Document HLE / RTM intrinsics
[official-gcc.git] / gcc / tree-chrec.c
blobca31a9d065c0ab9729d938dc690f073589d56126
1 /* Chains of recurrences.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree-pretty-print.h"
30 #include "cfgloop.h"
31 #include "tree-flow.h"
32 #include "tree-chrec.h"
33 #include "dumpfile.h"
34 #include "params.h"
35 #include "tree-scalar-evolution.h"
37 /* Extended folder for chrecs. */
39 /* Determines whether CST is not a constant evolution. */
41 static inline bool
42 is_not_constant_evolution (const_tree cst)
44 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
47 /* Fold CODE for a polynomial function and a constant. */
49 static inline tree
50 chrec_fold_poly_cst (enum tree_code code,
51 tree type,
52 tree poly,
53 tree cst)
55 gcc_assert (poly);
56 gcc_assert (cst);
57 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
58 gcc_assert (!is_not_constant_evolution (cst));
59 gcc_assert (type == chrec_type (poly));
61 switch (code)
63 case PLUS_EXPR:
64 return build_polynomial_chrec
65 (CHREC_VARIABLE (poly),
66 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
67 CHREC_RIGHT (poly));
69 case MINUS_EXPR:
70 return build_polynomial_chrec
71 (CHREC_VARIABLE (poly),
72 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
73 CHREC_RIGHT (poly));
75 case MULT_EXPR:
76 return build_polynomial_chrec
77 (CHREC_VARIABLE (poly),
78 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
79 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
81 default:
82 return chrec_dont_know;
86 /* Fold the addition of two polynomial functions. */
88 static inline tree
89 chrec_fold_plus_poly_poly (enum tree_code code,
90 tree type,
91 tree poly0,
92 tree poly1)
94 tree left, right;
95 struct loop *loop0 = get_chrec_loop (poly0);
96 struct loop *loop1 = get_chrec_loop (poly1);
97 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
99 gcc_assert (poly0);
100 gcc_assert (poly1);
101 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
102 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
103 if (POINTER_TYPE_P (chrec_type (poly0)))
104 gcc_assert (ptrofftype_p (chrec_type (poly1)));
105 else
106 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
107 gcc_assert (type == chrec_type (poly0));
110 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
111 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
112 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
113 if (flow_loop_nested_p (loop0, loop1))
115 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
116 return build_polynomial_chrec
117 (CHREC_VARIABLE (poly1),
118 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
119 CHREC_RIGHT (poly1));
120 else
121 return build_polynomial_chrec
122 (CHREC_VARIABLE (poly1),
123 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
124 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
125 SCALAR_FLOAT_TYPE_P (type)
126 ? build_real (type, dconstm1)
127 : build_int_cst_type (type, -1)));
130 if (flow_loop_nested_p (loop1, loop0))
132 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
133 return build_polynomial_chrec
134 (CHREC_VARIABLE (poly0),
135 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
136 CHREC_RIGHT (poly0));
137 else
138 return build_polynomial_chrec
139 (CHREC_VARIABLE (poly0),
140 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
141 CHREC_RIGHT (poly0));
144 /* This function should never be called for chrecs of loops that
145 do not belong to the same loop nest. */
146 gcc_assert (loop0 == loop1);
148 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
150 left = chrec_fold_plus
151 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
152 right = chrec_fold_plus
153 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
155 else
157 left = chrec_fold_minus
158 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159 right = chrec_fold_minus
160 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
163 if (chrec_zerop (right))
164 return left;
165 else
166 return build_polynomial_chrec
167 (CHREC_VARIABLE (poly0), left, right);
172 /* Fold the multiplication of two polynomial functions. */
174 static inline tree
175 chrec_fold_multiply_poly_poly (tree type,
176 tree poly0,
177 tree poly1)
179 tree t0, t1, t2;
180 int var;
181 struct loop *loop0 = get_chrec_loop (poly0);
182 struct loop *loop1 = get_chrec_loop (poly1);
184 gcc_assert (poly0);
185 gcc_assert (poly1);
186 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
187 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
188 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
189 gcc_assert (type == chrec_type (poly0));
191 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
