, info)
967 && verify_changes (0))
969 /* Mark this insn so that we'll use the equivalence in
970 all subsequent passes. */
971 bitmap_set_bit (info->equiv_used, info->cur.ninsns);
972 return true;
978 cancel_changes (0);
979 return false;
982 /* Set up mode and register information in INFO. Return true for success. */
983 bool
984 struct_equiv_init (int mode, struct equiv_info *info)
986 if ((info->x_block->flags | info->y_block->flags) & BB_DIRTY)
987 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
988 (PROP_DEATH_NOTES
989 | ((mode & CLEANUP_POST_REGSTACK)
990 ? PROP_POST_REGSTACK : 0)));
991 if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
992 info->y_block->il.rtl->global_live_at_end))
994 #ifdef STACK_REGS
995 unsigned rn;
997 if (!(mode & CLEANUP_POST_REGSTACK))
998 return false;
999 /* After reg-stack. Remove bogus live info about stack regs. N.B.
1000 these regs are not necessarily all dead - we swap random bogosity
1001 against constant bogosity. However, clearing these bits at
1002 least makes the regsets comparable. */
1003 for (rn = FIRST_STACK_REG; rn <= LAST_STACK_REG; rn++)
1005 CLEAR_REGNO_REG_SET (info->x_block->il.rtl->global_live_at_end, rn);
1006 CLEAR_REGNO_REG_SET (info->y_block->il.rtl->global_live_at_end, rn);
1008 if (!REG_SET_EQUAL_P (info->x_block->il.rtl->global_live_at_end,
1009 info->y_block->il.rtl->global_live_at_end))
1010 #endif
1011 return false;
1013 info->mode = mode;
1014 if (mode & STRUCT_EQUIV_START)
1016 info->x_input = info->y_input = info->input_reg = NULL_RTX;
1017 info->equiv_used = ALLOC_REG_SET (&reg_obstack);
1018 info->check_input_conflict = false;
1020 info->had_input_conflict = false;
1021 info->cur.ninsns = info->cur.version = 0;
1022 info->cur.local_count = info->cur.input_count = 0;
1023 info->cur.x_start = info->cur.y_start = NULL_RTX;
1024 info->x_label = info->y_label = NULL_RTX;
1025 info->need_rerun = false;
1026 info->live_update = true;
1027 info->cur.input_valid = false;
1028 info->common_live = ALLOC_REG_SET (&reg_obstack);
1029 info->x_local_live = ALLOC_REG_SET (&reg_obstack);
1030 info->y_local_live = ALLOC_REG_SET (&reg_obstack);
1031 COPY_REG_SET (info->common_live, info->x_block->il.rtl->global_live_at_end);
1032 struct_equiv_make_checkpoint (&info->best_match, info);
1033 return true;
1036 /* Insns XI and YI have been matched. Merge memory attributes and reg
1037 notes. */
1038 static void
1039 struct_equiv_merge (rtx xi, rtx yi, struct equiv_info *info)
1041 rtx equiv1, equiv2;
1043 merge_memattrs (xi, yi);
1045 /* If the merged insns have different REG_EQUAL notes, then
1046 remove them. */
1047 info->live_update = false;
1048 equiv1 = find_reg_equal_equiv_note (xi);
1049 equiv2 = find_reg_equal_equiv_note (yi);
1050 if (equiv1 && !equiv2)
1051 remove_note (xi, equiv1);
1052 else if (!equiv1 && equiv2)
1053 remove_note (yi, equiv2);
1054 else if (equiv1 && equiv2
1055 && !rtx_equiv_p (&XEXP (equiv1, 0), XEXP (equiv2, 0),
1056 1, info))
1058 remove_note (xi, equiv1);
1059 remove_note (yi, equiv2);
1061 info->live_update = true;
1064 /* Return number of matched insns.
1065 This function must be called up to three times for a successful cross-jump
1066 match:
1067 first to find out which instructions do match. While trying to match
1068 another instruction that doesn't match, we destroy information in info
1069 about the actual inputs. So if there have been any before the last
1070 match attempt, we need to call this function again to recompute the
1071 actual inputs up to the actual start of the matching sequence.