192 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
193 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
194 if (flow_loop_nested_p (loop0, loop1))
195 /* poly0 is a constant wrt. poly1. */
196 return build_polynomial_chrec
197 (CHREC_VARIABLE (poly1),
198 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
199 CHREC_RIGHT (poly1));
201 if (flow_loop_nested_p (loop1, loop0))
202 /* poly1 is a constant wrt. poly0. */
203 return build_polynomial_chrec
204 (CHREC_VARIABLE (poly0),
205 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
206 CHREC_RIGHT (poly0));
208 gcc_assert (loop0 == loop1);
210 /* poly0 and poly1 are two polynomials in the same variable,
211 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
213 /* "a*c". */
214 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
216 /* "a*d + b*c". */
217 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
218 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
219 CHREC_RIGHT (poly0),
220 CHREC_LEFT (poly1)));
221 /* "b*d". */
222 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
223 /* "a*d + b*c + b*d". */
224 t1 = chrec_fold_plus (type, t1, t2);
225 /* "2*b*d". */
226 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
227 ? build_real (type, dconst2)
228 : build_int_cst (type, 2), t2);
230 var = CHREC_VARIABLE (poly0);
231 return build_polynomial_chrec (var, t0,
232 build_polynomial_chrec (var, t1, t2));
235 /* When the operands are automatically_generated_chrec_p, the fold has
236 to respect the semantics of the operands. */
238 static inline tree
239 chrec_fold_automatically_generated_operands (tree op0,
240 tree op1)
242 if (op0 == chrec_dont_know
243 || op1 == chrec_dont_know)
244 return chrec_dont_know;
246 if (op0 == chrec_known
247 || op1 == chrec_known)
248 return chrec_known;
250 if (op0 == chrec_not_analyzed_yet
251 || op1 == chrec_not_analyzed_yet)
252 return chrec_not_analyzed_yet;
254 /* The default case produces a safe result. */
255 return chrec_dont_know;
258 /* Fold the addition of two chrecs. */
260 static tree
261 chrec_fold_plus_1 (enum tree_code code, tree type,
262 tree op0, tree op1)
264 if (automatically_generated_chrec_p (op0)
265 || automatically_generated_chrec_p (op1))
266 return chrec_fold_automatically_generated_operands (op0, op1);
268 switch (TREE_CODE (op0))
270 case POLYNOMIAL_CHREC:
271 switch (TREE_CODE (op1))
273 case POLYNOMIAL_CHREC:
274 return chrec_fold_plus_poly_poly (code, type, op0, op1);
276 CASE_CONVERT:
277 if (tree_contains_chrecs (op1, NULL))
278 return chrec_dont_know;
280 default:
281 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
282 return build_polynomial_chrec
283 (CHREC_VARIABLE (op0),
284 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
285 CHREC_RIGHT (op0));
286 else
287 return build_polynomial_chrec
288 (CHREC_VARIABLE (op0),
289 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
290 CHREC_RIGHT (op0));
293 CASE_CONVERT:
294 if (tree_contains_chrecs (op0, NULL))
295 return chrec_dont_know;
297 default:
298 switch (TREE_CODE (op1))
300 case POLYNOMIAL_CHREC:
301 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op1),
304 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
305 CHREC_RIGHT (op1));
306 else
307 return build_polynomial_chrec
308 (CHREC_VARIABLE (op1),
309 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
310 chrec_fold_multiply (type, CHREC_RIGHT (op1),
311 SCALAR_FLOAT_TYPE_P (type)
312 ? build_real (type, dconstm1)
313 : build_int_cst_type (type, -1)));
315 CASE_CONVERT:
316 if (tree_contains_chrecs (op1, NULL))
317 return chrec_dont_know;
319 default:
321 int size = 0;
322 if ((tree_contains_chrecs (op0, &size)
323 || tree_contains_chrecs (op1, &size))
324 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
325 return build2 (code, type, op0, op1);
326 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
328 if (code == POINTER_PLUS_EXPR)
329 return fold_build_pointer_plus (fold_convert (type, op0),
330 op1);
331 else
332 return fold_build2 (code, type,
333 fold_convert (type, op0),
334 fold_convert (type, op1));
336 else
337 return chrec_dont_know;
343 /* Fold the addition of two chrecs. */
345 tree
346 chrec_fold_plus (tree type,
347 tree op0,
348 tree op1)
350 enum tree_code code;
351 if (automatically_generated_chrec_p (op0)
352 || automatically_generated_chrec_p (op1))
353 return chrec_fold_automatically_generated_operands (op0, op1);
355 if (integer_zerop (op0))
356 return chrec_convert (type, op1, NULL);
357 if (integer_zerop (op1))
358 return chrec_convert (type, op0, NULL);
360 if (POINTER_TYPE_P (type))
361 code = POINTER_PLUS_EXPR;
362 else
363 code = PLUS_EXPR;
365 return chrec_fold_plus_1 (code, type, op0, op1);
368 /* Fold the subtraction of two chrecs. */
370 tree
371 chrec_fold_minus (tree type,
372 tree op0,
373 tree op1)
375 if (automatically_generated_chrec_p (op0)
376 || automatically_generated_chrec_p (op1))
377 return chrec_fold_automatically_generated_operands (op0, op1);
379 if (integer_zerop (op1))
380 return op0;
382 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
385 /* Fold the multiplication of two chrecs. */
387 tree
388 chrec_fold_multiply (tree type,
389 tree op0,
390 tree op1)
392 if (automatically_generated_chrec_p (op0)
393 || automatically_generated_chrec_p (op1))
394 return chrec_fold_automatically_generated_operands (op0, op1);
396 switch (TREE_CODE (op0))
398 case POLYNOMIAL_CHREC:
399 switch (TREE_CODE (op1))
401 case POLYNOMIAL_CHREC:
402 return chrec_fold_multiply_poly_poly (type, op0, op1);
404 CASE_CONVERT:
405 if (tree_contains_chrecs (op1, NULL))
406 return chrec_dont_know;
408 default:
409 if (integer_onep (op1))
410 return op0;
411 if (integer_zerop (op1))
412 return build_int_cst (type, 0);
414 return build_polynomial_chrec
415 (CHREC_VARIABLE (op0),
416 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
417 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
420 CASE_CONVERT:
421 if (tree_contains_chrecs (op0, NULL))
422 return chrec_dont_know;
424 default:
425 if (integer_onep (op0))
426 return op1;
428 if (integer_zerop (op0))
429 return build_int_cst (type, 0);
431 switch (TREE_CODE (op1))
433 case POLYNOMIAL_CHREC:
434 return build_polynomial_chrec
435 (CHREC_VARIABLE (op1),
436 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
437 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
439 CASE_CONVERT:
440 if (tree_contains_chrecs (op1, NULL))
441 return chrec_dont_know;
443 default:
444 if (integer_onep (op1))
445 return op0;
446 if (integer_zerop (op1))
447 return build_int_cst (type, 0);
448 return fold_build2 (MULT_EXPR, type, op0, op1);
455 /* Operations. */
457 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
458 calculation overflows, otherwise return C(n,k) with type TYPE. */
460 static tree
461 tree_fold_binomial (tree type, tree n, unsigned int k)
463 double_int num, denom, idx, di_res;
464 bool overflow;
465 unsigned int i;
466 tree res;
468 /* Handle the most frequent cases. */
469 if (k == 0)
470 return build_int_cst (type, 1);
471 if (k == 1)
472 return fold_convert (type, n);
474 /* Numerator = n. */
475 num = TREE_INT_CST (n);
477 /* Check that k <= n. */
478 if (num.ult (double_int::from_uhwi (k)))
479 return NULL_TREE;
481 /* Denominator = 2. */
482 denom = double_int::from_uhwi (2);
484 /* Index = Numerator-1. */
485 idx = num - double_int_one;
487 /* Numerator = Numerator*Index = n*(n-1). */
488 num = num.mul_with_sign (idx, false, &overflow);
489 if (overflow)
490 return NULL_TREE;
492 for (i = 3; i <= k; i++)
494 /* Index--. */
495 --idx;
497 /* Numerator *= Index. */
498 num = num.mul_with_sign (idx, false, &overflow);
499 if (overflow)
500 return NULL_TREE;
502 /* Denominator *= i. */
503 denom *= double_int::from_uhwi (i);
506 /* Result = Numerator / Denominator. */
507 di_res = num.div (denom, true, EXACT_DIV_EXPR);
508 res = build_int_cst_wide (type, di_res.low, di_res.high);
509 return int_fits_type_p (res, type) ? res : NULL_TREE;
512 /* Helper function. Use the Newton's interpolating formula for
513 evaluating the value of the evolution function. */
515 static tree
516 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
518 tree arg0, arg1, binomial_n_k;
519 tree type = TREE_TYPE (chrec);
520 struct loop *var_loop = get_loop (var);
522 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
523 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
524 chrec = CHREC_LEFT (chrec);
526 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
527 && CHREC_VARIABLE (chrec) == var)
529 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
530 if (arg1 == chrec_dont_know)
531 return chrec_dont_know;
532 binomial_n_k = tree_fold_binomial (type, n, k);
533 if (!binomial_n_k)
534 return chrec_dont_know;
535 arg0 = fold_build2 (MULT_EXPR, type,
536 CHREC_LEFT (chrec), binomial_n_k);
537 return chrec_fold_plus (type, arg0, arg1);
540 binomial_n_k = tree_fold_binomial (type, n, k);
541 if (!binomial_n_k)
542 return chrec_dont_know;
544 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
547 /* Evaluates "CHREC (X)" when the varying variable is VAR.
548 Example: Given the following parameters,
550 var = 1
551 chrec = {3, +, 4}_1
552 x = 10
554 The result is given by the Newton's interpolating formula:
555 3 * \binom{10}{0} + 4 * \binom{10}{1}.