1072 When we are then satisfied that the cross-jump is worthwhile, we
1073 call this function a third time to make any changes needed to make the
1074 sequences match: apply equivalences, remove non-matching
1075 notes and merge memory attributes. */
1077 struct_equiv_block_eq (int mode, struct equiv_info *info)
1079 rtx x_stop, y_stop;
1080 rtx xi, yi;
1081 int i;
1083 if (mode & STRUCT_EQUIV_START)
1085 x_stop = BB_HEAD (info->x_block);
1086 y_stop = BB_HEAD (info->y_block);
1087 if (!x_stop || !y_stop)
1088 return 0;
1090 else
1092 x_stop = info->cur.x_start;
1093 y_stop = info->cur.y_start;
1095 if (!struct_equiv_init (mode, info))
1096 gcc_unreachable ();
1098 /* Skip simple jumps at the end of the blocks. Complex jumps still
1099 need to be compared for equivalence, which we'll do below. */
1101 xi = BB_END (info->x_block);
1102 if (onlyjump_p (xi)
1103 || (returnjump_p (xi) && !side_effects_p (PATTERN (xi))))
1105 info->cur.x_start = xi;
1106 xi = PREV_INSN (xi);
1109 yi = BB_END (info->y_block);
1110 if (onlyjump_p (yi)
1111 || (returnjump_p (yi) && !side_effects_p (PATTERN (yi))))
1113 info->cur.y_start = yi;
1114 /* Count everything except for unconditional jump as insn. */
1115 /* ??? Is it right to count unconditional jumps with a clobber?
1116 Should we count conditional returns? */
1117 if (!simplejump_p (yi) && !returnjump_p (yi) && info->cur.x_start)
1118 info->cur.ninsns++;
1119 yi = PREV_INSN (yi);
1122 if (mode & STRUCT_EQUIV_MATCH_JUMPS)
1124 /* The caller is expected to have compared the jumps already, but we
1125 need to match them again to get any local registers and inputs. */
1126 gcc_assert (!info->cur.x_start == !info->cur.y_start);
1127 if (info->cur.x_start)
1129 if (any_condjump_p (info->cur.x_start)
1130 ? !condjump_equiv_p (info, false)
1131 : !insns_match_p (info->cur.x_start, info->cur.y_start, info))
1132 gcc_unreachable ();
1134 else if (any_condjump_p (xi) && any_condjump_p (yi))
1136 info->cur.x_start = xi;
1137 info->cur.y_start = yi;
1138 xi = PREV_INSN (xi);
1139 yi = PREV_INSN (yi);
1140 info->cur.ninsns++;
1141 if (!condjump_equiv_p (info, false))
1142 gcc_unreachable ();
1144 if (info->cur.x_start && info->mode & STRUCT_EQUIV_FINAL)
1145 struct_equiv_merge (info->cur.x_start, info->cur.y_start, info);
1148 struct_equiv_improve_checkpoint (&info->best_match, info);
1149 info->x_end = xi;
1150 info->y_end = yi;
1151 if (info->cur.x_start != x_stop)
1152 for (;;)
1154 /* Ignore notes. */
1155 while (!INSN_P (xi) && xi != x_stop)
1156 xi = PREV_INSN (xi);
1158 while (!INSN_P (yi) && yi != y_stop)
1159 yi = PREV_INSN (yi);
1161 if (!insns_match_p (xi, yi, info))
1162 break;
1163 if (INSN_P (xi))
1165 if (info->mode & STRUCT_EQUIV_FINAL)
1166 struct_equiv_merge (xi, yi, info);
1167 info->cur.ninsns++;
1168 struct_equiv_improve_checkpoint (&info->best_match, info);
1170 if (xi == x_stop || yi == y_stop)
1172 /* If we reached the start of at least one of the blocks, but
1173 best_match hasn't been advanced back to the first valid insn
1174 yet, represent the increased benefit of completing the block
1175 as an increased instruction count. */
1176 if (info->best_match.x_start != info->cur.x_start
1177 && (xi == BB_HEAD (info->x_block)
1178 || yi == BB_HEAD (info->y_block)))
1180 info->cur.ninsns++;
1181 struct_equiv_improve_checkpoint (&info->best_match, info);
1182 info->cur.ninsns--;
1183 if (info->best_match.ninsns > info->cur.ninsns)
1184 info->best_match.ninsns = info->cur.ninsns;
1186 break;
1188 xi = PREV_INSN (xi);
1189 yi = PREV_INSN (yi);
1192 /* If we failed to match an insn, but had some changes registered from
1193 trying to make the insns match, we need to cancel these changes now. */
1194 cancel_changes (0);
1195 /* Restore to best_match to get the sequence with the best known-so-far
1196 cost-benefit difference. */
1197 struct_equiv_restore_checkpoint (&info->best_match, info);
1199 /* Include preceding notes and labels in the cross-jump / if-conversion.