558 tree
559 chrec_apply (unsigned var,
560 tree chrec,
561 tree x)
563 tree type = chrec_type (chrec);
564 tree res = chrec_dont_know;
566 if (automatically_generated_chrec_p (chrec)
567 || automatically_generated_chrec_p (x)
569 /* When the symbols are defined in an outer loop, it is possible
570 to symbolically compute the apply, since the symbols are
571 constants with respect to the varying loop. */
572 || chrec_contains_symbols_defined_in_loop (chrec, var))
573 return chrec_dont_know;
575 if (dump_file && (dump_flags & TDF_SCEV))
576 fprintf (dump_file, "(chrec_apply \n");
578 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
579 x = build_real_from_int_cst (type, x);
581 switch (TREE_CODE (chrec))
583 case POLYNOMIAL_CHREC:
584 if (evolution_function_is_affine_p (chrec))
586 if (CHREC_VARIABLE (chrec) != var)
587 return build_polynomial_chrec
588 (CHREC_VARIABLE (chrec),
589 chrec_apply (var, CHREC_LEFT (chrec), x),
590 chrec_apply (var, CHREC_RIGHT (chrec), x));
592 /* "{a, +, b} (x)" -> "a + b*x". */
593 x = chrec_convert_rhs (type, x, NULL);
594 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
595 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
597 else if (TREE_CODE (x) == INTEGER_CST
598 && tree_int_cst_sgn (x) == 1)
599 /* testsuite/.../ssa-chrec-38.c. */
600 res = chrec_evaluate (var, chrec, x, 0);
601 else
602 res = chrec_dont_know;
603 break;
605 CASE_CONVERT:
606 res = chrec_convert (TREE_TYPE (chrec),
607 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
608 NULL);
609 break;
611 default:
612 res = chrec;
613 break;
616 if (dump_file && (dump_flags & TDF_SCEV))
618 fprintf (dump_file, " (varying_loop = %d\n", var);
619 fprintf (dump_file, ")\n (chrec = ");
620 print_generic_expr (dump_file, chrec, 0);
621 fprintf (dump_file, ")\n (x = ");
622 print_generic_expr (dump_file, x, 0);
623 fprintf (dump_file, ")\n (res = ");
624 print_generic_expr (dump_file, res, 0);
625 fprintf (dump_file, "))\n");
628 return res;
631 /* For a given CHREC and an induction variable map IV_MAP that maps
632 (loop->num, expr) for every loop number of the current_loops an
633 expression, calls chrec_apply when the expression is not NULL. */
635 tree
636 chrec_apply_map (tree chrec, vec<tree> iv_map)
638 int i;
639 tree expr;
641 FOR_EACH_VEC_ELT (iv_map, i, expr)
642 if (expr)
643 chrec = chrec_apply (i, chrec, expr);
645 return chrec;
648 /* Replaces the initial condition in CHREC with INIT_COND. */
650 tree
651 chrec_replace_initial_condition (tree chrec,
652 tree init_cond)
654 if (automatically_generated_chrec_p (chrec))
655 return chrec;
657 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
659 switch (TREE_CODE (chrec))
661 case POLYNOMIAL_CHREC:
662 return build_polynomial_chrec
663 (CHREC_VARIABLE (chrec),
664 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
665 CHREC_RIGHT (chrec));
667 default:
668 return init_cond;
672 /* Returns the initial condition of a given CHREC. */
674 tree
675 initial_condition (tree chrec)
677 if (automatically_generated_chrec_p (chrec))
678 return chrec;
680 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
681 return initial_condition (CHREC_LEFT (chrec));
682 else
683 return chrec;
686 /* Returns a univariate function that represents the evolution in
687 LOOP_NUM. Mask the evolution of any other loop. */
689 tree
690 hide_evolution_in_other_loops_than_loop (tree chrec,
691 unsigned loop_num)
693 struct loop *loop = get_loop (loop_num), *chloop;
694 if (automatically_generated_chrec_p (chrec))
695 return chrec;
697 switch (TREE_CODE (chrec))
699 case POLYNOMIAL_CHREC:
700 chloop = get_chrec_loop (chrec);
702 if (chloop == loop)
703 return build_polynomial_chrec
704 (loop_num,
705 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
706 loop_num),
707 CHREC_RIGHT (chrec));
709 else if (flow_loop_nested_p (chloop, loop))
710 /* There is no evolution in this loop. */
711 return initial_condition (chrec);
713 else
715 gcc_assert (flow_loop_nested_p (loop, chloop));
716 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
717 loop_num);
720 default:
721 return chrec;
725 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
726 true, otherwise returns the initial condition in LOOP_NUM. */
728 static tree
729 chrec_component_in_loop_num (tree chrec,
730 unsigned loop_num,
731 bool right)
733 tree component;
734 struct loop *loop = get_loop (loop_num), *chloop;
736 if (automatically_generated_chrec_p (chrec))
737 return chrec;
739 switch (TREE_CODE (chrec))
741 case POLYNOMIAL_CHREC:
742 chloop = get_chrec_loop (chrec);
744 if (chloop == loop)
746 if (right)
747 component = CHREC_RIGHT (chrec);
748 else
749 component = CHREC_LEFT (chrec);
751 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
752 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
753 return component;
755 else
756 return build_polynomial_chrec
757 (loop_num,
758 chrec_component_in_loop_num (CHREC_LEFT (chrec),
759 loop_num,
760 right),
761 component);
764 else if (flow_loop_nested_p (chloop, loop))
765 /* There is no evolution part in this loop. */
766 return NULL_TREE;
768 else
770 gcc_assert (flow_loop_nested_p (loop, chloop));
771 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
772 loop_num,
773 right);
776 default:
777 if (right)
778 return NULL_TREE;
779 else
780 return chrec;
784 /* Returns the evolution part in LOOP_NUM. Example: the call
785 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
786 {1, +, 2}_1 */
788 tree
789 evolution_part_in_loop_num (tree chrec,
790 unsigned loop_num)
792 return chrec_component_in_loop_num (chrec, loop_num, true);
795 /* Returns the initial condition in LOOP_NUM. Example: the call
796 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
797 {0, +, 1}_1 */
799 tree
800 initial_condition_in_loop_num (tree chrec,
801 unsigned loop_num)
803 return chrec_component_in_loop_num (chrec, loop_num, false);
806 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
807 This function is essentially used for setting the evolution to
808 chrec_dont_know, for example after having determined that it is
809 impossible to say how many times a loop will execute. */
811 tree
812 reset_evolution_in_loop (unsigned loop_num,
813 tree chrec,
814 tree new_evol)
816 struct loop *loop = get_loop (loop_num);
818 if (POINTER_TYPE_P (chrec_type (chrec)))
819 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
820 else
821 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
823 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
824 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
826 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
827 new_evol);
828 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
829 new_evol);
830 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
831 CHREC_VAR (chrec), left, right);
834 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
835 && CHREC_VARIABLE (chrec) == loop_num)
836 chrec = CHREC_LEFT (chrec);
838 return build_polynomial_chrec (loop_num, chrec, new_evol);
841 /* Merges two evolution functions that were found by following two
842 alternate paths of a conditional expression. */
844 tree
845 chrec_merge (tree chrec1,
846 tree chrec2)
848 if (chrec1 == chrec_dont_know
849 || chrec2 == chrec_dont_know)
850 return chrec_dont_know;
852 if (chrec1 == chrec_known
853 || chrec2 == chrec_known)
854 return chrec_known;
856 if (chrec1 == chrec_not_analyzed_yet)
857 return chrec2;
858 if (chrec2 == chrec_not_analyzed_yet)
859 return chrec1;
861 if (eq_evolutions_p (chrec1, chrec2))
862 return chrec1;
864 return chrec_dont_know;
869 /* Observers. */
871 /* Helper function for is_multivariate_chrec. */
873 static bool
874 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
876 if (chrec == NULL_TREE)
877 return false;
879 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
881 if (CHREC_VARIABLE (chrec) != rec_var)
882 return true;
883 else
884 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
885 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
887 else
888 return false;
891 /* Determine whether the given chrec is multivariate or not. */
893 bool
894 is_multivariate_chrec (const_tree chrec)
896 if (chrec == NULL_TREE)
897 return false;
899 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
900 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
901 CHREC_VARIABLE (chrec))
902 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
903 CHREC_VARIABLE (chrec)));
904 else
905 return false;
908 /* Determines whether the chrec contains symbolic names or not. */
910 bool
911 chrec_contains_symbols (const_tree chrec)
913 int i, n;
915 if (chrec == NULL_TREE)
916 return false;
918 if (TREE_CODE (chrec) == SSA_NAME
919 || TREE_CODE (chrec) == VAR_DECL
920 || TREE_CODE (chrec) == PARM_DECL
921 || TREE_CODE (chrec) == FUNCTION_DECL
922 || TREE_CODE (chrec) == LABEL_DECL
923 || TREE_CODE (chrec) == RESULT_DECL
924 || TREE_CODE (chrec) == FIELD_DECL)
925 return true;
927 n = TREE_OPERAND_LENGTH (chrec);
928 for (i = 0; i < n; i++)
929 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
930 return true;
931 return false;
934 /* Determines whether the chrec contains undetermined coefficients. */
936 bool
937 chrec_contains_undetermined (const_tree chrec)
939 int i, n;
941 if (chrec == chrec_dont_know)
942 return true;
944 if (chrec == NULL_TREE)
945 return false;
947 n = TREE_OPERAND_LENGTH (chrec);
948 for (i = 0; i < n; i++)
949 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
950 return true;
951 return false;
954 /* Determines whether the tree EXPR contains chrecs, and increment
955 SIZE if it is not a NULL pointer by an estimation of the depth of
956 the tree. */
958 bool
959 tree_contains_chrecs (const_tree expr, int *size)
961 int i, n;
963 if (expr == NULL_TREE)
964 return false;
966 if (size)
967 (*size)++;
969 if (tree_is_chrec (expr))
970 return true;
972 n = TREE_OPERAND_LENGTH (expr);
973 for (i = 0; i < n; i++)
974 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
975 return true;
976 return false;
979 /* Recursive helper function. */
981 static bool
982 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
984 if (evolution_function_is_constant_p (chrec))
985 return true;
987 if (TREE_CODE (chrec) == SSA_NAME
988 && (loopnum == 0
989 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
990 return true;
992 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