1200 One, this may bring us to the head of the blocks.
1201 Two, it keeps line number notes as matched as may be. */
1202 if (info->cur.ninsns)
1204 xi = info->cur.x_start;
1205 yi = info->cur.y_start;
1206 while (xi != x_stop && !INSN_P (PREV_INSN (xi)))
1207 xi = PREV_INSN (xi);
1209 while (yi != y_stop && !INSN_P (PREV_INSN (yi)))
1210 yi = PREV_INSN (yi);
1212 info->cur.x_start = xi;
1213 info->cur.y_start = yi;
1216 if (!info->cur.input_valid)
1217 info->x_input = info->y_input = info->input_reg = NULL_RTX;
1218 if (!info->need_rerun)
1220 find_dying_inputs (info);
1221 if (info->mode & STRUCT_EQUIV_FINAL)
1223 if (info->check_input_conflict && ! resolve_input_conflict (info))
1224 gcc_unreachable ();
1226 else
1228 bool input_conflict = info->had_input_conflict;
1230 if (!input_conflict
1231 && info->dying_inputs > 1
1232 && bitmap_intersect_p (info->x_local_live, info->y_local_live))
1234 regset_head clobbered_regs;
1236 INIT_REG_SET (&clobbered_regs);
1237 for (i = 0; i < info->cur.local_count; i++)
1239 if (assign_reg_reg_set (&clobbered_regs, info->y_local[i], 0))
1241 input_conflict = true;
1242 break;
1244 assign_reg_reg_set (&clobbered_regs, info->x_local[i], 1);
1246 CLEAR_REG_SET (&clobbered_regs);
1248 if (input_conflict && !info->check_input_conflict)
1249 info->need_rerun = true;
1250 info->check_input_conflict = input_conflict;
1254 if (info->mode & STRUCT_EQUIV_NEED_FULL_BLOCK
1255 && (info->cur.x_start != x_stop || info->cur.y_start != y_stop))
1256 return 0;
1257 return info->cur.ninsns;
1260 /* For each local register, set info->local_rvalue to true iff the register
1261 is a dying input. Store the total number of these in info->dying_inputs. */
1262 static void
1263 find_dying_inputs (struct equiv_info *info)
1265 int i;
1267 info->dying_inputs = 0;
1268 for (i = info->cur.local_count-1; i >=0; i--)
1270 rtx x = info->x_local[i];
1271 unsigned regno = REGNO (x);
1272 int nregs = (regno >= FIRST_PSEUDO_REGISTER
1273 ? 1 : hard_regno_nregs[regno][GET_MODE (x)]);
1275 for (info->local_rvalue[i] = false; nregs > 0; regno++, --nregs)
1276 if (REGNO_REG_SET_P (info->x_local_live, regno))
1278 info->dying_inputs++;
1279 info->local_rvalue[i] = true;
1280 break;
1285 /* For each local register that is a dying input, y_local[i] will be
1286 copied to x_local[i]. We'll do this in ascending order. Try to
1287 re-order the locals to avoid conflicts like r3 = r2; r4 = r3; .
1288 Return true iff the re-ordering is successful, or not necessary. */
1289 static bool
1290 resolve_input_conflict (struct equiv_info *info)
1292 int i, j, end;
1293 int nswaps = 0;
1294 rtx save_x_local[STRUCT_EQUIV_MAX_LOCAL];
1295 rtx save_y_local[STRUCT_EQUIV_MAX_LOCAL];
1297 find_dying_inputs (info);
1298 if (info->dying_inputs <= 1)
1299 return true;
1300 memcpy (save_x_local, info->x_local, sizeof save_x_local);
1301 memcpy (save_y_local, info->y_local, sizeof save_y_local);
1302 end = info->cur.local_count - 1;
1303 for (i = 0; i <= end; i++)
1305 /* Cycle detection with regsets is expensive, so we just check that
1306 we don't exceed the maximum number of swaps needed in the acyclic
1307 case. */
1308 int max_swaps = end - i;
1310 /* Check if x_local[i] will be clobbered. */
1311 if (!info->local_rvalue[i])
1312 continue;
1313 /* Check if any later value needs to be copied earlier. */
1314 for (j = i + 1; j <= end; j++)
1316 rtx tmp;
1318 if (!info->local_rvalue[j])
1319 continue;
1320 if (!reg_overlap_mentioned_p (info->x_local[i], info->y_local[j]))
1321 continue;
1322 if (--max_swaps < 0)
1324 memcpy (info->x_local, save_x_local, sizeof save_x_local);
1325 memcpy (info->y_local, save_y_local, sizeof save_y_local);
1326 return false;
1328 nswaps++;
1329 tmp = info->x_local[i];
1330 info->x_local[i] = info->x_local[j];
1331 info->x_local[j] = tmp;
1332 tmp = info->y_local[i];
1333 info->y_local[i] = info->y_local[j];
1334 info->y_local[j] = tmp;
1335 j = i;
1338 info->had_input_conflict = true;
1339 if (dump_file && nswaps)
1340 fprintf (dump_file, "Resolved input conflict, %d %s.\n",
1341 nswaps, nswaps == 1 ? "swap" : "swaps");
1342 return true;