994 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
995 || flow_loop_nested_p (get_loop (loopnum),
996 get_loop (CHREC_VARIABLE (chrec)))
997 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
998 loopnum)
999 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1000 loopnum))
1001 return false;
1002 return true;
1005 switch (TREE_OPERAND_LENGTH (chrec))
1007 case 2:
1008 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1009 loopnum))
1010 return false;
1012 case 1:
1013 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1014 loopnum))
1015 return false;
1016 return true;
1018 default:
1019 return false;
1022 return false;
1025 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1027 bool
1028 evolution_function_is_invariant_p (tree chrec, int loopnum)
1030 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1033 /* Determine whether the given tree is an affine multivariate
1034 evolution. */
1036 bool
1037 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1039 if (chrec == NULL_TREE)
1040 return false;
1042 switch (TREE_CODE (chrec))
1044 case POLYNOMIAL_CHREC:
1045 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1047 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1048 return true;
1049 else
1051 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1052 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1053 != CHREC_VARIABLE (chrec)
1054 && evolution_function_is_affine_multivariate_p
1055 (CHREC_RIGHT (chrec), loopnum))
1056 return true;
1057 else
1058 return false;
1061 else
1063 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1064 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1065 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1066 && evolution_function_is_affine_multivariate_p
1067 (CHREC_LEFT (chrec), loopnum))
1068 return true;
1069 else
1070 return false;
1073 default:
1074 return false;
1078 /* Determine whether the given tree is a function in zero or one
1079 variables. */
1081 bool
1082 evolution_function_is_univariate_p (const_tree chrec)
1084 if (chrec == NULL_TREE)
1085 return true;
1087 switch (TREE_CODE (chrec))
1089 case POLYNOMIAL_CHREC:
1090 switch (TREE_CODE (CHREC_LEFT (chrec)))
1092 case POLYNOMIAL_CHREC:
1093 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1094 return false;
1095 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1096 return false;
1097 break;
1099 default:
1100 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1101 return false;
1102 break;
1105 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1107 case POLYNOMIAL_CHREC:
1108 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1109 return false;
1110 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1111 return false;
1112 break;
1114 default:
1115 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1116 return false;
1117 break;
1120 default:
1121 return true;
1125 /* Returns the number of variables of CHREC. Example: the call
1126 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1128 unsigned
1129 nb_vars_in_chrec (tree chrec)
1131 if (chrec == NULL_TREE)
1132 return 0;
1134 switch (TREE_CODE (chrec))
1136 case POLYNOMIAL_CHREC:
1137 return 1 + nb_vars_in_chrec
1138 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1140 default:
1141 return 0;
1145 static tree chrec_convert_1 (tree, tree, gimple, bool);
1147 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1148 the scev corresponds to. AT_STMT is the statement at that the scev is
1149 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1150 the rules for overflow of the given language apply (e.g., that signed
1151 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1152 tests, but also to enforce that the result follows them. Returns true if the
1153 conversion succeeded, false otherwise. */
1155 bool
1156 convert_affine_scev (struct loop *loop, tree type,
1157 tree *base, tree *step, gimple at_stmt,
1158 bool use_overflow_semantics)
1160 tree ct = TREE_TYPE (*step);
1161 bool enforce_overflow_semantics;
1162 bool must_check_src_overflow, must_check_rslt_overflow;
1163 tree new_base, new_step;
1164 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1166 /* In general,
1167 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1168 but we must check some assumptions.
1170 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1171 of CT is smaller than the precision of TYPE. For example, when we
1172 cast unsigned char [254, +, 1] to unsigned, the values on left side
1173 are 254, 255, 0, 1, ..., but those on the right side are
1174 254, 255, 256, 257, ...
1175 2) In case that we must also preserve the fact that signed ivs do not
1176 overflow, we must additionally check that the new iv does not wrap.
1177 For example, unsigned char [125, +, 1] casted to signed char could
1178 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1179 which would confuse optimizers that assume that this does not
1180 happen. */
1181 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1183 enforce_overflow_semantics = (use_overflow_semantics
1184 && nowrap_type_p (type));
1185 if (enforce_overflow_semantics)
1187 /* We can avoid checking whether the result overflows in the following
1188 cases:
1190 -- must_check_src_overflow is true, and the range of TYPE is superset
1191 of the range of CT -- i.e., in all cases except if CT signed and
1192 TYPE unsigned.
1193 -- both CT and TYPE have the same precision and signedness, and we
1194 verify instead that the source does not overflow (this may be
1195 easier than verifying it for the result, as we may use the
1196 information about the semantics of overflow in CT). */
1197 if (must_check_src_overflow)
1199 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1200 must_check_rslt_overflow = true;
1201 else
1202 must_check_rslt_overflow = false;
1204 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1205 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1207 must_check_rslt_overflow = false;
1208 must_check_src_overflow = true;
1210 else
1211 must_check_rslt_overflow = true;
1213 else
1214 must_check_rslt_overflow = false;
1216 if (must_check_src_overflow
1217 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1218 use_overflow_semantics))
1219 return false;
1221 new_base = chrec_convert_1 (type, *base, at_stmt,
1222 use_overflow_semantics);
1223 /* The step must be sign extended, regardless of the signedness
1224 of CT and TYPE. This only needs to be handled specially when
1225 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1226 (with values 100, 99, 98, ...) from becoming signed or unsigned
1227 [100, +, 255] with values 100, 355, ...; the sign-extension is
1228 performed by default when CT is signed. */
1229 new_step = *step;
1230 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1232 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1233 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1234 use_overflow_semantics);
1236 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1238 if (automatically_generated_chrec_p (new_base)
1239 || automatically_generated_chrec_p (new_step))
1240 return false;
1242 if (must_check_rslt_overflow
1243 /* Note that in this case we cannot use the fact that signed variables
1244 do not overflow, as this is what we are verifying for the new iv. */
1245 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1246 return false;
1248 *base = new_base;
1249 *step = new_step;
1250 return true;
1254 /* Convert CHREC for the right hand side of a CHREC.
1255 The increment for a pointer type is always sizetype. */
1257 tree
1258 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1260 if (POINTER_TYPE_P (type))
1261 type = sizetype;
1263 return chrec_convert (type, chrec, at_stmt);
1266 /* Convert CHREC to TYPE. When the analyzer knows the context in
1267 which the CHREC is built, it sets AT_STMT to the statement that
1268 contains the definition of the analyzed variable, otherwise the
1269 conversion is less accurate: the information is used for
1270 determining a more accurate estimation of the number of iterations.
1271 By default AT_STMT could be safely set to NULL_TREE.
1273 The following rule is always true: TREE_TYPE (chrec) ==
1274 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1275 An example of what could happen when adding two chrecs and the type
1276 of the CHREC_RIGHT is different than CHREC_LEFT is:
1278 {(uint) 0, +, (uchar) 10} +
1279 {(uint) 0, +, (uchar) 250}
1281 that would produce a wrong result if CHREC_RIGHT is not (uint):
1283 {(uint) 0, +, (uchar) 4}
1285 instead of
1287 {(uint) 0, +, (uint) 260}
1290 tree
1291 chrec_convert (tree type, tree chrec, gimple at_stmt)
1293 return chrec_convert_1 (type, chrec, at_stmt, true);
1296 /* Convert CHREC to TYPE. When the analyzer knows the context in
1297 which the CHREC is built, it sets AT_STMT to the statement that
1298 contains the definition of the analyzed variable, otherwise the
1299 conversion is less accurate: the information is used for
1300 determining a more accurate estimation of the number of iterations.
1301 By default AT_STMT could be safely set to NULL_TREE.
1303 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1304 the rules for overflow of the given language apply (e.g., that signed
1305 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1306 tests, but also to enforce that the result follows them. */
1308 static tree
1309 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1310 bool use_overflow_semantics)
1312 tree ct, res;
1313 tree base, step;
1314 struct loop *loop;
1316 if (automatically_generated_chrec_p (chrec))
1317 return chrec;
1319 ct = chrec_type (chrec);
1320 if (ct == type)
1321 return chrec;
1323 if (!evolution_function_is_affine_p (chrec))
1324 goto keep_cast;
1326 loop = get_chrec_loop (chrec);
1327 base = CHREC_LEFT (chrec);
1328 step = CHREC_RIGHT (chrec);
1330 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1331 use_overflow_semantics))
1332 return build_polynomial_chrec (loop->num, base, step);
1334 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1335 keep_cast:
1336 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1337 may be more expensive. We do want to perform this optimization here
1338 though for canonicalization reasons. */
1339 if (use_overflow_semantics
1340 && (TREE_CODE (chrec) == PLUS_EXPR
1341 || TREE_CODE (chrec) == MINUS_EXPR)
1342 && TREE_CODE (type) == INTEGER_TYPE
1343 && TREE_CODE (ct) == INTEGER_TYPE
1344 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1345 && TYPE_OVERFLOW_UNDEFINED (ct))
1346 res = fold_build2 (TREE_CODE (chrec), type,
1347 fold_convert (type, TREE_OPERAND (chrec, 0)),
1348 fold_convert (type, TREE_OPERAND (chrec, 1)));
1349 /* Similar perform the trick that (signed char)((int)x + 2) can be
1350 narrowed to (signed char)((unsigned char)x + 2). */
1351 else if (use_overflow_semantics
1352 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1353 && TREE_CODE (ct) == INTEGER_TYPE
1354 && TREE_CODE (type) == INTEGER_TYPE
1355 && TYPE_OVERFLOW_UNDEFINED (type)
1356 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1358 tree utype = unsigned_type_for (type);
1359 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1360 fold_convert (utype,
1361 CHREC_LEFT (chrec)),
1362 fold_convert (utype,
1363 CHREC_RIGHT (chrec)));
1364 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1366 else
1367 res = fold_convert (type, chrec);
1369 /* Don't propagate overflows. */
1370 if (CONSTANT_CLASS_P (res))
1371 TREE_OVERFLOW (res) = 0;
1373 /* But reject constants that don't fit in their type after conversion.
1374 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1375 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1376 and can cause problems later when computing niters of loops. Note
1377 that we don't do the check before converting because we don't want
1378 to reject conversions of negative chrecs to unsigned types. */
1379 if (TREE_CODE (res) == INTEGER_CST
1380 && TREE_CODE (type) == INTEGER_TYPE
1381 && !int_fits_type_p (res, type))
1382 res = chrec_dont_know;
1384 return res;
1387 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1388 chrec if something else than what chrec_convert would do happens, NULL_TREE
1389 otherwise. */
1391 tree
1392 chrec_convert_aggressive (tree type, tree chrec)
1394 tree inner_type, left, right, lc, rc, rtype;
1396 if (automatically_generated_chrec_p (chrec)
1397 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1398 return NULL_TREE;
1400 inner_type = TREE_TYPE (chrec);
1401 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1402 return NULL_TREE;
1404 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1406 left = CHREC_LEFT (chrec);
1407 right = CHREC_RIGHT (chrec);
1408 lc = chrec_convert_aggressive (type, left);
1409 if (!lc)
1410 lc = chrec_convert (type, left, NULL);
1411 rc = chrec_convert_aggressive (rtype, right);
1412 if (!rc)
1413 rc = chrec_convert (rtype, right, NULL);
1415 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1418 /* Returns true when CHREC0 == CHREC1. */
1420 bool
1421 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1423 if (chrec0 == NULL_TREE
1424 || chrec1 == NULL_TREE
1425 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1426 return false;
1428 if (chrec0 == chrec1)
1429 return true;
1431 switch (TREE_CODE (chrec0))
1433 case INTEGER_CST:
1434 return operand_equal_p (chrec0, chrec1, 0);
1436 case POLYNOMIAL_CHREC:
1437 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1438 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1439 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1441 case PLUS_EXPR:
1442 case MULT_EXPR:
1443 case MINUS_EXPR:
1444 case POINTER_PLUS_EXPR:
1445 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1446 TREE_OPERAND (chrec1, 0))
1447 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1448 TREE_OPERAND (chrec1, 1));
1450 default:
1451 return false;
1455 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1456 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1457 which of these cases happens. */
1459 enum ev_direction
1460 scev_direction (const_tree chrec)
1462 const_tree step;
1464 if (!evolution_function_is_affine_p (chrec))
1465 return EV_DIR_UNKNOWN;
1467 step = CHREC_RIGHT (chrec);
1468 if (TREE_CODE (step) != INTEGER_CST)
1469 return EV_DIR_UNKNOWN;
1471 if (tree_int_cst_sign_bit (step))
1472 return EV_DIR_DECREASES;
1473 else
1474 return EV_DIR_GROWS;
1477 /* Iterates over all the components of SCEV, and calls CBCK. */
1479 void
1480 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1482 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1484 case 3:
1485 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1487 case 2:
1488 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1490 case 1:
1491 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1493 default:
1494 cbck (scev, data);
1495 break;
1499 /* Returns true when the operation can be part of a linear
1500 expression. */
1502 static inline bool
1503 operator_is_linear (tree scev)
1505 switch (TREE_CODE (scev))
1507 case INTEGER_CST:
1508 case POLYNOMIAL_CHREC:
1509 case PLUS_EXPR:
1510 case POINTER_PLUS_EXPR:
1511 case MULT_EXPR:
1512 case MINUS_EXPR:
1513 case NEGATE_EXPR:
1514 case SSA_NAME:
1515 case NON_LVALUE_EXPR:
1516 case BIT_NOT_EXPR:
1517 CASE_CONVERT:
1518 return true;
1520 default:
1521 return false;
1525 /* Return true when SCEV is a linear expression. Linear expressions
1526 can contain additions, substractions and multiplications.
1527 Multiplications are restricted to constant scaling: "cst * x". */
1529 bool
1530 scev_is_linear_expression (tree scev)
1532 if (scev == NULL
1533 || !operator_is_linear (scev))
1534 return false;
1536 if (TREE_CODE (scev) == MULT_EXPR)
1537 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1538 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1540 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1541 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1542 return false;
1544 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1546 case 3:
1547 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1548 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1549 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1551 case 2:
1552 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1553 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1555 case 1:
1556 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1558 case 0:
1559 return true;
1561 default:
1562 return false;
1566 /* Determines whether the expression CHREC contains only interger consts
1567 in the right parts. */
1569 bool
1570 evolution_function_right_is_integer_cst (const_tree chrec)
1572 if (chrec == NULL_TREE)
1573 return false;
1575 switch (TREE_CODE (chrec))
1577 case INTEGER_CST:
1578 return true;
1580 case POLYNOMIAL_CHREC:
1581 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1582 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1583 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1585 CASE_CONVERT:
1586 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1588 default:
1589 return false;